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ABSTRACT 

We present a method for generating detailed geometric 
urban massing models combined with building 
footprint and material information from large GIS 
datasets and LiDAR elevation measurements. An 
example model for the city of Cambridge, 
Massachusetts, USA that contains over 17,000 
buildings is used as input for annual solar radiation 
calculations using the RADIANCE / DAYSIM 
simulation engine. Based on hourly irradiance 
calculation results, we find it possible to make 
recommendations for PV placement on a building and 
to intelligently determine the total and useful roof area 
of buildings. Simulation results are compared to those 
typically used in practice to produce solar radiation 
maps of other US cities. It is found that the presented 
method yields better geometric accuracy and higher 
irradiation predictions compared to previous methods. 
This results in increased predicted PV energy 
production at lower installation costs and more 
accurate estimates of useful rooftop area. 

INTRODUCTION 

It has become increasingly popular for cities and 
municipalities to create solar potential maps with the 
intent of promoting renewable energy generation 
through photovoltaic (PV) panel installations within 
those jurisdictions. In the United States, large cities 
such as Boston, Los Angeles, New York City and 
Portland provide online maps which allow building 
owners to look up their address and view personalized 
predictions of, 

 electric production from a PV system (kWh) 

 energy savings from a SHW system (Therms) 

 resulting annual electricity savings (dollars) 

 carbon savings (lbs) 

 useful roof area (sq. ft.) 

 system payback period (years) 

 system costs (dollars) 

 local rebates and incentive programs 

The objective of these maps and accompanying 
personalized property information is to reduce summer 
time peak loads, increase the environmental awareness 
of residents, reducing greenhouse gas emissions and to 
improve the sustainable image of a city through the 
expansion of solar energy technology.  

While a number of cities have already generated such 
solar maps, to the authors’ knowledge, limited 
attention has been paid to the assumptions and 
calculation methods underlying these maps. The 
objectives of this paper are hence threefold.  

We initially present a method of how a validated solar 
radiation calculation algorithm, thus far only been used 
at the individual building scale, can be applied to a 
city-sized model of Cambridge, Massachusetts, USA. 
The new method creates city-wide solar potential maps 
with a high degree of spatial and predictive accuracy 
based on the generation of a high resolution three-
dimensional (3D) model sourced from available 
geographic information systems (GIS) data. Our model 
applies validated simulation methods which take into 
account detailed geometric data including shadowing 
from surrounding buildings, typical climate data, and 
reflections between buildings and the urban landscape. 
The results from this model are spatially and 
temporally rich; the variation of irradiation across a 
rooftop is displayed, and data is available at hourly 
time-steps for detailed peak load analysis and PV 
energy yield calculations. Secondly, we use the 
simulation results generated during the first step as a 
reference against which we compare results that one 
would obtain using the methods underlying other solar 
radiation maps. Finally, we discuss what relevance 
varying simulation results may have at both the 
individual building owner and city-wide policy level.  

REVIEW OF CURRENT METHODS 

Irradiation Calculations 

In a review of eleven solar potential maps for North 
American cities (Table 1), we found that there are three 
typical predictive methodologies in place for 
calculating rooftop irradiation. Three (27%) of the 
surveyed maps used a constant assumption for solar 



irradiation reaching a building rooftop. One (9%) 
reported using the National Renewable Energy 
Laboratory’s (NREL) PVWatts calculation module. 
Another five (45%) used the Solar Analyst plugin 
within Esri’s ArcGIS program. The remaining maps 
did not report their calculation methodology.  

The use of a constant, global horizontal, solar radiation 
value across a rooftop will be inaccurate in many 
cases, for example buildings with peaked roofs. Such a 
constant value also does not consider local urban 
context such as trees and neighboring buildings which 
shade building rooftops. Also, the complex forms of 
individual roofs are ignored. Advocates of this 
approach determine the useful roof area for PV 
installation by using either a constant percentage 
(Boston, Portland) or based on orthophotographic 
image analysis techniques (San Francisco, Berkeley). 
The NREL PVWatts module is essentially a modified 
version of the constant approach (Marion, et al. 2001). 
Solar irradiation is distributed on a 40km square grid 
for the entire United States based on the typical 
meteorological year 2 (TMY), dataset. Local TMY2 
irradiation data is used in combination with PV panel 
tilt, orientation, and urban temperature conditions to 
determine energy production. While roof shape is 
treated with greater detail than in a solar constant 
approach, shading from adjacent urban surfaces also 
cannot be modeled using the PVWatts module. 

