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Abstract:  We present a novel technique, intrinsic Raman spectroscopy 
(IRS), to correct turbidity-induced Raman spectral distortions, resulting in 
the intrinsic Raman spectrum that would be observed in the absence of 
scattering and absorption. We develop an expression relating the observed 
and intrinsic Raman spectra through diffuse reflectance using the photon 
migration depiction of light transport.   Numerical simulations are employed 
to validate the theoretical results and study the dependence of this 
expression on sample size and elastic scattering anisotropy.  
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1. Introduction  

Sample-to-sample turbidity variations are a limiting factor in non-invasive optical techniques.  
Macroscopically, light propagation in turbid media such as biological tissue is governed by 
elastic scattering and absorption of the media. For example, prominent absorption features of 
hemoglobin can lead to spectral shape distortions in tissue fluorescence spectroscopy [1-5], 
which subsequently confound interpretation of underlying fluorophores. Similarly, in diffuse 
reflectance and Raman spectroscopy, turbidity variations can cause sampling volume 
variations across samples [6-11]. Such turbidity-induced sampling volume variations 
introduce additional non analyte-specific variance into subsequent data analysis. This 
additional variance results in increased prediction error of analyte concentrations and a 
calibration algorithm that is not robust.  
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Many researchers have developed methods to correct for spectral distortions in biological 
fluorescence spectroscopy in which the shape of the observed spectrum is significantly altered 
by the presence of absorbers such as hemoglobin [3, 12-14]. Our laboratory has utilized 
diffuse reflectance spectroscopy (DRS) in the development of intrinsic fluorescence 
spectroscopy (IFS) to correct for turbidity distortions, particularly, absorption-induced 
spectral distortions of the fluorescence line shape [1, 2, 5]. Diffusely reflected light is the 
backward emission which undergoes numerous elastic scattering events before re-emerging 
from the tissue, and thereby provides a metric for the amount of tissue absorption and 
scattering present. The optical properties of a given sample at a particular wavelength can 
therefore be measured in situ by monitoring the diffuse reflectance at that wavelength.  
Similarly, DRS can monitor optical properties at multiple wavelengths. By measuring 
fluorescence and diffuse reflectance at the excitation wavelength and over the fluorescence 
emission wavelengths using the same excitation-collection geometry, the method of IFS can 
be used to remove these distortions. The underlying principle is that in a turbid medium 
fluorescence excitation-emission undergoes similar scattering and absorption as diffuse 
reflectance. For IFS, the main goal is to remove spectral shape distortions, exemplified by the 
hemoglobin absorption peak near 420 nm. 

We are developing quantitative biological Raman spectroscopy to measure analyte 
concentrations in the near infrared (NIR) wavelength range (~ 830–1000 nm) [15]. In these 
studies, shape distortion is less of an issue because of the lack of absorbers with prominent 
spectral features in the NIR wavelength range [16]. However, for quantitative analysis, 
turbidity-induced sampling volume variations become very significant. Consider, for example, 
two identical biological tissue samples containing a Raman analyte, except that the second 
sample has a larger scattering coefficient than the first. The increased scattering causes light to 
be localized in a smaller volume, with a corresponding higher efficiency for the collection 
lens. As a result, the size of the Raman signal in the second sample will be larger than that of 
the first, and the measured concentration of the Raman analyte will be different. Furthermore, 
since both samples have some degree of scattering, the measured Raman concentration in both 
samples will differ from the actual concentration.  

