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In this paper we present a multivariate analysis of
evoked hemodynamic responses and their spatiotem-
poral dynamics as measured with fast fMRI. This anal-
ysis uses standard multivariate statistics (MANCOVA)
and the general linear model to make inferences about
effects of interest and canonical variates analysis
(CVA) to describe the important features of these ef-
fects. We have used these techniques to characterize
the form of hemodynamic transients that are evoked
during a cognitive or sensorimotor task. In particular
we do not assume that the neural or hemodynamie re-
sponse reaches some “steady state” but acknowledge
that these physiological changes could show profound
task-dependent adaptation and time-dependent
changes during the task. To address this issue we
have modeled hemodynamic responses using appro-
priate temporal basis functions and estimated their
exact form within the general linear model using
MANCOVA. We do not propose that this analysis is a
particularly powerful way to make inferences about
functional specialization (or more generally func-
tional anatomy) because it only provides statistical in-
ferences about the distributed (whole brain) re-
sponses evoked by different conditions, However, its
application to characterizing the temporal aspects of
evoked hemodynamic responses reveals some compel-
ling and somewhat unexpected perspectives on tran-.
sient but stereotyped responses to changes in cogni-
tive or sensorimotor processing. The most remarkable
observation is that these responses can be biphasic
and show profound differences in their form depend-
ing on the extant task or condition. Furthermore these
differences can be seen in the absence of changes in
mean signal. © 1995 Academic Press, Inc.

INTRODUCTION

Fast fMRI techniques allow us to look at evoked
physiological responses, in the brain, on a second by
second basis. However, the technique has been used

primarily to assess hemodynamic indices while assum-
ing that the physiological concomitants of cognitive or
sensorimotor processing are in some “steady state.”
This begs the question: “Why acquire data at such a
fast rate?” In this short paper, and a companion paper
(Friston et al., 1995a), we present compelling evidence
that suggests that it is potentially important to look at
brain changes on a second by second basis. Our main
result is that the shape and duration of hemodynamic
transients, which ensue in the seconds following a
change in task, can vary with the task, and further-
more, the form of these transients can discriminate
between tasks even if the average signal is the same for
all tasks. The evidence for this conclusion is based on a
multivariate analysis applied to a fMRI time-series ob-
tained during a motor sequencing activation study re-
ported in this paper. The results were then used to
inform and extend our current univariate approach to
increase its sensitivity by modeling hemodynamic
transients in a empirically directed and more appro-
priate way. This extension is described in a companion
paper.

The problem addressed by this paper is how to assess
and characterize evoked spatiotemporal hemodynam-
ics changes using fast fMRI. Current approaches to
this problem overlook the fact that, following the onset
of an “activation,” the brain responds with a rich and
protracted hemodynamic transient, with many varia-
tions over both space and time. Even approaches that
explicitly refer to a nonlinear hemodynamic response
function (e.g., Friston et al., 1994, 1995b) assume that
the underlying neural dynamics are unchanging dur-
ing an activation. This assumption is implicit in the
square-wave or box-car reference vectors used in the
analyses. In this paper we adopt a different perspec-
tive, borrowed from the field of evoked potentials using
EEG and MEG. This view considers that the evoked
response is a stereotyped transient of unknown form
that can change from brain region to brain region and
from task to task. By using appropriate temporal basis
functions it is possible to estimate the form of these
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fMRI: A MULTIVARIATE APPROACH

transients and make some statistical inferences about
them. Specifically, we introduce multivariate analysis
of variance (MANCOVA) and canonical variates anal-
ysis (CVA) to characterize evoked hemodynamic re-
sponses in space and time. The importance of this anal-
ysis is fourfold: (i) Unlike existing approaches it pro-
vides for statistical inferences about the significance of
the spatiotemporal response over the entire volume. (ii)
The approach implicitly takes account of spatial corre-
lations in the data without making any assumptions.
(1i1) The canonical variates analysis produces de-noised
eigenimages that characterize the activation effects in
terms of a series of spatial modes (canonical images)
and (canonical) transients. (iv) The theoretical basis is
well established and can be found in any introductory
text on multivariate analysis.

