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To assess the effect of various analysis parameters on
the sensitivity of event-related fMRI analyses, 36 analy-
ses were performed on a single fMRI data-set, varying
parameters along four axes: (1) resampled voxel size;
(2) spatial smoothing; (3) temporal smoothing; and (4)
the set of basis functions used to model event-related
responses. Sensitivity (i.e., the probability of detecting
an activation given it exists) was assessed in terms of Z
scores and by a metric for corrected P values, the
negative log of the expected Euler characteristic. Six-
teen brain regions distributed across cortical and
subcortical areas were included in the meta-analysis.
Main effects on sensitivity were found for resampled
voxel size, spatial smoothing, temporal smoothing, and
the set of basis functions chosen. The analysis param-
eters that generally produced the most sensitive analy-
ses were a 2-mm? resampled voxel size, 10-mm spatial
smoothing, 4-s temporal smoothing, and a basis set
comprising a hemodynamic response function and its

temporal derivative. ©2000Academic Press

INTRODUCTION

The analysis of fMRI data typically entails multiple
stages of data preprocessing. Within each stage, spe-
cific values must be chosen for each processing param-
eter. The ideal choice is the value that renders the
analysis most sensitive (in terms of the probability of
detecting an activation given it exists), while conform-
ing to the assumptions of the statistical model em-
ployed. The aim of this study was to test empirically
four analysis parameters, in order to determine the
effects that these choices may have on the sensitivity of

1 The correction for head-motion in the realignment stage and the
transformation of the brain in the normalization stage, typically
cause the volume data to be shifted out of the acquisition plane.
Therefore resampling is required even when the desired resampled
voxel size is the same as the original acquired voxel size.

1053-8119/00 $35.00
Copyright © 2000 by Academic Press
All rights of reproduction in any form reserved.

326

the analysis. The present set of analyses were all
performed as event-related analyses, however, only one
of the parameters investigated, the set of basis func-
tions chosen to model the hemodynamic response,
relates solely to event-related designs. The other three
analysis parameters are applicable to fMRI analyses in
general. In this paper, we do not consider acquisition
parameters. Rather, we are concerned exclusively with
analysis parameters that determine data processing
and statistical modeling after the data are acquired.

Regardless of the specific form of analysis, the brain
volumes from fMRI time-series typically need to be
realigned with each other (e.g., Thacker et al., 1999)
and may be normalized to a standard stereotactic
space. During these stages, it is often necessary to
resample the original images by interpolation methods
in order to apply the spatial transformations (Friston et
al., 1995a). In relation to voxel size, it is possible to
resample the data to reduce or increase voxel size.
Although one does not create any further information,
the format of the resampled data conforms more closely
to a lattice representation and therefore enables the
application of Gaussian field theory. Smaller voxel sizes
ensure that the data conform to a good lattice represen-
tation and therefore reduce the likelihood that any of
the assumptions required by the application of Gauss-
ian field theory are violated. Here we tested how
resampling the final volumes to either a resampled
voxel size of 2 or 3 mm? would affect the sensitivity of
the final analysis.! Smaller resampled voxel sizes allow
the use of a smaller spatial filter and therefore are
sometimes considered preferable for localization pur-
poses. Here, however, we tested explicitly whether
smaller resampled voxel sizes necessarily provide more
sensitivity.

