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Temporal autocorrelation, spatial coherency, and
their effects on voxel-wise parametric statistics were
examined in BOLD fMRI null-hypothesis, or “noise,”
datasets. Seventeen normal, young subjects were
scanned using BOLD fMRI while not performing any
time-locked experimental behavior. Temporal autocor-
relation in these datasets was described well by a
1/frequency relationship. Voxel-wise statistical analy-
sis of these noise datasets which assumed indepen-
dence (i.e., ignored temporal autocorrelation) rejected
the null hypothesis at a higher rate than specified by
the nominal a«. Temporal smoothing in conjunction
with the use of a modified general linear model (Wors-
ley and Friston, 1995, Neurolmage 2: 173-182) brought
the false-positive rate closer to the nominal «. It was
also found that the noise fMRI datasets contain spa-
tially coherent time signals. This observed spatial
coherence could not be fully explained by a continu-
ously differentiable spatial autocovariance function
and was much greater for lower temporal frequencies.
Its presence made voxel-wise test statistics in a given
noise dataset dependent, and thus shifted their dis-
tributions to the right or left of 0. Inclusion of a “glo-
bal signal” covariate in the general linear model re-
duced this dependence and consequently stabilized (i.e.,
reduced the variance of) dataset false-positive rates.
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INTRODUCTION

The detection of changes in neural activity using
blood oxygenation level-dependent functional magnetic
resonance imaging (BOLD fMRI; Kwong et al., 1992;
Ogawa et al., 1993) generally involves the identification
of voxel signals which correlate with an imposed experi-
mental paradigm (Bandettini et al., 1993). Theoretical
null-hypothesis probability distributions are used to
determine the probability of obtaining a given or greater
relationship due to chance alone. A valid statistical
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model is necessary for the actual expected false-
positive rate for an experiment (also referred to as type
I error or false alarms) to equal the theoretically
expected false-positive rate. The validity of a statistical
model depends upon the extent to which the data in
guestion satisfy the model's assumptions. Typically,
fMRI data are analyzed with some variant of the
general linear model (GLM); i.e., correlations, t tests, or
multiple regression (Friston et al., 1995d). An impor-
tant assumption of the GLM is the independence of
observations. When this assumption is violated, esti-
mates of parameter errors can be inappropriate, lead-
ing to expected false-positive rates not in agreement
with theory (Worsley and Friston, 1995). Observations
have been made that suggest that fMRI data are
temporally autocorrelated (or nonindependent in time;
Weisskoff et al., 1993; Friston et al., 1994; Boynton et
al., 1996), thus calling into question the validity of the
GLM for fMRI data. Our first aim was thus to character-
ize the intrinsic autocorrelations in fMRI time-series
data. Using gradient echo—echoplanar fMRI, we col-
lected “noise” datasets in which subjects were neither
required to perform any experimentally time-locked
behavior nor exposed to any time-varying experimental
stimuli. If the fMRI data are independent in time, we
would expect the spatially averaged power spectrum of
fMRI time-series to be flat. The power spectra of the
noise datasets were thus used to test for autocorrela-
tion by looking for consistent characteristics of their
structure. Two specific models (a 1l/frequency model
and a decaying exponential model) were compared for
their ability to describe the noise power spectra. Data
from water phantoms were also collected to allow (by
comparison with the human datasets) consideration of
physiological mechanisms of autocorrelation.

Worsley and Friston (1995) have provided a modified
GLM in which the assumed autocorrelation structure
of the data can be incorporated. In their analysis, they
assumed an autocorrelation structure determined by a
Poisson filtering of the data. It has been previously
suggested that intrinsic temporal autocorrelation (i.e.,
autocorrelation present in the raw data before exog-
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enous temporal filtering is applied in processing) might
be negligible compared to the autocorrelations intro-
duced after smoothing (Fristonetal., 1995c). We wished
to test this assumption empirically. We also wished to
see if the satisfaction of this assumption depended on
the specific smoothing filter used. The noise datasets
were analyzed using the modified GLM with differing
models of intrinsic autocorrelation and two types of
temporal smoothing kernels (one band slightly broader
than the other). In these analyses, we assumed a
periodic “on—off” behavioral paradigm. Since no time-
locked task was performed, the null hypothesis should
be true. The observed false-positive rates for the test
statistic corresponding to the assumed task parameter
obtained from the various versions of the modified
GLM analyses were compared to the expected false-
positive rate derived from theoretical test statistic
distributions.

Another question regarding fMRI analysis is the
possibility of spatial coherency (i.e., the presence of
cross-correlations of voxel time series) in fMRI noise
datasets which have not been spatially smoothed dur-
ing processing. Spatial coherency of voxel time series is
an important issue because certain statistical methods
make assumptions about independence of the depen-
dent variables under the null hypothesis. One type of
spatial coherency that has been observed in neuroimag-
ing data is typically referred to in positron emission
tomography (PET) as “global flow” (Friston et al., 1990),
which is simply the average measured blood flow for the
entire volume. In fMRI there is at least a superficial
analogue which we will refer to as the “global signal”
and which we define as the average brain voxel time
series (the global signal is thus a time signal). This
global signal may be used to assess if the voxel time
series are, to some extent, spatially coherent. Any such
observed spatial coherency could be due to a stationary,
continuously differentiable spatial autocovariance func-
tion or to other types of spatial smoothness. The former
type of spatial smoothness is relevant in the context of
statistical parametric mapping techniques (Friston et
al., 1991; Worsley et al., 1992). Both types of spatial
smoothness were examined in this report.

It has been common practice to include a global
covariate in the analysis of PET studies (Friston et al.,
1990). Some fMRI studies (Friston et al., 1995b) have
included a global signal covariate as well. A possible
advantage to this method is that it may reduce spa-
tially coherent noise in the data, thus increasing power
to detect activations. The effect of this practice would
depend, in part, on the temporal and spatial nature of
the global signal in data in which the null hypothesis
was true. We therefore examined the spatial coherency
of the global signal. The effect of accounting for the
global signal on the specificity of the analysis of the
noise data was also directly examined by comparing the
GLM results obtained with and without a global signal
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covariate in the noise datasets. Additionally, the gross
spatial localization of the global signal was examined to
see if it segregated obviously to a particular tissue type
(gray matter, white matter, or ventricle). This informa-
tion is relevant in the context of attempting to deter-
mine if there are any physiological mechanisms contrib-
uting to spatial coherency, as well as in considering the
possible functional effects of including a global signal
covariate in analysis.

METHODS

MRI Technique

Imaging was carried out on a 1.5-T SIGNA scanner
(GE Medical Systems) equipped with a prototype fast
gradient system for echo-planar imaging. A standard
radiofrequency (RF) head coil was used with foam
padding to comfortably restrict head motion. High-
resolution sagittal T1-weighted images were obtained
in every subject. A gradient echo—echoplanar sequence
was used to acquire data sensitive to the BOLD signal
ata Tg = 2000 ms, Tg = 50 ms. Resolution was 3.75 X
3.75 mm in plane and 5 mm between planes. The
number of axial slices and images in time per slice are
provided for each dataset. Twenty seconds of “dummy”
gradient and RF pulses preceded the actual data acqui-
sition.

Motion Compensation

A slice-wise motion correction method was utilized
which removed spatially coherent signal changes via
the application of a partial correlation method to each
slice in time. For each axial slice at each time, a
difference image between that slice at Time t and that
slice at Time O (a Motion image) was correlated with an
image composed of the difference between the slice at
Time 0O shifted to the right 1 voxel and that same slice
shifted to the left 1 voxel (an X-shift image). The same
operation was performed for y shifts (using Y-shift
images). The X-shift and Y-shift images, weighted by
the strength of their respective correlations with the
Motion image, were subtracted from the image of the
slice at Time t. Thus, the rationale of this method was
to subtract out signal changes that correlated with
small (on the order of a voxel) translations in the x and
y dimensions. A conceptually similar method for motion
in the z dimension was then applied to each axial
image. A pseudo-Z-shift image was computed for each
axial slice by subtracting the average of the first 10
images (in time) from the average of the last 10 images.
The Z-shift image, weighted by its correlation with a
Motion image (computed after applying the corrections
described above for x and y shifts) was then subtracted
from the slice image at Time t. The rationale for the
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pseudo-Z-shift image was that translation in the z
dimension would occur steadily throughout the acquisi-
tion of images within a run.

Although this method does not take rotations into
account and does not compensate for x, y, and z motion
simultaneously, it is a rapid method that does reduce
the voxel variance and the appearance of artifacts
(unpublished observations). Of course, as it does not
actually correct for motion per se (in that it does not
actually solve for any transformation back to a refer-
ence image, but rather compensates for signal changes
that correlate with movement, a subtle but important
difference), it is less desirable in theory than a true
motion-correction algorithm.