Unlike statistical parametric mapping with univari-
ate tests (e.g., t maps and Z maps), MANCOVA is ex-
plicitly multivariate. It considers one observation as
comprising all voxels in a scan. In other words, one
response variable corresponds to all its components
(voxel values) in the volume. The importance of this
multivariate approach is that the effects due to activa-
tions, confounding effects, and error effects are as-
sessed in terms of both the effects at each voxel and
interactions among voxels. This means that one does
not have to model spatial correlations (e.g., with Gaus-
sian Fields) when assessing the significance of an ac-
tivation effect. These correlations are explicitly in-
cluded in the analysis. The MANCOVA uses the gen-
eral linear model to model effects of interest and
provides a single P value reflecting the significance of
these effects. In this application the effects of interest
are some systematic response that endures during
each condition, but whose form is unknown. These
transients are modeled using a small set of Fourier
basis functions such that the estimated transients can
have any (smooth) shape.

Having established significance using MANCOVA,
the nature of the spatiotemporal response remains to
be characterized. We propose that Canonical Variates
Analysis (CVA) is an appropriate characterization of
distributed activation effects. Canonical images are
similar to eigenimages but derive from a statistical
model with error terms (the general linear model used
by the MANCOVA). CVA is closely related to de-
noising techniques in EEG and MEG time series anal-
ysis that use a generalized eigenvalue solution. Intu-
itively these approaches can be understood as finding
the eigenimages that “point toward the activation ef-
fects and away from the noise” (Anders Dale, personal
communication). Another way of looking at canonical
images, obtained with CVA, is to think of them as sta-
tistically informed eigenimages that discount interac-
tions due to error.

The paper is divided into two sections. The first sec-
tion deals with the theory behind MANCOVA and
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CVA. It presents the operational equations behind the
multivariate general linear model, statistical inference
about activation effects based on Wilk’s Lambda and
the canonical values, and characterizing the nature of
these effects using CVA. The second section describes
an application to a fMRI activation study of attention
and motor sequencing. The primary aim of this analy-
sis was to characterize the nature and form of tran-
sient hemodynamic responses to changing task condi-
tions as a prelude to improving existing univariate
techniques. We reiterate that the procedures described
in this paper can be found in any standard introductory
test on multivariate statistics. We have used Chatfield
and Collins (1980).

THEORY

The terminology adopted in this paper divides a
fMRI time-series of (I) scans into meaningful blocks
called “epoches” that correspond to the presence of a
particular task or condition. A single multivariate re-
sponse variable contains all the voxel values in one
scan. The first step in multivariate analysis is to en-
sure that the dimensionality of the data is smaller than
the number of observations (I). Clearly, this is not the
case because there are more voxels than scans; there-
fore, the data have to be transformed. The dimension
reduction proposed here is straightforward and uses
the eigenvector solution of the sums of squares and
products over time to give a reduced set of components
for each multivariate observation. These eigenimages
and their expression in time (eigenvectors) can be cal-
culated in a number of ways. We use the standard
eigenvalue solution in this paper:

[e Al = eig(X* - X*T),

where

(X*-X*T)-e=e-)\

1
U=X*T.¢-p 2

and

1
X=¢ 2. (1)
Here X* is a large matrix of corrected voxel values with
one column for each voxel and one row for each scan.
By “corrected” we mean that obvious confounds such as
low frequency artifacts and global effects have been
removed (using linear regression) and that the data
have been mean corrected. A is a diagonal matrix of
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eigenvalues and ¢ is a matrix of eigenvectors over time.
The spatial modes or eigenimages correspond to the
columns of U and their expression over time to the
columns of X. X has one column for (at most) every
eigenimage with a nonzero eigenvalue and one row for
each scan. In our work we use only the columns of X
that have an associated eigenvalue greater than unity.
We present the derivation of the eigenimages in this
rather clumsy way because computationally it is much
easier to compute eig(X* X*T) than eig(X*T.X*). Intu-
itively X can be thought of as the original data X*
“looked at” from a different direction. The element of X
are x;;, the activity of the jth eigenimage in scan i.
In matrix notation the general linear model is

