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Abstract: The alignment accuracy and impact on functional maps of four spatial normalization procedures
have been compared using a set of high resolution brain MRIs and functional PET volumes acquired in
20 subjects. Simple affine (AFF), fifth order polynomial warp (WRP), discrete cosine basis functions (SPM),
and a movement model based on full multi grid (FMG) approaches were applied on the same dataset for
warping individual volumes onto the Human Brain Atlas (HBA) template. Intersubject averaged struc-
tural volumes and tissue probability maps were compared across normalization methods and to the
standard brain. Thanks to the large number of degrees of freedom of the technique, FMG was found to
provide enhanced alignment accuracy as compared to the other three methods, both for the grey and
white matter tissues; WRP and SPM exhibited very similar performances whereas AFF had the lowest
registration accuracy. SPM, however, was found to perform better than the other methods for the
intra-cerebral cerebrospinal fluid (mainly in the ventricular compartments). Limited differences in terms
of activation morphology and detection sensitivity were found between low resolution functional maps
(FWHM �10 mm) spatially normalized with the four methods, which overlapped in 42.8% of the total
activation volume. These findings suggest that the functional variability is much larger than the anatom-
ical one and that precise alignment of anatomical features has low influence on the resulting intersubject
functional maps. When increasing the spatial resolution to approximately 6 mm, however, differences in
localization of activated areas appear as a consequence of the different spatial normalization procedure
used, restricting the overlap of the normalized activated volumes to only 6.2%. Hum. Brain Mapping 16:
228–250, 2002. © 2002 Wiley-Liss, Inc.
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INTRODUCTION

Spatial normalization is a necessary and crucial step
in the analysis of both structural and functional neu-
roimaging data because it allows us to bring brain
volumes acquired in different individuals in a com-
mon neuroanatomical reference space. In this refer-
ence space, image statistics may be computed over a
sample of subjects, and anatomical labeling performed
in a standardized manner across subjects, studies, and
laboratories. Given the large variability between indi-
viduals in their brain anatomy, both at the microscopic
and macroscopic levels, considerable efforts have been
devoted over the past years to the development of
more and more refined spatial normalization proce-
dures. Several such procedures are now available that
perform brain warping with various degrees of accu-
racy. The original Talairach linear transformation [Fox
et al., 1985] translates, reorients, and normalizes the
dimensions of a brain volume to fit it in the so-called
Talairach box [Talairach and Tournoux, 1988]. This
simple linear procedure has been superseded by non-
linear ones that aim at a more sophisticated matching
of the structural characteristics of a given brain vol-
ume to a target one, using nonlinear deformations
based on high-order polynomials [Woods et al., 1997a]
or discrete cosine basis functions [Ashburner and Fris-
ton, 1999]. These nonlinear procedures, although they
may lead to considerable deformations, do not, how-
ever, change the topology of the brain volume to
which they are applied. More recently, a new class of
spatial normalization procedures of a new kind have
appeared that aim at realizing a full warp of a brain
volume on another one [Christensen et al., 1994;
Schormann and Zilles, 1998], or contour/surface-
based alignment that cannot fulfill the purpose of a
full warp because a lot of grey-value information is
not taken into account [Davatzikos et al., 1996; Fischl
et al., 1999; Thompson et al., 2000a, 2001]. These are
designed to perform high precision cortical matching
between different brains. As a consequence, these pro-
cedures have the power to modify the topology of the
original brain volume.

Considering the conceptual differences between
these spatial normalization procedures, the issue of
which procedure should be chosen to analyze a neu-
roimaging dataset is critical, as it was for the Euro-
pean Computerized Human Brain Database (ECHBD)
[Fredriksson et al., 2000; Roland and Zilles, 1996], a
consortium of European laboratories that joined ef-
forts to gather cytoarchitectonic, MRI, and functional
maps to study relationships between microscopically
and macroscopically defined functional areas. Al-

though the answer to this question depends on many
parameters, including the primary goal of the study, it
also relies partly on the relative merits of each proce-
dure. Interestingly, studies comparing normalization
procedures are rather scarce in literature [Fischl et al.,
1999; Gee et al., 1997; Grachev et al., 1999; Minoshima
et al., 1994; Roland et al., 1997; Senda et al., 1998;
Sugiura et al., 1999] and have so far dealt with the
dispersion metric of selected landmarks, spatial ho-
mogeneity of selected anatomical features such as ma-
jor sulci, or with overlap percentage of restricted vol-
umes of interest. This is probably due to a natural
feeling that using a high degree of freedom normal-
ization approach will obviously surpass the alignment
accuracy of lowest degree of freedom approaches. If
such differences exist, however, it is important to try
to quantify them, particularly in the growing field of
statistical neuroanatomy. In the present study, con-
ducted as part of the ECHBD project, we performed a
cross-comparison of four published normalization
procedures, using 3D tissue probability maps derived
from high resolution brain MRI datasets acquired in
20 subjects and the Human Brain Atlas as a standard
brain [Roland et al., 1994], and inter-subject averaged
functional maps derived from the four normalization
methods.

MATERIALS AND METHODS

Subjects

High-resolution MRI brain volumes were collected
in 20 young healthy volunteers (age: 22.0 � 2.4, mean
� SD, range: [19,28]) as part of the PET brain activa-
tion study they participated in. All subjects were free
from cerebral abnormality as assessed on their brain
T1-weighted MRI images. The protocol was accepted
by our local ethic committee and all subjects gave their
informed written consent.

MRI data

MRI acquisitions were performed on a 1.5 T Signa
Horizon LX scanner (General Electric, BUC, France).
High-resolution T1-weighted MRI volumes were ac-
quired using an inversion recovery SPGR-3D se-
quence (TR � 12.4 msec, TE � 2.2 msec, FA � 10°, TI
� 600 msec) sampling the whole subject head in 0.94
� 0.94 � 1.5 mm3 voxels. The image volume was
reconstructed as a 256 � 256 � 124 matrix.
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PET data

Using a standard 15O-labeled water PET activation
protocol, nine sequential measurements of the re-
gional cerebral blood flow were obtained from each
subject on an ECAT Exact HR � PET camera and
reconstructed as a series of 63 contiguous, 2.5-mm-
thick cross-sectional images, replicating three times a
series of three experimental conditions presented in a
randomized order: 1) listening to a factual story (Story);
2) covert generation of the most verbs semantically
related to listening nouns (Verb); and 3) a rest condi-
tion (Rest) that consisted in lying silently in the dark
eyes closed, with no particular instruction except to
refrain from moving and avoid a specific mental ac-
tivity [Papathanassiou et al., 2000]. All conditions
were performed in darkness. During the Verb condi-
tion, the nouns were delivered through earphones at
0.1 Hz and were of common use, most of them refer-
ring to objects and some of them to animals. The
subjects were instructed to covertly retrieve as many
verbs semantically related to those nouns as possible.
Three different noun lists were used for each replica-
tion. Only the Verb and Rest conditions were used in
this study to compute the Verb minus Rest contrast in
the functional comparison part of the study.

Standard anatomical format

The standard anatomical format used in this study
was the MRI standard brain of the Human Brain Atlas
[Roland et al., 1994] and of the European Computerized
Human Brain Database [Fredriksson et al., 2000; Roland
and Zilles, 1996]. This standard brain is a single young
male brain high-resolution T1-weighted MRI volume,
having isotropic millimeter resolution, and a 137 � 181
� 146 size. This volume was selected from a sample of 21
male brain MRI, as being the most “representative” in
terms of shape, size, and gyral as well as sulcal pattern.
This template was scalp edited, oriented and scaled ac-
cording to the stereotaxic coordinate frame defined by
the Talairach atlas [Talairach and Tournoux, 1988].

Intersubject spatial normalization registration

Before any spatial transformation, each subject MRI
scan was semi-automatically segmented to remove the
extra cranial structures (i.e., scalp, skull, and menin-
ges) using our in-house ATOMIA software [Verard et
al., 1997].

The 20 MRI volumes were then spatially normalized
using the following four 3D procedures:

1. The classical 12 parameters affine transformation
(AFF) as performed by the “alignlinear” routine
included in the Automated Image Registration
package (AIR 3.0) [Woods et al., 1997b].

2. The fifth order, 168 parameters nonlinear poly-
nomial warp algorithm (WRP), also included in
the AIR 3.0 package [Woods et al., 1997b].

