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VORTEX-INDUCED VIBRATION OF MARINE
CABLES: EXPERIMENTS USING FORCE FEEDBACK
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The problem of vortex-induced vibrations in flexibly mounted cylinders and marine cables
is addressed using a new laboratory apparatus, which combines force-feedback with on-line
numerical simulation of a modeled structure. We establish correlation with published
single-mode, free vibration data, and give results for a dynamic model having the principal
characteristics of inclined cables, i.e. pairs of weakly coupled modes and crossover
avoidance. While the fluid lift properties of the single-mode and multiple-mode systems
are qualitatively similar, the spectra differ in several fundamental ways, suggesting distinct
wake interaction processes.
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1. INTRODUCTION

VORTEX-INDUCED VIBRATIONS (VIV) of cables and pipes are ubiquitous during ocean
towing, and in marine applications involving free spans subjected to ambient currents.
These vibrations are of significant engineering importance because a compliant
member can develop an increased drag coefficient, which alters the static configuration,
and thereby increases the static loading (Every et al. 1981; Sarpkaya 1978; Yoerger et
al. 1991). Furthermore, these excitations can lead to large dynamic loads at the forcing
frequency, reducing the system’s fatigue life.

Full-scale studies reveal that the vibrations are characterized by a spectrum
containing several frequencies, often dominated by strong beating oscillations (Alexan-
der 1981; Grosenbaugh et al. 1991; Vandiver & Chung 1987). One cause is current
shear; the vortex-shedding rate has a roughly linear dependence on local velocity even
for short cylinder spans placed in a nonuniform flow (Stansby 1976). Nearly all
deployments involve shear of some sort, while curved cables are also subject to a
spatially varying normal velocity, even within a uniform current. The variation in
normal oncoming velocity can be shown analytically to lead to beating-type behavior in
long members (Howell 1989). Additionally, cables with significant in-water weight and
normal drag forces are subject to sagging, and as such possess a nonuniform
multi-mode dynamic response (Irvine & Caughey 1974; Triantafyllou 1984).

We have developed a force-feedback laboratory apparatus which allows modeling of
complex structural dynamics, while fully accounting for fluid—structure interaction. The
experiments described in this paper represent a fundamental divergence from VIV
studies to date, and a short review of past work helps to illuminate the differences. A
great number of researchers have performed laboratory work with test cylinders, either
fixed or motor-driven (Bishop & Hassan 1964; Protos et al. 1968; Mercier 1973;
Sarpkaya 1978; Staubli 1983; Schargel 1980; Gopalkrishnan 1992). Forced-motion tests,
employing sinusoidal or beating motions, achieve the gross features of observed VIV
phenomena, although the essence of fluid—structure interaction is missing; that is, no
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matching exists between the dynamics of the structure and the wake. Free-vibration
tests, such as initiated by Feng (1968) (in air), Anand (1985), and Moe & Wu (1989),
allow the complete coupled process to develop, although only relatively simple,
single-mode mass-spring systems have been used. Free vibrations of flexibly mounted,
rigid cylinder sections with multi-mode responses have not been considered ex-
perimentally. However, progress in understanding multi-mode responses has been
made by Nakano & Rockwell (1993) and Gopalkrishnan (1992), who studied forced
beating oscillations. In addition, nonlinear compliant systems have not been studied
experimentally; the nonlinearities arise from geometric (typically quadratic or cubic),
or material properties.

In Section 2, we describe how the present apparatus employs a hybrid experimental
and numerical simulation approach: structural vibrations are simulated in software,
using as excitation the real-time force measurements from a load cell attached to a test
cylinder. This cylinder is a physical component of the modeled structure and, when
placed within an on-coming steady flow, oscillates transversely with the motion
predicted by the numerical simulation, using a computer-controlled servo motor. The
result is a closed-loop system that simulates the overall fluid—structure interaction
process. It should be noted that the two ends of our test cylinder move together, and
that no in-line oscillations take place.

In the subsequent sections, we first study the applicability of our approach to
single-mode compliance, computing lift force amplitude and phase, as well as power
spectra. Then we investigate bimodal structural dynamics in the context of a
low-ordered inclined cable model, whose response is characterized by pairs of closely
spaced eigenvalues and weakly coupled modes. Specifically, what we wish to study here
is the qualitative fluid—structure interaction when avoided crossings, and hence large
sensitivity to parametric changes, are exhibited by the structure.