X=GB +e (2)
The general linear model assumes the errors e are in-
dependent and identically distributed with the normal
distribution [N(0, ajz)]. If the data have been smoothed
in time then a correction to the degrees of freedom
associated with the error terms is required (see Friston
et al., 1995b, for more details). The matrix G is called
the design matrix. The design matrix has one column
for every effect (factor or covariate) in the model. B8 is
the parameter matrix with one column vector B; of pa-
rameters for each eigenimage. The elements of G are
explanatory variables relating to the conditions under
which the observation (e.g., scan) was made. In this
application the design matrix contains a small set of
Fourier basis functions for each epoch. This set is
shown in Fig. 1. The design matrix is constructed such
that these four basis functions are repeated for all in-
stances of a particular condition. For example, if we
had three conditions the design matrix would have 12
columns. Each set of four columns would contain the
four basis functions whenever that condition occurred
(see below). Least squares estimates of the contribu-
tion of these basis functions to each condition are given
by the estimates of 8 say b: :

b = (G"G)'G™X (3)
and, if the error terms are independent
Var{b;} = <7J~2(GTG)—1. 4)

Statistical Inference

In this section we address statistical inference about
the effects of interest (condition or covariates of inter-
est). Significance is assessed by testing the null hy-
pothesis that the effects of interest do not significantly
reduce the error variance (or alternatively the null hy-
pothesis that 8 is zero). The null hypothesis can be
tested in the following way. The sum of squares and
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FIG. 1. The small set of Fourier basis functions that were used in
building the design matrix. These four function are sin(i.m.#/12),
where i = 1 to 4 and ¢ corresponds to time expressed in scans. These
functions ensure that the fitted transients start and end with a value
of 0. Note that we allow for some residual effects of a condition to be
“carried over,” one scan, into the next condition (i.e., scan 11 follow-
ing the onset of a condition).

products due to error R({2) is obtained from the differ-

ence between the actual and estimated values of X:

R=R() =X - Gb)X - G.b), (5)

where the sums of squares and products due to effects
of interest are given by:

T = (G.b)".(G.b). (6)

The error sum of squares and products under the

null hypothesis R(0), i.e., after discounting the effects
of interest (G) is simply

R(Q) =X"X = A (7
The significance can now be tested with
A= |RD)|/|R()], (8)

where A is Wilk’s statistic (known as Wilk’s Lambda).
Under the null hypothesis, and after transformation A
has a »? distribution:

—(r ~((J = h + 1)/2)).1og(A) ~ x*(J.h), 9)

where r is the degrees of freedom associated with the
error terms. We use the effective degrees of freedom
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computed as described in Friston et al. (1995b) r =
[rank(X* X*T) — rank(G)]/N(2ws?) and s is the standard
deviation of any Gaussian kernel used to smooth the
data in time. J is the number of eigenimages (e.g., with
eigenvalues greater than 1) used in the J-variate re-
sponse variable X and 4 is the degrees of freedom as-
sociated with the effects of interest = rank(G).

Characterizing the Effect

Having established that the effects of interest are
significant (e.g., differences among the task-related ep-
oches) the final step is to characterize these effects in
terms of their spatiotemporal dynamics. This charac-
terization uses CVA. The objective is to find the linear
combination (compound or contrast) of the components
of X, in this case the eigenimages, that best express the
activation effects when compared to error effects. More
exactly we want to find ¢; such that the variance ratio

(e;".T.c))/(c;" R.cy)

is maximized. Let Z; = X.e,, where Z; is the first ca-
nonical variate and ¢, is a canonical vector that max-
imizes this ratio. ¢, is the second canonical vector that
maximizes the ratio subject to the constraints the
Covi{e; ¢y} = 0 (and so on). The matrix of canonical
images ¢ = [¢; ¢, ... ¢ ] is given by solution of the
generalized eigenvalue problem

