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The physiological lag between blood and interstitial fluid
(ISF) glucose is a major challenge for noninvasive glucose
concentration measurements. This is a particular problem
for spectroscopic techniques, which predominantly probe
ISF glucose, creating inconsistencies in calibration, where
blood glucose measurements are used as a reference. To
overcome this problem, we present a dynamic concentra-
tion correction (DCC) scheme, based on the mass transfer
of glucose between blood and ISF, to ensure consistency
with the spectral measurements. The proposed formalism
allows the transformation of glucose in the concentration
domain, ensuring consistency with the acquired spectra
in the calibration model. Taking Raman spectroscopy as
a specific example, we demonstrate that the predicted
glucose concentrations using the DCC-based calibration
model closely match the measured glucose concentra-
tions, while those generated with the conventional calibra-
tion methods show significantly larger deviations from the
measured values. In addition, we provide an analytical
formula for a previously unidentified source of limiting
uncertainty arising in spectroscopic glucose monitoring
from a lack of knowledge of glucose kinetics in prediction
samples. A study with human volunteers undergoing
glucose tolerance tests indicates that this lag uncertainty,
which is comparable in magnitude to the uncertainty
arising from noise and nonorthogonality in the spectral
data set, can be reduced substantially by employing the
DCC scheme in spectroscopic calibration.

Noninvasive glucose diagnosis has received considerable
attention due to its important implications for diabetes manage-
ment and therapeutics.1,2 Various techniques ranging from
electrochemical assays3,4 to optical methods5 have been proposed
to meet the goals of painless and accurate glucose measurements.

Vibrational spectroscopy, notably near-infrared (NIR) absorption
and Raman spectroscopy, has shown substantial promise in this
regard.6 Specifically, NIR-Raman spectroscopy has provided
successful predictions of glucose at physiologically relevant
concentrations in serum,7,8 whole blood,9 and even human
volunteers.10 However, a clinically accurate and robust algorithm
for predicting glucose concentrations in multiple human subjects,
or even in the same subject at different times, is currently
lacking.11

Researchers have identified factors that degrade the glucose
measurement accuracy of Raman spectroscopy by introducing
non-analyte-specific variance into the calibration model. The
predominant factors include sample-to-sample variability in absorp-
tion and scattering properties (turbidity),12 tissue autofluorescence
and associated quenching,13 and physiological lag between blood
and interstitial fluid (ISF) glucose.14-18 Several spectroscopic
correction schemes have been implemented to minimize the effect
of the first two factors,19-21 but correction for the presence of a
lag time has not been demonstrated for transcutaneous glucose
monitoring, due to its intricate relationship with the fundamental
physiological dynamics. This lag time creates an inconsistency
in spectroscopic calibration algorithms, which are based on
reference blood glucose concentrations and the acquired tissue
spectra. This inconsistency arises from the fact that the spectro-
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scopic techniques primarily probe ISF glucose,18 due to the
relatively shallow penetration depth (∼1 mm) of NIR light in tissue
and the small density of blood vessels in the superficial layers of
the skin.22

This inconsistency in calibration presents a severe hindrance
not only for spectroscopy-based noninvasive glucose monitoring
but also for minimally invasive electrochemical sensors (such as
Medtronic/Minimed’s Guardian and FreeStyle Navigator from
Abbott Diabetes Care), which base their glucose estimates on
interstitial fluid measurements. Indeed, as pointed out by Cengiz
and Tamborlane,15 the physiological lag introduces systematic
errors during calibration which adversely impact long-term sensor
performance, even in the presence of a positive correlation
between blood and ISF glucose.23-25 Such diagnostic errors may
lead to unnecessary insulin bolus, which significantly increases
the risk of hypoglycemia.26,27 The presence of systematic errors
is one of the main reasons that such continuous glucose monitor-
ing sensors need to be recalibrated against fingerstick measure-
ments at regular intervals.

Typically, for all ISF glucose-based sensors, spectroscopic or
otherwise, the underlying assumption is that the blood-to-ISF
glucose gradient remains constant over the measurement range.17

However, this assumption fails if the sensor is calibrated during
rapid changes in blood glucose, as are encountered during glucose
tolerance tests, which provide the most viable protocol for the
development of calibration models using spectroscopic tech-
niques.28 Calibration during such nonequilibrium conditions leads
to large errors in the developed model. To account for the
differences in blood and ISF glucose, Bonnecaze and co-workers
established the first substantive models for ISF glucose by
considering the ISF and blood glucose to reside in two “compart-
ments” and performing a mass balance between them.29,30 Using
amperometric glucose sensors implanted in rats, they demon-
strated that accurate estimates of blood glucose concentration can
be extracted from subcutaneous ISF glucose-based measurements.
However, no analogous models exist for development of spectro-
scopic calibration algorithms, which are inherently more complex
because of the multivariate nature of the data.

Furthermore, even if an accurate calibration model can be
established by performing all measurements under equilibrium
conditions (e.g., by employing glucose clamps), the lack of
knowledge of glucose kinetics in prediction samples would
introduce an uncertainty in the concentration estimates. Such
prediction uncertainties may lead to inappropriate treatments.
Previously, several research groups have assessed uncertainty in
spectroscopic prediction based on the noise in the spectral and
concentration data sets and the nonorthogonality (spectral overlap)

of the analyte of interest with the other sample constituents.31-33

However, the uncertainty introduced due to the lag phenomenon
in the prediction samples remains unexplored.

In this paper we present a new spectroscopic calibration
scheme based on a “dynamic concentration correction” (DCC),
which is based on a two-compartment mass transfer picture of
blood and ISF glucose and is designed to provide an accurate
estimate of glucose concentrations for noninvasive measurements.
These transformations are performed iteratively in conjunction
with an implicit calibration method, such as partial least-squares
(PLS), to form an accurate and consistent regression model. The
resulting calibration model can be used on a new set of acquired
spectral samplessthe prediction setsto calculate the ISF glucose
concentrations of the samples. Subsequent application of the DCC
model converts the estimated ISF glucose concentrations to the
equivalent blood glucose concentrations of the prediction samples.

