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Abstract

We analyze labor productivity in coal mining in the United States using indices of

productivity change associated with the concepts of panel data modeling. This approach is

valuable when there is extensive heterogeneity in production units, as with coal mines. We find

substantial returns to scale for coal mining in all geographical regions, and find that smooth

technical progress is exhibited by estimates of the fixed effects for coal mining. We carry out a

variety of diagnostic analyses of our basic model and primary modeling assumptions, using

recently proposed methods for addressing ‘errors-in-variables’ and ‘weak instrument bias’

problems in linear and nonlinear models.
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1. Introduction

The coal-mining industry in the United States (U.S.) is a remarkably dynamic
industry. Labor productivity grew steadily at an annual rate of 5.36% from 1978 to
see front matter r 2004 Elsevier B.V. All rights reserved.
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Fig. 1. Price, quantity and labor productivity U.S. coal industry, 1972–95.
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1995,1 after some decline in the early 1970s. This high rate of productivity growth
makes the experience of coal mining comparable to sectors whose advances are more
well known, such as consumer electronics. As shown in Fig. 1, the rate of
improvement has been accompanied by strong growth of coal output from 1972 to
1995 and falling coal prices from 1975 to 1995.
The technology for mining coal varies greatly across the U.S., which gives rise to

many possibilities for explaining the dramatic productivity growth. At the most basic
level, coal2 deposits vary in size, shape and accessibility depending on the specific
geology of each mine location. In terms of overall technology, mines are either
surface mines or underground mines. Underground mines are further categorized by
mining process; the traditional continuous process or the more recent longwall
process. Moreover, each mine location has specific characteristics that affect mining
technique, equipment design and plant configuration, depending on the nature of the
coal deposit itself. The size of the mining deposit, as well as the life of a mine in a
particular location, varies from site to site.
To analyze the sources of productivity growth in U.S. coal mining, we believe it is

extremely important to account for heterogeneity across mines. But with extensive
heterogeneity, it is not clear how to interpret aggregate productivity growth without
1This is a conservative estimate based on averaging productivity from the eleven coal-mining groups

defined below. If instead one simply uses data on total tons and total labor hours in the U.S., the

productivity growth rate from 1978 to 1995 was 6.81% per year.
2We view coal as a homogeneous commodity, after controlling for heat content. In a study of the

demand for coal, sulfur content would be an important differentiating feature, which we do not distinguish

here.
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understanding its sources, and it is not clear how to measure those sources. Here we
present an econometric analysis of U.S. coal mining, and we define interpretable
sources of productivity growth consistent with concepts drawn from panel data
analysis.3

We employ a data set that is in some ways extremely rich and in other ways very
limited. We observe the annual output and labor input of every coal mine in the U.S.
from 1972 to 1995. In addition to mine location, we identify the type of production
technology used in each mine; namely surface mining, underground continuous
mining (CM) and underground longwall mining (LW). However, we do not observe
measures of capital in use at each mine, nor do we observe details on local geology or
the configuration of specific production facilities. For these reasons, we focus on
labor productivity of individual mines, and employ methods that allow for
substantial heterogeneity across mines.
We model labor productivity separately for groups of mines defined by geographic

region and type of technology. Mine-specific fixed effects are included to capture the
myriad of heterogeneous features (geology and different types of capital configura-
tion), and time effects are included to capture group-wide productivity variation. We
define indices of productivity change in line with the panel model concepts; fixed
effects, scale effects and time effects. Our results give an intriguing depiction of
smooth, uniform technological progress in coal mining over the period 1972–1995, as
well as an assessment of the importance of scale economies and technological
improvements embodied in physical capital.
Our modeling rests on an important specification assumption, that mine

output is predetermined relative to labor, due to contracting practice in coal
mining. We present extensive diagnostic analysis to assess how sensitive our
results are to that assumption. We adapt traditional (linear) errors-in-variables
bounds to our productivity analysis. We examine (linear) instrumental variable
estimates of productivity effects, applying recent methods from the ‘‘weak
instruments’’ literature, and follow with the generalized method of moments
estimates that account for many kinds of model structure. Further, we examine
the interplay of errors-in-variables with the nonlinear structure of our model by
computing polynomial estimates adjusted for the presence of such errors. Through
all of these methods, we do not find sufficient evidence to contradict our
basic empirical findings. Our applications illustrate nicely the usefulness of these
recent diagnostic techniques, which may be helpful in validating other applied
research.
Section 2 describes our data, spells out our modeling assumptions and provides

our overall results. Section 3 presents our diagnostic work on the sensitivity of our
results to key assumptions. Section 4 offers some concluding remarks.
3The importance of recognizing heterogeneity in coal-mining dates back at least to the use of (British)

regional data in Leser (1955) or (U.S.) state data in Madalla (1965). For work on productivity using

aggregate data, see Jorgenson et al. (1987), and Jorgenson (1990). For studies of data from states and

individual mines, see Kruvant et al. (1982), Baker (1981), Byrnes et al. (1984) and Boyd (1987). Boyd

(1987) gives a detailed analysis of Illinois strip mines and documents substantial economies of scale.
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2. Panel data analysis of productivity

2.1. U.S. coal-mining data

2.1.1. Data specifics and mining groups

The data on coal mine output and labor input are collected by the Mine Safety and
Health Administration (MSHA) as part of its mandated regulatory effort since
1972.4 Coal output is measured in clean short tons, and for aggregating output
across regions, coal output is (quality) adjusted for heat content.5 Labor is measured
in hours, and we do not distinguish different types of labor.
We observe mine location and whether the mine is a surface mine or an

underground mine. Surface mining involves a substantially different technology than
underground mining. In a surface mine, the overburden (earth) is stripped back to
reveal the coal seam, and the overburden is put back in place after the coal is mined.
This makes surface mining similar to modern road-building or other surface
development projects. Underground mines employ either CM or LW methods,
depending on the nature of the coal deposit. Continuous mines use (grinding)
machines that remove coal from the seam and pass it back to a shuttle car or
conveyor belt system. This system requires tunnels, with some coal left in place as
pillars to support the roof of the mine. LW uses an elaborate shearing device that
operates along an extended face (a ‘‘long wall’’), with the entire device moving
through the coal seam (and the roof capsizing behind it). CM is the traditional
technique, which is suitable for many types of mining sites. LW is a more recent
technique, that had been introduced in Europe and was then adopted in the U.S.
over the time frame of our data.6

The basic MSHA data do not identify which underground mines are longwall
mines, and so we identified longwall mines by matching specific mine locations with
longwall installations reported in Coal Age magazine. The MSHA data contain a few
details of mine facilities (e.g. presence of a preparation plant), but there is no
information on overall capital inputs (plant and equipment) to the mines. The only
geological feature observed is seam height, but that data appeared to be of very poor
quality and were not used in the analysis. We constructed an annual coal price index
for each region, and used a national wage series to proxy labor cost changes.7

We segment the data into 11 groups of mines, and analyze each group separately.
We categorize mines based on their location in three geographical regions—
Appalachia (APP), Interior (INT), and West (WST). We categorize mines based on
4Ellerman et al. (2001) gives much more detail on the specifics of the coal industry and the data.
5These adjustments of each coal type for Btu (heat) content are listed in Table 1. It is important to note

that these adjustments do not affect our models or estimates, but are only applied for aggregating across

mining groups.
6See DOE/EIA 0588 (95), Longwall Mining, for more details.
7The price data are constructed from annual mine-mouth coal prices by state as collected by the Energy

Information Adminstration of the U.S. Department of Energy. Wage data are from the Employment,

Hours and Earnings series published by the Bureau of Labor Statistics. These data are deflated to real

prices and wages using the consumer price index.
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Fig. 2. Coal-producing regions.
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type of production technology—surface mining (S), underground CM and LW.
These two dimensions determine 9 groups (APP-S, APP-CM, . . . ; etc.). We further
separate out two special surface-mining groups, the Powder River basin (PRB) and
lignite coal (LIG), which make for 11 groups in total.8 Fig. 2 shows a map of the
U.S. with the three major regions, the PRB and the lignite-producing areas. All in
all, there are 85,968 total annual observations on 19,221 individual mines. Table 1
provides the composition of the sample in terms of the 11 groups. All estimation is
performed within each group.
2.1.2. Recent trends in U.S. coal mining

