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Motion Correction Algorithms May Create Spurious Brain Activations in
the Absence of Subject Motion
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This paper describes several experiments that prove
that standard motion correction methods may induce
spurious activations in some motion-free fMRI stud-
ies. This artifact stems from the fact that activated
areas behave like biasing outliers for the difference of
square-based measures usually driving such registra-
tion methods. This effect is demonstrated first using a
motion-free simulated time series including artificial
activation-like signal changes. Several additional sim-
ulations explore the influence of activation amplitude
and extent. The effect is finally highlighted on an ac-
tual time series obtained from a 3-T magnet. All the
experiments are performed using four different re-
alignment methods, which allows us to show that the
problem may be overcome by methods based on a
robust similarity measure like mutual information.
© 2001 Academic Press
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INTRODUCTION

Realignment of functional magnetic resonance imag-
ing (fMRI) time series is today considered a required
preprocessing step before analysis of functional activa-
tion studies. Indeed, when the subject movement is
correlated with the task, the changes in signal inten-
sity which arise from head motion can be confused with
signal changes due to brain activity (Hajnal et al.,
1994). Nevertheless, standard realignment procedures
are often not sufficient to correct for all signal changes
due to motion. For instance, a nonideal interpolation
scheme used to resample realigned images leads to
motion-correlated residual intensity errors (Grootoonk
et al., 2000). Other motion-correlated residuals may
stem from the “spin history effect,” which occurs when
the spin excitation schedule is changed by the subject
motion (Friston et al., 1996; Robson et al., 1997). Fi-

ally, other motion-related artifacts can confound
MRI time series, such as intrascan motion and the
nteraction between motion and susceptibility artifacts
Birn et al., 1997; Wu et al., 1997).
709
It has been reported that a number of residual mo-
tion-related artifacts after realignment are reduced by
covarying out signal correlated with functions of the
motion estimates (Friston et al., 1996; Grootoonk et al.,
2000). It has to be noted, however, that when motion
estimates are highly correlated with the task, this re-
gression-based approach is bound to erase some actual
activations. While this cost may appear as the price to
pay in order to obtain a good protection against false
positives, using this approach raises the issue of the
motion estimate reliability. Indeed, if ever signal
changes induced by the cognitive task slightly bias
motion estimates in a systematic task-correlated way,
the price of this correction may be very high. Without
the correction, however, realignment from task-corre-
lated motion estimates could induce spurious activa-
tions. Hence task-correlated motion estimates would
be the worst artifact that can be imagined for a realign-
ment method. In this paper, several simulations and
some experiments with real data show that this arti-
fact may occur with realignment methods that do not
take into account potential outlier voxels related to
functional activations when defining the similarity
measure which is optimized to assess registration pa-
rameters.

A number of papers reporting brain mapping results
obtained from fMRI experiments consider the realign-
ment stage of their processing methodology reliable
simply because it has been done using one of the stan-
dard packages (SPM, Friston et al., 1996; AIR, Woods
et al., 1992, 1998). Recurrent difficulties observed in
our institution relative to realignment by SPM of time
series acquired with our 3-T magnet, however, have led
our neuroscientists to follow a rather surprising strat-
egy: compute motion estimates but do not resample
time series if motion is small relative to voxel size. This
strategy stems from a number of past observations in
which predictable activation patterns were obtained
without realignment, whereas resampling the time se-
ries led to the usual task-correlated motion artifacts
(spurious activations along brain edges). When the un-
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710 FREIRE AND MANGIN
derlying experiments had been designed according to
the standard block alternation, some of the estimated
motion parameters did actually include an almost per-
fect periodic trend correlated with the task. The fre-

FIG. 1. (A) Artificial activations are added to a motionless con
realignment parameters are displayed for the LS-based packages. Ea
(B) The six realignment parameters displayed for RIU-AIR, MI, an
displayed on the top of A. Small but significant correlations may be
quency of this problem and the fact that this estimated
periodic motion was “too perfect to be honest” led us to
suspect a systematic bias of the motion correction al-
gorithm.

nt time series according to the time course given on top. The six
parameter time course is cross-correlated with the activation profile.
IU-Custom. RIU-AIR presents no correlation with the time course
erved for RIU-Custom and MI (tz and pitch).
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711SPURIOUS BRAIN ACTIVATIONS
This paper describes several experiments which
demonstrate that this bias is induced by activated ar-
eas which behave like outliers for the registration
method. The fact that the bias magnitude is highly