Primary Group of Human Noise Datasets

Noise datasets were obtained by scanning 17 healthy,
young (22—-34 years of age, mean = 25; 12 M and 5 F)
subjects. Sixteen axial slices and 160 images/slice were
acquired per subject. Subjects were instructed to rest
with eyes open (to otherwise mimic experimental condi-
tions and to discourage sleep). The room was dim, but
lights from the control room were visible. Equipment
used in our laboratory to present stimuli during behav-
ioral imaging experiments [including an overhead pro-
jector plugged in inside the scanning room and an LCD
panel (InFocus systems panelbook 550) in the room
connected to a Macintosh 280c computer outside the
room] were kept on and in their standard setups to
include all sources of noise typical to our experiment
(see below). Characterization of intrinsic temporal auto-
correlation, examination of false-positive rates, and
examination of global signals were performed upon
these datasets as described.

Estimation of the BOLD Impulse Response Function

A separate behavioral dataset (Shin et al., 1995) was
used only for the purposes of determining the putative
impulse-response function (IRF) of the system mediat-
ing the transformation of neural activity to BOLD
signal. This dataset comprised a separate group of 12
subjects who performed a visuospatial discrimination
task that alternated with a sensorimotor control at
0.0125 Hz. The task was adapted from a study pre-
sented by Haxby and colleagues (1991). Subjects per-
formed one visuospatial discrimination every 5 s dur-
ing the experimental condition or a left-right
alternating button press every 5 s in the sensorimotor
control condition (for more details of the task, see
companion paper Aguirre et al., 1997, and Shin et al.,
1995). The scanning parameters were exactly the same
as those for the 17 human “noise” datasets. Using this
behavioral dataset, the signals from all parietal lobe
(i.e., posterior to central sulcus, superior to lateral
occipital sulcus, and sylvian fissure) voxels of a cluster
size of 2 or more and with R > 0.2 (cluster size and
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correlation threshold were arbitrarily chosen) were
averaged together to yield a group average activation
signal. No other results from this dataset will be
presented here (for other results see Shin et al., 1995).
Assuming a step function of neural input and linear-
ity and time invariance of the transformation of change
in neural activity to BOLD signal change, an estimate
of the BOLD IRF was obtained by subtracting the
group average activation signal shifted to the right 1
time point from the unshifted group average activation
signal. This method is based upon the invertibility of
the step transfer function, and essentially performs a
first-differencing operation on the observed discrete
time output signal (Oppenheim et al., 1983). This
method is to be contrasted with that of Friston and
colleagues (1994). In that report, the method used to
estimate the BOLD IRF did not rely on task effects, but
rather depended upon assumptions about the source of
correlated noise components in fMRI time series.

Conceptual Basis of Estimation of Intrinsic Temporal
Autocorrelation

The basic concepts used here to investigate temporal
autocorrelations will be briefly described. A periodic
discrete time signal can also be expressed as a discrete
signal in frequency with the same number of data
points and with no loss of information. The theory and
method behind this transformation is called the Dis-
crete Fourier Transform (or DFT; Oppenheim et al.,
1983). The squared magnitudes of the DFT vs fre-
guency are called the power spectrum. The power
spectrum function is a frequency domain representa-
tion of the autocorrelation function. Parseval’s relation
for discrete, periodic signals is a theorem that relates
the variance of a signal to the sum of its power
spectrum across frequency;,
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where the x, are the values of the discrete (time) signal
at time n, the a, are the DFT coefficients at frequency K,
and the sum is over one period of the signal in time or
over the harmonics of the fundamental frequency.
Parseval’s relation was used here to characterize the
proportion of the variance (or power) of fMRI time
series attributable to certain frequencies. In uncorre-
lated (or white) noise, the expected power is evenly
distributed across all frequencies. If there is a system-
atically uneven distribution of power across frequen-
cies, then the noise is autocorrelated (or colored).

Voxel-Averaged Power Spectra Determination

For this and all subsequent analyses, “brain voxels”
were defined as those with a minimum signal value
equal to 600 or greater. This signal value is consistently
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in a range that is well separated from the central
tendency of nontissue voxels in our data. Power spectra
were determined (by multiplying the DFT of each time
series by its complex conjugate) for each brain voxel.
These voxel power spectra were averaged across the brain
voxels to determine a “voxel-averaged power spectrum,” or
spatially averaged power spectrum, per dataset.

Equipment Contributions to fMRI Noise

To provide background data for the interpretation of
the results from the human noise datasets, scans of
water phantoms were performed in the presence or
absence of various pieces of electronic equipment. These
experiments were not meant, however, to provide quan-
titative baseline measures of noise. Two experiments of
this type were performed. The purposes of Experiment
1 were (a) to see if computers typically used for
stimulus presentation and recording of subject re-
sponse contribute any noise to fMRI time series and (b)
to see if there was any difference between computers in
any such noise contribution. The purpose of Experi-
ment 2 was to see if an additional piece of equipment,
an overhead projector/LCD panel (InFocus systems
panelbook 550) unit, contributed any noise to fMRI
time series. Within each experiment, the power spectra
were compared across conditions for effects of the
equipment on noise.

Experiment 1

Some conditions of the experiment involved manipu-
lating which particular computer (which was located
outside of the scanning room) fed a cable to the LCD
panel. This cable had a 64-MHZz filter installed and was
also grounded to the Faraday cage that surrounded the
scanning room. Three computers were tested: a Macin-
tosh 280c (portable; this was the computer used during
the collection of the primary group of human noise
datasets), a Power Macintosh 7100/80 (desktop), and a
Macintosh PowerBook 5300c (portable). There was an
additional condition in which the cable ran from near
(2—4 ft) the Macintosh 280c (turned on) into the LCD
panel, but the cable was not actually connected to the
computer. The purpose of this condition was to test the
idea that the cable could act as an antennae for RF
noise, even when not connected to a computer. A control
condition was one in which there was no cable running
into the room. In all conditions in Experiment 1 (includ-
ing the control) the overhead projector/LCD panel unit
was inside the scanning room and plugged in inside the
scanning room. A water phantom was scanned five
times under each condition with the same parameters
as the human subjects, except that a total of 30
gradient echo—echoplanar images in time were ob-
tained in each of five slices. The data that will be
presented for this experiment were processed with the
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method of motion compensation described above (i.e.,
the method that was used in the primary group of
human noise datasets).

Experiment 2

In one condition the overhead projector/LCD panel
unit was inside the scanning room and plugged in
there. A second condition did not have the overhead
projector/LCD panel unit inside the scanning room. A
water phantom was scanned three times under each
condition with the same parameters as the human
subjects, except that a total of 80 gradient echo—
echoplanar images in time were obtained in each of five
slices. The data that will be presented for this experi-
ment were processed with the method of motion compen-
sation described above.

Physiological Contributions to fMRI Noise

To determine if the structure (not the magnitude) of
noise differed between human subjects and water phan-
toms, a single human subject (normal male, age 26, who
was separate from the primary group of human noise
datasets) and a water phantom were scanned on the
same day. Specifically, the question of whether non-
white noise in fMRI time series was specific to humans
was addressed. In this experiment, there was no stimu-
lus presentation equipment inside the scanning room
for either the phantom (this was one of the conditions
from Experiment 2, above) or the human subject. The
human subject was scanned three times under each
condition with the same parameters as the primary
group of human subjects, except that a total of 80
gradient echo—echoplanar images in time were ob-
tained in each of 16 slices. The data that will be
presented for this experiment were processed with the
method of motion compensation described above.

Effect of Motion Correction on fMRI Noise

To determine the effects of motion correction on the
structure and magnitude of fMRI noise, the same
human noise dataset described directly above was
analyzed under four different conditions of motion
correction: (1) no motion correction, (2) the method of
motion compensation described above (that was per-
formed on the primary group of human noise datasets,
(3) two iterations of least-squares, 6-parameter, rigid-
body realignment using SPM96 (Friston et al., 1995a),
and (4) condition 3 followed by condition 2. The method
used in condition 3 has been shown (Friston et al.,
1995a) to be very similar to the frequently employed
AIR technique (Woods et al., 1992; Jiang et al., 1995).
The purpose of condition 4 was to see if there were any
additive effects of conditions 2 and 3. Additive effects
would suggest that the two methods were affecting
different signal components. For conditions 3 and 4, the
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images from all three separate runs (80 images per run)
were aligned to the first image of the first run. Correction
for spin history (Friston et al., 1996) was not performed.

False-Positive Rate Comparisons

Several versions of the GLM were applied to the
noise datasets to empirically determine false-positive
rates for an assumed behavioral paradigm effect. The
behavioral paradigm effect in these analyses is “as-
sumed” because the subjects were not actually engaged
in an experimental paradigm. The temporal structure
of the assumed paradigm was designated to be a boxcar
with a fundamental frequency of 0.0125 Hz (40 s off/40
s on), which is in a range typical of that used in our and
other labs. The different GLM versions varied in terms
of temporal smoothing (i.e., temporal autocorrelation
introduced in processing), of assumed intrinsic autocor-
relation, and of inclusion of a global signal covariate.