T.c = R.c.6, (10)
where 6 is a diagonal matrix of [scaled] canonical val-
ues. Canonical images C are obtained by rotating the
canonical vector in the columns of ¢ back into “voxel”
space with the original eigenimages U:

C =U.c. (11)
The columns of C now contain the voxel values of the
canonical images. The jth column of C (the jth canon-
ical image) has an associated canonical value equal to
Jth leading diagonal element of 6. Note that the “acti-
vation” effect is a multivariate one, with J components.
The final step involves determining the number of ca-
nonical images that can be considered “significant.”
This is effected by testing for the dimensionality of the
response using the canonical values 6, where under the
null hypothesis the probability that the dimensionality
of the response is greater than S is tested with

i=J
r—(J -k + 1)/2) - log[ ITa+ ei)]

i=S+1

~X3((J — 8) - (h — 8)) (12)
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distributed according to the »? distribution (Chatfield
and Collins, 1980). Note that when S = 0 this reduces to
Wilk’s Lambda (i.e., one or more canonical images can
be considered as characterizing a significant effect). By
computing a P value for each value of S we can infer
the number of canonical images that properly repre-
sent our result.

AN EMPIRICAL APPLICATION

In these sections we present an example of the anal-
ysis. The example chosen is typical of more sophisti-
cated fMRI activation studies that use more than two
conditions. There were three conditions: a rest condi-
tion, a motor sequencing condition where the subject
moved his or her right and left hand in a fixed alter-
nating order (in response to a visual cue), and a motor
sequencing condition in which the subject moved either
the right or the left hand as instructed visually in a
random sequence. The only difference between the
“fixed” and “random” conditions was that the subject
had to attend to the instruction that specified the
movement. Clearly in the random condition the subject
could not anticipate or prepare the exact movement
before seeing the cue. The movements involved raising
the forefinger and the cues were presented at pseudo-
random intervals of 2,3 or 4, s. The details of this par-
adigm and a full discussion of the results will be pre-
sented elsewhere.

Data Acquisition

One hundred and twenty T,* weighted volume im-
ages (128 x 64 x 10 voxels) were obtained from a sin-
gle male subject using a GE/ANMR 1.5T system with
EPI capabilities. The volumes consisted of 10 sequen-
tial transverse sections and were acquired every 3 s.
Voxel size was 3 X 3 X 7-mm voxels with 0.5-mm slice
separation. The three conditions were presented in
blocks of 10 scans, in pseudorandom order. Each con-
dition was therefore repeated four times, each time
constituting a 30-s epoch for that condition.

Data Prepossessing

The 120 volume images were realigned to the first as
described elsewhere (Friston et al., 1995¢) and resam-
pled to 3 x 3 x 6-mm voxels. The data were then
smoothed with an isotropic Gaussian kernel with
FWHM of 8 mm in space (in this analysis we were more
interested in spatially distributed temporal dynamics
and therefore used a larger spatial filter than is typical
in fMRI) and V5 s in time. Voxels that had values
greater than 0.8 of the volume mean in all the images
were selected to restrict the analysis to intracranial
regions. The confounding effects of global (whole vol-
ume) activity and time were removed using linear re-
gression with global activity and sine/cosine functions
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as confounds (up to a maximum of 2.5 cycles per 120
scans). Removing the latter confounds corresponds to
high-pass filtering the time-series to remove low fre-
quency artifacts due to aliased cardiorespiratory and
other cyclical components. The data were mean cor-
rected to form the matrix X* above.

MANCOVA

The corrected data were reduced to 35 eigenvectors
using Eq. (1) (ie., there were 35 eigenvalues greater
than unity) and subject to MANCOVA as described in
the theory section. The design matrix G is shown, in
image format, in the upper panel of Fig. 2. The first
four columns correspond to the rest conditions, the sec-
ond four to the fixed conditions, and the last four to the
random conditions. The significance of the condition-
dependent effects was assessed with Wilk’s Lambda
which was 620.16. Using Eq. (8) the corresponding P
value for the activation effects was P < 1072, The de-
grees of freedom due to error were 54 and the degrees
of freedom for Wilk’s Lambda were 12 X 35 = 420.

