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Abstract

Raman spectral imaging is a powerful tool for determining chemical information in a biological specimen.

The challenge is to condense the large amount of spectral information into an easily visualized form with high information
content. Researchers have applied a range of techniques, from peak-height ratios to sophisticated models, to produce
interpretable Raman images. The purpose of this article is to review some of the more common imaging approaches, in
particular principal components analysis, multivariate curve resolution, and Euclidean distance, as well as to present a
new technique, morphological modeling. How to best extract meaningful chemical information using each imaging
approach will be discussed and examples of images produced with each will be shown. J. Cell. Biochem. Suppl. 39:

125-137,2002. © 2002 Wiley-Liss, Inc.
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Raman spectroscopy can provide detailed
qualitative and quantitative information about
a sample being studied. It is an inelastic scat-
tering process in which photons incident on a
sample transfer energy to or from the sample’s
vibrational or rotational modes. The difference
in energy between the incident and exiting pho-
tons corresponds to the transition of a molecule
from one state to another. Since the energy
levels are unique for each molecule, Raman
spectra are chemical specific [McCreery, 2000].
The wealth of information obtainable from a
Raman spectral image has led to its use in many
fields, including environmental [Nelson et al.,
2001], industrial [Andrew et al., 1998], poly-
mers [Appel et al., 2000], semiconductors
[Schaeberle et al., 2001], food science [Archibald
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et al., 1998], and pharmaceutical [Clarke et al.,
2001] applications. Raman spectral imaging
has only begun to be applied to the chemical
analysis of complex biological samples. In the
past few years, however, a number of papers
have been published using Raman spectral
imaging to monitor chemical contributions at
the cellular and sub-cellular level.

Several approaches have been employed to
acquire Raman imaging data sets. The three
standard approaches are point scanning, line
scanning, and direct imaging [Delhaye and
Dhamelincourt, 1975; Turrell and Corset, 1996].
Direct imaging involves the collection of a full
image with a single spectral component. Wave-
length selectivity is achieved by using either an
acousto-optic or a liquid crystal tunable filter
that sweeps through specified wavelength in-
tervals capturing a frame at each. Line scan-
ning and point scanning collect a full spectrum
(usually covering Raman shifts between 400
and 1,800 cm ™! for biological media), either
while imaging a line or a single point. The resul-
tant data set from each of these approaches can
be thought of as a hypercube of Raman intensity
as a function of Raman shift and two spatial
axes.
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One of the first tissues to be explored using
Raman imaging was human breast tissue. In
1996, Treado et al. published Raman images of
foreign polymer inclusions (from silicone breast
implants) anchored in the fibrous breast tissue
surrounding the implant [Schaeberle et al.,
1996]. Although the Raman spectrum obtained
from the normal biopsy tissue had very weak,
uninterpretable features, the 1,615 cm ™! band
of Dacron polyester was easily identified, enabl-
ing imaging of the polymer material within the
breast tissue matrix. A subsequent study of
breast tissue demonstrates the use of Raman
imaging to develop a model to understand the
chemical and morphological origins of Raman
spectral features observed in normal and dis-
eased tissue [Shafer-Peltier et al., 2002]. This
morphological model, consisting of spectra
acquired from the cell cytoplasm, cell nucleus,
fat, B-carotene, collagen, calcium hydroxyapa-
tite, calcium oxalate dihydrate, cholesterol-like
lipid deposits of normal and diseased samples
can be used in a linear combination to fit
macroscopic breast tissue spectra. The model
can in turn be used to generate Raman maps
with highly specific information content.

In addition to mapping tissue architecture,
Raman imaging can be used for in situ chemical
investigation of disease processes. One such
example is atherosclerosis where the end pro-
duct of the disease, ceroid, is defined as an
autofluorescent lipid product whose chemical
composition is unknown. Recently, van de Poll
et al. [2002] have explored the chemistry of
ceroid using Raman imaging. This study has
provided new insight into the chemical nature of
ceroid and the disease processes that produce
it. In another experiment, designed to study
fatigue-related microdamage in bone, spectro-
scopically distinet microstructures were corre-
lated with tissue damage [Timlin et al., 2000].
Raman images have even been acquired to
study sub-cellular chemistry. Arikan et al.
[2002] have used Raman imaging as a tool to
monitor beta-carotene in live corpus luteum
cells, while Freeman et al. [1998] have inves-
tigated the sub-cellular localization of zinc
phthalocyanines, photosensitizing agents used
in photodynamic therapy. Surface-enhanced
Raman spectroscopy in conjunction with imag-
ing has been used to study the chemical com-
position of live cells [Kneipp et al., 2002]. In
particular, the DNA and phenylalanine con-
tents of the cells were monitored.

