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Increased sensitivity in neuroimaging analyses using robust regression
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Robust regression techniques are a class of estimators that are

relatively insensitive to the presence of one or more outliers in the

data. They are especially well suited to data that require large numbers

of statistical tests and may contain outliers due to factors not of

experimental interest. Both these issues apply particularly to neuro-

imaging data analysis. We use simulations to compare several robust

techniques against ordinary least squares (OLS) regression, and we

apply robust regression to second-level (group brandom effectsQ)
analyses in three fMRI datasets. Our results show that robust

iteratively reweighted least squares (IRLS) at the 2nd level is a

computationally efficient technique that both increases statistical

power and decreases false positive rates in the presence of outliers.

The benefits of IRLS are apparent with small samples (n = 10) and

increase with larger sample sizes (n = 40) in the typical range of group

neuroimaging experiments. When no true effects are present, IRLS

controls false positive rates at an appropriate level. We show that IRLS

can have substantial benefits in analysis of group data and in

estimating hemodynamic response shapes from time series data. We

provide software to implement IRLS in group neuroimaging analyses.

D 2005 Elsevier Inc. All rights reserved.
Introduction

Traditional statistical inference relies on three fundamental

assumptions: (1) errors are independent from one another, (2)

errors are normally distributed (or have another known distribu-

tional form), and (3) error variance is constant across levels of the

predicted values. Statisticians emphasize the importance of

evaluating these assumptions for each analysis tested, as violations

of the assumptions can produce both false positive and false

negative results and undermine the interpretability of inferential

statistics (e.g., P values).

The field of statistics has developed a number of diagnostic

tools to check assumptions, many of them graphical (Luo and

Nichols, 2003; Neter et al., 1996). However, applications that

require testing of a large number of statistical models pose a
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problem: it is nearly impossible to check assumptions and make

individual decisions about how to address potential violations in

each case (but see Luo and Nichols, 2003). Neuroimaging data

(e.g., PET, fMRI, SPECT) are a prototypical example of this

situation, as separate regression models are typically fit for each of

30,000–100,000 voxels in the brain.

In such cases, outliers in the data can create violations of the

normality and equality of variance assumptions, and they can have

a disproportionately large impact on the statistical solution (see

Fig. 1A). This is true particularly with large, artifact-prone datasets

such as those typical in neuroimaging experiments (Langenberger

and Moser, 1997; Le and Hu, 1996; Ojemann et al., 1997). Outliers

are likely to exist in some proportion of the regression analyses

(e.g., in some voxels). In most cases, these outliers will cause

decreased power (or, equivalently, will lead to higher false negative

rates), but in some cases, they will lead to higher FPRs. This

unpredictability of the effects of outliers is particularly problematic

because it means that a simple correction (e.g., an alpha or P value

correction) is not available.

Robust regression techniques are a class of statistical tools

designed to provide estimates and inferential statistics that are

relatively insensitive to the presence of one or more outliers in the

data (Huber, 1981; Hubert et al., 2004; Neter et al., 1996). When

outlying values are present in the data, violations of distributional

assumptions can lead to reduced power and increased false positive

rates. Robust techniques can substantially increase power while

maintaining an appropriate false positive rate (Huber, 1981; Neter

et al., 1996). Robust techniques are particularly useful when a large

number of regressions are tested and assumptions cannot be

evaluated for each individual regression, such as with neuro-

imaging data. The techniques we describe here are explicitly

designed to deal with outliers, and may complement other

techniques, such as data filtering and incorporation of Bayesian

priors, designed to increase robustness to artifacts (Ciuciu et al.,

2003; Smith et al., 2002; Woolrich et al., 2004).

Robust regression and neuroimaging

In neuroimaging, analyses are conducted both individually for

each subject and in a group analysis across subjects. Within a

subject, a common strategy is to fit a multiple regression model to



Fig. 1. (A) Example of bivariate null hypothesis (Ho) data with n = 10 and 10% (n = 1) outliers. The solid circle and dashed circle show the 95% confidence

area for the noise and outlier noise distributions for multivariate (x–y) outliers, respectively. In this case, a single outlier creates a significant correlation

between x and y. (B) Example of simulated data (n = 30) with a true effect of the predictor (alternative hypothesis, Ha, for the predictor) and a zero intercept

(Ho for the intercept). The shaded region shows the 95% confidence interval for the sample mean. (C) Two weight functions used in IRLS (see legend). Huber

asymptotes at 0 outside the bounds of the figure.
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the time series data at each voxel (Worsley and Friston, 1995;

Worsley et al., 1997). In this case, outliers (or other violations of

the statistical assumptions) in the time series can substantially

influence the fit of the model. Robust regression can minimize the

impact of these outliers. In a typical group analysis, individual

brains are first warped or anatomical regions are delineated so that

voxels correspond to the same brain regions in each subject

(Ashburner and Friston, 1999; Toga and Thompson, 2002).

Regression parameters (or contrasts composed of a linear

combination of parameters, e.g., A–B, task-control) are saved for

each subject at each voxel or region of interest, and a test is

performed on the parameter values, treating individual subjects’

parameters as a random effect. Robust regression can be used at

this level as well, minimizing the impact of outlying subjects.

Group analyses, also called bsecond levelQ or brandom effectsQ
analyses in the neuroimaging literature, can be a simple one sample t

test, to test whether activation values differ from zero, or a more

complex model involving repeated measures or behavioral predic-

tors. Investigators are typically interested in (1) whether certain brain

regions are activated by the task (i.e., whether contrast values differ

from zero), and (2) whether behavioral scores (e.g., performance,

behavioral depression scale scores, etc.) correlate with regional brain

activation. These two tests correspond to tests of the intercept and

slope of a simple linear regression model at the second level. Our

simulations focus on this case as an illustrative example.

There are three principal reasonswhy robust regression techniques

may be particularly important for analyzing neuroimaging data. First,

as described below, there are good reasons to suspect that artifactual

outliers are common in such data. Second, it is often unfeasible to

check assumptions for each individual regression analysis due to the

number of separate regression analyses performed (Luo and Nichols,

2003, provide a solution), and thus an efficient robust algorithm that

dampens the effects of outliers would be advantageous. Finally, as

noted above, robust techniques may increase statistical power

(decreasing the false negative rate) and may prevent false positives

in the presence of outliers or skew in the data.

Neuroimaging experiments may be more outlier-prone than

many other methodologies due to the number and nature of
processes that may produce artifacts, which we review briefly

below. Because of the large number of comparisons that are

performed in a typical bmassively univariateQ analysis, outliers are
extremely likely to occur in some comparisons (i.e., somewhere in

the brain). However, multivariate analyses (Buchel et al., 1999;

Mckeown et al., 2003) are not immune to outliers. In fact, they are

more influenced by outliers than univariate approaches. As the

multivariate space becomes more sparsely sampled (e.g., the ratio

of variables to samples grows), extreme values at some time-points

can have extremely large leverages, and thus extreme influences on

the overall solution.

Fig. 1A shows an example of a problematic dataset with n =

10 and no true effect. The data (black dots) were drawn from a

null-hypothesis (Ho) distribution, shown by the shaded circle,

with no correlation between the predictor (x axis) and the data ( y

axis). Noise from a larger-variance distribution, shown by the

dashed circle, was added to one data point, marked with a

square. The regression line shows a statistically significant false

positive effect, caused primarily by the highly influential outlier

point.

