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An algorithm for the automatic alignment of MRI volumes of the
human brain was developed, based on techniques adopted
from the computer vision literature for image motion estima-
tion. Most image registration techniques rely on the assumption
that corresponding voxels in the two volumes have equal inten-
sity, which is not true for MRI volumes acquired with different
coils and/or pulse sequences. Intensity normalization and con-
trast equalization were used to minimize the differences be-
tween the intensities of the two volumes. However, these pre-
processing steps do not correct perfectly for the image differ-
ences when using different coils and/or pulse sequences.
Hence, the alignment algorithm relies on robust estimation,
which automatically ignores voxels where the intensities are
sufficiently different in the two volumes. A multiresolution pyr-
amid implementation enables the algorithm to estimate large
displacements. The resulting algorithm is used routinely to align
MRI volumes acquired using different protocols (3D SPGR and
2D fast spin echo) and different coils (surface and head) to
subvoxel accuracy (better than 1 mm). Magn Reson Med 43:
705–715, 2000. © 2000 Wiley-Liss, Inc.
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Among the large number of applications of MRI, some of
them require scanning the brain of the same subject repeat-
edly on different days, using possibly different acquisition
protocols and methods. Two slices from a typical example
are shown in Fig. 1. This example is from a research study
using functional MRI (fMRI) to measure brain activity in
visual cortex. In these experiments, a high-resolution vol-
ume anatomy of the subject’s brain was acquired in one
scanning session using a head coil and a 3D SPGR pulse
sequence (Fig. 1b). Then the subject participated in a series
of fMRI experiments across several separate scanning ses-
sions on different days. In these scanning sessions we used
a surface coil placed at the back of the head near the visual
cortex of the brain. During each fMRI scanning session, a
set of structural images were acquired in the same slices
and at the same resolution as the functional images, using
the surface coil and a fast spin echo pulse sequence (Fig.
1a). The slice orientation and voxel size of these volumes
were completely different from those of the initial high-
resolution volume. Even so, to analyze the fMRI data it was
critical for all of the images from multiple scanning ses-
sions to be coregistered.

The difficulty of the alignment problem can be appreci-
ated by inspecting the two images in Fig. 1. We can find
some features (e.g., marked with the white arrows) that
have a similar appearance in the two images. However,

because they were acquired using different coils and dif-
ferent pulse sequences, other features (e.g., marked with
the black arrows) are very different in the two images. In
this particular example, there are particularly dramatic
differences in the intensity levels of the scalp and the
skull. There is also a severe gradient in intensity with
distance from the back of the head in the images acquired
with the surface coil (Fig. 1a).

Because manual alignment of volumes is a tedious, time-
consuming, and unreliable task, it is desirable to have
automatic alignment tools. Moreover, precise automatic
alignment is valuable not only in the example research
study described above, but in many situations (both re-
search and clinical) involving repeated MRI acquisitions
from the same subject.

There are several methods in the literature for the
automatic alignment of volumes from different imaging
modalities (1– 6) (for a comparison between several
methods, see (7)), most of which have been developed
ad hoc for this difficult problem. On the other hand,
image registration and estimation of motion in image se-
quences has been a very active research topic in the com-
puter vision literature. Since these problems are closely re-
lated with volume alignment, it is possible to adapt standard,
efficient techniques for image registration to the alignment of
MRI brain volumes.

Most image registration or motion estimation tech-
niques rely on the assumption that corresponding voxels
in the two volumes have equal intensity, often referred
to as the intensity conservation assumption. This as-
sumption does not hold for MRI volumes acquired with
different coils and/or pulse sequences (e.g., as illus-
trated in Fig. 1). The images can be preprocessed to
minimize the intensity differences between the two vol-
umes. After preprocessing, the intensities will be ap-
proximately conserved for most of the voxels. Intensity
correction has been, and continues to be, an active area
of research. None of the existing methods can correct
perfectly for all intensity differences, especially when
using different pulse sequences. In fact, it is not clear
that it will ever be possible to correct perfectly for these
intensity differences.

In this article, we propose an algorithm for the auto-
matic alignment of MRI volumes that relies on robust
estimation to compute the alignment parameters. The
robust estimation procedure automatically ignores those
voxels (outliers) where the intensities are sufficiently differ-
ent in the two volumes. The resulting method is capable of
accurate alignment (better than 1 mm), even when a large
percentage of the voxels (more than 20%) violate the in-
tensity conservation assumption. The resulting procedures
are used routinely in our laboratory in the analysis of fMRI
data.
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METHODS

We first review gradient-based displacement estimation
for the special case of rigid-body motion. Second, we de-
scribe the robust estimation methods used to estimate the
rigid-body alignment parameters, which are crucial for
accurate alignment of volumes acquired with different
pulse sequences. Third, we explain how multiresolution
techniques can be applied to estimate large displacements.
Preprocessing of the volumes, described next, is necessary
to remove intensity gradients introduced by surface coils,
and to reduce the intensity differences between the vol-
umes. This section ends with some details about the im-
plementation of the algorithm.

