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1 INTRODUCTION 

 

A. Overview 

This chapter presents a theoretical review of models that are used for effective 

connectivity.  In this discussion we focus on the nature and form of the models 

themselves and less on estimation or inference issues.  The aim is to relate the various 

models commonly employed and to make their underlying assumptions and 

requirements more transparent. 



   As we have seen in the preceding chapters there are a number of models for 

estimating effective connectivity using neuroimaging time series (PET, fMRI, EEG 

and MEG).  By definition, effective connectivity depends on a model, through which 

it is defined operationally (Friston et al 1995).  This chapter reviews the principal 

models that could be adopted and how they relate to each other.  We consider 

dynamic causal models (DCM), Generalised Convolution Models (GCM), [bi-

]coherence, structural equation models (SEM) and multivariate autoregression models 

(MAR).  In brief, we will show that they are all special cases of each other and try to 

emphasise their points of contact.  However, some fundamental distinctions arise that 

guide the selection of the appropriate models in different situations. 

 

    Figure 1 about here 

 

1 Single or multiple regions? 

The first distinction rests upon whether the model is used to explain the coupling 

between the inputs and the responses of one cell, assembly or region, or whether the 

model encompasses interactions among the states of multiple regions.  In terms of 

models this distinction is between input-output models (e.g. multiple-input, single-

output models (MISO) and multiple-input multiple-output models (MIMO)) and 

explicit input-state-output models.  Usually the input-output approach is concerned 

with the nonlinear transformation of inputs, by a region, to produce its outputs.  The 

implicit states correspond to hidden states of a single region and the effective 

connectivity concerns the vertical link between inputs and outputs (see Figure 1a).  In 

contradistinction, the input-state-output approach is generally concerned with 

characterising the horizontal coupling among variables that represent the states of 

different regions.  These states are observed vicariously though the outputs (see 

Figure 1b).  Examples of input-output models include the Volterra formulation of 

effective connectivity, and related coherence analyses in the spectral domain.  An 

example of a model that tries to estimate horizontal coupling among hidden states is 

DCM.  A critical aspect of vertical, input-output models of effective connectivity is 

that they can proceed without reference to the hidden states.  Conversely, the 

horizontal interactions require indirect access to the states or some strong assumptions 

about how they produce outputs.  In short, analyses of effective connectivity can be 

construed as trying to characterise the input-output behaviour of a single region or the 



coupling among the states of several regions using an explicit input-state-output 

model.  Below we start by reviewing input-output models and then turn to input-state-

output models. 

 

2 Deterministic or stochastic inputs? 

The second key distinction is between models, where the input is known and fixed 

(e.g. DCM) and those in which it is not (MAR and SEM).  Only the former class of 

models affords direct measures of effective connectivity.  The remaining models are 

useful for establishing the presence of coupling under certain assumptions about the 

input (usually that it is white noise that drives the system).  This distinction depends 

on whether the inputs enter as known and deterministic quantities (e.g. experimentally 

designed causes of evoked responses) or whether we know (or can assume) something 

about the density function of the inputs (i.e. its statistics up to second or higher 

orders).  Most models of the stochastic variety assume the inputs are Gaussian, i.i.d.  

and stationary.  Some stochastic models (e.g. coherence) use local stationarity 

assumptions to estimate high order moments from observable but noisy inputs.  For 

example, polyspectral analysis represents an intermediate case in which the inputs are 

observed but only their statistics are used.  However, the key distinction is not 

whether one has access to the inputs but whether those inputs have to be treated as 

stochastic or not.  Stationarity assumptions in stochastic models are critical because 

they preclude full analyses of evoked neuronal responses or transients that, by their 

nature, are non-stationary.  Despite this, there are situations where the input is not 

observable or under experimental control.  These situations preclude the estimation of 

the parameters of DCMs.  Approaches like MAR and SEM can be used to proceed if 

the inputs can be regarded as stationary.  The distinction between deterministic and 

stochastic inputs is critical in the sense that it would be inappropriate to adopt one 

class of model in a context that calls for the other. 