In the Raman spectroscopy literature, some researchers have applied corrections based on 
direct absorption spectroscopy [17-18]. Waters extended the formalism developed by Kubelka 
and Munk to relate the Raman spectrum to the measured diffuse reflectance as a function of 
either the Kubelka-Munk absorption or scattering coefficient [19]. This method assumes that 
only one optical property is changing at a time. Thus, for powdered samples, where the size of 
the particles and therefore their scattering characteristic change little over time, the effect of 
absorption from a progressively darkening sample on the Raman spectrum can be sufficiently 
removed [20-21].  However, the Kubelka-Munk formalism is not generally applicable to 
biological tissue because it assumes isotropic scattering, and biological tissue scattering is 
known to be anisotropic [22]. Recently, a method of retrieving Raman spectra from 
subsurface layers in diffusely scattering media was implemented, in which Raman scattered 
light from surface regions laterally offset from the excitation laser spot was collected and 
analyzed via multivariate techniques [23]. However, correction for sampling volume was not 
considered.  

Under the photon migration framework developed by Wu et al. [1, 24], the same general 
principle that applies for IFS should hold true for Raman spectroscopy as well. The goal of 
this paper is to present a method which corrects measured analyte concentrations for turbidity-
induced sampling volume variations. We refer to this method as intrinsic Raman spectroscopy 
(IRS). Starting from the photon migration theory, we review the analytical model for 
extracting intrinsic fluorescence (the fluorescence as it would be observed in the absence of 
scattering and absorption) and derive a parallel expression for the intrinsic Raman spectrum.  
Monte Carlo simulations are then employed to demonstrate its validity and elucidate the 
relationship between observed Raman and diffuse reflectance for semi-infinite samples and 
samples of finite dimension. An analysis of the methodology with respect to sample size and 
scattering anisotropy is presented. An experimental study is presented in the companion paper 
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to validate this method and demonstrate that it can be used experimentally to correct for 
turbidity-induced spectral distortions and sampling volume variations. 

2. Theory 

Most analytical and numerical models of light propagation in tissue employ macroscopic 
optical properties, including the absorption coefficient, μa (cm-1), the scattering coefficient, μs 
(cm-1), and the elastic scattering anisotropy, g = <cosθ>, the average cosine of the single 
scattering angle, θ. The absorption and scattering coefficients are the probability of a photon 
being absorbed or scattered, respectively, per unit path length. The sum of μa and μs is called 
the total attenuation coefficient, μt, with its inverse defined as the mean free path. As 
mentioned in the Introduction, turbidity, caused by variations in μa and μs, can introduce 
sampling volume variations which prevent accurate concentration measurements. 

Light propagation in turbid media can be described by the radiative transfer equation [25].  
However, the analytical solution to this integro-differential equation can be found only for 
very special conditions, with approximations. Diffusion theory is one of the most extensively 
studied approximations. The diffusion equation, along with appropriate boundary conditions 
dictated by the sample geometry, may be solved to provide the fluence distribution inside the 
sample and the reflected flux. Diffusion theory is often used to model photons that experience 
multiple scattering events and thus propagate “diffusively”, usually with a certain amount of 
source-detector separation [25].  

2.1 Photon migration theory 

Photon migration theory, developed by Wu et al. [24] employs probabilistic concepts to 
describe the scattering of light and to set up a framework that allows the calculation of the 
diffuse reflectance from semi-infinite turbid media. In this framework the diffuse reflectance 
from a semi-infinite medium can be written as:  

 n
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with fn(g) the photon escape probability distribution, n the number of scattering events before 
escaping, g the scattering anisotropy, and a the albedo, μs/(μs+μa). Two fundamental 
assumptions are made in photon migration theory: (1) The photon escape probability 
distribution of a semi-infinite medium depends only on the number of scattering events and 
the anisotropy; and (2) the escape probability distribution can be approximated by an 
exponential function of the form fn(g)= k(g)e-k(g)n. Using this, Eq. (1) can be further 
approximated by an integral form:  
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with k(g) an anisotropy and geometry dependent parameter that can be expressed as the 
product S(1-g) where S depends on the excitation-collection geometry. This quantity must be 
calibrated for each experiment. As demonstrated by Zonios et al. [26], this expression models 
the experimental results well.  

