
t
s
p
(
t
r
a
s
n
t
s
M
v
t
e
s
s
c
t

s
c
e
a
d
i
p
f
e

t
c
T
v

NeuroImage 11, 326–333 (2000)
doi:10.1006/nimg.2000.0549, available online at http://www.idealibrary.com on

1
C
A

A Study of Analysis Parameters That Influence the Sensitivity
of Event-Related fMRI Analyses
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To assess the effect of various analysis parameters on
he sensitivity of event-related fMRI analyses, 36 analy-
es were performed on a single fMRI data-set, varying
arameters along four axes: (1) resampled voxel size;
2) spatial smoothing; (3) temporal smoothing; and (4)
he set of basis functions used to model event-related
esponses. Sensitivity (i.e., the probability of detecting
n activation given it exists) was assessed in terms of Z
cores and by a metric for corrected P values, the
egative log of the expected Euler characteristic. Six-
een brain regions distributed across cortical and
ubcortical areas were included in the meta-analysis.
ain effects on sensitivity were found for resampled

oxel size, spatial smoothing, temporal smoothing, and
he set of basis functions chosen. The analysis param-
ters that generally produced the most sensitive analy-
es were a 2-mm3 resampled voxel size, 10-mm spatial
moothing, 4-s temporal smoothing, and a basis set
omprising a hemodynamic response function and its
emporal derivative. r 2000 Academic Press

INTRODUCTION

The analysis of fMRI data typically entails multiple
tages of data preprocessing. Within each stage, spe-
ific values must be chosen for each processing param-
ter. The ideal choice is the value that renders the
nalysis most sensitive (in terms of the probability of
etecting an activation given it exists), while conform-
ng to the assumptions of the statistical model em-
loyed. The aim of this study was to test empirically
our analysis parameters, in order to determine the
ffects that these choices may have on the sensitivity of

1 The correction for head-motion in the realignment stage and the
ransformation of the brain in the normalization stage, typically
ause the volume data to be shifted out of the acquisition plane.
herefore resampling is required even when the desired resampled
soxel size is the same as the original acquired voxel size.

326053-8119/00 $35.00
opyright r 2000 by Academic Press
ll rights of reproduction in any form reserved.
he analysis. The present set of analyses were all
erformed as event-related analyses, however, only one
f the parameters investigated, the set of basis func-
ions chosen to model the hemodynamic response,
elates solely to event-related designs. The other three
nalysis parameters are applicable to fMRI analyses in
eneral. In this paper, we do not consider acquisition
arameters. Rather, we are concerned exclusively with
nalysis parameters that determine data processing
nd statistical modeling after the data are acquired.
Regardless of the specific form of analysis, the brain

olumes from fMRI time-series typically need to be
ealigned with each other (e.g., Thacker et al., 1999)
nd may be normalized to a standard stereotactic
pace. During these stages, it is often necessary to
esample the original images by interpolation methods
n order to apply the spatial transformations (Friston et
l., 1995a). In relation to voxel size, it is possible to
esample the data to reduce or increase voxel size.
lthough one does not create any further information,

he format of the resampled data conforms more closely
o a lattice representation and therefore enables the
pplication of Gaussian field theory. Smaller voxel sizes
nsure that the data conform to a good lattice represen-
ation and therefore reduce the likelihood that any of
he assumptions required by the application of Gauss-
an field theory are violated. Here we tested how
esampling the final volumes to either a resampled
oxel size of 2 or 3 mm3 would affect the sensitivity of
he final analysis.1 Smaller resampled voxel sizes allow
he use of a smaller spatial filter and therefore are
ometimes considered preferable for localization pur-
oses. Here, however, we tested explicitly whether
maller resampled voxel sizes necessarily provide more
ensitivity.
After the volumes have been realigned (and possibly