In this paper, we chose to couple the model of the extended cable structure with a
short span wake, since the latter can be adequately represented by our experimental
facility. Outside the test cylinder, we did not wish to obscure the basic problem by
having to assume models for the hydrodynamic loading, such as correlation length.
Thus, although the structural dynamic response includes the entire cable, fluid forcing
is applied only at the location of the test cylinder. We recognize that the hybrid test
apparatus is a simplification, and that most often in practice cables are exposed along
their whole span to fluid forcing. The inclined cable problem is a natural setting for this
work, but the new phenomena we report pertain strictly to multi-mode compliance.
Notation is given in the Appendix.

2. APPARATUS

2.1. HARDWARE

At the MIT Testing Tank Facility, a moving carriage has been outfitted with a micro-
computer, servomotor system, lead-screw assembly, and a yoke with a cylindrical test
section; see Figure 1. This apparatus is an adaptation of that used by Gopalkrishnan
(1992). The tank is 1-4 m deep and 2-6 m wide, with a working length of 18 m. The test
cylinder is mounted on a piezoelectric quartz load cell, and we measure the location of
the yoke with a linear variable differential transformer (LVDT). The test cylinder is
62 cm long, with a diameter of 3-175 cm, and has circular end-plates of 35 cm diameter.
We used carriage speeds of 0-23—-0-36 m/s in the tests, for a Reynolds number range of
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Figure 1. A computer-controlled servomotor actively positions the test cylinder through a linear slide; this
assembly, along with the supporting electronics and sensors, translates along a 25 m towing tank.

7200-11 500. These values are typical for metallic mooring or towing lines operating in
slow to moderate ocean currents.

As shown in Figure 2, the force feedback loop uses measured forces on the test
cylinder to drive a real-time simulation of the physical cable system; the output of the
simulation then provides the motor setpoint. Ideally, the simulator has an exact
dynamic response, albeit subject to some amount of noise and filtering effects. The
950-Watt DC motor is controlled by a digital servo loop closed at 12 khz, and the peak
force output through the linear drive is 6 000 N, which compares favorably with fluid
forces on the order of 5 N and inertial loads on the order of 2400 N. A number of steps
were taken to ensure clean measurements and smooth operation. First, we stiffened the
carriage lower assembly, and used rubber wheels with durometer hardness 60-70 to
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Figure 2. Force-feedback with an inertial correction enables real-time dynamic.
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isolate the force sensor from irregularities on the carriage rail. In order to minimize
electromagnetic noise, all connections and wiring were shielded; we placed the control
and simulation computer on the carriage itself. Finally, we tuned the motor servo so
that less than 1 deg. of phase could be discerned, for oscillations of 3 cm amplitude and
frequency 15rad/s. With respect to other hardware, the lead-screw has a specified
backlash of 5 um. Measurement of the carriage speed indicated a worst-case error of
2%; several seconds of data during the carriage acceleration and oscillation growth
were truncated at the beginning of each run. To maximize the useful data length, we
initialized each run with 3 s of stored simulation states and physical oscillations from a
previous run. Variances for the force sensor and the LVDT were computed as
9x 10 *N?, and 4 X 10~* cm?, respectively.

2.2. PROGRAMMING AND PROCESSING

The transverse force data were corrected on-line for the inertia of the apparatus. To
illustrate, in the case of the linear mass-spring-dashpot models, the desired behavior is
governed by the equation

my (1) + by(t) + ky = F(1), (1)
where F(t) is purely fluid forcing.t However, the measured force, F,,(¢), is actually
F, (1) = F(t) = meuj (1), 2)

where my, is the actual mass of the test cylinder, plus some small entrained water mass
around the force sensor. Therefore, to retain the desired dynamics, the governing
equation becomes

my(t) + by (1) + ky(t) = E,,(t) + mepj (0). ®)

With the right-side of this equation representing the force seen by the numerical
model, we discretized the dynamic equation using the matrix exponential. The control
loop bandwidth is 500 Hz, well above that required to track the 3 Hz oscillations of
interest. One important and typical assumption is that of the zero-order hold, i.e., that
F(t) is held constant between samples. This yields the following linear discrete-time
system, to be applied at each time step in the simulation:

x(t + At) = &x(t) + I'F(¢). 4)

In the single-mode case, x(¢) consists of cylinder velocity and position, while ® and I
are 2X?2 and 2 X1 constant matrices, respectively. The position or velocity can thus
pass directly to the servomotor at each time step. Note that since the simulation runs at
500 Hz, while the servomotor samples the setpoint at 12 kHz, a second zero-order hold
approximation exists.

