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Abstract

Estimation of statistical power in functional MRI (fMRI) requires knowledge of the expected percent signal change between two

conditions as well as estimates of the variability in percent signal change. Variability can be divided into intra-subject variability,

reflecting noise within the time series, and inter-subject variability, reflecting subject-to-subject differences in activation. The

purpose of this study was to obtain estimates of percent signal change and the two sources of variability from fMRI data, and then

use these parameter estimates in simulation experiments in order to generate power curves. Of interest from these simulations were

conclusions concerning how many subjects are needed and how many time points within a scan are optimal in an fMRI study of

cognitive function. Intra-subject variability was estimated from resting conditions, and inter-subject variability and percent signal

change were estimated from verbal working memory data. Simulations derived from these parameters illustrate how percent signal

change, intra- and inter-subject variability, and number of time points affect power. An empirical test experiment, using fMRI data

acquired during somatosensory stimulation, showed good correspondence between the simulation-based power predictions and the

power observed within somatosensory regions of interest. Our analyses suggested that for a liberal threshold of 0.05, about 12

subjects were required to achieve 80% power at the single voxel level for typical activations. At more realistic thresholds, that

approach those used after correcting for multiple comparisons, the number of subjects doubled to maintain this level of power.
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1. Introduction

Statistical power is defined as the probability of

rejecting the null hypothesis when it is false. In most

experiments conducted in the behavioral sciences, the

main factors that influence power are: (1) the size of the

effect , determined by the difference of the means of the

experimental and control conditions and the variability

of this difference across subjects; (2) the value of alpha

that is used, which is the probability of rejecting the null

hypothesis when it is true; and (3) the sample size , i.e.

the number of subjects tested.

Of these three factors, sample size is the most

amenable to manipulation by the experimenter. Effect

size can be influenced by the experimental design, but

for a given contrast of interest is generally out of the

experimenter’s control. When the null hypothesis is

false, increasing alpha increases power. However, the

increased risk of falsely rejecting the null hypothesis is

considered an unacceptable consequence if the null
hypothesis is true. Increasing sample size increases

power because the standard error of the mean decreases

by the square root of N . As illustrated in Fig. 1, for a

given alpha level and separation between the H0 (null)

and H1 (alternative) distributions, there is a greater

probability (larger area under the H1 curve) of rejecting

H0 if it is false when the sample size is larger.

Power calculations for a within-subjects experiment
depend on assessing the effect size (Kraemer and

Thiemann, 1991), which is defined as follows:

d�(mD�0)=s; (1)

where d is the effect size, mD is the difference in means

between the experimental and control condition, 0 is the
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difference in means under the null hypothesis, and s is

the variability in the difference in means. In functional

MRI (fMRI) mD and s are typically normalized as

percent signal change (i.e. 100�/(E�/C )/C , where E ,

experimental condition and C , control condition) be-

cause the raw signal values have no intrinsic physiolo-

gical meaning and can vary considerably in magnitude

in different regions of the brain.

fMRI signal-to-noise (SNR) is typically low, such that

it is necessary to scan a subject for a period of 3�/15 min

during which time repeated presentations of the experi-

mental and control conditions are presented to the

subject while the scanner continually takes a snapshot

of brain activation every 1�/4 s. Thus a time series of

approximately 50�/400 time points is created for each of

the approximately 120 000 voxel (i.e. smallest 3D

element) locations in the brain. An inferentially valid

statistical analysis of the data requires that the degrees

of freedom at each voxel reflect the number of subjects.

One way to achieve this is by creating a mean activation

volume for the experimental and for the control condi-

tion by averaging all of the time points that were

acquired during each condition. For each voxel, a paired

t-test is then computed to determine if the experi-

mental�/control difference is significant, with the num-

ber of degrees of freedom equal to the number of

subjects minus 1 (Holmes and Friston, 1998).

Because of the two-stage nature of fMRI group

analysis, i.e. averaging time points within a scan for

each subject followed by statistical tests on these

averages across subjects, the variability, s , represented

in Eq. (1) consists of two parts, a within-scan (i.e. intra-

subject) variability, sW, consisting of noise that occurs

from one time point to another due to physiological

fluctuations, thermal noise, and other random factors,

and a between-subject (i.e. inter-subject) variability, sB,

which is the subject to subject variability in the

effectiveness of the experimental condition in producing
a signal change. Estimation of effect size in Eq. (1)

therefore requires estimating mD, sW, and sB.