2.2 Intrinsic Raman spectroscopy based on photon migration theory 

Using photon migration theory, Wu et al. [1] derived an analytical expression relating the 
observed fluorescence (FOBS) and the diffuse reflectance (Rd) to the intrinsic fluorescence 
(FINT), defined as the fluorescence measured from an optically-thin slice of tissue, free of 
distortions due to scattering and absorption. This expression and its variants have been 
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employed to recover turbidity-free fluorescence spectra from various types of tissue. The 
resulting intrinsic fluorescence facilitates interpretation of the underlying fluorophores and 
consequently improves the accuracy of disease diagnosis [5].  

Following Wu’s derivation, the observed Raman spectrum (RamOBS) at various turbidities 
can be written as: 
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with μsR the Raman scattering coefficient, μt the total attenuation coefficient at the excitation 
wavelength, and RamINT the turbidity-corrected “intrinsic” Raman spectrum. RamINT is a 
dimensionless quantity equal to μsR/l, where l is a characteristic length. Subscripts ‘x’ and ‘R’ 
denote quantities at the excitation and Raman wavelengths, respectively, and the other 
symbols are defined above. The intrinsic Raman spectrum under semi-infinite conditions is 
therefore:  
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Equation (4) can be further simplified to relate the observed Raman spectrum to the product of 
diffuse reflectance using the integral form in Eq. (2) under the restriction that μs>>μa:  
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From this expression, the intrinsic Raman spectrum must be related to the observed 
Raman spectrum through a calibration procedure. In intrinsic fluorescence spectroscopy the 
calibration is applied to each term, k(g), Rd,x, and Rd,R, individually, through a combination of 
modeling and experimental data [2]. This procedure is not feasible for intrinsic Raman 
spectroscopy in the case of interest here, where both Raman and diffuse reflectance are 
measured in the region of NIR, because the absorption features are exceedingly weak and 
indistinct and the individual parameters are difficult to specify.  Therefore, an alternative 
procedure must be found. One approach is to approximate Eq. (5) by an expression 
proportional to a function of the ratio of RamOBS to Rd. This was explored in reference [27], 
and will be the subject of a forthcoming publication. An alternative, hybrid approach is taken 
here. Because k(g), Rd,x, and Rd,R, are all related to μs, μa and g, we can combine k(g)/(Rd,xRd,R) 
into a function of the easily measurable diffuse reflectance at the Raman wavelength (Rd,R, or 
simply Rd hereafter), 
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We call f(Rd) the calibration function. It includes the factor l and has dimensions of 
inverse length, and can be obtained from a set of tissue phantoms with varying μs and μa. Note 
that RamOBS and Rd must be measured in the same excitation-collection geometry. An 
additional advantage of this approach is that instrument-dependent parameters such as the 
excitation-collection geometry can be calibrated in one step. Such a calibration function can 
be applied to future Raman spectra provided μt and Rd have been determined. 

#96637 - $15.00 USD Received 27 May 2008; revised 19 Jul 2008; accepted 24 Jul 2008; published 7 Aug 2008



In the following, Monte Carlo simulations are employed to elucidate the relationship 
between the observed Raman and the intrinsic Raman spectra. We also study the dependence 
of this calibration function on sample size and scattering anisotropy.  

3. Methods 

3.1 Monte Carlo simulations 

The Monte Carlo code employed here is based on an existing open source code developed by 
Jacques [28] for diffuse reflectance and fluorescence in a single layer medium. The code has 
two steps: In the first step, photons are injected from the top surface of the sample and 
propagate in the presence of elastic scattering and absorption. The absorbed quantity at each 
bin is recorded and used as the initial photon weight for the second step, in which 
fluorescence photons are launched from each bin isotropically and then propagated. The 
outcome includes diffuse reflectance, from the first step, and fluorescence, from the second 
step. A few modifications were made in our code: (1) A fixed-weight scheme was employed 
for photon weight bookkeeping, i.e., the weight (intensity) of a photon stays the same as long 
as it is not absorbed or Raman scattered; when absorption or Raman scattering occurs, the 
photon weight is reduced to zero. This approach is similar to that of Welch et al. [29] and 
gives comparable results to Jacques’ albedo-based approach, but is perhaps more 
representative of a natural process. (2) Secondary Raman scattering is neglected, i.e., a Raman 
photon cannot generate another Raman photon. This is a good assumption, since Raman 
scattering is a very rare event. (3) Angular resolution for the exiting flux was added and we 
provide for finite sample size. This allows us to compare results from different numerical 
apertures as well as various sample sizes. Cylindrical coordinates have been employed in the 
Monte Carlo code, thus the sample geometry reported in the format of radius by depth. 