The decision to drop or downweight outliers is an important

one, and the best answer depends on the nature of the data. A

central issue is whether outliers are likely to arise from some

process that the researcher might be interested in modeling (e.g.,

higher order interaction terms) or if they arise from a process that is

of little theoretical interest (e.g., data collection artifacts). If from

the former, outliers should not be dropped. Rather, the model

should be adjusted to account for them. For example, skewed, non-

normal distributions can be modeled using maximum likelihood

procedures or additional predictors, such as interactions or

polynomial terms, can be added to an OLS model. On the other

hand, if outliers are likely to arise from processes that the

researcher is uninterested in modeling, their influence should be

dampened or eliminated.

Acquisition artifacts

Various kinds of acquisition artifacts are present in fMRI

BOLD data, some of which are slice or region specific, and others
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of which are global. Changes in gradients may produce spikes at

particular time points or a range of time points. Local changes in

magnetic field inhomogeneity produce artifacts specific both in

space and time. The presence of such artifacts can influence an

individual subject’s regression parameter estimates (betas) dramat-

ically, and thus create outliers in group analyses (i.e., random

effects analyses across individual participants).

Motion artifacts

Even small movements of the head may produce large

artifacts in fMRI signals. Artifacts are local in time and space.

They are greater at the edges of the brain and around fluid space

because magnetic field homogeneity is most sensitive to

perturbations in these regions and because voxels are shifted in

and out of fluid spaces with head motion (Hutton et al., 2002;

Ward et al., 2002; Wu et al., 1997). In addition, they induce

magnetic susceptibility changes that cannot be captured by

realignment algorithms or inclusion of movement parameters in

linear statistical models (Wu et al., 1997).

Physiological noise artifacts

Heartbeat and breathing both induce pulsatile motion in the

brain, which creates artifacts in the time series directly, by

moving brain tissue with respect to the sampling grid, and

indirectly, by inducing magnetic susceptibility artifacts (Frank et

al., 1993, 2001; Kruger and Glover, 2001). Troublingly, these

artifacts may often correlated to some degree with the task

design. Although some spurious correlation can be expected by

chance, many cognitive and emotional states produce changes in

respiration. Task-correlated physiological artifact can create out-

liers in individual subjects’ regression parameter estimates, and

the magnitude of these effects varies widely across participants,

exacerbating the problem in individual differences analyses at the

group level. If there is a systematic physiological noise-induced

bias in one individual participant, they are likely to be an outlier

in the group of participants, and robust regression could prove

beneficial at the group level.

Normalization and anatomical variability artifacts

Group analyses are often performed by warping or normal-

izing each participant’s brain to a reference template, and

thereafter assuming that each voxel covers the same anatomical

brain tissue and functional brain region for each participant. If

this process fails for a particular brain region within even one

subject—or functional localization is different for that subject—

the parameter estimates for that subject can become outliers in

group analysis.

Behavioral outliers

This final category of outliers is very important, because

behavioral (X) outliers exert high leverage on the parameter

estimates (subject activation contrast scores) throughout the whole

brain. This kind of outlier may be caused by error or inaccuracy in

behavioral measurement, or because a participant is drawn from a

different population from other participants.

The present study

A successful application of robust regression to neuroimaging

should demonstrate that (1) the technique is more sensitive in brain

regions that are known to show true positive responses, (2) the
technique improves the reliability of estimates, and (3) FPRs are

reduced in regions known not to show true responses.

We address each of these in a simulation comparing several

methods of robust techniques with OLS, using parameters and

sample sizes similar to those encountered in imaging studies. We

then apply the first two of these criteria in three experiments of

real fMRI data. In each experiment, we have a priori expectations

for regions that should be active, and we perform brain-wise and

region-of-interest (ROI) analyses comparing robust IRLS and

ordinary least squares (OLS) in those regions.

Experiment 1 is a cognitive task that requires both left- and

right-handed responses in a single-trial event-related fMRI

design. We compare sensitivity of OLS and IRLS to contralateral

and ipsilateral primary motor (M1) responses in a group of

subjects (brandom-effectsQ analysis). Experiment 2 compares OLS

and IRLS random-effects analyses of brain-wise responses to

anticipation of pain. Experiment 3 employs a visual-motor

paradigm with long inter-trial intervals (ITIs, 30 s). In this

experiment, we explore the effects of using IRLS at the

individual subject level.
Methods

Linear modeling framework

Before turning to robust regression techniques, we briefly

review the general linear model (GLM). GLM finds the combina-

tion of predictors, each scaled by some value (bi), that best fits the

data. In algebraic terms, the GLM projects data ( y) in an n-

dimensional space (n independent data observations) onto a k-

dimensional model subspace (k predictors). This framework is

described by the equation:

y ¼ Xbþ e ð1Þ

where X is the n � k model matrix whose columns contain values

for the predictors, b is a k � 1 vector containing the regression

parameter estimates, y is an n � 1 vector containing the observed

data, and e is an n � 1 vector of unexplained error values. The

most common GLM technique, ordinary least squares (OLS),

defines bbest fitQ as the b
ˆ
I that minimize the sum of squared

deviations from the predicted values. This is equivalent to finding

the vector b
ˆ

of length k, which minimizes

y
t � Xb̂b

� �T

y
t � Xb̂b

� �
ð2Þ

The algebraic solution to this problem is:

b̂b ¼ XTX
� ��1

XT y: ð3Þ

Dropping outliers

The simplest procedure for removing the influence of outliers

is to drop them from the analysis altogether. One way to locate

outliers is to identify data points that are far from the mean for

each variable individually (univariate outliers). For example, data

points more than three standard deviations from the mean of each

variable could be sequentially located and removed. The weak-

ness of this approach is that, if data are multivariate, highly

influential outliers can be missed. Fig. 1B shows an example of a

univariate outlier caused by adding noise to the y value of the
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point. The noise added was drawn from a wider univariate

distribution than the rest of the data, whose 95% confidence

limits are shown by the top and bottom ends of the dotted square.

Fig. 1B also shows a multivariate outlier, or a data point that is

not an outlier for either variable individually, but that is an outlier

when the two variables are considered together. This outlier was

created by adding noise whose distribution is shows by the

dashed circle. Such data points are outliers in the sense that they

stand apart from the pattern of the majority of the data and have

a disproportionate pull on the regression line. Importantly, we

know these points are outliers in this dataset because we created

them that way—we know the process by which they were

generated—but that does not guarantee that they are the most

outlying values in the dataset. In practice, we have to guess at

which points might be outliers based on where they fall

compared to the rest of the data. Knowing the true outlier status

of points is important for validating techniques, which makes

simulation a useful tool.

A method of locating both univariate and multivariate

outliers is to employ multidimensional distance measures, such

as Mahalanobis distance. Like standardized scores, Mahalanobis

distances take into account a point’s distance from the mean of

some variable relative to that variable’s variation, but unlike

standardized scores, Mahalanobis distances also account for the

covariance between the variables. Data points that stand apart

from the data cloud have higher Mahalanobis distances than

data points that lie within the data cloud. The Mahalanobis

distance for a particular observation (subject in a group analysis)

i is:

Mi ¼ Xi �
c
X

� �T
S�1 Xi �

c
X

� �
ð4Þ

where Xi is the p � 1 vector of scores on all p variables (both

predictors and dependent variables) for the ith subject, X
�

is the

p � 1 vector of means for each variable, and S�1 is the inverse

of the p � p sample covariance matrix. A disadvantage of

dropping points that have a high Mahalanobis distance is that it

can lead to an overestimation of the degree of relationship

between variables and thus, as we show below, can inflate

FPRs.

