NeuroImage 10, 724737 (1999)

. . . . . . ®
Article ID nimg.1999.0509, available online at http://www.idealibrary.com on IDE %l.

Accurate High-Speed Spatial Normalization Using an Octree Method

Peter V. Kochunov, Jack L. Lancaster, and Peter T. Fox
Research Imaging Center, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, Texas 78284

Received December 30, 1998

The goal of regional spatial normalization is to re-
move anatomical differences between individual three-
dimensional (3-D) brain images by warping them to
match features of a standard brain atlas. Full-resolu-
tion volumetric spatial normalization methods use a
high-degree-of-freedom coordinate transform, called a
deformation field, for this task. Processing to fit fea-
tures at the limiting resolution of a 3-D MR image
volume is computationally intensive, limiting broad
use of full-resolution regional spatial normalization. A
highly efficient method, designed using an octree de-
composition and analysis scheme, is presented to re-
solve the speed problem while targeting accuracy
comparable to current volumetric methods. Transla-
tion and scaling capabilities of octree spatial normal-
ization (OSN) were tested using computer models of
solid objects (cubes and spheres). Boundary mismatch
between transformed and target objects was zero for
cubes and less than 1% for spheres. Regional indepen-
dence of warping was tested using brain models consist-
ing of a homogenous brain volume with one internal
homogenous region (lateral ventricle). Boundary mis-
match improved with successively smaller octant-level
processing and approached levels of less than 1% for
the brain and 5% for the lateral ventricle. Five 3-D MR
brain images were transformed to a target 3-D brain
image to assess boundary matching. Residual bound-
ary mismatch was approximately 4% for the brain and
8% for the lateral ventricle, not as good as with homoge-
neous brain models, but similar to other results. Total
processing time for OSN with a 2562 brain image (1-mm
voxel spacing) was less than 10 min. o 1999 Academic Press
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INTRODUCTION

Spatial normalization refers to a class of image
processing algorithms that reduces interindividual ana-
tomical variance by matching homologous spatial fea-
tures of a “source” brain to those of a “target” brain. In
many human brain mapping analyses, an anatomical
feature template is used instead of a target brain to
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spatially transform anatomical and functional 3-D data
into a common brain (Fox et al., 1985; Collins et al.,
1994; Fox, 1995; Friston et al., 1995; Lancaster et al.,
1995; Woods, 1996; Toga et al., 1998). The most common
target brain space is that developed by Talairach and
colleagues (Talairach et al., 1988).

Spatial normalization can be broadly classified as
global or regional. Global normalization uses a paramet-
ric description of the whole brain (position, orientation,
and dimensions) to perform affine transformations,
with up to twelve parameters in a 4 X 4 homogeneous
coordinate transform matrix (Foley et al., 1990). In
most instances of global normalization, only nine param-
eters are used (three each for rotation, translation, and
scaling), and these must be carefully selected (Fox,
1995; Woods, 1996). Manual global spatial normaliza-
tion methods require identification of key landmarks,
such as the anterior and posterior commissures (AC,
PC), to perform appropriate translation, rotation, and
scaling (Fox et al., 1985; Minoshima et al., 1993;
Lancaster et al., 1995). Automated global spatial nor-
malization methods, matching features such as the
brain’s convex hull surface, have also been reported
(Lancaster et al., 1999; Collins et al., 1994; Roland et
al., 1994). While global spatial normalization methods
remove global anatomical differences, they cannot cor-
rect for smaller regionalized differences. Regional spa-
tial normalization algorithms try to match homologous
spatial features at varying scales, some down to the
limiting resolution of 3-D MR brain images (Chris-
tensen et al., 1994; Collins et al., 1995).

Previously reported methods (Christensen et al.,
1994; Collins et al., 1995; Kostelec et al., 1998) require
many hours of processing to produce a full-scale defor-
mation field. The primary goal of the OSN design was
to reduce the processing time to minutes while main-
taining the accuracy of the previous methods. This
improvement for OSN was sought by increasing effi-
ciency in the several areas (Table 1).

This report describes the OSN algorithm and tests
several key properties of OSN. Tested properties in-
clude: continuity correction, global translation and
scaling, management of nonhomologous features, and
regional warping performance. Most of these properties
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TABLE 1
Description of the OSN’s Algorithm Efficiency

Improvement area Description

Feature extraction Centroid matching rather than MSE
approach by Collins et al. (1995)

Adaptive Gaussian smoothing (see Mate-
rial and Methods) as opposed to Navier—
Stokes or spline interpolations (Kostelec
et al., 1998)

Octree volume decomposition with rejec-
tion of empty processing nodes

Exploiting the parallel nature of the
OSN'’s design with multithreaded code

Continuity correction

Scale control

Coding features

are evaluated using computer modeled source and
target 3-D images to insure absolute measurement of
performance quality. In addition, promising applica-
tions of high-degree-of-freedom spatial normalization
are discussed.

MATERIALS AND METHODS

OSN algorithm overview. The 3-D OSN algorithm
evolved from earlier modeling in one and two dimen-
sions (Lancaster et al., 1998). As with prior, high-
resolution regional normalization methods (Chris-
tensen et al., 1994; Collins et al., 1995; Kostelec et al.,
1998), OSN computes a deformation field. It does this in
a hierarchical, multiscale manner, by subdividing the
volume into successive octants. At each stage, local
similarity measurements are made and compared be-
tween source and target. The similarity measurements
are adaptive, thresholded centers of the mass. Prior to
advancing to the next octree subdivision: a deformation
field that matches all centers of mass, is computed;
continuity correction is performed; and deformation
field is applied. The octree design, coupled with new
processing strategies, provides a significant improve-
ment in processing efficiency over existing methods.
Scale control, achieved using 3-D Gaussian filtering
and resampling by Collins et al. (1995), is much simpler
in OSN being a natural feature of the progressive
subdivision of the 3-D volume into identical octants.
Additionally, void octants outside the brain volume are
sequentially removed from the processing list, reducing
the processing load by approximately 75%.