Although analyses of power and sample size have

been presented for positron emission tomography (PET)

studies (Kapur et al., 1995; Andreasen et al., 1996;

Grabowski et al., 1996; Van Horn et al., 1998; Wahl and

Nahmias, 1998), similar analyses have not been per-

formed for fMRI. The purpose of this report, which has
appeared in abstract form (Desmond and Glover, 2000),

was to estimate these parameters from real fMRI data,

and then use the parameters in simulation experiments

to generate power curves. Because increasing the

number of time points within a scanning session tends

to decrease the impact of sW on the ability to reject the

null hypothesis, while increasing the number of subjects

decreases the impact of sB, the effects of both time
points and subjects on power were addressed in simula-

tions. Finally, we sought to test the predictions of the

simulation using a simple fMRI experiment involving

somatosensory stimulation of the fingers.

2. Methods

The procedures for this report required first, an

estimation of critical parameters from real fMRI data.

Once this was accomplished, the estimated parameters

were used in simulation experiments to generate power

predictions and power curves. An empirical test using

real fMRI data was then conducted to verify that the

simulator, given accurate estimates of percent signal

change and inter- and intra-subject variability, yields
power predictions that accurately predict the results of

standard random effects analysis methods. An overview

of these procedures is illustrated in Fig. 2.

3. Estimation of sW

3.1. Subjects

Six subjects, four males and two females with a mean

age of 36.7 (SD�/11.9) were scanned under resting

conditions with eyes open for a total of 4 min. These rest

segments were interspersed with blocks of finger stimu-

lation (described below) that were designed for testing

power predictions.

3.2. Data acquisition and analysis

fMRI data were acquired on a 3 T GE Signa magnet

using a T2*-weighted gradient echo spiral pulse se-

Fig. 1. Sample size increases power because the standard error of the

mean decreases by the square root of N . For a given alpha level and

separation between the H0 and H1 distributions, there is a smaller

probability (smaller area under the H1 curve) of rejecting H0 if it is

false when there are fewer subjects (A), than when there are more

subjects (B).
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quence (Glover and Lai, 1998), using a custom-built

quadrature ‘top hat’ elliptical bird cage head coil. Head

movement was minimized using a bite-bar that was

formed with the subject’s dental impression, and further

corrected using the SPM99 software package (Wellcome

Department of Cognitive Neurology). fMRI scans were

obtained from 25 axial slices using parameters of TR�/

2000, TE�/30 ms, flip angle�/758, single shot, inplane

resolution�/3.75 mm, and thickness�/5 mm. A T2-

weighted fast spin-echo was acquired in the same plane

as the functional scans with parameters of TR�/3000,

TE�/85 ms, echo train length�/8, and NEX�/1. These

structural data were coregistered with the mean post-

motion-corrected fMRI volume and spatially normal-

ized to the Montreal Neurological Institute (MNI) brain

template (2�/2�/2 mm voxels) using a nine-parameter

affine transformation in SPM99 (Friston et al., 1995a).

Both spatially smoothed (FWHM�/5 mm) and un-

smoothed data were subjected to further analyses.

To estimate sW, segments of rest data were extracted

from the time series of each voxel. The first 10 s of data

from each segment were discarded to allow for hemo-

dynamic changes from the previous block to settle. The

coefficient of variability (CV), defined as 100�/(SD/

mean), was calculated from a total of 3 min of rest data

per subject as an estimate of sW. Spatially normalized

data from all subjects were then averaged to make a sW

volume. To insure that sW values were obtained from

gray matter voxels, rather than regions of white matter

or cerebro-spinal fluid, the mean structural brain

volume, based on the T2-weighted fast spin-echo scans

averaged over the six subjects, was segmented to isolate

gray matter voxels using the method of Ashburner and

Friston (1997) in SPM99. Undesired regions were

thereby excluded from analysis.

To investigate whether autocorrelations in the fMRI

time series affected measurements of sW, the CV on the

last longest segment of resting data (40 time points) was

calculated on subsampled time series. That is, the first

calculation (SUBSAMP1) was calculated on the original

40 time points. The second calculation (SUBSAMP2)

was performed on every other value of the time series

(20 points per time series). Similar calculations were

performed on every third (SUBSAMP3, 13 time points)

and fourth (10 time points). Autocorrelations and CV

values were calculated for each of the subsampled runs.

To further investigate the distribution of noise in the

time series, time series were converted into Z scores, and

the distribution of these values was examined and

compared to the normal distribution.

Fig. 2. Overview of the methods used for estimating parameters, generating power predictions from simulations, and empirically testing the results.

Components appearing in dashed lines were used only in the empirical test experiment. Note that in the test experiment, the intra-subject variability,

sW, was not estimated from whole brain resting data, but instead was measured only from the region of interest during the tasks used for the analysis.