Iteratively reweighted least squares (IRLS)

The GLM framework can be generalized to include additional

information about error variance and covariance by incorporating

a weighting matrix (W) into the model estimation. The diagonals

of W contain information about the estimated variance of the

distribution from with each individual data point was drawn, and

the off-diagonals contain information about the estimated

relationship (covariance) between the distributions from which

any two data points were drawn. In the traditional GLM

framework, the error variances associated with each data

observation are assumed to be equal, and the data are assumed

to be independent. Thus, the W matrix in traditional GLM is the

identity matrix.

The generalization of the GLM to account for correlated

variables and unequal variances is a simple extension of the

GLM. Let Q be the matrix square root of W, that is, a matrix such

thatW =QT Q. If we multiply each side of Eq. (1) by Q, applying Q

to both X and y, we obtain

Qy ¼ QXbþQe ð5Þ
The best linear estimator of b in terms of Qy in the least-square

sense is

b̂b ¼ QXð ÞTQX
� ��1

QXð ÞTQy

¼ XTQTQX
� ��1

XTQTQy

¼ XTWX
� ��1

XTWy ð6Þ

In weighted least squares, the reciprocal of estimates of the

variability of each data point (1/r2
i ) are placed on the diagonals of

W, and the off-diagonals are zero (signifying independence of

errors). When the model is estimated, the observations with the

highest error variance are given the least weight in determining the

regression parameters.

An important extension of weighted least squares is the iterative

reweighted least squares (IRLS) algorithm. IRLS is particularly

useful in massively univariate settings because it does not require a

priori knowledge of the variability of data points and because it can

be accomplished using an automated and efficient algorithm. The

IRLS procedure works as follows:

(1) The researcher chooses a weighting scheme that down-

weights residuals as they become larger according to some

function. The bisquare and Huber are two common weighting

schemes, and they are shown in Fig. 1C. The bisquare reduces the

influence of all points as their residuals grow, while the Huber

down-weights only those points that pass some threshold (defined

by a tuning constant). Bisquare weighting schemes tend to down-

weight more aggressively, and thus have slightly more power in the

context of outliers but also slightly inflated FPRs relative to the

Huber.

(2) The algorithm initially performs OLS regression (i.e., where

the W matrix is an identity matrix) to obtain initial b̂. In addition,

an adjustment factor for the residuals is calculated as 1/sqrt(1�h),

where h is a vector containing leverages for each observation.

Leverages are the diagonals of the bhat matrixQ H, where H = X(XT

X)�1 XT. The higher the leverage, the more influence the

observation has on the regression plane—which means its residual

value will be an underestimate of the true value, because it pulls the

regression plane closer to it. Another way of saying this is that

even if errors are normally distributed with equal variance, e ~

N(0,r2), residuals will have variance inversely proportional to the

leverage, ê ~ N(0, I�H). Thus, high-leverage points tend to have

low residual values, and they will tend to dominate the robust

regression fit if not accounted for. This adjustment factor will be

used to correct residual values below. Note that only the x

(predictor) component of Mahalanobis distances contribute to high

leverage, as leverage is purely a function of the design matrix X.

(3) Residuals (ê) are obtained by subtracting the fitted response

from the data according to the formula ê = y � X b̂ . Residuals are

standardized by their median absolute deviation (MAD), an outlier-

robust estimation of spread. They are then multiplied by the

adjustment factor from the previous step, which inflates the error

estimates for high-leverage points (so that they are subsequently

downweighted). Finally, the residuals are multiplied by the

weighting function, which generally downweights very high error

values disproportionately, to obtain new weights for the observa-

tions. These weights are placed on the diagonal of the W matrix.

The lower the weight given to an observation, the less influence it

has on the subsequent regression fit.
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(4) The regression is rerun using the new W matrix, according

to Eq. (6). Steps 3 and 4 are iterated until the fit statistics converge.

Convergence in the Matlab 6.5 (Mathworks, Natwick, MA)

algorithm we used in this paper is defined as a change in

successive iterations less than the square root of the maximum

numerical precision available (e.g., 1 � 10�8).

Inferential statistics for IRLS procedures have not been fully

developed. Results for large samples have been obtained

(Hoaglin et al., 1985), but these results may not apply when

outliers are present. Therefore, it has been suggested that

bootstrapping is the preferred method if inference is desired

when using IRLS (Neter et al., 1996), but such an approach

defeats the primary advantage of its computational efficiency. An

alternative has been presented by DuMouchel and O’Brien

(1989) based on principles in Huber (1981), which shrinks the

robust error variance toward the OLS error variance if the latter

is greater. One purpose of the present paper is to use simulations

to understand the validity of inferential statistics from IRLS using

this method under conditions commonly encountered in neuro-

imaging studies.

In summary, robust regression techniques that use the gener-

alized least squares (GLS) framework, such as IRLS, incorporate a

weighting matrix into the statistical estimation so that some points

have less influence on estimates of the regression parameters. An

additional advantage is that the same GLS framework is used to

account for autocorrelation (e.g., in fMRI time series) and

covariance of parameter estimates, which are incorporated in

recent versions of statistical software for neuroimaging analysis

(e.g., SPM2, FSL). Thus, robust estimation can easily be

incorporated into a sophisticated individual subject analysis.

However, robust group analysis can proceed whether or not IRLS

is incorporated into the individual subjects’ analysis, by entering

from any imaging statistics software into a robust drandom-effectsT
analysis.

Other techniques

Other common robust techniques include least median of squares

(LMS) regression, least absolute deviations (LAD) regression, least

trimmed squares (LTS) regression, and minimum covariance

determinant (MCD) estimation. LMS and LAD are early robust

techniques and minimize alternative error measures to the sums of

squared deviationmeasure used in OLS. LMSminimizes themedian

of the squared residuals rather than the sum of the square residuals,

and therefore outlying values have very little influence on the fit.

LTS regression minimizes a central portion (specified by the analyst,

with a default of 75% of the observations) of the squared deviations.

For LTS, LMS, and LAD, bootstrapping is commonly used if

inference is desired (Neter et al., 1996). This is a large drawback in

massively univariate settings because of the time necessary to

bootstrap large numbers of analyses.

MCD is a more recent technique that determines multivariate

outliers with a specified breakdown point using an iterative

strategy (Hubert, 2001). The idea of MCD is to minimize the

determinant of the covariance matrix of the central f points. Thus,

the technique essentially finds the set of f points that are most

multidimensionally co-planar. The primary disadvantage to MCD

in the context of numerous analyses is that it can be hundreds of

times slower than IRLS. Our initial simulations compared MCD

and IRLS, but we found that the false positive rate in MCD was

inflated substantially with small numbers of observations (which

may be expected; see (Hubert et al., 2004).
Simulation: comparing regression methods

We performed regressions on simulated data to determine the

power and false positive rates across a range of parameters relevant

to neuroimaging experiments.