U.S. coal mining changed dramatically from 1972 to 1995. Fig. 3 shows the
composition of overall output growth. Output has increased in all mining regions
8The PRB had very rapid growth. Lignite is a very inferior coal in terms of heat content. Also, type of

technology remains the same for all mines in the data. It is true that some continuous mines become

longwall mines, and we include them as two different mines (the continuous mine closes down and then the

longwall mine opens) in the observed data.
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Table 1

Sample composition and mine groups

Region Technology Abbreviation Number of

observations

Number of

mines

Observations

per mine

Average

Btu content

Appalachia Surface APP-S 37,161 9019 4.120 23

Longwall APP-LW 1216 111 10.955 23

Continuous APP-CM 38,100 8339 4.569 23

Interior Surface INT-S 5219 1260 4.142 22

Longwall INT-LW 106 14 7.571 22

Continuous INT-CM 1295 173 7.486 22

Western Surface WST-S 789 87 9.069 20

Longwall WST-LW 224 29 7.724 22

Continuous WST-CM 902 128 7.047 22

Powder river basin Surface PRB 450 28 16.071 17

Lignite Surface LIG 506 33 15.333 13

Total 85,968 19,221 4.473
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Fig. 3. (A) Coal production by geographic region. (B) Coal production by mining technique.
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except for the interior, and there was truly spectacular growth in the PRB (Fig. 3A).
There is strong growth in output from longwall mines and in surface mines, whereas
continuous mines have shown little growth (Fig. 3B).
Table 2 displays labor productivity and scale in U.S. coal mining. By far, the most

productive mines are in the PRB, but the largest increases in productivity occur for
underground mines with longwall technology.9 The overall increase in labor
productivity reflects the shift in overall output to the PRB and surface mines, and the
increase in productivity of underground mines. Finally, all groups show increases in
9It is worth nothing that in the aggregate, longwall mines are much larger but not higher in productivity

than either continuous or surface mines. We isolate the impact of mine size as the ‘‘scale effect’’ in our

models.
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Table 2

Average productivity and scale

Mining technology Average mine productivity Average annual mine output

(mmBtu/h) (Trillion Btu/year)

1972 1995 Growth rate (%) 1972 1995 Growth rate (%)

PRB 275.30 512.61 2.70 33.91 208.45 7.90

Surface (exc. PRB) 85.27 103.40 0.84 3.66 6.55 2.52

Continuous 33.52 74.27 3.46 3.89 5.22 1.28

Longwall 28.62 90.42 5.00 21.09 64.16 4.84

T.M. Stoker et al. / Journal of Econometrics 127 (2005) 131–164138
per-mine output, with the PRB having the largest mines and the largest (per-mine)
growth.
In addition to these broad trends, each mining group is changing over time, as new

mines open and older mines close, and operating mines change in scale. Empirical
modeling of individual mines is required to understand the productivity process. We
now turn to our model and results.
2.2. The empirical model

In the analysis of firm level data from a competitive industry, it is natural to
assume that output and inputs are endogenously determined, given prevailing output
and input prices. Not only is this approach infeasible with our data—we lack data on
wages, output prices and transportation costs at specific locations—but we also
believe it would seriously misrepresent institutional features of the coal market. In
particular, the majority of coal output is set in advance by contracts with specific
buyers.10 As such, we assume that output is predetermined, and that labor (and other
inputs) are set endogenously to produce the necessary output at minimum cost.11

This is a key assumption of our approach, and its failure can lead to biases in
10See Joskow (1987, 1990). The role of multi-year contracts has decreased over time, but it is still very

large. In 1994, 78% of all coal deliveries to electric utilities were under contracts of greater than one year’s

duration. Electric utility deliveries account for about 80% of total production, but the arrangements for

coal sold in the export, metallurgical and industrial markets are similar. Although there is some variability

in the quantities to be delivered under these contracts, that variability reflects the demand for electricity

from the powerplant being supplied, which reflects the weather and overall level of economic activity,

which are exogenous to individual coal mines.
11This assumption neglects potential endogeneity due to the choice of whether to open a new mine, or

shut down an existing mine. We discuss below how fixed effects can accommodate this, but we do not

model the entry–exit process explicitly. We also do not address issues that could arise with common

ownership of mines, such as outputs that are adjusted endogenously with inputs across several mines. It is

useful to note that electric utilities do not own mines as a rule; even when a mine’s output is dedicated to a

power plant, it is typically owned by separate parties with the relationship covered by long-term contracts.

Mine-mouth powerplants may be an exception; they exist but represent at most 5–15% of total coal

produced.
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estimation. In Section 3, we examine the sensitivity of our main findings to this
assumption.12

We focus on labor productivity in coal mining. Let Qit and Lit denote the observed
output and labor hours input for mine i at time t, giving labor productivity as
Qit=Lit: Our analysis is based on the model

ln
Qit

Lit

� �
¼ tt þ ai þ F ðlnQitÞ þ eit; ð1Þ

where i ¼ 1; . . . ;N indexes mines, and t ¼ T
Open
i ; . . . ;TClose

i denotes the years that
mine i is in operation.13 The time effect tt and the mine effect ai are treated as fixed
effects in estimation. The unknown function F ð�Þ relates output scale changes to
productivity changes, and will be treated nonparametrically in estimation. Recall
that estimation is separate for each mine group (so that N, tt; and F ð�Þ vary by mine
group). We assume that eit has mean zero and (possibly heteroskedastic) variance s2it
conditional on tt;ai;ln Qit:
For the within panel estimator to be consistent for large N and fixed width T, mine

output Qitwould have to be assumed strictly exogenous, or independent from eit0 ; for
all t0: Here, we consider mine output Qit to only be predetermined, with strict
exogeneity a rather stronger restriction. This means that the ‘‘within’’ coefficient
estimates may contain a bias of order 1=T (since estimation subtracts out mine-
specific averages, which have a correlation of order 1=T with eit0 for all t0). For large
T, this bias is minor. Since for many mine groups our panel dataset is relatively wide
(see Table 1), there may be some basis for ‘‘large T ’’ properties. We note that our
diagnostic work in Section 3 can account for these potential biases.
The time effects tt capture group-wide variation in mine productivity at time t.14

Such variation could arise from the safety regulations that were applied to the U.S.
coal industry in the early 1970s (regulations that applied differently to underground
and surface mines), as well as common variation in coal and input prices that affect
mining practice.
The mine-specific fixed effects ai account for geological factors (or ease of mining

at site i) and specific features of capital at site i. Given the type of technology
(surface, underground continuous or longwall), a new mine will typically make use
of the best available capital—machinery, equipment, delivery system for transport-
ing coal to outside the mine, etc.— so that capital embodies the current state of
technology. While some technology can evolve over a mine’s life (and arguably
would be proxied by scale Qit), the fixed effects ai will reflect ‘‘new mine’’ embodied
technology together with specific geological factors.
12Various issues, such as departures from strict exogeneity (discussed below), can be viewed as

measurement error problems. In Section 3 we discuss coefficient bounds as well as consistent estimation

using instrumental variables.
13Positive output begins in (opening) year T

Open
i and continues through (closing) year TClose

i : For
identification, we set the time effect to zero for the first year t ¼ 1972:

14It is important to stress that t is the current year, not the time elapsed since the opening of a mine, and

that tt is a common ‘‘macro’’ productivity effect in year t.
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The fixed effect modeling can partially address issues of turnover in mining. Since
we only observe mines in operation, our productivity equation could include a term
for selection based on mine profitability. We cannot model such a term directly, since
we have no information on specific depletion profiles (site geology), or on accounting
features of the investment environment that would lead to mine closure. However, to
the extent that the probability of continuing operation is determined by mine-specific
factors or time-specific factors, a selection impact will be captured by the fixed effects
ai and tt:

15

2.3. Estimation details

Estimation of the parameters of the panel model (1) is entirely standard, aside
from the unknown function F ð�Þ: To give flexible treatment of this function, we
approximate it by a polynomial in log output. We choose the order of the
polynomial (for each group of mines) by least-squares cross-validation. Namely, we
choose the order d of the polynomial to minimize