This work employs Raman spectroscopy as a specific example
to demonstrate the effectiveness of the new calibration method,
with the understanding that this scheme can be similarly applied
to other spectroscopic techniques, such as NIR absorption. Using
blood and ISF glucose concentration data sets obtained by Steil
et al.,34 we first demonstrate that predicted glucose concentrations
using the DCC calibration model closely match the measured
blood glucose concentrations, whereas those generated solely by
the conventional implicit calibration methods show significantly
larger deviations from the measured values. These results are
further validated on spectral and concentration data sets obtained
from clinical studies on human volunteers undergoing glucose
tolerance tests.

In addition, we derive analytical expressions for the limiting
uncertainty introduced into the concentration predictions due to
the presence of the physiological lagswith and without application
of the DCC. Here, limiting uncertainty is defined as the uncertainty
in the concentration estimate in the case where all modeling noise
is disregarded, i.e., where the calibration model is assumed to be
completely accurate and noise free. Employing the human
volunteer data, we find that the concentration uncertainty due to
the lag phenomenon is comparable to that arising from the noise
and overlap in the prediction spectra and that this major source
of uncertainty can be significantly reduced (approximately 6-fold)
when the DCC is used, providing further motivation for its use in
spectroscopy-based transcutaneous blood glucose monitoring.

DYNAMIC CONCENTRATION CORRECTION
THEORY

The primary motivation for proposing a new spectroscopic
calibration method for blood glucose detection is to establish
consistency in the calibration model, which maps the spectral
measurements to the glucose concentrations. The conventional
linear calibration equation can be written as35

b ) S*c (1)

(22) McGrath, J. A.; Eady, R. A.; Pope, F. M. Rook’s Textbook of Dermatology;
Blackwell Publishing: Malden, MA, 2004.

(23) Bolinder, J.; Ungerstedt, U.; Arner, P. Diabetologia 1992, 35, 1177–1180.
(24) Reach, G.; Wilson, G. S. Anal. Chem. 1992, 64, 381A–386A.
(25) Lonnroth, P.; Jansson, P. A.; Smith, U. Am. J. Physiol. 1987, 253, E228–

E231.
(26) The Diabetes Control and Complications Trial Research Group. N. Engl.

J. Med. 1993, 329, 977-986.
(27) The Diabetes Control and Complications Trial Research Group. Diabetes

Care 1995, 18, 1415-1427.
(28) Heise, H. M.; Marbach, R.; Koschinsky, T. H.; Gries, F. A. Artif. Organs

1994, 18, 439–447.
(29) Schmidtke, D. W.; Freeland, A. C.; Heller, A.; Bonnecaze, R. T. Proc. Natl.

Acad. Sci. U.S.A. 1998, 95, 294–299.
(30) Freeland, A. C.; Bonnecaze, R. T. Ann. Biomed. Eng. 1999, 27, 525–537.

(31) Lorber, A.; Kowalski, B. J. Chemom. 1988, 2, 93–109.
(32) Berger, A. J.; Feld, M. S. Appl. Spectrosc. 1997, 51, 725–732.
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where b is the spectrum of regression coefficients (also called
the regression vector), S is the matrix of calibration spectra, and
c is the vector of measured concentrations of the analyte of interest
in the calibration samples. S* is the appropriate inverse of S, as
evaluated by the calibration method of choice. (A lowercase
boldface letter represents a vector, and an uppercase boldface
letter denotes a matrix.)

As mentioned in the introduction, since the spectral measure-
ments are predominantly contributed by ISF glucose, the relevant
input concentrations to the implicit calibration method should
incorporate the ISF glucose concentrations. However, the ISF
glucose concentrations are typically not available in a real-life
clinical setting; instead, blood glucose values obtained from
frequent blood withdrawals are used as reference concentrations.
This creates a regression vector, which is based neither com-
pletely on blood glucose nor completely on ISF glucose, but a
mixture of the two contributions. This, in turn, also creates a
problem in the prediction step, where the predicted glucose
concentration, c, is obtained by a scalar product of the regression
vector, b, and the spectrum acquired from the prediction sample,
s:

c ) sT · b (2)

(A lowercase italic letter indicates a scalar quantity, and the
superscript “T” denotes the transpose of the vector.) In the
conventional calibration framework, the predicted glucose con-
centration is reported as the blood glucose concentration, although
this clearly is not an accurate representation.

To correct for this discrepancy, we propose a new calibration
methodology (DCC) in which the concentrations are appropriately
changed to conform to the spectral measurements. The transfor-
mation in the concentration domain is based on a two-compart-
ment mass transfer model, which establishes a well-defined

relationship between blood glucose, ISF glucose, and the system
parameters. Specifically, we perform the following two transforma-
tions in DCC. (a) Precalibration DCC (PC-DCC): Transform the
blood glucose concentrations in the calibration data set to their
corresponding ISF values before inputting them into the implicit
calibration method. This ensures that the regression vector is
solely based on ISF glucose contributions. (b) Postprediction DCC
(PP-DCC): Retransform the predicted ISF glucose concentration,
which is determined by eq 2, to the corresponding blood glucose
value. The conceptual differences between the conventional and
proposed (DCC-based) calibration methods can be seen in Figure
1.

For the subsequent analysis, we assume that the sampling
volume (i.e., the volume of tissue probed by the NIR light) is a
subset of the interstitial fluid space. This assumption is primarily
based on the fact that the ISF constitutes nearly 45% of the volume
fraction of the human skin in contrast to the blood vessels, which
contribute about 5% of the skin volume.36 In the Results and
Discussion, we revisit this assumption and characterize its impact
on the proposed calibration model.

Transfer of glucose from the blood to the ISF compartment
occurs by passive diffusion across an established concentration
gradient.37 The mass transfer rate is affected by several variables,
such as the blood flow rate to the site, rate of glucose uptake by
the surrounding tissue, and capillary permeability. Nevertheless,
as discussed in the literature,29,34,38 a simple two-compartment
mass transfer model can be written for the ISF volume, VISF:

VISF

dcISF

dt
) kMA(cBG - cISF) - kUVISFcISF (3)

(36) Roe, J. N.; Smoller, B. R. Crit. Rev. Ther. Drug Carrier Syst. 1998, 15,
199–241.