Gradient-Based Image Registration

Image motion estimation and registration has been an ac-
tive research topic in the computer vision literature over
the past two decades (8–13). Many of these methods are
based on the so-called gradient constraint. There are dif-
ferent ways to derive the gradient constraint, but the main
assumptions are that the intensities are shifted (locally
translated) from one image to the next, and that the shifted
intensity values are conserved, i.e.,

f1~x, y, z! 5 f2~x 1 dx, y 1 dy, z 1 dz! [1]

where f1( x, y, z) and f2( x, y, z) are the intensities of the
two volumes as a function of space, and d 5 (dx, dy, dz)T

is the local displacement. Gradient methods assume that
the volume intensity function is well approximated by a
first-order Taylor series expansion,

f2~x 1 dx, y 1 dy, z 1 dz! < f2~x, y, z! 1 dxfx~x, y, z!

1 dyfy~x, y, z! 1 dzfz~x, y, z! [2]

where fx, fy and fz are the partial derivatives along the axis
specified by the subscript. Ignoring second- and higher-
order terms in the Taylor series, and substituting the re-
sulting approximation into Eq. [1], we obtain:

dxfx~x, y, z! 1 dyfy~x, y, z! 1 dzfz~x, y, z!

5 2Df~x, y, z! [3]

where Df( x, y, z) 5 f2( x, y, z) 2 f1( x, y, z). This
equation relates the displacement at one location in the
volume to the spatial derivatives of intensity at that same
location. Equation [3] is called the motion gradient con-
straint.

It is impossible to recover the displacement d, given
just the gradient constraint at a single voxel because Eq.
[3] offers only one linear constraint to solve for the three
unknown components for the displacement of that
voxel. Further assumptions or measurements are re-
quired to constrain the solution. One attractive possibil-
ity, which is of direct application in our alignment
problem, is to consider a global model for the displace-
ment with a small number of parameters that simulta-
neously characterize the displacements of all voxels
(11,13). Because the volumes to be aligned come from
the same subject, a rigid body displacement model with
six parameters can be used. Three of the parameters
correspond to a translation and the other three corre-
spond to a rotation, and the final change of coordinates
can be expressed as a rotation matrix plus a translation
vector. For small rotations, the 3D displacement at each
location can be approximated as:

d~x! 5 Sdx~x!
dy~x!
dz~x!

D 5 v 3 x 1 t

5 S 1 0 0 0 z 2 y
0 1 0 2 z 0 x
0 0 1 y 2 x 0

D1
tx

ty

tz

vx

vy

vz

2 [4]

where we have made explicit the dependence of the mo-
tion d on the spatial location x 5 ( x, y, z)T, and where the
unknowns are a rotation v 5 (vx, vy, vz)T, and a trans-
lation t 5 (tx, ty, tz)T.

Introducing the rigid body model of Eq. [4] into the
gradient constraint (Eq. [3]), and considering all the voxels
simultaneously, we obtain the following over-determined
linear system:

FIG. 1. Two typical slices of the volumes to be aligned: (a) acquired
with a surface coil; (b) acquired with a head coil.
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where the superscript i indexes all the voxels of the vol-
ume. This equation can be expressed in matrix form as
Ap 5 b, where p are the unknown rigid body displacement
parameters. This overdetermined system can be solved
using conventional least-squares, but in our case it is more
accurate to use robust regression techniques, which is
necessary to avoid the influence of voxels that violate the
intensity conservation assumption due to the different ac-
quisition protocols.

Robust Estimation of the Model Parameters

The estimation of the motion parameters requires solving
the following linear system:

ai
Tp 5 bi, i 5 1, . . . , N [6]

where ai is the ith row of matrix A in Eq. [5], p is the vector
of unknown displacement parameters, bi 5 f1( xi, yi, zi) 2
f2( xi, yi, zi) is the ith component of vector b in Eq. [5], and
N is the number of voxels. N is a large number (typically
tens of thousands), resulting in a heavily overconstrained
system of equations. The least-squares solution of the sys-
tem in Eq. [6] minimizes the sum, over all voxels, of the
squared residual errors, defined as ri

2 5 (ai
Tp 2 bi)

2.
However, the least-squares solution is very sensitive to

isolated points having high residual errors, or outliers,
which have a large influence on the error functional. In
principle, one really bad voxel with a very large residual,
ri, can corrupt the solution. Because the volumes to be
aligned come from different pulse sequences, there are
voxels for which the intensity conservation is violated,
thus having large residual errors. Therefore, the least-
squares solution will be corrupted, and alternative error
functions have to be used.

