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Abstract: Standard procedures to achieve quality assessment (QA) of functional magnetic resonance
imaging (fMRI) data are of great importance. A standardized and fully automated procedure for QA is
presented that allows for classification of data quality and the detection of artifacts by inspecting temporal
variations. The application of the procedure on phantom measurements was used to check scanner and
stimulation hardware performance. In vivo imaging data were checked efficiently for artifacts within the
standard fMRI post-processing procedure by realignment. Standardized and routinely carried out QA is
essential for extensive data amounts as collected in fMRI, especially in multicenter studies. Furthermore,
for the comparison of two different groups, it is important to ensure that data quality is approximately
equal to avoid possible misinterpretations. This is shown by example, and criteria to quantify differences
of data quality between two groups are defined. Hum Brain Mapp 25:237–246, 2005.
© 2005 Wiley-Liss, Inc.
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INTRODUCTION

Many factors contribute to the quality of functional mag-
netic resonance imaging (fMRI) data and influence the sig-
nificance and reliability of conclusions drawn from these
data. Generally, all factors influencing the quality of fMRI
results can be classified into four main categories: (1) exper-
imental design; (2) subject cooperation; (3) MRI hardware;
and (4) the analysis methods. Published work has focused
largely on experimental design [Della-Maggiore et al., 2002;
Friston, 2000; Wager and Nichols, 2003], result reliability

and variability [Casey et al., 1998; Le and Hu, 1997; Maitra et
al., 2002; McGonigle et al., 2000; Specht et al., 2003], and
there is a huge amount of literature on the topic of fMRI data
analysis methods. However, it is also important to establish
tools and criteria for the quantitative assessment of experi-
mental fMRI data quality. An extensive approach given by
Luo and Nichols [2003] requires a high level of user inter-
action and it is intended to be applied after processing of
statistical results. Methods to achieve this goal in an auto-
mated manner are useful in MRI applications [Bourel et al.,
1999]. For quality assessment of fMRI data, we adopt a
generalized approach and focus on subject cooperation and
MR hardware issues so that our proposed methods have
wide applicability. Stability of fMRI equipment has been
considered less frequently [Simmons et al., 1999; Thulborn,
2002], but it nevertheless remains the main prerequisite for
successful fMRI. We present a method, using phantom mea-
surements, for the routine evaluation of echo-planar imag-
ing (EPI) stability in terms of the percentage signal change
(PSC) and statistical noise properties. Controlling subject
cooperation is only treated in terms of data quality, which is
quite often reduced by motion-induced artifacts; a generally
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applicable approach to check subject cooperation is a much
more complex task and is very much design related. Para-
digms where subjects respond to stimulus events are well
suited for evaluation of subject cooperation through the use
of behavioral performance data. Subject cooperation in par-
adigms employing visual stimuli can be examined using
MR-compatible eye-tracking devices. Moreover, the influ-
ence of the mental and physiological state of the subject on
the fMRI signal can be checked indirectly in real-time by
tracking additional physiological data [Voyvodic, 1999]. Im-
age-based physiological artifact detection and correction
during post-processing can also be carried out [Chuang
and Chen, 2001]. However, the decision to follow one or
more of these strategies depends strongly on paradigm
design and the conclusions expected to be drawn from the
experiment. The quality assessment (QA) procedures dis-
cussed herein are rooted in basic considerations of, and
applicability to, every fMRI design. For each experiment it
is necessary to ensure proper scanner performance and
EPI image data free of motion-induced artifacts; these are
minimal requirements for further successful post-
processing. Although many different implementations to
test compliance with the above requirements can be de-
vised, we present procedures that are easy to implement
and require minimal additional work, making them espe-
cially suitable for routine application. All quality assess-
ment parameters defined here are given in terms of the
PSC, which we believe to be a most instructive measure
because in some cases it even allows direct interpretation
of whether a temporal signal change is blood oxygenation
level-dependent (BOLD) induced. A temporally localized
PSC that exceeds 5%, for example, can hardly be ex-
plained by the BOLD effect [Thulborn, 2002]. However,
we do not give any significance levels for these parame-
ters because defining such boundaries in a meaningful
way to test a hypothesis H0, such as “H0 ! data quality is
not sufficient,” depends strongly on the conceptual frame-
work of a specific experimental design; therefore it needs
to be adapted individually. In the framework of a German
multicenter study on schizophrenia patients [Schneider et
al., submitted] from which this work was developed, we
focused our attention on the comparison of fMRI data
quality across groups of subjects, and the influence on
group comparisons. We present a general concept to
avoid misleading interpretations that can arise because of
different data quality in the groups. In the Concepts sec-
tion of this paper, quality assessment measures are de-
rived from theory and clarified further through the use of
examples. The Methods section gives a short description
of the experimental conditions. We present two represen-
tative examples in the Results section, one showing the
long-term assessment of fMRI hardware stability using
phantom data and the other showing the strong influence
of in vivo data quality on the statistical maps. Data quality
can cause serious misinterpretations and a method to
prevent this is also described.