Power curves were created by entering multiple values of sample size (N ) and fixing all other parameters.
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4. Estimation of mD and sB

4.1. Subjects

Twelve subjects, seven males and five females, gave
their informed consent to participate in a study designed

to measure brain activation during a verbal working

memory task (to be published in a separate report). The

mean age of the subjects was 32.9 years (SD�/10.3).

4.2. Tasks

Subjects were scanned under two conditions. The first
condition utilized a verbal working memory task. For

this task, six uppercase consonants were visually pre-

sented at a rate of one every 900 ms and for a duration

of 750 ms each. After the letter presentation, the screen

was kept blank for 2 s, and then a lowercase probe letter

was presented for 2 s. The subject was instructed to press

one button if the probe matched one of the original six

letters that were being held in mind, and a second button
if the probe did not match. The second condition was a

resting condition in which the subject maintained

fixation on a ‘�/’ symbol.

Stimuli were visually presented to the subject in the

scanner by back-projecting the images via a magnet-

compatible projector onto a screen located above the

subject’s neck. Visual images were viewed from a mirror

mounted above the subject’s head. Stimuli were pre-
sented from a Macintosh computer (Apple Computer,

Inc., Cupertino, CA) using PsyScope software (Cohen et

al., 1993).

4.3. Data acquisition and analysis

fMRI data were acquired on a 3 T Signa scanner as

described above. For this experiment, 29 sections were
acquired in the coronal plane and fMRI data were

collected using parameters of TR�/3000, TE�/30 ms,

flip angle�/838, single shot, inplane resolution�/3.75

mm, slice thickness�/6 mm. A T2-weighted fast spin-

echo scan was also acquired using parameters described

above. Motion correction, spatial normalization (12

parameter, 2�/2�/2 mm voxels), and Gaussian spatial

smoothing (FWHM�/5 mm) were performed using
SPM96.

To estimate mD and sB a two-step procedure was

followed. For the first step, mean spatially normalized

volumes were created for each subject in each of the

conditions by averaging time series data for each

condition (using the ‘adjusted mean’ routine in

SPM96). The verbal working memory mean volume

was averaged over 61 time points (183 s) collected in
three blocks of 1 min duration each, and the rest

condition over 42 time points (126 s) collected in three

blocks of 42 s duration each. Using the general linear

model approach available in SPM96 (Friston et al.,

1995b), a random effects analysis was performed for the

12 subjects to identify regions in which activation from

verbal working memory was greater than that of the
resting condition. From this analysis, nine regions of

interest were identified from the averaged activation

map, using a threshold of P B/0.01, in Broca’s area, left

premotor cortex, left supramarginal gyrus, left middle

frontal gyrus, left superior temporal gyrus, right super-

ior temporal gyrus, right inferior and middle frontal

gyri, right superior cerebellum, and right inferior

cerebellum (3024 voxels total).
For the second step of this analysis, percent signal

change, defined as 100(A�/B )/B , where A , activation

magnitude under verbal working memory and B ,

activation during rest, was calculated for each of the

voxels in the regions of interest (ROIs) for each subject.

For each of the 3024 voxels, a mean percent signal

change across the 12 subjects was computed. The

distribution of these mean percent signal change values
was taken as a measure of mD for this contrast. A similar

approach was taken for estimating sB, except that

instead of computing the mean of the percent signal

change across subjects at each voxel, the standard

deviation of the percent signal change was computed.

Note that because sB is contaminated by the contribu-

tion of sW the standard deviation estimate of sB was

corrected using the estimate of sW and the number of
independent time points using the equation:

sB�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ŝ2

B�2s2
W=n

q
;

where ŝ2
B is the measured standard deviation of the

percent signal change, and n is the number of indepen-

dent time points.

5. Simulations

Simulations were based on a block design experiment

using a random effects model, and were written in the

Interactive Data Language (IDL, RSI Systems, Inc.,

Boulder, CO). Because statistical tests in fMRI analyses

are typically performed independently on each voxel,

each simulated subject was represented as a time series
in a single voxel. A population of 20 000 subjects (time

series) was created, with each time series representing

simulated brain activation for two conditions, an

experimental and control condition. Values of mD, sW,

and sB were based on parameter estimate studies

described above, and the number of points in the time

series was varied between 50 and 400.