Because the cylinder used for the tests is quite heavy (density 1500 kg/m?), we
encountered some chatter in the closed-loop from the large inertial correction. Part of
this is certainly due to double differentiation of the LVDT signal, but a similar, more
general problem exists for robotic arms interacting with massive or rigid environments.
Specifically, a nonyielding surface that is normal to the motion naturally prohibits
position control in this direction (Mason 1981), and in most practical cases the robot
must be programmed to be suitably compliant. In contrast, our experimental technique
insists upon position control, with the cylinder mass acting as the nonyielding

1 In the case of a distributed cable, we use F(s, t) to indicate forcing dependence on location as well as
time.
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environment. To our knowledge, no general solution exists in this application except
for low-pass filtering; we employed a Chebyshev third-order digital filter with cutoff at
100 rad/s. This filter brings a lag of about 12 deg. at the fixed-cylinder vortex-shedding
rate, but achieves very smooth motion. We believe that the overall effect of this lag is
minor, as evidenced by the data in later sections. A similar phase loss also applies to
the inclined-cable results of this paper; we are presently developing a much lighter
cylinder for future tests. With the inertial correction and filter in place, we verified
proper static deflections, natural frequencies, and decay envelopes for the feedback
system in air.

Linear vertical position, horizontal force (not presented), and vertical force were
recorded on a separate, dedicated computer at 100 Hz. During processing, we looked
only at regions of fully developed beating. For computing the spectra, we detrended
and employed a Hanning window. We obtained displacement magnitudes by finding
the peaks between zero crossings, and averaging the top 10%.

2.3. DEFINITIONS

The experiments are parameterized with the ratio of the damped structural frequency
to the fixed-cylinder vortex-shedding rate:
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where V, is the standard reduced velocity 21U/ w,d, and S = 0-19. In the single-mode
cases, we also varied the damping ratio .

In sinusoidal forced vibration tests, fluid forcing can be decomposed into a lift
component in phase with the lateral velocity, Cr,, and an added mass component in
phase with the acceleration, Cg,. The lift force is nondimensionalized with dynamic
pressure:

_ Fysings

Cp, = 6
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where ¢ denotes the phase angle between force and displacement. Positive values of
Cr, indicate excitation, as energy flows from the fluid into the structure. Likewise,
negative values of Cp, indicate damping, as energy flows from the structure to the fluid.
The time-averaged power flow can be shown to be a scaled product of the transverse
velocity and Cp, as follows:

1 T
- f F(t)y(0)dt = oY, sin ¢ = 1Y,0Cp, pldU™. (8)
0

Note that a negative C, indicates positive added mass.

Many of the data sets obtained show multiple spectral peaks, however, requiring an
alternative method of analysis. After calculation of the spectra for a given run, we
chose the lowest dominant peak frequency and divided the data into bins of five
periods each. We then consolidated the multi-mode signals into equivalent lift and
added mass coefficients which preserve the power flow of the pure sinusoidal
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coefficients (Gopalkrishnan 1992). These formula also apply to the case with more than
two distinct frequencies. We have

_ \/2 F@),y@) 1 o
5T NTVDY(0), y(0)) bpldU?’

R E@, @) 1

CF"_\/T (3 (@), y(1)) 2p1dU?’ (10)

where T is the integration interval. To see that the power flow has the same
dependence on Cr, we make the substitutions again as in equation (8):

LEQ@), 30 = Cp pldU? \/;y'(r), y(). (1)

In the case of single-mode input, the square root reduces to Y,w7/2, and the result of
equation (8) is recovered. In the case of multiple components, the square root reduces
to the root-mean-square transverse velocity multiplied by 7/V2. The lift coefficient and
phase angles reported in the following sections are averaged and standard deviations of
values obtained in the bins.

3. SINGLE-MODE FREE VIBRATIONS

A typical set of inertia-corrected force and position signals is given in Figure 3, for the
case {=0-01 and w,=1-2. This run contains significant amplitude modulation in
position, but the force signal has some higher harmonics evident, especially in the
position cusps (Gopalkrishnan 1992). Employing the inner-product calculations above,
the phase angle in this case is near zero degrees.

The total lift, phase, and amplitude data are shown in Figure 4, for the complete
range of damping ratios ¢ ={0-000, 0-001, 0-010, 0-100} and tunings «, = 0-40 — 1-70.
Vertical bars, where shown, indicate addition and subtraction of one standard
deviation. The amplitudes given are the average of the one-tenth highest values. The
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Figure 3. Typical displacement and force signals; w, =12, { =0-01. The position is bimodal with peaks
near the structural mode and the shedding rate, while the force signal contains energy primarily at the
shedding rate.