 

3 Connections or statistical dependencies? 

The final distinction is in terms of what is being estimated or inferred.  Recall that 

functional connectivity is defined by the presence of statistical dependencies among 

remote neurophysiological measurements.  Conversely, effective connectivity is a 

parameter of a model that specifies the casual influences among brain systems.  It is 

useful to distinguish inferences about statistical dependencies and estimation of 



effective connectivity in terms of the distinction between functional and effective 

connectivity.  Examples of approaches that try to establish statically dependencies 

include coherence analyses and MAR.  This is because there these techniques do not 

presume any model of how hidden states interact to produce responses.  They are 

interested only in establishing [usually linear] dependencies among outputs over 

different frequencies or time lags.  Although MAR may employ some model to assess 

dependencies, this is a model of dependencies among outputs.  There is no assertion 

that outputs cause outputs.  Conversely SEM and DCM try to estimate the model 

parameters and constitute analyses of effective connectivity proper.  Generalised 

convolution approaches fall into this class because they rest on the estimation of 

kernels that are an equivalent representation of some input-state-output model 

parameters.   

 

B Effective connectivity 

Effective connectivity is the influence that one neuronal system exerts over another at 

a synaptic or ensemble level.  This should be contrasted with functional connectivity, 

which implies a statistical dependence between two neuronal systems that could be 

mediated in any number of ways.  Operationally, effective connectivity can be 

expressed as the response induced in an ensemble, unit or region by input from others, 

in terms of partial derivatives of the target activity ix , with respect to the source 

activities.  First i
jE and second i

jkE order connectivities are then 
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First-order connectivity embodies the response evoked by a change in input at 1σ−t .  

In other words, it is a time-dependant measure of driving efficacy.  Second-order 

connectivity reflects the modulatory influence of the input at 1σ−t  on the response 

evoked at 2σ−t .  And so on for higher orders.  Note that, in this general formulation, 

effective connectivity is a function of current input and inputs over the recent past1.  

                                            
1 In contrast, functional connectivity is model-free and simply reflects the mutual information 

),( ji xxI .  In this paper we are concerned only with models of effective connectivity  



Furthermore, implicit in Eq(1) is the fact that effective connectivity is casual, unless 

1σ  is allowed to be negative.  It is useful to introduce the dynamic equivalent, in 

which the response of the target is measured in terms of changes in activity 
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where txx ii ∂∂=& .  In this dynamic form all influences are casual and instantaneous.  

Before considering specific models of effective connectivity we will review briefly 

their basis (see Chapter 20: Effective Connectivity). 

 

C Dynamical systems 

The most general and plausible model of neuronal systems is a nonlinear dynamical 

model that corresponds to an analytic multiple-input multiple-output (MIMO) system.  

The state and output equations of a analytic dynamical system are 
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Typically the inputs )(tu  correspond to designed experimental effects (e.g. stimulus 

functions in fMRI), or represent stochastic drives or system perturbations.  Stochastic 

observation error ),0(~ ΣNε  enters linearly in this model.  For simplicity, the 

expressions below deal single-input, single-output (SISO) systems, and will be 

generalised later.  The measured response y is some nonlinear function of the states of 

the system x.  These state variables are usually unobserved or hidden (e.g. the 

configurational status of all ion channels, the depolarisation of every dendritic 

compartment, etc.).  The parameters of the state equation embody effective 

connectivity, either in terms of mediating the coupling between inputs and outputs 

(MISO models of a single region) or through the coupling among state variables 

(MIMO models of multiple regions).  The objective is to estimate and make 

inferences (usually Bayesian) about these parameters, given the outputs and possibly 

the inputs.  Sometimes this requires one to specify the form of the state equation.  A 

ubiquitous and useful form is the bilinear approximation to (3); expanding around 0x  
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For simplicity, we have assumed 00 =x and 0)0()0( == λf .  This bilinear model is 

sometimes expressed in a more compact form by augmenting the states with a 

constant 
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(see Friston 2002).  Here the model's parameters comprise the matrices 

},,,{ LCBA∈θ .  We will use the bilinear parameterisation when dealing with MIMO 

models and their derivatives below.  We will first deal with MISO models, with and 

without deterministic inputs. 