3. The “linear & nonlinear” combined procedure
implemented in the 1996 version of the Statistical
Parametric Mapping software (SPM) [Ashburner
and Friston, 1999].

4. A recently proposed multi grid technique based
on Navier-Lamé continuum mechanics theory
(FMG) [Schormann and Zilles, 1998], first imple-
mented to co-register histological and MRI sec-
tions [Schormann et al., 1996].

These four approaches are voxel intensity-based meth-
ods, meaning that they are not driven by shape or any
model constraint matching, and are all fully automated,
thereby ensuring an unbiased comparison of their rela-
tive performances. It must be stressed that the four meth-
ods were used in their original “default setting,” and
only options essential for a correct utilization of the
algorithms with respect to the characteristics of our MRI
datasets were modified. All normalized volumes were
resliced using tri-linear interpolation and a 1 � 1 � 1
mm3 voxels size. Our method’s modifiable options are
detailed in the four followings paragraphs.

AFF

This procedure was the only linear transformation
used in this comparison. The 12 parameters models is
a superset of the simplest nine parameters registration
method originally defined by Talairach. In addition to
the six parameter rigid body rotation and translation,
this model allows independent rescaling parameters
along three arbitrary chosen coordinate axes of the
reference volume. This procedure does not preserve
angles and distances but preserves the parallelism of
lines after the transformation has been applied. The
criterion used for aligning two images is referred to as
the ratio image uniformity (RIU) cost function, first
introduced by Woods et al. [1992] for intra-subject and
intra-modality alignment. The image is divided by the
target image on a voxel-by-voxel basis to create a ratio
image. The uniformity of this ratio image is then mea-
sured by computing the ratio of its standard deviation
divided by its mean, thereby providing a normalized
cost function value. The minimization of this criterion
allows the two images to be registered. The “Initial-
sampling” parameter was set to 81, controlling how
densely data was sampled during the first iterative

� Crivello et al. �

� 230 �



cycle of the algorithm. The “Final-sampling” parame-
ter was set to 1 meaning that the alignment was
achieved at the best resolution. Twenty-five iterations
were used for each iterative cycle. Final convergence
threshold was set to 10�5.

WRP

The initialization step of the complete WRP normal-
ization procedure consists in applying first the AFF
method described above so that the linearly aligned
image is the starting step of the WRP algorithm. This
nonlinear approach proposed by the same authors has
been established so as to estimate the model parameters
of the spatial transformation in a rapid and reproducible
manner. This model can be seen as a natural evolution of
the classical linear model, bringing it to higher order
polynomial warping models. The fifth order polynomial
warp algorithm used in the present study has 168 spatial
transformation parameters. The cost function to be min-
imized by the WRP algorithm is the average across vox-
els of the squared difference between the resliced and the
reference images. An additional parameter is included in
the cost function to account for global intensity rescaling
of the images relative to one another. Initial-sampling
was set to 81 and the final one was set to 9. Fifty itera-
tions were used for each iterative cycle. Final conver-
gence threshold was set to 0.5.

SPM

This approach works by minimizing the average
across voxels of the squared difference between the vol-
ume to be normalized and a template volume. For the
least-squares registration to produce an unbiased esti-
mate of the spatial transformation, the intensity contrast
of both images should be similar. The registration simply
searches for an optimum solution. The first step of the
normalization finds the optimum 12 parameters affine
transformation by appropriate weighting of the template
voxels. Although this approach does not require scalp
editing that discounts the confounding effects of skull
and scalp differences, we have used it on the edited
reference brain described above, smoothed with an 8
mm FWHM isotropic Gaussian kernel to investigate
only the effect of the normalization algorithm (because
this procedure begins with smoothing the images to
be normalized by the same Gaussian kernel). The af-
fine registration is followed by nonlinear deforma-
tions defined by linear combinations of 8 � 8 � 8 3D
discrete cosine transform basis functions [Ashburner
and Friston, 1999; Friston et al., 1995a]. This option
results in each of the deformation fields being de-

scribed by 1,536 parameters representing the coeffi-
cients of the deformations in three orthogonal direc-
tions (83 for each one). Sixteen iterations per cycle
were used.

FMG

As for the WRP algorithm, this procedure also starts
with the AFF linearly aligned image in our study. The
nonlinear part appears as follows: the brain image to
be normalized is modelled as an elastic medium by
applying the principles of Navier-Lamé continuum
mechanics theory [Schormann et al., 1998; Schormann
and Zilles, 1998]. Then, the theory is extended to a
movement model enabling the correction of large spa-
tial differences. In the elastic model, the resulting de-
formation is only a compromise between the internal
strain of the object and external forces. For this reason,
only small deformation can be calculated. In this ap-
proach a 3D nonlinear deformation field directly re-
sults from the solution of a system of coupled partial
differential equations describing for each voxel the
unique movement (the spatial deformation) of the in-
dividual brain onto the reference volume. In this pro-
cess, the total number of degrees of freedom in one
direction (x axis) is equal to the total number of voxels
in the volume (for example, normalizing a 137 � 181
� 146 MRI volume generates a deformations field of
10,861,086 parameters). The movement of the source
image onto the reference standard brain image is sub-
ject to some specific constraints imposed by the con-
tinuum theory of movement model. In the present
approach, the investigation was focused on minimiz-
ing computation time by applying an adapted full
multi grid technique (i.e., a multiresolution descend-
ing approach) [Schormann et al., 1996]. Information
and support for the FMG software are available at
thorsten@hirn.uni-dusseldorf.de. Note that in one
case, there was a large grey-value difference between
both volumes (the template and the volume to nor-
malized), which made the FMG approach fail to con-
verge, so that the total number of normalized MRI
volumes was 20 for the AFF, WRP, and SPM proce-
dures and only 19 for the FMG procedure.

Comparison of spatial normalization procedures

To quantify the relative merits of the four spatial
normalization procedures previously described, we
used the HBA template as a gold standard and com-
puted several images and figures of merits. Note that
brains were scalp edited before spatial normalization.
This is important because the segmentation performed
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in the subsequent analysis was intensity driven, and
using scalp edited brains prevented us to assign, for
example, meninges to grey matter. Accordingly, only
voxels included into the intra-cerebral volume were
tissue classified. The comparison of the four proce-
dures was conducted as follows. First, we derived
averaged MRI volumes across subjects and visually
compared them to the HBA template. Then, we per-
formed a tissue segmentation on both the template
and normalized volumes. The degree of spatial over-
lap between the template and individual MRI volume
was quantified for each tissue class (grey matter, white
matter, and CSF) and for each procedure. Finally, we
evaluated the impact of differences in spatial normal-
ization procedure on functional maps, by applying
these procedures on functional maps that were ob-
tained from the same sample of subjects.

Intersubject averaged images

Realigned MRI images were averaged across sub-
jects (n � 19 for the FMG procedure and n � 20 for the
three other ones). For each procedure, the individual
spatially normalized MRI volume was first scaled to
its maximum value to normalized the intensity of the
different MRI volumes. These volumes were then
summed across subjects and the resulting voxel values
divided by the occurrence of subjects contributing to
the average at every location.

Tissue segmentation

The MRI template and individual normalized MRI
volumes were tissue classified using the segmentation
algorithm included in the SPM99 package. The SPM
segmentation of each individual normalized MRI is
based on a clustering algorithm identifying voxel in-
tensities of particular tissue types (grey matter, white
matters, and CSF), combined with a priori knowledge
about the spatial distribution of these clusters in nor-
mal subjects [Ashburner and Friston, 1997]. The result-
ing tissue segmented volumes consist of maps in
which a voxel value is the probability for this voxel to
belong to the tissue class of interest, ranging from 0
(low probability) to 255 (high probability). Each tissue
probability volume was segmented by applying a
lower threshold set at 128 (50% probability). Voxels
classified as CSF but located outside the outer edge of
the cortex were removed using morphological opera-
tions (see upper part of Fig. 1). The number of such
voxels is highly dependent on the parameters em-
ployed during the semi-automated scalp edition,
which can vary between subjects, leading to slightly

different CSF brain masks even after spatial normaliza-
tion. In the same vein, voxels inside the ventricles or
located in the deepness of sulci that were not classified as
CSF, were also assigned to CSF. The lower part of Figure
1 shows that the segmentation procedure was efficient
and provided an adequate tissue classification of the
HBA template although this segmentation algorithm
was originally devoted to segment MRI brain image
matched to the MNI template. The proportions of each
tissue class of the HBA template are presented in Table I
and can be compared to that of the MNI template.