Data generation

We generated data to simulate participants’ contrast values

(both slopes and intercepts) in one brain region, although the data

can be generalized to any bivariate data setting. The intercept

parameter corresponds to the one-sample t test on brain activity in

a voxel across subjects. The slope parameter corresponds to the

simple regression of activation contrast on a behavioral index (e.g.,

performance).

Data were pairs of random vectors (x and y) drawn from

standard normal distributions (x̄ = 0, r2 = 1), or N(0, 1). We

adjusted these vectors in two ways in order to obtain FPR and

power statistics for both slope and intercept estimation. To simulate

bactivationQ alternative hypothesis (Ha) data, we added a constant

to the data, so that it was distributed N(.5, 1). We also set the

covariance between x and y to be either 0 (for H0 data) or 0.5 (for

Ha data). Thus, for Ha data, the correlation explained 25% of the

variance in y (Cohen’s d = 0.25) and the intercept explained 50%

of the variance in y (Cohen’s d = 0.5). These numbers were chosen

as reasonable approximations of typical effect sizes in imaging data

analysis. We varied the number of observations (n) per sample

between 5 and 40. For each combination of parameters, we

regressed y on x in the general linear model 2000 times.

FPRs for the slope parameter were estimated by the proportion

of 10,000 H0 datasets that showed significant positive or negative

regression slopes at P b 0.05, two-sided. Similarly, FPRs for the

intercept parameter were estimated by the proportion of 10,000 H0

datasets that showed significant non-zero intercepts at P b 0.05.

Power rates for both slopes and intercepts were estimated as the

proportion of 10,000 Ha datasets whose parameters were signifi-

cant in the expected (positive) direction.

Outlier generation

We simulated the effects of both univariate and multivariate

outliers in the data. To introduce univariate outliers in y values, we

added additional Gaussian noise with a larger standard deviation

(r = 3) to a specified proportion ( q = 0.1) of the y values. We

performed additional simulations using a range of different sizes of

outliers (r = 3 to 10) and proportions of outliers ( q = 0.05 to 0.20),

but these did not change the pattern of results and so we do not

report on these additional analyses. To introduce outliers in the

multivariate setting, we drew outliers from a bivariate normal

distribution with greater variance (r = 3) in x and y.

Regression models

In our simulations, we compare five types of regression model.

The first is ordinary least squares (OLS). We also modeled two

simple approaches to robust regression: dropping data points that

are likely to be outliers and then running OLS on the remaining

data. The univariate trimming approach (Univar) excludes data

points that are more than 3 standard deviations from the mean on y.

As Mahalanobis distances approximately follow a v2 distribution

(Neter et al., 1996; Rocke and Woodruff, 1996), multivariate

outlier trimming (Mahal) consisted of removing observations with

Mahalanobis values greater than 5.99 (P b 0.05 on the v2

distribution for df = 2).
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The final two robust regression methods we employed were

robust IRLS models using either the bisquare or the Huber

weighting functions.

Experimental paradigms

Experiment 1: cognitive/motor activity

In Experiment 1, eleven participants performed a cognitive task

in which they were required to respond with a single button-press

using either the right or the left thumb. Participants were asked to

match a center stimulus with a corresponding flanker. On each trial,

two flankers, a yellow square and a blue square, appeared at the

sides of the screen. A central stimulus—either a yellow or blue

square, one of two abstract shapes, or a shape overlaying a yellow

or blue square—appeared at the same time. When colored squares

only appeared (Color), participants located the like-colored flanker

and pressed the corresponding thumb. Participants learned that one

shape was the bblueQ shape, and one was the byellowQ shape (both
shapes appeared in white). When shapes appeared (Shape), the

participants matched shape form to the flanker with the corre-

sponding color association. When the center stimulus consisted of

shapes over colored squares (Shape Mixed), participants matched

shape to flanker color, and ignored the central colored square. The

central colored square could be congruent with the correct

response, in the sense that it matched the color of the square on

the correct side of the screen (Congruent) or it could be

incongruent (Incongruent). Thus, there were eight trial types:

Color only, Shape only, Shape Congruent, and Shape Incongruent

crossed with R and L motor response.

40-s long blocks of tasks (Color, Shape, and Shape Mixed)

were cued and presented in pseudorandom order. Each block

consisted of four trials spaced 10-s apart, and the trial orders were

counterbalanced up to 2 trials back, to ensure even transitional

probabilities among trials and prevent trial dependencies from

causing artifacts in estimated HRF shapes.

Our analysis in the context of the present report focuses on

primary motor cortex. Contiguous voxels showing strong lateral-

ized (L thumb N R thumb in the R hemisphere, and vice versa for

the L hemisphere) responses in a group random-effects analysis

were masked with the gray-matter precentral sulcus region from

the ICBM labeled template (Kochunov et al., 2002; Mazziotta et

al., 2001). Data were extracted from R and L motor ROIs. Our

analysis examines individual subject parameter estimates for each

of the eight trial types for outliers, and compares OLS and IRLS

random-effects analysis for each ROI.

Spiral-out gradient echo images were collected on a GE 3T

fMRI scanner (Noll et al., 1995) with 3.75 � 3.75 � 7 mm voxels,

TR = 1 s, TE = 25 ms, flip angle = 90, FOV = 24 cm. 16 slices

provided near whole-brain coverage.

Experiment 2: pain

Participants (n = 23) were given visual cues signaling

upcoming thermal pain stimulation on the left forearm. After a

variable anticipation period (1–16 s, mean = 9 s), a 20-s thermal

stimulus was delivered. The stimulus was calibrated to be

moderately painful for each participant, and included a 1.5 s

ramp-up period, a 17-s plateau period, and a 1.5-s ramp-down

period. Participants were cued to report the intensity of pain after a

variable interval following stimulation offset.

Regressors for anticipation and pain were dummy coded

predictors of responses to the 4 s following the anticipation cue
and the last 10 s of painful stimulation, corresponding to the

subjectively most painful portion of the stimulus. Additional

anticipation, pain, and pain reporting periods were modeled

simultaneouslywith these; theywere not collinear with the predictors

we report here, and they are not discussed further in this report.

Spiral-out gradient echo images were collected on a GE 3T

fMRI scanner (Noll et al., 1995) with 3.75 � 3.75 � 5 mm voxels,

TR = 1.5 s, TE = 25 ms, flip angle = 90, FOV = 24 cm. 25 slices

provided near whole-brain coverage.

Experiment 3: visual/motor HRF estimation

In this experiment 10 participants performed two visual-motor

tasks in which they observed contrast-reversing checkerboards (16

Hz) and made manual button-press responses. In the first task

(localizer), 16-s blocks of unilateral contrast-reversing checker-

boards were presented in alternating left (L) and right (R) order.

Subjects made motor responses continuously with the index and

middle fingers of the ipsilateral hand. Results were used to localize

primary visual and motor cortices in each hemisphere for each

subject (contiguous voxels on the precentral gyrus or in the

calcarine fissure at t N 3.5), and data from the main task (below)

was analyzed in each of these four ROIs.

The main task consisted of eight functional runs of visual/motor

stimuli. In each run, a series of brief contrast-reversing checker-

board stimuli (250 ms stimulus duration) separated by a 1-s

stimulus-onset asynchrony (SOA) were observed by participants.