 

 

II. INPUT-OUTPUT MODELS FOR SINGLE REGIONS 

 

A  Models for deterministic inputs - The Volterra formulation 

In this section we review the Volterra formulation of dynamical systems.  This 

formulation is important because it allows the input-output behaviour of a system to 

be characterised in terms of kernels that can be estimated without knowing the states 

of the system. 

  The Fliess fundamental formula (Fliess et al 1983) describes the causal relationship 

between the outputs and the history of the inputs in (3).  This relationship conforms to 

a Volterra series, which expresses the output y(t) as a generalised convolution of the 

input u(t), critically without reference to the state variables x(t).  This series is simply 



a functional Taylor expansion of the outputs with respect to the inputs (Bendat 1990).  

The reason it is a functional expansion is that the inputs are a function of time. 
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were ),( 1 ii σσκ K  is the ith order kernel.  In Eq (6) the integrals are restricted to the 

past or history of the inputs.  This renders Eq (6) causal.  In some situations an 

acausal formulation may be appropriate (e.g. in which the kernels have non-zero 

values for future inputs - see Friston and Büchel 2000).  One important thing about (6) 

is that it is linear in the unknowns, enabling unbiased estimates of the kernels using 

least squares.  In other words, (6) can be treated as a general linear observation model 

enabling all the usual estimation and inference procedures (see Chapter 20: Effective 

Connectivity for an example).  Volterra series are generally thought of as a high-

order or generalised nonlinear convolution of the inputs to provide an output.  To 

ensure estimability of the kernels they can be expanded in terms of some appropriate 

basis functions ),,( 1 i
i
jq σσ K to give the general linear model 
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The Volterra formulation is useful as a way of characterising the influence of inputs 

on the responses of a region.  The kernels can be regarded as a re-parameterisation of 

the bilinear form in Eq(4) that encodes the impulse response to input.  The kernels for 

the states are 
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The kernels associated with the output follow from the chain rule 
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(see Friston 2002 for details).  If the system is fully nonlinear, then the kernels can be 

considered local approximations.  If the system is bilinear they are globally exact.  It 

is important to remember that the estimation of the kernels does not assume any form 

for the state equation and completely eschews the states.  This is the power and 

weakness of Volterra-based analyses. 

   The Volterra formulation can be used directly in the assessment of effective 

connectivity if we assume the measured response of one region (j) constitutes the 

input to another (i) i.e. )()( tyxu jj = .  In this case the Volterra kernels have a special 

interpretation; they are synonymous with effective connectivity.  From (6) the first 

order kernels are 
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Extensions of Eq(6) to multiple inputs (MISO) models are trivial and allow high-order 

interactions among inputs to a single region to be characterised.  This approach was 

used in Friston and Büchel (2000) to examine parietal modulation of V2 inputs to V5, 

by estimating and making inferences about the appropriate second order kernel.  The 

advantage of the Volterra approach is that nonlinearities can be modelled and 

estimated in the context of highly nonlinear transformations within a region and yet 

the estimation and inference proceed in a standard linear least squares setting.  

However, one has to assume that the inputs conform to measured responses elsewhere 



in the brain.  This may be tenable for EEG but the hemodynamic responses measured 

by fMRI make this a more questionable approach.  Furthermore, there is no causal 

model of the interactions among areas that would otherwise offer useful constraints on 

the estimation.  The direct application of Volterra estimation, in this fashion, simply 

examines each node, one at a time, assuming the activities of other nodes are veridical 

measurements of the inputs to the node in question.  In summary, although the 

Volterra kernels are useful characterisations of the input-output behaviour of single 

regions, they are not constrained by any model of interactions among regions.  Before 

turning to DCMs, that embody these interactions, we will deal with the SISO situation 

in which the input is treated as stochastic. 