Since Esri’s Solar Analyst plugin, based on the work of  
Fu and Rich (1999), currently constitutes the most 
widely used irradiation calculation method, it is 
discussed in greater detail. In this method, a sky mask 
is initially generated based on the surroundings of each 
pixel of a digital elevation model (DEM). A DEM is a 
geolocated raster image where the values of individual 
pixels correspond to elevation measurements. The 
direct and diffuse components of irradiation are 
calculated based on what amount of the sky can be 
seen from each pixel. Direct irradiation is calculated in 
accordance with the sun position, the slope of the 
DEM, a fixed transmissivity coefficient, and the 

distance a solar ray must travel through the 
atmosphere. Diffuse irradiation is calculated in much 
the same way as the direct component, based on either 
a uniform sky model or a standard overcast model; 
however, no solar map reports on its website which sky 
model was used. 

In Solar Analyst, sky transmissivity and the ratio 
between direct and diffuse insolation are fixed, 
constant values throughout the year. These 
assumptions can have a significant effect on the 
calculated annual radiation. For example, the Boston 
Logan TMY3 weather data illustrates a ratio between 
direct and diffuse irradiation which varies widely 
throughout the year (US Department of Energy 2012). 
The mean value of the hourly direct-to-total ratio of 
insolation is 64.2% for the 4,604 daylit hours in the 
Boston TMY3 weather file; however, the standard 
deviation from the mean is 31.3%. Further, the amount 
of cloud cover and thus atmospheric transmissivity 
varies throughout the year. Therefore, it is inaccurate 
to pick one value to adequately represent these factors. 
The extreme variance in direct and diffuse radiation 
throughout the year and cloud cover is shown in Figure 
1 for the Boston climate TMY3 dataset. 

As Solar Analyst uses only a sky mask based on a 
DEM, it has no capacity to model reflections between 
buildings, from surrounding trees or from the urban 
terrain. It has been proposed to assume a directional 
constant of reflected irradiation for obscured sky areas 
(Rich, et al. 1994), but it would be inadequate to 
consider complex reflections from surrounding 
buildings. 

 

Table 1 Survey of Existing Solar Potential Mapping Methods in North America 
 

CITY URL FLAT 
ROOF 

CALCULATION METHOD 

Anaheim 
Berkeley 
Boston 
Denver 
Los Angeles County 
Madison 
New York City 
Portland 
Salt Lake City 
San Diego 
San Francisco 

http://anaheim.solarmap.org/ 
http://berkeley.solarmap.org/ 
http://gis.cityofboston.gov/SolarBoston/ 
http://solarmap.drcog.org/ 
http://solarmap.lacounty.gov/ 
http://solarmap.cityofmadison.com/madisun/ 
http://nycsolarmap.com/ 
http://oregon.cleanenergymap.com/ 
http://www.slcgovsolar.com/ 
http://sd.solarmap.org/solar/index.php 
http://sf.solarmap.org/ 

No 
Yes 
Yes 

? 
No 
? 

No 
Yes 
No 
? 

Yes 

Solar Analyst 
Constant Multiplied by Usable Roof Area 
Solar Analyst 
Unknown 
Unknown (Assumed, Solar Analyst) 
PVWatts with Sunlit Hours Graphic 
Solar Analyst 
Constant Assumption 
Solar Analyst 
Unknown 
Constant Multiplied by Usable Roof Area 
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(1) 

where ሬ݊Ԧ is the unitized roof surface normal vector.  

We further realize that photovoltaic performance is 
dependant on many factors which are unknown at the 
time of making a conceptual irradiation map such as 
module efficiency, panel orientation and maintainance. 
However, it is known that temperature and radiation 
heating up the panel will have an adverse effect on its 
production. The urban ambient temperature (Tamb, °ܥ) 
and the incident irradiation (E, Wm-2) at each timestep 
can be used to estimate the temperature of the 
photovoltaic panel (Tc), shown in Equation 2, by 
relying upon knowledge of the nominal operating cell 
temperature at ideal conditions (T0) (Luque and 
Hegedus 2011) Further, the photovoltaic maximum 
power at ideal conditions ( ܲ,ܹ) can be derated 
based on a temperature correction factor (ߛ) equal to 
 .ଵ (Equation 3) (Marion, et al. 2001)ିܥ0.0038°

ܶ ൌ ܶ  ሺ ܶ െ  800ܹ݉ିଶ (2)/ܧሻܥ20°

ܲ ൌ ܲ ∗ 	 ሾ1  ߛ ∗ ሺ ܶ െ ܶሻሿ (3) 

Equations 2 and 3 above are used as a first-order 
approximation in derating panel efficiency based on 
temperature and point irradiation at each hourly 
timestep. 