VORTEX-INDUCED VIBRATION: FORCE FEEDBACK 313

Total lift coefficient Cp Phase angle ¢ (deg) Avg jl'oth highest A/d
2 —
o of 00 1l
g 100 —
1— 05—
L o
0= -100 0
~ 200 [
(= 1
g ' 100 —
"B 05—
T eesg | of
~100 ! 0
- 200 [ |
g 100 —
05—
L o
~100 — 0
200 —
8 2- 1+
g 100 —
1= 05
O] a0 | O po0ea
0= | | ~-100 | | | 0= |
0.5 1 1.5 0.5 1 1.5 0.5 1 1.5
2 2 2

Figure 4. Total lift coefficient, nondimensional amplitude, and phase are shown for four damping ratios, as
a function of structural tuning ,. Vertical lines indicate one standard deviation from the mean value.

peak displacement of about one diameter is achieved near w,=0-9 in all cases,
corresponding to dramatic phase angle changes and a weak local minimum in the total
lift coefficient. The A/d ratios are also characterized by a step change, which is known
to involve a hysteretic response to steady-stream velocity (Feng 1968; Berger 1978).
The lift coefficient has maximum value at w, = 1-0, with the phase generally stabilized
at this point. An interesting point is the variation of phase in the case ¢ =0-001,
compared to the cases { =0-000 and ¢ =0-010. The latter two curves share a gradual
return to o =180 deg., while the first remains near a value of zero degrees as w;,
increases. This observation suggests a polytypic dependence of phase on damping
ratios. However, the amplitude ratios appear consistent; that is, they vary inversely
with {. Much stronger A/d variations for the range ¢ = 0-0015-0-0030 have been found
in air experiments (Gonswami et al. 1993).

Figures 5-7 show the amplitude and force spectra from the majority of experiments,
confirming that the vibrations follow the fixed-cylinder vortex-shedding rate when the
structural modal frequency exceeds it (Feng 1968; Anand 1985). On each subplot, log
power spectral densities for successive cases are offset by four orders of magnitude; the
position plots show the A/d p.s.d., and the force coefficient plots give the p.s.d. of the
force coefficient
_F,tm,y

Cr= 12

A single horizontal dotted line for each position p.s.d. denotes the value 0-0001, or 1%
of the A/d ratio. On the force subplots, the reference line indicates a force coefficient



314 F. S. HOVER ET AL.

Ald Cr
......... L ......0.0001 i 001 @
Wy 1.7
L DR A L6
P U o e P
< W AL . N 15 Y Y SR SR L4
® m
% B Y ARYN. Y B s .o 1.4 IREET ST O ATEY Y FREFTIRNTY Y e IR Ere™ 1.3
0
é ....... " . . " 13 . . . . T . 12
2PV N Y S R W A A A A o
2T ! 12 » 11
[=]
5 11 NI e ; 1
R WU pe s AT YR 1 = - 0.9
A3 il 1
o . VTR | e A A yy 0.9 0.8
n ) ) [}
E /(R P L AL ALY s It 0.8 | WA rw - A W 0.7
|
S T | IR MM N e 0.7 " A 0.6
! 1
......... . 0.6 Y AT U USRS
, , A 0.5
.................... 05 | Voo
1 'y 0.4 1 \ \
1 2 3 1 2 3
wlwg w/wg

Figure 5. Amplitude and force coefficient power spectra for the single-mode model with damping ratio
0-001. The curves are offset by four orders of magnitude, with reference lines indicating A/d =0-01 and
Cr=0-1. The dashed vertical line indicates the nominal shedding frequency, and the slanted heavy line

locates the structural mode for each w, considered.
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Figure 6. Amplitude and normalized force spectra for the single-mode model with damping ratio 0-010.
See Figure 5 caption.
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Figure 7. Amplitude and normalized force spectra for the single-mode model with damping ratio 0-100.
See Figure 5 caption.

p-s.d. of 0-01, or 10% of the nominal fluid force. A heavy slanted line indicates the
structural mode associated with each experiment.