Design matrix

Canonical analysis

scan

Chi-squared = 620.16
threshold @ p = 0.05=468.78
df{error} = 54, df{Chi} = 420

2 4 6 B 10 12
condition effects

Canonical spectrum Dimensionality of the result

80 10 5O6-06000—
o
Iy -2 [T
o 60 ‘f 10 o
E 2
s Byt b ]
840 s °
§ 510_6 R |
82 £
T
E: 1()_8 ...................................
10 ° :
0 107 . -
[} 5 10 0 5 10 15
Canonical variate S
FIG. 2. (Top left) Design matrix: This is an image representation

of the design matrix G. Because elements of this matrix can take
negative values the gray scale is arbitrary and has been scaled to the
minimum and maximum. {Bottom left) Spectrum of canonical values
6 following a canonical variates analysis. (Bottom right) Spectrum of
P values based on 6 the roots of R™1.T. These P values test the
hypothesis that the dimensionality of the result is greater than a
specified number (S) and are based on the distributional approxima-
tion given in Eq. (12).
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CVA

The spectrum of canonical values 6; is shown in the
lower left panel of Fig. 2 and the corresponding P val-
ues are seen on the lower right. It can be seen that the
first three P values are less than 0.05 and therefore the
dimensionality of the response is threefold. In other
words the spatiotemporal dynamical response to these
changing conditions requires at least three spatial
modes to describe it. In this paper we focus on the first
or most important canonical image. A maximum inten-
sity projection of the first canonical image (positive
components) and its time-dependent expression or ca-
nonical variate Z, = X.¢; = X*.C, are shown in Fig. 3.
The upper panel demonstrates that this system is dis-
tributed with a rather diffuse spatial topography. The
spatial characteristics of this mode should not be over-

ol

HrOonSveErss

Canonical image analysis:

Canonical Variate

Canonical Transients

- N

I
LA
relative expression

relative exprassion
=3

|
N

20 40 60 80 100 120
scan scan
FIG. 8. (Top left) First canonical image: This is a maximum in-

tensity projection of positive parts of the first canonical image. The
display format is standard and provides three views of the brain from
the front, the bottom, and the left-hand side. The gray scale is arbi-
trary and the space conforms to that described in the atlas of Talair-
ach and Tournoux (1988). (Bottom panels) Canonical variates ex-
pressed as a function of time (in scans). The dotted line in the left
panel corresponds to the first canonical variate Z; = X.c; and the
solid line to G.c,. This representation of the canonical variate is
shown again on the right for a single epoch of each condition.
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interpreted (this canonical image simply reflects the
amount of variance that each region contributes to the
first canonical variate. This amount may be small or
large relative to other components). However, it is
worth noting that some regions show greater loadings
than others, in particular, the anterior prefrontal re-
gions, the SMA, and parietal regions.

Of greater interest is the canonical variate shown in
the lower left panel of Fig. 3. The dotted line corre-
sponds to Z; and the solid line to the canonical variate
expressed in terms of the modeled effects (i.e., G.b.c,).
The solid line is therefore a succession of canonical
transients expressed in response to each of the three
conditions. To clarify the nature of this canonical vari-
ate the individual (canonical) transients for each con-
dition are shown together on the right. It is immedi-
ately obvious that the principal difference among the
three conditions was the effect of moving (i.e., pro-
nounced response to the fixed and random conditions
with little contribution from the rest condition). More
remarkable, however, is the difference between the
fixed and the random conditions. The system defined
by the canonical images responds to both the move-
ment conditions with complicated and biphasic tran-
sients. The fixed condition evokes a rapid phasic re-
sponse that adapts quickly after about 12 s to evidence
an undershoot peaking at 20 s. Conversely the random
condition (requiring sustained attention) does not ac-
tivate until 10 s or so after the onset of the new task. It
also shows a biphasic response that lags the fixed re-
sponse by about 10 s. A key observation here is that the
average activity integrated over the entire epoch is
about the same for all three conditions and yet all three
conditions evoke profoundly different transient hemo-
dynamic responses.