Due to high signal to noise ratio inhomogeneities,
when applied to our MRI dataset, this segmentation
procedure failed in one case, this was the case for the
four normalization used, leading to unreasonable grey
and white matter masks. Accordingly, the final anal-
ysis steps were applied to the 18 subjects for which
both the normalization and segmentation procedures
have been successfully completed. To globally quan-
tify the relative merits of spatial normalization proce-
dures at the tissue classification level, proportions of
grey matter, white matter, and CSF composing the
intracranial brain volume of each subject MRI were
computed for each normalization procedure and their
differences with corresponding figures for the HBA
template averaged across subjects.

Tissue probability maps

To further document this point, we computed two
sets of probability images of grey matter, white matter
and CSF over the sample of 18 subjects. These proba-
bility maps indicate for each procedure and for each
tissue class, the proportion of subjects overlapping at
each voxel location. The first set of probability maps
presents only voxels that were correctly classified by
the segmentation procedure, taking the tissue classifi-
cation performed on the HBA template as a gold stan-
dard. This means that for a specific tissue of interest,
the boundaries of the “classified” probability maps are
the ones of the corresponding HBA tissue template.
The second set of probability maps presents the subject
overlap corresponding to voxels that were wrongly clas-
sified (misclassified) with respect to the HBA tissue
template.

The qualitative findings of these two set of maps
were quantified using two 3D global criteria, C(i,j,k)
and M(i,j,k) referring respectively to classified and
misclassified voxels.

For each spatial normalization procedure (indexed
by i), subject (indexed by j) and tissue class (indexed
by k), we defined Nst(i,j,k) as the total number of voxel
of subject j belonging to tissue k of the template by
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normalization procedure i, Ns(i,j,k) as the total num-
ber of voxel of subject j belonging to tissue k by
normalization procedure i and Nt(k) as the total num-
ber of voxel of the HBA template for tissue k.

Classified voxels criterion

The percentage of voxels correctly classified by a
normalized-segmented MRI volume with respect to
the segmented template was computed as:

C�i,j,k� � �Nst�i,j,k�

Nt�k� � � 100,

Misclassified voxels criterion

The percentage of voxels misclassified by a normal-
ized-segmented MRI volume with respect to the seg-
mented template was computed as:

Figure 1.
A: Original axial section of the
SPM segmentation applied to the
HBA MRI template. B: Morpho-
logically processed slice. This
process removes the extra cere-
bral CSF tissue that remains after
the semi-automated scalp edition
and fills-in the ventricles and
deepness of the sulci. C: Corre-
sponding MRI slice. D: Trans-
verse processed sections of the
segmentation of the HBA MRI
template from �70 to �40 mm
relative to the AC–PC plane.
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M�i,j,k� � �Ns�i,j,k� � �Nst�i,j,k�

Ns�i,j,k� � � 100,

M�i,j,k� � 100 � C�i,j,k�� Nt�k�

Ns�i,j,k�� ,

It must be noticed that the sum of C(i,j,k) and M(i,j,k)
is not equal to 100% because the reference for the
C(i,j,k) criterion is the number of voxels in the corre-
sponding class of the template whereas the reference
for M(i,j,k) is the number of voxels of the correspond-
ing class of the subject.

Inter-individual criterion variability

The inter-individual variability of these criterion
was also investigated. For each procedure, subject,
and tissue class, the gain for C(i,j,k) and M(i,j,k) (in %)
provided by FMG as compared to the other proce-
dures were assessed by the two following metrics
GC(i,j,k) and GM(i,j,k) computed as:

GC�i,j,k� � �C�FMG,j,k� � C�i,j,k�

C�i,j,k� � � 100,

GM�i,j,k� � �M�FMG,j,k� � M�i,j,k�

M�i,j,k� � � 100,

where C(FMG,j,k) (respectively M(FMG,j,k)) denotes
the percentage of correctly classified (respectively mis-
classified) voxels for the FMG procedure. A positive
value of GC(i,j,k) indicates that for a subject j and a
tissue class k, the FMG procedure performs better than
the procedure i (AFF or SPM or WRP). In contraxt, a
positive value of GM(i,j,k) indicates that for a subject j
and a tissue class k, the FMG procedure performs
worse than the procedure i (AFF or SPM or WRP),

meaning that the amount of misclassified voxels is
higher with FMG.

Overall measures of accuracy based on correct
and incorrect classification

To assess the relative classification errors of the four
procedures tested, we computed, for each procedure
(indexed by i) and subject (indexed by j), the proba-
bility of Type I and Type II errors for each tissue class
(indexed by k). Suppose an image consist of N voxel
classes (here N � 4, because we consider an additional
class that contain voxels that were not classified nei-
ther in the grey matter, white matter or CSF template
class), a confusion matrix A(i,j) of dimension N can be
constructed, where each entry Ak	k represents the
number of class k voxels classified as class k	 by the
segmentation algorithm. Two error types (expressed
in %) can thus be computed for each tissue class k,
which can both be used to described the class-by-class
performances of these procedures.

The multi-class Type I error is compute as:

MCI�i,j,k� � � �
k	 � 1

N

Ak	k�i,j� � Akk�i,j�

�
k	 � 1

N

Ak	k�i,j� � � 100,

where the numerator represents the number of voxels
of tissue class k not classified as k and the denomina-
tor is the total number of voxels of tissue class k
[Zhang et al., 1996]. It must be noted that the Type I
error is the dual percentage of the correctly classified
voxel criterion defined above (C(i,j,k) � MCI(i,j,k)
� 100%).

The multi-class Type II error is computed as:

MCII�i,j,k�

� � �
k	 � 1

N

Akk	�i,j� � Akk�i,j�

�
k	 � 1

N �
k
 � 1

N

Ak	k
�i,j� � �
k	 � 1

N

Ak	k�i,j�� � 100,

where the numerator represents the number of voxels
of other classes called class k. The denominator is the
total number of voxels of other classes [Zhang et al.,

TABLE I. Volumes and proportions of grey matter,
white matter and CSF of the Human Brain Atlas MRI

template as assessed by the Statistical Parametric
Mapping segmentation algorithm*

Tissue Volume (cm3) %

Grey matter 861.0 (1016.2) 59.5 (56.8)
White matter 506.7 (560.8) 35.0 (31.3)
CSF 78.6 (212.3) 5.5 (11.9)
Total 1446.3 (1789.3) 100 (100)

* Corresponding figures for the Montreal Neurological Institute
MRI brain are given in parentheses.
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1996]. In MCI(i,j,k) and MCII(i,j,k), each tissue class is
weighted equally.

Impact of spatial normalization procedures on
functional maps

Finally, to evaluate how spatial normalization af-
fects functional maps, we applied the four procedures
on the PET functional data of the 18 subjects for which
both the normalization and segmentation procedures
have been successfully completed. Using AIR3.0
[Woods et al., 1997a], each individual PET dataset was
realigned together for correcting for intra-individual/
intra-modality movements, and co-registered to the
subject MRI volume for intra-individual intermodality
alignment. For each subject, the MRI normalization
parameters obtained for each of the four methods
were applied to the corresponding PET images to
spatially normalize them to the HBA template. Four
sets of functional images per subject were thus avail-
able. All PET images were resliced using linear inter-
polation to provide 2 � 2 � 2 mm3 voxel size volumes.
To investigate the cross-effect of smoothness and spa-
tial normalization, we used two versions coming from
the original set of functional images. First, the normal-
ized PET images were smoothed with a 3D Gaussian
filter of 8 mm full with half maximum (FWHM), lead-
ing to a “low resolution” functional dataset. Activa-
tion detection was performed on each of the four
normalized blood flow difference volumes “Silent
verb generation minus Rest” using the SPM99 software
for the ensuing statistical analysis. Significance level
was set at 0.05 corrected for multiple comparisons
(degree of freedom � 140). Then, the original normal-
ized PET volumes were re-smoothed with a 4 mm
FWHM Gaussian filter to generate a “high resolution”
functional dataset. The same statistical analysis was
performed for the AFF, SPM, WRP, and FMG func-
tional datasets. Resulting smoothness estimated on the
functional maps at the lowest resolution with AFF,
SPM, WRP, and FMG through the x, y, and z direc-
tions were [8.5 9.4 10.8], [8.6 9.5 10.9], [8.5 9.5 10.7], [8.9
9.5 10.8] mm, respectively. When looking at the high-
est resolution, these values fell to [5.7 6.4 7.4], [5.8 6.5
7.5], [5.6 6.5 7.3], [6.1 6.5 7.5] mm. Note that in both
cases, the different normalization procedures led to
very comparable global smoothness values.