Concepts

We present a fully automatic routine for the quality as-
sessment of fMRI data that is retrospectively applicable to
every fMRI experiment. It requires only the realigned mag-
nitude images, ensuring that product EPI sequences from
different vendors can be used. The accuracy of the motion
correction algorithm influences the results of the presented
approach; however, the principles remain the same. We thus
decided to apply the commonly used realignment procedure
as implemented in Statistical Parametric Mapping (SPM2).1

The method yields temporal and slice-dependent control of
artifact-induced percent signal changes. More importantly,
the data quality of one fMRI experimental run is described
by only two parameters, one giving the noise level and the
other describing the statistical properties of the noise. To
achieve these goals, the routine sequentially carried out the
steps described below.

Noise-level detection and image masking

Under ideal conditions, the real and imaginary part of the
MR signal have a Gaussian distribution with the same mean
and standard deviation, say A and !. The signal, S, of the
magnitude image then has a Rician distribution

P(S;A,!) !
A
!2 e"

A2 # S2

2!2 I0!SA
!2 " (1)

which turns into a Gaussian distribution if A/! 3 $ and
into a Rayleigh distribution if A/!3 0 [Sijbers et al., 1998].
For SPM2 analysis, it is assumed that A %% ! and the noise
distribution can be treated as Gaussian. To restrict QA to the
voxels of interest, a mask

S " T!, (2)

is applied to the registered MR images, where T is a suitable
threshold. For example, T ! 20 ensures that the Rician and
Gaussian distribution are treated equally for the applica-
tions presented here. Finding all voxels for which equation
(2) holds requires an estimate of the noise level, which is
often carried out by inspecting a region-of-interest (ROI) of
the MR image where no signal is present (background noise
method) [Magnusson and Olsson, 2000]. The average signal
in such a background region, R, is related to the standard
deviation by

1Statistical Parametric Mapping (SPM), Wellcome Department of
Cognitive Neurology, London, UK (online at http://www.fil.ion.
ucl.ac.uk/spm). All fMRI results shown in this work were obtained
with SPM2 and the interpretation of the QA analysis is adapted to
the SPM2 workflow and the assumptions therewith. Although the
principles should remain, the combination with different software
packages remains to be explored in future work.
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Finding a suitable background ROI generally requires
user interaction. For an EPI time series, automated detection
is possible if ! is assumed to be stationary. We searched in
the corners (1/8 of the EPI volume) of the first scan for some
minimal values to ensure that background data were ob-
tained. These voxels were tracked through the whole time
series and ! was computed according to equation (3). The
method yielded the same results as those achieved through
user interaction, i.e., manual definition of a background ROI
in one scan. For in vivo measurements, the mask usually
contained the eyes of the subject, which are generally a
source of strong signal variations in the EPI time series. For
the QA procedure, it is thus useful to apply eye masking
because these variations should not enter the QA calcula-
tion. Automated eye masking at the stage of the realigned
images can be applied if the mask given by the threshold T
yields disconnected regions for the brain and the eyes. For T
! 20, this was the case in 100% of our investigated experi-
mental runs.2 Generally, a routine to find a connected region
within a 3-D dataset is time consuming but the EPI datasets
are usually small. For our datasets (64 ( 64 ( 32), a rather
simple three-step routine worked very well. Firstly, edge
detection was applied to the mask RT obtained from the
threshold condition [Petrou and Bosdogianni, 1999]. Sec-
ondly, neighbor detection was carried out to find a region,
RH, yielding all voxels of the hull excluding the eyes. Finally
the mask region, RM, was found by a form of spatial inte-
gration of the hull intersected with the threshold mask (see
Appendix). The method is computationally fast, less than
30 s on a standard PC (2.4 GHz Pentium IV), and it success-
fully removed the eyes in masks of inspected in vivo fMRI
datasets. An example is depicted in Figure 1. Removing the

eyes is of course not only beneficial for the QA procedure
but also for standard fMRI analysis [Tregellas et al., 2002].