To incorporate these parameters into realistic popula-
tion time series, the following steps were performed: (1)

a baseline value (10 000) was defined and a time series of

n points at the baseline values was created; (2) a time
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series of n points of Gaussian noise with a mean of 0

and a standard deviation equal to sW was added to the

baseline time series to create a noisy time series. (Note

that these are n independent points without autocorre-
lations, and the value of n is therefore assumed to

correspond to the effective degrees of freedom or

independent observations in fMRI time series (Worsley

and Friston, 1995).); (3) a square wave, representing

alternating experimental and control conditions, was

then added to the time series of step 2. The distribution

of percent signal change between control and experi-

mental conditions was defined by mD and sB. Fig. 3
illustrates two time series from the population after

completion of these steps.

To create power curves, samples of 4, 6, 8, 10, 12, 16,

24, and 32 time series were drawn from the population.

For each time series a mean value for the experimental

and for the control condition was computed, and a

paired t -test was performed with the degrees of freedom

equal to the sample size minus 1. This procedure was
repeated 1000 times for each sample size. The percentage

of rejections of the null hypothesis (Ho) that the mean

percent signal change was equal to zero was then

computed to create power curves.

6. Empirical test experiment

6.1. Subjects

The six subjects described above for the estimation of

sW were also scanned for the purpose of testing

simulation predictions.

6.2. Stimuli

Subjects received bilateral passive tactile stimulation

of the fingers, using a custom-built MR-compatible
device. This device consisted of five pneumatically-

driven plungers that were imbedded in a foam mold of

each hand. Computer-driven activation of the relay for

any finger caused air pressure to translate the plunger

upward and push up on the finger, thereby causing

tactile sensation and passive movement. Subjects re-

ceived movement of one finger at a time on each hand,

and movement of each hand’s finger occurred simulta-
neously. Stimulation was modulated by altering the

number of finger movements per second, and subjects

received alternating blocks at 4, 1, and 0 Hz (rest).

6.3. Data acquisition and analysis

Scan parameters were the same as those described for

the estimation of sW. Subjects were given three scans in

counterbalanced order. One scan, which was used to
define primary somatosensory ROIs as well as to

estimate sW, consisted of 12 alternating blocks of 1 Hz

stimulation and rest (30 s/block, except for the last rest

block, which was 90 s in duration). The other two scans

each consisted of 16 alternating blocks of 4 and 1 Hz

finger stimulation at 30 s/block. Data were motion

corrected, coregistered with an in-plane structural scan,

and then normalized to the MNI template using SPM99.
Gaussian spatial smoothing was performed on the

normalized volumes at FWHM�/5.0 mm. Average

volumes for the 0, 1, and 4 Hz conditions were created

using SPM99’s adjusted mean function, for both spa-

tially smoothed and unsmoothed data. In creating these

mean volumes the data were high-pass filtered at a

period of 120 s.

To define the primary somatosensory ROIs, each
subject’s smoothed and normalized volumes were sta-

tistically analysed using the general linear model im-

plemented in SPM99. The contrast of 1 Hz vs. rest was

performed for each subject, creating a t -value map for

each subject’s activations. The left and right ROIs were

defined as the regions surviving a conjunction of each

subject’s activation at a P value threshold of 0.05 (one-

tailed). Once the ROI was defined by the 1 Hz vs. rest
contrast, the two 4 vs. 1 Hz scans were used to test the

simulation’s predictions.

The empirical test consisted of drawing sample sizes

of 6, 8, 10, and 12 from the pool of 12 scans that were

obtained from the six subjects (i.e. two runs of the 4 vs. 1

Hz condition per subject). Four samples of size 6 and 8,

three samples of size 10, and one sample of size 12 were

selected. For each sample size smoothed and un-
smoothed versions of the data were analysed at two

different levels of alpha (0.05 and 0.002) and for two

separate ROIs (left and right somatosensory cortex),

Fig. 3. Simulated fMRI waveforms used in power calculations. The

top trace shows a time series in which the percent signal change in the

experimental condition (E ) with respect to the control condition (C ) is

positive. The middle trace illustrates a time series with a negative

percent signal change. The bottom trace depicts the reference wave-

form indicating the times at which the experimental and control

conditions occur.
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making a total of 96 pairs of predicted and observed

power measurements. In generating predicted power,

average sW, mD, and sB values were made from the

voxels of the ROI. These parameters were then supplied
to the simulator, and the prediction was tested by

assessing the percentage of ROI voxels, out of the total

number of voxels in the ROIs (225 voxels total), that

were found to be statistically significant when a stan-

dard random effects analysis (using a paired t-test) was

performed on the brain activation data. This method of

testing was chosen because it was considerably easier to

generate and test power from a large number of voxels
than from a comparable number of subjects. However, a

slight modification was required to use this method:

because each subject is assumed to have a single percent

signal change value representing the small somatosen-

sory ROI, variability among the voxels for a given

subject cannot be considered to be due to sB, nor can it

be attributed entirely to sW. It was necessary to assume

that this variability reflected a within-ROI component,
sR. To the extent that sR is low, significance observed in

one voxel of the ROI will likely predict the outcome of

all the ROI voxels. Appendix A provides a detailed

description of the equations used to measure these

variance components. The simulation software was

modified to incorporate this source of variability.