For low damping, we observe narrow-band displacement peaks growing in the range
w, =0-6-1-0. Localized beating phenomena then occurs just above the crossover
(w, =11 —1-3); beyond this point, the responses diminish and broaden mildly, as the
shedding mode dominates. The low-damping displacement spectra also show some
weak indication of second and third harmonics (Wu 1992), usually below o, =1-0.
Large damping tends to create more broadband displacement spectra, especially near
cross-over, with very little beating. The force signals largely comprise white noise when
0-5< w, <1-0, organizing to a single peak near the shedding rate, at lower and higher
values. The force signals contain little evidence of beating, even when the displacement
is beating strongly. Additionally, neither the force nor displacement spectra indicate
clearly why phase in the three cases ¢ =0-000, 0-001 and 0-010 should be distinct, as
pointed out previously.

Figure 8 compares the new data with that of several previous studies. In the first
case, we replot the amplitude ratios against the observed frequencies, for damping
ratios of [0-000, 0-001, 0-010]. Additionally, zero contours of the lift coefficient in phase
with velocity C are shown; the data are from Gopalkrishnan (1992), for forced
oscillation tests with beating. Low structural damping implies nearly zero average
power flow in the steady state, so at low w,, i.e., during lock-in, we expect the new data
points to fall near these zero contours. The reduced amplitude associated with higher
damping provides an additional line (not shown) which corresponds to a positive C,.

As o, increases, the observed frequency conforms to the fixed-cylinder vortex-
shedding rate wg, and the amplitude in all cases decreases. This brings the new data
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Figure 8. (a) Amplitude ratios in lightly-damped free vibration follow the zero contours of lift in phase
with velocity, obtained for different forced-beating patterns by Gopalkrishnan (1992). Lift is positive below
the contour lines, and the symbols are: X, ¢ =0-000; O, ¢ =0-001; +, ¢ =0-010. (b) Peak amplitude ratios,
for the values of ¢ considered, match the average curve for data presented by Griffin (1980). The leftmost

experimental point is at zero damping.

points into a positive Cr, area in Gopalkrishnan’s plots, and therefore, in this regime
the forced- and free-vibration results are in disagreement. Specifically, the zero-power
condition must hold in the free vibration, while a positive Cr, indicates power flowing
from the fluid into the cylinder. We believe that the drastic variation of phase with
vibration frequency near the vortex-shedding rate [e.g., Figure 4 and Staubli 1983)]
may be responsible for the discrepancy.

In the second plot of Figure 8, the peak amplitude ratio is given as a function of
reduced damping, here defined by

_ 8S*m¢l

k
r pd2

(13)
The data are compared against the generalized curve given by Griffin (1980),
representing a considerable experimental base of data. For further comparison with
other work, the mass ratio 2m/pd? in our tests is calculated to be 11-0. This value is
quite low with respect to air tests (>30), but fairly high with respect to typical water
tests (=1-5). One well-known effect of a low mass ratio is that the lock-in range of
reduced velocity is greatly broadened; the force spectra shown in Figure 5 generally
agree with this point, as lock-in to the structural mode holds up to V,=8-75. To
summarize, the single-mode free vibration data obtained using force feedback closely
replicates the responses reported by other researchers.

4. THE INCLINED CABLE

4.1. BACKGROUND

Closely spaced linear vibrational modes, often manifested as beating, can occur in
shallow-sag cables (Irvine & Caughey 1974; Triantafyllou 1984). The natural fre-
quencies vary as a function of the nondimensional structural parameter A,

A= \/Ei4 <v;f>cos ba, (14)

where ¢, and T, are the mean angle and top tension. Horizontal systems (¢, =0)
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experience mode cross-over, in which the odd modes transition to higher odd modes
through symmetric growth of side lobes; the antisymmetric modes are not affected by
A. For inclined catenaries, the modal frequency lines do not cross, but veer apart
instead. The avoided crossings can be arbitrarily close, or quite disparate, depending on
the ratio EA/T,, which relates axial to lateral wave speed. In both horizontal and
inclined systems, however, dynamic tensions can be extremely high near the cross-over
region, and therefore understanding the natural response at this point is of critical
importance (Triantafyllou & Grinfogel 1986).

The natural modes and planar mode shapes for a suspended cable can be computed
using the formulation developed by Triantafyllou (1984). To enable the approach, we
assume that the bending stiffness and structural damping are negligible; this latter
condition is supported by the relative insensitivity of the amplitude response to reduced
damping less than 0-10 (Griffin 1980).