(37) Zierler, K. Am. J. Physiol. 1999, 276, E409–E426.
(38) Rebrin, K.; Steil, G. M.; van Antwerp, W. P.; Mastrototaro, J. J. Am. J. Physiol.

1999, 277, E561–E571.

Figure 1. Flowcharts of the (a) conventional implicit and (b) DCC calibration methods. Scalib, cblood, and spred represent the calibration spectra,
reference blood glucose concentrations in the calibration samples, and spectrum acquired from the prediction sample, respectively. For the
conventional calibration method, bconv and cpred give the regression vector and the predicted concentration, respectively. For DCC calibration,
bDCC represents the developed regression vector. cISF,pred and cblood,pred are the intermediate ISF glucose estimate and the final blood glucose
prediction. PC-DCC is the precalibration transformation of blood glucose concentrations into the corresponding ISF glucose values. PP-DCC
transforms the predicted ISF glucose concentration into the blood glucose value. Note that the conventional calibration scheme does not
differentiate between the blood and ISF glucose concentrations. Note (see ‡ symbol): Both PP-DCC and PC-DCC require two concentration
inputs acquired at a time interval ∆t apart for evaluation of eqs 15 and 16b, respectively.
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where cISF and cBG are the ISF and blood glucose concentrations
(mol/cm3), respectively, kM is the glucose mass transfer
coefficient (cm/s), A is the effective mass transfer surface area
(cm2), and kU is the rate of glucose uptake by the neighboring
cells (s-1). The effect of insulin on the uptake term has been
ignored. This approximation is consistent with the observed
result that the glucose levels in (subcutaneous) ISF are largely
unaffected by the local insulin concentration.34 In fact, the
uptake term itself has been observed to be very small for
subcutaneous glucose sensing.29 This is attributed to the fact
that skin tissue, as opposed to muscle or adipose tissue, is
unlikely to have significant glucose uptake, even in the
presence of a high insulin concentration. Consequently, we will
ignore the uptake term in further analysis. Equation 3 can then
be simplified to

cBG ) cISF + R
dcISF

dt
(4)

where R ()VISF/kMA) is a lumped mass transfer parameter
having units of time. The parameter R provides a measure of
the physiological lag time arising from the diffusion process
and is henceforth called the characteristic lag time constant.
This equation provides the ability to construct blood glucose
estimates based on the spectroscopy-based ISF glucose predic-
tion values and a priori knowledge of the lag time constant in
the sample. The numerical evaluation of this equation, which
provides the postprediction (PP-DCC) step, is explained in
Appendix I.

The other important portion of the proposed scheme is the
precalibration (PC-DCC) step. To obtain consistency in the
calibration model, we need to convert the measured blood glucose
concentrations to the corresponding ISF glucose values. To
perform this transformation, we write eq 4 in its integral form:

cISF(tf) ) cISF(ti) exp(- 1
R

(tf - ti)) + 1
R∫ti

tf
cBG ×

exp(- 1
R

(tf - ti)) dt (5)

where the definite integral is evaluated from time ti to time tf.
Details of the numerical implementation of this equation are
given in Appendix II.

FORMULATION OF PREDICTION UNCERTAINTY
ARISING FROM PHYSIOLOGICAL LAG

To quantify the precision of spectroscopy-based calibration
models, Lorber and Kowalski derived an elegant prediction error
formula, which describes the error propagation for linear multi-
variate prediction algorithms.31 Our laboratory has previously
derived analytical expressions for uncertainty in concentration
prediction for the specific case where noise in the prediction data
set (spectra) is the dominant source of error.32,33 This case is
important, as in most biomedical applications constraints on the
acquisition time in prediction samples cause the noise in the
prediction data set to be significantly higher than that observed
in the calibration data set (where acquisition times are typically
much longer). In such cases, it can be assumed that an accurate
calibration model can be achieved by developing it on calibration

samples in which a sufficiently high signal-to-noise ratio (SNR)
can be attained. Under such conditions, the limiting uncertainty
in the predicted concentrations arises from the spectral overlap
between the analyte of interest and the other tissue constituents
and the measurement noise in the spectra acquired from the
prediction samples. Mathematically, the spectroscopic uncertainty
for the analyte of interest (glucose) is given by ∆cs:33

ĉ ) (s ( ∆s)T · b ) sT · b ( ∆sT · b ) c ( ∆cs (6a)

where

∆cs )
σ
sg

(olf) (6b)

Here, ĉ and c are the estimated and actual analyte concentrations
in the prediction sample, respectively, and ∆s represents the
spectral noise in the prediction spectrum, s. As the modeling noise
is ignored in computation of the limiting uncertainty, b represents
the ideal (noise-free) regression vector for glucose. σ is a measure
of the noise magnitude in the prediction spectrum, sg quantifies
the signal strength of glucose at unit concentration, and olf
indicates the amount of overlap between glucose and the other
spectral interfering agents (such as proteins, lipids, and water).

In addition to the spectroscopic uncertainty, there exists a
prediction uncertainty for transcutaneous glucose measurements
that arises from the physiological lag between blood and ISF
glucose levels. Even if the calibration models are developed under
conditions in which the blood and ISF glucose concentrations are
in equilibrium (such as those obtained by employing glucose/
insulin clamps), the predicted concentrations will still contain
uncertainties due to the unaccounted physiological lag in the
prediction samples. We present an error propagation analysis to
determine the limiting uncertainty in concentration prediction due
to the physiological lag, with and without DCC. Similar to our
laboratory’s previous work,32,33 we assume that the developed
calibration model itself is accurate, i.e., devoid of noise and lag-
related errors.