SCHEME 1. Summary of activation pattern features. Size is giv
denote mean and maximum signal increase for the activated voxels

FIG. 1—
related to the signal change amplitude may explain
why our 3-T magnet led to more difficulties than more
usual 1.5-T scanners. Our prediction for the near fu-
ture, however, is an increasing number of unsatisfied

as a percentage of the total number of brain voxels. Mean and Max
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712 FREIRE AND MANGIN
users of standard motion correction procedures simply
related to the widespread used of high-field magnets.
Fortunately, our experiments show that more robust
similarity measures like “mutual information” could
overcome the problem (Wells et al., 1996; Maes et al.,
1997; Viola et al., 1997; Studholme et al., 1997; Meyer
et al., 1997). It has to be understood that the difficulties
with usual measures like the least-squares used in
SPM and AIR are not really related to accuracy of the
motion estimates. Indeed, reaching a high subvoxel
accuracy for motion estimates in actual time series
may require better models of the motion-induced signal
changes. For instance, spatial distortions related to
echo-planar imaging (EPI) depend on the subject posi-
tion in the scanner, which may confound motion esti-
mation (Jezzard et al., 1999). Therefore, our experi-
ments mainly focus on the potential task-correlated
bias observed in motion estimates whatever the esti-
mate actual accuracy.

MATERIAL AND METHODS

fMRI Acquisitions

All fMRI studies were performed on a Brucker scan-
ner operating at 3-T using a 30-contiguous-slice 2D
EPI sequence (slice array of 64 3 64 voxels). This
equence had in-plane resolution of 3.75 mm and slice
hickness of 4 mm. The potential bias induced by acti-
ations in realignment algorithms was evaluated in a
uman study using a design of two alternating visual
timuli. The subject’s head was cushioned inside the
rucker proprietary head rf coil assembly, and two
djustable pads exerted light pressure to either side of
he head.

Similarity Measures

To bring two images into spatial alignment, a geo-
etrical transformation is applied to one of the images.
he type of the transformation can range from a simple
igid body transformation to a fully elastic transforma-
ion. All the experiments described in this paper have
een performed using a rigid body transformation,
hich is described by three translation and three rota-

ion parameters. The purpose of a similarity measure
s to return a value indicating how well two images

atch given a certain transformation. Ideally, by max-
mizing the similarity measure one should find the
ransformation that registers the images. The optimal
igid body transformation, however, usually depends
n the chosen similarity measure and on the imple-
entation of its optimization. The goal of this paper is

o assess at which extent the optimal transformations
iven by standard realignment methods are biased by
ctivations.
Four different realignment methods are used in all

ur experiments. Each underlying implementation de-
ends on a few parameters, which may slightly modify
he realignment results. A number of works have been
edicated to evaluation of registration methods accu-
acy (Jiang et al., 1995; Frouin et al., 1997; West et al.,

1997; Woods et al., 1998; Holden et al., 2000). While
this is clearly a key point to compare similarity mea-
sures, such work requires the study of each parameter
influence, which is far beyond the scope of this paper.
Since our main goal is to highlight the potential bias
induced by activations, we have chosen to set each
parameter either to the best choice leading to accept-
able computation time or to the value commonly used
by standard users:

(1) LS-SPM: the standard realignment algorithm in
SPM96 (http://www.fil.ion.ucl.ac.uk/spm; Friston et al.,
1995). The underlying similarity measure is simply a
least-square, namely the sum of the squared discrep-
ancies between both images. One specificity of SPM
implementation is the use of a first-order Taylor series
approximation of the rigid body transformation effects.
While this choice allows rapid minimization of the
measure iteratively using a singular value decomposi-
tion (SVD), it may explain some differences with other
implementations of the same similarity measure (Hill
et al., 2001). A 3D smoothing is applied before realign-
ment to ensure a good behavior of the Taylor expan-
sion. We set the Gaussian kernel full width at half-
maximum (FWHM) to 8 mm. The number of iterations
was set to 16. The whole set of slices was included in
the SVD. We have checked that the realignment algo-
rithm in SPM99, while slightly different (points out-
side the head are removed from the SVD), presents the
same qualitative behavior relative to the bias induced
by activations.