The simulation begins with injection of a photon into the medium with a calculated step 
size sampled from the probability distribution px=μsexp(-μsx) (Note that the average step size 
is 1/μs). A probability check (ξ<Pa; Pa=μa/μt) determines whether the photon is absorbed or 
scattered. If the photon is absorbed, it is terminated, and the location of absorption recorded.  
If it is not absorbed, it is scattered (with probability Ps=1-Pa). If the scattered photon passes a 
Raman probability check (ξ<PR; PR=μsR/(μs+μsR)), a new photon is launched isotropically at 
the Raman wavelength and propagates until it exits or is absorbed; otherwise the scattered 
photon continues to propagate without wavelength shift. Subsequent scattering angles are 
determined using a Heney-Greenstein phase function, a good approximation for biological 
tissue. Diffuse reflectance consists of the collected photons at its original wavelength, and the 
observed Raman spectrum consists of the collected photons with wavelength shift. 

3.2 Sample design 

A series of Monte Carlo simulations were performed.  The goal was to study the relationship 
between Raman scattering and diffuse reflectance under various turbidity conditions. We 
simulated 49 samples, following a 7×7 matrix of scattering and absorption properties with 
ranges similar to those found in biological tissue [22], in which scattering usually dominates 
absorption. The scattering coefficient, μs, was varied from 18.4 to 99.4 cm-1 (18.4, 36.8, 50.6, 
62.6, 73.6, 87.4, 99.4) and the absorption coefficient, μa, was varied from 0.1 to 1.4 cm-1 (0.1, 
0.15, 0.2, 0.36, 0.5, 0.95, 1.4). The scattering anisotropy, g, was kept at 0.8 unless mentioned 
otherwise.  A Raman scatterer of constant strength was present in each sample to serve as an 
indicator of the Raman spectrum, i.e., RamINT in Eq. (6) was kept constant throughout the data 
set. The excitation beam was collimated with 0.1 cm radius for all simulations. The collection 
angle was between ±45 degrees; the collection spot was concentric with the excitation spot 
but with various radii, specified for each simulation in the Results and discussion section.  
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4. Results and discussion 

4.1 Semi-infinite sample geometry 

Using the Monte Carlo code described above, we studied the relationship between the 
observed and the intrinsic Raman spectra in two scenarios: semi-infinite and non-semi-infinite 
sample geometries, at a single Raman wavelength. From the simulation results, qualitatively 
we observe that Raman intensity changes with the diffuse reflectance, supporting the basic 
principle that both of them experience similar turbidity-induced distortions.   