Two different, but theoretically related, measures
were used to characterize false-positive rates in the
spatially unsmoothed noise datasets. One (hereafter
referred to as FP1) was the percentage of voxels in each
dataset with t values greater than the nominal upper
o« = 0.05 threshold. This is a gross measure of the width
of the distributions. Thus, the theoretically expected
value of FP1 was 5%. The second false-positive mea-
sure (hereafter referred to as FP2) was the proportion
of datasets that contained at least one voxel with a t
value whose absolute value was greater than the
two-tailed nominal « = 0.05 Bonferroni corrected
threshold. Thus, the theoretically expected value of
FP2 was also 5%. FP2 may differ in information from
FP1 if the temporal autocorrelation structure is not
stationary in space. For example, if there is a relatively
small subset of voxels in each dataset that, for what-
ever reason, has a much greater ratio of [power at the
paradigm frequency]:[power at other frequencies] com-
pared to the rest of the dataset, then there will be many
datasets that contain voxels that surpass the Bonfer-
roni corrected threshold even though the distribution of
test statistics may not be that much broader than
theoretically expected. This is because the autocorrela-
tion model was derived from whole-brain voxel-aver-
aged power spectra and thus assumed temporal autocor-
relation that was stationary in space. The hypothesis
that the central tendency of FP1 was different from 5%
was tested with the signed rank test (two-tailed). The
hypothesis that FP2 was greater than 5% was tested
with the binomial distribution (one-tailed, as there was
no power to test that the FP2 was less than 5%). Both
hypotheses were tested in each version of the GLM.

Components of the General Linear Model

The modified GLM presented by Worsley and Friston
(1995) was used in all of the analyses. In their terminol-
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ogy, X* is the dependent variable after all temporal
filtering has been applied, K is a convolution matrix
representing all assumed temporal autocorrelations
(both intrinsic and exogenously introduced during pro-
cessing) present in X* under the null hypothesis, and
G* is the matrix of independent variables used in the
regression.

It must be clear that we were not testing the theoreti-
cal validity of the modified GLM of Worsley and Friston
(1995) in these analyses. Rather, we were testing the
extent to which the properties of the particular tempo-
ral filter used in processing sufficed to describe the net
temporal autocorrelation of BOLD fMRI data such that
the observed statistical behavior was close to theoreti-
cal distributions. We also were testing the effect of the
inclusion of estimates of intrinsic autocorrelation on
the validity of the model.

A schematic diagram of the time/frequency filtering
of the components of the regression model is shown in
Fig. 1. Time/frequency filters were used in some analy-
ses to smooth the data. The purpose of the temporal
smoothing was to mimic a real analysis in which
smoothing with a filter that closely matches the hemo-
dynamic response function maximizes signal to noise
(as proposed by Friston et al., 1995c). One type of
smoothing kernel used was an estimate of the BOLD
IRF obtained from our behavioral dataset as described
above. The other was a Poisson kernel (parameter = 8
s) taken from Friston et al. (1994). The purpose of using
two different filters was to see if the stringency of the
low-pass filter impacted the validity of the GLM when
intrinsic autocorrelation was ignored (as our IRF esti-
mate passes more high frequencies than the Poisson).
The same filters were also applied to the idealized
neural response (a boxcar in this case) twice (once using
both magnitude and phase information and once using
only magnitude information, Fig. 1B) to match the
double filtering of any putative fMRI response (once by
intrinsic physiology, once in processing). This double
filtering is more important for signal detection than for
a false-positive analysis, but was done for completeness
and comparability to analyses that, at other times,
would be performed on behavioral datasets (see compan-
ion paper, Aguirre et al., 1997).

A notable addition to the method described in Wors-
ley and Friston (1995) is the use in some analyses of an
empirical estimate of the intrinsic autocorrelation struc-
ture of fMRI noise data in K. As originally described,
the K matrix contained only the effects of the filtering of
the smoothing kernels used in processing. In addition
to the effect of smoothing kernel, the effect of intrinsic
autocorrelation was modeled in K in some analyses.
Our estimate of intrinsic autocorrelation was obtained
from the power spectra of the fMRI noise data. A model



184

ZARAHN, AGUIRRE, AND D’ESPOSITO

Neural Activity
E;“ésg’:gg;gﬂy Filtered Filter with IRF
(without delay)
Other Correlated Raw in Processing Regression
A | Physiological Components| ———— - {\R] ——-  Dependent
Motion Effects Data Variable (X*)
Thermal Noise
Scanner/System Noise
Filter with IRF Filter with IRF
(with delay) (without delay)
Ideal Expected Regression
B Neural fMRI Independent
Response e Rosponse TP Tack Variable
(Used in G*)
Filter with Filter with IRF
Intrinsic (without delay)
. Magnitude
C _Ii_)'lscrete Spectrum (1/F) Kernel ' Kernel
ime Representing Representing
Impulse —- Intrinsic Autocorrelation
Autocorrelation of X*
of Raw fMRI (Used in K)
Data

FIG. 1. Aschematic diagram of the steps performed to analyze the fMRI data in this report. The statistical framework used was the one
presented by Worsley and Friston (1995). (A) Outline of the temporal filtering of the fMRI data. This filtering includes all theoretical
contributions from physiology and the scanning system (i.e., intrinsic autocorrelation, shown in the box) and exogenously applied (i.e., applied
during processing) steps. (B) Outline of the generation of the behavioral paradigm independent variable used in the regression model. (C) The
generation of the K matrix, which should reflect all autocorrelation present in the dependent data under the null hypothesis (including both
intrinsic and exogenous). The terms “with delay” and “without delay” refer to the use or neglect of, respectively, phase information during the
filtering (convolution) process. Phase is neglected during convolution by using the magnitude of each Fourier coefficient of the filter instead of
using the complex values. All of these steps, except those shown in the box in (A), were explicitly performed in this report.

of the form

a)| = ————+ ks (1)
kl (E + kz)
where |a(w)| is the magnitude of the DFT at frequency
w, and k; through k; are model parameters, was used to
fit different noise spectra using iterative, nonlinear
least squares (“curvefit” routine IDL, Boulder, CO).
These spectra included the square root of the grand
average (across the first 13/17 of the noise datasets) of
the voxel-averaged power spectra, as well as the square
root of the voxel-averaged power spectrum of each
individual dataset. This model was chosen because it fit
the data best in preliminary datasets. This function of
frequency was DFT! to obtain a time-domain kernel
representing the intrinsic autocorrelation of fMRI data.
This kernel was incorporated into K. If a particular
statistical analysis also involved smoothing the data,
then the kernel representing intrinsic autocorrelations
was itself convolved with the smoothing kernel to
obtain the final K matrix (Fig. 1C). The purpose of

using a subset (13/17) of the total number of noise
datasets to generate the autocorrelation model was to
allow a qualitative testing of the reliability of this
model in the remaining (4/17) subjects.

Separate model parameters for Eqg. (1) were deter-
mined for analyses that included the global signal as a
covariate. The rationale was that the K matrix should
reflect autocorrelation under the null hypothesis, and
that when the model included a global signal covariate, the
null hypothesis would be true in data that did not have this
signal component. In these cases, the parameters for Eq.
(1) were obtained from voxel-averaged power spectra from
datasets that had the effects of global signal removed from
each voxel via the use of partial correlations.

A decaying exponential model of the form,

a(w)| = ky - 87 + kg, 2
was also fit to the voxel-averaged power spectrum (and
its square root) of each individual dataset. This model
was chosen to compete with Eq. (1) as it is also a
decreasing function with a positive second derivative
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FIG. 2. Power spectra of human BOLD fMRI “noise” data. (A) plot of the voxel-averaged power spectra vs temporal frequency for 13/17 of
the noise datasets. The power spectrum of each dataset is shown in a different color. A general pattern of increasing power with decreasing
frequency is consistent, but the degree of this relationship seems to vary between datasets. The x and y axes are log,o scaled. (B) A plot of the
square root of the grand average power spectrum vs temporal frequency for 13/17 of the noise datasets is shown (open diamonds) with its fit to
Eg. (1). In addition, the analogous data for the remaining 4/17 noise datasets is shown (small crosses) with its fit. The magnitude of the
frequency representation of our empirically derived impulse response function is also shown for comparison (thick solid line). The arrow and
vertical dashed line denote the fundamental frequency of the boxcar paradigm assumed in the statistical analyses (0.0125 Hz).

and horizontal asymptote. The explanatory power of (2)
was compared to that of (1) by comparing the difference
in mean square residuals for the fits of each dataset.
These differences (17 total) were tested against O with a
sign test (two-tailed, « = 0.05). If one model consis-
tently fit better than the other, then it would tend to
have a lower residual error.

Discrete time sines and cosines periodic with the
length of the time series (160 images) and with frequen-
cies below that of the fundamental frequency of the
assumed paradigm were included as covariates in all of
the analyses. Their shape does not change with linear
filtering as they are eigenmodes of linear systems.
Their inclusion high-pass filters the data to remove
poorly understood low-frequency components of the
data (Friston et al., 1995b). Even though we have
attempted to model power in all frequencies with the
empirically estimated autocorrelation, power in the
lowest frequencies seems to be more variable than
power in the higher frequencies (this can be observed in
Fig. 2A), and it was decided to remove their effects from
the analysis in this way. The global signal (obtained as
explained above) was included as a covariate in some
analyses.