After the volumes have been realigned (and possibly
normalized, as well), the images may be spatially
smoothed, in order to increase signal relative to noise
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and to assure that the residual images conform to a
lattice approximation of Gaussian random fields (to
ensure the corrected inference is valid). Here, we
smoothed the data with either a 6-, 10-, or 14-mm
isotropic Gaussian kernel, to examine how spatial
smoothing affects sensitivity of the ensuing analysis.
Before performing statistical analyses, the data may
also be temporally smoothed in order to assure the
veracity of the assumed form for serial autocorrelations
(e.g., Friston et al., 1995b; Worsley and Friston, 1995;
Zarahn et al., 1997). This may be done by convolving
the data with a Gaussian kernel approximating the
hemodynamic response (but see also Purdon and Weis-
skoff, 1998, and Zarahn et al., 1997, for alternative
methods). As temporal smoothing is used here only to
condition the autocorrelation structure to reduce bias
in estimating the standard error (Friston et al., submit-
ted), it is not necessary for the smoothing kernel to
have the identical shape as the hemodynamic response.
Here, we tested two sizes of Gaussian convolution
kernel: 4-s full-width at half maxima (FWHM) and 8-s
FWHM.

Within the current study, we also examined one
parameter space specific to event-related fMRI analysis
techniques. As described previously (Josephs et al.,
1997; Friston et al., 1998), it is possible to model
event-related responses using a synthetic hemody-
namic response function (HRF) that is a compound of
basis functions of peristimulus time. Here, we tested
three hierarchical sets of basis functions for the model-
ing of the fMRI data: (i) A synthetic hemodynamic
response function (HRF) alone (modeled by the sum of
two gamma functions—one to model the initial increase
in perfusion with a peak latency of 6 s, a second to
model the under-shoot on recovery with a latency of
16 s). (ii) The HRF with its partial derivative with
respect to time (temporal derivative). (iii) The HRF
with its partial derivative with respect to time and its
partial derivative with respect to dispersion. Adding
partial derivatives, according to a first-order Taylor
approximation, allows the model to account for differ-
ences in timing (temporal derivative) and width (disper-
sion derivative) of the hemodynamic response. Here,
we tested explicitly whether including these deriva-
tives in the statistical model has a measurable effect on
sensitivity.

In the meta-analysis described in this paper we focus
on a single data-set acquired from a single subject and
analyzed with a fixed-effects analysis. This ensures
that the effects of analysis parameters are not con-
founded by interactions with intersubject variability
(e.g., Aguirre et al., 1998) or task-specific responses. We
employed an activation paradigm that evoked re-
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sponses in multiple cortical and subcortical areas that
are assumed to represent canonical cortical and subcor-
tical activations. Generalization to other task designs
should not be a problematic issue in the sense that our
goal was to assess the effects of various analysis
parameters on the sensitivity of detecting activations
in cortical and subcortical regions, irrespective of the
particular task that caused them (see also Skudlarski
etal., 1999). The generalization to multisubject studies,
however, must be qualified. The introduction of mul-
tiple subjects into the statistical model introduces a
new source of variability that might interact with some
of the analysis parameters that we have manipulated.
For example, intersubject variability in functional
anatomy may render increasing degrees of smoothing
more appropriate for a sensitive analysis. This means
that the effects of analysis parameters may differ
between a fixed-effects analysis of a single subject and a
random-effects analysis of multiple subjects. Having
said this, however, the optimum parameters for a
fixed-effects analysis are likely to be similar to those in
a random-effects analysis because the most sensitive
characterization is the most efficient, thereby decreas-
ing the variance of the parameter estimates that enter
into a second level or random-effects analysis. Further-
more, we chose to restrict our meta-analysis to a
fixed-effects model because some of the parameters we
explored are only meaningfully defined at the first or
fixed-effects level (e.g., number of basis functions mod-
eling evoked hemodynamic responses). A further meta-
analysis of random-effect models that incorporates
subject variability would represent an extension of the
work described in this paper.

METHODS

The data came from a pilot study (one male subject,
with informed consent and no neurological or psychiat-
ric abnormalities), similar to a fMRI study of classical
conditioning published previously (Buchel et al., 1998).
At the beginning of each trial, a face was presented at
fixation for 3 s. One half of the faces were followed by a
loud burst of white noise (100 dB) for 500 ms (condi-
tioned face stimuli, CS+) and the other half were never
followed by noise (Neutral). The intertrial interval
between successive face stimuli was varied randomly
between 10 and 14 s.