RESULTS

The distribution of the global brain volume in the
sample of 20 subjects, computed before applying any
spatial normalization, was found very homogeneous

(1,421 � 98 cm3, coefficient of variation � 6.9%) and its
average value was not significantly different from that
of the Human Brain Atlas template (1,446 cm3, P
� 0.11, Student’s t-test, degree of freedom � 19),
ensuring comparability between the individual MRI
datasets and the HBA template.

Intersubject averaged images

Figure 2 shows axial, sagittal, and coronal sec-
tions derived from the mean volumes obtained with
each procedure. The same sections are also pre-
sented for the template volume. The visual inspec-
tion of these slices clearly indicates that the three
nonlinear approaches dramatically improve the
alignment of the normalized volumes as compared
to the simplest affine one. Looking at the three
nonlinear procedures, the FMG approach improves
the delineation of the different sulci and therefore
the spatial homogeneity of the observed sample. A
better definition of the brain outer edge is observed
as well as of internal anatomical landmarks. This
improvement is obvious particularly at the level of
the superior frontal, precentral and central sulcus
on the axial slice, or at the level of the post-central
and central sulcus on the sagittal slice. These results
demonstrate qualitatively that individual brain
anatomy is globally better matched using nonlinear
spatial deformation, the highest gain being appar-
ently obtained with the FMG procedure.

Tissue segmentation

Table II presents, the differences (mean and stan-
dard deviation) between tissue class proportions
obtained for each normalization procedure and the
tissue class proportions of the HBA template. Note,
first, that all procedures led to overestimation of the
size of the grey matter class (in the order of 4%) and
to underestimation of both the white matter (�1 to
�2.5%) and CSF classes (�2 to �3%). The FMG
procedure gave grey matter segmentation figures
that were the closest to that of the HBA template.
No significant difference for the grey matter tissue
volume, however, was found between the four pro-
cedures (P � 0.34, ANOVA). In contrast, significant
differences were found between procedures regard-
ing the white matter and CSF tissue volumes (P
� 0.005 and P � 0.0001, respectively, ANOVA,
17 d.o.f). Post-hoc Student’s paired t-test showed
that, for the white matter, WRP and FMG were
significantly better than SPM and AFF (P � 0.006
and P � 0.04, respectively), with no differences
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between WRP and FMG (P � 0.15). Note also that
the FMG approach again provided the segmentation
figures closest to that of the HBA template. No
differences were observed between AFF and SPM (P
� 0.44). Finally the CSF tissue type exhibited the
opposite feature: AFF and SPM were significantly
better than WRP and FMG (P � 0.0001 for both),
with no differences between either AFF and SPM (P
� 0.91) or WRP and FMG (P � 0.38).

Tissue probability maps

Figures 3–5 show, for each of the four normaliza-
tion procedures, probability maps of the grey mat-
ter, white matter and CSF classes computed across
the subset of 18 subjects. The “Classified voxels”
maps give for each voxel and for each procedure,
the percentage of subjects for which the tissue class
was in accordance with the corresponding tissue

Figure 2.
From left to right: transverse (z
� �50 mm), sagittal (x � �44
mm) and coronal (y � �20 mm)
sections of the HBA MRI tem-
plate (top row) and of the inter-
subject average volumes com-
puted for the four normalization
procedures. Coordinates are rel-
ative to the Talairach space. AFF,
affine transformation (n � 20);
SPM, SPM linear and nonlinear
routines of the SPM package (n
� 20); WRP, affine and fifth or-
der polynomial normalization of
the AIR package (n � 20); FMG,
affine and nonlinear fluid trans-
formation (n � 19).
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class of the HBA template. The “misclassified vox-
els” correspond to voxels found outside the bound-
aries of the tissue template. Note the better subject
overlap obtained with FMG for both the grey and
white matter tissues, and the very similar results
provided by WRP and SPM. The spatial accuracy
visible in the FMG maps indicates that this proce-
dure aligns high-resolution MRI images from differ-
ent subjects in such a way that internal structures,
such as sulci in their deepness, are better aligned to
the structural model of the template. For the CSF
tissue class, FMG does not appear to be superior to
either SPM or WRP, although the extent of overlap
in the CSF “misclassified voxels” map seems to be
dramatically reduced (see Fig. 5). Nevertheless, Fig-
ures 3–5 clearly demonstrate that any of the nonlin-
ear approaches used in this study provides better
results than the classical linear AFF procedure.

This is confirmed in a quantitative manner in Table
III and Figure 6 for the classified voxels and in Table
IV and Figure 7 for the misclassified ones.

Classified voxels

Table III gives, for each tissue class and normal-
ization procedure, the mean and standard deviation
of the classified voxels criterion (C(i,j,k), see the
Materials and Methods section above for details).
The FMG procedure provides the best overlap fig-
ures for both grey matter (close to 79%) and white
matter (71%). Interestingly, the gain in overlap pro-
vided by FMG as compared to the other methods is
more pronounced for the white matter class (4 –7%)
than for the grey matter class (1–5%). Significant
differences between procedures were found for all
tissue (P � 0.0001 for each tissue, ANOVA,
17 d.o.f.). Post-hoc Student’s paired t-tests confirm

the superiority of the three nonlinear procedures
when compared to AFF (P � 0.0001 for each proce-
dure) for both grey and white matter. In addition,
FMG was found significantly better than WRP for
grey matter overlap (P � 0.025), and better than
both WRP and SPM for white matter overlap (P
� 0.0003 and P � 0.0002, respectively). On the op-
posite, the best overlap for the CSF class was ob-
tained with SPM (P � 0.0001 for all comparisons),
the other three methods showing similar perfor-
mances. Considering the individual variability of
this criterion, Figure 6 clearly demonstrates that
FMG provided a better alignment of tissue compart-
ment than the three other methods in almost all
subjects both for grey and white matter. Note that
for these two tissues, SPM and WRP were remark-
ably similar and that AFF was clearly surpassed by
the nonlinear approaches. These findings demon-
strate also that the differences pointed in Table III
were not driven by one or two subjects but remain
valid at the individual level. The lower part of Fig-
ure 6 illustrates that SPM performed a better CSF
alignment than all other methods for all subjects
included in this comparison study.

Misclassified voxels

Table IV and Figure 7 present the average results for
the misclassified voxels M(i,j,k) criterion (see the Ma-
terials and Methods section). For grey matter, white
matter, and CSF, FMG provides the lowest error clas-
sification rate, respectively from (0.9–6%), (1–4.9%)
and (2–13.3%). As for the classified voxels statistic,
significant differences between procedures were ob-
served for all tissues (P � 0.0001 for each one,
ANOVA, 17 d.o.f.). Post-hoc Student’s paired t-tests
show the same pattern for the three tissue types. Each
nonlinear procedure leads to a lower ratio of misclas-
sified voxels than AFF (P � 0.0001 for each proce-
dure). In addition, FMG and WRP were found supe-
rior to SPM for the grey matter (P � 0.0005 and P
� 0.012, respectively), for the white matter (P � 0.020
and P � 0.044, respectively), and for the CSF (P
� 0.0001 for both). Finally no significant differences
were found between FMG and WRP for the grey mat-
ter, white matter and CSF (P � 0.095, P � 0.093, P
� 0.063, respectively). The investigation of the inter-
individual variability of this metric reveals that in almost
all subjects, FMG exhibits the lowest rate of classification
errors (negative gain for the misclassified), a feature
emphasized in the CSF compartment. The individuals
results confirm that average results are not driven by

TABLE II. Difference between segmented tissue class
proportions computed across the 18 subjects and the
corresponding tissue class proportions of the Human

Brain Atlas MRI template for the four spatial
normalization procedures*

Procedure Grey matter White matter CSF

AFF 4.49 (1.89) �2.54 (1.81) �1.96 (0.60)
SPM 4.38 (1.55) �2.42 (1.48) �1.96 (0.61)
WRP 4.58 (1.66) �1.89 (1.46) �2.69 (0.64)
FMG 3.88 (2.26) �1.08 (1.95) �2.79 (0.67)

* Values are mean (SD). AFF, affine transformation; SPM, linear and
non-linear routine of the Statistical Parametric Mapping package;
WRP, affine and fifth order polynomial normalization of the AIR
package; FMG, affine and non-linear fluid transformation.
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some outliers but reveal better classification patterns
using the FMG normalization procedure.