Some analyses involved a “straight” boxcar correla-
tion with no assumed autocorrelation (i.e., assumed
independence), but were still performed using the

structure of the GLM of Worsley and Friston (1995) to
maintain rigid experimental control over any differ-
ences between the analyses. This was easily accom-
plished as the model can accommodate any assumed
autocorrelation structure by using the appropriate K.
In the assumed independence case, the kernel of K was
a discrete time impulse. The purpose of performing the
boxcar correlation was to compare the results of this
standard method of fMRI analysis (Bandettini et al.,
1993) with methods that take autocorrelation into
account.

Estimation of Smoothness Contributions Representable
by a Continuously Differentiable Spatial
Autocovariance Function

The statistical maps generated from each human
subject noise dataset (under the analysis conditions of
1/f model included in K, data smoothed with our
estimated IRF, and global covariate not in the model)
were subjected to in-plane (i.e., 2-D) smoothness estima-
tion using the method of Xiong et al. (1995). Their
measure of smoothness was | A,

2

3)
2+ |A|




186

where |A.| is the determinant of A,, the estimated
variance—covariance matrix of the partial derivatives of
the slice (Xiong et al., 1995). Methods that assume that
the smoothness of the data is large compared to voxel
size (Friston et al., 1991; Worsley et al., 1992) use | A¢| as
the measure of smoothness instead of |A. |A;| was
determined in each slice of each dataset (using map-
wise variances, see Aguirre et al., 1997), and an average
in-plane |A| per dataset was generated. The |A;| was
adjusted to be appropriate for describing the underly-
ing component processes of the statistical maps (Wors-
ley et al., 1992; Holmes, 1994). Each of these |A,| was
then converted into an effective FWHM for the corre-
sponding Gaussian kernel that would have led to that
|A{ if used to convolve a pixelated slice of multivariate
Gaussian data (see Appendix of Xiong et al., 1995):
FWHM = [4 In (2)(| A Y? — 1)]¥2 (4)
This FWHM measure is not affected by pixelation and
will be nearly 0 for a spatially uncorrelated dataset.

Global Signal and Spatial Coherency Measurement

The global signal for each dataset was determined by
computing the average time series across all brain
voxels. Power spectra were determined for these global
signals. If expected cross-correlations between voxels
are 0 (i.e., if off-diagonal elements of the voxel variance—
covariance matrix are expected to equal 0), then the
power spectrum of the global signal is expected to equal
the voxel-averaged power spectrum divided by the
number of voxels. If expected cross-correlations be-
tween voxels are unity (i.e., all off-diagonal elements of
the voxel variance—covariance matrix expected to equal
1), then the power spectrum of the global signal is
expected to equal the voxel-averaged power spectrum.
Based on this idea, a measure of spatial coherency (SC)
vs temporal frequency was determined for each dataset,

F)Sglobal signal(w) -V _

Svoxel averaged(w)

V-1 '

SC(w) = (5)

where PSgyiepal signai () is the power spectrum of the
global signal at temporal frequency o, PSyeer averaged (®)
is the voxel-averaged power spectrum at temporal
frequency o, and V is the voxel count for the dataset.
SC(w) was expected to be 0 if the expected cross-
correlation at zero-lag between voxels at temporal
frequency o was 0. SC(w) was expected to be 1 if the
expected cross-correlation at zero-lag between voxels at
temporal frequency o was 1. Intermediate values would
be expected under intermediate amounts of expected
cross-correlation.
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It is worthwhile to consider the differences between
the SC measure of Eq. (5) and the FWHM measure of
Eqg. (4). One difference between FWHM and SC is that
FWHM (as implemented here) examines spatial smooth-
ness primarily at one temporal frequency, the funda-
mental frequency of the behavioral paradigm frequency
used in generating the statistical map. In contrast, SC
is a measure of spatial smoothness vs temporal fre-
guency. It may come as a surprise to some that spatial
smoothness can vary as a function of temporal fre-
guency. However, if one considers each voxel time series
as a composition of sines and cosines at different
temporal frequencies, one can imagine that across
voxels the sines and cosines at some frequencies may be
more in phase than at other frequencies. The second
difference between FWHM and SC is that FWHM
measures components of spatial smoothness that can
be represented by a continuously differentiable autoco-
variance function. It is this component that is generally
referred to as “smoothness” when discussing map-wise
statistical methods like SPM (Friston et al., 1991,
Worsley et al., 1992). Though SC is also sensitive to this
component of smoothness (under most circumstances,
e.g., if one smooths with a Gaussian kernel), it is also
sensitive to other components of smoothness, namely
those that cannot be represented by a continuously
differentiable autocovariance function. An example of a
situation in which smoothness could not be represented
by a continuously differentiable autocovariance func-
tion would be in a dataset which comprised a spatially
uncorrelated component plus a signal component shared
by all voxels. In this case all the off-diagonal elements
of the voxel variance—covariance matrix would be ex-
pected to have the same positive value. The FWHM of
such a dataset would be 0. However, SC would detect
this spatial coherence. Thus, the use of both FWHM
and SC allowed the examination of different compo-
nents of spatial smoothness at the paradigm frequency.

The global signals were correlated voxel-wise with
their datasets of origin for several subjects to create
correlation maps. These maps represent the spatial
distribution of the relative presence of the global sig-
nals throughout the volumetric datasets. These maps
were thresholded at an arbitrary |R| > 0.2 and were
used to qualitatively test the idea that the global signal
segregated strongly to particular parts of the dataset
(i.e., gray matter, white matter, or ventricle) or strongly
resembled motion artifact (in which case we would
expect it to segregate to regions with large signal
gradients).

RESULTS

Characterization of Intrinsic Temporal Autocorrelation

Both the 1/f model [Eqg. (1)] and the decaying exponen-
tial model [Eq. (2)] converged for the voxel-averaged
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(A) The effect of various stimulus presentation computers on noise in a water phantom is shown. Different computers contributed

different amounts of white noise. (B) The effect of the overhead projector/LCD unit on noise in a water phantom is shown. No effect was
apparent. (C) The structures of the noise in a human and in a phantom are shown. Both human and phantom evidenced a 1/f component. (D)
The effect of motion correction procedure on the shape and magnitude of the power spectrum of human “noise” is shown (no stimulus
presentation equipment was present during the acquisition of these data). Motion correction seems to preferentially reduce noise at lower
frequencies. Also, our method of motion compensation seemed to affect a superset of the variance components reduced by the rigid-body
transformation. The x axis is logyo scaled in D to better display the lower frequency range. All power spectra are averaged across space and

datasets (n = 3 datasets per condition).

power spectra of each of the 17 human noise datasets.
However, Eqg. (1) tended to model more of the variance
than Eq. (2) [15/17 mean squared residuals were less
for Eq. (1) than for Eq. (2), P < 0.0023, Sign test). This
result, in conjunction with the absolute adequacy visu-
ally of the 1/f model (Fig. 2B), led us to accept a 1/f
model over a decaying exponential model as the form of
the frequency domain description of the intrinsic auto-
correlation of BOLD fMRI data.

The voxel-averaged power spectra of 13/17 noise

datasets are shown in Fig. 2A. Even though Eq. (1) fit
the voxel-averaged power spectra of all of the datasets
reasonably, all the voxel-averaged power spectra did
not appear to be realizations of the same process. No
statistical test was performed, however, to rigorously
test this idea. In addition to the 1/f component, there
was a white noise component to the signal as seen in
Fig. 2A (also observed by Weisskoff et al., 1993, and
Boynton et al., 1996). This is expected as the fMRI
signal is not purely physiological in origin but also has
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contributions from other noise sources. The square root
of the grand average of these same power spectra is
shown in Fig. 2B, along with the nonlinear, least-
squares fit using Eq. (1). This particular fit was used as
a frequency domain representation estimate of the
expected intrinsic autocorrelation of human fMRI data
for our system (when the global signal was not used as a
covariate, see Methods).

The square root of the grand average of the other 4/17
noise dataset power spectra and its fit are also shown in
Fig. 2B. It can be seen that though a 1/f model of the
form given in Eq. (1) still fits these data adequately, the
shape is different from the fit obtained with the other
13/17 datasets. It is apparent that the 4/17 datasets
had a greater white noise component than the 13/17, on
average. There was indirect evidence that this discrep-
ancy was due to the appearance of an RF noise source
from the stimulus presentation computer (see Meth-
ods) toward the end of the several months taken to
collect these datasets. We now present the results of
studies aimed at characterizing contributions to our
observed noise spectra from equipment, physiology,
and motion correction procedures, respectively.