(2) LS-AIR: a second implementation of the least-
square approach available in AIR 2.0 (Woods et al.,
1992). The minimization is done according to a Powell-
like unidimensional algorithm. A 3D Gaussian smooth-
ing is applied to the data to get more robust minimi-
zation (FWHM 5 4 mm). A threshold was used to
discard voxels with low signal (mainly located outside
the head).

(3) RIU-AIR: the ratio image uniformity similarity
function of AIR 2.0 (Woods et al., 1992). This function is
simply the standard deviation of a ratio image com-
puted on a voxel-by-voxel basis. Minimization of this
cost function increases the uniformity of the ratio im-
age, which is independent of global scaling of the orig-
inal images, and improves registration. Preprocessing
and minimization are performed as for the previous
LS-AIR measure. The measures used in AIR 3.0 are
the same but the minimization implementation has
been refined.

(4) MI: mutual information (Wells et al., 1996; Maes
et al., 1997; Viola et al., 1997; Studholme et al., 1997;
Meyer et al., 1997). Mutual information is a measure
originating from information theory, which is today
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713SPURIOUS BRAIN ACTIVATIONS
accepted by many as one of the most accurate and
robust registration measures. The underlying concept
is entropy. The entropy of an image can be thought of
as a measure of dispersion in the distribution of the
image gray values. Given two images A and B, the
definition of the mutual information MI(A,B) of these
images is MI(A,B) 5 E(A) 1 E(B) 2 E(A,B), with E(A)
and E(B) the entropies of the images A and B, respec-
tively, and E(A,B) their joint entropy. The joint entropy
E(A,B) measures the dispersion of the joint probability
distribution p(a,b): the probability of the occurrence of
gray value a in image A and gray value b in image B (at
the same position), for all a and b in the overlapping
part of A and B. The joint probability distribution
should have fewer and sharper peaks when the images
are matched than for any case of misalignment. There-
fore maximization of mutual information should corre-
spond to the best registration. An implementation of
MI can be found in SPM99. For the experiments de-
scribed in this paper, however, our own implementa-
tion was used. Minimization was performed according
to a Powell-like unidimensional scheme. Image resam-
pling was achieved using cubic spline interpolation.
The joint histogram computation includes a rebinning
of each image gray level set to 64 values, of which each
voxel gray level contributes to the two closest values
proportionally to the two underlying intervals.

Two additional methods are used in our first exper-
iment:

(5) LS-CUSTOM: a third implementation of the dif-
ference of square measure, which optimization is per-
formed according to the same scheme as for our MI-
based method (cubic spline interpolation, Powell
algorithm) after an 8-mm Gaussian smoothing equiv-
alent to the SPM96 one.

(6) RIU-CUSTOM: a second implementation of the
ratio image uniformity measure, which optimization is
performed according to the same scheme as for our
MI-based method after a 4-mm Gaussian smoothing
equivalent to the AIR 2.0 one.

These custom implementations of SPM and AIR sim-
ilarity measures are used to discard some potential
confound related to our MI custom implementation.
For instance, these implementations allows us to study
potential artifacts related to the fact that simulated
time series stem from a cubic spline interpolation,
while SPM and AIR use other interpolation schemes
(truncated sinc and linear interpolation), which may
result in different behaviors of the three LS-based
methods. LS-CUSTOM and RIU-CUSTOM methods
will be used only during the first experiment.

Simulations

Evaluation of the putative biasing effect due to acti-
vations was first achieved using artificial time series.
Each volume in the time series was created by applying
an artificial rigid-body motion Tsim to a reference image
using a cubic spline-based interpolation method avail-
able on the World Wide Web: http://bigwww.epfl.ch/
algorithms.html (Unser et al., 1993a,b). This method
mbeds the volume in a surrounding space filled with
ull value. The reference image (64 3 64 3 30, 3.75 3

3.75 3 4 mm) was one of the EPI BOLD images of the
study mentioned above denoised with a standard 3 3
3 3 3 median filter. Gaussian noise was added to the
reference image and to all frames of the time series in
order to simulate the effects of thermal noise in fMRI
scans (standard deviation 2.5% of mean cerebral voxel
value). Various artificial activations were then added
either to the reference image or to the rest of the time
series according to the simulation requirement. Three
different activation patterns were manually drawn in
the occipital lobe in order to mimic some visual activa-
tions observed during the underlying neuroscience
study. These patterns were first filled with a random
noise and then spatially filtered with a Gaussian (stan-
dard deviation 2 mm). The resulting image was then
masked according to the initial pattern. Some features
of the final patterns are summarized in Scheme 1. A
few slices presented in Scheme 1 give an idea on the A1
activation spatial profile. A range of activation ampli-
tudes was studied using multiplicative factors.