4.2. IMPLEMENTATION

Galerkin projection provides a consistent way to incorporate the cable modal dynamics
into the force-feedback system (Burgess & Triantafyllou 1985). The lateral deflection is
written as

465, 1) = 2 0.(R(5), (15)

where Q(¢) is the temporal component of (s, ¢), and R,(s) is the ith eigenfunction.
This expansion is then employed in the simplified transverse equation

g _dThoq .. 9°q  .ddo
—=——+Th—+T—/, 16
o ds as  Cas? ds (16)
where the quasi-static dynamic tension is
EA (L1 (0g\2  dey
P EA L) 4T .
LO[Zas as 10| & (17

Since the quadratic term in the integral is second-order, it is neglected in the
expansion. Projection onto the mode R,,(s) leads to

1Q=(,+ I+ 1)Q, (18)
where
L
Ilij =m f R,R] dS, (19)
0
LdT,
= | ——Rirds, (20)
0 N
L
I, = J ToR'R; ds, (21)
0

EA [t [(td
A f R,[ %0 . ds]ds. 22)
L Jy, ‘Ll ds
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As discussed in the Introduction, fluid forcing in a full-scale deployment generally
occurs along the entire cable length, and hence correlation length and boundary
conditions may play a significant role. In tests with a short cylinder, the forces are
measured at only one location on the continuous structure. In the absence of a
complete hydrodynamic model for the cable, the simplest course is to zero the forcing
outside the experimental cylinder. This is akin to suspending the member in air, with
the test cylinder passing through a small water channel. The force input and motion
output of our system is taken to be at location s,. Using projection, the forcing term
becomes

L s +1/2
J R,.(s)F(s, t)ds = F(t) f R,.(s) ds. (23)
0 so—1/2
The motion for the motor to follow is
q(s0, 1) = >, Qi()R(s0)- (24)
i=1

The dynamic system of equation (18) may contain any number of modes, but only two
are required to capture the first avoided crossing. In a manner entirely parallel to that
of the single-mode case [equation (3)], the set of differential equations is assembled
into matrix form, and discretized using the matrix exponential and zero-order hold.
One notable difference is that where in the single-mode case, the states alone form the
servomotor setpoint, the setpoint now must be computed as a linear combination of
projected components, using equation (24).

Using the physical parameters in Table 1, we generated the natural frequencies
shown as solid curved lines in Figure 9. The static cable shape and associated mode
shapes are shown in Figure 10. The reader should note that this example has a rather
deep sag. The parameters were chosen to match the size and bandwidth of the
experimental apparatus, and specifically to incur closely spaced hybrid modes. In this
system, the transverse mode shapes are not orthogonal near crossover, so some weak
coupling occurs. Eigenvalues for the first two modes at the point of nearest approach
are {0 £/10-349, 0=;11-172}, and the eigenvectors are {—0-995, —0-030, 0 +;0-096,
0 +70-0029} and {0-096, —0-991, 0=+;0-0086, O0=+;0-089}. The variation in the
avoided crossing value of A from the usual value of 2r7is due to the significant added
mass of the cable in water.

Eigenfunction zeros tend to prohibit excitation at their corresponding natural
frequencies. Specifically, these near-zero values are as shown below.

Mode AT s/L
2 1-27 0-50
1 1-50 0-25
2 1-78 0-75
2 2-11 0-75

They can be seen in Figure 10. In the more specific case, projection of the two-mode
system onto a small segment leads to a transfer-function zero between the poles.
Proximity of this zero to the pole pair depends on both A/ and the location along the
cable sy, as shown in Figure 11(a). At the cable center, the zero is essentially
independent of A/7;, whereas in the other cases it is located nonsymmetrically. These
modal zeros can prevent substantial motion from occurring, even when the shedding
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Parameter Value Units
Length 5-0 m
Diameter 3-17 cm
Cable density 7000 kg/m’
Young’s modulus 11-270 MPa
ba 2828 deg
T, 528 N

(@) O
Mode 2 S ©
* [e) o
(@) (@)
* (@) (@)

Mode 1 Experiments

| | | | | | | |
0.8 1 1.2 1.4 1.6 1.8 2 2.2
N

Figure 9. Cross-over avoidance for the first two natural modes (solid curved lines) is shown for the
parameters of Table 1. Also shown are 20 points for the test runs; five different shedding rates for four
different structures parameterized by (A/ ).

rate is very close; see the spectra in the following section. A characteristic structural
natural frequency corresponds to the zero-moment value, valid for white-noise input. If
G(jow) is the system transfer function, we set

fw |G (jo)w|do
W, = (25)
[ 16601 do

AN
2.110

1.782

1.504

Vertical (m)

1.270

Horizontal (m)

Figure 10. Coupled modes for the suspended cable are computed from linearization about the static
configuration shown (Table 1). Fluid flow is perpendicular to the page.
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Al Al

Figure 11. (a) Galerkin projection of the cable equations onto the test cylinder leads to a zero located
between the natural modes. (b) The corresponding zero-moment frequencies w_. — — —, Natural modes; +,
for s/L =0-25; O, for s/L = 0-50; *, for s/L = 0-75.