Figure 4 shows the canonical variates superimposed
for each epoch. The general features described above
are evident and the reproducibility over time is clear.
To demonstrate that this result is not a peculiarity of
this subject we repeated exactly the same experiment
and analysis with a second (female) subject. The first
canonical variate is shown in Fig. 5. The same generic
features are observed, namely, an early biphasic re-
sponse to the fixed condition and a more protracted
biphasic response to the random condition.

DISCUSSION

In this paper we have presented a general multivari-
ate analysis of evoked responses and their spatiotem-
poral dynamics as measured with fast fMRI. This anal-
ysis uses standard multivariate statistics and the gen-
eral linear model to make inferences about effects of
interest and a canonical variates analysis to describe
the important features of these effects. We do not pro-
pose that this analysis is a particularly powerful way to
make inferences about functional specialization (or
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FIG. 4. Canonical variates Z, = X.c, expressed as a function of
time (in seconds) for all epoches superimposed. The dotted lines rep-
resent the rest epoches. The broken lines represent the fixed condi-
tions, and the solid lines the random conditions.

more generally functional anatomy) because it only
provides statistical inferences about the distributed
(whole brain) responses evoked by tasks and condi-
tions. However, its application to characterizing the
temporal aspects of evoked hemodynamic responses
yields some compelling insights about transient re-
sponses to changes in cognitive or sensorimotor pro-

adjusted activity

3 5 10 15 20 25 30 35
time {seconds}

FIG. 5. The same as for the Fig. 4 but for a second independent
study of a different subject.
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cessing. The key observation is that these responses
can be biphasic and show profound differences in their
form depending on the extant task or condition. Fur-
thermore these differences can be seen in the absence
of changes in mean signal. This has potentially severe
implications for current analyses that try to find a
mean difference in task-dependent signal or assume
some fixed form for the evoked hemodynamic tran-
sient.

Relationship to Conventional Analyses of
fMRI Time-Series

This multivariate approach differs fundamentally
from statistical parametric mapping and related ap-
proaches because the concept of a separate voxel or
region of interest ceases to have meaning. One obser-
vation represents a whole scan. Any statistical infer-
ence that ensues following a multivariate analysis is
about the whole volume, not any component of it. This
precludes statistical inferences about regional effects
that are made without reference to changes elsewhere
in the brain. This fundamental difference ensures that
univariate and multivariate approaches are likely to be
used in their distinct domains and should be regarded
as complementary approaches. Statistical parametric
mapping (e.g., t maps reflecting correlations with a ref-
erence vector) allow for inferences that a small brain
region is implicated in a some specified way. Multivari-
ate tests of the sort described in this paper allow the
inference that the entire brain volume imaged was en-
gaged by the activations employed. The nature of this
response it then characterized using a post hoc analy-
sis, in this case CVA.

The CVA component proposed in this paper is con-
ceptually similar to eigenimage analysis. Unlike eigen-
image analysis CVA can be considered a true “statis-
tical” procedure because error terms are explicitly
modeled and there exist distributional approximations
for the canonical values. Canonical images can be
thought of as de-noised eigenimages that are informed
by (and attempt to discount) error.

FRISTON ET AL.

CONCLUSION

We have developed a multivariate approach to fMRI
time-series using established techniques in statistics
and using proven ideas in the field of evoked potentials.
This aim of this analysis was to assess the spatial and
temporal characteristics of evoked responses in a way
that makes full use of the high spatial and temporal
resolution now afforded by fMRI. The finding that the
hemodynamic signal can adapt in a task-specific fash-
ion over several seconds should not, of course, be sur-
prising. Adaptation (and the behavioral counterpart—
habituation) occurs in nearly every neural system over
nearly every time-scale. Recognizing that this general
principle can also apply to hemodynamic changes mea-
sured over several tens of seconds should enable a
richer and more valid statistical modeling of the differ-
ences in response to different tasks. This is the subject
of a companion paper that describes a univariate ap-
proach to testing for these differential responses.
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