Data Acquisition

The data were acquired using a 2 Tesla Magnetom
VISION (Siemens, Erlangen) MRI system. Contiguous
multislice T2*-weighted images were obtained using a
head volume coil, with a gradient echo-planar sequence
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using axial slice orientation (TE = 40 ms, 80.7 ms/
image, 64 X 64 pixels giving a 19.2 X 19.2 cm FOV,
TR = 4.1 s, readout duration per line = 600 ps, total
readout time = 38.4 ms, no apodization was done dur-
ing image reconstruction). The brain was covered by 48
axial slices obtained with an in-plane resolution of 64 X
64, and 3-mm? isotropic voxels. The first 8 scans of each
run were discarded to allow for T1 magnetic saturation
effects. The remaining 316 volume images then com-
prised the time-series, which was analyzed. Bitemporal
foam pressure pads were used to stabilize the subject’'s
head.

Data Preprocessing

The data were analyzed with SPM97 (Wellcome
Department of Cognitive Neurology). The time-series
volume images were realigned and corrected for move-
ment-related effects (the onset of the noise burst did not
produce gross sudden movements by the subject, as
measured by estimated head motion). The data were
then spatially normalized to a standard stereotactic
space (Talairach and Tournoux, 1988) using the sub-
ject’s coregistered structural T1 scan (Friston et al.,
1995a). Statistical analyses were performed using the
event-related method described previously (e.g., Jo-
sephs et al., 1997; Friston et al., 1998), with the specific
analysis parameters described below.

Investigated Analysis Parameters

Resampled voxel size. At the normalization step,
the volumes were resampled, by sinc interpolation, to
either 2 or 3-mm? resampled voxels.

Spatial smoothing. The data were smoothed with a
6-, 10-, or 14-mm isotropic Gaussian kernel.

Temporal smoothing. Two sizes of Gaussian convo-
lution kernel were compared: 4-s FWHM and 8-s
FWHM.

Basis functions. Three hierarchical sets of basis
functions were used for modeling of the fMRI data; a
canonical hemodynamic response function (HRF) alone,
the HRF with its temporal derivative, and the HRF
with its temporal derivative and dispersion derivative.

All possible combinations of the analysis parameters
listed above were used in a multifactorial design—
resulting in the 36 analyses (2 X 3 X 2 X 3) that were
used in the meta-analysis. The data were proportion-
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TABLE 1

Brain Regions Used for Meta-Analysis

Stereotactic
coordinates (mm)

Brain region X, ¥,z Contrast
1. Middle occipital gyrus 19, —106, 14 Visual stimuli
(area 19)

2. Fusiform/lingual gyrus —26, —85, —20 Visual stimuli

3. Area8 46, 11, 26 Visual stimuli

4. Prefrontal cortex 50, 14, =7 Visual stimuli

5. Medial temporal cortex 66, —5, —3 Auditory stimuli

6. Superior temporal cortex —57, —30, 10 Auditory stimuli

7. Thalamus* 9, —24, -7 CS+ > neutral

8. Insula 54,14, -3 CS+ > neutral

9. Medial frontal/cingulate 3,0, 58 CS+ > neutral
10. Cerebellum* 15, —59, —39 CS+ > neutral
11. Occipital/cuneus gyrus 11, -82,31 CS+ > neutral
12. Medius frontal gyrus 52, 6, 46 CS+ > neutral
13. Hippocampus (Left)* —24, -16, —28 Neutral > CS+
14. Frontal/prefrontal cortex 53, —6, 24 Neutral > CS+
15. Medial frontal —-10,57,15 Neutral > CS+
16. Hippocampus (Right)* 38, —25, -25 Neutral > CS+

Note. The visual and auditory contrasts are relative to baseline.
CS+, conditioned visual stimuli (see text for details). Asterisks (*)
denote subcortical regions. All other regions were considered cortical
regions, for the factor of “Type of Brain Region” in the ANOVAs
discussed in the text.