Specifically, a population of 10 000 time series was

created as described previously, and these time series
reflected intra- and inter-subject variabilities. For each

sample drawn from this population, a ROI of 100 voxels

was created for each subject in the sample. The percent

signal change values of the ROI voxels for each subject

varied around that subject’s mean value with variability

defined by the sR value that was specified for the

simulation. For each voxel a t-test was performed to test

whether the mean percent signal change across subjects
was significantly different from 0. The percentage of

ROI voxels that were found to be significantly different

from 0 was then calculated. A total of 500 repetitions of

this procedure were performed to estimate the average

power for rejecting Ho within the ROI.

7. Results

7.1. Parameter estimations

The distribution of sW values for smoothed and

unsmoothed data is plotted in Fig. 4. It can be seen

from the figure that spatial smoothing reduces the

magnitude of sW, with a mean value of 0.74% (med-

ian�/0.70%) for the smoothed distribution, and a mean

of 1.15% (median�/1.08%) for the unsmoothed distri-
bution. Regional variability in the magnitude of sW was

also apparent as illustrated in Fig. 5, which shows higher

sW values predominately in visual areas and lower sW

values mostly in anterior cingulate, basal ganglia, and

insular cortex. The high and low values of sW illustrated

in Fig. 5 were derived from the upper and lower tails of

the smoothed distribution illustrated in Fig. 4 for

segmented gray-matter voxels.

Examination of the subsampled time series for the

non-spatially-smoothed data revealed a significant effect

of subsampling on the lag1 autocorrelation values

(F (3, 15)�/28.963, P B/0.0001), with mean autocorrela-

tion values of 0.314, 0.233, 0.108, and 0.057, respec-

tively, at SUBSAMP values of 1�/4. However, neither

the mean (F (3, 15)�/0.583, P�/0.64) nor the median

(F (3, 15)�/0.556, P�/0.65) values of sW showed any

changes with subsampling. The distribution of time

series noise within a short (80 s) segment showed good

correspondence with the normal distribution, as illu-

strated in Fig. 6. The first four moments of the

distribution were �/0.0000464, 0.9397, 0.0405, and �/

0.0486. Inspection of each of the six subject’s distribu-

tion showed similar near-normal distributions for all

subjects.

The distribution of mD and sB for the working

memory cognitive task is illustrated in Fig. 7. A mean

percent signal change of 0.48% was observed for the

working memory vs. rest comparison, and the mean

value of sB was 0.77%. Note that these distributions are

based on a P B/0.01 threshold used to define the voxels

of interest, and that more stringent thresholds would

likely bias the distribution of mD toward higher values.

Fig. 4. Estimation of intra-subject variability, sW under spatially

smoothed (FWHM�/5 mm) and unsmoothed conditions. Graphs

depict the results obtained from six subjects who were scanned under

resting conditions. Data were motion corrected, spatially normalized

to an MNI template, and segmented to include only gray matter

voxels.

J.E. Desmond, G.H. Glover / Journal of Neuroscience Methods 118 (2002) 115�/128120



8. Simulations: power curves

For simulations, the following parameter values were

chosen based on measurements described above:

sW�0:75 � 1:25%

sB�0:30 � 0:70%

mD�0:25 � 0:75%

Power curves using a two-tailed alpha of 0.05 are

depicted in Fig. 8, where the effects of different levels

of either mD or sB can be seen. With a mD and sB of

0.5%, 11�/12 subjects are needed to achieve 80% power
at a�/0.05, assuming a value of 0.75% for sW, typically

observed in spatially smoothed data, and 100 time

points per condition (n). Note that at mD�/0.75%,

approximately six subjects are needed to achieve 80%

power; a decrease of 0.25% in mD (from 0.75 to 0.5%)

requires an additional 5�/6 subjects to maintain 80%

power, whereas an additional decrease in mD of 0.25%

(from 0.5 to 0.25%), requires over 20 more subjects to
maintain 80% power. In contrast, changes in sB seem to

have a more linear effect on the number of subjects

needed to maintain comparable power levels.