ormalized, as well), the images may be spatially

moothed, in order to increase signal relative to noise
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327EVENT-RELATED fMRI META-ANALYSIS
nd to assure that the residual images conform to a
attice approximation of Gaussian random fields (to
nsure the corrected inference is valid). Here, we
moothed the data with either a 6-, 10-, or 14-mm
sotropic Gaussian kernel, to examine how spatial
moothing affects sensitivity of the ensuing analysis.
efore performing statistical analyses, the data may
lso be temporally smoothed in order to assure the
eracity of the assumed form for serial autocorrelations
e.g., Friston et al., 1995b; Worsley and Friston, 1995;
arahn et al., 1997). This may be done by convolving
he data with a Gaussian kernel approximating the
emodynamic response (but see also Purdon and Weis-
koff, 1998, and Zarahn et al., 1997, for alternative
ethods). As temporal smoothing is used here only to

ondition the autocorrelation structure to reduce bias
n estimating the standard error (Friston et al., submit-
ed), it is not necessary for the smoothing kernel to
ave the identical shape as the hemodynamic response.
ere, we tested two sizes of Gaussian convolution
ernel: 4-s full-width at half maxima (FWHM) and 8-s
WHM.
Within the current study, we also examined one

arameter space specific to event-related fMRI analysis
echniques. As described previously (Josephs et al.,
997; Friston et al., 1998), it is possible to model
vent-related responses using a synthetic hemody-
amic response function (HRF) that is a compound of
asis functions of peristimulus time. Here, we tested
hree hierarchical sets of basis functions for the model-
ng of the fMRI data: (i) A synthetic hemodynamic
esponse function (HRF) alone (modeled by the sum of
wo gamma functions—one to model the initial increase
n perfusion with a peak latency of 6 s, a second to

odel the under-shoot on recovery with a latency of
6 s). (ii) The HRF with its partial derivative with
espect to time (temporal derivative). (iii) The HRF
ith its partial derivative with respect to time and its
artial derivative with respect to dispersion. Adding
artial derivatives, according to a first-order Taylor
pproximation, allows the model to account for differ-
nces in timing (temporal derivative) and width (disper-
ion derivative) of the hemodynamic response. Here,
e tested explicitly whether including these deriva-

ives in the statistical model has a measurable effect on
ensitivity.
In the meta-analysis described in this paper we focus

n a single data-set acquired from a single subject and
nalyzed with a fixed-effects analysis. This ensures
hat the effects of analysis parameters are not con-
ounded by interactions with intersubject variability
e.g., Aguirre et al., 1998) or task-specific responses. We

mployed an activation paradigm that evoked re- h
ponses in multiple cortical and subcortical areas that
re assumed to represent canonical cortical and subcor-
ical activations. Generalization to other task designs
hould not be a problematic issue in the sense that our
oal was to assess the effects of various analysis
arameters on the sensitivity of detecting activations
n cortical and subcortical regions, irrespective of the
articular task that caused them (see also Skudlarski
t al., 1999). The generalization to multisubject studies,
owever, must be qualified. The introduction of mul-
iple subjects into the statistical model introduces a
ew source of variability that might interact with some
f the analysis parameters that we have manipulated.
or example, intersubject variability in functional
natomy may render increasing degrees of smoothing
ore appropriate for a sensitive analysis. This means

hat the effects of analysis parameters may differ
etween a fixed-effects analysis of a single subject and a
andom-effects analysis of multiple subjects. Having
aid this, however, the optimum parameters for a
xed-effects analysis are likely to be similar to those in
random-effects analysis because the most sensitive

haracterization is the most efficient, thereby decreas-
ng the variance of the parameter estimates that enter
nto a second level or random-effects analysis. Further-

ore, we chose to restrict our meta-analysis to a
xed-effects model because some of the parameters we
xplored are only meaningfully defined at the first or
xed-effects level (e.g., number of basis functions mod-
ling evoked hemodynamic responses). A further meta-
nalysis of random-effect models that incorporates
ubject variability would represent an extension of the
ork described in this paper.