Each frame of the artificial time series is aligned to
the reference image using one of the registration meth-
ods, which yields an estimated rigid-body transforma-
tion Test. Hence the alignment error is given by the
residual rigid-body transformation Tres 5 Tsim 3 Test

21,
where each transformation is represented by a stan-
dard homogeneous matrix. The origin for rotations is
located in the center of the volume. The translation (Et)
and rotation (Er) alignment errors are given by Et 5
sqrt(T(1,4)2 1 T(2,4)2 1 T(3,4)2) (in mm) and Er 5
cos21[(T(1,1) 1 T(2,2) 1 T(3,3) 2 1)/2] (in degrees).
When required, the six motion parameters of a trans-
formation T are given by: tx 5 T(1,4), ty 5 T(2,4), tz 5
T(3,4), ry 5 sin21(T(1,3)), rx 5 sin21 (T(2,3)/cos(ry)), rz 5
sin21 (T(1,2)/cos(ry)).

EXPERIMENTS

Simulated Activations without Motion

The first experiment investigates whether some re-
alignment method may lead to artifactual task-related
motion estimates in the absence of any initial misalign-
ment in the time series. A second issue is whether
motion estimates biased by actual activations may in-
duce additional spurious activations. The different
steps of this experiment can be summarized as follows:

● Generate an artificial time series by duplicating
the reference image 40 times.

● Include in each frame the activation pattern A1
(see Scheme 1) multiplied by an intensity which varies
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throughout the time series according to the time course
given in Fig. 1 (two square stimuli convolved with a
simple hemodynamic response; the maximal mean ac-
tivation is 2.52%).

● Run the six registration methods.
● Evaluate the six transformation parameters of Test

for each package (see Fig. 1).
● Compute cross-correlation between each parame-

ter and the A1 time course (see Fig. 1).
● Infer activated areas from the realigned time se-

ries issued from the four first registration methods
using SPM99 (see Fig. 2).

Several realignment parameters related to the least-
square-based methods (LS-SPM, LS-AIR, and LS-Cus-
tom) demonstrate a high correlation with the time
course of the simulated activation (see Fig. 1A): for
LS-SPM, the highest correlation is obtained for the
yaw parameter (0.99); for LS-AIR and LS-Custom the
maximum correlations are obtained for the ty parame-
ter (0.97 and 0.96, respectively). The highest amplitude
of the task-related parameter time course is 0.05 mm
(ty) and 0.15° (yaw) for LS-SPM, 0.05 mm (ty) and 0.04°
(pitch) for LS-AIR, and 0.04 (ty) and 0.04° (pitch) for
LS-Custom. Lower but significant correlations are ob-

FIG. 2. One axial and one sagittal slice of the activation maps
Spurious activated voxels can be observed when using LS-based me
served for some parameters related to MI and RIU-
Custom (0.67 and 0.70, respectively, for tz), but ampli-
tude of the task-related time course is smaller: 0.01
mm (tz) and 0.02° (pitch) for MI, 0.02 mm (tz) and 0.03°
(pitch) for RIU-Custom. Finally, no significant correla-
tion is observed for RIU-AIR (0.10 for the highest one),
but the realignment curves include more noise than for
the other methods (see Fig. 1B).

The initial time series was realigned from each of the
four first motion estimations using a cubic-spline in-
terpolation. The generalized linear model was then
used to fit each voxel with the artificial profile of Fig. 1
using SPM99 (http://www.fil.ion.ucl.ac.uk/spm) after
the following standard preprocessing: spatial Gaussian
smoothing (full-width at half-maximum 5 mm) and
low-pass temporal filtering by a Gaussian function
with a two-frame width. The voxels were reported as
activated if the P value exceeded a threshold of 0.001
uncorrected for multiple comparisons. In order to
quantify the false positive rate, we have computed the
number of activated voxels located outside a dilated
version of the activated area inferred without motion
correction (3148 activated voxels). The dilation of a size
1 voxel allows us to get rid of a potential confound

ained from SPM99 after using the different registration methods.
ds.
obt
tho
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related to threshold effects around the simulated acti-
vation. Two hundred twenty-seven spurious voxels
have been observed for LS-SPM, 16 spurious voxels for
LS-AIR, and no spurious voxels for MI and RIU-AIR.

