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Abstract 

To support the implementation of urban energy 
efficiency strategies, a new generation of urban building 
energy modeling (UBEM) tools has been introduced 
which allows cities to simulate the expected energy 
demands of neighborhoods. In order to define simulation 
inputs, UBEM models usually use archetypes, in which 
occupant-related parameters like occupancy, plug loads 
or set point temperatures are defined deterministically. 
This simplification can lead to wrong predictions in 
savings for energy efficiency strategies. Building on 
previous research, this paper implements an UBEM 
workflow to evaluate the relevance of occupant 
uncertainty modeling when predicting energy efficiency 
savings for a neighborhood. An existing model of 172 
villas in Kuwait city is used as a case study. Occupant 
parameters are characterized through both deterministic 
assumptions and calibrated uncertainty distributions. 
Three retrofit and two pricing scenarios are modeled and 
simulated using both methods. Finally, energy and cost 
savings are calculated, and the performance of both 
modeling methods is evaluated from the application 
perspectives of three urban decision makers. Results 
show that while effective for aggregate savings, 
deterministic UBEMs ignore uncertainties up to 30% 
when considering single buildings, and can misrepresent 
average cost savings, especially with tiered pricing. 

Introduction 
In response to current global environmental challenges, 
city governments are developing ambitious long-term 
greenhouse gas (GHG) emission reduction targets such 
as 60% by 2025 for London or 80% by 2050 for New 
York City. With energy consumption in buildings being 
a key contributor to emissions, cities are exploring the 
potential impact of a variety of energy retrofit strategies 
that apply to both the buildings (envelope and system 
updates) as well as occupant lifestyle choices. In this 
context, Kuwait City has the goal to reduce its building-
related emissions by 2030 by at least a 15% (Kuwait 
EPA 2012). In order to understand the full gamut of 
measures that this goal requires, the city’s leadership 
needs planning tools that provide an understanding of 
current energy demands, along with predictions of how 
these energy demands would change if various energy 
policies were to be implemented. 

Urban Building Energy Models (UBEM) have recently 
been proposed as a bottom-up, physics based modeling 
technique to support the implementation of energy 
efficiency strategies in urban policy (Reinhart and 
Cerezo 2016). As opposed to more traditional top-down 
(Howard et al 2012) or bottom-up statistical models 
(Abdolhosseini 2016), UBEMs apply performance 
simulation methods to represent each building and its 
immediate surroundings as a thermal model. As with 
single building energy models (BEM), the generation of 
an UBEM requires the definition of numerous data 
inputs, including a large set of non-geometric parameters 
such as construction assemblies, usage schedules and 
internal loads. To define these model inputs, UBEMs 
usually rely on “archetypes”, classifying buildings by 
use or age (Filogamo et al 2014), and then assigning 
them a common set of properties. Yet, in the absence of 
detailed building stock information, this process remains 
somewhat arbitrary, relying on deterministic estimates 
based on the judgement of the modeler. Such broad 
simplification misrepresents the real diversity of energy 
demands, and can lead to wrong predictions when 
evaluating energy strategies. 

This is particularly true for occupant-related parameters 
such as occupancy schedules, plug loads or set point 
temperatures, which are unknown for the modeler at the 
urban scale but have a significant impact on simulated 
energy demands (Jones et al 2015). Providing a static 
value for these parameters will produce and UBEM in 
which all occupants behave identically, hence ignoring 
extreme demands and leading to unrealistic load peaks. 
Developing methods for their simulation and calibration 
against metered demands is therefore especially relevant 
if UBEMs are to be used for urban decision-making. In 
the simulation of single buildings, occupant related 
demands have been traditionally modelled through a 
combination of peak loads and hourly diversity 
schedules. While this approach is appropriate for the 
analysis of annual or monthly demands, it cannot 
represent the stochastic nature of loads, especially 
relevant at smaller time scales and for risk analysis. To 
address this issue, extensive research has focused on 
combining occupant data with probabilistic uncertainty 
modelling methods to improve BEM effectiveness (Yan 
et al 2015), using data from occupant monitoring, time 
use surveys (Yamaguchi and Shimoda 2015), or travel 
surveys (Rakha et al 2014). 