METHODS

The data came from a pilot study (one male subject,
ith informed consent and no neurological or psychiat-

ic abnormalities), similar to a fMRI study of classical
onditioning published previously (Büchel et al., 1998).
t the beginning of each trial, a face was presented at
xation for 3 s. One half of the faces were followed by a

oud burst of white noise (100 dB) for 500 ms (condi-
ioned face stimuli, CS1) and the other half were never
ollowed by noise (Neutral). The intertrial interval
etween successive face stimuli was varied randomly
etween 10 and 14 s.

ata Acquisition

The data were acquired using a 2 Tesla Magnetom
ISION (Siemens, Erlangen) MRI system. Contiguous
ultislice T2*-weighted images were obtained using a
ead volume coil, with a gradient echo-planar sequence
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328 HOPFINGER ET AL.
sing axial slice orientation (TE 5 40 ms, 80.7 ms/
mage, 64 3 64 pixels giving a 19.2 3 19.2 cm FOV,
R 5 4.1 s, readout duration per line 5 600 µs, total
eadout time 5 38.4 ms, no apodization was done dur-
ng image reconstruction). The brain was covered by 48
xial slices obtained with an in-plane resolution of 64 3
4, and 3-mm3 isotropic voxels. The first 8 scans of each
un were discarded to allow for T1 magnetic saturation
ffects. The remaining 316 volume images then com-
rised the time-series, which was analyzed. Bitemporal
oam pressure pads were used to stabilize the subject’s
ead.

ata Preprocessing

The data were analyzed with SPM97 (Wellcome
epartment of Cognitive Neurology). The time-series
olume images were realigned and corrected for move-
ent-related effects (the onset of the noise burst did not

roduce gross sudden movements by the subject, as
easured by estimated head motion). The data were

hen spatially normalized to a standard stereotactic
pace (Talairach and Tournoux, 1988) using the sub-
ect’s coregistered structural T1 scan (Friston et al.,
995a). Statistical analyses were performed using the
vent-related method described previously (e.g., Jo-
ephs et al., 1997; Friston et al., 1998), with the specific
nalysis parameters described below.

nvestigated Analysis Parameters

Resampled voxel size. At the normalization step,
he volumes were resampled, by sinc interpolation, to
ither 2 or 3-mm3 resampled voxels.
Spatial smoothing. The data were smoothed with a

-, 10-, or 14-mm isotropic Gaussian kernel.
Temporal smoothing. Two sizes of Gaussian convo-

ution kernel were compared: 4-s FWHM and 8-s
WHM.
Basis functions. Three hierarchical sets of basis

unctions were used for modeling of the fMRI data; a
anonical hemodynamic response function (HRF) alone,
he HRF with its temporal derivative, and the HRF
ith its temporal derivative and dispersion derivative.
All possible combinations of the analysis parameters

isted above were used in a multifactorial design—
esulting in the 36 analyses (2 3 3 3 2 3 3) that were
sed in the meta-analysis. The data were proportion-

FIG. 1. Comparison of the effects of spatial smoothing on cortical v
xes refer to the numbers listed in Table 1. (A) Plot of the uncorrect
patial smoothing, showing a consistent decrease in sensitivity as th
cores for each of the subcortical regions tested here, as a function
ensitivity with increasing spatial smoothing, as cortical regions did,

f 10 and 14 mm.
tely scaled to a grand mean of 100 arbitrary units to
ccount for overall differences in intensity of whole
rain volumes across the time series, and low-fre-
uency confounds were modeled by a discrete-cosine
igh-pass ‘‘filter’’ set with a cut-off period of 97.64 s

Holmes et al., 1997). Three events of interest were
ncluded in the statistical model: (1) visual presenta-
ion of conditioned faces (CS1); (2) visual presentation
f neutral faces (NEUTRAL); and (3) auditory noise.
he following four contrasts were then specified: (1)
isual stimuli (conditioned and neutral faces) against
aseline; (2) auditory stimuli (auditory noise) against
aseline; (3) conditioned versus neutral faces; and (4)
eutral versus conditioned faces. For all analyses pre-
ented here, only the basis functions representing the
anonical HRF for each event of interest were given
onzero weightings in the contrast specification. Since

t was not important for our purposes whether the
emporal or dispersion derivatives were positive or
egative, the parameter estimates for those basis func-