The similarity measurement scheme for OSN is
efficient and simple, yet powerful. For each octant, the
spatial centroid is the feature of interest. It is calcu-
lated from the set of voxels with values above or below
an adaptive threshold. The adaptive threshold value is
the mean value of data within each octant. The x-y-z
translation needed to match centroids of transformed-
source and target octants is then used to refine the
deformation field. Several strategies for calculating the
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centroid were previously tested, and the thresholded
geometrical (unweighted) centroid provided the best
performance (Lancaster et al., 1998).

Regional spatial normalization is usually preceded
by global spatial normalization, to provide a source
image with standard position, orientation, and scaling.
The globally normalized starting image establishes a
spatial reference frame for reporting results in OSN
(processing step 0). The Convex Hull global fitting
method was used for global normalization. This algo-
rithm has been validated relative to the 1988 Talairach
Atlas space (Lancaster et al., 1999), the space most
commonly used for reporting coordinate based findings
in brain mapping experiments.

The OSN method requires that 3-D images and
deformation arrays be cubic, i.e., same number of
voxels for x, y, and z dimensions, and that each dimen-
sion (D) be defined as 2N where N is a positive integer. N
is also the number of OSN processing steps. Therefore
for a 256° array there are eight processing steps (0-7).
As processing progresses from step 0 to step 7, its
regional/scale nature changes from a single region of
size 2563 to 2,097,152 regions of size 23. This hierarchi-
cal multiscale processing scheme follows from the
natural octree subdivision of space and results in an
extremely efficient algorithm for synthesis of a high
degree of freedom deformation field.

Continuity correction. The octree algorithm re-
quires independent shifting of image data within oc-
tants. This leads to discontinuous regions in the trans-
formed image due of motion perpendicular to
(overlapping or tearing) and/or parallel to (shearing)
interfaces between neighboring octants (Fig. 1). To
avoid discontinuities where the deformation gradient
exceeds a limiting value, the deformation field was
smoothed using a spatial-domain Gaussian filter (see
Appendix 1). The FWHM of the filter was selected to
keep the magnitude of the derivative of each compo-
nent of the deformation gradient (AD,/Ax, AD,/Ay,
AD,/Az) = 0.3, insuring both continuity and 1-to-1
mapping between source and target volumes
(Appendix 1). The continuity filtering takes the largest
portion of the algorithm run-time. To improve perfor-
mance, 3-D smoothing was done as three 1-D convolu-
tions along the x, y, and z directions. Further reduction
in execution time was achieved by independently adjust-
ing the filter FWHM for each octant boundary, since
many boundaries required little or no correction.

To test the continuity correction method, deforma-
tions with known levels of discontinuity were applied to
a 3-D solid cube. Continuity-corrected deformations
were calculated and compared with known values. 3-D
surface renderings of the raw and continuity-corrected
transformed cubes were made to qualitatively assess
performance over the entire surface.
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FIG. 1.

Computer-rendered views of a solid cube deformed with continuity correction (right) and without continuity correction (left).

Examples of shearing (2-4), tearing (4-8), and overlapping (1-2) are seen in the uncorrected data. Octant regions of deformed cube were
clipped at the step-1 octant boundaries to help identify them. Octants 5-8 are behind octants 1-4, with 5 behind 1 and so forth.

Global translation and scaling. Global translation
and scaling are two important steps in global spatial
normalization. Computer models of solid cubes and
spheres were created in 2562 arrays to study transla-
tion and scaling with 3-D solid objects. Target and
source cubes and spheres of different sizes and loca-
tions were modeled. Fit quality was evaluated by
comparing OSN transformed source models with target
models. Differences between transformed and target
objects are only measurable at mismatched boundaries
since interior values are identical. To quantify 3-D
overlapping, the boundary mismatch (volume of mis-
matched boundary voxels) was reported as a percent-
age of the total volume of the target. The boundary
mismatch volume was calculated by binary mode sub-
traction between target and step n-transformed images
and saved as a separate image. This method of error
reporting provides a quantitative measure of fit quality
for any boundary that can be readily identified in target
and transformed images. It also provides a means to
visualize fit quality for surfaces throughout the image
volume. The percentage boundary mismatch as a mea-
sure of fit quality is similar to values reported by others

(Collins et al., 1995) to evaluate automated segmenta-
tion.

To correct for global spatial differences, the center of
mass was used for alignment of both cubes and spheres
at processing step 0. This removes translation differ-
ences therefore translation is not a factor with identical
shape geometrical objects; however, the position of the
target relative to octant boundaries may have an affect.
The roles of source and target images were reversed to
evaluate a possible position effect. Nearest-neighbor
(N-N) interpolation was used in all tests to ensure
accurate boundary definition in transformed images
using a single threshold value.