Overall accuracy based on correct and
incorrect classification

Table V gives the results of the Type II errors
classification computed for the four normalization

procedures. These results shown strong similarities
with the misclassified criterion results. The only
differences between the M(i,j,k) misclassified crite-
rion and the MCII(i,j,k) Type II error concerns the
white matter tissue for which no significant Type II
error differences were found between SPM, WRP
and FMG. Concerning the CSF tissue class, our re-

Figure 3.
Left column: Axial section (z
� �50 mm) of the HBA MRI
template and enlargement of the
corresponding segmented grey
matter volume focused on the
superior frontal gyrus. Middle
column: Grey matter probabil-
ity maps (n � 18) computed for
the four normalization proce-
dures. These maps are restricted
to voxels located inside the cor-
responding HBA grey matter
template and denoted “Classified
voxels.” Right column: Grey
matter probability maps obtained
for voxels located outside the
corresponding HBA grey matter
template and denoted “Misclassi-
fied voxels.” AFF, affine transfor-
mation; SPM, SPM linear and
nonlinear routines of the SPM
package; WRP, affine and fifth or-
der polynomial normalization of
the AIR package; FMG, affine and
nonlinear fluid transformation.
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sults show that the Type II error was significantly
higher for SPM than for WRP and FMG (P � 0001
for both). This feature was also found for the grey
matter tissue class, indicating that sulcal CSF and
the surrounding grey cortical ribbon were signifi-
cantly better aligned with WRP and FMG than with
SPM (P � 0.003 and P � 0.0048, respectively).

Impact of spatial normalization procedures on
functional maps

Figures 8 and 9 present the results of the analysis
of the functional data at low and high resolution,
respectively. The global functional activation vol-
umes obtained with AFF, SPM, WRP, and FMG

Figure 4.
Left column: Axial sections (z
� �50 mm) of the HBA MRI
template and of an enlargement
of the corresponding segmented
white matter volume focused on
the superior frontal gyrus. Mid-
dle column: White matter
probability maps (n � 18) com-
puted for the four normalization
procedures. These maps are re-
stricted to the voxels located in-
side the corresponding HBA
white matter template and de-
noted “Classified voxels.” Right
column: White matter proba-
bility maps obtained for voxels
located outside the correspond-
ing HBA white matter template
and denoted “Misclassified vox-
els.” AFF, affine transformation;
SPM, SPM linear and nonlinear
routine of the SPM package;
WRP, affine and fifth order poly-
nomial normalization of the AIR
package; FMG, affine and nonlin-
ear fluid transformation.
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normalization of “low resolution” PET blood flow
images acquired during the Silent verb generation
minus Rest contrast were 38.7, 45.3, 42.1, and 42.7
cm3. Values obtained at “high resolution” were 3.4,
5.3, 3.2, and 4.9 cm3. A striking feature of these
results is that the range of the four activated vol-
umes increases when increasing the resolution (6.6
cm3 representing 15% of the maximum activated

volume obtained at low resolution vs. 1.9 cm3 rep-
resenting 45% of the maximum activated volume
obtained at high resolution). This indicates that us-
ing too small a filter is not suited for an optimal
detection of PET activation, even if the criteria that
one applied on the smoothing kernel fulfills the
assumption of the Gaussian field theory (i.e., the
smoothness has to be at least twice the voxel size

Figure 5.
Left column: Axial sections (z
� �18 mm) of the HBA MRI
template and of an enlargement
of the corresponding segmented
CSF volume focused on the ven-
tricles. Middle column: CSF
probability maps (n � 18) com-
puted for the four normalization
procedures. These maps are re-
stricted to the voxels located in-
side the corresponding HBA CSF
template and denoted “Classified
voxels.” Right column: CSF
probability maps obtained for
voxels located outside the corre-
sponding HBA CSF template and
denoted “Misclassified voxels.”
AFF, affine transformation; SPM,
SPM linear and nonlinear routine
of the SPM package; WRP, affine
and fifth order polynomial nor-
malization of the AIR package;
FMG, affine and nonlinear fluid
transformation.
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[Friston et al., 1995b]). This implies that, indepen-
dent of the spatial normalization strategy, PET in-
tersubject statistical analysis requires a large
enough kernel filter to compensate for the large
interindividual functional variability and cannot be
performed at very high resolution. At first, exami-
nation of the activation volumes at the lowest reso-
lution shows that the three nonlinear methods pro-
vided slightly higher activated volumes as
compared to the affine procedure, indicating that
improved warping of subjects neuroanatomy results
in enhanced functional areas volume, despite the
fact that the inter-subject averaged functional map
resolution (�10 mm) is far more coarse than that of
the structural image (�1 mm). The left part of Fig-
ure 8 shows that, at low resolution, the four meth-
ods gave very similar functional maps. There was
no activation found with one method that was not
detected with the others. The subtle observed dif-
ferences concerned the morphology of activation
clusters (i.e., outside delineation of the activated
areas), and the localization of their local maxima.
Table VI shows that the four functional volumes
overlap in 42.8% of their union, whereas activated
volumes specific to one method represented 26.2%
of the same volume. The right part of Figure 8
emphasizes this point and demonstrates that the
different functional volumes largely overlap (white
areas). These findings indicate that 10 mm spatial
resolution functional maps are quite independent of
the normalization procedure used, even with a sim-
ple linear normalization method such as AFF. Going
to higher resolution changed the results quite dra-
matically. Table VI and Figure 9 highlights this phe-
nomenon, showing that specific activation volumes
raised to 62.9% of the total activated volume, the
four functional volumes now overlapping in only

6.2% of their union. Actually, the activated volume
specific to each procedure (15.1, 20.4, 7.7, and 19.7%
for AFF, SPM, WRP, and FMG, respectively) was
larger than the four functional volumes overlap (see
Table VI, and right side of Fig. 9). This indicates that
at high resolution, spatial normalization procedures
have a non negligible impact on the localization of
activated areas. Actually, the volume of activated
areas common to the four methods was preserved
mainly for foci located near internal structures (see
for example the left insula focus at x � �28 mm).

TABLE III. Percentage of overlap between segmented
tissue classes and the corresponding tissue class of the
Human Brain Atlas MRI template, for the four spatial

normalization procedures*

Procedure Grey matter White matter CSF

AFF 73.79 (2.12) 64.05 (2.42) 21.61 (3.20)
SPM 77.76 (1.87) 66.90 (2.24) 25.78 (3.98)
WRP 77.36 (2.43) 67.21 (2.16) 22.13 (4.26)
FMG 79.01 (3.99) 71.13 (3.43) 22.65 (4.74)

* Values are mean (SD) averaged across the 18 subjects. AFF, affine
transformation; SPM, linear and non-linear routines of the Statistical
Parametric Mapping package; WRP, affine and fifth-order polyno-
mial normalization of the AIR package; FMG, affine and non-linear
fluid transformation.