A time-honored technique for creating spec-
tral images is by examination of a specific peak
height. In this approach, the intensity of a
particular Raman band at each spatial location
is plotted to produce animage [McCreery, 2000].
This method has been widely used and provides
information about the spatial location of every
molecule in the sample that contributes inten-
sity to the vibrational frequency chosen. How-
ever, this approach only takes advantage of a
small portion of the data available. In complex
biological samples, where several distinct moi-
eties may contribute intensity to a particular
Raman band, it is necessary to incorporate all of
the spectral information in order to differenti-
ate them. Thisis achieved by the application of a
model that utilizes the full spectrum, as is done
with point and line scanning, when creating an
image. The key is to compress the information
into a manageable, yet still informative form.
Some common data compression techniques,
which will be presented here, are principal
component analysis (PCA), multivariate curve
resolution (MCR), and Euclidean distance.
Morphological modeling is a new approach that
will also be presented.

Each one of these techniques relies on the
basic assumption that the Raman spectrum of a
mixture of chemicals can be represented as a
linear combination of the mixture’s component
spectra [Buschman et al., 2001a,b; Shafer-
Peltier et al., 2002]. Raman images are gener-
ated by fitting basis spectra contained within
the model to the Raman spectrum obtained at
each position in the image. Generally, the more
a basis spectrum contributes to a data spec-
trum, the larger the fit coefficient and the
brighter that spot appears in the image of the
component being examined. In the cases of PCA
and MCR, basis spectra are mathematically
derived, whereas for Euclidean distance and
morphological modeling, basis spectra are ex-
perimentally determined.

In PCA, singular-value decomposition is used
to calculate basis spectra[Wold et al., 1987]. The
first basis spectrum, or principal component,
accounts for the maximum variance in the data
if the data is mean-centered prior to analysis.
The second basis spectrum accounts for the next
most variance, and so on, until the basis spectra
account only for the noise in the data. These
basis spectra are created such that they are
orthogonal to each other, and therefore contain
no overlapping spectral information. The fit
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coefficients obtained when these principal com-
ponents are fit to the imaging data set can be
used to create a two-dimensional image. This
image will provide a map of how the spectral
features represented by the principal com-
ponents are distributed in the sample. In turn,
this map can be correlated with morphological
features observed through another optical tech-
nique, such as phase contrast microscopy or
light microscopy with histological staining. The
lineshapes of the principal components might
also be correlated with the Raman spectra of
known chemicals, however, this is difficult as
the principal components contain both negative
and positive spectral features.

MCR is designed to extract basis spectra that
are similar to the real Raman spectra of the
chemicals present in the sample [Tauler et al.,
1994; Andrew and Hancewicz, 1998]. An initial
estimate of the concentrations or basis spectra
present in the sample is used in a constrained,
alternating least-squares optimization. New
estimates for the concentrations and basis
spectra are generated by iterating between
least-squares solutions for basis spectra and
concentrations. These equations can be solved
subject to non-negativity constraints to ensure
that both the basis spectra and concentrations
are all positive and thus physically relevant.
Optimization continues until the changes in
the concentrations and basis spectra from one
iteration to the next are minimal. The more
complex the system, the better the initial esti-
mates need to be to obtain meaningful solutions
to these equations. Due to the high-degree of
overlap in the spectral features of different
components and the noise inherent in the data,
MCR cannot always converge on the correct
solution. However, when a solution is found, the
basis spectra produced resemble the Raman
spectra of the individual chemicals present in
the sample. Once again, the fit coefficients of the
basis spectra can be used to produce an image.

Both PCA and MCR are useful techniques
when little is known about the sample a priori.
They enable one to extract spectral information
without knowing its chemical origin. Euclidean
distance measurements and morphological
modeling both use information about the known
chemistry of a sample to create an image.
Euclidean distance only requires the knowledge
of a few chemicals present whereas morphol-
ogical modeling requires knowledge of all of
the major contributors to the sample’s Raman

spectrum. Despite requiring the most prior
knowledge of the sample, morphological model-
ing produces the most easily interpretable
results.

Euclidean distance classifies spectral var-
iance in the image data from a basis spectrum,
usually a pure chemical spectrum, according to
the data’s geometric distance [Potter et al.,
2001]. The distance is calculated using the

S (S(X) — P()))* where d is the
A

equation:

Euclidean distance, Sisthe sample data, Pisthe
pure chemical spectrum, and A represents the
wavelengths over which the spectra are acquir-
ed. The more a spectrum in the image dif-
fers from the basis spectrum, the larger the
distance.