 

B Models for stochastic inputs – Coherence and Polyspectral analysis 

In this section we deal with systems in which the input is stochastic.  The aim is to 

estimate the kernels (or their spectral equivalents) given only statistics about the joint 

distribution of the inputs and outputs.  When the inputs are unknown one generally 

makes assumption about their distributional properties and assumes [local] 

stationariness.  Alternatively the inputs may be measurable but too noisy to serve as 

inputs in Eq(7).  In this case they can be used to estimate the input and output 

densities in terms of higher order cumulants or polyspectral density.  The nth order 

cumulate of the input is 
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where we have assumed here and throughout that 0)}({ =tuE .  It can be seen that 

cumulants are a generalisation of auto-covariance functions.  The second-order 

cumulant is simply the auto-covariance function of lag and summarises the stationary 

second-order behaviour of the input.  Cumulants allow one to formulate (6) in terms 

of the second order statistics of input and outputs.  For example, 
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Eq(12) says that the cross-covariance between the output and the input can be 

decomposed into components that are formed by convolving the ith order kernel with 

the input's (i+1)th cumulant.  The important thing about this is that all cumulants, 

greater than second order, of Gaussian processes are zero.  This means that if we can 

assume the input is Gaussian then 
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In other words, the cross-covariance between the input and output is simply the auto-

covariance function of the inputs convolved with the first-order kernel.  Although it is 

possible to formulate the covariance between inputs and outputs in terms of 

cumulants, the more conventional formulation is in frequency space using 

polyspectra.  The nth polyspectrum is the Fourier transform of the corresponding 

cumulant 
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Again, polyspectra are simply a generalisation of spectral densities.  For example, the 

second polyspectrum is spectral density and the third polyspectrum is bispectral 

density.  It can be seen that these relationships are generalisations of the Wiener-

Khinchine theorem, relating the auto-covariance function and spectral density through 

the Fourier transform.  Introducing the spectral density representation 
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we can now rewrite the Volterra expansion, Eq(6) as 
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where the functions  
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are the Fourier transforms of the kernels.  These functions are called generalised 

transfer functions and mediate the expression of frequencies in the output given those 

in the input.  Critically, the influence of higher order kernels, or equivalently 

generalised transfer functions means that a given frequency in the input can induce a 

different frequency in the output.  A simple example of this would be squaring a sine 

wave input to produce an output of twice the frequency.  In the Volterra approach the 

kernels were identified in the time domain using the inputs and outputs directly.  In 

this section system identification means estimating their Fourier transforms (i.e. the 

transfer functions) using second and higher order statistics of the inputs and outputs.  

Generalised transfer functions are usually estimated through estimates of polyspectra.  

For example, the spectral form for (13), and its high-order counterparts are 
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Given estimates of the requisite [cross]-polyspectra these equalities can be used to 

provide estimates of the transfer functions (see Figure 2).  These equalities hold when 

the Volterra expansion contains just the nth order term and are a generalisation of the 

classical results for the transfer function of a linear system [first equality in Eq(17)].  

The importance of these results, in terms of effective connectivity, is the implicit 



meaning conferred on coherence and bi-coherence analyses.  Coherence is simply the 

second-order cross spectrum )(ωuyg  between the input and output and is related to 

first-order effects (i.e. the first-order kernel or transfer function) though Eq(17).  

Coherence is therefore a surrogate marker for first-order or linear connectivity.  Bi-

coherence or the cross-bispectrum ),( 21 ωωuuyg  is the third-order cross-polyspectrum 

and implies a non-zero second-order kernel or transfer function.  Bispectral analysis 

was used (in a simplified form) to demonstrate nonlinear coupling between parietal 

and frontal regions using MEG in Chapter 21 (Volterra kernels and effective 

connectivity).  In this example cross-bispectra were estimated, in a simple fashion, 

using time-frequency analyses. 

 

C Summary 

In summary, Volterra kernels (generalised transfer functions) characterise the input-

output behaviour of a system.  The nth order kernel is equivalent to nth order effective 

connectivity when the inputs and outputs conform to processes that mediate 

interactions among neuronal systems.  If the inputs and outputs are known, or can be 

measured precisely, the estimation of the kernels is straightforward.  In situations 

where stochastic inputs and outputs are less precisely observed, kernels can be 

estimated indirectly through their generalised transfer functions using cross-

polyspectra.  The robustness of kernel estimation, conferred by expansion in terms of 

temporal basis functions, is recapitulated in the frequency domain by smoothness 

constraints during estimation of the polyspectra.  The spectral approach is limited 

because it assumes (i) the system contains only the kernel of the order estimated and 

(ii) stationariness.  The intuition behind the first limitation relates to the distinction 

between parameter estimation and variance partitioning in standard regression 

analyses.  Although it is perfectly possible to estimate the parameters of a regression 

model given a set of non-orthogonal explanatory variables it is not possible to 

uniquely partition variance in the output caused by these explanatory variables. 