ately scaled to a grand mean of 100 arbitrary units to
account for overall differences in intensity of whole
brain volumes across the time series, and low-fre-
guency confounds were modeled by a discrete-cosine
high-pass “filter” set with a cut-off period of 97.64 s
(Holmes et al., 1997). Three events of interest were
included in the statistical model: (1) visual presenta-
tion of conditioned faces (CS+); (2) visual presentation
of neutral faces (NEUTRAL); and (3) auditory noise.
The following four contrasts were then specified: (1)
visual stimuli (conditioned and neutral faces) against
baseline; (2) auditory stimuli (auditory noise) against
baseline; (3) conditioned versus neutral faces; and (4)
neutral versus conditioned faces. For all analyses pre-
sented here, only the basis functions representing the
canonical HRF for each event of interest were given
nonzero weightings in the contrast specification. Since
it was not important for our purposes whether the
temporal or dispersion derivatives were positive or
negative, the parameter estimates for those basis func-

FI1G.1. Comparison of the effects of spatial smoothing on cortical versus subcortical brain regions. Region numbers listed across horizontal
axes refer to the numbers listed in Table 1. (A) Plot of the uncorrected Z scores for each of the cortical regions tested here, as a function of
spatial smoothing, showing a consistent decrease in sensitivity as the size of the spatial smoothing increases. (B) Plot of the uncorrected Z
scores for each of the subcortical regions tested here, as a function of spatial smoothing. Subcortical regions did not show a decreasing
sensitivity with increasing spatial smoothing, as cortical regions did, but rather showed higher sensitivity with the larger smoothing kernels

of 10 and 14 mm.
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tions were not part of the specified contrasts (i.e., were
given zero weightings in the contrasts). Rather, the
basis functions representing those derivatives were
used in the specified models only to account for the
variance arising from those types of possible variability
in the HRF response.

Using the SPMts resulting from the four contrasts
above, 16 brain regions were selected for inclusion in
the meta-analysis. All sixteen regions evidenced supra-
threshold voxels in all thirty-six analyses. Table 1 lists
the 16 brain regions and the contrasts that revealed the
activations. Sensitivity was measured by two metrics:
(1) Z score; and (2) the negative natural log of the
expected Euler characteristic corresponding to that Z
score. The latter was used as a metric for P values after
correction for multiple comparisons (see Adler, 1981,
and Worsley, 1994, for a description of the Euler
characteristic). It is important to include a statistic
that reflects corrected inferences because the correction
is a function of spatial smoothness. The effect of spatial
smoothing can enter at two distinct levels in determin-
ing the sensitivity of an analysis. First, increasing the
smoothness generally increases the sensitivity of the
resulting SPMs by virtue of the matched filter theorem.
This is a natural consequence of the fact that the
spatial frequency of the noise is generally higher than
signal in neuroimaging data. As a result, suppressing
high frequency contributions with spatial smoothing
increases the signal to noise ratio and the sensitivity of
the analyses. The second way in which smoothing
affects sensitivity is that it introduces spatial dependen-
cies among the data that reduce the correction to the P
values for the volume analyzed. Note that this effect is
expressed only in terms of the corrected P value (but
not the uncorrected P value).

Two separate ANOVAs were performed, one for sensi-
tivity measured as Z scores (relating to the uncorrected
P values), a second for sensitivity after correction for
multiple comparisons (the metric based on the Euler
characteristic). In cases where there exist strong a
priori predictions about particular brain regions, the
uncorrected scores are relevant. In cases where there
are not strong a priori reasons to investigate a particu-
lar brain structure, the corrected scores are appropri-
ate. Therefore, both are presented here, as either is
fundamentally relevant, depending upon whether the
inferences are to be made about a particular brain
region or an effect that occurs anywhere in the search
volume. Each of the mixed-design ANOVAs for the
scores across the 16 brain regions included the within
region factors of (1) Resampled voxel size (two levels),
(2) Spatial smoothing (three levels), (3) Temporal
smoothing (two levels), and (4) Set of basis functions
(three levels); and included the between region factor of
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TABLE 2
Results of ANOVA for Uncorrected Z Scores