An illustration of the consequence of the activation-
correlated motion estimates is proposed for a slice of
the brain in Fig. 2. Spurious activated voxels can be
observed along brain edges after LS-SPM and LS-AIR
motion corrections. While spurious activated voxels
were not individually significant after correction for
multiple comparisons, the fact that they were gathered
along brain edges led to significant clusters for LS-
SPM, for which 6 spurious activated clusters with an
extent exceeding a threshold of P 5 0.05 corrected for
multiple comparison were found. The largest signifi-
cant cluster was made up of 22 voxels. In return no
significant cluster was observed for LS-AIR.

In order to illustrate another potential artifact in-
duced by the presence of activations, we performed a
second study from the initial time series. Each frame
was divided by its mean value before fitting the artifi-
cial profile. This approach is sometimes used to discard
global scaling effects related to MR acquisitions
(Andersson et al., 1997). Here, because of the bias
induced on frame mean values by the presence of acti-
vations, a lot of voxels turned out to be anticorrelated
with the artificial profile (P , 0.001 uncorrected) (see
Fig. 2—global scaling artifact).

FIG. 3. Influence of activation on registration accuracy for a wide
situation of no activation (N/A, lighter color) is compared with acc
reference volume with mean signal increase of 2.52% (A, darker col
(bottom) experiments and produce means and standard deviations o
Simulated Activations with Motion

The second experiment investigates influence of ac-
tivations on registration method accuracy. A method
robust to the presence of activations in the time series
should keep the same level of accuracy whatever the
activation features. The important point here is not the
absolute accuracy of the method, which could depend
on the tuning of some intrinsic parameters, but the
potential accuracy weakening induced by signal
change in activated areas relative to the reference im-
age. This experiment relies on a huge number of sim-
ulated volumes, which allows us to study the influence
of several parameters on a statistical basis. In order to
get rid of potential bias related to field-of-view varia-
tions after simulated motion, all volumes were stripped
from their border voxels before realignment in order to
reach a 62 3 62 3 28 geometry (a subvolume was
used). To eliminate simulated motion specificities rel-
ative to the reference volume axes as a potential con-
found, the simulated translations were applied system-
atically in the 20 directions of a regular dodecahedron,
and the simulated rotations were applied around the
20 different axes defined by the same dodecahedron.
Hence, for a given translation or rotation amplitude,
accuracy was assessed from means and standard devi-
ations of translation (Et) and rotation (Er) errors rela-
tive to 20 different realignments.

nge of simulated misregistrations. For each method, accuracy in the
cy when 12.4% of the brain (occipital area, A1) is activated in the
Charts refer to simulated translation (top) and simulated rotation

t (left) and Er (right).
ra
ura
or).
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716 FREIRE AND MANGIN
To study influence of motion amplitude, 11 time se-
ries of 20 volumes were generated according to the
strategy mentioned above for six translation ampli-
tudes (0.1, 0.2, 0.5, 1.0, 2.0, and 5.0 mm) and five
rotation amplitudes (0.1, 0.2, 0.5, 1.0, and 2.0°). Each
time series was realigned with eight different reference
images: the activation-free version used initially to
compute the series and seven modified versions includ-
ing activated areas (A1 with 0.63, 1.26, 2.52, 5.04, and
10.08% mean signal increase and A2 and A3 with
2.52% mean signal increase). Realignment was per-
formed with the four first methods.

Motion Amplitude

The influence of motion amplitude on the putative
activation related bias is studied first. For each method
and each motion amplitude, accuracy without activa-
tion is compared with accuracy when 12.4% of the
brain (occipital area, A1) is activated in the reference
volume with mean signal increase of 2.52% (see Fig. 3).
In all cases, activations produce significant decline of
LS-SPM accuracy, whereas this effect is restricted to
the translation error (Et) and the smallest translations
or LS-AIR. A less significant but similar effect is ob-
erved for RIU-AIR. In return MI accuracy does not
epend on activation. The large errors related to RIU-
IR in some situations result from some optimization
roblems. The values obtained are meaningless and

FIG. 4. Influence of activation intensity on registration accuracy
of mean and standard deviation values of Et (left) and Er (right) for
s activated in the reference volume with mean signal increase ran
ituation (N/A) for comparison. Charts refer to simulated misregistr
their representation in the corresponding charts would
reduce the y-axis scale.