Characterization of Contributions to Noise Spectra

The primary group of 17 human noise datasets was
acquired in the presence of stimulus presentation equip-
ment to mimic conditions that would exist during the
performance of behavioral paradigms. This equipment
included an overhead projector/LCD panel unit and a
Macintosh 280c computer. As mentioned above, the
white noise component present in the last datasets
collected was higher than in earlier datasets, suggest-
ing the emergence of a new RF noise source. Though
this idea could not be tested directly, a study using a
water phantom showed that the use of computers in
general during scanning did increase white noise (this
study was performed after the collection of the 17
human noise datasets; Fig. 3A). In addition, the magni-
tude of the noise depended upon the specific computer
used, with the computer used in the primary group of
human noise studies (the 280c) showing the greatest
noise of the three tested. A control condition in which a
cable that fed into the scanner room was not hooked up
to any computer showed that the cable was not acting
as a nonspecific antennae for RF noise. In contrast to
the computer contributions, the overhead projector/
LCD panel unit did not increase noise (Fig. 3B).

We wished to determine if the 1/f component of the
noise observed in the human subjects was necessarily
due to a physiological cause. An average (across three
runs) human noise power spectrum (from a single
subject, separate from the primary group of 17, and
acquired in the absence of any equipment) was com-
pared to that of a phantom (the same one whose data
are presented in Figs. 3A and 3B). Both evidenced a 1/f
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component (Fig. 3C). This shows that the presence of a
1/f component does not imply a physiological source.

The results presented above (in Figs. 2A, 2B, and
3A-3C) are for data processed with the motion compen-
sation method presented under Methods. This proce-
dure is not a true motion correction (as explained under
Methods). We wished to determine if the presence of the
1/f component could be attributable completely or in
part to motion due to the use of a possibly ineffectual
motion correction method. Figure 3D compares voxel-
averaged power spectra for a single set of human
“noise” data (the same presented in Fig. 3C) processed
with a true motion correction method (the least-
squares, 6-parameter, rigid-body realignment routine
of SPM96) to that processed with our motion compensa-
tion method. The power spectrum resulting when no
motion correction was applied is also shown, as well as
that resulting from SPM96 motion correction followed
by our motion compensation method. This last condi-
tion was performed to see if there were any additive
effects of the two treatments. The effect of motion
correction/compensation on the power spectra was
larger at the lower temporal frequencies. Data pro-
cessed in the absence of motion correction yielded the
largest 1/f component (relative to the flat frequency
response), suggesting that motion makes a contribu-
tion to this component. However, data processed under
each of the motion correction procedures, including the
combined method, evidenced a 1/f component. The lack
of a substantial additive effect of SPM96 motion correc-
tion and our method suggests that they affect similar
signal components and that, by inference, the 1/f compo-
nent observed in the primary group of 17 subjects
(processed with our motion compensation method alone)
could not be attributed to the first-order effects of
motion.

Comparison of BOLD IRF Estimate with Intrinsic
Autocorrelation Structure

An estimate of the neural activity to BOLD IRF
obtained from the behavioral dataset is shown in time
in Fig. 4. Neither the filtering characteristics of this
IRF estimate nor those of other putative IRFs obtained
from activation data reported (Bandettini, 1993, as
presented in Friston et al., 1994; Boynton et al., 1996)
are sufficient to explain the observed intrinsic autocor-
relation in BOLD data. There are two remarkable
differences between the IRFs and the observed intrinsic
autocorrelation. One such difference is the presence of a
white noise, or flat frequency response, component.
This is not unexpected as only those variance compo-
nents of the fMRI time series that conformed to convo-
lution of the underlying neuronal processes would have
temporal autocorrelations corresponding to the IRF
(Friston et al., 1994). It is expected that there are
uncorrelated components to the fMRI signal, such as
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putative impulse response

time (sec)

FIG. 4. Two putative BOLD impulse response functions are
shown. Our estimated IRF, obtained from a behavioral dataset, is
represented by black circles. The IRF proposed by Friston et al.
(1994), modeled as a Poisson function with a parameter of 8 s (that
has been deconvolved with a Gaussian, ¢ = 1.9 s to account for
processing performed in Friston et al., 1994), is represented by
diamonds. The Poisson IRF estimate is broader in time and thus cuts
off at a lower frequency than our IRF estimate.

scanner noise, in addition to the autocorrelated compo-
nents evoked by neural processes.

A second, perhaps more unexpected, difference be-
tween the IRFs and the observed intrinsic autocorrela-
tion is that the IRF filtering nearly levels off in the
range of frequencies typically used as task frequencies
(0.0083-0.025 Hz) while the observed intrinsic autocor-
relation in the noise is sharply rising in this range (Fig.
2B). It thus appears that the 1/f component we have
observed in human “noise” data cannot be explained by
the convolution of neuronal processes (Friston et al.,
1994) by a low-pass filter akin to those reported in the
literature from activation data (Bandettini, 1993; Boyn-
ton et al., 1996).

The Poisson kernel (parameter = 8 s) suggested by
Friston and colleagues (1994) is also shown in Fig. 4 for
comparison with the IRF estimate obtained here. The
Poisson is slightly broader in time and is thus a more
stringent low-pass filter than the BOLD IRF estimate.
An explanation of why these two kernels are different is
that they were obtained with different methods that
relied on different assumptions. The method used here
to obtain an IRF estimate (that is, using fMRI activa-
tion responses) made two assumptions, (1) that the
system mediating the transformation of neural signal
to fMRI signal change was linear-time invariant and (2)
the change in neural input was approximately a step
function. The first assumption has recently been shown
not to hold for short durations of stimulation though it
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may be a reasonable approximation for longer dura-
tions of stimulation (Vasquez and Noll, 1996; Boynton
etal., 1996). The second assumption was not tested, but
we feel confident that neural dynamics do respond
faster than hemodynamics, thus ensuring that the
initial rise time seen in the BOLD IRF estimate is not
due to a neural response blurred on the time scale of
seconds. In contrast, Friston and colleagues (1994)
used the phase-shifted differences of fMRI time series
to estimate the IRF. In doing so, Friston and colleagues
made three assumptions: (1) Again, that the system
mediating the transformation of neural signal to fMRI
signal change was linear-time invariant, (2) that the
intrinsic autocorrelation present in fMRI data was due
entirely to the transfer function of said linear system,
and (3) that the transfer function would be modeled
well by a Poisson in time. It would seem that assump-
tion 2 is not supported by the data presented here.
Other data showing the disparity between the func-
tional response of the BOLD fMRI signal and the
temporal autocorrelation present in the fMRI data
have been recently reported by Boynton and colleagues
(1996).

The Effect of Assumed Temporal Autocorrelation on
False-Positive Rates

The fMRI noise datasets were analyzed with versions
of the GLM that varied in their assumed temporal
autocorrelation (that was modeled in the K matrix).
False-positive measures from these different analyses
were compared to theoretically expected (i.e., tabular)
false-positive rates. In all the analyses described in this
section, the global signal was included as a covariate
because (1) the purpose of the analyses of this section
was not to determine the effect of the global signal (thus
obviating the need to describe all of the analyses with
and without the global signal, as there were no appar-
ent interactions) and (2) its inclusion as a covariate was
judged to increase validity in other analyses that did
examine its effect (presented in the following section).

When independence was assumed, both false-posi-
tive measures were significantly greater than theoreti-
cally expected (median FP1 = 6.4%, P < 0.023;
FP2 = 10/17 maps, P < 1.4 X 1079). This type of regres-
sion analysis corresponds closely (except for the inclu-
sion of the global signal covariate and low frequency
confounds) to the “straight” boxcar correlation. These
results suggest that the use of this type of analysis
should not be expected to yield false-positive rates in
accord with tabular values. The discrepancy was par-
ticularly egregious when considering map maxima (i.e.,
FP2).

If the 1/f autocorrelation model obtained from the
square root of the grand average power spectrum
correctly describes the expected intrinsic autocorrela-
tion, then its inclusion in the K matrix should bring the
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false-positive rate close to the tabular value. This
statement was confirmed with simulations on computer-
generated, uncorrelated noise that was filtered with a
particular 1/f model and then analyzed with the modi-
fied GLM using this same kernel in the K matrix (data
not shown). However, when the empirically estimated
autocorrelations were used as the model on the actual
noise data, a paradoxical effect was observed. FP1 was
significantly less than tabular values, while FP2 was
significantly greater than tabular values (median
FP1 = 3.1%, P < 0.0023; FP2 = 5/17 maps, P < 0.0012).
This result supports the use of both false-positive
measures, and calls into question the validity of the
autocorrelation model. While the autocorrelation model
fits the average power spectra quite well (Fig. 3B), the
average was across both voxels and datasets. The
model would only be valid if the expected autocorrela-
tion was the same in every voxel in every dataset. As
FP1 is significantly less than tabular values, the auto-
correlation model is systematically overestimating in-
trinsic autocorrelation on a voxel-wise basis. However,
that FP2 is greater than tabular values shows that the
autocorrelation model is systematically underestimat-
ing intrinsic autocorrelation in at least some subpopula-
tion of voxels in at least some of the datasets. The use of
voxel-averaged power spectra to derive a model of
intrinsic autocorrelation (the method used here) as-
sumed that the expected temporal autocorrelation was
stationary in space (i.e., every voxel had the same
expected temporal autocorrelation). This result shows
that this initial assumption was not satisfied. However,
the inclusion of the estimate of intrinsic autocorrela-
tion in the analysis did reduce both FP1 and FP2
compared to the assumed independence case, as ex-
pected.