Signal-distribution properties

In this step we calculate the noise distribution properties
and the level of random noise of an experimental fMRI run.
First, we expect the noise to be uncorrelated in space and
time, which is certainly not true, as reported many times in
the literature [e.g., Luo and Nichols, 2003]. Our analysis
shows the extent to which this assumption is fulfilled and
thus it is well suited before any fMRI analysis based on these
assumptions. Prewhitening of the data, as applied within the
statistical analysis procedure, can also be applied before QA.
This is especially useful in short repetition time (TR) exper-
iments. Let S denote the mean image of the EPI time series,
i.e., the time-averaged image. The time series {S(t) " S} is
then expected to have zero mean and Gaussian-distributed
noise in every voxel of the mask region. Treating each value
as an independent realization of the same probability distri-
bution gives Nt ! NM values, where Nt and NM are the
number of time points and the number of voxels in the
mask, respectively. This large number allows an accurate
estimation of the distribution-type. Well-known methods to
test for the type of distribution rely on some form of distance
measure, estimating the noise distribution of the data and
calculating the difference to some given distribution. A
prominent approach is the Kolmogorov–Smirnov distance,
which is given by the maximum difference between the
cumulative distribution functions (CDF)

DKS ! max $P̃(z) " PSN(z)$ (4)

where z is the z-score, P̃ denotes an estimate of the CDF of
the data, and PSN is the standard normal CDF. This method
is insensitive to differences in the tails of the distributions;
an improvement is given by the Anderson–Darling distance,
which weights the difference by (PSN[1 " PSN])"1/2 [Press et
al., 1992]. Both methods are implemented in our automated
QA routine. In our opinion, the method of choice is a pre-

2This feature is echo-time (TE) dependent. If scanning is carried out
at TE ) 60 ms, then a higher threshold should be applied to obtain
the disconnected regions.

Figure 1.
Fast routine for automated eye removal. From
the threshold mask RT (A), its hull (B) is found by
edge detection. The voxels on the hull (C), ex-
cluding the eyes, are found by neighbor search.
The final mask RM (D) is determined by intersect-
ing the original mask RT with the spatial integra-
tion RH of the hull. (See appendix for details.)
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sentation of the quantiles of the data in comparison to the
quantiles of the Gaussian distribution. Here, the inverse
function of the CDF, the so-called “quantile function” of the
data, is plotted against the standard normal quantile func-
tion. This so-called q–q plot [Gnanadesikan, 1997] shows a
linear relationship if the underlying distributions are the
same. Mathematically, the q–q plot is given by the mapping

u 3 (QSN(u), Q̃(u)), u ! [0,1], (5)

where Q̃ and QSN are P̃"1 and PSN
"1, respectively (Q̃ is

nothing but the sorted data). Because QSN maps to z-scores,
deviation in the tails of the distributions can be interpreted
easily in numbers of standard deviations. The correlation
coefficient

rqq !
&QSN,Q̃'

%QSN% %Q̃% (6)

serves as a single quantity describing the difference of the
distribution of the data to the normal distribution. Here, &.,.'
and %.% are the Euclidian scalar product and norm, respec-
tively. Furthermore, the mean and standard deviation of the
distribution can be estimated from the offset and the slope of
the q–q plot, respectively. Zero mean is forced because the
mean corrected data enter the calculation. The standard
deviation ! is an estimate of the level of random noise. We

define the percentage signal change (PSC) via the relative
error, i.e.,

p! ! 100
*

&S̃'RM

. (7)

The denominator is the mean signal intensity within the
mask. If the variance differs strongly from the back-
ground noise estimate of variance, then this is generally
accompanied by a low correlation coefficient rqq. This
means the noise is not purely random but has coherent
components arising most probably from subject-induced
signal changes such as motion artifacts, physiological
noise, and BOLD signal changes as well. Figure 2 shows
an example of the q– q plot.

Figure 2.
Presentation of the distribution-type of fMRI data by means of the
q–q plot. Data are consistent with the assumption of Gaussian-
distributed data; rqq and ! are the correlation coefficient and the
slope of the data, respectively. They define the similarity to the
Gaussian distribution and its standard deviation.