Morphological modeling is a new technique
for analyzing Raman images, which uses ordin-
ary least-squares to fit a set of basis spectra to
the data [Buschman et al.,, 2001a; Shafer-
Peltier et al., 2002]. The origin of the basis
spectra is what makes this approach so useful.
The basis spectra are acquired from the major
morphological features found in a set of repre-
sentative samples using a Raman confocal
microscope. By using a spectrum of a morpho-
logical feature acquired in situ, one obtains a
spectrum that represents that morphological
component in its chemical microenvironment.
The basis spectra should account for all of the
major chemicals present in the sample, but
both the signal to noise of the data as well as
the degree of overlap of the basis spectra must
be considered to determine whether they can be
accurately be resolved. Although basis spectra
can be acquired from pure chemical compounds
[Brennan et al., 1997], morphologically derived
components [Buschman et al., 2001b; Shafer-
Peltier et al., 2002] are preferable as they are
derived from actual samples, and are thus closer
than pure chemical spectra to what is observ-
ed in situ. Sometimes, a combination of pure
chemical components and morphologically
derived components will produce the best result
if the chemicals of interest do not occur in-
dependently within a sample. If a model is well
chosen, the images produced can reveal detailed
morphological and chemical structure in the
sample.

In this article, the application of morphologi-
cal modeling to Raman images of human colonic
carcinoma cells as well as human breast and
artery samples will be demonstrated. This new
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technique of morphological modeling will then
be compared with other commonly used techni-
ques, primarily: peak height analysis, PCA,
MCR, and Euclidean distance. The advantages
and disadvantages of each technique, as well as
when to use them, will be discussed.

MATERIALS AND METHODS
Tissue Handling

Breast tissue samples were obtained from
excisional biopsy specimens while artery sam-
ples were obtained from explanted hearts at the
time of transplant. Once removed, the tissue
was snap frozen in liquid nitrogen and stored at
—80°C. The tissue samples were then mounted
on a cryostat chuck using Histoprep (Fisher
Diagnostics, Orangeburg, NY) and cut into 6 um
thick sections using a cryomicrotome (Interna-
tional Equipment Company, Needham Heights,
MA). Several consecutive sections were cut, one
mounted on a MgF, slide (Moose Hill Enter-
prises, Inc., Sperryville, VA) for Raman data
acquisition and at least two others on glass
slides for histological staining. The stained
slides were used for pathological confirmation
of features observed in the Raman maps. Dur-
ing measurements, the tissue was kept moist
with phosphate buffered saline (PBS), pH = 7.4.
In addition to the Raman micro-images, phase
contrast images of the unstained tissue were
recorded via a CCD camera.

Cell studies were performed using the human
colonic carcinoma cell line HT29 (gift of the
Harvard Digestive Diseases Center, Boston,
MA). They were grown using high-glucose
Dulbecco’s modified Eagle medium (DMEM)
supplemented with 10% fetal calf serum, 100 U/
ml penicillin, and 100 pg/ml streptomycin (all
Gibco BRL products, Life Technologies, Grand
Island, NY). Cells were grown to confluency at
37°C in a humidified atmosphere of 5% CO5 in
air and dispersed into suspension using trypsin.
Cell suspensions were placed on MgFy flats,
rinsed with PBS, buffered at pH="7.4, and
allowed to air dry. Drying of the sample was
necessary in order to immobilize the cells for the
entire mapping experiment. The dried samples
were then rewet with PBS and Raman maps
were subsequently acquired. Raman imaging
microscope data collected from the dried cells
were compared to data collected from viable
cells still in suspension using a bulk Raman
system. The spectra acquired from the dried

cells were used to model the spectra obtained
from the viable cells. No residual from the model
fit was observed.

Instrumentation

The Raman micro-imaging set-up used to
collect the data for the images presented here
was a point scan system. Raman excitation was
provided by an argon ion laser-pumped Ti:sap-
phire laser (Coherent Innova 90/Spectra Phy-
sics 3900S, Coherent, Inc., Santa Clara, CA).
Typically 50—150 mW of 830 nm excitation light
was focused through a microscope objective
(63 x Zeiss Achroplan, infinity corrected, water
immersion, numerical aperture 0.9) to a spot
on the sample with a diameter of <2 pm. The
experimental system has been described pre-
viously [Shafer-Peltier et al., 2002]. The spec-
tral resolution was ~8 cm ™. Spectral maps of
the tissue were created by raster scanning the
translation stage (Prior Scientific Instruments
Ltd., Cambridge, MA) under the microscope
objective. Maps were normally acquired with a
step size of 2 um, consistent with the spatial
resolution of the confocal microscope. Although
data collection time depended on several user
defined parameters, such as the image step size,
number of steps, and spectral acquisition time,
an entire Raman image was typically generated
in 2—5 h. A CCD camera atop the microscope
allowed for registration of the focused laser spot
with a white light trans-illuminated or phase
contrast image.