TABLE 1

Brain Regions Used for Meta-Analysis

Brain region

Stereotactic
coordinates (mm)

x, y, z Contrast

1. Middle occipital gyrus
(area 19)

19, 2106, 14 Visual stimuli

2. Fusiform/lingual gyrus 226, 285, 220 Visual stimuli
3. Area 8 46, 11, 26 Visual stimuli
4. Prefrontal cortex 50, 14, 27 Visual stimuli
5. Medial temporal cortex 66, 25, 23 Auditory stimuli
6. Superior temporal cortex 257, 230, 10 Auditory stimuli
7. Thalamus* 9, 224, 27 CS1 . neutral
8. Insula 54, 14, 23 CS1 . neutral
9. Medial frontal/cingulate 3, 0, 58 CS1 . neutral
0. Cerebellum* 15, 259, 239 CS1 . neutral
1. Occipital/cuneus gyrus 11, 282, 31 CS1 . neutral
2. Medius frontal gyrus 52, 6, 46 CS1 . neutral
3. Hippocampus (Left)* 224, 216, 228 Neutral . CS1
4. Frontal/prefrontal cortex 53, 26, 24 Neutral . CS1
5. Medial frontal 210, 57, 15 Neutral . CS1
6. Hippocampus (Right)* 38, 225, 225 Neutral . CS1

Note. The visual and auditory contrasts are relative to baseline.
S1, conditioned visual stimuli (see text for details). Asterisks (*)
enote subcortical regions. All other regions were considered cortical
egions, for the factor of ‘‘Type of Brain Region’’ in the ANOVAs
iscussed in the text.

us subcortical brain regions. Region numbers listed across horizontal
Z scores for each of the cortical regions tested here, as a function of
ize of the spatial smoothing increases. (B) Plot of the uncorrected Z
spatial smoothing. Subcortical regions did not show a decreasing
rather showed higher sensitivity with the larger smoothing kernels
ers
ed
e s
of

but
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330 HOPFINGER ET AL.
ions were not part of the specified contrasts (i.e., were
iven zero weightings in the contrasts). Rather, the
asis functions representing those derivatives were
sed in the specified models only to account for the
ariance arising from those types of possible variability
n the HRF response.

Using the SPM5t6s resulting from the four contrasts
bove, 16 brain regions were selected for inclusion in
he meta-analysis. All sixteen regions evidenced supra-
hreshold voxels in all thirty-six analyses. Table 1 lists
he 16 brain regions and the contrasts that revealed the
ctivations. Sensitivity was measured by two metrics:
1) Z score; and (2) the negative natural log of the
xpected Euler characteristic corresponding to that Z
core. The latter was used as a metric for P values after
orrection for multiple comparisons (see Adler, 1981,
nd Worsley, 1994, for a description of the Euler
haracteristic). It is important to include a statistic
hat reflects corrected inferences because the correction
s a function of spatial smoothness. The effect of spatial
moothing can enter at two distinct levels in determin-
ng the sensitivity of an analysis. First, increasing the
moothness generally increases the sensitivity of the
esulting SPMs by virtue of the matched filter theorem.
his is a natural consequence of the fact that the
patial frequency of the noise is generally higher than
ignal in neuroimaging data. As a result, suppressing
igh frequency contributions with spatial smoothing

ncreases the signal to noise ratio and the sensitivity of
he analyses. The second way in which smoothing
ffects sensitivity is that it introduces spatial dependen-
ies among the data that reduce the correction to the P
alues for the volume analyzed. Note that this effect is
xpressed only in terms of the corrected P value (but
ot the uncorrected P value).
Two separate ANOVAs were performed, one for sensi-

ivity measured as Z scores (relating to the uncorrected
values), a second for sensitivity after correction for
ultiple comparisons (the metric based on the Euler

haracteristic). In cases where there exist strong a
riori predictions about particular brain regions, the
ncorrected scores are relevant. In cases where there
re not strong a priori reasons to investigate a particu-
ar brain structure, the corrected scores are appropri-
te. Therefore, both are presented here, as either is
undamentally relevant, depending upon whether the
nferences are to be made about a particular brain
egion or an effect that occurs anywhere in the search
olume. Each of the mixed-design ANOVAs for the
cores across the 16 brain regions included the within
egion factors of (1) Resampled voxel size (two levels),
2) Spatial smoothing (three levels), (3) Temporal
moothing (two levels), and (4) Set of basis functions

three levels); and included the between region factor of p
ype of Brain Region (two levels: cortical and subcorti-
al, as noted in Table 1).