Figure 3.
Example of the percent signal change (PSC) of an fMRI experimen-
tal run corrupted by spikes. SPM2 translational realignment pa-
rameters (A) in comparison to the PSC (B). Spikes, which are
visible in (B), do not necessarily occur in (A) and vice versa. Only
the PSC gives valuable information about the corrupted scans (C)
PSC per slice. The marked slice is shown in (D), whereas (E)
shows the same slice at the foregoing time-point and (F) shows
the difference.
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Temporal and spatial variations

To obtain the temporal variation of the QA parameters,
the q–q analysis was confined to the data coming from a
single scan, i.e., we carried out the calculation on NM data
points Nt times. Equations (6) and (7) thus yield the time-
varying correlation coefficient rqq(t) and the percent signal
change p!(t), respectively. The latter quantity is well suited
to detect single corrupted scans. A further constraint is to
analyze only the voxels within a single slice, allowing the
detection of corrupted slices within a corrupted scan. An
example of the PSC for an experimental run corrupted by
spike artifacts is depicted in Figure 3. Such a representation
allows the detection of the corrupted scans and slices.

MATERIALS AND METHODS

A homogenous MR phantom with relaxation times ap-
proximating brain tissue was used for routine measure-
ments that replicated an in vivo fMRI experiment. The
measurement was carried out once a week on a 1.5-T
Siemens Sonata scanner. The standard Siemens product
EPI sequence was used with the following parameters: TR
! 5 s; echo time (TE) ! 60 ms; flip angle 90 degrees; 32
slices; slice thickness 3 mm; filed of view (FOV) ! 200 mm
(rectangular); matrix size 64 ( 64; 96 measurements. First,
we discarded three measurements to reach steady state
(prescans). TR denotes the acquisition time of one mea-
surement (volume scan); the acquisition time for one slice
was approximately 100 ms and therefore a dead-time of
approximately 1.8 s was included in TR. Motion correc-
tion was applied to the phantom data because gradient
heating results in biased position encoding in long EPI
acquisitions (Fig. 4). QA analysis was carried out after the
phantom measurements, as described in the previous sec-
tion, to enable consideration of the QA parameters. In
vivo experiments were also processed in the same way
with the additional step of automated eye removal, which
was applied as a first step of QA to ensure that the QA
parameters were not influenced by signal intensity varia-
tions caused by eye movement. As for the phantom measure-
ments, it is of great advantage to have a single quantity de-
scribing the data quality of an in vivo experiment. The
correlation coefficient rqq is well suited, as explained in more
detail below. However, a temporally integrated measure for
the in vivo data quality should not include BOLD-induced
signal variations. Those variations will violate the assumption
of a stationary probability distribution and, consequently, the
BOLD signal will decrease rqq. We therefore ran the QA twice.
First, all time points are included to detect possible corrupted
single scans and slices. In the second run, we incorporated only
those scans into the QA analysis that fall within the baseline
condition of the fMRI experiment. This allows determination of
the QA quantities rqq and p! unaffected by BOLD signal vari-
ations. For the multicenter study, this is depicted in Figure 5.
BOLD variations of interest should thus no longer decrease rqq.
If this strategy is not applicable, e.g., in an event-related design,

Figure 4.
Scanner drift in an EPI time course of a phantom measurement is
illustrated by the realignment parameters (A). The q–q analyses of
the raw data (B) and the realigned data (C) differ significantly in
their tails. Gradient heating in the readout direction causes small
shifts in the spatial encoding. Without correction, the MR signal
distribution has the appearance of being non-Gaussian; this is a
consequence of ignoring the shift.

Figure 5.
QA of in vivo data. The hemodynamic model of the
baseline condition defines the data that are taken
into account. Dots mark the scans used for the q–q
analysis for each subject so that BOLD-induced signal
variations do not influence the QA.
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it might be necessary to mask regions where high BOLD signal
variations are expected to occur.