Robust statistical estimation techniques are designed to
minimize the influence of outliers (14). One class of robust
estimators, called the M-estimators, minimize the sum of a
function of the residuals r(ri) which does not grow indef-
initely (in contrast to the squared function used by least-
squares), but that rather saturates for large residual errors.
Therefore, outliers have a limited influence on the final

solution; this is illustrated in Fig. 2. The curve in Fig. 2a
represents the square of the residual error, while Fig. 2b
corresponds to one particular choice of a robust function
of the residual error r(r). The point labeled as r1 corre-
sponds to a small residual error, and the two functions in
Fig. 2a and b have similar values. The point r2, which cor-
responds to a large residual error, has a large squared error
(Fig. 2a), and therefore will have a large influence on the
estimate. On the contrary, the same point r2 has a limited
influence for the robust error function, because this func-
tion saturates for high residual error values (Fig. 2b).

One problem with the robust estimators is that the re-
sulting function to be minimized is nonconvex, and thus
there is no guarantee of convergence to an absolute mini-
mum. Therefore, it is necessary to start with an initial
condition close to the absolute minimum. In our case, the
use of multiresolution and iterative refinement (described
in the next section) contribute to the convergence of the
algorithm because many of the local minima are removed
at coarser scales. The accurate estimates obtained in our
experimental results confirm that the algorithm is almost
always converging to the global minimum, or at least to a
nearby local minimum.

There are different choices for the robust error function
r(r) in the literature (14). We chose to use Beaton and
Tukey’s biweight function (15), illustrated in Fig. 2b. The
resulting error functional can be minimized using different
techniques (16). Our implementation uses iterative re-
weighted least-squares (15,16), where the problem is
solved at each iteration using the very efficient weighted
least-squares estimator, and the weights are updated at
each iteration, such that those points displaying greater
residual errors are given less weight in the next iteration.
More detail about the biweight function and the iterative
reweighted least-squares implementation are given in Ap-
pendix A.
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FIG. 2. Graphs of the residual error functions for: (a) the least
squares estimator; and (b) a robust M-estimator. The point marked
as r1 corresponds to a typical residual value, while the point marked
as r2 corresponds to an outlier.
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One important feature of the robust estimator is that it
allows us to use very simple and efficient intensity and
contrast correction operations. The robust estimator pro-
vides accurate estimates of the alignment parameters even
when the preprocessing steps fail to correct perfectly for
the image differences caused by different coils and/or
pulse sequences.

Multiresolution and Warping

The Taylor series approximation in Eq. [2] and the infini-
tesimal rotation approximation in Eq. [4], taken together,
require that the displacements must be small, typically
less than four voxels. However, typical alignment prob-
lems have displacements that are much greater than this.

A standard extension of the above technique is to use an
iterative, multiresolution algorithm. The multiresolution
representation of the images is computed by recursive
low-pass filtering and subsampling (17). The displace-
ments are smaller in the subsampled volumes; for exam-
ple, a displacement of eight voxels in the original volumes
is reduced to four voxels after one stage of filtering and
subsampling. The algorithm then proceeds to use to a
coarse-to-fine strategy for estimating the displacements
(11,13). The alignment parameters are initially estimated
at the coarsest (most subsampled) scale where the dis-
placements are small. This coarse estimate is used to warp
the volumes into approximate alignment at the next finer
scale. Then the process is repeated to iteratively refine the
estimate of the alignment parameters up to the finest scale
(i.e., the original volumes).

We also apply the algorithm (estimating the alignment
parameters and warping the volumes into alignment) iter-
atively within each level of resolution, to refine further the
accuracy of the estimates.

The final transformation is obtained by concatenating
together the transformations using matrix multiplication.
At each iteration the six parameters in Eq. [5] are esti-
mated. The homogeneous coordinate transformation cor-
responding to the i-th iteration is then represented in
matrix form:

Mi 5 1
r11i r12i r13i txi

r21i r22i r23i tyi

r31i r32i r33i tzi

0 0 0 1
2 [7]

where the column on the right is the estimated translation,
and the upper-left 3 3 3 submatrix is a rotation matrix that
corresponds to the estimated rotation, (vxi

, vyi
, vzi

), as
shown in Table 1. The global transformation is computed
by multiplying together the homogeneous coordinate
transformation matrices corresponding to each iteration:

M 5 P
i

Mi [8]

where the subscript i indexes over all the iterations. The
step of transforming from the small motion approximation
to the homogeneous transformation representation is ab-
solutely critical. First, the small motion approximation

cannot represent any possible rotation. Second, concate-
nating the small motion approximations from successive
iterations could produce a result that does not correspond
to a rotation. The homogeneous transform matrices, on the
other hand, can represent any possible rotations and when
they are multiplied together, the result is guaranteed to be
a rotation plus translation.