In the definition of UBEM archetypes, the use of 
deterministic peak loads and schedules is particularly 
problematic, since they represent a large number of 
buildings, and occupant behavior related parameters are 
likely to vary substantially among buildings within the 
same archetype.   When an UBEM is used to determine 
the overall annual demand for a district, differences in 
occupant behavior tend to average out. In that case, 
deterministic UBEMs have been shown to reproduce the 
overall metered energy demand with an aggregate 
percentage error (PE) lower than 15%.  However, when 
comparing simulated and real energy demands on the 
building level for the same UBEMs, reported PEs 
increased up to 15 times (Reinhart and Cerezo 2016). In 
this context, the diversity of behaviors within an 
archetype makes it also impossible to perform a typical 
optimization based calibration, since no single set of 
parameter values will fit all the buildings represented. 

Instead, to capture the real distribution of demands in 
UBEM, parameter uncertainties need to be considered 
through the probabilistic modeling of occupant variables.  
Stralzka et al (2011) showed that introducing normally 
distributed heating set points in an otherwise 
fixed/deterministic UBEM achieved a significant 
improvement in accuracy. Similarly, He et al (2015) 
employed a stochastic occupancy model to reduce the 
unrealistic hourly demands resulting from the use of 
deterministic load definitions in UBEM. Probabilistic 
models for occupant parameters can not only reproduce 
demands more accurately, but also are better suited for 
calibration through Bayesian methods. 
 

 
Figure 1: Metered and calibrated EUI distributions 

 

Bayesian calibration techniques, extensively applied in 
individual building simulation, assume prior uncertainty 
distributions for select unknown parameters, which are 
later refined based on available metered demand data 
using “Bayes law” (Heo et al 2012). More recently, their 
use has been suggested for the calibration of large 
portfolios of buildings (Heo et al 2015) or apartments 
(Kim et al 2015), and extended to an urban context by 
applying it to clusters of buildings of the same type 

(Booth et al 2013). In previous research, the authors 
validated such application at the annual (Cerezo et al 
2015) and monthly scales (Sokol et al 2017) for 
neighborhoods in Kuwait and Cambridge (MA), 
achieving in both cases a significant accuracy 
improvement in the simulation of energy use intensities 
(EUI) distributions. In the Kuwaiti case study of 
AlQadisyah, also explored in this paper, a joint 
likelihood distribution for occupancy, plug loads and set 
points parameters was developed through Bayesian 
calibration using building metered demand data. Figure 
1 shows how the EUI distribution from the probabilistic 
calibrated model compared to that of a deterministic 
(uncalibrated) one, as well as to the metered distribution 
in the case study of this paper. While performing clearly 
better, the calibrated model also requires access to 
individual building data, and it is accompanied by a 
substantial simulation overhead. However, it has not yet 
been established what are its advantages over its basic 
deterministic counterpart. More specifically, it remains 
unclear how relevant is the modeling and calibration of 
uncertainty in archetype occupant parameters when 
comparing potential energy retrofit scenarios. 

To address this question, this paper lays out a modeling 
procedure applicable in the analysis of any other urban 
building stock. The procedure is tested by comparing 
three retrofit and two energy-pricing scenarios in the 
above mentioned UBEM model of a Kuwaiti residential 
neighborhood. As part of the case study, occupant 
archetype parameters are defined using two methods: 
Deterministic uncalibrated assumptions, referred to as 
the “Basic” case, and probabilistic calibrated variables, 
the “Stochastic” case. In the implementation of this 
procedure the paper fulfills two main goals: First, to 
compare the performances of the two methods by 
scenario. Second, to understand how these predictions 
can inform a decision about energy policy. For that 
purpose, results are interpreted from the perspectives of 
a municipal energy planner, a local utility trying to target 
building owners, and local policy maker defining 
implementation strategies. 

Methodology 

The data collection and simulation procedure, as applied 
in this study, can be broken up into the following steps: 

1- Building and energy data collection 
2- Archetype classification and definition 
3- Calibration of occupant related parameters 
4- Definition of retrofit scenarios 
5- UBEM generation and simulation 
6- Calculation of energy and cost savings 

Building and energy data collection 

The initial step is to identify and gather data about the 
area of study, necessary for the model and representative 
of the larger building stock of interest. For the present 
case study in Kuwait, residential building energy use is 
of particular relevance as it accounts for 60% of the 
country’s electricity use. Moreover, in this cooling 



dominated climate, air conditioning accounts for more 
than 60% of that use and 85% of annual peak loads. The 
latter statistic is especially important for the local utility, 
since cooling peaks currently exceed grid capacity 
during the summer, while the demand for new residences 
keeps increasing. The use of UBEM is therefore 
particularly pertinent in this residential case study. 