Figure 11(b) indicates these zero-moment frequencies, which are a spatially varying
nonlinear function of the structured parameter A/7T

4.3. EXPERIMENTAL RESULTS

We conducted 60 tests, covering four A and five wg points, shown as points in Figure 9
along with the first two natural modes. For each of the 20 {A, wgs} points, we considered
three locations on the cable: s, ={0-25L, 0-50L, 0-75L}. The fixed-cylinder vortex-
shedding rate was varied directly by changing the towing speed; the range of 0-225 to
0-360 m/s covers all the natural modes, as shown. The presentation of data parallels
that of the single-mode tests above, so that direct comparisons can be made.

The displacement and force coefficient power spectra are given in Figures 12-14. In
these plots, five orders of magnitude separate the curves; otherwise, they are directly
comparable to the single-mode plots. The frequency scale is nondimensionalized to a
nominal vortex-shedding rate, based on the third towing speed of 0-294 m/s. It should
be pointed out that where we used the term “‘cross-over” to denote the point w, =1-0
previously, in the inclined cable case, this location is less well-defined, since the
structural modes themselves have a nonuniform dependence on A.

Overall, the displacement spectra have the same character as in the single-mode
case. Double- and triple-mode responses are common, comprising the structural and
shedding frequencies and tempered by the zeros described above. Perhaps more clear
than in the single-mode spectra, second and third harmonics are also visible. The
corrected force coefficient spectra show several significant divergences from the
single-mode case, however, suggesting a variance of the wake interaction with the
structure. Namely, where previously the force peak organized at cross-over (w, = 1-0)
and aligned eventually with the shedding rate, now only one of the structural modes
needs to exceed the shedding rate in order to narrow the force spectrum. This point is
clear in Figures 12 and 13, while in Figure 14, an even stronger statement seems to
hold: narrow-band force spectra can form even if both structural modes are below the
shedding rate. This latter figure, at U =0-325m/s, also suggests that the force peak
need not occur at the shedding rate, nor at the lowest of the three frequencies. Indeed,
at small A/m, the peak aligns with the upper structural mode, while at large A/ it
tends to reside at the lower structural frequency, being below the shedding rate in both
cases. These properties are in sharp contrast to the single-mode results, suggesting a
significant variation in the wake-structure interaction.
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Figure 12. Log power spectra of amplitude ratio and force coefficient at U = 0-257 m/s. Five orders of
magnitude separate the curves, and reference lines show A/d =0-01 and Cp = 0-1. The dashed vertical line
indicates the shedding rate, and the two curved solid lines indicate structural modes as the structural
parameter A/7is varied. The horizontal axis is scaled with a nominal shedding rate based on a towing speed

of 0:294 m/s.

The measured force (corrected for cylinder inertia) and position signals, several of
which are shown in Figures 15-17, demonstrate a variety of relations. The first
example, in Figure 15, is for the second towing speed (0-257 m/s), A/m=1-50 and
s/L =0-75. The displacement, undergoing a changing beating pattern, has three
spectral peaks: two at the structural modes, and one at the shedding rate. This
triple-peak response is typical of runs at the lower two towing speeds, where the
displacements tend to be small, and the structural modes exceed the shedding rate. The
force signal in this run is narrow-band at the shedding rate, with no sign of beating.
Figure 16 is for the middle towing speed (0-294 m/s), with A/mr=2-11 and s/L = 0-50.
Here, the amplitude-modulated displacement, with two spectral peaks, appears to be
stable, and the force has similar modulation with a well-correlated envelope. However,
the force spectrum shows little evidence of this envelope. In Figure 17, the
displacement again has a reasonably stable amplitude modulation, but the force signal
is quite disorganized, showing periods of both reduced and increased frequency. This
run was at the fourth speed (0-325m/s), and had A/m=1-50 and s/L =0-75. In the
single-node experiments, we see no cases in which broadband forcing leads to bimodal
displacement oscillation.