RESULTS

The ANOVA for sensitivity as measured by uncor-
ected Z scores revealed main effects of Resampled
oxel Size, Spatial Smoothing, Temporal Smoothing,
nd Set of Basis Functions (see Table 2). Data with a
esampled voxel size of 2 mm3 produced greater sensi-
ivity than with a resampled voxel size of 3 mm3 (Table
, middle column, presents the means of the uncor-
ected Z scores). Data spatially smoothed with either a
- or 10-mm isotropic kernel produced more sensitive
nalyses than when a 14-mm kernel was used, and
emporal smoothing with a 4-s FWHM kernel produced
reater sensitivity than temporal smoothing with an
-s FWHM kernel. Analyses that modeled the re-
ponses either with the hemodynamic response func-
ion (HRF) alone or the HRF with only the temporal
erivative showed greater sensitivity than analyses
hat used the basis set consisting of the HRF with
emporal and dispersion derivatives.

While there was no main effect of Type of Brain
egion (cortical versus subcortical), there was a signifi-
ant interaction between Type of Brain Region and
patial Smoothing (Table 2). Specifically, except for two
egions in the medial frontal lobes, the cortical regions
howed a consistent decrease in sensitivity as the
patial smoothing increased (Fig. 1, top). However, the
ubcortical regions tested here did not show that trend
Fig. 1, bottom), and, in fact, the right and left hippocam-

TABLE 2

Results of ANOVA for Uncorrected Z Scores

Source

Analysis of variance
for Z scores

DF SS MS F P

ain effects
Resampled voxel size 1 0.54 0.54 12.40 0.003*
Spatial smoothing 2 12.78 6.39 14.53 0.000*
Temporal smoothing 1 79.66 79.66 12.34 0.003*
Basis functions 2 17.80 8.90 5.09 0.013*
Type of brain region 1 81.66 81.66 1.40 0.257

-way interactions
Resampled voxel 3 spatial 2 0.06 0.03 0.55 0.583
Resampled voxel 3 temporal 1 0.02 0.02 1.75 0.207
Resampled voxel 3 basis 2 0.004 0.002 0.08 0.923
Resampled voxel 3 type 1 0.05 0.05 1.21 0.291
Spatial 3 temporal 2 0.17 0.09 0.59 0.559
Spatial 3 basis 4 0.04 0.01 0.14 0.966
Spatial 3 type 2 20.39 10.19 23.19 0.000*
Temporal 3 basis 2 0.79 0.40 0.65 0.528
Temporal 3 type 1 5.29 5.29 0.82 0.381
Basis 3 type 2 5.17 2.58 1.48 0.245
al activations (13 and 16 in Fig. 1) showed the opposite
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331EVENT-RELATED fMRI META-ANALYSIS
rend of increasing Z scores with increasing degrees of
patial smoothing.2 There were no other significant two
r three-way interactions.
When sensitivity was assessed using corrected val-

es, main effects were again found for Resampled voxel
ize, Spatial Smoothing, Temporal Smoothing, and Set
f Basis Functions (see Table 3). Similar to the uncor-
ected scores, a resampled voxel size of 2 mm3 again
roduced higher sensitivity than a 3 mm3 resampled
oxel size, temporal smoothing with a 4-s kernel pro-
uced higher sensitivity than smoothing with an 8-s
ernel, and modeling the data with the HRF alone or
ith the temporal derivative resulted in more sensitive
nalyses than when the dispersion derivative was
ncluded (Table 4, right column, presents the means of
he corrected scores). However, as might be expected,
he direction of the effect of spatial smoothing was
ifferent for the corrected scores than it was for the