Limiting Uncertainty for Conventional Calibration. When
the modeling noise is ignored, eq 6a provides the relationship
between the estimated and the actual glucose concentrations.
However, for in vivo prediction, there will be a lag between the
instantaneous blood and ISF glucose values in the sample, where
the latter is measured by the prediction spectrum. Taking this
into account, we can rewrite eq 6b in terms of the estimated (ĉISF)
and actual (cISF) ISF glucose concentrations:

ĉISF ) (s ( ∆s)T · b ) cISF ( ∆cs (7)

On the basis of the two-compartment model, the actual blood
glucose concentration, cBG, can be determined from the actual
ISF glucose concentration using eq 4, given the correct lag time
constant for the prediction sample (Ractual). Substituting the value
of the actual ISF glucose concentration from eq 7 into eq 4, we
obtain

cBG ) cISF + Ractual

dcISF

dt
) ĉISF + Ractual

dĉISF

dt
( ∆cs

(8)
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However, the conventional models report the estimated ISF
glucose concentration as the blood glucose concentration (ĉBG)
in the prediction sample:

ĉBG ) ĉISF (9)

Substituting eq 9 into eq 8 and rearranging, we obtain

ĉBG ) cBG - Ractual

dcISF

dt
( ∆cs (10)

Equation 10 implies that, under the conventional calibration
framework, the limiting uncertainty in the concentration estimate
has two separate contributions: (i) the uncertainty resulting from
the measurement noise in the prediction spectrum and the spectral
overlap, ∆cs, and (ii) the uncertainty due to the glucose
physiological lag, ∆cconv ) Ractual(dcISF/dt). While the former
uncertainty (i) is a well-known quantity, the latter uncertainty
(ii) has not been examined before. Figure 2 illustrates the two
contributing factors of the prediction uncertainty. In this figure,
the simulated blood and ISF glucose data in panel A (which
mimics the glucose profiles obtained from a tolerance test) are

plotted against each other to construct the solid curve in panel
B. It is evident that the physiological lag between the blood and
ISF glucose profiles in (A) introduces a hysteresis-like closed loop
behavior when blood glucose is plotted against ISF glucose,
showing the lack of a 1:1 correspondence between the glucose
concentrations in the two compartments. For example, we observe
that, given an ISF concentration of 148 mg/dL at point P, the actual
blood glucose concentration could be either 132 mg/dL (Q) or
158 mg/dL (T). However, conventional methods that have the
underlying assumption of a constant blood-to-ISF glucose gradient
would predict 148 mg/dL (R), giving rise to a significant error in
prediction. Specifically, when the glucose levels are increasing,
the blood glucose concentrations are greater than the correspond-
ing ISF glucose concentrations. This set of values is represented
by the points on the concave upward curve (labeled “RISE”).
Similarly, the set of values obtained during the falling phase is
represented by the concave downward curve (labeled “FALL”).
The lag uncertainty ∆cconv in the predicted blood glucose
concentration for the conventional calibration model is given
by the distance between points Q and R. The uncertainty due
to the noise and spectral overlap in the prediction spectrum is
marked as ∆cs.

Limiting Uncertainty for DCC Calibration. In contrast to
the conventional model, the DCC scheme explicitly accounts for
the physiological glucose dynamics. Specifically, the postprediction
equation (PP-DCC) is used to transform the spectroscopy-based
ISF glucose estimate (ĉISF) to a corresponding blood glucose
value (ĉBG), and this step needs to be considered in evaluating
the limiting uncertainty. As the correct lag time constant in
the prediction sample is unknown in a real clinical setting, some
uncertainty due to the physiological lag is introduced via the
PP-DCC step. As explained in the subsection “Limiting Uncer-
tainty for Conventional Calibration”, we employ the (ensemble)
average of the lag time constants obtained from the calibration
samples to approximate the actual lag time constant in the
prediction sample. On the basis of this approximation, the PP-
DCC equation can be rewritten as

ĉBG ) ĉISF + R¯calib dĉISF

dt
(11)

where Rjcalib refers to the average value of R computed from
the calibration samples.

Substituting eq 7 into eq 11, we obtain

ĉBG ) cISF ( ∆cs + R¯calib dcISF

dt
(12)

The deviation of Rjcalib from the actual lag time constant in the
prediction sample, Ractual, can be written as

R¯calib ) Ractual ( ∆R (13)

where ∆R is the error (uncertainty) in the estimation of the lag
time constant.

Substituting eq 13 into eq 12 and rewriting the first term of
the above equation as cBG, we get

ĉBG ) cBG ( ∆R
dcISF

dt
( ∆cs (14)

Figure 2. (A) Schematic representation of blood and ISF glucose
concentration profiles, similar to those obtained during a typical
tolerance test. (B) ISF vs blood glucose concentrations shown in panel
A. The solid curve shows the lack of 1:1 correspondence between
the actual ISF and blood glucose relationship, while the dotted curve
represents the approximate relationship estimated by the DCC model.
Further details are provided in the text.
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Equation 14, which is analogous to eq 10 for the conventional
calibration model, implies that, even with DCC, the net uncertainty
is a combination of the uncertainties arising from the spectral noise
and overlap (∆cs) and the physiological lag (∆cDCC ) ∆R(dcISF/
dt). However, the primary difference between the two
casesswith and without DCCslies in the magnitude of
uncertainty introduced due to the physiological lag. The lag
uncertainty for the conventional calibration model case (which
is proportional to Ractual) is significantly larger than that
observed for DCC calibration (which is proportional to ∆R).
This can be visualized in Figure 2B. The dashed curve of Figure
2B connects the points whose coordinates are given by the model
estimated blood and ISF glucose concentrations (in contrast to
the solid curve that represents the points whose coordinates are
given by the blood and ISF glucose concentrations in Figure 2A).
Since the exact lag time constant of the prediction sample is
unknown, the estimated blood glucose concentrations will differ
from the actual blood glucose concentrations by the product of
the rate of change in the glucose concentration and the estimation
uncertainty of the lag time (∆cDCC ) ∆R(dcISF/dt)). It is worth
noting that the dashed (DCC-estimated) curve is computed
using eq 11, whereas the blood and ISF glucose concentrations
of the solid curve are related by eq 4. From the figure, it is evident
that ∆cDCC, the distance between points Q and S, is substantially
smaller than ∆cconv, the distance between points Q and R, as
long as the lag time constant used in the DCC model provides
a reasonably close approximation to the actual lag time
constant. A quantitative comparison of the two lag uncertainties
and the spectroscopic uncertainty is performed in the subsec-
tion “Experimental Studies on Human Subjects” in the Results
and Discussion.