SSðdÞ ¼
XN

i¼1

XTClose
i

t¼T
Open
i

~tð�itÞ
t þ ~að�itÞ

i
~F
ð�itÞ

d ðlnQitÞ � ln
Qit

Lit

� �� �2
;

where ~�ð�itÞ refers to the least-squares estimator computed by omitting the itth
observation (mine i at time t), and Fd is a polynomial of degree d.16 This process led
to the choice of polynomials at most of order 3, with F ð�Þ specified as

F ðlnQitÞ ¼ b1lnQit þ b2ðlnQitÞ
2
þ b3ðlnQitÞ

3:

More specifically, for six of the groups, a cubic polynomial was chosen; for three
groups, a quadratic polynomial was indicated (b3 ¼ 0) and for two groups, a linear
function was indicated (b2 ¼ b3 ¼ 0). Having determined the order of the
polynomial for each mine group, we estimate the polynomial coefficients by OLS.
The scale estimates are presented in Table 3. While it is clear that all coefficients

are estimated precisely,17 it is difficult to interpret what the estimated pattern of scale
effects are from the polynomial coefficients. A good method is to plot the estimated
functions F̂ ; and we include such plots later in Fig. 5 of the diagnostic section. It is
15The relevance of fixed effects is clear; mines with a high fixed effect could withstand greater negative

shocks, and would tend to exit later. Also, we thank a reviewer for pointing out how turnover could lead to

underestimation of scale effects. If firms operating at higher scale tend to have higher productivity, then

those firms will tend to exit later, since a more negative productivity shock can be absorbed. There would

then be a negative correlation between the errors of surviving firms and their scale, leading to an

underestimate of the scale effects.
16For clarity, the itth term of SSðdÞ is constructed as follows: estimate the model with all data except for

the itth observation, and compute the error of predicting the itth observation with those estimates. Adding

up the squared prediction errors across all data points gives SSðdÞ: Least-squares cross-validation is a

common method for choosing parameters of nonparametric estimators of density and regression; see

Silverman (1986) among others. We made use of the computational algorithms given in Green and

Silverman (1994, pp. 3–35), and considered polynomials up to order five.
17Standard errors are heteroskedasticity consistent estimates.



ARTICLE IN PRESS

Table 3

Scale coefficients

Mine group OLS coefficient of Sample size R2 within R2 overall

lnQ ðln QÞ
2

ðln QÞ
3

APP-S 1.686 �0.128 0.0037 37,161 0.302 0.177

(0.0685) (0.0074) (0.00026)

APP-LW 0.471 1216 0.774 0.745

(0.0140)

APP-CM 1.784 �0.158 0.00519 38,100 0.335 0.265

(0.0497) (0.0055) (0.0002)

INT-S 1.502 �0.114 0.00348 5219 0.391 0.179

(0.1894) (0.01862) (0.0006)

INT-LW 0.333 106 0.923 0.865

(0.0435)

INT-CM 5.223 �0.411 0.0113 1295 0.634 0.439

(0.4622) (0.0411) (0.0012)

WST-S 1.207 �0.0314 789 0.673 0.619

(0.0757) (0.0034)

WST-LW 9.212 �0.731 0.0199 224 0.573 0.797

(3.1017) (0.2553) (0.0070)

WST-CM 2.192 �0.165 0.00467 902 0.556 0.609

(0.3195) (0.0343) (0.0012)

PRB 1.801 �0.0447 450 0.828 0.609

(0.1268) (0.0048)

LIG 1.178 �0.0222 506 0.767 0.529

(0.0860) (0.0035)

Polynomial order chosen by cross-validation, and standard errors in parentheses.

T.M. Stoker et al. / Journal of Econometrics 127 (2005) 131–164 141
worthwhile mentioning here that all estimates are consistent with substantial
economies of scale,18 and that cubic estimates have the same S shape for different
mine groups, implying that an intermediate range of scales is associated with greatest
productivity improvement.
18For the log-linear specifications (APP-LW and INT-LW), overall scale elasticities are substantially

greater than one (1.471 and 1.333, respectively).
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For aggregate productivity analysis, we also do an OLS decomposition of the
estimated time effects, to examine how they relate to prices. That is, we fit

t̂t ¼ ‘‘ Price Effects’’ þ ‘‘ Other Effects’’ ;

¼ k̂þ ĝp ln pt þ ĝw lnwt þ d̂Dt þ Ẑt; ð2Þ

where t̂t is the estimated time effect, pt is the real coal price, wt is the real wage rate,
Dt is a dummy variable for 1972–1973,19 k̂ ,ĝp; ĝw; d̂ are the OLS estimates and Ẑt is
the OLS residual. The estimated coefficients are given in Table 4.20 We do not have a
specific model of how prices and wages affect labor productivity, but our results will
give a summary of price ‘‘effects’’constructed in this way. It is worth noting that
price coefficients are negative (as expected) for all but one mine group, and that wage
effects are typically positive. This is consistent with the notion that high real coal
prices will allow less efficient mines to be in operation (be profitable), as will low real
wages.
2.4. Panel model decomposition of productivity change

The estimates of the model (1) give a full empirical description of productivity in
the U.S. coal industry, but the estimates themselves are not very helpful in
understanding the predominant influences on coal productivity. We implement an
approach that defines indices that are conceptually aligned with the panel model
structure, to obtain a clear depiction of the sources of productivity growth.
For each mining group, overall labor productivity is expressed as

P
iQitP
iLit

¼

P
iLit exp ln

Qit
Lit

h i
P

iLit

¼

P
iLit exp t̂t þ âi þ F̂ ðlnQitÞ þ êit

	 
P
iLit

¼

P
iLit exp âi þ F̂ ðlnQitÞ þ êit

	 
P
iLit

expðt̂tÞ; ð3Þ

where ‘‘^’’s denote the panel data estimates. Overall labor productivity decomposes
into two factors: one for mine-specific productivity factors and the other for
common time-varying trends.
The first factor of (3) reflects elements that vary across mines; namely geology and

embodied capital technology, efficiencies associated with scale, and all other features
of productivity that vary across mines. This term does not decompose exactly, and so
we approximate it in a fashion consistent with âi; ln Qit and êit being independently
19We found Dt to be empirically necessary, and interpret it as change related to the four-fold increase of

oil prices in late 1973.
20The first-stage sampling errors were neglected, as they are of order 1=N ; while the second-stage errors

are of order 1=T ; with T5N: Also note that our two-step estimation method is inefficient, but has the

advantage that consistency of the first step is not affected by potential misspecification of Eq. (2).
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Table 4

Time effect regressions

Mine group OLS coefficient of R2

ln p: price effect ln w: wage effect D: 72_73 dummy

APP-S 0.174 �0.5 0.389 0.742

(0.0527) (0.2778) (0.0486)

APP-LW �0.858 0.202 �0.407 0.968

(0.0397) (0.2020) (0.03633)

APP-CM �0.399 �0.011 �0.13 0.923

(0.0296) (0.1100) (0.0271)

INT-S �0.252 0.105 0.259 0.538

(0.1575) (0.5250) (0.0996)

INT-LW �1.449 1.14 NAa 0.877

(0.1628) (0.600)

INT-CM �0.759 0.321 �0.287 0.802

(�0.1116) (0.4012) (0.0718)

WST-S �0.11 �0.379 0.517 0.53

(.02750) (0.7580) (0.1261)

WST-LW �1.432 1.474 �0.735 0.38

(0.4475) (1.340) (0.2227)

WST-CM �1.071 0.87 �0.079 0.554

(0.2550) (0.7909) (�0.1317)

PRB �0.399 0.002 0.263 0.688

(0.1023) (0.1818) (0.0848)

LIG �0.617 �0.36 �0.031 0.877

(0.0685) (0.2250) (0.0517)

Twenty-four annual observations, except for INT-LW which has 20 observations. Standard errors in

parentheses.
aNo production prior to 1976.