The residential district of AlQadisyah, developed 
initially in the 1960s, is mostly formed by 2 to 3 stories 
villas or small apartment buildings. It is organized in 
nine distinct areas of which area 8 was chosen for this 
study. It comprises 172 documented buildings, which 
according to their year of construction (Figure 2), can be 
grouped into four main periods: (1) Original government 
villas built between the 19060s and 80s in 32% of the 
district. (2) Retrofitted original villas in the 1990s or 
2000s (16%). (3) Villas, private or government 
sponsored, from the 80s and 90s under the 1983 Energy 
Conservation code (42%). (4) Recent structures built 
after the 2010 Energy Code accounting for a 10%. 
 

 
Figure 2: Area 8 buildings classified by period 

 

As part of the earlier mentioned previous research work 
(Cerezo et al 2015), extensive data gathering was 
conducted for the area, which included GIS information 
from the city, constructions data from local experts, and 
on site photographic documentation of  Window to Wall 
Ratios (WWR) and number of stories. Regarding energy 
consumption data for calibration, measured annual 
demand for 2013 was gathered for 172 buildings. 
Weather data sufficient for the generation of a real year 
EPW file was obtained for the same period. The energy 
use intensity (EUI) for each building was calculated 
based on built floor area, resulting in a mean of 209 
kWh/m2 with a global minimum of 66 kWh/m2 and a 
global maximum of 444 kWh/m2. 

Archetype definition methods 

For the characterization of the UBEM of AlQadisyah, all 
buildings were classified into four main archetypes 
according to the four construction/renovation periods: 
1960s original villas, 1960s retrofitted villas, 1980s-00s 
villas, and those built after 2010. All building-related 
parameters were defined deterministically, based on 

gathered data from available literature and site visits 
(Table 1). Constructions, glazing and shading types, 
coefficients of performance (COP) and infiltration levels 
were chosen according to expert assumptions, published 
energy models of Kuwaiti homes (AlAjmi and Hanby 
2008; Assem and AlRagom 2009; Kuwait PAHW 2008) 
and requirements from the 2010 (Kuwait MEW 1983) 
and 1983 (Kuwait MEW 2010) Energy Codes. The 
authors chose to ignore uncertainties in these parameters, 
assuming that most of their variation is captured by the 
four types. The decision was based on the sensitivity 
analysis of an average-sized building by archetype, in 
which the effect in EUI of 15% variations in envelope U 
values, cooling COPs and infiltration rates was estimated 
to remain below a 10% in all cases. Further analysis will 
be required in future studies to incorporate those 
parameters as additional uncertainties. 
 

Table 1: Building-related parameters by period 
 

Parameter Period Value 

Wall / Roof U (W/mK) 60s (Org.) 2.53 / 1.56 
 60s (Rtr.) 2.53 / 0.53 
 80s-00s 0.62 / 0.53 
 10s-Now 0.32 / 0.40 

Glazing U (W/mK) / SHGC 60s (Org.) 5.96 / 0.86 
 60s (Rtr.) 2.89 / 0.76 
 80s-00s 2.89 / 0.17 
 10s-Now 2.33 / 0.65 

Infiltration rate (ach) 60s (Org.) 0.8 
 60s (Rtr.) 0.5 
 80s-00s 0.5 
 10s-Now 0.3 

Cooling system COP 60s (Org.) 2.4 
 60s (Rtr.) 2.4 
 80s-00s 2.4 
 10s-Now 2.9 

 

As previously discussed, occupant related parameters 
were defined using two separate methods: (1) Basic as 
single values, and (2) stochastic through a calibrated 
distribution. Four base parameters were chosen as being 
critical to the variability of the archetype, to be defined 
probabilistically: Cooling set point temperature in °C 
(STP), peak installed lighting power density in W/m2 
(LPD), peak average occupancy in occupants/m2 (OCC), 
and a multiplier factor for plug loads (MLT). Peak plug 
loads (PLG) and peak hourly domestic how water 
consumption (DHW) were derived as linear functions of 
those four as shown in equations 1 and 2, based on 
deterministic appliance modeling for a standard villa. 