Activation Level and Size

The influence of activation level was studied for 0.2
mm translations and 0.2° rotations (Fig. 4). A1 pattern
was added to reference image with 0.63, 1.26, 2.52,
5.04, and 10.08% mean signal increase and the results
were compared with the situation of no activation.
LS-SPM accuracy declines linearly relative to activa-
tion mean signal increase whatever the considered er-
ror (Et and Er). A similar but smaller effect is observed
for LS-AIR, especially for Et. The accuracy of the two
other methods does not depend on the signal increase
amplitude in the activated area.

The influence of activation size was also studied for
translations of 0.2 mm and rotations of 0.2° (Fig. 5). A1,
A2, and A3 patterns were added separately to refer-
ence image (with 2.52% mean signal increase in acti-
vated regions) and results displayed with the nonacti-
vated situation for comparison. LS-SPM accuracy
declines significantly when the activated area is en-
larged, while this effect is smaller for AIR methods and
nonexistent for MI. When an LS-based method is used,
activation level has a more dramatic role on the accu-
racy decline than activation size. When activated re-
gion size is doubled, LS-SPM errors in rotation (the
most modified ones) are typically increased by a factor

ccuracy of the different registration methods is evaluated by means
easing activation intensities. 12.4% of the brain (occipital area, A1)

g from 0.63 to 10.08% and results are displayed with no-activation
ons of 0.2 mm (top) and 0.2° (bottom).
. A
incr
gin
ati



717SPURIOUS BRAIN ACTIVATIONS
of 25 to 50%. When activation level is doubled, how-
ever, LS-SPM errors in rotation may be doubled.

Experiments with Actual Time Series

Finally, the first four registration methods were run
on an actual time series made up of 180 frames. The
repeated stimulus period corresponds to 18 frames (2 s
acquisition per frame). Each period alternates two
9-frame-long presentations of two cognitively different
visual stimuli. The six rigid-body registration param-
eters are displayed in Fig. 6 for the first four registra-
tion packages. The general trends of the six parame-
ters’ estimations are consistent across methods apart
from the yaw parameter. It should be noted that ac-
cording to the estimation results, the actual motion
amplitude was rather small (less than 0.15° and 0.15
mm for all frames). Some of the charts clearly display
stimulus-correlated periodic variations. The highest
correlations with a simple model of the hemodynamic
answer in activated area are 0.79 for LS-SPM, 0.64 for
LS-AIR, 0.55 for RIU-AIR, and 0.46 for MI. The more
impressive periodic effect is observed on the pitch chart
for LS-SPM and LS-AIR, while this periodic trend is
less clear for RIU-AIR and MI (see Fig. 7 for more
detailed examination).

Like in the first experiment, the actual time series
was realigned from each of the four motion estimations
using a cubic spline interpolation. SPM99 was used
then to perform detection of activations. The following
standard preprocessing was applied: spatial Gaussian

FIG. 5. Influence of activation size on registration accuracy. For e
12.4, 6.2, and 3.2% of the brain (occipital area, A1, A2, and A3) is act
refers to nonactivated situation. Charts produce means and standar
trations of 0.2 mm (top) and 0.2° (bottom).
smoothing (full-width at half-maximum 5 mm), high-
pass temporal filtering (period 120 s), and low-pass
temporal filtering by a Gaussian function with a 4-s
width. The generalized linear model was used then to
fit each voxel with a linear combination of two func-
tions: the first was derived by convolving a standard
hemodynamic response function with the periodic
stimulus, the second was the time derivative of the first
in order to model possible variations in activation on-
set. The voxels were reported as activated if the P
value exceeded a threshold of 0.05 corrected for multi-
ple comparisons.

An illustration of the consequences of the stimulus-
correlated motion estimates is shown for a few slices of
the brain in Fig. 8. Considering the activation map
obtained from the raw time series as a reference, a
number of additional activated voxels are observed
along some high-contrast brain edges after LS-SPM
motion correction and to a smaller extent after LS-AIR
correction. RIU-AIR and MI corrections have a very
small influence on the activation map. The effect re-
lated to LS-SPM correction has been observed for nu-
merous cognitive experiments in our institution.