Once the final transformation M has been estimated, the
volumes can be warped into alignment using standard
resampling techniques (18).

Intensity Preprocessing

The most severe violation of intensity conservation in our
volumes (although this is a quite general problem) is due
to the different coils used during the two acquisitions.
Specifically, one of the volumes was acquired with a sur-
face coil, which results in a dramatic intensity gradient as
a function of the distance to the coil (see Fig. 1a). This
intensity gradient has to be corrected before attempting to
estimate the alignment parameters. There are several
methods in the literature for correcting intensity inhomo-
geneities in MR images (19–21). Although these proce-
dures are quite effective, they do not correct perfectly for
the image differences.

We chose to use a very simple and efficient strategy for
intensity correction. The intensity correction procedure is
described in detail in Appendix B. Briefly, we first divide
the intensity at each voxel by the local mean intensity of
the nearby voxels. We then equalize the contrasts of the
two volumes by fitting models to the intensity histograms.
Although it does not correct perfectly for the differences in
the two volumes, we have found that this procedure is
more than sufficient when used in conjunction with the
robust estimator outlined above. More sophisticated tech-
niques (like those cited above) could be used, but they are
not necessary because the robust estimator provides accu-
rate estimates of the alignment parameters even when a
large percentage of the voxels are outliers.

Implementation Details

The final algorithm is presented in Fig. 3. There are two
main loops, one corresponding to the different resolution
levels in the multiresolution approach, and another loop
for iteratively refining the estimates within each level of
resolution.

Table 1
Components of the Rotation Matrix Obtained From the Estimated
Rotation Ignoring the Infinitesimal Angle Approximation
(see Eq. [6])

r11i
cos(vyi

)cos(vzi
)

r12i
2cos(vyi

)sin(vzi
)

r13i
sin(vyi

)
r21i

sin(vxi
)sin(vyi

)cos(vzi
) 1 cos(vxi

)sin(vzi
)

r22i
2sin(vxi

)sin(vyi
)sin(vzi

) 1 cos(vxi
)cos(vzi

)
r23i

2sin(vxi
)cos(vyi

)
r31i

2cos(vxi
)sin(vyi

)cos(vzi
) 1 sin(vxi

)sin(vzi
)

r32i
cos(vxi

)sin(vyi
)sin(vzi

) 1 sin(vxi
)cos(vzi

)
r33i

cos(vxi
)cos(vyi

)
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We implemented the coarse-to-fine strategy using a mul-
tiresolution spatial Gaussian pyramid. This pyramid is
built by successively filtering the volume with a Gaussian
spatial filter, and downsampling by a factor of 2. The
multiresolution algorithm has the additional advantage
that the coarse scale calculations are computationally ef-
ficient because they are performed over a much smaller
number of voxels. We used a 5-tap cubic-B-Spline filter,
shown in Table 2, as an approximate Gaussian filter to
build the pyramid. In our case, we applied the multireso-
lution only to the two inplane spatial dimensions; we
typically do not have enough samples in the z dimension
because we collect fMRI data (and the corresponding
structural images) with only 4–16 slices, covering a small
fraction of the brain.

Solving the system of equations in Eq. [5] relies on
knowing the partial derivatives of the volume with re-
spect to x, y, and z. Computing the derivatives of a
discretized intensity signal requires some regulariza-
tion. This can be done by prefiltering the volume with a
smoothing filter, and then differentiating. Since filtering
and differentiation are linear operations, this is equiva-
lent to filtering the signal directly with the derivative of
the prefilter (22). Table 2 shows the 5-tap pre-filter and
derivative filters used for the estimation of the spatial
gradient (22). Each partial derivative is estimated by
separable convolution of the volume with the derivative
filter along one axis, and by the prefilter along the other
two axes.

The iterative solution at each resolution level, as well as
the coarse to fine implementation, requires warping one of
the volumes given the current estimate of the alignment
parameters. We implemented the warping operation using
backwards tri-linear interpolation (18). The transformed

voxels lying out of bounds were ignored during the esti-
mation process.

The different voxel sizes between the two volumes were
corrected by resampling the volumes using tri-linear inter-
polation.