When the data were smoothed with our empirically
derived BOLD IRF, and the 1/f model of intrinsic
autocorrelation was included, FP1 was significantly
less than tabular values while FP2 was not greater
than tabular values (median FP1 = 3.1%, P < 0.013;
FP2 = 1/17 maps, P < 0.58). In an otherwise identical
analysis, which ignored intrinsic autocorrelation, FP1
was significantly greater than tabular values, while
FP2 had a trend toward being greater (median
FP1 = 5.9%, P < 0.013; FP2 = 3/17 maps, P < 0.0503).
Thus, when smoothing with this filter and ignoring
intrinsic autocorrelation, FP1 was significantly greater
than theoretically expected, while FP2 had a trend in
the same direction. When the intrinsic autocorrelation
was taken into account, the false-positive rates were
brought to a level that was not greater than tabular
values, though FP1 was now significantly less than
tabular values.

The final two analysis versions employed a different
smoothing kernel: a Poisson kernel with parameter = 8
s (Friston et al., 1994). When this kernel was used and
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intrinsic autocorrelation was taken into account, FP1
was significantly less than tabular values (median
FP1 = 1.8%, P < 0.0003; FP2 = 0/17 maps, P <1).
When intrinsic autocorrelation was ignored, neither
FP1 nor FP2 differed from expected (median
FP1 = 5.4%, P < 0.332; FP2 = 2/17 maps, P < 0.208).
Thus, filtering with the Poisson kernel yielded false-
positive rates at levels not significantly different from
tabular values. However, attempting to additionally
model intrinsic autocorrelation caused the false-
positive rates to fall below tabular values.

The variation in FP1 between datasets was much
greater than would be expected if the test-statistic
values from all of the datasets were sampled from the
same population. If they were from the same popula-
tion, then we may look at the FP1 of each dataset as a
sample proportion and the sample of these measures as
a sample of sample proportions. From the binomial
distribution, the variance of a sample proportion with
true proportion p,, is p.* (1 — po)/n, where n is the
sample size used in calculating each proportion (here
equal to the number of voxels per dataset). The small-
est n for the datasets (that would thus yield the
maximum calculated variance) was about 10,000 vox-
els. This gives an expected variance of 3.5 X 107% when
p, = 0.036 (= the mean value of FP1 obtained for the
analysis with our empirically derived IRF as the tempo-
ral smoothing kernel, intrinsic autocorrelations mod-
eled, and global signal included as covariate), while the
sample variance of FP1 (for this particular analysis)
was 2.4 X 1074 (approximately 70 times larger than
expected). As this analysis included a global signal
covariate, the statistical effect of the global signal could
not be the cause of this observation (see below for a
description of the statistical effect of the global signal).
This suggests systematic variations in statistical prop-
erties between datasets, perhaps due to systematic
variations in temporal autocorrelation as suggested by
Fig. 2A. Another possible explanation is that there
were differences across datasets in the extent of the
violation of normality.

Global Signal Characterization

A global signal from a randomly chosen noise dataset
is shown in Fig. 5A. There is a great deal of structure
evident, indicative of temporal autocorrelation. It can
be seen that in this particular subject there exists a
pattern in time that anti-correlates (R = —0.33) with
the assumed behavioral paradigm (which is plotted as a
reference). The assumed paradigm is an experimental
artifice as it did not occur, but its structure in time is
typical of that commonly used in fMRI studies. This
global signal also provides an example of the relatively
high spurious correlations that can be observed
(P < 0.00001 if independence is assumed) when tempo-
ral autocorrelation is present, but not considered.
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FIG.5. Characterization of the global signal. (A) Plot of the global signal from a randomly selected noise dataset (circles). Overlaid is a plot
of the “assumed” behavioral paradigm (0.0125-Hz square wave). The temporal structure (i.e., autocorrelation) present in the global signal is
evident. (B) Shown is the SC measure (defined under Methods) vs frequency. Data for both the human noise datasets (averaged across 17
subjects) and the computer-generated noise (averaged across five 30 X 30 X 10 datasets which were smoothed with a 3-D Gaussian kernel of
FWHM = 1.1 voxels) are presented. The presence of SC values >0 at all temporal frequencies in the human noise demonstrates that spatially
coherent signal exists in human subject fMRI datasets. That the SC for the human noise datasets at the paradigm frequency (arrow) is two
orders of magnitude greater than the SC for computer-generated noise spatially smoothed with a Gaussian kernel of FWHM = 1.1 voxels
(which is greater than that of the component fields estimated from the statistical maps of human noise) shows that the SC cannot be entirely
explained by a continuously differentiable autocorrelation function. The spatial coherence of human noise is greater at lower frequencies. The

y axis of B is log10 scaled.

If the expected covariances of all voxel time series in
a given dataset are O (i.e., no expected cross-correla-
tions between voxel time series at zero lag), then the
expected power spectrum of the global signal should be
the expected voxel-average power spectrum divided by
the number of voxels in that dataset. A measure based
on this ratio was used to determine spatial coherency
as a function of temporal frequency. The expected value
of this SC measure under the null hypothesis was 0 at
each frequency, while perfect spatial coherency would
yield a value of 1. The SC measure (averaged across the
17 human noise datasets) is shown in Fig. 5B. The ratio
is greater than O everywhere, showing spatial coher-
ence at all frequencies. The SC measure is greater at
low frequencies compared to high, being fit well for
most of its range by a decaying exponential. It should
be noted that the SC measure in data collected from a
spherical water phantom was similar in magnitude and
shape to that of the human datasets (Fig. 5B), suggest-
ing that this phenomenon is not completely physiologi-
cal (assuming that the SC observed in the phantoms is
also contributing to the SC of human datasets). Also
shown in Fig. 5B is the SC measure of computer-
generated noise datasets that were smoothed with a
FWHM that was greater than that of the component
fields estimated from the statistical maps of human
noise (see below). The purpose of performing this

simulation was to provide an estimate of the SC
measure that would result from spatial smoothness
that could be represented as a continuously differen-
tiable autocorrelation function that was greater than or
equal to that measured in human noise (see below for
these estimates). Smoothing the computer-generated
noise with a 3-D Gaussian kernel of FWHM = 1.1
voxels (approximately 2 SDs above the 2-D FWHM of
human noise at the paradigm frequency; see below)
yielded an SC measure that was approximately two
orders of magnitude less than the SC of the human
noise near the paradigm frequency. The apparent dis-
crepancy of using an in-plane measure of the inherent
smoothness of the human noise datasets and of using a
3-D smoothing kernel on the computer-generated noise
was not expected to be important as it was assumed
that the smoothness in z (in units of voxel size in z)
would have been if anything less than the in-plane
smoothness (due to the greater physical size of the
voxels in z). The lack of any strong trends in frequency
of the SC measure in the computer-generated noise was
expected as the spatial smoothing should not have
preferentially affected particular temporal frequencies.

An advantage of the measure of spatial coherence
described above is its sensitivity to all forms of spatial
smoothness. This is also a disadvantage in that differ-
ent types of smoothnesses cannot be distinguished. One
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type of spatial smoothness can be represented by a
stationary, continuously differentiable autocorrelation
function. This type of spatial smoothness can be in-
creased in a dataset by convolving with a continuously
differentiable spatial kernel (e.g., a Gaussian kernel).
This is the type of spatial smoothness required by
certain map-wise statistical methods, like SPM (Fris-
ton et al., 1991; Worsley et al., 1992). The FWHM of the
2-D Gaussian filter that would have yielded the ob-
served smoothness (of the component processes) of this
type that was observed in the statistical maps of the
noise datasets was determined (Xiong et al., 1995). The
mean in-plane FWHM (£SD) across the primary group
of human noise datasets (n = 17) was 0.90 = 0.08 pixels
when the analysis did not include a global signal
covariate (and 0.88 = 0.09 pixels when the analysis did
include a global signal covariate; see Aguirre et al.,
1997, for a discussion of the effect of a global signal
covariate on smoothness estimation). This observed
FWHM is a rather low value compared to what would
be required to yield the SC values that were observed in
human fMRI datasets (see Fig. 5B and above). The
in-plane FWHM of a spherical water phantom (n = 3)
was 0.90 =+ 0.11 pixels.

To examine the possibility that the global signal is
neuroanatomically localized, some of the noise datasets
were voxel-wise correlated against their global signals.
Three randomly selected correlation maps thresholded
at an arbitrary |[R| > 0.2 are shown in Fig. 6. It is
evident that (1) the regions that correlate with the
global signal do not seem to segregate strongly to one
type of neuroanatomic tissue (i.e., subcortical vs corti-
cal, gray vs white, though white matter seems to be
somewhat avoided), though there do seem to be
“hotspots” in which there are focal sites of high correla-
tion; (2) positively correlated regions are present
throughout the extent of the brain, while there is a
paucity of negatively correlated regions (supporting the
earlier observation of general spatial coherence); and
(3) the correlated regions do not appear similar in
appearance to motion artifact (which one would expect
to appear along high spatial signal gradients). This last
inference is supported by an analysis of the effect of
motion correction on the global signal. The global
signal from the same dataset as that shown in Fig. 5A
was similar (as assessed by raw correlations) when it
was processed with different motion correction proce-

dures: I:aspm%,no motion correction — 0'70! Rmotion compensation, no
motion correction = 0.98, and Rspm96,motion compensation — 0.82.