Fig. 5. Regional variability in intra-subject variability, sW, observed under resting conditions for six subjects with eyes open. Regions in the upper

10% of the smoothed distribution of Fig. 4 are illustrated in the red color scale and regions in the lower 10% of the distribution of sW values are

shown in blue. These correspond to sW values of 1 and 0.45%, respectively.

Fig. 6. Distribution of time series noise, converted into Z scores for

each voxel using mean and standard deviation calculations for that

voxel during an 80 s rest period, collected over six subjects for all gray

matter voxels. Solid line denotes observed counts while dotted line

represents expected values for normal distribution.
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Power curves using a more conservative level of a�/

0.002 (two-tailed) are illustrated in Fig. 9. For the same

values of mD�/0.5 and sB�/0.5% it can be seen that

approximately twice the number of subjects are needed

to maintain 80% power for this level of alpha than at

a�/0.05. For a�/0.000002 (two-tailed), higher signal

(i.e. mD]/0.75 at sB�/0.5%) or lower inter-subject

variability (i.e. sB�/0.3 at mD�/0.5%) are needed to

maintain 80% power with approximately 25 subjects

(Fig. 10).

The effects of the number of time points per condition

(n ) is illustrated in Fig. 11 at a�/0.05, and in Fig. 12 at

a�/0.002. In both figures note that at lower levels of sW

n has less impact than when sW is higher. Fig. 13

illustrates that the effect of n may be greatest when sW is

high and sB is low. There also appears to be diminishing

Fig. 7. (A) Distribution of percent signal change value, mD, during a working memory task relative to rest for 3024 voxels representing nine regions

of interest, with each voxel averaged over 12 subjects. (B) Distribution of inter-subject variability, sB, values during the working memory task for the

same voxels and subjects.

Fig. 8. Power curves generated at an alpha of 0.05 (two-tailed). The effects of different levels of mD (percent signal change) with fixed inter-subject

variability (sB), intra-subject variability (sW), and time point per condition (n ) are depicted in A, whereas the effects of different levels of sB with

fixed mD, sW, and n are illustrated in B.
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returns for increasing n beyond 100 independent sam-

ples.

9. Empirical test experiment

The results of the conjunction analysis for the 1 Hz vs.

rest contrast that were used to define the somatosensory

ROIs are illustrated in Fig. 14. For each of the 96
combinations of sample size, alpha, ROI, and spatial

smoothness, estimates of sW, mD, sB and sR were

computed from the samples and used as parameters

for the simulation. An n of 28 was used in the

simulations, based on the effective (i.e. independent)

degrees of freedom estimated by SPM99. For each of the

96 tests, a simulation using the estimated parameters

generated a predicted power value. A random effects

analysis on the adjusted mean volumes for the 4 vs. 1 Hz

contrast was then performed to calculate the observed

power (i.e. percent of the voxels in the ROI found to be

significant). The plot of predicted vs. observed measure-

ments is illustrated in Fig. 15, which shows a high

Fig. 9. Power curves generated at an alpha of 0.002 (two-tailed). The effects of different levels of percent signal change (mD) with fixed inter- (sB),

intra-subject variability (sW), and time points per condition (n ) are depicted in A, whereas the effects of different levels of sB with fixed mD, sW, and n

are illustrated in B.

Fig. 10. Power curves generated at an alpha of 0.000002 (two-tailed). The effects of different levels of percent signal change (mD) with fixed inter-

(sB), intra-subject variability (sW), and time points per condition (n ) are depicted in A, whereas the effects of different levels of sB with fixed mD, sW,

and n are illustrated in B.
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correlation between these values (r�/0.98). Note that
the 96 tests cannot be regarded as independent as they

are permuted from the same set of data. The different

permutations were intended to show the entire range (0�/

100%) of predicted and observed values to see if, given

accurate parameter estimates, the simulator, with its

simplifying assumptions, would reasonably predict the

results of a random effects analysis.

10. Discussion

This report has presented a method for estimating the

number of subjects needed in fMRI research, and the

results of an empirical test experiment revealed a good

correspondence between simulation-based power pre-

dictions and power observed in somatosensory regions.

The power curves were based on a random effects

analysis, which generally requires more subjects than a

fixed effects analysis, but has greater inferential validity

to the population from which the subjects were drawn.

Alternatives to the random effects approach that retain

some of the sensitivity of fixed-effects models and are

capable of making restricted inferences to the popula-

tion have also been proposed (Friston et al., 1999a,b),

but were not addressed in this report.