Before starting the automatic alignment procedure it is
necessary to provide an initial estimate of the alignment as
a starting point. This was done manually using interactive
software, a process that typically takes only a minute or
two. The remaining steps of the algorithm are fully auto-
matic, taking between 1–3 min running on a Pentium III
450Mhz under Matlab (there is an implementation of the
algorithm (Matlab 5.0 and higher) available at http://white.
stanford.edu). This is a huge advantage compared with the
typical time of a full manual alignment, performed inter-
actively by marking corresponding points, which takes
about 45 min.

RESULTS

Figure 4a shows four of eight slices from a low resolution
(fast spin echo) volume. Figure 4b shows a region from the
high resolution (3D SPGR) volume that was reinterpolated
and cropped according to the initial manual alignment.
These images have already been preprocessed using the
operations described in Appendix B. The images in Fig. 1
correspond to the rightmost slices in Fig. 4, but before
applying the preprocessing.

The images were acquired using a standard clinical
GE 1.5T Signa scanner. The high-resolution volume (Fig.
4b) was acquired with a field of view covering the entire
head, using a custom designed head coil, and a 3D SPGR
pulse sequence: 33.3 ms TR (repetition time); minimum
TE (echo time); 40° FA (flip angle); and a voxel size of

FIG. 3. Pseudocode corresponding to
the main steps of the algorithm.

Table 2
Convolution Masks Used as Prefilter and Derivative Filter for the Estimation of the Gradients (First and Second Row, Respectively), and
Low-Pass Filter Used to Build the Gaussian Pyramid (Third Row)

Prefilter 0.03504 0.24878 0.43234 0.24878 0.03504
Derivative filter 0.10689 0.28461 0 20.28461 20.10689
Gaussian pyramid 0.0625 0.25 0.375 0.25 0.0625
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0.94 mm 3 0.94 mm 3 1.2 mm. The low-resolution
partial volume (Fig. 4a) was acquired using a custom-
designed dual surface coil placed at the back of the
head. We used a T1-weighted spin echo pulse sequence:
500 ms TR; minimum TE; 90° FA; eight adjacent, ob-
liquely oriented slices selected with the most ventral
slice positioned along the boundary between the occip-
ital lobe and the cerebellum; and a voxel size of 1.02
mm 3 1.02 mm 3 4 mm.

The initial alignment is far from perfect, as shown in the
mosaic of Fig. 4c, formed by taking small alternate blocks
from each of the volumes, following a checkerboard pat-
tern. The final alignment matrix, which transforms the

coordinates from one volume to the other, was estimated
using the automatic method as the following:

M 5 1
0.9938 0.1096 20.0169 24.8152

20.1098 0.9939 20.0122 9.6834
0.0155 0.0140 0.9998 22.1708
0 0 0 1.0000

2 [9]

where the estimated translation is represented by the vec-
tor on the right and the estimated rotation is represented
by the 3 3 3 block in the upper left (see Eq. [7]). The
modulus of the estimated translation vector is 11.0 voxels,

FIG. 4. Alignment results for a typical case. a: Four of eight slices from the low-resolution volume acquired with a surface coil. b: Slices
from the high-resolution volume acquired with a head coil, reinterpolated using the initial manual alignment. c: Mosaic formed by alternating
blocks of a and b, following a checkerboard pattern. d: High-resolution volume, reinterpolated using the final alignment estimate. e: Mosaic
formed from a and d.
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and the magnitude of the rotation vector is 6.4°. The max-
imum estimated displacement (taking into account both
the translation and the rotation) is 11.8 voxels, and the
mean displacement is 6.0 voxels. Figure 4d shows the
region of the high-resolution volume reinterpolated using
the estimated alignment matrix. This alignment is almost
perfect, as can be appreciated in the mosaic in Fig. 4e,
which combines the intensity corrected versions of the
two aligned volumes. Although the volumes were inten-
sity corrected, there are still some local differences in
intensity and contrast. Even so, you can track the pattern
of sulci and gyri from one block to the next; the robust
estimation resulted in a good alignment in spite of the
intensity and contrast differences. Laborious attempts to
do the alignment by hand always yielded results that were
not as good.