Testing was done to determine if geometric scaling
was linear throughout the image volume. The ratio of
source-to-target dimensions was used to predict the
distance from model centroids to various internal well-
defined surfaces, planes for cubes, and shells for spheres.
The deformation field was used to calculate a set of
points along a source image surface from points along a
corresponding target image surface. The mean and
standard deviation of the distance from the centroid
was calculated for each surface. Seven such surfaces
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with distances ranging from 2 to 64 mm were evaluated
for the solid model. Overall linearity of global scaling
within the solid models was assessed from the slope of a
least squares linear regression fit of mean measured vs
predicted distances. Differential linearity of global scal-
ing was estimated from the standard deviation of
measured distances for each surface.

Matching of nonhomologous regions. OSN can be
used to transform a cube to a sphere and vise versa, but
since these objects are grossly nonhomologous they give
little insight to the nature of this problem in the brain.
To test nonhomology in a human brain, a 3-D brain
image was modified to introduce several grossly nonho-
mologous regions. This was accomplished by clipping
the brain image posteriorly and inferiorly (Fig. 2,
middle). The unmodified brain image was used as the
source and the clipped brain image as the target for
OSN regional spatial normalization. Since there is no
metric to directly assess nonhomology, results were
evaluated qualitatively.

Regional performance. Independence of regional
warping was tested using two 3-D brain models, each
consisting of a homogenous brain region with one
internal homogeneous region (lateral ventricle). Source
and target brain model images were created from 2563
T1-weighted MR images by manual segmentation of
the brain and lateral ventricle. Manual segmentation
followed the brain surface along gyral and shallow
sulcal boundaries to isolate the brain from surrounding
nonbrain regions. Filling the brain region with a value
of 512 and ventricle region with 256 completed the
brain model images. Model source and target images
were selected from a group of 150 studies as those with
the largest subjective difference in brain shape and
ventricle size. Source and target brain models were
globally spatially normalized using the “convex hull”
automated global spatial normalization method (Lan-
caster et al., 1999). OSN was then used for regional
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spatial normalization. Boundary mismatch images were
calculated at each processing step, and the mismatch
for brain and ventricle surfaces was tabulated.

Human brain evaluation. Due to inherent anatomi-
cal variability, some degree of nonhomology exists
between any two human brains (Talairach et al., 1988;
Ono et al., 1990). Failed homology confounds feature
matching for regional spatial normalization algorithms
and interferes with the selection of landmarks neces-
sary to evaluate fit quality. In fact, fit quality has little
meaning when matchable landmarks are not present. A
potentially useful goal is to measure fit quality using
some subset of matchable landmarks. Regardless, it is
important to study the nature of warping of images
with varying degrees of nonhomologous features, and
this requires a measure of fit quality. Our solution was
to measure fit quality by comparing the two well-
defined boundaries of major structures, the brain and
the lateral ventricle, as was done for regional testing
with the brain model data.

Six 3-D, 2562, T1-weighted MR images of healthy
adults were randomly selected from a pool of 150
subjects (18-40 years) for processing. Each image was
edited to remove the scalp, skull, and other nonbrain
tissues. Surfaces of the brain and the lateral ventricle
were carefully defined by removing tissues outside the
brain and fluids and tissues inside the ventricle, while
leaving the remainder of brain image data intact. The
brain stem was removed below the level of cerebellum
to better define the inferior margin of the brain. The
lateral ventricle was manually segmented and filled
with a constant value equal to its mean value. One 3-D
brain image was randomly selected as the target. All
images were globally spatially normalized using the
“convex hull” method to standardize position, dimen-
sion, and orientation. Each image was then regionally
spatially normalized using OSN. Boundary mismatch
images were calculated at each processing step, and the

FIG. 2. Matching capability of OSN with grossly nonhomologous source (left) and target (middle) brain images. The transformed image
(right) shows how the source brain image is compressed into the target brain region. The head (solid) and brain (broken) outlines provide a

visual means to evaluate warping.



728

mismatch for brain and ventricle surfaces was tabu-
lated.

RESULTS

Continuity correction. Figure 1 (left) shows the re-
sult of applying the uncorrected 3-D deformation field
to a computer modeled cube. Overlapping regions of the
transformed cube were clipped at the step-1 octant
boundaries. Object rotation was introduced to provide a
better view of the deformed cube. Testing with solid
cubes demonstrated that a gradient magnitude =0.3
for each component of the deformation field provided a
continuous deformation.

Profile curves through octant 1 and octant 2 (Fig. 3)
illustrate the effects of continuity correction (solid)
following planned disruption of the deformation field
(broken). The profile curves were drawn along the +x
direction so the x deformation represents overlapping
(region 1 moved 10 mm in the +x direction, while
region 2 was not moved) and the y and z deformations
represent shearing. In this example the original cube
(not shown) was centered in a 256% array and the
numbered regions correspond to the octant they occu-
pied at step 0. Only step 1 processing is illustrated. The
planned differences in deformation were 10 mm for x,
10 mm for y, and 5 mm for z, and the measured profile
curve values showed that these were exactly reproduced.

The continuity-corrected deformation values from

Octant 1
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the profiles in Fig. 3 were compared with predicted
values. The maximum gradients were measured at 0.29
for all three profiles and the target value was 0.3. A1-D
derivative was taken along each profile curve to pro-
duce a curve that represented the line spread functions
(LSF) of the Gaussian filter (Hasegawa, 1991). The
FWHM of the LSF was estimated using nearest neigh-
bor interpolation. For the measured x and y deforma-
tions the theoretical FWHM (Appendix 1) was 31.3 mm
and the measured value was 35 mm. For the z deforma-
tion the theoretical FWHM was 15.7 mm and the
measured was 18 mm. By design the extent of the
Gaussian filters was clipped at the tails where sum of
the filter weights was 95% of the full area. This resulted
in an extent of 56 mm for the x and y filters and 28 mm
for the z filter. The extent measurements indicate that
filtering will alter the interior of deformation octants
approximately 5.6 mm from interfaces for each 1 mm of
discontinuity.