Analysis of variance
for Z scores

Source DF SS MS F P
Main effects
Resampled voxel size 1 054 0.54 12.40 0.003*
Spatial smoothing 2 12.78 6.39 14.53 0.000*
Temporal smoothing 1 79.66 79.66 12.34 0.003*
Basis functions 2 17.80 8.90 5.09 0.013*
Type of brain region 1 8166 81.66 1.40 0.257
2-way interactions
Resampled voxel X spatial 2 0.06 0.03 0.55 0.583
Resampled voxel X temporal 1  0.02 0.02 1.75 0.207
Resampled voxel X basis 2 0.004 0.002 0.08 0.923
Resampled voxel X type 1 0.05 0.05 121 0.291
Spatial X temporal 2 0.17 0.09 0.59 0.559
Spatial X basis 4  0.04 0.01 0.14 0.966
Spatial X type 2 2039 10.19 23.19 0.000*
Temporal X basis 2 079 0.40 0.65 0.528
Temporal X type 1 5.29 5.29 0.82 0.381
Basis X type 2 517 2.58 1.48 0.245

Type of Brain Region (two levels: cortical and subcorti-
cal, as noted in Table 1).

RESULTS

The ANOVA for sensitivity as measured by uncor-
rected Z scores revealed main effects of Resampled
voxel Size, Spatial Smoothing, Temporal Smoothing,
and Set of Basis Functions (see Table 2). Data with a
resampled voxel size of 2 mm? produced greater sensi-
tivity than with a resampled voxel size of 3 mm3 (Table
4, middle column, presents the means of the uncor-
rected Z scores). Data spatially smoothed with either a
6- or 10-mm isotropic kernel produced more sensitive
analyses than when a 14-mm kernel was used, and
temporal smoothing with a 4-s FWHM kernel produced
greater sensitivity than temporal smoothing with an
8-s FWHM kernel. Analyses that modeled the re-
sponses either with the hemodynamic response func-
tion (HRF) alone or the HRF with only the temporal
derivative showed greater sensitivity than analyses
that used the basis set consisting of the HRF with
temporal and dispersion derivatives.

While there was no main effect of Type of Brain
Region (cortical versus subcortical), there was a signifi-
cant interaction between Type of Brain Region and
Spatial Smoothing (Table 2). Specifically, except for two
regions in the medial frontal lobes, the cortical regions
showed a consistent decrease in sensitivity as the
spatial smoothing increased (Fig. 1, top). However, the
subcortical regions tested here did not show that trend
(Fig. 1, bottom), and, in fact, the right and left hippocam-
pal activations (13 and 16 in Fig. 1) showed the opposite
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TABLE 3
Results of ANOVA for Corrected Scores

Analysis of variance for
corrected scores
(=In (Euler char.))

Source DF SS MS F P
Main effects
Resampled voxel size 1 8.02 8.02 13.49 0.003*
Spatial smoothing 2 166.83 8342 9.75 0.001*
Temporal smoothing 1 2286.67 2286.67 12.50 0.003*
Set of basis functions 2 49340 246.70 5.11 0.013*
Type of brain region 1 2505.59 2505.59 1.35 0.264
2-way interactions
Resampled voxel X spatial 2 1.21 0.61 0.86 0.433
Resampled voxel X temporal 1 0.06 0.06 0.40 0.536
Resampled voxel X basis 2 0.06 0.03 0.10 0.903
Resampled voxel X type 1 0.92 0.92 1.54 0.235
Spatial X temporal 2 1.19 0.59 0.21 0.810
Spatial X basis 4 2.99 0.75 0.44 0.776
Spatial X type 2 44343 221.71 25.92 0.000*
Temporal X basis 2 0.35 0.18 0.01 0.989
Temporal X type 1 330.77 330.77 1.81 0.200
Basis X type 2 14.90 7.45 0.15 0.858

trend of increasing Z scores with increasing degrees of
spatial smoothing.2 There were no other significant two
or three-way interactions.