 

 

 

 

 



III INPUT-STATE-OUTPUT MODELS FOR MULTIPLE REGIONS 

 

In this section we address models for multiple interconnected regions where one can 

measure the responses of these regions to input that may or may not be known.  

Although it is possible to extend the techniques of the previous sections to cover 

MIMO systems, the ensuing inferences about the influence of input to one region, on 

the response of another are not sufficiently specified to constitute an analysis of 

effective connectivity.  This is because these influences may be mediated in many 

ways and are not parameterised in terms of the effective connectivity among the 

regions themselves.  In short, one is not interested in the vertical relationship between 

multiple inputs and multiple outputs, but in the horizontal interactions among the state 

variables of each region (Figure 1).  A parameterisation that encodes this inter-

regional coupling is therefore required.  All the models discussed below assume some 

form or model for the interactions among the state variables and attempt to estimate 

the parameters of this model, sometimes without actually observing the states 

themselves. 

 

A Models for known inputs – Dynamic Causal Modelling. 

The most direct and generic approach is to estimate directly the parameters of Eq(3) 

and use them to compute effective connectivity as described in Eq (1) and Eq(2).  

Although there are many forms one could adopt for Eq(3) we will focus on the 

bilinear approximation, which is possibly the most parsimonious but useful nonlinear 

approximation available.  Furthermore, as shown below, the bilinear approximation 

re-parameterises the state equations of the model directly in terms of effective 

connectivity.  Dynamic causal modelling does not necessarily entail the use of a 

bilinear model.  Indeed DCMs can be specified to any degree of biological complexity 

and realism supported by the data.  However, bilinear approximations represent the 

simplest form to which all DCMs can be reduced.  This reduction allows analytic 

derivation of kernels and other computations, like integrating the state equation, to 

proceed in an efficient fashion. 

   Each region may comprise several state variables whose casual interdependencies 

are summarised by the bilinear form in Eq(4).  Here the key connectivity parameters 

of the state equation are matrices M and N.  For a given set of inputs or experimental 

context the bilinear approximation to any set of state equations is 
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Notice that there are now as many N matrices as there are [multiple] inputs.  The 

bilinear form reduces the model to first-order connections that can be modulated by 

the inputs.  In MIMO models the effective connectivity is among the states such that 

first-order effective connectivities are simply  
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(this includes connections with the constant term in Eq(5)).  Note that these are 

context-sensitive in the sense that the Jacobian J is a function of experimental context 

or inputs )](,),([)( 1 tututu mK= .  A useful way to think about the bilinear parameter 

matrices is to regard them as the intrinsic or latent dynamic connectivity, in the 

absence of input, and changes induced by each input (see the previous chapter for a 

fuller description) 

 

    









==

∂
∂









==

ii
i

i BC
M

u
E

Af
NE

00

)0(
00

)0(

&

&

     20 

 

The latent dynamic connectivity among the states is A.  Often one is more interested 

in the iB  as embodying changes in this connectivity induced by different cognitive 

set, time or drugs.  Note that iC  is treated as the input-dependent component of the 

connection from the constant term or drive.  Clearly it would be possible to introduce 

other high order terms to model interactions among the states but we will restrict 

ourselves to bilinear models for simplicity. 



   The fundamental advantage of DCM over alternative strategies is that the casual 

structure is made explicit by parameterising the state equation.  The estimation of 

effective connectivity and ensuing inferences are usually through posterior mode 

analysis based on normality assumptions about the errors and some suitable priors on 

the parameters.  The parameters of the bilinear form are },,,{ LCBA=θ .  If the priors 

are also specified under Gaussian assumptions, in terms of their expectation θη  and 

covariance θC , Gauss-Newton EM scheme can be adopted to find the posterior mode 

y|θη (see the previous chapter for details).   