Figure 6.
Gain in tissue class overlap (in %) provided by FMG as com-
pared to AFF, SPM, and WRP, for each subject, the tissue
segmented HBA template serving as a reference. Positive values
indicate that FMG provides a better overlap of the tissue type.
Negative values indicates that FMG provides a worse overlap.
AFF, affine transformation; SPM, SPM linear and nonlinear rou-
tine of the SPM package; WRP, affine and fifth order polynomial
normalization of the AIR package; FMG, affine and nonlinear
fluid transformation.
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DISCUSSION

Methodological aspects

Previous comparison studies

We used an original approach for evaluating the
spatial normalization performances of four linear and
nonlinear inter-subject alignment procedures applied
on high-resolution 3D MRI datasets. One of the main
goal of our study was to derive a methodology that
would be unbiased, from the acquisition of the dataset
images to the comparison criterion and its interpre-
tation. This issue remains under debate because at
present, standard methods for evaluating the global
and regional accuracy of the spatial transformations
applied on brain images have not been fully devel-
oped. Although many papers have reported important
and fundamental methodological improvements in
spatial normalization by presenting new core algo-
rithms, their validation has been usually very crude
and limited to a comparison with the simplest linear
affine transformation [Andersson and Thurfjell, 1997;
Ashburner et al., 1998; Ashburner and Friston, 2000;
Collins et al., 1994; Davatzikos, 1996; Kochunov et al.,
1999; Lancaster et al., 1999; Meyer et al., 1999;
Minoshima et al., 1994; Rizzo et al., 1997; Roland et al.,
1994; Schormann and Zilles, 1998; Thompson et al.,
2000a; Woods et al., 1997b].

Indeed, reports on the comparison between nonlin-
ear warping methods are very scarce, for such studies
require tedious processing of large image datasets.
Previous authors [Senda et al., 1998; Sugiura et al.,
1999], for example, have compared four normalization
approaches on the same dataset composed of MRI and
PET images: linear scaling [Fox et al., 1985]; SPM 95

[Friston et al., 1995a]; HBA [Roland et al., 1994]; and
MICHIGAN [Minoshima et al., 1994]. Using size and
contour of the brain, as well as the course of four
major sulci, these authors found that SPM and HBA
were equivalent from the point of view of anatomical
homogeneity, despite the fact that SPM was used to
normalize low resolution PET data only. Regarding
functional images, these authors concluded to the use-
fulness of nonlinear procedures, as compared to linear
ones, but found that it was better to perform spatial
normalization of PET images on a PET template rather
than to apply a spatial normalization matrix derived

TABLE IV. Percentage of misclassified voxels of a
segmented tissue class with respect to the

corresponding tissue class of the Human Brain
Atlas MRI template, for the four spatial

normalization procedures*

Procedure Grey matter White matter CSF

AFF 33.41 (1.75) 32.93 (1.90) 66.98 (3.54)
SPM 29.05 (1.87) 29.60 (1.01) 60.26 (3.26)
WRP 28.26 (0.86) 29.00 (1.26) 55.73 (3.27)
FMG 27.36 (2.48) 28.06 (2.23) 53.72 (4.71)

* Values are mean (SD) averaged across the 18 subjects. AFF: affine
transformation; SPM, linear and non-linear routines of the Statistical
Parametric Mapping package; WRP, affine and fifth order polyno-
mial normalization of the AIR package; FMG: affine and non-linear
fluid transformation.

Figure 7.
Gain in misclassification (in %) provided by FMG as compared to
AFF, SPM and WRP, for each subject. Negative values indicate that
FMG provide a lower percentage of misclassified voxels. Positive
values indicates that FMG provides a higher percentage of misclas-
sified voxels. AFF, affine transformation; SPM, SPM linear and
nonlinear routine of the SPM package; WRP, affine and fifth order
polynomial normalization of the AIR package; FMG, affine and
nonlinear fluid transformation.
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from structural images (HBA). These results, however,
must be taken cautiously because not all procedures
were applied to the two datasets, linear and HBA
being applied to MRI data (using an MRI based tem-
plate) whereas SPM and MICHIGAN were applied to
PET data (using a specific PET template). To pool all
normalized images in a given modality, the transfor-
mation matrix computed in one modality was further
used to normalize the other modality image. A second
drawback of this study was that not all procedures
were automatic, the user interactive version of HBA
being used, which biased their comparison. Several
studies have indeed compared the performances of
manual versus automated warping techniques, report-
ing a superiority of the latter on the former, except in
some cases of brain lesions [Fiez et al., 2000], and a
crucial dependence of the manual approach accuracy
on the operator skills [Sugiura et al., 1999].

In the present study, we tried to avoid these pitfalls,
all normalization procedures being fully automatic
and applied to all images acquired in a given modality
using the same template. In addition, all steps in the
generation of the PET functional statistical maps were
automated and rigorously identical except, of course,
the MRI spatial normalization: PET–PET intra-subject
alignment, PET–MRI intra-subject registration, filter-
ing, and statistical analysis. This ensures that the dif-
ference observed in activation foci localization (Figs.
8,9) can truly be ascribed to differences in sulcal pat-
terns of spatially normalized MRI images.

Comparison criterion

Another key point emerging from spatial normal-
ization comparison studies is the comparison criterion
used for alignment performance evaluation. To our
knowledge, no previous study has used a full 3D
criterion for comparing alignment accuracy. Previous

comparisons have been based on some measure of the
dispersion of anatomical (or functional) landmarks
that were placed, either manually or automatically, on
both the normalized and template images [Fischl et
al., 1999; Grachev et al., 1999; Woods et al., 1997b],
thereby restricting the evaluation to an a priori small
subset of the 3D brain volumes. In a different vein, a
surface based technique has been proposed recently
for spatial normalization evaluation [Lohmann et al.,
1999], whereby an average distance is computed be-
tween the segmented white matter surfaces of each
normalized brain and of the template, through ran-
dom and roughly even sampling of both surfaces.
More sophisticated validation criteria have been pro-
posed based on a blurring metric that gives the spatial
uncertainty associated with the location of a given
anatomical (or functional) area after spatial normaliza-
tion has been applied [Fischl et al., 1999]. In fact, some
studies have used a regional 3D criterion, such as the
overlap of volumes of interest [Cardenas et al., 2000;
Fiez et al., 2000].

In the present study, 3D probability tissues maps
were used to evaluate and compare alignment accu-
racy across normalizing procedures, allowing both to
derive global statistics and to focus on specific tissue
or areas of interest. This generic approach has similar-
ities with voxel based methods proposed recently for
assessing the difference between samples of structural
MRI images, such as “Voxel-based morphometry”
(VBM) [Ashburner and Friston, 2000; Woermann et al.,
1999], or a method based on the permutation theory
[Bullmore et al., 1999]. Both VBM and the permutation
method require the image to be smoothed to a certain
degree to be theoretically valid (VBM) or computa-
tionally tractable (permutation), and consequently
cannot be applied to high resolution datasets. In con-
trast, the high resolution probability tissue maps used
in the present study allow one to evaluate the align-
ment accuracy at the intrinsic resolution of the nor-
malized MR images.

Another point that is worth discussing is how to
evaluate the quality of matching an MRI volume to a
template when brain regions are missing (i.e., in pres-
ence of a lesion or abnormalities such as in Alzheimer
disease). It is obvious that the four methods used in
our comparison will be inadequate. When brain re-
gions are missing, these automated procedures at-
tempt to reduce image mismatch between the tem-
plate and the image to be normalized at lesion sites,
and this can lead to inappropriate image distortions,
especially when nonlinear transformations are used.
The higher the degree of freedom of a spatial normal-
ization technique, the worse will be the alignment of a

TABLE V. Multi-class Type II error (%) computed
for each class and for the four spatial

normalization procedures*

Procedure Grey matter White matter CSF

AFF 11.59 (1.13) 5.14 (0.56) 0.98 (0.18)
SPM 9.97 (1.12) 4.59 (0.34) 0.87 (0.16)
WRP 9.52 (0.65) 4.47 (0.34) 0.63 (0.16)
FMG 9.34 (1.42) 4.54 (0.64) 0.59 (0.17)

*Values are mean (SD), averaged across the 18 subjects. AFF, affine
transformation; SPM, linear and non-linear routines of the Statistical
Parametric Mapping package; WRP, affine and fifth order polyno-
mial normalization of the AIR package; FMG, affine and non-linear
fluid transformation.
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brain MRI with missing regions. To circumvent this
drawback, a method based on the masking of the
lesion areas in the calculation of image difference has
been developed recently and validated [Brett et al.,
2001]. This approach was found superior to the clas-
sical approach of this problem. In the case of Alzhei-
mer disease, which is characterized by a diffuse grey
matter atrophy, we believe that spatial normalization
using a global nonlinear brain match (for example
SPM or WRP) are better suited for statistical neuro-
anatomy studies performed to determine the in vivo
cerebral modifications caused by this pathology.