2 One possible explanation for this difference is that subcortical
egions may show a slightly different hemodynamic response. In
ddition to showing an opposite pattern to the cortical regions in
erms of spatial smoothing, the hippocampal regions also showed a
rend toward higher sensitivity with an 8-s temporal smoothing. This
as in contrast to all other regions (except for one superior temporal

egion) that showed a lower sensitivity with the 8-s temporal
moothing. The differences noticed here may highlight the need to
xamine the HRF individually in different brain regions, especially in
ubcortical regions where the neural architecture differs from that in
he surrounding cortex. Indeed, Rajapakse et al. (1999) suggest that
he hemodynamic response depends on a number of factors, including
he neuronal and vascular architecture, that may differ by brain

TABLE 3

Results of ANOVA for Corrected Scores

Source

Analysis of variance for
corrected scores

(2ln (Euler char.))

DF SS MS F P

ain effects
Resampled voxel size 1 8.02 8.02 13.49 0.003*
Spatial smoothing 2 166.83 83.42 9.75 0.001*
Temporal smoothing 1 2286.67 2286.67 12.50 0.003*
Set of basis functions 2 493.40 246.70 5.11 0.013*
Type of brain region 1 2505.59 2505.59 1.35 0.264

-way interactions
Resampled voxel 3 spatial 2 1.21 0.61 0.86 0.433
Resampled voxel 3 temporal 1 0.06 0.06 0.40 0.536
Resampled voxel 3 basis 2 0.06 0.03 0.10 0.903
Resampled voxel 3 type 1 0.92 0.92 1.54 0.235
Spatial 3 temporal 2 1.19 0.59 0.21 0.810
Spatial 3 basis 4 2.99 0.75 0.44 0.776
Spatial 3 type 2 443.43 221.71 25.92 0.000*
Temporal 3 basis 2 0.35 0.18 0.01 0.989
Temporal 3 type 1 330.77 330.77 1.81 0.200
Basis 3 type 2 14.90 7.45 0.15 0.858
egion.
ncorrected scores. While a spatial smoothing of 6 mm
roduced the highest sensitivity when measured by
ncorrected scores, a spatial smoothing of 6 mm gave
he lowest sensitivity as measured by corrected scores.
or the corrected scores, a spatial smoothing of 10 mm
ielded the highest sensitivity. Similar to the uncor-
ected scores, there was no main effect of Type of Brain
egion for the corrected scores, but there was again a
ignificant 2-way interaction between Type of Brain
egion and Spatial Smoothing. Specifically, subcortical
egions showed increasing sensitivity with increasing
ize of the spatial smoothing kernel, while the largest
moothing kernel produced the least sensitive analyses
or cortical regions. No other two or three-way interac-
ions were significant in the analysis of the corrected
cores.

CONCLUSIONS

In general, the results of our meta-analysis are fairly
ntuitive. In terms of spatial smoothing, for discrete
ignals the optimal smoothing kernel should approxi-
ate the size of the underlying signal or evoked

esponse. Based upon the fact that increases in blood
ow and blood volume arise in gray matter, and that
he spatial extent of gray matter differs between corti-
al and subcortical structures, the signal source would
e expected to be more spatially extended for subcorti-
al structures. Based upon the anatomical structure of
ortical regions, the spatial extent of cortical activa-
ions would be expected to be in the order of 3–5 mm,
uggesting a spatial smoothing of 6 mm would be the
ost efficient. In contradistinction, subcortical activa-

ions may be more spatially diffuse, engaging larger
olumes of subcortical gray matter. The finding that
ubcortical activations were more powerfully detected
sing a higher degree of spatial smoothing is entirely