Stimuli were as close to full-field as the stimulus-presentation

system allowed (approximately 30 degrees of visual angle).

Participants were instructed to press the index and middle fingers

of both hands together each time they saw a checkerboard

stimulus. Each stimulus series consisted of either 1, 2, 5, 6, 10,

or 11 stimuli separated by 1 s, followed by 30 s of rest. The order

of the 6 series types (i.e., series of 1, 2, 5, 6, 10, or 11 stimuli) was

counterbalanced across runs, and 2 trials of each train length were

presented in each run, for a total of 16 trials per series length for

each participant.

Spiral-out gradient echo images were collected on a GE 3T fMRI

scanner (Noll et al., 1995). Seven oblique slices were collected

through visual and motor cortex, 3.12� 3.12� 5 mm voxels, TR =

0.5 s, TE = 25 ms, flip angle = 90, FOV = 20 cm. We extracted

hemodynamic response estimates (HRFs) for each stimulus series

length in each participant in each of the four ROIs using an

unsmoothed finite impulse response (FIR) model. Our first analysis

compared linear model fits of the canonical SPMHRF (Friston et al.,

1995) composed of two gamma functions, to ROI timecourses using

OLS and IRLS. Our second analysis compared FIR-derived HRF

estimates derived with OLS and IRLS using a split-half (odd runs vs.

even runs) reliability metric for consistency across HRF shapes

within stimulus length, participant, and brain region.

Comparison of t values

To compare t scores for ordinary and robust voxel-wise

estimates, we used a z test to compare z-transformed differences

between t scores for IRLS and OLS at each voxel. An estimate of

P values was performed by first transforming differences of t

scores to z scores according to the formula:

f ¼ tIRLS � tOLSffiffiffiffiffiffiffiffiffiffiffiffiffi
2r2

t dfð Þ

q ð7Þ
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where r2
t(df) is the variance of the t distribution with n�1 degrees

of freedom. For purposes of testing and display, we thresholded

images at ~ N 1.64, corresponding to P b 0.1. Simulations

confirmed that ~ is asymptotically approximately normally

distributed with large n, but is somewhat conservative with low

n (P values were 1.7� too high in simulations with 10 df, but

correct with n = 40.) We chose this method over P value based t to

z transformations because of the numerical inaccuracy of the latter

in the tails of the distribution (e.g., that employed by SPM; http://

www.fil.ion.ucl.ac.uk/spm/). Importantly, Eq. (7) strictly holds

only for independent t statistics; however, our t scores were

calculated on the same data, and are therefore dependent. For

positive dependence, as we have here, the variance of the

difference between t values will be overestimated, and the test is

quite overconservative. However, we do not intend to use this to

establish a strict inferential test for when robust methods are

bsignificantly more reliable,Q but rather as a guideline for

interpreting results.
Results

Simulation: comparing regression methods

We compared FPR and experimental power for five regression

techniques: OLS, IRLS with bisquare and Huber weighting

functions, univariate outlier removal (Univ), and multivariate

outlier removal (Mahal). Fig. 2 shows the results of simulations

for all n (5, 10, 15, 25, 40) at q = 0.1, m = 3, and t = 3 for the

intercept term (i.e., detecting activations in a random effects

analysis), where q is the proportion of outliers, m is the standard

deviation of the outlier noise distribution, and t is the threshold for

univariate outlier removal. The first column (2A) shows results for

normally distributed data with no outliers. The second column (2B)

shows results with univariate ( y) outliers. The third column (2C)

shows results with multivariate outliers. The x axis of each graph

increases with increasing n. The y axis of the top panel shows

observed FPRs at a = 0.05; thus, FPRs above 0.05 are inflated. The

y axis of the bottom panel shows observed power given the effect

sizes described earlier. Fig. 3 shows the same data for the slope

term.

With well-behaved data with no outliers, FPR was essentially

appropriately controlled for all methods except for a slight inflation

for the Mahal method (green triangles), which increases with n (top

panel, Fig. 2A) and a very slight increase in FPR for IRLS with

low n. When no outliers are present, the power is virtually

equivalent for all methods (bottom panel, Fig. 2A). The same

patterns of FPRs and power can be observed for the regression

slope (Fig. 3A). These results are important because they signify

that, compared to OLS, there are no disadvantages for three of the

four robust techniques in FPRs or in power when outliers are

absent.

If univariate outliers are present, FPRs remains appropriate and

essentially unchanged for all methods, again showing a slight

increase (anticonservative) for Mahal relative to other methods

(Fig. 2B) and a slight conservativeness for IRLS and OLS.

However, power is dramatically reduced for OLS regression (blue

circles). (No difference is observed for n = 5 because no outliers

are present for n = 5 and q = 0.1.) The power increases with IRLS

are striking in that they are not accompanied by concomitant

increases in FPR; power can always be achieved at the expense of
validity. Univ (cyan stars) is the most powerful method and Mahal

is slightly less powerful. The IRLS techniques (red squares and

black dashed lines) offer a substantial improvement over OLS. The

benefit of using IRLS increases with larger n and converges with

Mahal at n = 40. The reason for this is that larger sample sizes

afford a better estimate of which points are truly outliers, and allow

the IRLS weighting to work with greater efficiency. The same

pattern holds for slope estimates (Fig. 3B). While Univ may seem

appealing according to these simulations, it is important to

remember that the true outlier standard deviation (m = 3) and the

cutoff for removing outliers are the same, which could artificially

inflate power with this method.

If multivariate outliers are present (e.g., outliers in brain

activation and in behavioral covariates), FPR is controlled roughly

appropriately for the intercept (Fig. 2C), with a slight increase for

Mahal. Observed power is also highest for Mahal, with Univ and

IRLS offering similar improvement over OLS, with the benefit

increasing as n increases. The benefit of Mahal here can be

understood intuitively by recalling that multivariate outliers are

often not univariate outliers, and so are not detected.

The results for the slope parameter (Fig. 3C) were quite

different than the results for the intercept parameter. No technique

except Mahal came close to controlling the FPR. For every

technique except Mahal, FPR was ~0.125 for n = 5, higher than the

nominal 0.05 rate, and generally increased with n. IRLS and Univ

techniques attenuate this problem, but do not correct it. Power was

highest for bisquare IRLS, slightly lower for Mahal and Huber, and

substantially lower for OLS and Univ. This result shows that

outliers in the brain-behavioral (bivariate) space can exert a

powerful, meaningful influence on brain-behavior correlation

estimates, and FPR is not properly controlled if there are high-

leverage, outlying points in the behavioral data. Most importantly,

the default regression method, OLS, performs the worst in terms of

both power and FPRs, and thus use of some kind of robust

technique seems necessary when multivariate outliers are likely to

exist in the data.

We observed the same pattern of results across variations in q

and m. However, if outliers are trimmed at t = 2 standard

deviations rather than 3, the FPR increased substantially for

outlier removal methods, suggesting that t = 2 is not an

appropriate threshold. This is an important point because heavier

trimming may seem intuitively appealing to some investigators.

Overall, the simulations suggest that IRLS techniques offer a

compromise between OLS and all-or-none outlier removal.

Though our simulations compare power and FPR at a nominal

alpha threshold of 0.05, we expect the results to hold for much

lower alpha levels (e.g., P b 0.001) and for corrected P values;

however, we do not simulate at these levels here because the

simulation accuracy decreases as the cutoff point becomes more

extreme (thus, very many more iterations would need to be run).