Determination of Useful Rooftop Area 

Useful rooftop area in our model is calculated based on 
predicted economic feasibility of panels installed at a 
location. Further, any roof surface sloping greater than 
60 degrees (67%) was discarded as it is approaching 
being considered a vertical surface or wall.   

On average, PV installations cost approximately $5.67 
per watt in Cambridge in 2011 (MassCEC, 2012). We 
assume that a panel is rated at 17.2 W/ft2 (185W/m2) 
(Sunpower E18/230W 2012), installation cost is 
$97.52/ft2 ($1049.70/m2), and the cost of electricity is 
$0.15/kWh. If we consider a 10 year investment period 
with a 10% discount rate per year, 115.7 kWh/ft2/yr 
(1244.9 kWh/m2/yr) must be generated to have a net 
present value (NPV) in which the investment breaks 
even (NPV equals zero). In ideal circumstances this 
would require a panel efficiency of nearly 80% in 
Cambridge! To achieve a simple payback over the 
same 10 year period, only 65kWh/ft2/yr (699.7 
kWh/m2/yr) must be generated. Still, this requires a 
panel efficiency of approximately 50%.  

However, there are national and state rebate programs 
that dramatically improve the feasibility of the 
installation of PV for residential properties. The federal 
government offers a 30% tax rebate on the cost of a PV 
installation up to a maximum of $2,000 (Energy 

Improvement and Extension Act 2008). Further, 
Massachusetts offers a 15% rebate up to a maximum of 
$1,000 that can be carried over for three years 
(Residential Renewable Energy Income Tax Credit 
1979). The Massachusetts Clean Energy Center offers 
a minimum $0.40/W rebate on new PV systems 
(MassCEC 2012). Finally, Massachusetts offers a 
100% protection from increased property taxes due to 
PV installations for a 20 year period (Renewable 
Energy Property Tax Exemption 1975). Factoring these 
rebates into the previous NPV calculation, it is possible 
to have a break even point for an unshaded panel at 
~24% efficiency, which is still not an ideal financial 
incentive, but things are markedly improved. Looking 
at simple payback over a period of 10 years for our 
example Sunpower panel, any point with over 56.6 
kWh/ft2 (609 kWh/m2) irradiation per year is likely to 
recoup its value while providing additional savings 
after the initial 10 year period as the effective lifetime 
of a PV system is known to be typically greater than 30 
years. Thus, points with greater than 609 kWh/m2 and 
their associated roof areas are considered to be useful 
to install PV panels. As such sensor points are 
displayed spatially across the roof (see results section), 
it is possible to determine optimal placement locations 
for PV panels. 

Geolocation of Data From GIS to Radiance Models 

All GIS models including the LiDAR data and building 
footprints were constructed in the projected North 
American Datum 1983, Massachusetts State Plane 
Mainland coordinates system (Schwarz and Wade 
1990). This is a serendipitous choice as distances and 
areas can still be measured without necessitating 
corrections. Thus, the Radiance simulation model was 
built in an identical coordinate system. The 
Massachusetts State Plane system also has a known 
relationship between X and Y coordinates and latitude 
and longitude global coordinates. It is possible to 
translate easily between the two coordinate systems by 
use of an Inverse Lambert Conformal Conic Projection 
with proper parameters. 

RESULTS 
In this section, the results from methodologies 
discussed in the “Review of Current Methods” section 
are compared with our own detailed method. Ten 
buildings are used for the purposes of the comparison 
from the over 17,000 in the Cambridge dataset. Of 
these ten buildings, five can be described as having flat 
roofs; however, they often have HVAC equipment 
present on the roof such that it is not truly flat. The 
other five have roofs of some complexity with at least 
one ridge line. These test buildings are shown in Figure 
3. For our 5’x5’ grid of analysis points across each 
building, annual and monthly irradiation data was used 
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