TABLE 4

Summary of Average Scores

Z Scores 2ln (Euler)

esampled voxel dimensions
2 3 2 3 2 mm3 5.26 6.59
3 3 3 3 3 mm3 5.20 6.36

patial smoothing
6 mm 5.35 5.74

10 mm 5.32 7.01
14 mm 5.02 6.67

emporal smoothing
4 s 5.60 8.47
8 s 4.86 4.48

et of basis functions
HRF (alone) 5.31 7.33
HRF and Temporal derivative 5.39 7.16
HRF and Temp and Dispersion deriv 4.99 5.17
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332 HOPFINGER ET AL.
onsistent with the anatomical infrastructure express-
ng the hemodynamic responses. In addition, we found
hat after a correction for multiple comparisons had
een imposed, a slightly larger spatial smoothing (10
m) produced the most sensitive results for cortical

egions. This is consistent with the nature of the
orrection, as a smaller smoothing kernel results in
ore comparisons across the volume.
In relation to temporal smoothing, one would gener-

lly anticipate that a smaller degree of temporal smooth-
ng would give more efficient and sensitive tests. Again
his is what we found and indeed the impact of tempo-
al smoothing appeared to be greater than the other
arameters we analyzed, in terms of percentage change
f the uncorrected and corrected scores. The reason
hy less temporal smoothing gives a more sensitive
nalysis is because the most efficient characterization
ould involve prewhitening the data as opposed to

moothing it further. The reason that smoothing is
mployed is to ensure the robustness of the ensuing
nferences by imposing a correlation structure on the
ime series. Although this renders the analysis less
fficient, it protects against bias in the estimate of the
tandard error of the parameter estimates that enters
s a result of misspecifying the form for these serial
orrelations (Friston et al., submitted). Here, we show
hat applying a temporal smoothing as large as 8 s may,
owever, significantly decrease the power of the analy-
is.
In testing for the optimal basis set, we found that

ncluding the dispersion derivative decreased the sensi-
ivity of the analysis. Both the HRF alone and the HRF
ith its temporal derivative engendered greater sensi-

ivity than when the dispersion derivative was in-
luded.3 While the HRF and the HRF with temporal
erivative had comparable sensitivity, it may be more
rudent to use the HRF with the temporal derivative in
rder to account for slight temporal shifts in the data
see also Aguirre et al., 1997, and Rajapakse et al.,
999, for alternative methods of modeling the hemody-
amic response).
In terms of resampled voxel size, the smaller resam-

led voxel size did produce a significantly greater
ensitivity, although the absolute measures of sensitiv-
ty changed only a small amount. The increase in
ensitivity with 2-mm voxels is probably a result of the
light implicit smoothing in the sinc interpolation. All

3 It should be noted, however, that the dispersion derivative may be
mportant for finding regions that have a different form or shape of
emodynamic response. The present meta-analysis only considered
egions that evidenced suprathreshold clusters in all 36 analyses—
ny region that was significant in only one or a few sets of analyses
as not considered here. Therefore, the dispersion derivative could

till be very useful under certain circumstances (see also Rajapakse et

l., 1999, for related issues).
nterpolations are effectively linear combinations of the
ocal voxel values and can be thought of in terms of a
patial smoothing. Any resampling of data slightly
moothes it and therefore renders the analysis more
ensitive. Here we used only sinc interpolation in
esampling the voxel size. Simpler forms of interpola-
ion may be used, but could result in a loss of informa-
ion, in terms of resolution. A possible extension of this
ork would be to include multiple types of interpola-

ion as a factor in the meta-analysis.
In summary, these results suggest optimal values for

he analysis parameters of spatial smoothing, temporal
moothing, and resampled voxel size, and furthermore
how that including only the temporal derivative with
he HRF can provide flexibility in modeling event-
elated fMRI responses without compromising sensitiv-
ty. This paper presents an approach to assessing fMRI
nalysis parameters that can identify optimal param-
ters for the analysis of fMRI datasets. The equipment
sed to acquire the data and the specifications concern-

ng the acquisition parameters may also affect the
ltimate sensitivity of analyses, although we have not
ested those factors here. While the specific values
ound to be optimal here may differ somewhat depend-
ng upon acquisition parameters and scanning equip-

ent, the general trends found here (i.e., the decrease
n sensitivity with a larger temporal smoothing kernel
r the interaction between smoothing and brain region)
re more likely to generalize, as these effects are based
pon postacquisition parameter settings.
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