Applications to fMRI data

The simulations performed above seem to indicate that robust

techniques may be important in limiting false positives and in

maximizing power when outliers are present, but that they perform

about as well as OLS when outliers are absent. It is important to

understand how robust techniques perform on real data. We

explore IRLS techniques as applied to real fMRI data in three

experiments that have well-defined a priori regions of interest

within which to investigate results. For brevity, we restrict the
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Fig. 2. Simulated false positive rates and power under different outlier conditions, and with different regression methods, for estimation of the regression

intercept (overall activation in an imaging context). (A) The left column shows results for normally distributed noise without (top) and with (bottom) a true

signal. (B) The middle column shows results with univariate outliers in the data. (C) The right column shows results with multivariate outliers in both the

predictor and the data, as in Fig. 1A. Univariate outlier removal offers the best if univariate outliers are present, but is poor in the presence of multivariate

outliers. Multivariate outlier removal is best for multivariate outliers, but increase false positive rates under normal conditions. The IRLS techniques offer an

intermediate solution, providing gains in power that increase with sample size (n, x axis) while controlling false positive rates. Error bars show standard errors

of the means across 10 replications of the simulations.
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comparison below to OLS and two robust techniques—IRLS using

the bisquare weighting function (referred to simply as IRLS below)

and the dropping of univariate outliers that are F3 standard

deviations from the mean on the dependent variables (Univ). We

focus on IRLS using the bisquare weighting scheme because it had

almost the exact same FPR as the Huber weighting scheme but had

slightly more power in the simulations, and we focus on the

dropping of univariate outliers because it tended to have lower FPR

but comparable power to the dropping of outliers based on

Mahalanobis distance.

Experiment 1: motor responses

Experiment 1 compared IRLS and Univ with OLS in two

regions that are expected to show strong motor responses. By

isolating regions of interest where we have a strong a priori

expectation of activity (Figs. 4A and B, first panel), we can infer

that higher t scores reflect increased power rather than increased

FPR. In four conditions in this experiment (1–4 on the x axis of

Fig. 4; see Methods), responses were made with the right thumb. In

the remaining four conditions (5–8), responses were made with the

left thumb. Significant activation in right and left motor cortices
was found for both contralateral and ipsilateral responses, with

much higher t scores for contralateral responses, as expected (Figs.

4A and B, second and fourth panels).

In the second panel of Fig. 4, mean BOLD contrast is shown for

each condition, with individual participants’ values in each

condition shown by symbols. In a number of cases, some individual

participants were potential univariate outliers (z N 1.96, circled in

red). The third panel shows t scores for OLS (black bars), IRLS (gray

bars), and Univ (white bars). Because none of the potential outliers

reached z z 3, Univ and OLS results are identical.

In most cases, IRLS resulted in a small reduction in t scores, as

down-weighting observations effectively reduces the variance of

the predictors and the data (this kind of variance is advantageous).

Another way to think of this might be as a reduction in the effective

degrees of freedom in the robust test. However, in some cases,

IRLS resulted in a significant improvement in reliability (P b 0.05

by z test). This happened when one or more outliers fell below the

central mass of observations, thus increasing the standard error and

decreasing the estimated response. Outliers above the central mass

increase both the estimate and the standard error, resulting in little

net difference in t values. Notably, this case is one that should,



Fig. 3. Simulated false positive rates and power for estimation of the regression slope (correlation with behavior in an imaging context). A–C are as in Fig. 2.

False positive rates are high in the presence of multivariate outliers, but are reduced somewhat by robust methods. Univariate outlier removal is best if only

univariate outliers exist, but is poor if there are multivariate outliers. IRLS offers increased in the presence of both univariate and multivariate outliers, with

improved or equivalent control of false positive rates.
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according to the simulations, offer the least advantage of IRLS: We

were estimating intercept terms with n = 10 (small sample size).

Experiment 2: pain

Fig. 5A shows responses to a foveal visual cue signaling

upcoming pain. The left and middle columns show random-effects

activations (n = 22, P b 0.001) for OLS (left column) and IRLS

(middle column). T-maps are superimposed on slices of a canonical

brain, and slices were picked that showed the maximal difference

between OLS and IRLS, unbiased with respect to the direction of

the difference. Red-yellow indicates activation and green-blue

indicates deactivation.

The right hemisphere shows reduced activation with OLS

activation, whereas the expected bilateral activation is detected

with IRLS. In addition, right anterior prefrontal cortex and ventral

striatum is detected with IRLS, and this activation is expected from

previous studies of anticipation of pain and aversive events

(Becerra et al., 2001; Jensen et al., 2003; Ploghaus et al., 1999;

Porro et al., 2002).

The right panel shows z scores for the difference in t scores for

IRLS-OLS. Red indicates significantly more positive t values for

IRLS, and green indicates significantly more negative t values for

IRLS. Activated regions discussed above showed significant
increases in reliability for IRLS. Posterior cingulate, deactivated

with both OLS and IRLS, is significantly more deactivated with

IRLS. This deactivation is expected, as this region is commonly

deactivated in attention-demanding tasks (Gusnard and Raichle,

2001; Raichle et al., 2001). These results illustrate that IRLS can

produce qualitative changes in activated regions—depending, of

course, on the threshold used—in biologically meaningful brain

regions.

Fig. 5B shows responses during pain. As expected from

previous studies, bilateral SII (superior posterior insula), anterior

insula, anterior cingulate, and anterior PFC were activated, and

posterior cingulate was deactivated (Becerra et al., 2001; Davis et

al., 1998; Peyron et al., 2002; Ploghaus et al., 1999; Schneider et

al., 2001). Activations in right (contralateral to stimulation) SII,

anterior insula, and anterior PFC showed more reliable activation

with IRLS, and posterior cingulate bilaterally showed more reliable

deactivation.

Experiment 3: visual/motor responses

This experiment investigated the effects of using robust

regression on fitting time series data at the individual participant

level. Our prediction was that when outliers were present in the

time series, robust IRLS would result in higher t values and greater



Fig. 4. Experiment 1. (A) Right motor ROI. Panel 2 shows contrast values with standard error bars for each trial type. Individual subjects are plotted with

symbols, and those with z scores N1.96 (potential outliers) are marked in red. Conditions 1–4 required ipsilateral (R) responses, and conditions 5–8 required

contralateral (L) responses. Panel 3 shows t values for ordinary (OLS), robust (IRLS), and univariate outlier removal (Univar). T**P b 0.001 (two tailed) in a z

test between the robust method and OLS. Panel 4 shows L motor responses (dashed lines, conditions 1–4 in Panel 2) and R motor responses (solid lines,

conditions 5–8). (B) Results for left motor cortex, as in A.
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reliability of HRFs for individual participants. Higher t values can

be used as a measure of sensitivity only in a priori ROIs in which

we can be confident of a true positive activation; thus, we used

individually defined, primary sensory and motor ROIs that are

known to be activated by sensorimotor tasks. The estimated HRFs,

shown in Fig. 6, were highly consistent across participants (Fig.

6A), and extremely consistent across ROIs (Fig. 6B), and are very

similar to the canonical SPM HRF.

Fig. 7 shows results for one region (left visual cortex)

comparing IRLS to OLS results using the canonical SPM HRF.