RESULTS

Long-Term Assessment of
fMRI Hardware Stability

We present data from the above-mentioned multicenter
study that were acquired at seven different institutes all

using 1.5 T Siemens MR scanners. The amount of contrib-
uted data was distributed rather heterogeneously among the
centers, e.g., 35% of the in vivo data and 54% of the phantom
data were acquired at our institute. The long-term QA of
phantom measurements within the multicenter study is de-
picted in Figure 6. It shows the PSC for the seven contrib-
uting centers acquired during the past 3 years. Two centers
(shown by diamonds and asterisks) had significantly long
periods with a higher PSC. To establish whether the high
noise level was purely random or if artifacts were present,
the statistical properties of the noise were investigated. Fig-
ure 7 depicts the results for the three different kinds of
distribution-type similarity measures: the Kolmogorov–
Smirnov distance, DKS; the q–q plot correlation coefficient,
rqq, and the Anderson–Darling distance, DAD. DKS and rqq

are highly correlated, because both measures are sensitive to
changes near the mean of the distribution, whereas DAD is
more sensitive to changes in the tails. Spike artifacts, which
spread out all over the volume of some selected scans and
slices, are detected better with DKS or rqq. Artifacts that occur
only in a very limited number of voxels but with strong
signal change are better detected with DAD. The latter kind
of artifacts was present at the center depicted by diamonds
in the graph because of serious hardware problems (which
have since been solved by the vendor). Spike artifacts were
found at the center depicted by plus signs for a period in late
2001 and again in spring 2003. All these variations in hard-
ware stability are summarized well by the QA analysis. To
ensure data acquisition of a consistently high quality, the
proposed parameters to quantify the magnitude of the noise
and its statistical properties, respectively, must be calculated
directly after each measurement so that problems may be
detected as early as possible and remedial action may be

Figure 6.
Percent signal change (PSC) of all phantom measurements in the
multicenter study. The symbols denote the seven contributing cen-
ters. A high PSC denotes a high noise level. The PSC, however,
cannot distinguish between random noise and coherent noise (arti-
facts). For this, the distribution type has to be considered (Fig. 7).

Figure 7.
Distribution-type estimate for all phantom
measurements in the multicenter study. The
difference from a Gaussian distribution is
shown in (A), (B), and (C) by the Kolmogor-
ov–Smirnov distance DKS, the q–q correlation
coefficient rqq, and the Anderson–Darling dis-
tance DAD, respectively. Generally, a zero KS
or AD distance, as well as a q–q correlation
coefficient of one, denote that the noise in the
underlying data is purely random (normally
distributed) and no MR artifacts are present.
Table (D) shows how these measures corre-
late with each other. Although (A) and (B) are
sensitive to variations in the mean of the dis-
tribution, (C) is more sensitive to changes in
the tails.
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taken as necessary. This consequence might, intuitively, be a
matter of course. The multiplicity of hardware problems
detected by the long-term QA clearly underlines the need
for QA in fMRI.

Quality Assessment of In Vivo Data

The inspection of automatically generated processing re-
sults, most importantly from the PSC time series, gives
valuable information about corrupted scans and slices (Fig.
3). This information might be used for corrections such as
interpolation to remove the corrupted scans/slices. The
overall data quality is described by the single quantity rqq,
which is calculated based on baseline scans of the fMRI
experiment. As rqq is sensitive to changes near the mean of
the estimated probability distribution of the data, it is re-
lated closely to Student’s t-test, the method of choice in fMRI
data analysis (SPM2). The t-test is based on differences of
mean values between different conditions, both of which
follow a Gaussian distribution. Optimal data quality, given
by rqq ! 1, thus reflects the prerequisites of the t-test. The rqq

was calculated for each in vivo data set of the multicenter
study, which involved 71 patients and 71 control subjects.
Here, the question of whether the data quality is different
between the two groups arises, and if so, what the conse-
quences are for inferences from fMRI data analysis. To ad-
dress these questions, Figure 8a shows a rank-ordered plot
of the rqq for control subjects versus that for patients. This
representation is itself a q–q plot, where the underlying
distribution of rqq is not known. If it shows the same distri-
bution for both groups, then the q–q plot is a straight line
that crosses the origin and has slope of unity. This q–q plot
is therefore a distribution-free quantification of the differ-
ences in the statistical properties of the data from both
groups. The same argument holds for the amount of random
noise given by the PSC, as shown in Figure 8b. Together, the
assumption of equal data quality in both groups is well met
in the case of the multicenter study. Defining thresholds for
the parameters that describe acceptable similarity of the
distributions is a difficult question that requires investiga-
tion in future work. We show only by example that a strong
violation of the assumption of equal data quality in both
groups strongly influences the results of the fMRI data anal-
ysis. We take the upper and lower tail of both groups,
defining subgroups with high and low data quality, respec-
tively. For this, the noise level as described by the PSC is a
more natural choice than are the statistical properties given
by rqq. The subgroups were defined by the 16 subjects with
the lowest and highest PSCs, respectively. Due to the tight
matching criteria of the study, the subgroups remained
matched among each other in terms of age, gender, and
educational level. Patient and control groups are denoted
with P and C, and high/low data quality is given by the
superscripts #/", respectively. These groups were used for
standard fMRI random-effects analysis with SPM2. We car-
ried out one-sample t-tests on these groups as well as two-
sample t-tests for the comparisons P#–C", P"–C#, C#–P",
and C"–P#. These results are discussed in terms of data