Effect of Global Signal on Statistical Distributions of
Spatially Unsmoothed Data

The SC measures presented above showed that the
fMRI global signal is a spatially coherent process, not
simply the average of uncorrelated voxel time series.
Figure 7 shows the voxel-wise distribution of t statistics
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from the same dataset as in Fig. 5Awhen analyzed with
a regression model (with assumed independence, i.e.,
no modeling of intrinsic autocorrelation) which (1) did
not include the global signal as a covariate (black line)
and (2) did include the global signal as a covariate (gray
line). It can be seen that the distribution is shifted to
the left of 0 when the global signal is excluded from the
model and that the inclusion of the global signal in the
model more or less centers the distribution. The shift to
the left of 0 when the global signal was not included as
a covariate is due to the negative correlation of the
global signal with the assumed paradigm (shown in
Fig. 5A). The variation of the mean t values of the noise
datasets was much greater when a global signal covari-
ate was not included than when it was included [F(16,
16) = 109, P < 2.9 X 10713, descriptive as the samples
were not independent]. In addition, including the glo-
bal signal as a covariate stabilized the number of voxels
that exceeded the theoretical « = 0.05 threshold [i.e.,
reduced the variance of the FP1 measure F(16,
16) = 3.1, P < 0.015, descriptive as the samples were
not independent]. Thus, inclusion of a global signal
covariate in analysis improved statistical validity by
reducing the variation of voxel-wise false-positive rates
across datasets. Interestingly, the inclusion of the
global signal did not have an effect on the median of
FP1, or on FP2 in any of the analysis versions. The lack
of effect on FP1 is expected as the global signal’s effects
should not have been systematic across datasets (as
there is no reason to expect a systematic phase relation-
ship between the global signal and the assumed para-
digm across datasets), and only systematic effects
would have been detected in the central tendency
analysis of FP1. The lack of effect on FP2 is not
expected a priori as it is conceivable that shifts of the
distributions could have caused an increase in the
number of datasets that exceeded the Bonferroni cor-
rected threshold.

DISCUSSION

It was observed that BOLD fMRI data from both
human subjects and phantoms were autocorrelated in
time. In particular, lower frequencies (<0.05 Hz) tended
to have greater power than higher frequencies. This
autocorrelation structure could not be explained by
convolution of neural activity (Friston et al., 1994). In
addition to such a mechanism, other possible low-
frequency contributors to the observed fMRI signal in
humans include motion, shifts in B, (Jezzard, 1996),
respiratory cycles, aliased cardiac cycles, and other, as
yet poorly understood, physiological components (Biswal
et al., 1996a). However, we have shown that at least the
first-order effects of motion cannot completely explain
the 1/f component. Also, respiratory cycles are not low
enough in frequency to account for the pattern ob-
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FI1G. 6. Shown are global signal correlation maps for three randomly selected human noise datasets (each row shows every third slice from
a particular dataset). Shown for comparison on the bottom row is a global signal correlation map for computer-generated noise that has been
smoothed with a Gaussian kernel of FWHM = 1.1 voxels. The color map shown at the bottom denotes the strength of the correlation of each
voxel in each dataset with its corresponding global signal. The maps are arbitrarily thresholded at |R| > 0.2. The spatial distribution of the
relative presence of the global signal can be seen from these maps. Note the relative preponderance of positive over negative correlations in the
maps derived from human datasets.
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FIG. 7. Shown are two test statistic distributions (the statistical
values corresponding to the assumed behavioral paradigm) from a
representative human noise dataset which were generated with
different regression models. One regression model contained a global
signal covariate (gray) while the other did not (black). The regression
models in this case assumed temporal independence. The distribu-
tion resulting from the regression model that included a global signal
covariate is more centered about 0. This trend was also followed in
the other human noise datasets, leading to a large reduction in the
variance of distribution means across datasets.

served. In addition, simulations (data not shown) sug-
gest that cardiac cycle aliasing would not manifest a 1/f
component. Also, cardiac and respiratory effects in our
data would not be expected to be great in magnitude as
the pulse sequence employed is relatively insensitive to
inflow effects (Jezzard and Song, 1996). Finally, as the
1/f component is present in data acquired from water
phantoms, its presence apparently does not imply a
physiological source (though physiological contribu-
tions cannot be ruled out).

The importance of lower frequencies (0.0083-0.025
Hz) to functional imaging is that they are in the
bandwidth frequently used for behavioral paradigms.
Due to the observed 1/f autocorrelation structure, statis-
tical analyses of task effects in this bandwidth which
assume independence will be biased toward rejecting
the null hypothesis more often than expected. This was
observed empirically. When independence was as-
sumed, the t statistic distributions had broader tails
than tabular distributions, as observed with FP1. The
misestimation of the true a was also quite egregious
when considering the nominal Bonferroni corrected
significance of the maximum test statistic in each map
as measured with FP2. The observed FP2 when indepen-
dence was assumed was 59% compared to the theoreti-
cally expected 5%. Thus, the observed map-wise false-
positive rate for these analyses was more than 10 times
what an experimenter might expect if temporal indepen-
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dence was assumed. As statistical maps are generally
thresholded and searched for excursion points to detect
activations, this finding would seem quite relevant for
fMRI. These results provide empirical evidence that
performing a parametric statistical analysis that ig-
nores temporal autocorrelation in BOLD fMRI data
may result in rejecting the null hypothesis significantly
more often than the rate specified by the nominal «,
leading to unreliable results.

The autocorrelation seemed to be modeled well by a
function in which power varies inversely with fre-
guency. Even though there was a pattern of increasing
power at lower frequencies in all datasets, the specific
autocorrelation structure seemed to vary between
datasets. This could be seen in the individual variabil-
ity between power spectra in the 1/f components as well
as in the flat frequency response components. We
presented evidence that suggests the latter variability
was caused by variations in noise emanating from
stimulus presentation equipment throughout the course
of data collection. Between-run variation in autocorre-
lation is sufficient to have caused the relatively large
between-run variation in GLM false-positive rates (as
evidenced by the greater variation in FP1 than ex-
pected if all of the datasets were from the same
population). Since only one noise dataset was obtained
per subject, it could not be determined if this variation
was attributable to each subject or to each run.

In addition to the directly observable between-
dataset variation in temporal autocorrelation, there
was indirect evidence for within-dataset variation in
temporal autocorrelation. This derives from the ob-
served dissociation between FP1 and FP2 when the
empirically based autocorrelation model was used as
the sole model of autocorrelation in the modified GLM.
A spatially nonstationary temporal autocorrelation
structure could have resulted in an overestimation of
relative power at the paradigm frequency for the
majority of the voxels. Such an overestimation could
have been sufficient to have caused the apparent
overcorrection of FP1 whenever K included the empiri-
cally derived 1/f component. There has been evidence
presented for tissue-specific autocorrelation with corti-
cal regions displaying greater low frequency fluctua-
tions than white matter (Weisskoff et al., 1993; Biswal
et al., 1996a). This sort of spatially nonstationary
temporal autocorrelation could have contributed to the
observed dissociation in false-positive measures for the
analysis using the empirically derived model of intrin-
sic autocorrelation as the sole component of K. Thus the
employed model of intrinsic autocorrelation could have
overspecified white matter autocorrelation (causing the
low percentage of voxels greater than threshold, i.e.,
FP1) and underspecified cortical autocorrelation (caus-
ing the Bonferroni corrected threshold, i.e., FP2, to be
superseded more often than expected by the FP1 val-
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ues). Arelated observation is that the FP1 measure was
less than theoretically expected in all of the analyses in
which the K matrix included the empirically derived I/f
component. This further supports the idea that the
empirically derived model of intrinsic autocorrelation
utilized was not a valid description for all voxels.

The use of temporal smoothing kernels brought the
false-positive rates closer to theoretically expected val-
ues compared to the assumed-independence case. How-
ever, the assumption that intrinsic autocorrelation
would be negligible after exogenous smoothing was
performed (Friston et al., 1995¢) was not given unquali-
fied support as the specific exogenous smoothing kernel
used had an effect on false-positive rates in fMRI noise
data. When a Poisson kernel with parameter = 8 s was
used (Friston et al., 1994), group false-positive mea-
sures were not different from theoretically expected.
However, when our empirically derived, narrower time-
width smoothing kernel was used, FP1 was slightly, but
significantly, higher than tabular values, while FP2
had a trend toward significance. Thus the validity of
the analysis seemed to depend to some extent upon the
bandwidth characteristics of the exogenous smoothing
kernel. A possible explanation for this apparent filter-
dependence is that the narrower time-width kernel
passes more high frequencies than the wider time-
width kernel, thus the analysis utilizing it relied on a
larger part of the spectrum for error variance estima-
tion. This analysis was in turn more sensitive to the
correct specification of the intrinsic temporal autocorre-
lation structure of the data at these higher frequencies
than the model that used the lower-passing Poisson
kernel.