Validation of tissue segmentation

Our data analysis strategy heavily relied on the
segmentation scheme, both for each individual nor-
malized MRI volume and for the HBA template, the
tissue classification of the latter serving as a gold
standard. We have used the segmentation algorithm
included in the SPM99 package [Ashburner and Fris-
ton, 1997], a well-documented and recently rigorously
validated approach [Ashburner and Friston, 2000].
The relatively high resolution of the normalized image
(�1 mm) asserts that the partitioned images were not

Figure 8.
Impact of spatial normalization procedures on “low resolution”
functional activation maps. Stereotactically normalized PET vol-
umes were smoothed with a 3D 8 mm FWHM Gaussian filter.
Functional clusters were detected in intersubject averaged (n
� 18) PET difference volumes spatially normalized by the four
different normalization procedures. Left side: Sagittal and coro-
nal orthogonal maximum intensity projection maps of functional
volumes thresholded at a 0.05 significance level corrected for
multiple comparisons. Note that the contour delineating the brain
is derived from the MNI template whereas the statistical analysis

was performed on the HBA template. Right side: Sagittal sections
(x � �54, �40, �28, �3, �24 mm) of the functional volumes
superimposed on the corresponding HBA template sections, illus-
trating activations specific or common to the four functional
volumes. Color code indicates which functional volume(s) a given
voxel belongs to. A, affine transformation; S, SPM linear and
nonlinear routine of the SPM package; W, affine and fifth order
polynomial normalization of the AIR package; F, affine and nonlin-
ear fluid transformation.
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confounded by partial volume effects in which voxels
contained mixture of different tissue types. It must be
noticed that the SPM original standard space is the
Montreal Neurological Institute (MNI) template
[Evans et al., 1994], which has different size and shape
compared to the HBA template used in the present
study. As shown in Table I and Figure 1, using a priori
tissue probability maps designed for the MNI tem-
plate for segmenting the HBA template was satisfac-
tory, if one excepts the CSF tissue. As a consequence,
relatively low overlap was found between CSF prob-
ability maps. Our results show that SPM was also
superior to the AFF and WRP methods for inter-sub-
ject intracerebral CSF alignment. WRP and FMG were

both initiated using the “alignlinear” routine of the
AIR package that corresponds to the AFF procedure.
Meanwhile, SPM contains its own affine transforma-
tion that seems to perform better alignment than AFF
for internal structures such as the ventricles, and par-
ticularly to provide a better starting point for further
nonlinear alignment.

FMG vs. other approaches

Unlike the FMG procedure, SPM and WRP are not
designed to provide perfect alignment of two different
brains. Indeed, because the deformations provided by
the discrete cosine basis functions, or polynomial

Figure 9.
Impact of spatial normalization procedures on “high resolution”
functional activation maps. Stereotactically normalized PET vol-
umes were smoothed with a 3D 4 mm FWHM Gaussian filter.
Functional clusters were detected in intersubject averaged (n
� 18) PET difference volumes spatially normalized by the four
different normalization procedures. Left part of the figure shows
sagittal and coronal orthogonal maximum intensity projection
maps of functional volumes thresholded at a 0.05 significance level
(corrected for multiple comparisons). Note that the contour
delineating the brain is derived from the MNI template whereas

the statistical analysis was performed on the HBA template. Right
part shows sagittal sections (x � �54, �40, �28, �3 mm) of
functional volumes superimposed on the corresponding HBA tem-
plate sections, illustrating activations specific or common to the
four functional volumes. Color code indicates which functional
volume(s) a given voxel belongs to. A, affine transformation; S,
SPM linear and nonlinear routine of the SPM package; W, affine
and fifth order polynomial normalization of the AIR package; F,
affine and nonlinear fluid transformation.
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warping, are only defined by a few hundred parame-
ters, as opposed to the millions of ones of the FMG
procedure, they do not have the potential precision of
more sophisticated methods. As a consequence, SPM
and WRP offer the advantage of preserving the local
relationships among sulci and gyri after the normal-
ization has been applied, and provide a pertinent
overall adjustment of global nonlinear size and shape
brains. SPM and WRP also have the potential to be
superseded by upgraded versions of the same core
algorithm (for example using higher order polynomial
warps (8, 10, or even 12) or more 3D discrete cosine
transform basis functions. Technical and computa-
tional limitations, as well as biological constraints,
however, restrict their use to global brain matching. In
contrast, the fluid mechanical theory implemented in
FMG can model any brain onto another. In this
method, high-level structural information has to be
invoked to guarantee the biological validation of the
resulting spatial transformation, which generally im-
plies that the relationship among anatomical land-
marks can be lost after the matching step has been
performed, depending on the amount of mismatch
between the anatomy of the source and the target

brains. For example, if the brain atlas provides a pe-
culiar sulcus with two ramifications whereas the brain
to be deformed has only one ramification for the same
sulcus, the resulting deformed sulcus will finally ex-
hibit two ramifications. This means that the original
anatomy is modified in such a way that it is con-
strained to fit the anatomy of the target one. This
specific ability was clearly illustrated in our compari-
son study, particularly when one looks at the shape of
the sulcus after deformation. Furthermore, the FMG
algorithm can be adjusted to preserve the local rela-
tionship among sulci and gyri as does SPM and WRP,
which was done in the present study. By increasing
the grid-resolution it is also possible to fully warp one
brain to another. Approximate absolute running times
on a SUN-SPARC ULTRA 30 were about 15 min for
SPM (including the affine transformation), 45 min for
AFF�WRP, and 100–120 min for AFF�FMG. Compu-
tation time of the actual FMG procedure is thus much
larger and can be a drawback when analyzing large
datasets.

How far should we remove individual
anatomical variability?

Statistical neuroanatomy

Because performing a quasi perfect brain match is
by itself a challenge of interest, the question of its
necessity in the neuro imagery field has to be dis-
cussed.

New computational approaches defined to quantify
human neuroanatomical variability require that im-
ages to work on be put into a common space. Indeed,
group comparison between normal patients and pa-
tients, such as schizophrenic or Alzheimer patients, or
between young and old subjects, requires the different
brains to be similar. But similar to what degree? At
present, there are two majors strategies for answering
this question. The first one, as mentioned previously,
is VBM [Ashburner and Friston, 2000] and involves a
voxel-wise comparison of the local concentration of
grey or white matter density maps between two or
more groups. In this case, one tries to detect differ-
ences in the regional concentration of brain tissues at
a local scale, and if the spatial normalization is perfect,
then all the segmented tissue images would appear
identical and no differences would be detected. A
global nonlinear brain match (SPM, WRP) is almost
satisfactory, therefore, and there is no need for a more
precise normalization of the brain images. VBM, using
SPM as the gold standard spatial normalization pro-
cedure, has been used already to demonstrate local

TABLE VI. Percentage of activated volume specific or
common to two or more normalized functional

volumes at a 0.05 significance level, corrected for
multiple comparisons*

Procedure Low resolution High resolution

A 7.5 15.1
S 8.8 20.4

¥ � 26.2 ¥ � 62.9
W 4.9 7.7
F 5.0 19.7
A,S 1.0 4.3
A,W 2.4 2.2
A,F 1.7 3.0
S,W 4.0 4.2
S,F 6.0 6.2

¥ � 31 ¥ � 30.9
W,F 1.0 1.6
A,S,W 2.8 1.5
A,S,F 2.4 3.2
A,W,F 2.4 0.4
S,W,F 7.3 4.3
A,S,W,F 42.8 ¥ � 42.8 6.2 ¥ � 6.2

* Low (respectively High) resolution was obtained by applying a 8
mm (respectively 4 mm) three-dimensional full with half maximum
Gaussian filter to the PET images. A, affine transformation only; S,
linear and non-linear routines of the Statistical Parametric Mapping
package; W, affine and fifth order polynomial warp; F, affine and
non-linear fluid transformation.