quality and the level of activation. A detailed description of
this study and interpretation of the results can be found in
Schneider et al. [submitted]. It is sufficient to note here that
the fMRI task was a 0-back/2-back continuous performance
test, where the 0-back task is an attention condition, and the
2-back task is an attention and short-term working memory
condition. Single-subject analysis was carried out for the

Figure 8.
QA of fMRI data in patient studies. The q–q correlation coeffi-
cients rqq of the patient data are plotted vs. rqq of the control data,
yielding another q–q plot (A). Its correlation coefficient r de-
scribes the consistency of the distribution type of rqq for both
groups. The parameters of a linear fit ($ and !2) describe their
deviation in mean and variance; thus, ideally, r ! 1, $ ! 0, and !
! 1 holds for the comparison of fMRI data quality of two groups.
The same procedure is also applied to the PSC of all subjects (B).
Because the PSC reflects the amount of random noise, the trend
shows that subjects with lower PSC show higher activations in
fMRI data analyses. For the data presented here, the influence of
data quality on group comparisons is negligible because the
amount of random noise (PSC) and statistical properties of the
noise (rqq) follow very similar distributions across both groups.
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difference of these two conditions, thus showing basically
the activation related to working memory. One-sample t-test
results of the subgroups are shown in Figure 9. The amount
of activation clearly correlates with the data quality, as ex-
pected. A similar observation holds for the two-sample t-
tests shown in Figure 10. Strong activations are present if the
group to be subtracted has low data quality, and vice versa.
The results of the comparison P–C and C–P thus depend
strongly on the data quality of the groups. If the data quality
of the groups is not approximately equal, the resulting acti-
vations can lead to a serious misinterpretation of the results.
To prevent this, a group comparison of data quality is nec-
essary, as shown here.

DISCUSSION

The possible sources of corrupted data collected in fMRI
are manifold. The data can be corrupted by randomly dis-
tributed noise, coherent noise (artifacts), or both. On the one
hand, this can be caused directly by the MR scanner, espe-
cially when using EPI, which is used widely in fMRI because
it provides high temporal resolution but it is extremely
demanding on the imaging hardware. On the other hand,
fMRI stimulation devices (e.g., visual/audio, response de-
vices) and also monitoring devices (e.g., eye tracking, phys-
iologic monitoring, electroencephalography [EEG]) brought
into the scanner room are all possible sources for both types
of noise. For these reasons, quality assessment of the hard-

Figure 9.
SPM2 one-sample t-test results (random effects) for the working
memory contrast in the multicenter study. Groups of size n ! 16
were analyzed; C, controls subjects; P, patients; #/", lowest/
highest PSC (highest/lowest data quality), respectively. All results
are thresholded at P ) 0.001 (uncorrected). C# and C" results
are similar; however, C# strongest activation corresponds to a
t-value of 14, whereas C" does not contain t-scores above 9.5.
Furthermore, the cluster size is larger in the C# group. The P"

group has extremely low data quality, which is reflected by the low
activation in the statistical maps. It is the only case that does not
show any activation when thresholding at P ) 0.05 with correction
for multiple comparisons.