Global translation and scaling. The boundary mis-
match was measured before and after applying OSN to
paired cubes and spheres (Table 2). After transforma-
tion there were no mismatched voxels observed for the
cubes and minimal mismatch for the spheres. The
surface of the sphere was harder to fit, and while some
surface points transform to exact voxel coordinates,
most do not. This leads to larger N-N interpolation
errors, but the final boundary mismatch remained

x Deformation (D,)

/ y Deformation (D)

e o e et

z Deformation (D,)

Deformation (mm)

Octant 2

-60 -40 -20

20 40 60

x Location (mm)

FIG. 3. Profiles curves for x-, y-, and z deformations between regions 1 and 2 of the deformed cube described in the legend of Fig. 1. The raw
deformations (broken lines) and continuity corrected deformations (solid lines) show the importance of continuity correction.
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TABLE 2
Percent Boundary Mismatch for OSN

Source Target Initial Final
Objects size size mismatch mismatch
Cubes 128 161 100% 0.0%
Spheres 168 128 120% 0.1%

small (0.1%). The position of the target object had little
effect on fit quality since the final mismatch figures
were nearly identical to those in Table 2, when the
source and target objects were swapped. The small
residual mismatch shows that centroid matching by
OSN can effectively scale simple (cube) and more
complex (sphere) geometrical objects.

The stepwise progress of the OSN processing in
transforming a sphere from a diameter of 168 to 128
mm was seen to be a successive scaling of the size of the
sphere. Minor shape distortions were visible during
early processing steps, and a nearly perfect spherical
shape was formed by the final step (Fig. 4). This was
indicated by the small RMS error in the radial distance
from points along the surface of the transformed source
sphere to those of the target sphere (0.6 mm). This error
is similar to that observed when fitting brain surfaces
from the same individual but different image modali-
ties (Lancaster et al., 1999). The mean RMS error was

o

Target
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calculated using the XSurfaceFit software (Pelizzari,
1991).

The graph of mean measured vs predicted distance
(Fig. 5) within the cube and spherical models demon-
strated excellent global linearity of scaling. The linear
regression line had a slope within 1% of unity and
intercept within 0.4 mm of zero for both models. This
was strong evidence that the global scaling properties
of the OSN method are correct throughout the solid
models. Regional linearity of scaling was also very
good, with the mean standard deviation of distance for
the seven surfaces tested in the sphere of 0.035 mm.
The maximum errors for each surface were generally
less than the voxel spacing (1 mm). The average of
worst-case errors across all surfaces was 0.79 mm
above or 0.68 mm below the predicted distance. These
data indicate that OSN can provide accurate and linear
scaling across homogeneous areas, even those far from
a boundary.

These results support the idea that multiscale cen-
troid shifting with continuity correction is capable of
performing a transformation equivalent to a linear
global scaling. This is a major achievement since there
is little regional information throughout the volume of
the homogeneous cubes and spheres.

Matching of nonhomologous regions. The sagittal
section images in Fig. 2 illustrate the performance of
OSN under conditions of grossly mismatched homology

FIG. 4. Source and target spheres with results of steps 1, 3, 5, and 7 of OSN processing.
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between source and target brain-like images. The small
boxes near the periphery of each image delimit the
step-1 octant subdivision of these images. The solid
white outline is the target head boundary, and the
broken line is the approximate target brain boundary,
both traced from the target image (Fig. 2, middle). The
mismatch along the inferior and posterior boundaries
between source and target images is large (Fig. 2, left).
There was no mismatch along the major extent of the
superior and anterior boundaries. Inferior and poste-
rior boundary mismatches were greatly reduced follow-
ing the OSN transformation (Fig. 2, right). OSN trans-
formation resulted in compression of the image volume
from the inferior and posterior regions into the target
volume. Head and brain boundaries in the upper right
quadrant were less affected, but were more affected in
the S-I direction than the A-P direction. This was
attributed to the fact that a much larger volume of
tissue was compressed into the target volume from
regions inferior to the target volume than from poste-
rior regions.

While OSN did not perform perfectly in any of the
octants, it did perform according to the algorithm’s
design goals. In particular there are no obvious discon-
tinuities and regions further from the gross feature
mismatched regions had a better match. The full
volume of the source image was transformed into the
approximate volume of the target (distorted) brain. The
initial volume difference was 20%, and OSN processing
reduced this to less than 5%. This example shows that
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FIG. 5. Measured vs predicted distance inside cube (diamond)
and sphere (square) following OSN transformation to match a
different size cube and sphere.

KOCHUNOV, LANCASTER, AND FOX

. . _
o T
A ]
.xd'/ \
f.lr .
| S o
F =
i " r__.i--_.." Fr
r
A
)_F“_._, - =
|. _}'
. oy -
=,

FIG. 6. Sagittal view of boundary mismatches for computer
modeled brain with lateral ventricle following Convex Hull global
spatial normalization (top) and OSN regional spatial normalization
(bottom).

the OSN algorithm provides a predictable, stable spa-
tial transformation even when significant feature mis-
matches are present.

Regional performance. The midsagittal view of mis-
matched boundaries for the 3D brain model shows
significant regional improvement following OSN pro-
cessing for both the brain and ventricle surfaces (Fig. 6).
In fact, most of the mismatched regions for the OSN
brain image were of the order of the voxel dimension.