ሺܹܩܮܲ ݉2ሻ⁄ ൌ ቐ
ሺ7.7 ൅ 260 ൈ ൈ	ሻܥܥܱ 1								ܶܮܯ	 ݂݈. ,
ሺ4.7 ൅ 260 ൈ ൈ	ሻܥܥܱ .݈݂	2							ܶܮܯ	 ,
ሺ3.2 ൅ 260 ൈ ൈ	ሻܥܥܱ 3									ܶܮܯ ݂݈.

 (1) 

DHWሺ݉3 ݄/݉2ሻ⁄ ൌ 0.01083 ൈ  (2) ܥܥܱ

In the basic approach, values were assigned to the four 
parameters based on available literature and local 
expertise (Table 2), while the associated diversity hourly 
schedules were developed by residential room type 
based on a survey of 50 similar residences (AlMumin et 
al 2003) and average room sizes for government 



provided housing. Window shading operation, was not 
modeled, since when available it stayed closed. Given 
that only annual demands were available for calibration, 
schedules were treated deterministically in both cases. 
 

Table 2: Occupant-related parameters by method 
 

Parameter Floors Deterministic Calibrated 

Occupancy (pp/m2) Any 0.012 Joint Dist. 

Lighting Power (W/m2) Any 12.3 Joint Dist. 

Plug Multiplier (-) Any 1.0 Joint Dist. 

Plug Power (W/m2) One 10.8 f (OCC,MLT) 
 Two 7.8 f (OCC,MLT) 
 Three 6.3 f (OCC,MLT) 

DHW Peak (m3/m2/h) Any 0.00013 f (OCC) 

Cooling Set point (°C) Any 22 Joint Dist. 

Heating Set point (°C) Any 18 18 
 

Calibration of occupant related parameters 

For the stochastic method, the four critical parameters 
were initially defined as uniform prior distributions with 
an acceptable min/max values, and later calibrated using 
the Bayesian approach described in the introduction, 
already applied to this UBEM (Cerezo et al 2015). As 
part process, each building was simulated under 625 
combinations of parameters with the real weather data, 
and the calibration error (α) was calculated as the 
percentage error (PE) in the simulated EUI, with a 
acceptable value of 5%. Later, all combinations for all 
buildings where α < 5% were aggregated in a joint 
likelihood calibrated distribution. The marginal 
distributions before and after are shown in Figure 3. The 
calibrated parameters were validated comparing the 
simulated and measured EUI distributions for area 8,  
showing a PE in the mean of 1%, PEs for the 10 and 90 
percentiles below 15%, and very good fit in the 
distribution shape (Figure 1). While these calibrated 
parameters are only “true” for this especific case study, 
their further validation in a similar district in Kuwait 
rendered equally low PEs in average and percentiles. 
 

 
Figure 3: Calibrated parameter marginal distributions 

Calibrated parameters were applied to all buildings, 
regardless of archetype, assuming that all residents 
belong to a single socioeconomic group. Further analysis 
of census data may allow for a finer classification. 

Retrofit and pricing scenarios 

Once archetype parameters have been calibrated, a suite 
of energy efficiency strategies (EES) can be proposed 
for evaluation. In AlQadisyah, these strategies range 
from simple and affordable to deep retrofits, and were 
defined in collaboration with local institutions. Table 3 
lists the EES by increasing difficulty of implementation 
with estimated average cost in Kuwaiti Dinars (KD). For 
reference, at the time of writing 1 KD = 3.28 USD. 
 

Table 3: EES descriptions and costs 
 

Energy Strategies Unit Cost (KD) 

Facade weatherization m2 0.16 

LED light bulb 80% replacement item 4 

Refrigerator replacement (EnergyStar eqv.) item 290 

Washing replacement (EnergyStar eqv.) item 240 

Dryer replacement (EnergyStar eqv.) item 140 

High efficiency AC system upgrade ton 185 

Exterior XPS insulation addition m2 3 

Exterior finish paneled leaf addition m2 18 

Window replacement with low emissivity item 145 
 

For simulation, these strategies were grouped into three 
scenarios. The first includes all EES related with the 
upgrade of lighting, appliances and cooling equipment, 
which could be implemented without any construction 
activities. The second includes the retrofit of the building 
envelope to reach the 2010 code requirements, and the 
replacement of all windows. Finally, the third combines 
all EES. The archetype parameter changes used to 
represent these scenarios are detailed in Table 4. 
 