The one-to-one relationship between the observed fluorescence intensity and the diffuse 
reflectance intensity has been demonstrated [5] with either μs or μa fixed while the other 
varies. Fig. 1 shows that the one-to-one relationship does not hold when both optical 
properties are allowed to vary simultaneously, a situation where extra dependence on μt has to 
be considered as can be seen in Eq. (6).  When μt is factored in, a new one-to-one relationship 
is revealed (Fig. 2). A fit to the curve provides the calibration function, f(Rd), which then 
provides the IRS correction when both optical properties are allowed to vary. Note that 
(RamOBSμt), RamOBS, and Rd have been normalized to their respective maximum values in the 
7x7 sample set. The functional form used for fitting is not important; the best fit to the data 
may be used.  We find that an exponential fit may best approximate the observed function and 
is employed in the companion experimental paper.  However, for illustrative purposes in this 
paper, we find it useful to fit with a power law as the power law exponent is a convenient 
metric for curvature changes. It is interesting to note that RamOBS appears to be only weakly 
dependent on Rd, particularly for larger μa values, as shown in Fig. 1. This implies that 
RamOBS is proportional to 1/μa. Thus, if one substitutes 1/μa for RamOBS in Fig. 2, the plot is 
approximately an inverse Rd vs. μt/μa. This interpretation provides a heuristic explanation to 
why the data points in Fig. 2 collapse onto a smooth curve. 
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Fig. 1. RamOBS versus Rd for 
various turbidities.  Each symbol 
represents one μa series. For each 
μa series, progressive values of μs 
(cm-1) are used: 18.4, 36.8, 50.6, 
62.6, 73.6, 87.4, 99.4. As noted in 
the text, the same data is replotted 
in Fig. 2 from left to right data 
points.  Semi-infinite sample 
geometry was employed with g = 
0.8. 

 

Fig. 2. (RamOBSμt) versus Rd for 
various turbidities. The fit to the 
curve provides the calibration 
function, f(Rd), which can be used 
to correct for sampling volume 
variations.  Semi-infinite sample 
geometry was employed with g = 
0.8. 

4.2 Non-semi-infinite sample geometries 

Under the semi-infinite condition with all return light collected, the diffuse reflectance 
observed with various turbidities is well described by a function of the ratio μs/μa according to 
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scale invariance [26, 31-32]. We next consider non semi-infinite sample geometries, and vary 
the turbidity and study the diffuse reflectance with respect to μs/μa. Three sample geometries 
were simulated with various collection spot radii and fixed delivery spot radius (0.1 cm) and g 
(0.8). We observe a general trend in the results shown in Fig. 3−Fig. 5 that the diffuse 
reflectance is not simply a function of the ratio μs/μa for arbitrary size samples and collection 
spot radii. However, it approaches a function of only the ratio μs/μa when the sample or the 
collection spot radii becomes sufficiently large. This demonstrates that the above-mentioned 
scale invariance, i.e., the ideal case in which Rd=f(μs/μa), is only preserved when both the 
sample and the collection radius are semi-infinite. We find that the sample has to be larger 
than 8δ (the penetration depth, δ = [3μa(μa+μs′)]-0.5) in any dimension to be considered truly 
semi-infinite without any boundary effects, in agreement with reference [33]. The average 
penetration depth in our simulated sample design is 0.33 cm, and thus the 8δ criterion is often 
violated, however, we observe that the diffuse reflectance can be well approximated by a one-
parameter (μs/μa) function using a 2 cm (r) x 2cm (z) sample with a 2-cm collection spot 
radius, but not with a small collection spot radius such as 0.4 cm. Given that the collection 
spot radius is ~0.3 cm in our instrument, we do not expect scale invariance to hold for the 
diffuse reflectance. 
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Fig. 3. Diffuse reflectance from the 49 samples versus μs/μa for a 2 cm (r) by 2 cm (z) cylinder 
with three collection spot radii: 2, 1, and 0.5 cm.  g was kept constant (0.8). 
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Fig. 4. Diffuse reflectance from the 49 samples versus μs/μa for a 1 cm (r) by 2 cm (z) cylinder 
with three collection spot radii: 1, 0.5, and 0.2 cm. g was kept constant (0.8). 
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Fig. 5. Diffuse reflectance from the 49 samples versus μs/μa for a 0.5 cm (r) by 1 cm (z) 
cylinder with three collection spot radii: 0.5, 0.25, and 0.1 cm. g was kept constant (0.8). 