T.M. Stoker et al. / Journal of Econometrics 127 (2005) 131–164 143
distributed across mines (weighted by labor hours). In particular, we considerP
iLit exp âi þ F̂ ðlnQitÞ þ êit

	 
P
iLit

ffi FEt SCt MRt; ð4Þ

where

FEt ¼

P
iLit exp½âi�P

iLit

ð5Þ



ARTICLE IN PRESS

T.M. Stoker et al. / Journal of Econometrics 127 (2005) 131–164144
defines the Fixed Effect Index,

SCt ¼

P
iLit exp F̂ ðlnQitÞ

	 
P
iLit

ð6Þ

defines the Scale Effect Index and

MRt ¼

P
iLit exp êit½ �P

iLit

ð7Þ

defines the Residual Microheterogeneity Index.21

As the fixed effects ai represent the base levels of productivity for each mine, the
index FEt reflects how those base levels vary over time. If coal-mining technology
were stable over time, and more productive sites were mined first, then FEt would
decline. Alternatively, if (embodied) technology of new mining capital improved over
time but site selection were unrelated with mine productivity (say dictated by
population migration), then FEt would increase. If FEt is stable over time, that
would indicate a balance between selection of less productive sites and more
productive technology. In short, FEt summarizes how geological and initial
(embodied) technology levels vary over time.
The index SCt indicates productivity improvements associated specifically with

increases in scale. It is natural to think of scale effects as a combination of
technology and mine-specific learning effects. It can take time to learn the most
effective way of mining a given site, including optimizing the delivery system for
conveying coal out of the mine, and such processes can differ for a young mine
versus a more mature mine.22

The index MRt summarizes the role of the residual in the log-productivity
regression. We include it primarily as a check on whether the overall impacts of fixed
effects and scale effects are large relative to the residual.23

The second factor of (3) represents the time effect relevant for comparing to the
above indices; we can define the Time Effect Index directly as

TEt ¼ expðt̂tÞ: ð8Þ
21It is clear that the LHS of (4) is the mean of the product of expðâiÞ; expðF̂ ðln QitÞÞ and expðêitÞ; and that
the RHS is the product of their separate means, each using (probability) weights Lit=

P
iLit: Correlation

between the terms has a predictable effect: for instance, positive correlation between âi and F̂ ðln QitÞ will

cause the RHS to be smaller than the LHS.
22It is possible, although we believe unlikely (given our estimates), for the scale index to capture the

adverse productivity effects of depletion of coal. This is because as coal is depleted at a given site, it is

typical for smaller contractors to take over the mining. The MSHA data record this as the closing of the

original mine and the opening of a new mine associated with the smaller contractor, so that the depletion

effects are not retained in a given mine’s data.
23MRt typically will reflect changes in the variance of eit over time’ . For instance, if the (labor-weighted)

distribution of eit were normal with mean 0 and variance s2t at time t, then up to sampling error,

MRt ffi exp½s2t =2�:
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From the OLS decomposition (2), we express this index as

TEt ¼ expðk̂þ ĝp ln pt þ ĝw lnwt þ d̂DtÞexpðẐtÞ

¼ Pt � Rt; ð9Þ

where

Pt ¼ expðk̂þ ĝp ln pt þ ĝw lnwt þ d̂DtÞ ð10Þ

defines the Price Effect Index and

Rt ¼ expðẐtÞ ð11Þ

defines the Residual Time Index. These indices permit the relative size of the time
effects versus fixed and scale effects to be judged.24

These various indices constitute an empirically based method of assessing the
importance of the different factors: scale, fixed effects, prices, residual, etc. in the
labor productivity changes observed in coal mining. To assess the accuracy of our
approximation, we define the Predicted Productivity Index as the product

PPt ¼ FEt SCt MRt TEt ¼ FEt SCt MRt Pt Rt ð12Þ

The difference between observed labor productivity and the predicted index is the
approximation error in (4).

2.5. Sources of labor productivity changes in U.S. coal mining

Fig. 4 gives the productivity indices for coal mining.25 All indices are normalized
to 1 in 1972. One initial conclusion is that the approximation error in (4) seems of
little concern; the predicted productivity index (dashed line) has nearly the same time
pattern as the observed labor productivity (solid line).
The most interesting time pattern in Fig. 4 is that of the fixed effect index FEt:

Despite the large oscillation in observed productivity, FEt grows smoothly through
the sample time period. Since this index represents geological conditions and the
level of technology of new mines, and since it is unlikely that inferior sites are chosen
before superior sites, the FEt index gives a plausible rendition of continuous
(embodied) technical improvements in mining capital over the full period
1972–1995.26

The scale index SCt drops slowly through the early years (possibly because of
decreased output associated with new environmental regulations), and then begins a
steady increase over the period 1978–1995. The price index Pt shows substantial
24By our two-step procedure, sampling error in the coefficients of prices and wages affect only Pt and Rt

but not TEt:
25Specifically, the indices are computed for each mining group and are then aggregated in the same way

as labor productivity values (using Btu weights, etc.).
26We cannot rule out the possibility that some inferior sites were mined before superior ones, since there

is anecdotal evidence that struggling steel conglomerates unloaded valuable lands, some with coal deposits,

in the 1980s and 1990s. The smooth trend in fixed effects over time suggests that this is not a significant

issue.
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Fig. 4. Contributions of scale, price, fixed and time effects.
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variation, initially dropping rapidly, leveling out, and then increasing steadily from
1981 onward. The residual indices MRt and Rt show relatively minor variation. MRt

initially decreases gradually, and then slowly increases, eventually returning to its
initial level. Rt varies substantively over the first 3 years, but then hovers around 1;
after 1976 or so, the impact of the time effects is given by the price index Pt: At any
rate, the main movements in aggregate productivity seem well captured by the three
indices FEt; SCt and Pt:
We do not present productivity indices for each mining group separately; see

Ellerman et al. (2001) for detailed analyses. Such group-specific indices can aid
insight into the process of technological advance; for instance, Table 5 relates the
growth of productivity to average mine life. Productivity improvements show up as
scale effects for groups with long mine lives, and they show up as improvements in
initial capital (fixed effects) for groups with shorter mine lives.27 This finding is
plausible and concurs with our interpretations of the indices.
3. Diagnostics on the log productivity relationship

The model underlying our productivity analysis is decidedly simple, and the results
are interesting. As noted above, the interpretation of our results relies on the
27Mine vintage effects can be seen from the average of fixed effects for surviving mines—for instance, see

Fig. 12 of Ellerman et al. (1998).
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Table 5

Relation of mine life to scale and fixed effects

Average Mine

Life

Average Annual Growth Rate, 1972–1995

Scale Effects

Index

Fixed Effects

Index

Combined

PRB 15 2.77 0.46 3.23

LIG 12.65 3.43 �2.37 1.06

APP-LW 10.96 2.21 �0.09 2.12

WST-S 8.99 0.77 0.09 0.86

WST-LW 7.72 2.97 0.6 3.57

INT-LW 7.57 1 �0.55 0.45

INT-CM 7.49 0.46 1.61 2.07

WST-CM 7 0.46 3.15 3.61

APP-CM 4.57 �0.30 3.17 2.87

INT-S 4.14 �0.72 2.39 1.67

APP-S 4.12 0.87 2.16 3.02
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assumption that output is predetermined in our estimation procedure. To judge this
assumption, we applied a variety of new (and old) techniques for studying
endogeneity problems, such as those in the literature on weak instrument bias, as
discussed below. However, it is worth stating at the outset that we did not find
compelling evidence against our results using any of the diagnostic methods.
3.1. Traditional linear methods

While we estimate log-labor productivity equations that are nonlinear in the log of
output for some groups, we begin with some diagnostics appropriate for (log) linear
specifications, where the diagnostic methods are more developed. We return to
nonlinear specifications in Section 3.2.
3.1.1. Interpretation of the productivity-scale effect

It is useful to consider our estimates in the context of familiar Cobb–Douglas
formulae. Suppose that the production function for a coal mine is

Q� ¼ AðL�Þ
o
ðK�

1Þ
r1 � � � ðK�

MÞ
rM ; ð13Þ

where L� is labor hours, K�
1; . . . ;K

�
M represent small equipment and other variable

inputs, and A can include fixed inputs. The ‘‘scale elasticity’’ for all variable inputs is

Z ¼ oþ r1 þ � � � þ rM : ð14Þ
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Minimizing total cost TC ¼ wL� þ
PM

i¼1rjK
�
j subject to predetermined output in (13)

gives log-labor as

ln L� ¼ �a þ
1

Z

� �
ln Q�; ð15Þ

where a depends on A and input prices.28 This implies that log-labor productivity is

ln
Q�

L�

� �
¼ a þ 1�

1

Z

� �
ln Q�: ð16Þ

Returns-to-scale with regard to variable inputs is captured in the coefficient of log
output; returns are decreasing, constant or increasing if b1 ¼ ð1� 1=ZÞ is negative,
zero or positive, respectively. In log-linear form, our model implements (16),29 and
our strongly positive estimates of b1 are consistent with substantial economies of
scale.