Percentage mismatch of the brain boundary for OSN
at each processing step decreased monotonically (Fig. 7).
The initial percentage mismatch (step 0) is that follow-
ing global spatial normalization and the final (step 7) is
that for full regional spatial normalization. The final
mismatch is similar to that achieved by OSN for the
computer modeled solid spheres (<1%). The ventricle
mismatch increased initially, followed by a decreasing
trend (Fig. 7). The rise in ventricle mismatch during
the first two processing steps is believed to be due to its
relatively small size. OSN multiscale processing deals
with large-scale features during the early steps of
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FIG.7. Percentage boundary mismatch at each step of OSN processing for brain and lateral ventricle for fitting brain models.

regional processing. The boundary mismatch for small-
scale features can therefore rise during these out-of-scale
processing steps. This rise is compensated later as the
regional processing scale decreases. In fact, the slope of
the percentage mismatch curve is steeper for the
ventricle than for the brain for steps 3-7 (Fig. 8B). The
ventricle percentage mismatch following global spatial
normalization (5%) is a six-fold reduction from the 30%
mismatch following regional spatial normalization, but
does not achieve the 1% level seen for the brain surface.

Human brain evaluation. The midsagittal view of
one transformed human brain illustrates typical im-
provement of OSN over global spatial normalization
(Fig. 8), for the ventricle and brain boundary, the
cerebellum, and the superior temporal lobe. The mean
percentage mismatch curves for OSN processing of the
five human brain images shows a continual improve-
ment in fit for each successive step for both brain and
ventricle (Fig. 9). The rise in percentage mismatch for
the ventricle, seen with the homogeneous brain model,

FIG. 8. Sagittal views of human brain following Convex Hull global spatial normalization (left) and OSN regional spatial normalization
(right). The outline of the target brain and ventricle (solid line) indicates how well each method performed.
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FIG.9. Percentage boundary mismatch at each step of OSN processing for brain and lateral ventricle for fitting human brain images.

was not seen with human brain images. This is prob-
ably the result of numerous other structures within the
human brain image that moderate the out-of-scale
effect. The percentage mismatch at step 0 (following
global spatial normalization) is similar to that mea-
sured using the homogeneous brain model (Fig. 7).
However, the final mismatch for the human brain
images is approximately 3% higher for brain and
ventricle boundaries. These differences are probably
due to the more complex (nonhomogeneous) nature of
feature content for the human brain image, and interac-
tions with feature matching that can occur.

The general trend in boundary mismatch was decreas-
ing standard deviation for successive processing steps.
This trend suggests a reduction in anatomical differ-
ences at boundaries of brain images from the different
subjects. For the ventricle the lowest standard devia-
tion was seen at step 4 (octant dimension = 16 mm).
This may be due to small features near the ventricle
border that confound the final fit. However, the mean
percentage mismatch continued to improve down to
step 7 (octant dimension = 2 mm) for both brain and
ventricle surfaces. An important result of this test was
that the boundary of the lateral ventricle was trans-
formed independently of the brain boundary.

Processing time. Total image processing time for
the OSN application, including loading source and
target volumes, performing regional spatial normaliza-

tion and saving the transformed image, is less than 10
min for a 2562 3-D volume image (SUN Ultra 30-248
Mhz, SpecFP-95 11.4, Sun Microsystems, Mountain
View, CA). A more detailed breakdown of processing
speed for computer modeled cubes gave a total process-
ing time of 8 min, with 3} min related to OSN fitting
and 4} min for loading source/target images and saving
the transformed image.

DISCUSSION

A fast method for 3-D spatial normalization of the
human brain, called octree spatial normalization or
OSN, was introduced. Its ability to generate continuous
regional deformation was tested and demonstrated in
several models. Global translation and scaling were
carefully evaluated in solid models of cubes and spheres.
A smooth, continuous transformation was seen even in
the presence of gross nonhomology between source and
target brain volumes. Regional independence was dem-
onstrated for the surfaces of the brain and the lateral
ventricle in a brain model. Preliminary results in
human brain images yielded fit quality similar to that
in the brain model.

Continuity correction. In current experiments the
allowed maximum gradient magnitude was =0.3 to
maintain the positivity of the determinant of the Jaco-
bian matrix (Appendix 1). This was done for processing
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steps 1 to 5, but continuity correction was not used in
steps 6 and 7 since the octant dimensions were too
small (4 and 2 mm). Also, large deformation field
discontinuities, such as those used to demonstrate
continuity problems in Figs. 1 and 3 (10 mm), were not
present in human brain images, since global spatial
normalization was performed prior to regional spatial
normalization, and it corrects for most of the large-
scale differences.

Global translation and scaling. 'Two-dimensional
global translation, rotation, and scaling features of a
2-D version of the OSN method were previously re-
ported (Lancaster et al., 1998). Tests with simple
elongated rectangles showed that global spatial normal-
ization could be performed with a quadtree method.
Tests indicated that while this was possible, it is more
efficient to perform global spatial normalization with
proven simpler transform methods, and this was done
with 3-D processing of human data.