MATERIALS AND METHODS
We performed numerical simulations and experimental studies

to (1) demonstrate the improvement in prospective prediction
performance of the calibration model on application of DCC and
(2) estimate the distribution of the lag time constant in a human
population and characterize the prediction uncertainty introduced
due to the physiological lag. To accomplish (1), a numerical
simulation study was undertaken (next subsection). In this study,
ISF and blood glucose concentration data sets, described by Steil
et al.,14,34 were used to generate tissue Raman spectra for
calibration and prediction. The simulations were also used to
understand the relationship between the SNR in the spectral data
set and performance of the conventional and DCC calibration
models. To investigate the lag time distribution in a human
population (2), data sets obtained from our laboratory’s clinical
studies on human volunteers were employed. Additionally, the
human volunteer study was used to determine the limiting
uncertainty arising from the physiological glucose dynamics, as
described in the second subsection in this section.

Numerical Simulations. The data set used in our numerical
simulations was based on blood and ISF glucose concentrations
originally measured by Steil et al.34 In their studies, Steil and co-
workers monitored blood and ISF glucose concentrations in
nondiabetic human subjects during glucose clamping. After 10-12
h of overnight fasting, glucose was sequentially clamped at
approximately 5, 4.2, and 3.1 mM (a 1 mM concentration of
glucose ≈ 18 mg/dL) for 90 min each by insulin and glucose

infusion and subsequently allowed to return to euglycemic levels.
ISF glucose was measured by two MiniMed (Medtronic, Inc.)
subcutaneous amperometric glucose sensors. Blood was with-
drawn at regular intervals for blood glucose measurements using
a clinical glucose analyzer. Our analysis uses the blood and ISF
glucose concentrations from 90 to 380 min after initial insulin and
glucose infusion, as shown in Figure 3. The simulated spectra
and corresponding blood glucose concentrations are divided into
calibration (data set spanning from 90 to 220 min) and prediction
(data set from 230 to 380 min) sets, respectively.

In our study, simulated Raman spectra are generated by
forming weighted linear combinations of the constituent Raman
spectra of glucose, creatinine, and urea (as measured by our
laboratory Raman system19). The weights assigned for glucose
(the analyte of interest) are determined by the experimentally
measured ISF glucose concentrations of the Steil data set. The
other two constituents (spectral interfering agents) are assigned
weights that randomly varied within 2% of a constant value, to
mimic the small changes observed in these constituents during
typical glucose tolerance and clamping tests. To simulate normal
experimental conditions, zero-mean Gaussian white noise is added
to the mixture spectra at varying levels of SNR (20-40 dB) to
study its effect on the prediction performance of the calibration
models. The uniform noise across the spectra and the SNR range
are consistent with those of typical Raman spectra of biological
samples.

In contrast to the conventional PLS calibration strategy, where
the number of loading vectors are optimized, in the DCC
calibration the number of loading vectors and the lag time
constant, R, need to be optimized. To accomplish this, we initially
assign default values to R (0 min) and the number of loading
vectors (2) employed, respectively. Prior to construction of the
leave-one-out calibration model, all but one of the reference blood
glucose concentrations are converted to the corresponding ISF

Figure 3. Blood and ISF glucose concentration-time profiles
measured from a normal human volunteer during insulin-induced
hypoglycemia.34 Glucose was clamped at 5, 4.2, and 3.1 mM and
subsequently allowed to return to normoglycemic levels. It is observed
that the ISF glucose, measured by subcutaneous amperometric
sensors, consistently lags blood glucose concentrations during both
the rising and falling phases. In contrast, they have nearly identical
values during the clamping phases. Reprinted from ref 34, Copyright
2005, with permission from Springer Science+Business Media:
Diabetologia.
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glucose values using PC-DCC (eq 5). This allows the creation of
a calibration model based purely on ISF glucose. The developed
calibration model, in conjunction with the spectrum of the
excluded data point (which constitutes the validation data), is then
used to predict the ISF glucose concentration at that point.
Subsequently, PP-DCC (eq 4) is used to retransform the predicted
ISF glucose concentration to the blood glucose value. This process
is repeated until each data point is used once as the validation
data. The resultant blood glucose estimates are compared with
the actual blood glucose values to give the root-mean-squared
error of cross-validation (RMSECV). The whole procedure is
iterated for appropriate ranges of R (0-20 min) and number of
loading vectors (LV) (2-10) to determine the optimal combination
of parameters (Ropt, LVopt) that yields the minimum RMSECV.
This combination of parameters is then used to obtain the PLS
regression vector, bopt. Prospective prediction on a separate
portion of the data set was performed by taking the scalar
product of the prediction spectra with bopt (eq 2). The ISF
glucose predictions are reconverted to the blood glucose values
using PP-DCC, where Ropt is used in place of R in eq 4. The
root-mean-squared error of prediction (RMSEP) is computed from
the predicted blood glucose concentrations and the reference
blood glucose values.

Conventional PLS calibration and prediction is also performed
on the same data set to compare the relative performance with
that of the DCC model. For further comparison, a fixed time delay
is also incorporated into the standard PLS analysis as a second
control. This involves shifting the measured blood glucose
concentrations with respect to the spectral acquisitions by a
specified amount comparable to the time lag reported in the
literature. Twenty simulations are carried out for each value of
SNR in the spectral data set (both calibration and prediction) to
establish the mean and standard deviation of the prospective
prediction errors.

Experimental Studies on Human Subjects. To investigate
the lag time distribution in a human population, clinical data sets
consisting of blood glucose concentrations and tissue Raman
spectra are used. The acquisition of the clinical data was described
in one of our laboratory’s previous papers.11 Briefly, Raman spectra
were collected from the forearms of healthy Caucasian and Asian

human volunteers undergoing OGTT. The age of the tested
human volunteers was in the range of 21-29, with a mean of 24.5.
For the excitation source, an 830 nm diode laser (Process
Instruments) was used at an average power of ∼300 mW in a ∼1
mm2 spot. An f/1.8 spectrograph (Kaiser Optical Systems) was
coupled to a liquid nitrogen-cooled CCD (1340 × 1300 pixels,
Roper Scientific) for spectral dispersion and acquisition,
respectively. For each volunteer, OGTT was initiated by the
ingestion of a glucose-rich solution, and Raman spectra were
collected every 5 min over a 2 h period. Concurrently, the
reference blood glucose concentrations were measured every
10 min from blood samples using a clinical glucose analyzer
(HemoCue, Inc.), and spline interpolation was used to correlate
the measured blood glucose concentrations with the spectra
collected at intermediate time points. This study protocol was
approved by the MIT Committee on the Use of Humans as
Experimental Subjects.