Table 4: Parameter upgrades by scenario 
 

Parameter 
Lighting 

Equipment 
Envelope 
Glazing 

Combined 

Lighting Power (W/m2) base x 0.40 - base x 0.4 

Plug Power (W/m2) base x 0.84 - base x 0.84 

Wall / Roof U (W/mK) - 0.32 / 0.40 0.32 / 0.40 

Glazing U (W/mK) / SHGC - 2.33 / 0.65 2.33 / 0.65 

Infiltration rate (ach) 0.4 0.4 0.4 

Cooling system COP 3.3 - 3.3 

 

In order to understand the affordability and economic 
feasibility of the scenarios, two energy pricing scenarios 
were modeled as part of the study. In the first case, the 
current unifrom electricity price of 0.002 KD/kWh was 
considered. The Kuwaiti government heavily subsidizes 
energy, paying for about 90% of the generation costs, 
and has maintained this flat rate for residential users 
since 1966. In the second scenario, a tiered pricing 
system is considered, proposed by the Kuwaiti 
government in 2016, and under review at the time of this 
research. In this model, electricity rates range between 
0.005 kD/kWh and 0.015 KD/kWh depending on 
monthly consumption (Table 5). 
 



Table 5: Current and proposed electricity prices 
 

Pricing Consumption Price 

Uniform Any consumption 0.002 KD 

Tiered kWh/month < 3,000 0.005 KD 
 3,000 < kWh/month < 6,000 0.008 KD 
 6,000 < kWh/month < 9,000 0.010 KD 
 kWh/month > 9,000 0.015 KD 

UBEM generation and simulation 

For the comparison of retrofit scenarios full UBEMs 
need to be built, in this case using both basic and 
stochastic archetypes. A multi-tool workflow was set up 
for this purpose, using a GIS shapefile as a base input for 
geometry, and a database for archetype definitions 
(Figure 4). Each structure was described in GIS by its 
footprint polygon, height and number of stories, WWR, 
and archetype name. Based on this dataset, multi-zone 
energy models for all buildings and context shading 
were  created within the CAD environment Rhino 3D 
(McNeel 2015) and its parametric modeling tool 
Grasshopper (McNeel 2016). Custom C# applications 
were built within Grasshopper for the generation of 3D 
massing, windows, thermal zoning and shading as part 
of the UMI modeling suite (MIT SDL 2016). 
 

 
Figure 4: Urban simulation workflow 

 

Simulation parameters for each archetype were stored 
and implemented in a JSON library file format proposed 
as a standard for UBEM model inputs exchange (Cerezo 
et al 2014). Finally, archetype data was associated with 
each building within Grasshopper, and used to generate 
individual energy models using the Archsim plugin tool 
(Dogan 2016). The underlying engine for all simulations 
was EnergyPlus (US DOE 2016). For stochastic cases, 
the calibrated joint distribution was sampled using a 
Latin Hyper Cube (LHC) approach, to guarantee a 
uniform coverage of the parametric space with a 
manageable run time. In the simulation of the three 
retrofit strategies plus the base conditions, each building 
was modeled using 100 samples. In addition, to calculate 
the distribution of total demands for the neighborhood, 
individual results were subsequently randomly sampled 
10,000 times and added together, assuming the 100 
values equally likely. A standard TMY3 weather file was 
used in the simulations as the authors chose to include 
no weather-related uncertainties. Both aggregate and 
individual results were then used to calculate the energy 
and cost savings as discussed below.  

 

Calculation of energy and cost savings 

As a final step in the methodology, simulated demands 
were processed, and savings calculated by scenario for 
both energy use and costs. The final results were 
analyzed at three levels of aggregation. 

1- Total neighborhood demand: Annual energy use 
per building was aggregated for each scenario, 
and compared for both the basic and stochastic 
modeling methods. 

2- Single building savings: Annual energy and cost 
savings were obtained by building and compared 
for both methods and all scenarios. In the 
stochastic case, the likelihood distributions of 
savings were obtained using 100 samples. 

3- Payback time likelihood: Simple payback times 
(PBT) were calculated for 100 samples by 
building. Cumulative distributions were obtained 
for each one, and the likelihood of a PBT to be 
equal or smaller than a given value (p), 
expressed as ܲሺܲܶܤ ൑  .ሻ was calculated݌
Finally, buildings were aggregated according to 
this likelihood value, for all scenarios. 