Scaling of the outer dimensions of the solid cube
model was exact. For objects with outer boundaries
definable as planes, the OSN processing appeared to
perform perfectly. The scaling linearity within the
cubes was also very good (Fig. 5). The ideal nature of
the OSN boundary fit for cubes is believed to be related
to the similarity of shape between octants used for
processing and the cube shape. For example, in step 0
the source and target centroids are matched. At step 1,
each octant contains a cubic region different only by
size between source and target but with identical
feature homology, i.e., cubic shape. For subsequent
steps, this trend continues for octants near boundaries.
Internal octants have identical centroids and no longer
contribute to the deformation. No mismatched feature
pairing was seen (source and target octants not full or
partial cubes). This led to the near-perfect global linear
scaling for each component of the deformation field,
and when used with N-N interpolation the small differ-
ences fell near to the correct faces, resulting in a perfect
fit at the boundary.

The solid sphere model presented a greater challenge
since it did not subdivide into cubic suboctant features.
However, the stepwise progress of processing (Fig. 4)
shows that OSN algorithm performed well. The ability
of the OSN algorithm to produce a smooth transforma-
tion, even when large discontinuities are present, is
reemphasized here. By design, the step-1 local disconti-
nuities were as high as 20 mm/voxel since global spatial
normalization was not used in step 0. However, the
surface appears relatively smooth and the shape is
minimally distorted in early stages of processing. After
step 3, volume differences are minimal, but small
variations from the spherical shape remain. After step
7 the spheres are almost identical. Residual differences
were partly attributed to the N-N interpolation.
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Matching of nonhomologous regions. The goal of
OSN for regions with nonhomologous features was to
have a predictable, well-behaved transform with mini-
mal effect on fit quality in regions where homologous
features are present. Well behaved means no spatial
discontinuities in transformed images, ensuring that
the full source volume will be present in the trans-
formed image.

Prior to continuity correction, it is important to
minimize fluctuations in the uncorrected deformation
field that might arise from mismatched features. Fluc-
tuations were moderated by OSN’s octant feature
matching algorithm (Materials and Methods). The first
step in this algorithm is to determine whether the set of
voxels in the value min- to mid-range is larger than the
set in the mid- to max-range, where mid = (max — min)/
2. The geometric centroid of the larger set is calculated
as the feature to match for each octant. Using a subset
of the octant’s voxels better concentrates feature analy-
sis on the data within the octant, deemphasizing the
boundary. It is also an attempt to isolate a large data
region within the octant, similar to step 0 where the
brain is fully contained within a single 2563 region.
When the step n source and target octants indicated
different thresholding sense, feature mismatch was
assumed, and the thresholding sense of the target used
in both. This algorithm works well when features
always match (i.e., 3-D solid cubes) and moderates the
deformation in cases of nonhomologous features.

A modification of the OSN feature matching algo-
rithm accounts for the case when either the source or
target octant, but not both, are void of data. When this
occurs, octants are enlarged by 50% until data are
present in both. This mismatch can happen, even with
homogeneous geometric models and is affected by the
position of target and size differences between source
and target. This feature was invoked during the fitting
of the spherical computer models and worked very well
(Figs. 4 and 5). When no data is present in a step n
source and target octant no processing is done.

Regional performance. While several high-degree-of-
freedom deformation methods have been developed,
none has been able to resolve all regional differences.
The good match for brain and ventricle in the brain
model images indicates that OSN’s regional deforma-
tion works well in this high-contrast model (Fig. 6). The
slope of the percentage brain surface mismatch curve
(Fig. 7) was steepest between step 0 and step 1,
gradually decreased, but continued to be significant
and negative through the last step. Interestingly, the
fractional improvement increased with each step, with
the largest percentage improvement between step 6
and step 7.

As mentioned in the results section, the positive
slope in the percent surface mismatch for the modeled
ventricle was probably due to an out-of-scale phenom-
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enon. In fact, the slope did not become negative until
step 3. The fit improvement at step 3 is assumed to be
the result of a better match between octant dimension
(32 mm) and the size of the lateral ventricle. The slope
was more negative for each subsequent processing step,
and this appears to compensate in part for the early
processing. The desired fit quality was a percent mis-
match below 1%, but only 5% mismatch was achieved
for the ventricle. The final mismatch is, of course,
dependent on structural homology between source and
target ventricles, and this is the ultimate limiting
factor. The final percentage boundary mismatch data
indicate that brain surfaces are more homologous than
ventricle surfaces, but this was expected since highly
variable sulcal regions (Ono et al., 1990) were excluded
from the brain surface in this study.

Human brain evaluation. In the computer brain
model the brain and ventricle were noiseless homoge-
neous regions surrounded by zero values. The human
brain images differed from the brain model in that
brain data were present in the space between ventricle
and brain surfaces (Fig. 8). Outside the brain was set to
zero and inside the ventricle was a single value equal to
the average ventricle value. While the homogeneous
ventricle did not mimic the ultimate use of OSN, it
supports accurate measurement of percent mismatch
for both the brain and ventricle in the human brain
image. It also insures that internal differences between
ventricles do not affect fit quality measurements. By
using N-N interpolation the boundary for homogeneous
areas around the brain and within the ventricle can be
automatically tracked at each step of processing using
simple thresholding.

The OSN feature-matching algorithm was developed
for use with binary images (models) as well as gray-
scale images. The algorithm uses the gray-scale image
values to select the largest subset of voxels above or
below the mid value for an octant. This serves to
remove the influence of high or low values from the
estimation of the feature centroid and render the data
as binary (low value or high value set). Centroids
calculated in this manner appear to better represent
the size and position for the feature of interest within
octants (Lancaster et al., 1998). This helps to minimize
the effect of differences in contrast between source and
target images that are common in high-resolution 3-D
MR images. By adapting to local values OSN is less
affected by MR shading artifacts, and corrections for
such are probably not necessary, though this has not
been carefully tested.