Data sets from volunteers exhibiting motional artifacts, inad-
equate SNR in the acquired spectra, and impaired glucose
tolerance characteristics are excluded from further analysis. A
representative set of tissue Raman spectra and the corresponding
blood glucose concentration profile acquired from one of the
human volunteers are shown in Figure 4. For the selected
volunteer data sets, DCC calibration is performed using a leave-
one-out cross-validation routine on the measured Raman spectra
and reference blood glucose concentrations to determine the
optimal value of R for each individual. In addition, conventional
PLS calibration is also performed on the same data sets to compare
the resultant cross-validation errors. The cross-validation proce-
dures in both cases remain the same as that described in the
previous subsection, except that experimentally measured Raman
spectra are used in place of the simulated Raman spectra. The
mean and standard deviation of R determined from the human
subjects are used to approximate Ractual and ∆R for the quanti-
fication of uncertainty due to physiological lag for the DCC
and conventional calibration schemes, respectively (section
“Formulation of Prediction Uncertainty Arising from Physi-
ological Lag”). These uncertainty estimates are also compared
with the spectroscopic uncertainty, ∆cs.

Figure 4. (a) Representative Raman spectra acquired from a human volunteer during OGTT. (b) Blood glucose concentration profile measured
over the same time.
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RESULTS AND DISCUSSION
Numerical Simulations. Numerical simulations were used

to compare the prospective prediction capability of the conven-
tional and DCC calibration models. DCC implementation was
found to reduce the RMSECV of the simulated data set from 0.15
to 0.04 mM, when the measured ISF glucose concentrations were
used for computing the cross-validation errors. The RMSECV for
fixed timed delay PLS processing was computed to be 0.07 mM.
These simulation results were obtained for an SNR of 40 dB.
Figure 5 shows the measured ISF glucose concentrations plotted
together with cross-validated glucose concentrations from the
conventional and DCC calibration models. It is evident that the
ISF glucose concentration profile generated with DCC closely
matches the measured ISF glucose concentrations, while that
generated without DCC shows significantly larger deviations. The
cross-validation routine also optimized the lag time constant for
the DCC calibration model and the number of loading vectors
for both models. For this data set, the characteristic lag time
constant, Ropt, was determined to be 6.1 min, in agreement with
the experimentally observed values of 6-8 min.34

When the calibration models were applied prospectively to the
prediction data set, the DCC model (RMSEP ) 0.14 mM)
exhibited significantly improved prediction accuracy compared
with the conventional PLS scheme (RMSEP ) 0.28 mM). In
comparison, the fixed time delay PLS processing provides an
RMSEP of 0.26 mM, which is a slight improvement over
conventional PLS implementation, but it is still significantly poorer
than the DCC performance. Figure 6 shows the results of
prospective prediction, in which the measured blood glucose
concentration profile is plotted alongside the prediction profiles,
with and without DCC. This demonstrates how calibration during
nonequilibrium conditions leads to systematic errors, giving rise
to much higher prediction errors (Figure 6) than estimated during

cross-validation (Figure 5). The presence of systematic errors is
further evidenced by the relative performance of the fixed time
delay processing in cross-validation (approximately 50% improve-
ment over conventional PLS processing) and prospective predic-
tion (approximately 7% improvement over conventional PLS
processing). In fact, in the presence of such errors, the predicted
glucose concentration may have no statistically significant cor-
relation with the actual glucose concentrations during rapidly
rising and declining glucose concentrations. Potentially, one could
achieve an even closer correlation with the measured blood
glucose concentration profile by smoothing out the noisy fluctua-
tions observed in the concentration profile of the DCC prediction
of Figure 6. However, such smoothing algorithms were not
employed as they might introduce artifacts and additional delays
to the concentration profile that are unrelated to glucose equilibra-
tion.34

The accuracy of blood glucose concentration prediction with
and without DCC was also compared at varying levels of SNR in
the spectral data set. Figure 7 shows a plot of the RMSEP of blood
glucose prediction with conventional and DCC calibration models
as a function of SNR. In both cases, an increase in noise level
corresponded to an increase in error values, as expected. However,
under all tested values of SNR, the prediction error of DCC
calibration models was consistently smaller compared to that of
the conventional PLS models. It was also observed that the mean
Ropt was essentially noise-insensitive, although the variations
from the mean Ropt were larger for lower SNR (e.g., the
standard deviation in R was computed to be 0.05 and 0.5 min
at 40 and 20 dB, respectively).

Clearly for DCC implementation, a time series of glucose
measurements (such as those obtained from glucose tolerance
tests) are required from human subjects included in the calibration
study for characterization of the glucose kinetics. It is not possible
to develop a consistent calibration model based only on single
spectroscopic measurements from multiple human subjects, as
such measurements do not provide information on the glucose
kinetics.

Figure 5. Cross-validation results of conventional (red) and DCC
(black) calibration methods applied to the simulated data set. The
measured ISF glucose concentration values are given by the blue
dotted line. In the DCC calibration process, the lag time constant,
Ropt, was optimized to be 6.1.

Figure 6. Prospective prediction results of conventional (red) and
DCC-based (black) calibration methods applied to the simulated data
set. The measured blood glucose concentration values are given by
the blue dotted line.
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It is also worth noting that application of an enhanced
calibration scheme, such as support vector machines39 or hybrid
calibration methods,40,41 alone would not alleviate inconsistencies
in the calibration models as they do not address the lack of 1:1
correspondence between the ISF and blood glucose concentra-
tions (Figure 2). Nevertheless, when used in conjunction with
DCC, such calibration schemes may potentially further improve
the prediction accuracy.