The lift coefficients, phases, and amplitude ratios from the test data, shown in
Figure 18, bear a strong qualitative similarity to those of the single-mode system in
Figure 4. This correlation is in large part due to our use of the zero-moment frequency
w, in the parameterization; here o, = w,/ws. The large standard deviations shown, and
the scatter in the mean values, are likely due to the increased spectral richness in the
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Figure 13. Log power spectra of amplitude ratio and force coefficient, at U =0-294 m/s. See Figure 12
caption.
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Figure 14. Log power spectra of amplitude ratio and force coefficient, at U =0-325m/s. See Figure 12
caption.
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Figure 15. Amplitude and force signals for U = 0-257m/s, A/m=1-50 and s/L = 0-75. Evidence of three
peaks in the displacement spectra lead to a varying modulation, while forcing is primarily at the shedding
rate.
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Figure 16. Amplitude and force signals for U = 0-294 m/s, /= 2-11 and s/L = 0-50. The position spectra

are strongly bimodal, and the force signal shows some associated modulation.
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Figure 17. Amplitude and force signals for U =0325m/s, A/m=1-50 and s/L =0-75. The cylinder
oscillates at the two structural modes, but the force is broadband, with the structural modes well below the

shedding rate.
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Figure 18. Lift coefficient, phase, and amplitude ratios for the inclined cable experiments. Overall, most of
the character of Figure 4 is recovered, when the zero-moment frequency scaling is used.

responses, since the inner-product calculation exactly describes only monochromatic
processes. The force coefficients reach peak values of approximately two, peaking in
the range o, =0-9 — 1-0. Additionally, the phase has a zero-angle regime in the range
w, =09 —1-25; both of these quantities are in good agreement with the single-mode
results. Amplitude ratios are somewhat reduced, however, and show a large amount of
scatter. The hysteretic step has apparently vanished as well, although admittedly the
lower limit of w, is not as low as in the single-mode tests. Only one point, for
s/L =0-50 and o, = 0-66, indicates that the subcritical tuning point has been passed.

5. CONCLUSIONS

Accurate laboratory testing of fluid interaction with complex, compliant structures
requires scaled hardware, or a short-span hybrid approach which employs real-time
simulation. The force-feedback scheme described in this paper can address a range of
free-vibration models, including multiple modes, traveling waves (through finite-
difference discretization), and nonlinearities. Application to real engineering problems,
however, may require the use of hydrodynamic models outside the test cylinder.

In single-mode experiments, we found good agreement with the work of other
researchers, in lift coefficient, phase, and peak amplitudes. Force spectra for the
low-damping tests are generally broadband in the lock-in regime, and narrowband
outside, while the cylinder displacement undergoes significant amplitude modulation
near the lock-in cross-over point.

Dynamic responses for multi-mode models, arising from inclined cable dynamics, can
be compared to those of single-mode compliant structures with proper frequency
scaling. This scaling accounts for structural zeros which are absent in most single-mode
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systems. Although the observed lift, phase, and amplitude properties are similar in
both single- and multi-mode cases, the spectra in the latter are more complex. Notably,
only one structural mode, and sometimes neither, needs to exceed the fixed-cylinder
vortex-shedding rate in order for the force spectrum to be narrowband. This fact is in
contrast to single-mode results (w,>1-0), and suggests that the presence of two
structural modes provides to the wake a new mechanism for organizing. Flow-
visualization tests are anticipated which will help to describe this interaction more
completely.
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APPENDIX: NOMENCLATURE

y(@), Y, lateral deflection of test cylinder, single-mode peak value
F(), F,(¢) fluid-only, measured force on test cylinder

My material mass of test cylinder

ld cylinder length, diameter

U towing speed

p fluid density

S, ws Strouhal number, fixed-cylinder vortex-shedding frequency
m, b, k, { mass, damping, stiffness, and damping ratio of single-mode system
oy structural damped frequency

F, ¢ lift force amplitude, phase

Cr, Cr,, Cr,  force coefficient: total, in phase with velocity, acceleration
k, reduced damping

L cable length

A cable cross-sectional area

w cable weight per unit length in water

M effective lateral mass per unit length

E Young’s modulus of cable

b, mean angle of inclination

T, projection of top tension along ¢,

A structural parameter for suspended cables

w.(N) zero-moment frequency

s cable axial coordinate

q(s, 1) cable lateral deflection

bo(s), ¢(s, t) static, dynamic cable angle

Ty(s), T(s,t) static, dynamic cable tension

0:(?), Ri(s)  temporal, spatial components of g(s, )

So test cylinder location on cable