Applications of the OSN algorithm. Two immediate
applications of OSN are obvious. The first is to supple-
ment the work of ANIMAL (Collins et al., 1995) in the
development of probability structures for the human
brain (Mazziotta et al., 1995). While ANIMAL provides
a good method to create structure probability anatomi-
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cal maps (SP_AMs), its processing time is long, delay-
ing processing of large quantities of high-resolution
images (approximately 33 h per image at full resolu-
tion). The processing time using OSN software is less
than 10 min per brain volume, and it can be used on
many different computer platforms since it was coded
in C++ with no graphical interface. While it is believed
that OSN can perform this task well, a comparison
between OSN and ANIMAL for generating SP_AMs
must be performed before using it for this purpose.

The second intended use of OSN is to apply its
deformations to functional images in an attempt to
minimize regional anatomical variability. Functional
images, coregistered to high-resolution MR images,
will be transformed using the deformation field deter-
mined from the MR image. This testing will be done
with PET images rather than fMRI since regional
spatial distortions are minimal in PET. The goal is to
improve multisubject functional studies by reducing
the anatomical differences to a minimum before combin-
ing images from different subjects to create statistical
probability images (SPIs) contrasting various tasks.
Such processing could provide a basis to study correla-
tion between spatial and functional variability. A key
issue is whether regional spatial normalization will
improve alignment of functional sites across subjects. If
S0, an increase in the signal-to-noise ratio in functional
images beyond that seen for global spatial normaliza-
tion would be expected, and the sensitivity of popula-
tion studies improved. If the outcome is positive, and
since OSN is ideally suited for cross-platform use, it
could become a standard processing strategy for func-
tional studies.

Other new applications. One potential application
for OSN is to reregister images of body regions that
deform plastically. This could be used, for example, in
radiation treatment planning for organs such as the
liver. OSN could be used to register CT or MRI images
acquired with different body configurations and there-
fore deformed differently. These would be registered to
the reference treatment volume defined using a 3-D CT
simulator image. Another application would be to ana-
lyze the deformation fields to study regional growth
patterns (i.e., plastic deformations) in 3-D (Toga et al.,
1998). For example, this would be useful to character-
ize regional tumor growth or shrinkage following treat-
ment. Another potential application is the analysis of
regional growth patterns in fossilized bones using CT
images of 1*C-dated bone specimens. Deformation fields
created using sequentially dated specimens can be used
to describe spatial changes, and this should be helpful
in the study of regional bone development on an
evolutionary time scale.

Processing speed. A unique feature of the OSN
algorithm is that it takes approximately the same time
for each processing step, approximately 30 s. This is a
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significant improvement over other hierarchical mul-
tiresolution methods where processing time increases
significantly with each additional step (Collins et al.,
1995). Though the processing overhead increases
slightly with each step for OSN, the number of void
octants (no processing required) also increases, with
the net effect of a slight drop in time/step toward later
steps. The processing time is proportional to the num-
ber of voxels and for 128% images is approximately &
that for 2562 images.

The preprocessing time for MRI brain images is
longer than the OSN processing time. It takes 10-20
min to prepare a brain-only image. This is currently
done using the MEDx (Sensor Systems, VA) interactive
segmentation tools with touch up (if needed) using the
Alice (Parexel Inc.) shrinkwrap and ROI nudging tools.
Additionally, the brain image must be globally spatially
normalized. This is done using the Convex Hull soft-
ware (Lancaster et al., 1999) and can be completed in
approximately 5 min.

Algorithm problems. The OSN algorithm requires
that all images have the same dimensions with 2" size.
In fact, it has only been tested for cubic voxels with 1
mm spacing in a 1283 or 256° arrays. This is not
considered to be a significant problem with the large
amount of memory available for most computer sys-
tems.

In order to guarantee fit quality OSN processing
must go through all steps. This is easily seen with the
computer modeled sphere (Fig. 4). It is also indicated by
the significant and continuous drop in mismatch error
through the final step of processing (Figs. 7 and 9). This
is not considered to be a significant problem since each
processing step takes only 30 s.

Future developments. 1t is expected that the OSN
algorithm will work well throughout the brain, but that
has not been yet evaluated. Before proceeding with a
more comprehensive evaluation throughout the brain,
the low contrast capabilities of OSN will be enhanced
and tested. The current feature matching strategy in
OSN worked well with the high-contrast borders of
solid models, a brain model, and several human brains.
The matching of low-contrast structures presents a
more difficult task; however, it is felt that with minimal
modification of the feature matching algorithm this
difficulty will be resolved. High speed cross-correlation
between target and source octants is currently under
review as a potential enhancement of the feature
matching strategy.

Continuity correction will be extended to the final
two processing steps (6 and 7) in the smaller octants
(4 X4 X4 mm and 2 X 2 X 2 mm). One proposal is to
apply a small extent global filter throughout the entire
volume with filter FWHM fixed for each size. Prelimi-
nary testing is underway, but it was not used in this
evaluation of basic features of OSN.
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Trilinear interpolation was incorporated into OSN
with slight increase in processing time (3.5 to 5 min). It
will be used in subsequent testing of the gray level
matching ability of OSN throughout the brain. More
accurate interpolation schemes, such as sinc interpola-
tion (Hajnal et al., 1995; Castleman, 1996) may eventu-
ally be used for the final reconstruction of transformed
images. Multiple passes of the OSN algorithm over the
source data, interpolated with higher order interpola-
tion, is expected to improve mismatch of finer details.
Although this may lead to the increase in the process-
ing time, this has not yet been tested.