The observed beneficial effect of temporal smoothing
on the agreement between the empirically observed
and the theoretically expected false-positive rates can
be explained by the stabilizing effect of smoothing on
the temporal autocorrelation structure. This stabiliz-
ing effect renders assumptions about the stationality of
the temporal autocorrelation structure across voxels
and the negligible effect of intrinsic correlations more
appropriate. We conclude that low-pass filtering (Wors-
ley and Friston, 1995) can improve the agreement of
observed with expected false-positive rates, as ex-
pressed by Friston et al. (1995c).

Biswal et al. (1996a) investigated cardiac and respira-
tory artifacts in noise fMRI time series, though they
also observed lower frequency components. They showed
that filtering targeted at these components could in-
crease sensitivity to activation more than random
filtering. The major source of nonwhite noise we have
systematically observed is low frequency (primarily
<0.05 Hz). This is too low in frequency to be respiratory
(typically about 0.13 Hz), and we have seen that cardiac
rates of about 1 Hz would not alias strongly to this
range nor with a 1/f pattern (simulations, data not
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shown). Thus this low-frequency noise does not seem to
be attributable to cardiac or respiratory effects. The
problem caused in that report by cardiac and respira-
tory effects was to increase noise at frequencies other
than typical paradigm frequencies, thus reducing sensi-
tivity (by inflating the error variance; Biswal et al.,
1996a). The problem caused in the current report by the
greater low-frequency noise was that it caused the
observed false-positive rate to exceed that which was
expected when the paradigm was in that range of
frequencies, thus reducing specificity. Weisskoff et al.
(1993) also reported the presence of low-frequency
fluctuations in noise fMRI data, as well as in cardiac
and respiratory effects. We did not attempt to filter
respiratory effects because we did not generally ob-
serve, nor expect (Jezzard and Song, 1996) them in our
data at a relative magnitude comparable to that re-
ported by Biswal et al. (1996a).

To maximize sensitivity to activations, it has been
suggested that the choice of temporal smoothing filter
should mirror the IRF of the BOLD system (Friston et
al., 1995c¢). One exogenous smoothing filter used in this
study, our empirically determined putative BOLD IRF,
was obtained from actual activations observed in
datasets in which subjects were engaged in a behav-
ioral paradigm. The other putative BOLD IRF, a Pois-
son (parameter = 8 s), was obtained from a model-
driven approach that examined intrinsic autocorrelations
in the residuals of fMRI data (Friston et al., 1994). This
Poisson is narrower band than the BOLD IRF estimate
obtained with our method. Another group has observed
a putative BOLD IRF similar to the one obtained here
by using different methods that also involve BOLD
fMRI signal responses (Boynton et al., 1996). The
analyses presented here only dealt with null-hypoth-
esis or noise data, and thus the issue of optimal
temporal smoothing could not be addressed (however,
see Aguirre et al., 1997). Additionally, as the BOLD
system does not seem to be perfectly linear (Vasquez
and Noll, 1996; Boynton et al., 1996), it does not
actually posses a true IRF. Thus, the term “IRF” is
being used in this report in an informal way that refers
to the near linearity of the BOLD system (Vasquez and
Noll, 1996; Boynton et al., 1996).

By examining global signals, it was observed that
spatially unsmoothed fMRI datasets, both human noise
and phantom, are not composed of voxel time series
which are uncorrelated in space, but rather have
spatial coherency apparently extending to all temporal
frequencies (we collected data from 0.003125-0.025
Hz). However, the low temporal frequencies are much
more spatially coherent than the higher frequencies.
The inclusion of a global signal covariate in the GLM
stabilized (i.e., reduced the variance of) the dataset
false-positive rates. The reason for this is that by
including a global signal covariate, the voxel time
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series within a dataset were made more spatially
independent, thus reducing the shifts of the means of
the test-statistic distributions about 0. This simulta-
neously reduced the variation across datasets in the
extent to which the tails of the distributions extended
beyond threshold (i.e., the FP1 measure). It would thus
seem that beyond the possibility of significantly reduc-
ing spatially coherent noise in fMRI time series, the
inclusion of a global signal covariate might also im-
prove the validity of voxel-wise statistical analysis on a
dataset-wise basis in spatially unsmoothed data. How-
ever, the effects of including a global signal covariate
become more complex in a behavioral dataset where
activation is a possibility (see Aguirre et al., 1997).

The cause(s) of the spatial coherency of the fMRI
global signal is not understood. The global signal seems
to contain components which are not attributable to at
least the first-order effects of motion. Regionally coher-
ent low-frequency signal components have been ob-
served (Biswal et al., 1995) and may bear some mecha-
nistic relation to the global signal observed here. A
physiological basis of these regional signals has been
suggested by their absence during hypercapnia (Biswal
et al., 1996b). The spatial pattern of the global signal in
space did not immediately suggest a mechanism to the
authors. It was present at a relatively low level in a
large part of the datasets examined, with patches of
higher correlation being present throughout the brain.
In theory, smoothness due to a stationary, continuously
differentiable spatial autocovariance function could
have yielded the observed spatial coherency. However,
examinations of smoothed, computer-generated noise
suggested that this is not the case. Perhaps more
sophisticated multivariate techniques such as principal
components analysis could also be used to help better
understand the source(s) of the spatially coherent
signals in null-hypothesis data. In the same vein, the
presence of such strong spatial coherencies (especially
at paradigm frequencies) in null-hypothesis data should
be a caveat to the use of multivariate methods to detect
“activations” in a paradigm-free manner.

CONCLUSIONS

It was found that:

(1) Temporal autocorrelation in BOLD fMRI “noise”
data (i.e., data collected under the null hypothesis) in
both humans and phantoms is characterized reason-
ably by a frequency domain model that includes a 1/f
component. This 1/f component could not be completely
explained by the first-order effects of motion, nor could
it be explained by other equipment present during
scanning, nor could it be explained by convolution of
neural activity by hemodynamics (Friston et al., 1994).

(2) When independence was assumed in statistical
analyses of human noise datasets that assumed a
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square wave input at 0.0125 Hz (i.e., 40 s off, 40 s on),
observed false-positive rates significantly exceeded ex-
pected false-positive rates.

(3) When a modified GLM that takes temporal auto-
correlation into account was used (Worsley and Friston,
1995), an empirically derived model of intrinsic tempo-
ral autocorrelation (using averages of power spectra
across voxels and datasets) for BOLD fMRI data proved
to be invalid. This suggests a spatially nonstationary
temporal autocorrelation structure.

(4) Temporal smoothing of the noise data with low-
pass filters in conjunction with the use of the modified
GLM (Worsley and Friston, 1995) resulted in false-
positive rates in null-hypothesis data that were close to
theoretically expected results. However, there was some
filter dependence on the agreement with the theoreti-
cally expected results.

(5) fMRI datasets evidenced spatial coherency (i.e.,
dependence between voxel time series). The spatial
coherency was greater at lower temporal frequencies.
This spatial coherency could not be explained by a
stationary, continuously differentiable autocorrelation
function [akin to that used in the context of SPM
statistics (Friston et al., 1991; Worsley et al., 1992)].

(6) Inclusion of global signal covariates in the regres-
sion models tended to center the test-statistic distribu-
tions of individual datasets around 0 and stabilized
(i.e., reduced the variance of) voxel-wise false-positive
rates across datasets.

The source(s) of the spatial coherency that was ob-
served in fMRI datasets is, as yet, undetermined.
Paradigm-free, multivariate analysis techniques such
as fuzzy-clustering, principal components analysis, and
others assume that the expected spatial coherency is 0
under the null hypothesis. How the observed spatial
coherency should impact the interpretation of the re-
sults of these techniques would seem to be an impor-
tant issue.

Though other groups have reported observations of
power spectra that appear to have increasing power at
lower frequencies (Weisskoff et al., 1993; Friston et al.,
1994; Boynton et al., 1996; Jezzard and Song, 1996), a
guantitative comparison between labs has not yet been
performed. Until such a comparison has been made, it
would not be correct to assume that the expected
temporal autocorrelation is the same in every scanner/
site, let alone for every fMRI scanning method. How-
ever, based on the observations reported here, it would
appear to be highly recommended, and productive, for
statistical analyses to be validated on a sample of noise
data. It should also be noted that most nonparametric
as well as parametric statistics assume independence.
Thus groups that prefer to use nonparametric statistics
would also benefit from empirical characterization of
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the temporal autocorrelation found in their data and its
effects on voxel-wise statistics.

The use of noise datasets should be contrasted with
the use of computer-generated noise simulations which
may not possess the characteristics of actual data. The
use of noise datasets should also be contrasted with
attempts at specificity validations that involve perform-
ing analyses on “shuffled” data from experimental
datasets. Such shuffling causes a loss of temporal
information, and thus effects of nonindependence (like
the ones observed in the current report) become unde-
tectable. In contrast, by using datasets that lack experi-
mental treatments, one should obtain valid estimates
of specificity.
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