Multiresolution permits us to estimate large translations
and rotations, as is illustrated in the example of Fig. 5.
These images were acquired using a GE 3T scanner. The
low-resolution partial volume (one slice shown in Fig. 5a)
was acquired with a custom head coil and a 2D SPGR
pulse sequence: minimum TE; 100 ms TR; 45° FA; 0.94
mm 3 0.94 mm 3 2.6 mm voxel size. The full, high-
resolution volume (one slice shown in Fig. 5b, interpo-
lated according to the initial manual alignment) was ac-
quired using the same head coil but using a 3D SPGR pulse
sequence: minimum TE; 15° FA; 0.94 mm 3 0.94 mm 3
1.2 mm voxel size. The initial alignment is far from the
true position, as is shown in the mosaic in Fig. 5c formed
from Fig. 5a and b. The slice in Fig. 5d has been interpo-
lated from the high-resolution volume using the estimated
rotation and translation. The magnitude of the estimated
translation is 37.9 voxels, and the estimated rotation angle
is 14.1°. Despite the large initial displacement (maximum
and mean displacements of 37.9 and 19.4 voxels, respec-
tively), the final alignment is highly accurate, as can be
appreciated in the mosaic of Fig. 5e, formed from Fig. 5a
and d.

Note again that there are dramatic differences in the
image intensities near the skull, even after applying the
intensity correction preprocessing procedures. These out-
liers were largely ignored by the robust estimator, allowing
for an accurate alignment of the brain, without having to
first perform a complicated segmentation procedure to re-
move the scalp and skull.

Comparison With Other Registration Methods

We performed a quantitative comparison with two other
methods that are both widely used for volume registration
by the fMRI research community: 1) automated image reg-
istration, AIR, by Woods et al. (1,6); and 2) statistical
parametric mapping, SPM, by Ashburner et al. (4,5). The
SPM package provides two different algorithms. The first
SPM algorithm minimizes the sum of squared differences
of voxel intensities, and is recommended for use when the
two volumes are acquired with the same imaging modal-
ity. The second SPM algorithm is recommended for use
when the two volumes are acquired with different imaging
modalities. This algorithm proceeds in three steps: 1)
coarse registration with a template that is specific for each
imaging modality, 2) segmentation of different tissues

based on a priori information, and 3) matching of the
resulting segments. We tested both SPM algorithms,
choosing the T1 template for the first coarse alignment. We
tested AIR using the ratio image uniformity cost function.

We used synthetic datasets for which the true registra-
tion is known, because it is very difficult to perform a
quantitative comparison on real datasets for which the
correct registration is not known. The synthetic datasets
were generated from a high-resolution volume (3D SPGR,
1.5 T, pulse sequence parameters listed above). For each
trial of the simulations, we interpolated a pair of subvol-
umes, with either 8 or 16 slices, from the full high-resolu-
tion volume. The pose (slice orientation and position) of
one of the two subvolumes was chosen to be similar to that
in Fig. 4. The second subvolume was chosen to have the
same pose on average, but randomized so that the dis-
placement between the two volumes had a mean transla-

FIG. 5. Example of a case with a very large displacement, both
translation and rotation (same format as Fig. 4, except that only one
of the eight slices is shown).
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tion of 2.0 voxels, and mean rotation angle of 0.36°. Noise
was added to the first subvolume to imitate the differences
that one might expect between real volumes acquired at
different times with different pulse sequences. Specifi-
cally, a certain number of voxels were selected as outliers;
the image intensities at these voxels were set to random
values, thereby grossly violating the intensity conservation
assumption. The intensities at other voxels were corrupted
with additive Gaussian white noise, with a power equal to
1
16

the power of the original images. We performed a num-
ber of simulations with different random initial poses,
different numbers of outliers, and different realizations of
the additive Gaussian white noise. To quantify the accu-
racy of the estimated registration parameters, we com-
puted the modulus of the error between the original coor-
dinates and the coordinates transformed by the estimated
rigid body transformation, averaged across all of the voxels
in the brain.

Table 3 compares the mean error (in units of voxels),
along with the corresponding standard deviation (in units
of voxels), for each of the registration algorithms: 1) the
proposed robust estimator, 2) a least-squares estimator
(same as our proposed algorithm but with a quadratic
function of the residual error), 3) AIR, 4) SPM1, and 5)
SPM2. For all cases when there are more than 2.5% outli-
ers, the robust method consistently produced the most
accurate results. When there are no outliers, all methods
(except SPM2) provided similar accuracy. However, even
a small number of outliers caused a noticeable increase in
the error for both AIR and SPM. The use of a robust
estimator is critical to achieve accurate estimates in cases
where the intensities are not perfectly matched in the two
volumes (compare the first and second rows of Table 3).
The accuracy of the robust method in our simulations was
always better than 1 voxel. Since the voxel size is about 1
mm for our high-resolution volumes, we conclude that the
mean error of the alignment is less than 1 mm.

We also tried to align real volumes similar to those in
Figs. 4 and 5 using AIR and SPM, both with and without
intensity normalization. Both SPM1 and SPM2 failed to
align the volumes. The results using AIR were always
worse than the results obtained using our robust method,
although the differences were subtle.