Results 

Total neighborhood demand 

The evaluation of the above described simulation results 
can be conducted from multiple points of view. For the 
local municipality or utility, overall energy reductions 
from all buildings are particularly relevant in order to 
plan for future GHG emission. In order to make results 
more generic, the aggregate energy use intensity per 
conditioned floor area unit was calculated for the 
neighborhood. 
 

 
Figure 5: Total normalized energy use by scenario 

 

Figure 5 represents that the total EUI calculated through 
the basic and stochastic methods, as well as the 
minimum and maximum values obtained from the 
sampling in the latter. A numerical error of a 10% is 
considered, given the limited sample of 100 simulations. 



 Regardless of the method considered, the lowest EUI 
value is always achieved by the “combined” scenario, 
followed by “lighting/equipment”. The results show that, 
on average, the basic model slightly over predicts energy 
use by a 6 to 8%, consistent in all cases when compared 
to the stochastic result. It also shows that the maximum 
variance in the total demand stays within a ± 8% in all 
cases, plus a 10% numerical error with the basic result 
lying within that uncertainty range. When the demand 
results were translated into relative savings compared to 
the current scenario, the resulting uncertainty was even 
smaller, within a total ± 4%. 

 Single building savings 

The earlier discussed energy savings assume that any of 
the three scenarios would be adopted across all buildings 
in a neighborhood. Since the decision to retrofit a 
building remains with its owner, it is also necessary to 
understand the range of savings that can be expected by 
building from an EES, so that municipalities and utilities 
can consider the owner’s perspective. Stochastic and 
basic savings were calculated by user and compared for 
by pricing scenarios. Figure 6 shows the energy use and 
cost savings for a sample building, a two story 60s villa, 
to illustrate the differences between calculation methods. 

 According to the stochastic model, the current EUI 
distribution (Figure 6A) of the building ranges between 
140 and 380 kWh/m2, a variation of ± 45% over the 
deterministically predicted EUI of 270 kWh/m2. While 
the basic EUI values agree with the mean stochastic 
result in each scenario, uncertainty ranges remain 
comparably large. Results also show that for this 
building, “ligt/equ” and “env/glaz” scenarios result in 
almost identical EUI distributions. The large uncertainty 
in energy use translates to the predicted cost savings 
presented in figures 6B and 6C. In both cases, the largest 
savings according to the basic model are achieved by the 
“Combined” scenario, with very close savings for the 
“ligt/equ” and “env/glz” respectively. 

With uniform pricing, the stochastic model agrees in the 
average (PE < 3%), but shows a 38% smaller uncertainty 
in “ligt/equ” compared to “env/glaz”, presenting it as a 
less risky option. The relevance of the stochastic model 
becomes even more evident with tiered pricing, since 
lower EUIs for the same user will result in lower prices. 
The basic model predicts savings 30% higher than with 
uniform pricing in all scenarios, failing to capture the 
different possible pricing situations for a building. The 
stochastic model shows a much larger uncertainty, with 
the increase in savings over uniform pricing ranging 

Figure 6: EUI and energy cost savings by scenario for sample building “42k” 

Figure 7: Energy cost savings by building with uniform pricing 



from 0% for the highest EUIs, to 15-20% in the best 
case. This last comparison shows the need for a 
stochastic model by building in the analysis of tiered 
pricing implications, to help identify the number of 
buildings likely to change tier with a retrofit. 

Figures 7 and 8 summarize the results from building 
“42k” for all buildings in the neighborhood. Figure 7 
shows the mean (µ), 10 percentile (p10) and 90 
percentile (p90) relative savings were calculated for each 
building along with the deterministic prediction for the 
current pricing system. Basic and mean stochastic 
savings are close for the majority of buildings, with 
differences between 1 and 13% for all scenarios. The 
figure also reveals that buildings from the 1960s/70s 
tend to have significantly estimated higher savings from 
envelope upgrades than more recent buildings.  

Figure 8 shows corresponding results for tiered pricing. 
In this situation, basic and mean stochastic methods 
diverge between 6 and 35% for different buildings. As 
with the individual building example, the basic case can 
only consider one tier by building, misrepresenting its 
potential range of savings. Additionally, the stochastic 
model shows larger variation between the uncertainty 
ranges in buildings, with differences between p10 and 
p90 of 6-37% savings. Based on the uncertainty in 
savings, buildings can be classified and targeted 
differently. For example, for those in the right side of the 
graph, the “combined” scenario might be worth 
pursuing, while for those on the left “ligt/equ” seems 
like the best option. 