 
It is important to note that although diffuse reflectance versus μs/μa deviates significantly 

from the semi-infinite behavior, Eq. (6) is still applicable. In other words, the variability 
introduced by sample geometry and collection spot size can be captured by both the diffuse 
reflectance and the Raman spectrum, and thus the relationship still holds. Fig. 6 shows the 
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simulation results of calibration function for 4 different sample sizes. Comparing with Fig. 2, 
we observe that the curvature, as indicated by the exponent in the power law fit, increases as 
the sample size increases. The larger data spread for smaller sample size is likely due to 
higher photon loss through the boundaries, which reduces the signal-to-noise ratio. It may also 
be due to a decrease of variability captured by the calibration function with smaller sample 
size, as the semi-infinite condition was assumed in deriving Eq. (6). However, the curve still 
appears to be a good, unbiased fit to the data. 
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Fig. 6. (RamOBSμt) versus Rd for different sample sizes: 0.5 cm (r) x 0.5 cm (z); 1 cm (r) x 1 cm (z); 
1.5 cm (r) x 1.5 cm (z); 2 cm (r) x 2 cm (z). (Fixed g (0.8) for all cases.) The collection spot radius 
was chosen to match the radial dimension of each sample.  

4.3 Elastic scattering anisotropy (g) considerations 

From Monte Carlo simulations we have learned that the curvature of the calibration function 
increases with the sample size. An analogous phenomenon can be observed in Fig. 7 when the 
anisotropy (g) is varied from 0.99 to 0.7. In the high anisotropy (g=0.99) case, the scattered 
light is highly forward directed, resulting in an effective path length much longer than in the 
low anisotropy case; the exponent appears smaller, as in the smaller (i.e., non-semi-infinite) 
samples.  Further, the fact that the relationship between RamOBSμt and Rd becomes close to 
linear suggests that the Raman scattering and diffuse reflectance become more linearly 
correlated in effective path length. This is certainly the case when light scattering is more 
forward directed. 

The effect of sample size and scattering anisotropy on the curvature of the calibration 
function can be studied collectively using the Monte Carlo results shown in Fig. 8. 
Consideration of these two parameters and the interplay between them is important for 
experimental design.  For example, it is known that whole blood is highly forward scattering 
with μs > 300 cm-1 and g ~0.99 [34]. This implies that the exponent will be close to 1 and 
therefore the calibration curve will be more linear. 
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Fig. 7. (RamOBSμt) versus Rd for four g’s: 0.99, 0.95, 0.9, and 0.7. (Fixed sample size 2 cm (r) 
by 2 cm (z) and collection radius 2 cm for all cases).  
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Fig. 8. Combined effect of the sample size and scattering anisotropy on the curvature. 

 
To apply the intrinsic Raman spectroscopy correction, one needs to know the total 

attenuation coefficient μt. In Eq. (6), when μs >> μa and g is relatively constant, μt can be 
conveniently replaced by μs', the predominantly obtained quantity in the literature [32, 35-38] 
based on diffusion theory or variants of it. Our laboratory routinely measures optical 
properties from biological tissue in other wavelength ranges [32], and a similar method can be 
employed for this purpose. 
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5. Conclusion 

Turbidity variation is one of the major limitations in non-invasive quantitative biological 
Raman spectroscopy.  To overcome this limitation, we have developed the theory of intrinsic 
Raman spectroscopy and provided validation using numerical simulations.  We employed the 
photon migration theory for light propagation in turbid media, and related the intrinsic and the 
observed Raman spectra through diffuse reflectance.  We employed Monte Carlo simulation 
to validate the modeling results and study the influence of sample geometry and scattering 
anisotropy on the curvature between the intrinsic and the observed Raman spectra.  These 
results provide a systematic way to correct turbidity-induced sampling volume variations in 
NIR quantitative biological Raman spectroscopy.  An immediate benefit of intrinsic Raman 
spectroscopy is the improvement in non-invasive determination of analyte concentrations in 
turbid media.  The companion paper presents an experimental study to validate this method 
and demonstrate that it can be used experimentally to correct for turbidity-induced sampling 
volume variations. 
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