] ]
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structural brain differences among various popula-
tions [Abell et al., 1999; Good et al., 2001; May et al.,
1999; Paus et al., 2000; Sowell et al., 1999; Woermann
et al., 1999; Wright et al., 1995]. To our knowledge,
however, there has been no comparison of the relative
merits of SPM and WRP to determine the differences
observed in classical VBM statistical neuroanatomy.
The second class of methods aims at identifying mac-
roscopic anatomical shape and size difference among
the brains of different population. Here, statistics are
not carried out directly on the normalized volumes,
but are applied to the parameters describing the en-
suing estimated nonlinear deformations. These tech-
niques, called deformation-based and tensor-based
morphometry, compare the transformation fields cor-
responding to different populations. The more precise
is the mapping between homologous features of a
individual brains to a target one, the more relevant is
the displacement field characterizing the difference in
the shape and the size of these specific features [Ash-
burner et al., 1998; Davatzikos, 1996; Gaser et al.,
1999]. For this purpose, sophisticated methods are of
interest and are highly recommended to reduce sig-
nificantly the anatomical residual variability between
subjects after spatial normalization. The use of these
high-dimensional elastic normalization approaches
have permitted us to investigate, for example, longi-
tudinal studies of the corpus callosum growth pat-
terns in children [Thompson et al., 2000b] or to map
precisely morphological differences of the same struc-
ture in schizophrenic patients [Narr et al., 2000]. The
results obtained from our comparison study have
shown that the FMG algorithm provide a slightly bet-
ter alignment of anatomical features between subjects.
These results, however, indicate that SPM, WRP, or
FMG procedures are not accurate enough, both in
terms of warping the individual to the template, to be
used in deformation- or tensor-based morphometry
analysis. The use of one of these procedures combined
with displacement measures can blur the identifica-
tion of subtle and localized effects of brain morphol-
ogy between populations, due to the important resid-
ual variability remaining after spatial normalization
(Tables IV,V). In a recent work, Good et al. [2001] used
the smooth dimensional deformation field obtained
from the SPM99 normalization procedure to investi-
gate the effect of age on the volume reduction (or
growth) of anatomical structures in a sample of 465
subjects. This was done using a “modulation step”
preserving the volume of a particular tissue within a
voxel by multiplying the voxels values in the seg-
mented images by the Jacobean determinants derived
from the spatial normalization step. As the authors

said, “…while this current approach cannot provide
exact matches between small cortical or deep grey
matter structures, it provides additional information
in a practical way for large subject cohorts.” The ana-
tomical residual variability was compensated in this
case by the very large number of subjects of the study,
acting as a supplementary image smoothing process.
This improvement has also been implemented by Da-
vatzikos et al. [2001]. These authors use a very high
dimensional elastic transformation to preserve the
volumetric measurements of each tissue, both locally
and globally. This study demonstrated that the com-
bination of high dimensional elastic transformation
and VBM can be used to accurately quantify very
localized atrophy and volumetric changes.

Regarding the normalization procedures compared
in our study, we confirm that smooth normalization
procedure such as SPM, WRP, or FMG provide an
amount of residual variability that restricts their use to
traditional VBM analysis of tissues class densities.
VBM analysis does not measure any higher order
shape characteristics and are less sensitive to spatial
normalization errors in comparison with methods
based on displacement fields.

Functional neuroanatomy

Another field of investigation where the accuracy of
spatial normalization is of relevance is the investiga-
tion of the neural basis of higher cognitive functions.
Indeed, a functional parcellation of the brain consists
of segregating and precisely localizing cerebral func-
tional fields. A basic hypothesis underlying cognitive
neuroanatomy studies is that functional fields in dif-
ferent individuals are located at similar anatomical
locations [Watson et al., 1993]. As a consequence, the
use of warping algorithms that perform the best reg-
istration of different brains should result in more ac-
curate alignment of functional areas and therefore
enhance the intrinsic detection sensitivity of these
functional fields. This characteristic has been found in
previous studies that have related the effect of spatial
normalization on functional datasets and have con-
cluded that the normalization procedure with higher
localization accuracy of structural features provide
the most accurate and sensitive functional results
[Andersson and Thurfjell, 1997; Downs et al., 1999;
Fischl et al., 1999; Gee et al., 1997; Senda et al., 1998].

Our findings moderate these assertions. We did not
investigate the differences in terms of sensitivity be-
tween functional maps obtained with different nor-
malization procedure (activated volumes, extent, and
overlap in a common space). Using conservative sig-
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nificance level and traditional smoothing kernel for
classical PET inter-subject analysis (�10 mm final 3D
spatial autocorrelation), our results show that there
were only subtle differences between inter-subject
maps, either linearly or nonlinearly stereotactically
normalized. This suggests that the blurring intro-
duced by the inter-individual functional variability
dominates the anatomical variability that can be re-
duced by precise warping strategies. Although ana-
tomical features such as sulci, were aligned with mil-
limeter resolution, the underlying functional fields
identified by inter-subject PET activations (mainly the
extent of these functional sites) were spread around
the anatomical center of interest. This, of course, does
not imply that the activation centers after spatial nor-
malization are located exactly at the same coordinates,
but it shows that conclusions derived from the analy-
sis of such PET experiments are independent of the
normalization scheme used to move the functional
volumes in the standard space. It should be noted that
the Gaussian kernel size we used was about 4 mm
lower than most filter sizes used in the functional
neuroimaging literature. One can easily hypothesize
that using a more traditional larger kernel size will
emphasize the homologies between functional maps
produced with different normalization strategies and
enhance the overlap of activated volume across meth-
ods. Tuning the significance threshold to ultra high
conservative thresholds should probably leave the
maximum intensity activation peak, allowing the com-
parison of their relative localization in the stereotaxic
space. This was achieved in our study by improving
the spatial resolution of the functional study to �6
mm, which corresponds to the resolution of many
fMRI maps. No differences were observed in terms of
the number of activated areas but non-negligible vari-
ations appeared in terms of their localizations, the
activation volume overlap between methods being re-
stricted to a few percents of the total activated volume.
These variations can be of importance when research-
ers have to distinguish precise activation areas located
in the same anatomical features, but the problem of
selecting the method that gives the best “theoretical”
results still remains.

Relationships between microscopic and
macroscopic areas

A last topic of interest, in which a complete warp is
of crucial importance, is the analysis of the precise
relationships between macroscopic functional and cy-
toarchitectonic associative areas involved in higher
cognitive function such as language or mental imag-

ery. It has been demonstrated that the macroscopic
anatomical variability is highly related to the micro-
structural one in primary cortices [Geyer et al., 1996],
but this tight relationship seems to disappear for as-
sociative areas [Amunts et al., 1999]. The large vari-
ability of the architectural organization of the cerebral
cortex that exists at every scale requires us to ap-
proach this issue through probabilistic schemes and
atlases rather than through single individual observa-
tions (as was the case for the pioneer, Brodmann’s
map). Such studies are based on the hypothesis of
sulcal anatomical standardization and therefore re-
quire all datasets to be accurately normalized in a
probabilistic space at a macroscopic level. The most
accurate brain is likely to provide the most relevant
conclusions regarding the relative positions of func-
tional landmarks and cytoarchitectural areas. This in-
novative approach imposes the use of quasi perfect
warp between brains and will be a prerequisite for the
analysis of very large neuroimaging databases such as
the European Computerized Human Brain Database
(ECHBD) [Roland and Zilles, 1996] or the Interna-
tional Consortium for Brain Mapping [Mazziotta et al.,
2000]. The main goal of the ECHBD, now followed by
the NEUROGENERATOR project [Roland et al., 2001]
was to investigate the spatial congruence of probabi-
listic map of cytoarchitectonic fields and functional
PET and fMRI areas. These cytoarchitectonic maps are
useful and can offer precise stereotaxic information of
interindividual variability of microscopic areas only if
the surrounding macroscopic structural variability of
the post-mortem subjects is completely reduced using
a quasi perfect alignment procedure. This is what was
done in the ECHBD using a very high dimensional
elastic version of the FMG procedure. The results ob-
served in our study concerning the impact of normal-
ization procedures on high resolution functional maps
(Table VI, Fig. 9) suggest that using this high dimen-
sional procedure, the observed differences on the lo-
cation and extent of functional activations will be
more striking than the ones observed with the actual
version of the FMG procedure. To build an inter-
subject average functional map with the lowest be-
tween subjects residual variability, one has to use the
must accurate normalization procedure to align the
different subject brains. Our results lead us to con-
clude that new database projects integrating high res-
olution functional datasets with micro- or macroscopic
structural informations should be based on normaliza-
tion procedure providing the highest degree of accu-
racy, such as FMG, to investigate close relationships
between structure and function.
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