Experimental Studies on Human Subjects. Table 1 lists
the results of the leave-one-out cross-validation on the data set
from each human subject, using DCC calibration as well as the
conventional PLS routine. We observe that, on average, the

RMSECV for the blood glucose concentrations of the human
subjects decreases on application of DCC by 15.5%, with a
maximum decrease of 28.6%. This demonstrates the applicability
of DCC in clinical situations, where the number of tissue
components probed is vastly greater than the three constituents
(glucose, creatinine, and urea) employed in our simulations.

As mentioned in the section “Dynamic Concentration Correc-
tion Theory”, in formulating DCC, it has been assumed that the
sampling volume is a subset of the interstitial fluid space. This
assumption was based on the facts that (i) NIR light has a
penetration depth of ∼1 mm in skin tissue and (ii) the blood
vessels contribute only 5% to the total skin volume,36 with the
outermost epidermis being completely avascular. However, a small
fraction of the inelastically scattered (Raman) light arises from
the glucose residing in the blood compartment. This results in a
reduction in the value of the lag time constant, R, as determined
by our DCC model. Nevertheless, our results demonstrate that
DCC successfully models the clinical human volunteer data, even
though a small Raman contribution from the blood glucose
component is present. This shows that the DCC approach is
effective in improving consistency in the calibration model and
thus in prospective prediction, as long as the spectral contribution
of blood glucose is small compared to that of ISF glucose.

The results also suggest that the value of the lag time is fairly
constant for the tested human volunteer population. This is
established by the lag time distribution obtained from the clinical
data, where the mean of R, 9.5 min, is significantly larger than
the standard deviation, 1.6 min. The relative constancy of R
indicates that the mean lag time of the calibration set provides a
fairly accurate approximation to the lag time of any prospective
subject on whom the algorithm has not been applied before. To
the best of our knowledge, this is the first time that the lag time
distribution in a human population has been measured by optical
techniques. Previous attempts with subcutaneous amperometric
sensors have been observed to have significant sensor-specific
lag, which obscures the precision of the physiological lag mea-
surements.14 In addition to the sensor-specific lag of the subcu-
taneous amperometric monitors, the difference in lag time
constants observed from the numerical simulations using the Steil
data set (6.1 min) and our clinical studies on human volunteers
(9.5 ± 1.6 min) can be attributed to (a) the difference in the
composition of glucose (i.e., the proportion of blood and ISF)
sampled by the spectroscopic and amperometric sensors and (b)
the variations in the population demographics studied in the two
cases.

Although most current research including our own study on
human subjects reported above indicates a reasonably constant
value of R, some research groups have previously suggested that
the response times between blood and ISF glucose may be
different for the rising and falling phases. These groups claim to
have demonstrated that ISF glucose falls in advance of blood
glucose during the time of declining glucose levels.42-44 In such
situations, a modified DCC model can be implemented by

(39) Thissen, U.; Ustun, B.; Melssen, W. J.; Buydens, L. M. C. Anal. Chem.
2004, 76, 3099–3105.

(40) Berger, A. J.; Koo, T. W.; Itzkan, I.; Feld, M. S. Anal. Chem. 1998, 70,
623–627.

(41) Shih, W.-C.; Bechtel, K. L.; Feld, M. S. Anal. Chem. 2007, 79, 234–239.

(42) Sternberg, F.; Meyerhoff, C.; Mennel, F. J.; Mayer, H.; Bischof, F.; Pfeiffer,
E. F. Diabetologia 1996, 39, 609–612.

(43) Aussedat, B.; Thome-Duret, V.; Reach, G.; Lemmonier, F.; Klein, J. C.; Hu,
Y.; Wilson, G. S. Biosens. Bioelectron. 1997, 12, 1061–1071.

(44) Thome-Duret, V.; Reach, G.; Gangnerau, M. N.; Lemonnier, F.; Klein, J. C.;
Zhang, Y.; Hu, Y.; Wilson, G. S. Anal. Chem. 1996, 68, 3822–3826.

Figure 7. RMSEP obtained for conventional (red) and DCC (blue)
calibration models, applied to the simulated data set, as a function
of increasing SNR. The error bars represent the standard deviation
of RMSEP for 20 iterations.

Table 1. Summary of Cross-Validation Results of
Conventional and DCC Calibration Models Applied to
the Human Volunteer Dataa

DCC model
conventional

model

volunteer

no. of
data

points
Ropt

(min)
RMSECV

(mM)
RMSECV

(mM)

change
in RMSECV

(%)
1 25 9.5 0.87 1.07 19.10
2 26 11.5 0.52 0.72 27.56
3 26 10.5 0.70 0.97 28.62
4 30 11.1 1.02 1.08 5.74
5 25 8.4 0.68 0.79 13.35
6 26 8.4 0.64 0.82 22.00
7 25 7.5 0.42 0.51 17.61
8 29 8.1 0.76 0.87 12.44
9 31 8.3 0.96 1.00 3.41
10 27 12 0.50 0.53 5.25

a See the subsection “Experimental Studies on Human Subjects” in
the Materials and Methods.
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employing two distinct R values during the rising and falling
phases through a piecewise application of eqs 4 and 5.

The mean and standard deviation of R obtained on the human
volunteer data set were also employed in determining the
physiological lag uncertainties for the DCC and conventional
calibration schemes. For the conventional schemes, the uncer-
tainty is calculated as Ractual(dcISF/dt), where the mean R of the
human volunteers is used for ractual. At times of reasonably rapid
increase in glucose levels, the concentration of glucose in either
compartment may change by ∼2 mg/dL/min (0.11 mM/
min).15 Plugging in these values, we find that, for conventional
calibration, the prediction uncertainty due to lag amounts to
approximately 1.06 mM. For the DCC model, the uncertainty
due to lag can be computed by ∆R(dcISF/dt), where ∆R is
approximated by the standard deviation of R obtained from the
human volunteer data set. On the basis of this value of ∆R, we
obtain a lag uncertainty of 0.18 mM for the DCC calibration
method. The calculated values project to an approximately
6-fold reduction in the lag uncertainty on application of DCC.