   In essence, dynamic causal modelling comprises (i) specification of the state and 

output equations of an ensemble of region-specific state variables.  A bilinear 

approximation to the state equation reduces the model to first-order coupling and 

bilinear terms that represent the modulation of that coupling by inputs.  (ii) Posterior 

density analysis of the model parameters then allows one to estimate and make 

inferences about inter-regional connections and the effect of experimental 

manipulations on those connections. 

  As mentioned above, the state equations do not have to conform to the bilinear form.  

The bilinear form can be computed automatically given any state equation.  This is 

important because the priors may be specified more naturally in terms of the original 

biophysical parameters of the DCM, as opposed to the bilinear form.  The choice of 

the state variables clearly has to accommodate their role in mediating the effect of 

inputs on responses and the interactions among areas.  In the simplest case the states 

variables could be reduced to mean neuronal activity per region, plus any biophysical 

state variables needed to determine the output (e.g. the states of hemodynamic models 

for fMRI).  Implicit in choosing such state variables is the assumption that they model 

all the dynamics to the level of detail required.  Mean field models and neural mass 

models are useful here in motivating the number of state variables and the associated 

state equations.  Constraints on the parameters of the model are implemented through 

their priors.  These restrict the parameter estimates to plausible ranges.  An important 

constraint is that the system is dissipative and does not diverge exponentially in the 

absence of input.  In other words, the priors ensure that the largest eigenvalue of J is 

less than zero. 

 



1 Summary 

In summary, DCM is the most general and direct approach to identifying the effective 

connectivity among the states of MIMO systems.  The identification of DCMs usually 

proceeds using Bayesian schemes to estimate the posterior mode or most likely 

parameters of the model given the data.  Posterior mode analysis requires only the 

state equations and priors to be specified.  The state equations can be arbitrarily 

complicated and nonlinear.  However, a Bilinear approximation to the causal 

influences among state variables serves to reduce the complexity of the model and 

parameterises the model directly in terms of first order connectivity and its changes 

with input (the bilinear terms).  In the next section we deal the situations in which the 

input is unknown.  This precludes DCM because the likelihood of the responses 

cannot be computed unless we know what caused them. 

 

B Models for stochastic inputs – SEM and regression models 

When the inputs are treated as unknown, and the statistics of the outputs are only 

considered to second order, one is effectively restricted to linear or first-order models 

of effective connectivity.  Although it is possible to deal with discrete-time bilinear 

models, with white noise inputs, they have the same covariance structure as ARMA 

(autoregressive moving average) models of the same order (Priestly 1988 p66).  This 

means that, in order to distinguish between linear and nonlinear models, one would 

need to study moments higher than second order (c.f. the third order cumulants in bi-

coherence analyses).  Consequently, we will focus on linear models of effective 

connectivity under white stationary inputs.  These inputs are the innovations 

introduced in the last chapter.  There are two important classes of model here: These 

are structural equation models and ARMA models.  Both are finite parameter linear 

models that are distinguished by their dependency on dynamics.  In SEM the 

interactions are assumed to be instantaneous whereas in ARMA the dynamic aspect is 

retained explicitly in the model. 

   SEM can be derived from DCMs by assuming the inputs vary slowly in relation to 

neuronal and hemodynamics.  This is appropriate for PET experiments and possibly 

some epoch-related fMRI designs but not for event-related designs in ERP or fMRI.  

Note that this assumption pertains to the inputs or experimental design, not to the time 

constants of the outputs.  In principle, it would be possible to apply DCM to a PET 

study. 



  Consider a linear DCM where we can observe the states precisely and there was only 

one state variable per region 
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Here we have discounted observation error but allow stochastic inputs ),0(~ QNu .  

To make the connection to SEMs more explicit, we have expanded the connectivity 

matrix into off-diagonal connections and a leading diagonal matrix, modelling unit 

decay 10 −= AA .  For simplicity, we have absorbed C into the covariance structure of 

the inputs Q.  As the inputs are changing slowly relative to the dynamics, the change 

in states will be zero at the point of observation and we obtain the regression model 

used by SEM. 

 

 

   
uAx

uxA
x

10

0

)1(
)1(

0

−−=

=−

⇒=&

     22 

 

This should be compared with Eq(17) in Chapter 20 (Effective Connectivity).  The 

more conventional motivation for Eq(22) is to start with an instantaneous regression 

equation uxAx += 0  that is formally identical to the second line above.  Although 

this regression model obscures the connection with dynamic formulations it is 

important to consider because it is the basis of commonly employed methods for 

estimating effective connectivity in neuroimaging to data.  These are simple 

regression models and SEM.  