DISCUSSION

All retrospective image registration algorithms rely
on a similarity measure, which has to be maximized in
order to achieve the result. A huge number of different
measures have been proposed in the literature (Maintz

method, accuracy with decreasing activation size is displayed when
ted in the reference volume with mean signal increase of 2.52%. N/A
eviations of Et (left) and Er (right) and refer to simulated misregis-
ach
iva
d d
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et al., 1998; Hill et al., 2001). One important feature
helping to distinguish two classes of similarity mea-
sures is the robustness to potential outliers, namely
voxels that do not verify some of the assumptions un-
derlying the measure design. Robust measures have
been classically proposed to register multimodal im-
ages, while simpler difference of square-based mea-
sures are usually employed for time-series motion cor-

FIG. 6. Motion correction parameters for the four registration m
is made up of 10 periods of 18 frames, each period consisting of tw
Stimulus-correlated periodic trends can be observed on some of the
a simple model of the hemodynamic answer to the task is given for

FIG. 7. Isolated charts of pitch curves displayed in Fig. 6. Left: LS
to infer the periodicity of the stimulation paradigm, which correspo
between the activation and the registration parameters when an L
correlated behavior.
rection. The experiments performed in this paper tend
to prove that this choice may be questioned because of
the presence of activated areas in standard fMRI time
series. Indeed, least-square-based approaches are
known to be highly sensitive to such outliers (Meer et
al., 1991).

The first simulation has shown that LS-SPM, LS-
AIR, and LS-Custom motion parameter estimations

ods for an actual time series of 180 frames. The underlying stimulus
ternating 9-frame-long blocks with a different visual presentation.
rts, especially for least-square-based methods. The correlation with
h parameter.

thods. Right: RIU-AIR and MI. From the LS-SPM curve it is possible
to 18 frames/cycle. This gives an idea about the strong correlation

ased method is used. MI and RIU-AIR curves present a much less
eth
o al
cha
eac
me
nds
S-b
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are biased by signal changes related to activated areas.
The fact that the three different implementations of
the difference of square measure are biased tends to
prove that this bias is related to the nature of this
measure. Difference of squares, indeed, is an optimal
estimator when residuals are endowed with a Gauss-
ian distribution, which is not verified for the motion
correction application because of the presence of acti-
vated areas. Furthermore, this first experiment has
proved that this bias may induce spurious activations
along high-contrast brain edges during the following
data analysis. Of course, some of the features of this
simulation may be discussed as unrealistic (activation
level and size, noise model, no spatial distortions, etc.).
For instance, usual activation amplitudes observed in
the visual system are in the range tested in this paper,
while complex vascular effects can create even larger
amplitudes up to 20% (Turner et al., 1993). Our simu-
lation, however, highlights a weakness of the differ-
ence of square-based measures that may be overcome
by more robust measures. The fact that LS-SPM mo-
tion correction led to the apparition of spurious acti-
vated clusters with a large extent, indeed, is especially
disturbing. While LS-AIR seems less sensitive, this
simulation has shown that it is not bias proof.

While almost insensitive to activations in this simu-
lation, the two other methods have presented two qual-
itatively different behaviors. The RIU-AIR method
seems to lead to local maxima difficulties (perhaps
related to a bad tuning of the method implementation

FIG. 8. A few slices of the activation maps obtained fr
during our experiment). This results in a low accuracy,
which hides any potential activation-related bias. The
results obtained in experiment 1 from another imple-
mentation of RIU have, indeed, shown that this simi-
larity measure is not bias proof. MI has presented the
best behavior with a very small bias amplitude without
important influence on the activation detection pro-
cess. Of course, this simulation does not prove that MI
would have a correct behavior in any situation.

The behavior of the RIU-AIR method during the first
experiment highlights an important point to be under-
stood. The problem induced by activation-related bias
is not related to actual accuracy. For instance, corrupt-
ing LS-SPM motion parameter estimations with a rea-
sonable random noise may be sufficient to get rid of
spurious activations while preserving actual ones (los-
ing some statistical sensitivity). This observation is
illustrated by the results of the second experiment in
which the activation influence on registration accuracy
is significant only for small motions. Indeed, larger
motions lead to a lower registration accuracy, which
masks the activation-related bias. This could explain
the surprising heuristics of our institution’s neurosci-
entists, which discard realignment only for small am-
plitude estimated motions.

The second set of simulations shows that RIU-AIR
and MI accuracy do not depend on the presence of
activations. It should be noted that the very high ac-
curacy of MI may result in part from the implementa-
tion of its optimization, which relies on the cubic spline

SPM99 after realignment using the different methods.
om
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interpolator used to father the simulated time series.
Hence, absolute accuracies should not be compared
across methods. The RIU-AIR method, however, seems
more prone to problematic optimization, which ex-
plains its poor mean accuracy. Surprisingly, this sen-
sitivity to local minima may be a good protection
against the bias, because estimated motion parameter
variance is greater than any potential underlying bias.