The most difficult aspect of deciding how many

subjects to use in an fMRI experiment is estimating

Fig. 11. Effects of varying time points per condition (n ) at a low value of intra-subject variability (sW) (A) and at a higher value (B) using an alpha of

0.05 (two-tailed).

Fig. 12. Effects of varying time points per condition (n ) at a low value of intra-subject variability (sW) (A) and at a higher value (B) using an alpha of

0.002 (two-tailed).
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the critical parameters mD and sB. Because this study

focused on only one type of cognitive task, verbal

working memory, for estimating mD and sB, our

simulations were generated using a range of parameter

values rather than a single value, with the hope that this

range will be relevant for many types of tasks.

It is evident from the power curves that selecting a

sample size imposes limits on the range of mD, sB, and

sW values that are likely to be represented in an fMRI

activation map. Thus, before accepting the null hypoth-

esis that a region of the brain does not show activation,

and therefore does not contribute to a cognitive task, it

is useful to consider the alternative interpretation that

the sample size has effectively filtered out voxels whose

mD, sB, or sW, or some combination of these para-

meters, are not in an optimal range. It is difficult to

define a priori what the optimal range should be or to

assign a level of meaningfulness to any specific percent

signal change value, because this value is highly

dependent on the particular contrast used in the

analysis. For example, a well-designed control condition

is likely to yield low percent signal changes, which if

reliable, may have a high degree of theoretical or

interpretive meaning.

The results of the simulations indicate that with

percent signal changes of approximately 0.5% and

spatial smoothing at FWHM of 5 mm, a minimum of

12 subjects are needed to insure 80% power at a�/0.05

at the single voxel level. For a more conservative alpha,

twice as many subjects are recommended to maintain

this level of power. With mD values as high as 0.75%, or

with low sB values of approximately 0.3%, 10 subjects

Fig. 13. The number of time points/condition (n ) has a greater effect on power curves when intra-subject variability (sW) is high and inter-subject

variability (sB) is low. This is observed at a�/0.05 and percent signal change (mD) of 0.25% in (A), and at a�/0.002 and mD�/0.5% in (B).

Fig. 14. Somatosensory ROIs used in the empirical test experiment.

Voxels surviving the conjunction across six subjects at P B/0.05 for

each subject are depicted in black on the sagittal (A) and axial (B)

sections. ROIs are depicted on a T2-weighted fast spin echo volume

that was normalized and averaged across six subjects.

Fig. 15. Results of somatosensory test experiment. The graph depicts

predicted (from the simulation) vs. observed (from t -tests on ROI

voxels, using subjects as a random factor) power for the 96 combina-

tions of subject sample size, alpha, spatial smoothness, and ROI that

were analysed.
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may be adequate for 80% power for an alpha of 0.002,

but approximately 25 subjects are needed for a stricter

alpha of 0.000002.

The benefits of increasing n , the number of time
points per condition, appeared to diminish after 100. It

should be noted that in simulations n represented

independent time points; however, in actual fMRI

experiments attempts to increase n by decreasing TR

will not result in a one-to-one increase in n . In the

empirical somatosensory experiment, the number of

effective degrees of freedom obtained from SPM99

was used to estimate the number of independent time
points. The beneficial effects on power of increasing n

appeared to be greatest when sW was high and sB was

low.

Measurements made from subsampled time series

revealed that sW estimates were likely not distorted by

autocorrelations at shorter lags, as sW remained un-

changed when autocorrelations were reduced by sub-

sampling. The distribution of sW measured from 80-s
segments of rest showed close correspondence to a

normal distribution. However, the measurement of

noise from relatively short segments likely precludes

measurement of the lower frequency components of

fMRI noise that are known to be prevalent (Zarahn et

al., 1997; Friston et al., 2000). Lower frequency

components of the noise may affect estimates of sB

and this effect may be different at different task
frequencies (Skudlarski et al., 1999). Many variables

inherent to fMRI that occur within a scanning session,

including the effects of task frequency, low frequency

noise, heart rate, respiration, head motion, voxel size,

and TR were not explicitly modeled in the simulations,

for the sake of simplicity. The effects of these variables

on power in random effects analyses will be addressed in

future refinements of the simulator. For these reasons,
simulations were performed using a range of different

parameter values rather than trying to define a single

value that is appropriate for all tasks.