Finally, we also measured the average execution time
during the simulations (on a Pentium III, 450 MHz). Al-
though the execution time is relatively long for our method
in comparison to AIR and SPM1 (Table 3), this is primarily
because it is currently implemented in Matlab. An efficient
implementation of the robust method in the C program-

ming language could reduce the execution time to levels
comparable with those achieved by AIR.

CONCLUSIONS

Automatic alignment of MRI volumes is a valuable tool to
avoid time-consuming manual alignments, both in basic
research and in clinical applications. Several approaches
have been proposed to perform this alignment automati-
cally, but they do not take advantage of the techniques
reported in the extensive computer vision literature on
image motion estimation and registration.

We adopted standard techniques from the computer vi-
sion literature to develop an algorithm for aligning MRI
volumes. The basis of the algorithm is the gradient con-
straint that relates the displacement of a voxel with the
spatial derivatives of the intensity at that voxel. The other
components of the algorithm (robust estimation, mul-
tiresolution, intensity normalization, and contrast equal-
ization) are all critical for obtaining accurate alignments,
given that the volumes have been obtained with different
protocols and coils. The algorithm has been used routinely
for several months, and has never failed to produce a
satisfactory alignment.

Robust estimation and multiresolution are tools that are
generally applicable to a wide variety of signal and image
processing problems. These tools could also be applied to
improve the performance of other approaches to MRI vol-
ume registration, including AIR and SPM.

ACKNOWLEDGMENTS

Oscar Nestares was supported by a Spanish Ministry of
Education & Culture (MEC)/Fulbright fellowship. Special
thanks to G.H. Glover (and the Richard M. Lucas Center for
Magnetic Resonance Spectroscopy and Imaging, sup-
ported by an NIH National Center for Research Resources
grant) for technical support.

APPENDIX A: ROBUST ESTIMATION

This appendix provides more details about the robust es-
timator used in our implementation. Given the following
system of linear equations,

ai
Tp 5 bi, i 5 1, . . . , N [10]

Table 3
Comparison of the Mean Alignment Error in Voxels (6 Standard Deviation) for the Robust Estimator, the Least Squares Estimator, AIR,
and SPM Using the Same Modality Algorithm (SPM1) and the Different Modality Algorithm (SPM2)

2.5% 5% 10% 20% Time (sec)

Robust 0.12 6 0.03 0.14 6 0.04 0.15 6 0.05 0.77 6 0.34 78
Least Squares 0.43 6 0.17 0.62 6 0.25 1.02 6 0.4 1.65 6 0.52 65
AIR 0.66 6 0.28 0.70 6 0.27 1.04 6 0.37 1.73 6 0.64 39
SPM1 0.62 6 0.24 0.94 6 0.38 1.73 6 0.73 1.80 6 0.77 11
SPM2 2.43 6 1.26 3.24 6 1.55 7.66 6 3.29 10.77 6 5.44 162

Data are shown for different percentages of pixels violating the intensity conservation assumption. Last column presents the mean
execution time for each method (in seconds).
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robust M-estimators minimize a sum, ¥ir(ri), where ri 5
ai

Tp 2 bi are the residuals, and where the function r(r)
saturates for large residual errors (see the graph of Fig. 2b).
Among the different choices for the robust error function
(14) we chose Beaton and Tukey’s biweight function (15):

r~r! 5 H ~CB
2/2!~1 2 ~1 2 ~r/CB!2!3! if uru # CB

CB
2/2 otherwise [11]

where CB is a parameter that controls the saturation point.
This kind of estimator can be implemented very efficiently
using iterative reweighted least squares (15,16), where the
weights are updated at each iteration such that those
points displaying greater residual errors are given less
weight in the next iteration. The estimated parameters are
refined at each iteration as follows:

pj11 5 pj 2 FATWSApj 2 b
s DAG21

3 ATWSApj 2 b
s D ~Apj 2 b! [12]

where pj are the estimated parameters at iteration j, A is
the matrix formed by ai

T, b is the column matrix formed by
bi, W(r) is a diagonal matrix whose diagonal elements are
the weights given by:

w~ri! 5 H ~1 2 ~ri/CB!2!2 if uriu # CB

0 otherwise [13]

and where s is a scale parameter that can be estimated
from the residuals (16):

s 5 1.48med $uri 2 med $ri%u% [14]

where med{ z } is the median value, which is taken over all
the voxels, i 5 1, . . . , N. The iterations stop when the
total squared error at iteration j, defined as:

Ej
2 5

O
i51

N

wiri
2

O
i51

N

wi

, [15]

does not show a significant reduction with respect to the
error in the previous iteration, or when a maximum num-
ber of iterations is reached.