Other regions, not shown for space reasons, produced similar

results. Black bars indicate OLS t values for each stimulus type

for each participant, white bars indicate IRLS t values, and dark

gray bars show the overlap. Thus, white bars appearing above

dark gray bars indicate higher t values for IRLS, and black bars

appearing above gray bars indicate higher t values for OLS. Two

participants (P4 and P12) showed very strong benefits of IRLS

estimation across conditions, indicating that activation to visual

stimulation in left visual cortex was much more reliable with

IRLS estimation. Three participants (P1, P5, and P11) showed

smaller but appreciable improvements with IRLS. (Each unit

change in t value signifies an approximately 10-fold decrease in P

value, as a rough guide). No participants showed systematic

benefits for OLS.
Second, we used a finite impulse response model (FIR) in the

GLM framework to determine HRFs for each participant in each

region � stimulus type combination. For each HRF, odd runs were

used to calculate one HRF, and even runs were used to calculate

another, with both OLS and IRLS estimation methods. We then

correlated the two HRF estimates for odd and even runs to derive a

split-half reliability, and compared reliability for OLS and IRLS.

Across participants, robust IRLS resulted in significantly higher

reliability scores for short stimulus trains (1 stimulus, t(10) = 2.07,

P b 0.05; 3 stimuli, t(10) = 2.33, P b 0.05), and never resulted in

significantly lower reliability scores. Fig. 8 summarizes these

reliability estimates. The blue bars show a histogram of reliability

differences between IRLS and OLS for all stimulus types. Red bars

show reliability differences for one-stimulus trains only.

Most reliability scores were quite similar for IRLS and OLS, as

shown by the top left inset. In the inset, the left and right panels

show HRF estimates for one participant in one brain region. Solid

lines are from odd runs, and dashed lines are from even runs. In

this inset, HRFs look very similar for both regression methods.

However, for some cases, outliers in the time series exert strong

influences on HRF estimates, resulting in a lower reliability score

for OLS estimates. The bottom and right insets of Fig. 8 show two

examples, corresponding to values in the difference histogram of

approximately 0.58 and 1.02, respectively. Values can exceed 1



Fig. 5. Experiment 2. Results from ordinary least squares (OLS, left

column) and robust IRLS (middle column) during anticipation and

experience of pain relative to a fixation baseline. The first two columns

show t maps thresholded at P b 0.001, with positive activations in red/

yellow and deactivations in green/blue. The third column shows z scores for

the difference in reliability for IRLS-OLS, thresholded at P b 0.10 (two-

tailed). Voxels in which IRLS produced significantly greater statistical

significance by a z test are shown in red; those in which OLS produced

more significant results are shown in green. Slices were selected in an

unbiased manner by choosing the slice with the greatest overall difference

between OLS and IRLS, irrespective of direction. (A) Tow row: early

anticipation of pain, after receiving a warning cue. IRLS revealed more

reliable activation in the right occipital cortex, showing bilateral activation,

whereas OLS activation was largely left-lateralized, and greater reliability

in ventral striatum, expected during pain anticipation. Second row: late

anticipation. Right anterior prefrontal cortex (aPFC) shows more positive

results with IRLS, and posterior cingulate shows more reliable deactivation.

(B) Top row: thermal pain (20 s duration) applied to left forearm, early (0–

10 s) phase. IRLS shows more reliable activity in contralateral SII and

anterior PFC. Second row: pain, late (10–20 s) phase. IRLS shows more

reliable activity in posterior (SII) and anterior insula and PFC, and more

reliable deactivation in posterior cingulate. Deactivation is estimated to be

unilateral with OLS and bilateral with IRLS.
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slightly if the reliability estimate for IRLS is near 1, but the

reliability estimate for OLS is negative (true reliability should

never be negative, but estimates can be negative). For example, a

reliability estimate of 0.99 for IRLS and �0.05 for OLS would

yield a difference of 1.04; this occurred for two cases. As the inset

figures show, IRLS minimized artifactual spikes in HRF estimates

in these cases. IRLS never resulted in substantially lower reliability

scores (the maximum decrease was less than r = 0.10 over 640

estimates).
Discussion

The results from both simulations and experimental data

demonstrate that robust estimation methods can offer substantial

benefits in neuroimaging analyses. Robust techniques are well

suited for cases in which artifactual outliers may exist in the data,

and automated robust techniques, such as IRLS, offer substantial

improvements when each regression analysis cannot be individu-

ally checked for violations of assumptions. Both situations are true

of neuroimaging data. Outliers in time series data can be caused by

gradient changes, transient susceptibility, and motion-related

effects in neuroimaging, and outliers in group data can be caused

by time series outliers and by anatomical and functional variability

among individuals.

IRLS, false positives, and power

IRLS is a computationally efficient robust estimation technique

that can be employed when investigators need to run a large

number of separate regression analyses. The primary advantage of

IRLS, demonstrated in both simulation data and in actual

experimental data, is that it substantially increases power in the

presence of outliers. The advantage of IRLS is evident at all sample

sizes and increases as sample sizes increase. Our simulations

demonstrate that even with a relatively large sample size (n = 40 is

currently considered large for neuroimaging experiments), a small

number of outliers can create large reductions in experimental

power. Robust estimators can effectively minimize problems

created by influential outliers.

In our simulations, IRLS controlled FPRs at the same level as

OLS or better. A potential misconception is that IRLS capitalizes

on chance by down-weighting observations that do not fit the

model and thereby increases FPRs. However, IRLS essentially

down-weights observations that do not fit the central mass of the

data, not those that do not fit the hypothesis. Thus, under the null

hypothesis, IRLS is equally likely to down-weight data that favor

the alternative hypothesis in either positive or negative tails of the

distribution, resulting in a zero net bias. However, particularly with

small samples, a large proportion of the observations can be co-

planar by chance, resulting in down-weighting of observations

favoring the null hypothesis and broadening of the tails of the

distribution (more false positives in both positive and negative

directions; Hubert et al., 2004). We observed this problem when we

used MCD outlier estimation; however, IRLS may be more

effective because it (a) offers a dsofterT weighting approach than

trimming, decreasing the impact of chance co-planarity, and (b)

uses an error variance estimate that is adjusted towards the OLS

value, if the OLS error variance is greater. Our simulations bear out

the validity of P values obtained with this technique. Thus, IRLS

tends not to increase FPR in either the presence or absence of



Fig. 6. (A) Hemodynamic response function (HRF) estimates for each participant, averaged across four visual and motor regions of interest, for a series of 3

visual/motor responses spaced 1 s apart. (B) HRF estimates for each region, averaged across participants. Other series lengths showed similar consistency,

although consistency was noticeably lower for 1-stimulus series.

T.D. Wager et al. / NeuroImage 26 (2005) 99–113110
outliers, which means that P values obtained from IRLS can be

used with confidence and can be interpreted in the same way that

they are interpreted when using OLS.