Spatial smoothing reduced considerably the distribu-

tion of sW values, and because the effects of n were less

pronounced at lower values of sW, smoothing would

appear to be a reasonable pre-processing strategy to

compensate for shorter scan times, especially if the
resulting loss of spatial resolution is not a concern. Of

course, an alternative to spatial smoothing is to use

acquisitions with lower intrinsic resolution. For the

same scan a SNR benefit will result. Other researchers

have found spatial smoothing to be beneficial (Sku-

dlarski et al., 1999), but the benefits of enhanced signal

due to averaging can depend on the size and shape of the

desired signal relative to the size and shape of the
convolution kernel (Petersson et al., 1999). We also

observed regional differences in resting sW values,

raising the possibility that some areas of the brain may

have statistical power advantages or disadvantages

relative to other regions simply by virtue of the intra-

subject variability inherent to the region. The properties

of sW may change regionally depending on the type of

condition under which it is measured. For example, the
map depicted in Fig. 5 was obtained under an eyes-open

resting condition, and this may account for the higher

sW values observed in the occipital regions.

This study focused on power analysis for typical

within-group fMRI experiments, in which inferences

concerning the difference in activation between two or

more conditions (with each condition measured from

each subject) are intended to be made to a single
population. Different parameter values for sW, sB,

and mD may be observed in different populations, e.g.

younger vs. older populations, or in different clinical

populations. Future studies will address these possible

parameter differences and the estimation of sample size

when inferences regarding group differences are desired.

In this regard, routine reporting of mD and sB by

researchers would be beneficial for building a database
that could be used for assessing statistical power in

fMRI studies.
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Appendix A

The following equations were used to calculate

parameters for the empirical test experiment.

A.1

Calculation of intra-subject variability, sW

Let qij (t) represent the signal intensity for subject i

(i�/1, . . ., N ), in ROI voxel j (j�/1, . . ., R ) during a

resting condition at time t (t�/1, . . ., n ). sW for subject i

and voxel j is the coefficient of variability that is
computed using the equation:

sWij
�100�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

t�1 [qij(t) � q̄ij ]
2=(n � 1)

q

q̄ij

;

where q̄ij is the mean value averaged over time for

subject i and voxel j . The overall value of sW is then

computed as the average of the individual estimates:

sW�

PR

j�1

PN

i�1 sWij

NR
:
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A.2

Calculation of percent signal change, mD

Let qijk (t) represent the signal for subject i (i�/

1, . . ., N ), in ROI voxel j (j�/1, . . ., R ) during condition

k (k�/1, . . ., 2, i.e. experimental and control condition)

at time t (t�/1, . . ., n time points per condition). The

mean signal for conditions 1 and 2 is:

q̄ij1�
Pn

t�1 qij1(t)

n
; q̄ij2�

Pn

t�1 qij2(t)

n
;

and the percent signal change for subject i at voxel j , pij

(illustrated in Fig. 16) is then given by:

pij �100�(q̄ij1� q̄ij2)=q̄ij2;

mD was then defined by averaging the pij values:

mD�
PR

j�1

PN

i�1 pij

NR
:

A.3

Calculation of within-ROI variability, sR

If we assume that each subject has a single percent

signal change value for the small somatosensory ROI

chosen for the experiment, then voxel to voxel varia-

bility within the ROI is defined as within-ROI varia-
bility, or sR. s2

R for any given subject i was estimated

from the equation:

ŝ2
Ri
�

XR

j�1

(pij � p̄i)

R � 1

2

;

where p̄i is mean percent signal change value for that

subject averaged over all the voxels in the ROI.

Averaging this value across subjects gave an overall

estimate of ŝ2
R of:

ŝ2
R�

PN

i�1 ŝ2
Ri

N
:

However, because each pij measure is derived from an

average over time points in the time series (i.e. qijk (t )),

ŝ2
R reflects the contribution of both s2

R and s2
W: The

value of sR corrected for intra-subject variability was

computed from the equation:

sR�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ŝ2

R�2s2
W=n

q
;

where n is the number of time points per condition.

Note that the simulation assumed independent time

points, and thus, the effective degrees of freedom
obtained from SPM99 were used to estimate indepen-

dent time samples. The effective degrees of freedom were

found to be 56, so an n of 28 was used.

A.4

Calculation of inter-subject variability, sB

Inter-subject variability at any given voxel j was

estimated using the equation:

ŝ2
Bj
�

XN

i�1

(pij � p̄j)

N � 1

2

;

where p̄j is the mean percent signal change value for that

voxel computed across subjects. The overall value for ŝ2
B

was obtained by averaging over all the ROI voxels, i.e.:

ŝ2
B�

PR

j�1 ŝ2
Bj

R
:

Because ŝ2
B contains the contributions of s2

R and s2
W; as

well as that of s2
B; the corrected estimate of sB was

obtained using the equation:

sB�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ŝ2

B�s2
R�2s2

W=n

q
:
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