Payback time likelihood analysis 

While occupant related uncertainties can help energy 
providers and third parties to target buildings based on 
potential savings and reduced risks, owner decisions to 
apply the proposed EESs will depend on the 
implementation costs. The probabilistic results of a 
calibrated UBEM become especially useful in this 
context, since they allow those defining implementation 
policies to understand the likelihood of affordability for 
every building. To illustrate this idea simple payback 
times (PBT) were calculated by building and by scenario 

for 100 parameter samples, using the implementation 
costs described previously. Then, in order to mimic a 
decision making process, the likelihood distribution per 
building was used to calculate the PBT value met in at 
least 80% of the parameter combinations sampled. This 
limit was chosen as a confidence interval allowing the 
decision maker to judge the viability of the retrofit 
scenario with one number per building. Next, based on 
these 80% likelihood values, the cumulative distribution 
for PBT was obtained for the complete neighborhood in 
each scenario and pricing scheme. All cases were finally 
compared against a maximum PBT of 10 years. 
 

 
Figure 9: Cumulative PBT distribution (80% likelihood) 

with uniform pricing 
 

Figure 9 compares the resulting distributions assuming 
uniform pricing, and clearly shows that with the current 
very low energy prices in Kuwait (0.002 KD/kWh) no 
retrofit scenario is affordable enough, with PBT values 
starting at almost 40 years. Putting aside the 
unreasonable PBTs, the graph also shows that the larger 
implementation costs necessary in envelope upgrades 
reduce their estimated implementation rates, compared 
to the “ligt/equ” scenario, which is the more affordable 
option for any chosen payback time. 
 

Figure 8:  Energy cost savings by building with tiered pricing 



 
Figure 10: Cumulative PBT distribution (80% 

likelihood) with tiered pricing 
 

The potential introduction of tiered pricing raises rates 
significantly above the uniform pricing scenario, 
between 2.5 and 7.5 times more depending on the tier, 
and hence increases the financial appeal of the retrofits. 
In Figure 10, PBT likelihood distributions are explored 
for the tiered pricing scenario. The higher prices result in 
much smaller PBT values in many cases under the 10 
year mark, but which still do not cover all buildings. A 
majority of buildings (68%) can meet a PBT ≤ 10 (At 
least 80% of the time) in the “ligt/equ” scenario, 
followed by a 24% in the “combined” case and a 7% in 
“env/glaz”. This result seems to suggest that the 
“ligt/equ” scenario is the most effective to pursue, unless 
a higher PBT is allowed. The total demand reduction in 
the neighborhood calculated previously seems to support 
this option as well, but the PBT analysis showed it 
would only be feasible under higher tiered rates. 

Discussion 
The results described above provide new insights into 
the relative merit of deterministic versus stochastic 
UBEM models as well as what roles UBEMs may play 
in future urban decision-making processes. 

Deterministic vs. Stochastic models 

The advantage of using probabilistic variables to define 
occupant parameters in an urban model is the capability 
of taking into account the modeller’s large uncertainty 
regarding types of users and their behaviour. If such 
variables are calibrated, UBEMs can more effectively 
represent existing demand extremes and predict how 
they will be affected by potential retrofit policies. 
However, they also require extensive data about existing 
energy demands and building characteristics, and 
significantly more computational power. Are there 
analysis scales at which the additional complexity is not 
necessary? This study has shown that when considering 
total energy demands and savings at the scale of 100-200 
buildings, the variability introduced by the uncertainty in 
occupant parameters is very small. Small enough that a 

simpler deterministic approach in which parameter 
assumptions and vetted against local expert knowledge 
can be used to prioritize energy solutions. When moving 
from aggregate analysis, to a policy implementation 
level, the results have shown how a deterministic model 
can misrepresent the annual demands of individual 
buildings, and as a result, over predict the potential 
savings of tiered pricing. Such discrepancies, which 
would only become larger at smaller timescales of 
analysis, can lead decisions makers to misplace 
incentives in strategies with very small likelihoods of 
adoption. As highlighted, with the introduction of 
numerical errors, further analysis in building sampling 
and additional sources of uncertainty such as the climate 
will be necessary to make stochastic UBEM fully 
effective in decision-making. 