Figure 10.
SPM2 two-sample t-tests (random effects) comparing the results
of the groups depicted in Figure 9. Groups with low data quality
(C",P") do not show more activations than do groups with high
data quality (C#,P#). The contrasts (C#–P") and (P#–C") show
significant activations at the chosen threshold, P ) 0.001 (uncor-
rected); this activation can also partly be seen when thresholding
at P ) 0.05 with correction for multiple comparisons. The results
clearly show that the activation patterns in group comparisons are
influenced strongly by the data quality of each group. For instance,
the contrasts (C#–P#) and (P#–C#) (not shown here) resemble
the first and the third activation patterns shown above, but with
lower activations. The strength of activations in group compari-
sons thus can only be interpreted if data quality is equal across
both groups.
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ware has to be carried out under exactly the same conditions
as for the in vivo experiments. Testing the quality of EPI, for
example, in the absence of the whole stimulation/monitor-
ing environment potentially disregards important sources of
error. The procedure of phantom data acquisition and auto-
matic processing presented here yields several QA parame-
ters. For our purposes, we found that the overall PSC should
not exceed 1.5%. Testing the data for statistical properties is
carried out by inspecting the q–q correlation coefficient rqq

and data with rqq % 0.9 seem to be very acceptable. These
numbers were found on an empirical basis at our site; all
measurements that violated these thresholds could be as-
signed clearly to problems in the hardware set-up on that
specific day. If a single phantom measurement exceeds these
limits, tests on the fMRI hardware environment have to be
carried out immediately. These thresholds might be differ-
ent in different situations such as various experimental de-
signs or static field strengths. The concepts described here
may be applied directly in such situations. For QA of in vivo
data, the time series of the PSC allows detection of corrupted
scans and slices, which might be amenable to interpolation
in post-processing. Again, the PSC and rqq are good mea-
sures for the consistency of fMRI data in a group study.
Neglecting data sets with high PSC (low rqq) might
strengthen the inference of results; however, it is important
that the parameters do not vary strongly across two different
groups in a group comparison or patient study. This is a
dangerous source of possible misinterpretations of the re-
sults. To ensure that data quality is approximately equal for
both groups, we carried out a second q–q analysis on the
PSC and rqq of all subjects from patient and control groups.
This allowed quantification of the deviation in data quality
for different groups of subjects. It is shown by example that
strong deviations in the fMRI analysis results (achieved with
SPM2) can be obtained by investigating groups with
strongly different data quality. Methods to quantify the
differences in data quality are given so that misinterpreta-
tions of group comparisons can be avoided.

CONCLUSIONS

We present efficient, standardized, easy-to-implement,
and easy-to-automate procedures for quality assessment of
fMRI data. Such methods should be applied on a routine
basis in every fMRI study because the possible sources of
data corruption in fMRI are manifold. We divided these
sources into three main categories: (1) experimental design;
(2) subject cooperation; and (3) fMRI hardware. We focused
on assessment of hardware-induced artifacts and subject-
induced data corruption during the experimental runs. The
goal to define sensitive parameters acting as “warning flags”
in an automated manner was achieved. These newly defined
QA parameters integrate over all possible sources of un-
wanted signal variance. However, combination with other
approaches, such as detection of only physiologically in-
duced noise, remains to be addressed. This may be applica-
ble only if the specific design and the underlying neurosci-
entific hypotheses are also taken into account. Many

approaches that address these issues have been published;
however, a standardized (and if possible, automated) imple-
mentation is of great practical importance for day-to-day
application in fMRI. Because BOLD signal detection remains
crucial, the inference of fMRI results can only reach a clinical
standard if QA is considered exhaustively.
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APPENDIX

The automated eye removal, briefly discussed in the Con-
cepts section, is fast because the time-consuming neighbor
detection has to be carried out only on the limited number of
voxels on the hull RH, found by the edge detection. Finding
the interior of any 3D hull is generally also a nontrivial and
time-consuming task, so the problem only seems to have
been shifted. For the special case of eye removal of EPI
volumes, however, there is very fast way to achieve this aim.
Let RH

i,j,k denote the region describing the hull, which equals
either 1 if {i,j,k} denotes a voxel on the hull, or 0 elsewhere.
We then can quickly compute six regions defined by the
cumulative sums starting from each side of the Nx ( Ny (
Nz cube:

Rx#
i,j,k ! sign+&

i,!1

i

RH
i,,j,k] (8)
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i,j,k ! sign+&
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RH
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j,!j

Ny

RH
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Rz"
i,j,k ! sign+&

k,!k

Nz

RH
i,j,k,] (13)

where sign[ ! ] denotes the signum function. It is easy to see
that the target mask region RM, i.e., the head excluding the
eyes, is a subset of each of these sums, and it is thus also a
subset of its intersection. This intersection is generally
larger, but it always excludes the eyes. RM is therefore found
efficiently by a further intersection with the original thresh-
olded mask RT:

RM ! RT " Rx# " Rx" " Ry# " Ry" " Rz# " Rz". (14)
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