 

1 Simple Regression models 

uxAx += 0  can be treated as a general linear model by focussing on one region at a 

time, for example the first, to give 
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c.f. Eq(8) in Chapter 20 (Effective Connectivity) The elements of A can then be 

solved in a least squares sense by minimising the norm of the unknown stochastic 

inputs u for that region (i.e. minimising the unexplained variance of the target region 

given the states of the remainder).  This approach was proposed in Friston et al (1995) 

and has the advantage of providing precise estimates of connectivity with high 

degrees of freedom.  However, these least square estimators assume, rather 

implausibly, that the inputs are orthogonal to the states and, more importantly, do not 

ensure the inputs to different regions conform to the known covariance Q.  

Furthermore, there is no particular reason that the input variance should be minimised 

just because it is unknown.  Structural equation modelling overcomes these 

limitations at the cost of degrees of freedom for efficient estimation  

 

2 Structural equation modelling 

In SEM estimates of 0A  minimise the difference (KL divergence) between the 

observed covariance among the [observable] states and that implied by the model and 

assumptions about the inputs. 
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This is critical because the connectivity estimates implicitly minimise the discrepancy 

between the observed and implied covariances among the states induced by stochastic 

inputs.  This is in contradistinction to the instantaneous regression approach (above) 

or ARMA analyses (below) in which the estimates simply minimise unexplained 

variance on a region by region basis.  

 

C Quasi-bilinear models – PPIs and moderator variables 

There is a useful extension to the regression model implicit in Eq(22) that includes 

bilinear terms formed from known inputs that are distinct from stochastic inputs 



inducing [co]variance in the states.  Let these known inputs be denoted by v.  These 

usually represent some manipulated experimental context such as cognitive set (e.g. 

attention) or time.  These deterministic inputs are also known as moderator variables 

in SEM.  The underlying quasi-bilinear DCM, for one such input, is 
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Again, assuming the system has settled at the point of observation 
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This regression equation can be used to form least squares estimates as in Eq(23) in 

which case the additional bilinear regressors vx are known as psychophysiological 

interaction (PPI) terms (for obvious reasons).  The corresponding SEM or path 

analysis usually proceeds by creating extra 'virtual' regions whose dynamics 

correspond to the bilinear terms.  This is motivated by rewriting the last expression in 

Eq(26) as 
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It is important to note that psychophysiological interactions and moderator variables 

in SEM are exactly the same thing and both speak to the importance of bilinear terms 

in casual models.  Their relative success in the neuroimaging literature is probably 

due to the fact that they model changes in effective connectivity that are generally 

much more interesting than the connection strengths per se.  Examples are changes 

induced by attentional modulation, changes during procedural learning and changes 

mediated pharmacologically.  In other words, bilinear components afford ways of 

characterising plasticity and as such play a key role in methods for functional 

integration.  It is for this reason we focussed on bilinear approximations as a minimal 

DCM in the previous section. 



 

D Summary 

In summary, SEM is a simple and pragmatic approach to effective connectivity when 

(i) dynamical aspects can be discounted, (ii) a linear model is sufficient and (iii) the 

state variables can be measured precisely and (iv) the input is unknown but stochastic 

and stationary.  These assumptions are imposed by ignorance about the inputs.  Some 

of these represent rather severe restrictions that limit the utility of SEM in relation to 

DCM or state-space models considered next..  The most profound criticism of simple 

regression and SEM in imaging neuroscience is that they are models for interacting 

brain systems in the context of unknown input.  The whole point of designed 

experiments is that the inputs are known and under experimental control.  This 

renders the utility of SEM for designed experiments somewhat questionable. 

 

 

IV MULTIVARIATE ARMA MODELS 

 

ARMA models can be generally represented as state-space (or Markovian) models 

that provide a compact description of any finite parameter linear model.  From this 

state-space representation MAR models can be derived and estimated using a variety 

of well-established techniques.  We will focus on how the state-space representation 

of linear models of effective connectivity can be derived from the dynamic 

formulation and the assumptions required in this derivation. 