Unfortunately, developing uncertainty distributions for 
occupant model parameters requires large amounts of 
surveyed building user data, which simply does not 
exist. The Bayesian calibration stochastic approach 
applied in this paper offers a partial solution to the 
problem, as it can improve the modeller’s knowledge if 
metered energy use is available for a large enough 
sample of buildings. This is rarely the case, since privacy 
concerns make individual energy data still extremely 
difficult to access, especially in small temporal scales. It 
also relies on the assumption that the modeller 
accurately knows building characteristics, rarely the case 
unless previous surveys have been developed for the 
specific neighbourhood. In the application of calibrated 
occupant parameters to other neighbourhoods, 
uncertainty distributions would have to be introduced for 
key building parameters as well. Future research should 
explore the value of Energy Performance Certificates to 
minimize the effort of the modeller in the 
characterization of such model inputs. In the opinion of 
the authors, a strong collaboration is necessary between 
municipal governments and utilities to address these 
accessibility limitations. 

Urban applications and stakeholders 

As discussed in the introduction, a calibrated UBEM can 
provide building scale information about potential 
energy retrofits or technologies, helping cover the 
information gap that exists between long-term urban 
emission reduction goals and the specific 
implementation strategies they require. To achieve that 
goal, modelling workflows have to adapt to the data 
needs and scale of work of different urban stakeholders. 
Based on the simulation results for area 8 in AlQadisyah, 
this paper identifies three levels of UBEM application. 
First, the model can inform policies for emission 
reduction planning by evaluating the potential savings of 
different energy technologies in the mixed building stock 
of specific urban areas. This type of general planning, 
typically developed by municipal governments, can rely 
on simpler deterministic UBEM. 



In a more detailed scale, UBEMs can be applied for 
targeting buildings, in order to identify which specific 
structures or blocks might gain more from a retrofit 
intervention. At this scale the characterization of 
occupant uncertainties can help quantify implementation 
risks or outliers.  This is the perspective of energy 
utilities and other third parties which need to interact 
with specific building owners. They have the 
opportunity to reduce uncertainty by asking owners 
about conflicting data, and to offer them modelling 
services. Finally, UBEM can help those developing the 
implementation policies regarding energy prices, 
efficiency incentives, etc. The results analysis showed 
how occupant modelling is necessary to understand the 
likelihood of a retrofit being adopted under a particular 
pricing scheme; something deterministic models cannot 
address. This type of analysis can be enriched with 
demographic, economic and social modelling to 
guarantee adoption rates and affordability. 

While having different objectives, all these urban actors 
are necessarily intertwined. For that reason, the authors 
believe that they would all benefit from the existence of 
a common energy-modelling infrastructure, which 
facilitates the exchange of information about model 
parameters, and the evaluation of policies at multiple 
decision scales. The effort level required to build such 
framework is of course significant, especially in terms of 
the gathering of building and energy data, which in this 
case study was mostly developed manually. In order to 
scale up UBEMs, institutional support for data collection 
will be fundamental, and further research need to explore 
basic dataset requirements and minimum sample sizes. 

Conclusion 
This paper has implemented an UBEM workflow to 
evaluate the relevance of occupant uncertainty modeling 
when predicting energy efficiency savings for a 
neighborhood. A 172 buildings Kuwaiti residential 
neighborhood was modeled, with occupant parameters 
being defined through both deterministic assumptions 
and calibrated uncertainty distributions. Using both 
methods, three retrofit and two pricing scenarios were 
simulated in EnergyPlus. Finally, energy and cost 
savings were calculated, and the performance of both 
modeling methods was evaluated from the application 
perspectives of three urban decision makers. 

Results showed relevant differences in the type of 
information that each approach provides for decision-
making, and ultimately suggested the need for stochastic 
occupant modeling in UBEM. While effective for the 
analysis of aggregate savings by scenario in the 
neighborhood, deterministic UBEMs ignore 
uncertainties up to 30% when considering single 
buildings, and can misrepresent average cost savings. 
The calibrated stochastic approach proved to be 
especially relevant in the analysis of tiered pricing, 
identifying an uncertainty range in savings by building 
of 6-38%. All retrofit options were shown to be 

unaffordable with current uniform rates. In the tiered 
pricing scenario, the PBT likelihood analysis showed 
that lighting and equipment retrofits become a best 
option, in which 70% of buildings achieved a PBT lower 
than 10 years with a likelihood of 80%. 
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