The use of OSN with other imaging modalities will
rely on coregistration of those images with high-
resolution MR images. The deformation will then be
applied to the coregistered image. The overall perfor-
mance of such multi-stage processing will need to be
tested for the various methods in current use for
registration (Pelizzari et al., 1989; Woods et al., 1992,
1993; Studholme et al., 1995).

APPENDIX 1

Unique corrections were made to OSN’s deformation
field in an attempt to provide a piecewise continuous
3-D deformation with 1-to-1 mapping between source
and target brain volumes. A coordinate transformation
is locally 1-to-1 for 3-D images if the determinant of its
Jacobian matrix is positive (Christensen et al., 1995;
Buck, 1978). OSN’s deformation field is a set of vector
equations like A.1, one for each x-y-z coordinate in the
working volume.

x'7 [x] [Dix,y,2)
v =y + |Dyx,y, 2) (A.1)
z'| |z |D,x,y,z2)

The determinant of the Jacobian for Eq. A.1 is calcu-
lated as follows

1+ G, G, G,,
‘J ‘ = ny 1+ ny Gyz
G, G, 1+ G,

J=1+ (G, +G,+G,)
+ (GG, + GG, + G,,G,.
~ GGy — GGy — G,.G,)
+ (GG, G., + G,y G,.Gsy + GGG,

xy yz
- GxxGyszy - zenysz - G G GZZ)

xy = yx

(A.2)

where the G; = AD/Aj (i, j = x, y, z) are gradients of
deformation field components.
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For 3-D images the determinant of the Jacobian (|J|)
is a measure of how differential volumes map between
source and target regions. For global translation and
rotation, there is no volume change (|J| = 1). The value
of | J| can increase or decrease depending on the nature
of global scaling (expansion increases |J| and contrac-
tion decreases |J|). |J| < 0 indicates a reflection of a
volume through itself. These features are readily veri-
fied for a global affine coordinate transform. |J| = 0
indicates mapping of one or more points to a single
point (loss of 1-to-1 nature) and poses a problem with
higher order coordinate transformations, such as defor-
mation fields, where both transform (A.1) and |J| vary
spatially. For OSN, spatial variations in |J| are greatest
at octant boundaries, so the continuity correction
scheme was devised to constraint |J| around octant
boundaries. This constraint is applied to differential
deformation fields before updating the full differential
field.

The positivity of |J| should be tested for each location
in the volume of interest (i.e., the brain) to insure a
continuous 1-to-1 transformation. Since this is ex-
tremely time consuming, |J| was evaluated for what is
believed to be the worst-case condition (isometric con-
traction), and a processing method developed to ensure
that |[J| > 0. During OSN processing, isometric contrac-
tion can occur for the eight voxels at the common
boundary (vertex) of eight octants. This contraction
was seen when warping cubes and spheres to smaller
versions, following centroid matching. For isometric
contraction |J| reduces to

I =1+ (G, + G,+ G,)
+ (G.G,, + G.G..+ G,G,,) + (G,G,,G..),

(A.3)

where all G;; are equal. Cancellation of cross-terms was
verified by manual calculation. Equation A.3 predicts
that |J| = 0when G;; = —1,|J| <0 for G; < —1, and |J| >
0 for G;; > —1. For the |J| = 0 case all eight voxels at the
common vertex transform (contract) to the same loca-
tion. When one or more voxels map to the same
location, local failure of 1-to-1 mapping occurs. To avoid
this condition we limited the magnitude of all G;; at all
octant boundaries to less than 0.3, a somewhat conser-
vative restriction. To achieve this limit each differential
deformation field component (D,, D,, and D,) was
smoothed using an adaptive 1-D Gaussian filter (See
Fig. 3) across all eight octant faces.

The following steps illustrate calculation of the
FWHM of the Gaussian filter for the D, component of
the deformation field along an x-directed line crossing
between two octants:

1. The maximum value of G, before filtering is for
points at the boundary between octants 1 and 2 (See
dotted line in Fig. 3). At the boundary, |G,.| = |D,; — D,q/,
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where D,; and D,y are the x-directed deformations for
octants 1 and 2 before filtering. If |G,,| is < 0.3 no
filtering is done.

2. The postfiltering maximum of G,, is similarly
calculated as |G| = |D); — D). The postfiltering
deformations at octant boundaries are

!

L=+ +S.,Dy + 8D,y + SeDy

+S,1Dpp + 85Dy + -+ -
'g ="+ S_Dy+ S_1D,; + SeD,,
+ 81Dy + SioDpp + - -

where the Ss are the Gaussian weight factor for
filtering at distances of 0, =1, =2, . . . voxels from the
center of the filter. During subtraction all but bold
terms cancel revealing a simple functional relationship
among |G|, So, and |G|

‘Glxx‘ = ‘Dlxl - D;cz‘ =S ‘Dxl - Dx2‘ =S ‘Gxx| (A.4)

3. For a Gaussian filter S is defined as

1 0.94
S, = \/% = FWHM where FWHM = 2.350. (A.5)

4. Combining Eqgs. (A.4) and (A.5) and setting the
target maximum value of |Gxx| to 0.3 leads to a simple
equation for FWHM in terms of the prefiltering gradi-
ent magnitude

FWHM = 3.13 |G, | (A.6)
For the example in Fig. 3, where G,, was 10 at the

boundary prior to filtering the FWHM used for filtering
was 31.3 mm since voxel spacing was 1 mm.
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