When sensitivity was assessed using corrected val-
ues, main effects were again found for Resampled voxel
Size, Spatial Smoothing, Temporal Smoothing, and Set
of Basis Functions (see Table 3). Similar to the uncor-
rected scores, a resampled voxel size of 2 mm? again
produced higher sensitivity than a 3 mm?3 resampled
voxel size, temporal smoothing with a 4-s kernel pro-
duced higher sensitivity than smoothing with an 8-s
kernel, and modeling the data with the HRF alone or
with the temporal derivative resulted in more sensitive
analyses than when the dispersion derivative was
included (Table 4, right column, presents the means of
the corrected scores). However, as might be expected,
the direction of the effect of spatial smoothing was
different for the corrected scores than it was for the

2 0One possible explanation for this difference is that subcortical
regions may show a slightly different hemodynamic response. In
addition to showing an opposite pattern to the cortical regions in
terms of spatial smoothing, the hippocampal regions also showed a
trend toward higher sensitivity with an 8-s temporal smoothing. This
was in contrast to all other regions (except for one superior temporal
region) that showed a lower sensitivity with the 8-s temporal
smoothing. The differences noticed here may highlight the need to
examine the HRF individually in different brain regions, especially in
subcortical regions where the neural architecture differs from that in
the surrounding cortex. Indeed, Rajapakse et al. (1999) suggest that
the hemodynamic response depends on a number of factors, including
the neuronal and vascular architecture, that may differ by brain
region.
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uncorrected scores. While a spatial smoothing of 6 mm
produced the highest sensitivity when measured by
uncorrected scores, a spatial smoothing of 6 mm gave
the lowest sensitivity as measured by corrected scores.
For the corrected scores, a spatial smoothing of 10 mm
yielded the highest sensitivity. Similar to the uncor-
rected scores, there was no main effect of Type of Brain
Region for the corrected scores, but there was again a
significant 2-way interaction between Type of Brain
Region and Spatial Smoothing. Specifically, subcortical
regions showed increasing sensitivity with increasing
size of the spatial smoothing kernel, while the largest
smoothing kernel produced the least sensitive analyses
for cortical regions. No other two or three-way interac-
tions were significant in the analysis of the corrected
scores.

CONCLUSIONS

In general, the results of our meta-analysis are fairly
intuitive. In terms of spatial smoothing, for discrete
signals the optimal smoothing kernel should approxi-
mate the size of the underlying signal or evoked
response. Based upon the fact that increases in blood
flow and blood volume arise in gray matter, and that
the spatial extent of gray matter differs between corti-
cal and subcortical structures, the signal source would
be expected to be more spatially extended for subcorti-
cal structures. Based upon the anatomical structure of
cortical regions, the spatial extent of cortical activa-
tions would be expected to be in the order of 3-5 mm,
suggesting a spatial smoothing of 6 mm would be the
most efficient. In contradistinction, subcortical activa-
tions may be more spatially diffuse, engaging larger
volumes of subcortical gray matter. The finding that
subcortical activations were more powerfully detected
using a higher degree of spatial smoothing is entirely

TABLE 4

Summary of Average Scores

Z Scores —In (Euler)

Resampled voxel dimensions

2 X 2 X 2mm3 5.26 6.59

3 X 3 X 3mm? 5.20 6.36
Spatial smoothing

6 mm 5.35 5.74

10 mm 5.32 7.01

14 mm 5.02 6.67
Temporal smoothing

4s 5.60 8.47

8s 4.86 4.48
Set of basis functions

HRF (alone) 5.31 7.33

HRF and Temporal derivative 5.39 7.16

HRF and Temp and Dispersion deriv 4.99 5.17
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consistent with the anatomical infrastructure express-
ing the hemodynamic responses. In addition, we found
that after a correction for multiple comparisons had
been imposed, a slightly larger spatial smoothing (10
mm) produced the most sensitive results for cortical
regions. This is consistent with the nature of the
correction, as a smaller smoothing kernel results in
more comparisons across the volume.