3.1.2. Errors-in-variables and bracketing

We first examine whether traditional bracketing results are consistent with
economies of scale.30 Denote true log output and log labor as q� ¼ lnQ�; l� ¼ ln L�;
respectively, and true log-labor productivity is pr� ¼ q� � l�: Write (16) as

pr� ¼ aþ b1q
� þ e; ð17Þ

where a is an intercept and e is a homoskedastic disturbance obeying Eðe j q�Þ ¼ 0
(i.e. set a ¼ aþ e). Suppose that observed the log output q ¼ ln Q and log labor
l ¼ ln L are given as

q ¼ q� þ v;

l ¼ l� þ e�; ð18Þ

where v, e� are homoskedastic errors that have mean 0 conditional on q�and l�: We
set z ¼ e� e�and assume that Covðv; zÞ ¼ 0: Denote the percentages of error
(variance) in the observed variables as

lq ¼
VarðvÞ

VarðqÞ
; ll ¼

VarðzÞ
VarðlÞ

: ð19Þ

Denote the OLS coefficient of l on q as b̂lq: The standard bias result is

plim b̂lq ¼
1

Z

� �
ð1� lqÞ ¼ ð1� b1Þð1� lqÞ; ð20Þ

and for b̂ql ; the OLS coefficient of q on l,

plim b̂ql ¼ Zð1� llÞ ¼
1

1� b1

� �
ð1� llÞ: ð21Þ
28Specifically a ¼ ðln A þ
P

jrj ln ðwrj=rjoÞÞ=Z:
29Here a is specified with effects for time, mine, and the disturbance as a ¼ tt þ ai þ eit:
30Bracketing results are well known in econometrics, since at least Frisch (1934). See Griliches and

Ringstad (1971) for applications of bracketing results to production problems similar to ours.
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These give rise to the well-known bracketing formula as

plim b̂lqp1� b1p
1

plim b̂ql

: ð22Þ

For the log-productivity regression, we have that b̂pr;q ¼ 1� b̂lq; with

plim b̂pr;q ¼ 1� plim b̂lq ¼ b1 þ lqð1� b1Þ: ð23Þ

Since it is natural to assume b1o1; errors in observed output values bias the log-
productivity coefficient upward. If there are constant returns to scale, then b1 ¼ 0;
and plim b̂pr;q ¼ lq; in that case, errors in the observed log output could give a
spurious finding of estimated increasing returns. To bracket b1; (22) transforms to

1�
1

plim b̂ql

pb1p1� plim b̂lq: ð24Þ

Our equations contain fixed mine and time effects, and so even with a log-linear
scale specification, they would not fit within the simple bivariate framework above.
We compute the bracketing formulae using the residuals of ln L and ln Q regressed
on all mine and time effects in the roles of l and q above, which take the errors in ln L

and ln Q to be uncorrelated with the mine and time effects. In addition to estimating
the bounds of (24):

LB ¼ 1�
1

b̂ql

; UB ¼ 1� b̂lq; ð25Þ

we also compute bounds that are adjusted (widened) to include sampling error in the
regression coefficients:

ALB ¼ 1�
1

b̂ql

� cs
b̂ql

1

b̂
2

ql

0
@

1
A; AUB ¼ 1� b̂lq þ cs

b̂lq
; ð26Þ

where s
b̂ql
; s

b̂lq
are the estimated standard errors of b̂ql ; b̂lq; and c ¼ 1:96:31

The bounding results are presented in Table 6. The bracketing bounds are fairly
wide, which is consistent with the overall goodness-of-fit of the equations. However,
on the question of returns to scale, the value b1 ¼ 0 (constant returns) is contained in
the intervals for only two of the 11 mine groups, APP-S and WST-LW. Even in these
two cases the bounding intervals contain mostly positive values,32 and we view it as
reasonable to conclude that our finding of increasing returns is not spurious.
Nevertheless, the bracketing bounds are wide, and so we now turn to other methods
of estimating the scale effect.
31Appendix A shows how these adjusted bounds give a conservative 95% confidence interval

asymptotically.
32For instance, consider the implications for error variances in the two groups APP-S and WST-LW. If

we ignore sampling error, the value of b1 ¼ 0 is consistent with error variance percentages of ll ¼ :0457
and lq ¼ :286 for APP-S, and ll ¼ :00396 and lq ¼ :373 for WST-LW. Thus, the vast majority of

measurement error must be in log quantity to give constant returns.
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Table 6

Bounds on scale effects

Mine group Adj. lower bound

(ALB)

Lower bound

(LB)

Upper bound

(UB)

Adj. Upper Bound

(AUB)

APP-S �0.0563 �0.0479 0.2869 0.2926

APP-LW 0.0204 0.0689 0.4710 0.4985

APP-CM 0.0250 0.0308 0.2402 0.2447

INT-S 0.0316 0.0492 0.2948 0.3079

INT-LW 0.0161 0.1290 0.3331 0.4196

INT-CM 0.1092 0.1369 0.3332 0.3546

WST-S 0.1159 0.1694 0.5199 0.5508

WST-LW �0.1214 �0.0040 0.3730 0.4463

WST-CM 0.0537 0.0951 0.3571 0.3865

PRB 0.1641 0.2400 0.6244 0.6619

LIG 0.0878 0.1767 0.6478 0.6858
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3.1.3. Instrumental variable estimates of the scale effect

We begin with some simple instrumental variable estimations of the scale effect.
Since we do not observe a separate indicator of output, we assume that any
measurement error is uncorrelated across time periods, and use linear combinations
of lagged outputs as instruments.33 We focus on the model in log-linear form, where,
for simplicity, we have first-differenced to remove the mine fixed effects:

Dpr�it ¼ b1 Dq�
it þ Dtt þ Deit; ð27Þ

where, as above, pr�it ¼ lnðQ�
it=L�

itÞ ¼ q�
it � l�it; and D denotes the first difference

operator (Dxi;t ¼ xi;t � xi;t�1Þ: Observed log output qit ¼ ln Qit and log labor lit ¼

ln Lit are measured with error, as

qit ¼ q�
it þ nit;

lit ¼ l�it þ e�it; ð28Þ

where errors are uncorrelated over time and over mines,

E½e�jse
�
it� ¼ 0 and E½njsnit� ¼ 0 when either iaj or sat; ð29Þ

uncorrelated across log labor and log output,

E½e�jsnit� ¼ 0 for all i; j and s; t; ð30Þ

and errors are uncorrelated with true values of log output and log labor,

E½l�jse
�
it� ¼ 0; E½q�

jse
�
it� ¼ 0; E½q�

jsnit� ¼ 0; E½l�jsnit� ¼ 0; ð31Þ

for all s; t; i; j:
33See Keane and Runkle (1992) among many others.
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Potential instruments for Dqit include any linear combinations of qis for sot � 1;
as measurement error is uncorrelated over time. Various assumptions guarantee that
these instruments are also correlated with Dqit: For instance, if q�

it follows a
stationary process of the form:

ðq�
i;t � q�

i Þ ¼ rðq�
i;t�1 � q�

i Þ þ xit; ð32Þ

where xit are i.i.d. and jrjo1; then qis is correlated with qit; and qis (with sot � 1) is a
valid instrument for Dqit: For our estimates, we began with the twice lagged
difference as instrument Dqi;t�2 and then estimated using the associated log-output
levels as instruments, qi;t�2 and qi;t�3:
The 2SLS estimates of the scale effect b1are given in Table 7. For some regions, the

point estimates are very close to the OLS estimates, and in others the 2SLS estimates
are very imprecise. On the issue of increasing returns, in five groups (APP-S, APP-
CM, LIG, WST-S, WST-LW) the 95% confidence intervals for b1 clearly exclude
b1 ¼ 0; using lagged first differences or lagged levels as instruments. In one group
(WST-CM), b1 ¼ 0 is excluded at a 90% confidence level with the lagged levels as
instruments. For the other five mining groups the scale effect estimate is very
imprecise and b1 ¼ 0 is not rejected. The problem appears to be due to the weakness
of the instruments: for those groups, the correlation between Dqit and Dqi;t�2 or qi;t�2;
qi;t�3 is small.
We expanded the instrument set to include powers of the lagged levels and powers

of the lagged first differences; to justify this, we assume that

E½qd
isnit� ¼ 0 for tas and d ¼ 0; 1 . . . ;

which holds if q�
is; nis and nit are mutually independent, for instance. Table 7 also

presents these estimates, and they are generally much more precise. The hypothesis
b1 ¼ 0 for constant returns is rejected for at least one set of estimates for every
mining group except INT-S.
We have uncovered no evidence to cast doubt on our finding of increasing returns

in mining, and we have obtained fairly precise estimates of the scale coefficient for all
but one region (INT-S). However, the correlations between the instruments and log
output do appear to be small.34 This raises the possibility that we have weak
instrument bias: instruments that exhibit sample correlations with measurement
error, which biases IV estimates toward the OLS estimates.35 For this, we examine
the F-statistic of the first step regressions: log output regressed on the instruments.
Bound et al. (1995) and Staiger and Stock (1997) note that an F-statistic value of 1 or
less indicates that

E b̂1;2SLS

h i
� b1

E b̂1;OLS

h i
� b1

ð33Þ
34A table of these correlations is available from the authors. Many of the simple correlations between

current log output and its lags are below 0.1 in absolute value.
35See Nelson and Startz (1990).
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Table 7

IV estimates of scale effect for log-linear model

Mine group OLS first differences 2SLS with instruments Sample

size

Number

of mines

D ðln QtÞ D ðln Qt�2Þ ln ðQt�2Þ;
ðln ðQt�3Þ

Powers of

D ðln Qt�2Þ

Powers of

ln ðQt�2Þ;
lnðQt�3Þ

APP-S 0.363 0.300 0.254 0.251 0.253 15,943 2925

(0.0113) (0.0892) (0.0703) (0.0846) (0.0547)

APP-LW 0.536 0.000 0.006 0.444 0.449 861 96

(0.0499) (0.4733) (0.4769) (0.1156) (0.1151)

APP-CM 0.293 0.324 0.391 0.272 0.297 16,046 3520

(0.0128) (0.0746) (0.0578) (0.0505) (0.0452)

INT-S 0.391 0.239 0.205 0.338 0.147 2328 420

(0.0250) (0.2715) (0.2203) (0.2221) (0.1308)

INT-LW 0.408 1.152 �0.028 0.662 0.653 66 9

(0.0706) (7.1784) (2.1173) (0.1205) (0.0974)

INT-CM 0.356 0.017 0.226 0.148 0.449 808 108

(0.0396) (0.5290) (0.6571) (0.1182) (0.2230)

WST-S 0.672 1.264 1.258 0.930 0.496 554 52

(0.0554) (0.5671) (0.5424) (0.1017) (0.1862)

WST-LW 0.596 0.529 0.455 0.407 0.534 131 22

(0.0565) (0.1646) (0.1560) (0.1508) (0.1245)

WST-CM 0.399 1.434 0.534 0.736 0.692 493 77

(0.0767) (4.1655) (0.2732) (0.1823) (0.1317)

PRB 0.740 0.231 0.520 0.176 0.905 361 28

(0.1343) (1.3236) (0.3463) (0.1720) (0.1098)

LIG 0.656 0.636 0.623 0.469 0.637 391 33

(0.0439) (0.2339) (0.2169) (0.1896) (0.1144)

2SLS estimation samples smaller than observation sample due to availability of instruments. Standard

errors in parentheses.
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is significantly different from 0, so that the bias in IV estimates is comparable to OLS
bias. From Table 8, we note that we obtain uniformly low F-statistics for several
regions (INT-LW and PRB, for instance) and in many cases, we see the F-statistic
values declining as more instruments are added.36
36Strictly speaking, the F-statistic criterion requires the absence of heteroskedasticity, which we have not

ruled out. Also, it is fairly common practice in panel data analysis to separate instruments by time period
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Table 8

F-Statistics from first-step regressions

Main group 2SLS with instruments

Dðln Qt�2Þ ln ðQt�2Þ; ln ðQt�3Þ Powers of Powers of

Dðln Qt�2Þ ln ðQt�2Þ; ln ðQt�3Þ

APP-S 49.77 36.02 13.77 12.07

APP-LW 3.31 1.66 3.43 2.23

APP-CM 55.75 43.26 26.34 18.97

INT-S 4.47 3.02 1.18 1.57

INT-LW 0.06 0.06 1.28 0.71

INT-CM 1.08 0.97 2.87 1.63

WST-S 2.41 1.21 4.02 2.22

WST-LW 12.05 9.97 5.91 4.54

WST-CM 0.08 2.49 2.35 1.8

PRB 0.8 0.55 0.38 1.42

LIG 13.89 7.4 3.11 2.64

F-statistic from first-step regressions for estimates of Table 7.
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This is sufficient reason to seek improvement in the instruments. Instead of adding
more lags, etc., we enhance the instrument list systematically with the GMM
approach of Blundell and Bond (1998). Recall that our basic model is

prit ¼ b1qit þ ai þ tt þ eit þ nnit; ð34Þ

where eit and nnit are uncorrelated over time, and qit is uncorrelated with eit; but qit is
potentially correlated with the measurement error term nnit:

37 Estimation based on
first-differencing the model and using lagged levels as instruments coincides with
implementing the moment conditions:

E½qis Dn
n

it� ¼ 0 for sot � 1: ð35Þ

Blundell and Bond (1998) add the moment conditions

E½Dqisn
n

it� ¼ 0 for sot; ð36Þ

which coincide with estimating the model in levels, using first differences as
instruments. The combined set of restrictions define a linear GMM estimator.38
(footnote continued)

(that is, if a variable is observed for 7 years, to define seven instruments, with its value in each of the 7

years.) We have not processed our instruments in this way, in part because it would frequently lower the

first-stage F-statistics. These calculations are available from the authors.
37Later we allow eit to be serially correlated.
38The estimator essentially pools IV estimates of the level equation and first difference equation with

respective instruments given in the moment conditions. Estimates were computed using the DPD98

software of Arellano and Bond (1998). We used ‘first step’ estimators that do not weight for cross

correlations in residuals—while less efficient, Blundell and Bond (1998) noted that ‘first step’ estimators

appeared to provide more reliable standard error estimates.
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Table 9

System GMM estimates of scale effect

Mine group Basic model (34) Model with autocorrelated error (37)

GMM with instrument GMM with instrument

ln ðQt�2Þ ln ðQt�3Þ ln ðQt�3Þ Rho

APP-S 0.3375 0.3465 0.2918 0.3591

(0.0158) (0.0184) (0.0147) (0.0224)

APP-LW 0.393 0.519 0.874 0.791

(0.0939) (0.0821) (0.1475) (0.0854)

APP-CM 0.411 0.352 0.234 0.333

(0.0181) (0.0164) (0.0134) (0.0275)

INT-S 0.389 0.200 0.402 0.262

(0.0301) (0.0399) (0.0340) (0.0689)

INT-LW NA NA NA NA

INT-CM 0.356 0.069 0.151 0.542

(0.0708) (0.0654) (0.0789) (0.2347)

WST-S 0.613 0.340 0.369 0.325

(0.1959) (0.0813) (0.1602) (0.2744)

WST-LW NA NA 0.453 0.708

(0.2239) (0.2818)

WST-CM 0.622 0.637 0.479 0.418

(0.1435) (0.2371) (0.1240) (0.1691)

PRB 1.060 0.706 0.406 0.442

(0.7467) (0.4272) (0.1704) (0.0813)

LIG 0.174 0.365 0.799 0.898

(0.1062) (0.0787) (0.1422) (0.1487)

Standard errors in parentheses.
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The first two columns of Table 9 contain the GMM estimates using log-quantity
lagged 2 and 3 periods as instruments.39 The GMM estimates are not statistically
significantly different from our previous IV estimates and have much smaller
standard errors. Moreover, the GMM estimates are not systematically smaller than
the OLS estimates of Table 7, so it does not appear that measurement error has
39Two of the regions (WST-LW and INT-LW) are omitted because they posed numerical difficulties

associated with the small number of observations available.
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Table 10