We empirically adjusted the value of CB 5 2.5 in Eq.
[11]. This value is more restrictive for outliers than the
value of CB 5 4.685 suggested in (16) for Gaussian noise.
In any case, we checked that the choice of this parameter
is not critical.

APPENDIX B: INTENSITY CORRECTION

In this appendix we describe in more detail the prepro-
cessing operations towards the intensity correction that we
used for the results presented in this article.

The intensity inhomogeneities in MRI images can be
modeled as a multiplicative gain field that varies slowly in
space (19,23). A basic version of intensity normalization
simply divides the volume intensity by an estimate of the
smooth gain field. This gain field can be estimated using a
polynomial model in the logarithm of the intensity, or
through low-pass filtering. We tried both estimates, finding
that a low-pass filtered version (in x, y and z) of the
volume is sufficient for our purposes. The corrected vol-
ume intensity fn( x, y, z) is then computed as:

fn~x, y, z! 5
f~x, y, z!

f~x, y, z! p g~x, y, z!
[16]

where f( x, y, z) is the original volume intensity, g( x, y, z)
is a low-pass filter, and p stands for convolution. However,
this expression can be unstable in regions where the de-
nominator, f( x, y, z) p g( x, y, z), is very small due to an
absence of signal, thereby amplifying the noise. For this
reason we used a Wiener-like normalization, which takes
into account the noise, so that when the normalizing bias
field is smaller than the noise level, the noise is not am-
plified. The final expression for the corrected intensity
volume is:

fn~x, y, z! 5
f~x, y, z!~f~x, y, z! p g~x, y, z!!

~f~x, y, z! p g~x, y, z!!2 1 sn
2 [17]

where sn
2 is an estimate of the noise variance.

We applied the cubic-B-spline filter in Table 2 to each
spatial axis two times to estimate the gain field. The mean
noise level sn

2 in Eq. [17] has been estimated as the local
variance of the intensity values (computed within each
local block of 7 3 7 3 7 voxels), plus a constant term equal
to half the average of all of the local variance values. This
empirically adjusted value is not an accurate estimate of
the noise in the MRI images, but it has been chosen to
ensure the stability of the normalization in very low inten-
sity regions.

After removing the intensity gradients, the two volumes
still differ from one another. This is illustrated in Fig. 6a,
which plots sample histograms for the two intensity nor-
malized volumes. The peak and variance of the main lobe,
located around 1, is slightly different for the two volumes.
These differences also violate the intensity conservation
assumption, and must be corrected before estimating the
alignment parameters.

The simplest strategy might be to subtract the mean
value from each volume and divide by its standard devi-
ation. However, the mean and variance of each volume
depends on the extent of the regions within the volumes
that correspond to skin and skull and the regions outside
the head. For example, if an acquisition covers a very wide
field of view (outside the head) then it will contain many
more voxels with low intensities that will bias the mean
and variance.

The central lobes in each of the histograms in Fig. 6a,
which include most of the voxels, correspond to the white
and gray matter. However, there is also a narrow peak near
0, corresponding to voxels that before normalization were
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in a region of low intensity (outside the head or cerebro-
spinal fluid). There is also a residual, broad lobe, ranging
from low to very high intensities, which corresponds to
regions in the skin and the skull.

Our goal is to equalize the contrast of the regions corre-
sponding to the gray and white matter. To avoid the influ-
ence of the other regions, we modeled the intensity histo-
grams as the sum of two Gaussian densities, one for
midrange values corresponding the gray and white matter
of the brain, and the other one for the broad distribution of
very low to very high values. Then the mean, standard
deviation, and peak value of these two Gaussian functions
are estimated as those that minimize the following robust
measure of the error between the sample histogram and the
model:

E~m1, s1, M1, m2, s2, M2!

5 O
x

2
1

1 1 ~h~x! 2 g1~x! 2 g2~x!!2 [18]

where gi 5 Mi/(=2psi)exp(2( x 2 mi)
2/(2si

2)) is a Gauss-
ian function, h( x) is the sample histogram, and the sum-
mation is performed over all the values x where the sam-
ple histogram has been computed. We minimized the ex-
pression in Eq. [18] using a simplex method, and then used
the mean and variance of the central (main lobe) Gaussian
to contrast equalize the two volumes.

Figure 6b plots the sample histograms within 64 stan-
dard deviations (solid curves) after contrast equalization,
along with the corresponding shifted and scaled sum of
Gaussians fit (dashed line). Using the robust model fit, the
narrow peak close to 0 was effectively ignored in estimat-
ing the mean and variance of the central lobe of each
histogram. This allowed us to perform the contrast equal-
ization of the gray and white matter regions without first
performing a difficult and computationally expensive im-
age segmentation.
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