   As in the previous section let us assume a linear DCM in which inputs comprise 

stationary white noise ),0(~ QNu that are offered to each region in equal strength 

(i.e. C = 1).  This renders Eq(3) a linear stochastic differential equation (SDE) 
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The value of x at some future lag comprises a deterministic and a stochastic 

component η  that obtains by regarding the effects of the input as a cumulation of 

local linear perturbations 
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Using the assumption that the input is serially uncorrelated 

 





≠
=

=++
21

21
21 ,0

,
)()(

σσ
σσ

σσ
Q

tutu T   

 

the covariance of the stochastic part is 
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It can be seen that when the lag is small 1→Aeσ  and QW ≈ .   

 

Equation (29) is simply a MAR(1) model that could be subject to the usual analysis 

procedures. 
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By incorporating the output transformation and observation error we can augment this 

AR(1) model to a full state-space model with system matrix AeF τ= , input matrix  

WG = and observation matrix L. 
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where z is some white innovation that models dynamically transformed stochastic 

input u.  This formulation would be appropriate if the state variables were not directly 

accessible and observation noise tε  was large in relation to system noise tz . 

  A first-order AR(1) model is sufficient to completely model effective connectivity if 

we could observe all the states with reasonable precision.  In situations where only 

some of the states are observed it is possible to compensate for lack of knowledge 

about the missing states by increasing the order of the model. 
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Similar devices are using in the reconstruction of attractor using temporal embedding 

at various lags.  Note that increasing the order does not render the model nonlinear, it 

simply accommodates the possibility that each region's dynamics may be governed by 

more than one state variable.  However, increasing model order looses any direct 

connection with formal models of effective connectivity because it is not possible to 

transform an AR(p) model into a unique DCM.  Having said that AR(p) models may 

be very useful in establishing the presence of coupling even if the exact form of the 

coupling is not specified (c.f. Volterra characterisations). 

   In summary, discrete-time linear models of effective connectivity can be reduced to 

multivariate AR(1)  (or, more  generally ARMA(1,1)) models, whose coefficients can 

be estimated given only the states (or outputs) by assuming the inputs are white 

Gaussian and enter with the same strength at each node.  They therefore operate under 

the same assumptions as SEM but are true time-series models.  The problem is that 

MAR coefficients in F can only be interpreted as effective connections when (i) the 

dynamics are linear and (ii) all the states can be observed though the observation 

matrix.  In this case 
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Compare with Eq(19).  However, high-order MAR(p) do represent a useful way of 

establishing statistical dependencies among the responses, irrespective of how they 

are caused. 

 

     Figure 2 about here 

 

V CONCLUSION 

 

We have reviewed a series of models, all of which can be formulated as special cases 

of DCMs.  Two fundamental distinctions organise these models.  The first is whether 

they pertain to the coupling of inputs and outputs by the nonlinear transformations 

enacted among hidden states of a single region or whether one is modelling the lateral 

interactions among the state variables of several systems, each with its own inputs and 

outputs.  The second distinction (see Figure 2)  is that between models that require the 

inputs to be fixed and deterministic as in designed experiments and those where the 

input is not under experimental control but can be assumed to be well behaved 

(usually i.i.d.  Gaussian).  Given only information about density of the inputs, or the 

joint density of the inputs and outputs imposes limitations on the model of effective 

connectivity adopted.  Unless one embraces moments greater than second order only 

linear models can be estimated. 

   Many methods for non-linear system identification and casual modelling have been 

developed in situations where the systems' input was not under experimental control 

and, in the case of SEM, not necessarily for time-series-data.  Volterra kernels and 

DCMs may be especially useful in neuroimaging because we deal explicitly with 

time-series data generated by designed experiments. 
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Legends for Figures 

 

Figure 1 

Schematic depicting the difference between analyses of effective connectivity that 

address the input-output behaviour of a single region and those that refer explicitly to 

interaction among the states of multiple regions. 

 

Figure 2 

Overview of the models considered in this chapter.  They have been organised to 

reflect their dependence on whether the inputs are known or not and whether the 

model is a time-series model or not. 
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