Various specification tests: GMM estimates

Main group Sargan test Test for second-order autocorrelation

Model (3.22) Model (3.22) Model (3.27)

APP-S 0.886 0 0.001

APP-LW 0.965 0.001 0.052

APP-CM 0 0 0.576

INT-S 0 0.527 0.627

INT-LW NA NA NA

INT-CM 0.007 0.832 0.884

WST-S 0.114 0.305 0.875

WST-LW NA NA 0.353

WST-CM 0.958 0.077 0.468

PRB 0.415 0.57 0.578

LIG 0.483 0.43 0.641

P-values for all tests.
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significantly biased our results. The hypothesis of constant returns to scale is clearly
rejected in all regions.
Various diagnostic statistics are given in Table 10. Sargan tests of the

(overidentifying) moment restrictions show rejection at 90% level for three regions;
while there may be some detectable correlation between instruments and residuals,
the associated estimate bias may be small. Since the GMM estimates are close to the
IV estimates but much more precise, such potential bias appears to be a small price
to pay. Despite the lack of empirical evidence rejecting the GMM estimates, there are
stationarity restrictions in Blundell and Bond (1998) that may be problematic for the
short time series of output values (starting when the mine opens). To justify this, one
can argue that productivity, once purged of fixed effects, is determined by a long
series of exogenous shocks and management practice and expertise that predates the
mine opening. Blundell and Bond (1998) provide further discussion of how their
conditions can hold with entry period disequilibrium.
In addition, Table 10 presents test statistics for the presence of second-order serial

correlation, for which there is evidence in three regions. This is an issue if the serially
correlated part of the error is correlated with qit; in violation of our basic error
assumptions. We examine this possibility40 by generalizing the model to have an
autocorrelated error, as

prit ¼ b1qit þ ai þ tt þ eit þ n�it;

eit ¼ reit�1 þ x�it; ð37Þ
40The possibility of the presence of a moving average error term correlated with the regressors can be

investigated by using longer lags as instruments. Table 7 shows that using instruments lagged by one more

year still clearly rejects the hypothesis of constant returns to scale, so there is no strong evidence against

our conclusions here.
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where x�it and n�it are homoskedastic and uncorrelated over time, and qit is potentially
correlated with the productivity shock x�it and with the measurement error n�it:
The GMM estimates of model (37) are also presented in Table 9. While the

estimates of returns to scale differ somewhat from the estimates of the basic model
(Eq. (34)), they still clearly exclude constant returns to scale. More importantly, the
estimates of the more general model are not systematically smaller than estimates for
the basic model, suggesting that the problem of correlation between the
autoregressive component of the error term and qit; even if it were present, does
not lead to spurious returns to scale.
It is fair to say at this point that we may have pushed the log-linear analysis too

far. While we find some serial correlation in the log-linear model residuals, that could
easily arise from the nonlinearities that exist in the true data relationships. We turn
to those considerations in the next section. In summary, the GMM approach
improves the precision of our estimates, and the GMM estimates of returns to scale
are not substantially smaller than the OLS estimates. As such, we believe we are
justified in concluding that our findings of increasing returns to scale in every mining
group are not altered by more general estimates that allow for autocorrelation and
endogeneity.
3.2. Nonlinear models and measurement error

Our diagnostics above would suffice if all of our estimated productivity
relationships were log linear. However, in our basic results we found log linearity
to hold for only two mining groups, with three groups exhibiting a quadratic
relationship and six groups a cubic relationship in log output. In a nonlinear context,
the diagnosis of potential problems from measurement errors and the like is, if
anything, quite daunting. Solutions with nonlinear models require sufficient
assumptions and additional information to assess the amount of measurement
error, such as an independent measurement of the regressor of interest.41 We do not
have such additional information, so that if measurement error is a serious problem
we will have difficulty in obtaining consistent estimates for the quadratic and cubic
models.
In a nonlinear model, the simple bracketing methods of Section 3.1.2 are not

directly applicable. Klepper and Leamer (1984) have developed more general bounds
on regression coefficients in situations of multiple regressors with uncorrelated
measurement errors. Bekker et al. (1987) have extended their methods to the case of
correlated measurement errors. Such correlation is relevant with polynomial
regressors: a positive error in log output q implies a positive error in all regressors
of the form qd : However, these methods do not address the case of polynomial
regressions in a fully satisfactory manner, because they do not use the knowledge
that the different regressors are powers of the same variable (measured with error).
41Amemiya (1985) first noted how traditional instrumental variable techniques are unable to address

measurement error problems in nonlinear specifications. See Hausman et al. (1991), Hausman et al. (1995),

Newey et al. (1999) and Wang and Hsiao (2003) for related discussion.
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For this reason, we study measurement error issues using results available from
polynomial regression. We assume that the quadratic and cubic specifications are, in
fact, the true specifications of the productivity equation. Then for an assumed level
of measurement error, we can adjust our estimates, showing what the productivity
relationship would be without the error. This gives some useful insights.
Specifically, we assume the true model is

pr ¼
Xr

i¼1

biðq
�Þ

i
þ
Xs

l¼1

dlzl þ e; ð38Þ

where the z’s are regressors free of measurement error (our time and mine-specific
fixed effects). The observed log output q is true log output q� measured with error as

q ¼ q� þ n:

We assume that e is independent of q�; z and n (with E½e� ¼ 0), that n is independent
of q� and z. We further assume that n is distributed as Nð0;s2nÞ; although we could
use any distribution (with known polynomial moments).
It is clear that the polynomial regression coefficients estimated using q will be

(asymptotically) biased. We derive42 the appropriate adjustments to the true
coefficients, those that would be estimated from polynomial regression using qn:
Those adjustments depend on the value of the error variance s2n : Unfortunately, we
do not have repeated or independent observations on output (or particularly
compelling instruments) for measuring this variance. Instead, we compute the
adjustments for different levels of error, to see how our results would be affected.43

We apply this method with q as observed log output and z the set of time and fixed
effect dummies. We assume that the true model for each mining group is a
polynomial of the order estimated by cross-validation (see Section 2.3), and examine
how the estimates would be adjusted if known amounts of measurement error existed
in the data. In particular, we set the measurement error variance to be 0%, 5% and
10% of the variance of observed log-output deviations (orthogonal to the fixed and
time effects).44

Fig. 5 gives the log-productivity–log-output relationships adjusted for measure-
ment error. The heaviest line gives the relationship from our basic (OLS) results
(namely 0% measurement error), and the other lines give adjusted values for 5% and
10% error. For the mine groups with log-linear models (APP-LW, INT-LW), we see
the downward slope adjustment as implied by (23). For the nonlinear models, the
adjustments are particularly interesting. While there are some differences for low
scales, the main differences in shape occur at high output levels. For high output
42Our derivations are given in the appendices, and are similar to Hausman et al. (1991), Chescher (1998)

and Cheng and Schneeweiss (1998).
43Our approach is similar to Griliches and Ringstad (1970). See Hausman et al. (1995) for approaches

using instruments. Other references include Newey (2001), Lewbel (1996), Wang and Hsiao (2003) and Li

(2002). Schennach (2004a, b).
44Because of the polynomial forms, 5% or 10% measurement error in q is not as small as it seems. For

instance, for 10% measurement error, we have Var½ðq�Þ2 �

VarðqÞ2
¼ :80 and Var½ðq�Þ3 �

VarðqÞ3
¼ :71 so the induced

measurement error throughout all regressor terms is much higher than 10%.
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levels, the relationships adjusted for measurement error approach constant
returns to scale (zero slope). It is clear that with 5% measurement error,
there is no range of output for any mining group where constant returns to scale
exists, but 10% error does show constant returns for high output levels in some
groups.
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3.3. Implications for productivity measurements