Previously, we had estimated using tissue phantom studies that
the spectroscopic uncertainty for glucose using our Raman
instrument was 1.04 mM (obtained for σ ) 61.03 (photon counts),
sg ) 83.74 (photon counts/mM), and olfg ) 1.43 in eq 6b).19

Prior to this work, this spectroscopic uncertainty was considered
to be the limit of detection, i.e., the smallest concentration at which
glucose could be detected in the tissue. For the specific case of
noninvasive glucose detection, this does not provide the full
picture, as it ignores the lag uncertainty. For example, when
conventional calibration schemes are employed, our results
suggest that the uncertainty due to lag (1.06 mM) is comparable
to the spectroscopic uncertainty (1.04 mM), especially at times
of rapid changes in glucose levels. Consequently, the resultant
limit of detection, which is the sum of the uncertainties arising
from spectroscopic considerations and physiological lag (2.1 mM),
may be nearly twice that of the previously accepted value (1.04
mM). On the other hand, the net uncertainty on application of
DCC (1.22 mM) predominantly arises from spectroscopic con-
siderations (SNR and spectral overlap), and the glucose kinetics
plays only a minor role.

CONCLUSION

The presence of a physiological lag between glucose in the
blood and ISF compartments must be considered in developing
an accurate spectroscopy-based calibration model for predicting
blood glucose concentrations. We have presented a mass transfer
model based correction scheme that explicitly accounts for the
glucose kinetics. The proposed DCC enables us to employ the
reference concentrations that are appropriate for the acquired
spectra in developing the calibration modelsa key step which has
not been previously considered. In particular, the resulting
improvement in blood glucose estimates should enhance the
spectroscopic ability to correctly determine hypoglycemia and
even predict impending hypoglycemia on the basis of the rate of
change in glucose concentration. Furthermore, we have demon-
strated that the prediction uncertainty due to physiological lag,
which is comparable in magnitude to the uncertainty arising from
noise and nonorthogonality in the spectral data set, can be reduced
substantially by employing DCC.

We are currently performing a clinical study to characterize
the glucose kinetics in a larger population of human subjects of
different ages and ethnicities, both with and without diabetes. It
is well-known that inadequate glycemic control causes microvas-
cular and macrovascular changes,45 which may in turn affect the
physiological lag time. We expect that this study will provide
further details about such changes and the ability of spectroscopy
to diagnose similar diabetes-related complications. In addition, the
clinical study across a larger and more diverse population would
lead to a better understanding of the applicability of the DCC
model as well as the variation of the lag time across different
population segments. This clinical study is also expected to shed
light on tissue site selection for spectroscopic sensing on the basis
of a combination of skin heterogeneity and glucose kinetics
parameters. In addition, our future research will focus on com-
bining DCC with nonlinear and hybrid regression schemes to
develop more robust and accurate calibration models.
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APPENDIX I
A first-order accurate estimate of the blood glucose concentra-

tion can be obtained by using a finite difference approximation
for the derivative term of eq 4:

cBG(t) ) cISF(t) + R
cISF(t) - cISF(t - ∆t)

∆t
(15)

where ∆t is the time interval at which spectroscopic measure-
ments (and, thus, ISF glucose concentration estimates) are
obtained. The above equation gives the discrete transformation
equation of the postprediction (PP-DCC) step, which can be
applied in real time. There are a couple of points worth noting
about the application of eq 15. First, it is evident from the above
equation that at least two spectroscopic predictions of ISF
glucose (at t and t - ∆t) are necessary to determine the blood
glucose concentration at time t. In practice, it is beneficial to
perform multiple spectroscopic acquisitions so that the corre-
sponding blood glucose estimates can be averaged to ensure
less fluctuations in the predicted blood glucose value. Second,
the time interval, ∆t, at which the spectroscopy-based ISF
glucose predictions should be performed, needs to be ascer-
tained. Although spectroscopic acquisitions can be performed
rapidly, having a very small ∆t is not too useful as it may fail
to capture the changes in the glucose levels due to the slow
diffusion kineticssthereby rendering the DCC approach inef-
fective. On the other hand, too large a time interval would
introduce substantial errors in the derivative term. Using these
limiting cases as guidelines, one might optimize the value of
∆t with a starting point given by a fraction of the typical
physiological lag time (∼5-10 min).
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APPENDIX II
After integration by parts was employed for the second term

of eq 5, numerical integration was performed by using Simpson’s
rule to get the following equation:

cISF(tf) ) cBG(tf) + (cISF(ti) - cBG(ti)) ×

exp(- tf - ti

R ) -
tf - ti

6
A (16a)

where

A ) ċBG(ti) exp(- tf - ti

R ) + 4ċBG(ti + tf

2 ) ×

exp(- tf - ti

2R ) + ċBG(tf) (16b)

Here, ċBG(t) refers to the derivative of cBG evaluated at t. This
equation can be readily evaluated by approximating ċBG(t) via
a first-order finite difference approximation similar to that
employed in eq 15 for the PP-DCC step (Appendix I). The
resultant discretized version of eq 16a gives the necessary
transformation equation for the PC-DCC step. The primary
challenge in the evaluation of this equation lies in having a priori

knowledge of the initial ISF glucose value, i.e., at the start of the
time window [ti, tf]. Generally, such information is not available
for an arbitrary time window. However, during a spectroscopic
calibration study such as glucose clamp or tolerance test, one
can ensure that the ISF glucose and blood glucose values are
completely in equilibrium at the start of the experiment by
restricting the glucose intake of the subject prior to the
measurements. For example, a typical oral glucose tolerance
test (OGTT) protocol stipulates that the patient must fast for
8-14 h before the study.46 This initial condition enables
successful evaluation of eq 16b for the first time window. For
each subsequent evaluation, the ISF glucose value at time tf for
the previous window is input as the initial value (at time ti) for
the current window. Evidently, the shorter the time window
over which the evaluation is performed, the higher the accuracy
of the determined ISF glucose concentrations. Nevertheless,
the time window cannot be shortened below a lower bound,
governed by the maximum permissible frequency of blood
withdrawal from a human subject. Most research laboratories,
for example, sample blood glucose at time intervals ranging
from 2.5 to 10 min.14,34,47 To determine the values of the
concentrations and their derivatives at intermediate points, spline
interpolation is employed.
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