In relation to temporal smoothing, one would gener-
ally anticipate that a smaller degree of temporal smooth-
ing would give more efficient and sensitive tests. Again
this is what we found and indeed the impact of tempo-
ral smoothing appeared to be greater than the other
parameters we analyzed, in terms of percentage change
of the uncorrected and corrected scores. The reason
why less temporal smoothing gives a more sensitive
analysis is because the most efficient characterization
would involve prewhitening the data as opposed to
smoothing it further. The reason that smoothing is
employed is to ensure the robustness of the ensuing
inferences by imposing a correlation structure on the
time series. Although this renders the analysis less
efficient, it protects against bias in the estimate of the
standard error of the parameter estimates that enters
as a result of misspecifying the form for these serial
correlations (Friston et al., submitted). Here, we show
that applying a temporal smoothing as large as 8 s may,
however, significantly decrease the power of the analy-
sis.

In testing for the optimal basis set, we found that
including the dispersion derivative decreased the sensi-
tivity of the analysis. Both the HRF alone and the HRF
with its temporal derivative engendered greater sensi-
tivity than when the dispersion derivative was in-
cluded.® While the HRF and the HRF with temporal
derivative had comparable sensitivity, it may be more
prudent to use the HRF with the temporal derivative in
order to account for slight temporal shifts in the data
(see also Aguirre et al., 1997, and Rajapakse et al.,
1999, for alternative methods of modeling the hemody-
namic response).

In terms of resampled voxel size, the smaller resam-
pled voxel size did produce a significantly greater
sensitivity, although the absolute measures of sensitiv-
ity changed only a small amount. The increase in
sensitivity with 2-mm voxels is probably a result of the
slight implicit smoothing in the sinc interpolation. All

3 It should be noted, however, that the dispersion derivative may be
important for finding regions that have a different form or shape of
hemodynamic response. The present meta-analysis only considered
regions that evidenced suprathreshold clusters in all 36 analyses—
any region that was significant in only one or a few sets of analyses
was not considered here. Therefore, the dispersion derivative could
still be very useful under certain circumstances (see also Rajapakse et
al., 1999, for related issues).
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interpolations are effectively linear combinations of the
local voxel values and can be thought of in terms of a
spatial smoothing. Any resampling of data slightly
smoothes it and therefore renders the analysis more
sensitive. Here we used only sinc interpolation in
resampling the voxel size. Simpler forms of interpola-
tion may be used, but could result in a loss of informa-
tion, in terms of resolution. A possible extension of this
work would be to include multiple types of interpola-
tion as a factor in the meta-analysis.

In summary, these results suggest optimal values for
the analysis parameters of spatial smoothing, temporal
smoothing, and resampled voxel size, and furthermore
show that including only the temporal derivative with
the HRF can provide flexibility in modeling event-
related fMRI responses without compromising sensitiv-
ity. This paper presents an approach to assessing fMRI
analysis parameters that can identify optimal param-
eters for the analysis of fMRI datasets. The equipment
used to acquire the data and the specifications concern-
ing the acquisition parameters may also affect the
ultimate sensitivity of analyses, although we have not
tested those factors here. While the specific values
found to be optimal here may differ somewhat depend-
ing upon acquisition parameters and scanning equip-
ment, the general trends found here (i.e., the decrease
in sensitivity with a larger temporal smoothing kernel
or the interaction between smoothing and brain region)
are more likely to generalize, as these effects are based
upon postacquisition parameter settings.
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