In the various specifications studied as part of our diagnostic work, we found
some differences with our main results. We have interpreted these differences as
being fairly minor, and not indicative of any serious problems with our original
results. However, as before, looking directly at the estimated scale effects may not be
the best way of judging the differences we have found. In this section, we examine the
implications of those differences for our analysis of productivity change in the U.S.
coal industry.
Fig. 6 shows the evolution of our productivity indices for five different sets of

estimation results. The ‘‘Within’’ estimates refer to our basic (nonlinear) estimates
from Table 2 (indices presented earlier in Fig. 4), and serve as a benchmark for
comparison. ‘‘No Scale’’ refers to indices constructed by assuming no scale effect on
productivity; namely constant returns to scale in all mining groups. Two sets of
results are presented with log-linear specifications for all groups: ‘‘Linear 1st Diff.’’
uses OLS estimates of the first-differenced model (estimates from first column of
Table 7), and ‘‘Linear GMM’’ refers to the basic Blundell–Bond estimates (first
column of Table 945). Finally, ‘‘Nonlinear Meas. Error 10%’’ refers to the scale
effects adjusted for 10% independent measurement error, as displayed in Fig. 5.
In broad terms, the different estimates are not associated with dramatically

different interpretations of productivity change in U.S. coal mining. Somewhat
surprisingly, the time pattern of the fixed effects indices are quite similar, exhibiting
45These are computed from the nine mine groups for which estimates were obtained.
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growth rates in the narrow range of 1.67–1.91% per year. The growth patterns of the
scale indices are as follows: most growth with the log-linear estimates, followed by
the nonlinear models (original results as well as the measurement error results),
followed finally by the no growth ‘‘No Scale’’ simulation. Broadly speaking, the log-
linear models tend to overstate the role of scale relative to nonlinear models.46 These
figures also show a tendency for offsets between the scale effect indices and the time
effect indices. Specifically, estimates associated with greatest growth in the scale
effect indices are associated with the least variation in the time effects indices, and
vice versa. Indices computed from our nonlinear estimates fall into the middle range
of growth for scale indices and time effect indices.
4. Concluding remarks

This paper has presented an empirical analysis of labor productivity in U.S. coal
mining. The overall motivation for this work is the explanation of observed changes
in labor productivity from 1972 through 1995, and particularly the striking
productivity increase after 1978. We began with data on annual output and labor
input for every coal mine in the U.S., and studied productivity with panel regression
methods. Panel methods permit a natural representation of heterogeneity via fixed
effects for mines, and time effects.
We defined productivity indices based on the parameter estimates from the panel

model analysis, and used them to delineate sources of productivity growth. The fixed
effect index showed how (average) fixed effect values for mines in operation
increased uniformly over the time period, which we interpreted as representing
technical progress embodied in capital available for mines at their start date. The
scale index reflected the productivity gains associated directly with output scale
increases. Between 1972 and 1995, we found that virtually all the change in observed
labor productivity was captured by those two indices (Fig. 6). This is true but a bit
misleading; when examining the period 1978–1995 of rapid productivity increase, we
find comparable, essentially uniform increases in fixed effect, scale effect and time
effect productivity indices.
Our model of labor productivity is nonlinear but reasonably simple, partly

because of lack of information on capital for each mine. Because of the simplicity, we
found that many recent proposals for model diagnostics were applicable, and so we
carried out a variety of tests and analyses. We did not find any strong evidence
against our original estimates. However, we believe that the application of such a
battery of checks—bounds, weak instruments, improved point estimates, and
nonlinear adjustments—is sufficiently illustrative to benefit researchers facing similar
kinds of modeling/data situations in other contexts.
46One interesting feature to note is how there is no drop in the scale index for the nonlinear model

adjusted for measurement error. Since the only substantive difference in those estimates was for large

scale, this implies that the drop for other estimates arises from a pull back in larger scale mines in the early

1970s.
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Appendix A. Conservative confidence intervals for bounded quantities

Let b be the true value. Assume there exist bl and bh such that

blpbpbh:

Assume there exists asymptotically normal estimators b̂l and b̂h of bl and bh;
respectively, and b̂l and b̂h may or may not be correlated. Let sb̂l

and sb̂h
denote the

standard errors of each estimate. For any given a; we want to find l̂ and ĥ such that

P b 2 l̂; ĥ
h ih i

41� a

asymptotically. The ‘‘greater than’’ sign makes this a conservative instead of an exact
confidence interval. Note that

P b 2 l̂; ĥ
h ih i

¼ 1� P be½l̂; ĥ�
h i

¼ 1� P bol̂ or ĥob
h i

41� ðP bol̂
h i

þ P ĥob
h i

Þ

41� ðP blol̂
h i

þ P ĥobh

h i
Þ

for l̂ ¼ b̂l � ca=2sb̂l
; we have that P blol̂

h i
! a=2 and, similarly, for ĥ ¼ b̂h þ ca=2sb̂h

;

we have that P ĥobh

h i
! a=2: This implies that

P b 2 l̂; ĥ
h ih i

41� a

asymptotically, as desired.
Appendix B. Adjusting polynomial models for measurement error

With reference to (38), the standard (normal) equations for estimation of the b’s
and the d’s are:

E yðq�Þ
n

½ � ¼
Xr

i¼1

biE ðq�Þ
iþn

	 

þ
Xs

l¼1

dlE zlðq
�Þ

n
½ � for n ¼ 1; . . . ; r;
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E yzn

	 

¼
Xr

i¼1

biE ðq�Þ
izn

	 

þ
Xs

l¼1

dlE zlzn½ � for n ¼ 1; . . . ; s; ð39Þ

and we could form estimates if the moments (expectations) involving true log-output
q� could be estimated. The moments of observed log output q are

E½qn� ¼ E½ðq� þ nÞn� ¼
Xn

j¼0

n

j

 !
E ðq�Þ

jnn�j
	 


¼ E½ðq�Þ
n
� þ
Xn�1
j¼0

n

j

 !
E ðq�Þ

j
	 


E nn�j
	 


;

where we have used the independence of q� and n: We can now isolate E½ðq�Þ
n
� and

obtain a recursive relation:

E½ðq�Þ
n
� ¼ E½qn� �

Xn�1
j¼0

n

j

� �
E ðq�Þ

j
	 


E½nn�j�:

Note that the E½nn�j� are known because n has a known distribution. Similarly, we
have

E ðq�Þ
nzl½ � ¼ E½qnzl � �

Xn�1
j¼0

n

j

� �
E ðq�Þ

jzl

	 

E nn�j
	 


;

where we have used the independence between n and q�; z. These relations allow the
q� moments to be estimated using the sample moments of q.
Now write E½yqn� and E½yzn� as functions of observed q moments and the true q�

moments determined above:

E½yqn� ¼
Xr

i¼1

biE ðq�Þ
iqn

	 

þ
Xs

l¼1

dlE½zlq
n�

¼
Xr

i¼1

biE ðq�Þ
i
ðq� þ nÞn

	 

þ
Xs

l¼1

dlE½zlq
n�

¼
Xr

i¼1

bi

Xn

j¼0

n

j

 !
E ðq�Þ

iþj
	 


E nn�j
	 


þ
Xs

l¼1

dlE½zlq
n� for n ¼ 1; . . . ; r

and

E½yzn� ¼
Xr

i¼1

biE ðq�Þ
izn

	 

þ
Xs

l¼1

dlE½zlzn� for l ¼ 1; . . . ; s:

The regression adjustments follow from these modified normal equations, with b and
d isolated as

b

d

� �
¼

A B

C D

� �
b

d

� �
;
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where

b ¼ E½yqn� for n ¼ 1; . . . ; r;

d ¼ E½yzl � for l ¼ 1; . . . ; s;

Ani ¼
Xn

j¼0

n

j

 !
E ðqnÞ

iþj
	 


E nn�j
	 


for n ¼ 1; . . . ; r and i ¼ 1; . . . ; r;

Bnl ¼ E½zlq
n� for n ¼ 1; . . . ; r and l ¼ 1; . . . ; s;

Cli ¼ E ðqnÞ
izl

	 

for l ¼ 1; . . . ; s and i ¼ 1; . . . ; r;

Dnl ¼ E½zlzn� for n ¼ 1; . . . ; s and l ¼ 1; . . . ; s

and

E½ðqnÞ
n
� ¼ E½qn� �

Xn�1
j¼0

n

j

 !
E ðqnÞ

j
	 


E½nn�j�;

E½ðqnÞ
nzl � ¼ E½qnzl � �

Xn�1
j¼0

n

j

 !
E ðqnÞ

jzl

	 

E½nn�j�:
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