The only exception to the non-inflation of FPRs when using

IRLS occurs when multivariate outliers are present in the data,

such as might occur when response variables (e.g., fMRI data) are

regressed on continuous predictors (e.g., behavioral performance
Fig. 7. Experiment 3. Results comparing ordinary least squares (OLS) to rob

participants’ time series. The data were taken from a left-hemisphere visual regio

independent task. Bars show the average t value across participants, and error bars s

pass filtered, voxel-averaged time series data. Linear models constructed by convo

model) were fit to time series data. The stimuli were contrast-reversing checkerboa

11 consecutive stimuli, separated by 30 s of rest. Robust IRLS shows an advanta
data). In this case, FPRs with all techniques, including IRLS, can

be much higher than expected. Our recommendation in this case is

to carefully check for the presence of outliers in behavioral data, as

these problems occur when data are outliers in the behavioral

predictor and in brain data.

The simulations show that FPR and power do not always

directly trade off across regression techniques—a technique may
ust iteratively reweighted least squares (IRLS) performed on individual

n on the cuneate gyrus defined in each individual participant based on an

how the standard error across participants. Analysis was conducted on high-

lving the canonical HRF with stimulus onset functions (e.g., a typical SPM

rds (16 Hz, 250 ms duration) occurring every 1 s in trains of 1, 2, 5, 6, 10, or

ge over OLS for each of the six independent contrasts.



Fig. 8. Frequency histogram showing the difference in HRF estimation reliability for IRLS-OLS. Reliability for each analysis was computed as the correlation

between estimated HRF shapes for odd and even runs. Positive reliability differences indicate better reliability for IRLS. Frequencies for all 6 stimulation

lengths combined are shown in blue, and those for 1 s stimulation only are overlaid in red. Inset 1 shows typical HRF estimates for one subject, in which OLS

and robust estimates were very similar. Solid lines are from odd runs (1, 3, 5), and dashed lines are from even runs (2, 4, 6). Insets 2 and 3 show cases in which

IRLS produced much higher reliability scores due to transient artifacts that influence the OLS estimates.
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have both low FPR and high power. This idea may be counter-

intuitive, in that within a given technique, lowering the alpha level

always increases power. However, this same relationship does not

hold when comparing across different statistical techniques, as the

validity and sensitivity of a technique are functions of different

aspects of the fit between technique and data.

To drop, or not to drop?

The simulation results show that power is maximized when

outliers are dropped according to the same criteria used in creating

outliers. Dropping data points based on Mahalanobis distance

maximizes power in the presence of multivariate outliers and

dropping data points based on z scores maximizes power in the

presence of univariate outliers. However, if the distribution from

which outliers are drawn does not match the technique used to drop

outliers, dropping outliers are much less powerful.

More troublingly, outlier removal techniques can substantially

elevate FPRs. For overall activation (when considering the

intercept term), Mahal led to unacceptably high FPR levels. When

considering the regression slope, dropping univariate outliers

produced comparable FPRs to the other techniques assessed and

thus offers no advantage over these techniques. However, dropping

data points based on Mahalanobis distance produced mixed results.

It was the only technique to substantially inflate FPR in the
presence of univariate outliers, but was also the only technique that

produced FPRs close to the nominal value of 0.05 in the presence

of multivariate outliers.

The mixed results of FPRs for Mahal are inherent to the way

that the technique removes points that do not fit the pattern of the

data. When no true pattern exists (in H0 datasets), this technique

tends to capitalize on chance patterns and thus inflates FPRs. This

represents a major drawback to removal of points based on

Mahalanobis distance. However, when multivariate outliers are

present in the data, other techniques tend to be overly influenced

by multivariate outliers (thus inflating FPRs), while Mahal

recognizes these points as aberrant and removes them.

An alternative to dropping outliers is to Windsorize them, or to

adjust values whose absolute distance from the mean is above a

certain limit (e.g., 3 standard deviations) down to the limit. While

this is a potentially useful technique in the univariate family, with

many of the same advantages and disadvantages as Univ, we do not

explore it further here.

Robust technique recommendations

One important problem with removing or down-weighting

observations that appear to be outliers is that, as extreme values,

those points are the most informative ones in the sample and have

the most ability to support or disconfirm a model. On the other
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hand, many brain researchers are interested in characteristics of

typical representatives of a population, and individual outlying

scores may arise from a number of theoretically uninteresting

factors. Individuals may have abnormal vascular responses (due,

e.g., to hypertension), abnormal BOLD responses due to high

hematocrit levels, sleepiness, breath-holding, or use of caffeine or

other drugs. How should we deal with observations that appear to

come from a different distribution than the others?

OLS weights each observation equally, but because squared

deviations are minimized, data points that are most uncharacteristic

of the rest of the data have the most influence. This is highly

undesirable when artifactual outliers are likely to exist in the data.

On the other hand, dropping outliers completely removes all

influence of those observations that do not fit the pattern of the

rest of the data, and thus can inflate FPRs. The IRLS techniques offer

an intermediate solution, down-weighting influential points without

removing them altogether. The bisquare weighting function tends to

offer more power than the Huber function at the cost of very slightly

inflated FPRs (although they are still below the OLS FPRs). In

addition, low IRLS weights can be used as a way to earmark

individual participants for careful checking—for example, review of

data for artifacts, normalization errors, and other problems.

Perhaps most importantly, IRLS leads to substantially greater

power than OLS when outliers are present, but shows no

diminution in power when outliers are absent. We conclude that

IRLS is a good overall compromise between OLS and outlier

removal, that P values from IRLS appear trustworthy, and that

IRLS can help uncover otherwise hidden patterns in the data when

outliers are likely to be present. We suggest that IRLS is an

underutilized technique that offers few disadvantages but important

advantages in the analysis of neuroimaging data.

Extensions of robust regression: nonparametric, hierarchical, and

multivariate techniques

Robust techniques can also be appropriate for use in multi-

variate analyses, in which a number of components are extracted

from a larger set of variables (Lin et al., 2003; McKeown et al.,

1998; Peltier et al., 2003). In these cases, it is often difficult

to check for multivariate outliers and multivariate normality.

Furthermore, multivariate analyses are exquisitely sensitive to

outliers—much more so than the one-sample t test—as they

operate on covariance values among continuous variables.

Although several groups have developed robust versions of

multivariate techniques (Hubert and Vanden Branden, 2003;

Hubert and Verboven, 2003; Hubert et al., 2002), we focus here

on the former, bmassively univariateQ approach. And, although we

focus on fMRI and PET, other kinds of methods such as ERP could

benefit from employing robust techniques if artifactual outliers are

expected at some time points.

Also, although we focus here on ordinary statistical techniques,

even nonparametric techniques such as permutation tests (Hay-

asaka et al., 2004; Nichols and Holmes, 2002) are not immune to

the effects of outliers, which influence the distribution of statistics

used for thresholding and can result in substantial decreases in

power.

As a final note, IRLS offers another important advantage over

OLS in neuroimaging analysis. The IRLS technique utilizes a

weight matrix (W) to minimize the influence of outliers. The same

weight matrix is also used to provide several generalizations of the

GLM that might be relevant to other neuroimaging applications.
Weights on the off-diagonals can be used to pre-whiten the data

and model before estimation if error terms have a known (or

estimated) covariance structure. This particularly applies to fMRI

time series models. Autoregressive models employed in several

statistical programs incorporate constrained estimates of temporal

autocorrelation into W. Hierarchical models (FSL) use the same

framework, carrying error variance estimates forward to higher

levels as weights in W. Thus, IRLS can be incorporated into

existing neuroimaging analysis software (e.g., SPM, fMRI,

BrainVoyager, AFNI) with relative ease.
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