While our point of view during this paper was the
study of registration packages used with the usual
default parameters, we have finally performed an ad-
ditional experiment on the influence of the initial spa-
tial smoothing applied by SPM and AIR. This smooth-
ing is supposed to reduce the number of local maxima
of the similarity measure and allows SPM to use a
reliable Taylor expansion. Our initial guess was a high
influence of this smoothing on the bias amplitude, be-
cause the smoothing was bound to increase the outlier
nature of activated areas. Without any smoothing, in-

FIG. 9. Influence of spatial smoothing on activation-related bias f
RIU-AIR.
deed, activation amplitude is at the noise level. Hence,
we have performed experiment 1 with SPM and AIR
methods after different levels of smoothing. Figure 9
shows the resulting charts for a few motion parame-
ters. These results confirm our guess. For instance,
RIU-AIR optimization problems are overcome by a
large smoothing, but motion estimates turn out to be
biased. LS-SPM-related charts show that without
smoothing, the bias is very low but motion estimates
are less accurate than after a smoothing, which is
related to Taylor expansion.

The simulations dedicated to the study of activation
size and amplitude influence give a good explanation
for the fact that the problem seems more frequent on
our 3-T magnet than at other institutions. As it could
be predicted for least squares, the bias amplitude is
increased according to the signal change amplitude
(Meer et al., 1991). Furthermore, the fact that the bias
mplitude depends on the activation size explains why

PM96 and AIR 2.0 methods. Top, LS-SPM; middle, LS-AIR; bottom,
or S
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721SPURIOUS BRAIN ACTIVATIONS
the problem is dependent on the cognitive experiment.
One could predict that the bias is also largely depen-
dent on the activation location.

Our experiment with actual time series seems to be
consistent with our interpretation of the simulation
studies. The arguments that lead us to discard actual
task-correlated motion during data acquisition are the
following: the periodic motion amplitude estimated by
LS-SPM and LS-AIR on the pitch chart is different.
Moreover, the two other methods do not detect this
putative motion. Finally, this periodic motion ampli-
tude is approximately the same for each stimulus pe-
riod, which would be rather surprising for an actual
motion. The fact that all methods do not agree on the
estimated yaw parameter is of course very difficult to
understand. One possible explanation could stem from
the fact that the rigid-body transformation is not suf-
ficient to correct for all the consequences of the motion
because of distortions. The discord on the periodic mo-
tion, however, seems of a different nature and leads to
alarming effects on activation maps.

If our interpretation is correct, LS-SPM correction,
and to a smaller extent LS-AIR, creates spurious clus-
ters of activated voxels along high-contrast brain
edges. In our opinion, the localization of these spurious
clusters depends only on the brain edge orientation
relative to the actual activation localization. This could
mean that spurious activations may appear at the
same place across individuals performing in the same
cognitive experiment and hence survive to group anal-
ysis. While we hope that this alarming prediction is too
pessimistic, it calls for trying to minimize the risk.

Our work has shown that more sophisticated simi-
larity measures like MI could clarify the situation
thanks to their robustness to outliers. While MI was
used for historical reasons during our work, this may
not be the best choice for motion correction, first be-
cause of computational time considerations, second be-
cause recent results have shown that MI is prone to
local maxima problems (Roche et al., 1998; Studholme
et al., 1999; Pluim et al., 2000a). While RIU-AIR may
appear as an alternative at first glance, its nonconvex-
ity problems seem worse than for MI and could be
bothersome in case of large motions. Moreover, RIU
similarity measure seems potentially biased in some
situations according to our experiment with RIU-Cus-
tom and the level of spatial smoothing. In fact, the field
of robust similarity measure is currently very active
and should provide other adequate solutions (Nikou et
al., 1998; Roche et al., 1998, 2000; Pluim et al., 2000b;
Hill et al., 2001). Further work has to be done, how-
ever, to study the behavior of the different measures
relative to activations. Activations, indeed, induce only
faint signal modifications to be compared, for instance,
to pathological or postsurgery modifications. Hence,
the choice of the best cost functions requires further
experiments with various activation paradigms and
different magnets. We hope that our observation will
trigger such experiments.
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