Data Processing

All spectral data processing was preformed
using MATLAB (MathWorks, Inc., Natick, MA).
The data were corrected for the spectral re-
sponse of the system using a tungsten light
source and then frequency calibrated using the
known Raman lines of toluene. Cosmic rays
were removed with a derivative filter and the
small background from the MgF, flat was
subtracted. Data were then fit with a fourth
or fifth order polynomial, which was subtracted
from the spectrum in order to remove any
fluorescence background. All data was peak-
height normalized to one. Finally, MATLAB
was used to implement the various data com-
pression techniques: PCA, MCR, Euclidean dis-
tance, and morphological modeling. Algorithms
for PCA and ordinary least-squares (used as the
fitting algorithm for morphological modeling)
already exist in MATLAB, while the algorithm
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for MCR was a part of PLS Toolbox (Eigen-
vector Research, Inc., Manson, WA). The pure
chemicals used for spectroscopic modeling of the
HT29 cells: triolein, phosphatidyl choline, cho-
lesterol, and DNA (calf thymus), were pur-
chased from Sigma (St. Louis, MO) [Buschman
et al.,, 2001a]. The morphologically derived
spectra used to analyze the artery, breast, and
HT29 data have been presented previously
[Buschman et al., 2001b; Shafer-Peltier et al.,
2002].

In order to obtain improved image contrast a
smoothing algorithm based on spatial filtering
was applied to all data presented here [Baxes,
1984; Bock and Krischer, 1998]. Spatial filtering
relies on the assumption that adjacent pixels in
a digital image contain related information. A
group of pixels surrounding and including the
central pixel is called a kernel. We base our
smoothing algorithm on a kernel size of 3 x 3.
Our algorithm uses a mask that weights the
contributing pixels according to the reciprocal of
their geometric distance from the center of the
kernel. The resultant mask is

2/28 3/28 2/28
3/28 8/28 3/28
2/28 3/28 2/28

where each fraction represents the weight of a
pixel in the kernel.

RESULTS

Morphological modeling is a powerful tool for
collecting architectural and chemical informa-
tion on a small scale. In Figure 1, features such
as the cell membrane, nucleus, and cytoplasm
are easily identified when spectra of human
colonic carcinoma cells (HT29) are fit with the
pure chemical spectra of phosphatidyl choline
(A), DNA (B), cholesterol linoleate (C), triolein
(D), and “cell cytoplasm” (E), a morphologically
derived spectrum developed for the breast tissue
model, mostly actin) [Shafer-Peltier et al., 2002].
The spectrum (-) corresponding to the voxel
indicated in Figure 1E can be seen in G, along
with the corresponding fit (—) and residual
(below). The fit contributions of the individual
model elements are also shown. The spectral
images agree with the phase contrast image,
demonstrating that using a simple model of five
basis spectra, it is possible to obtain structural
and chemical information about a sample at the

sub-cellular level. As the cell shown in the image
is evenly bisected by the plane of focus of the
confocal microscope, the cell membrane (mostly
phosphatidyl choline and cholesterol) is observ-
ed as a ring structure with the cell cytoplasm
and DNA contributions observed clearly as
distinct features within. The average nuclear
size for HT29 cells is 10 pm, consistent with the
dimensions provided by the Raman image of the
cell DNA content [Wax et al., 2002].

Morphological modeling can be applied to
human tissue samples as well. Figure 2 shows
phase contrast images (2A and G) of a mildly
atherosclerotic artery along with Raman im-
ages depicting the distribution of some of the
morphological structures (2B—F). The images
clearly show that the cholesterol (2B), foam
cells, and necrotic core (2C) are solely confined
to the intima while the smooth muscle cells (2E)
are more prominently found in the media. This
finding is consistent with the known architec-
ture of atherosclerotic vessels. There is only a
slight demarcation between one smooth muscle
cell and the next because they are so closely
spaced and even overlapping in the media. The
images demonstrate the high spatial resolution
of this technique and show evidence of fenestra-
tion of the elastic lamina, a process known to
occur with the development of atherosclerosis
[Braunwald et al., 2001]. The fenestration can
be observed in the Raman image of the internal
elastic lamina (IEL), Figure 2D. The smooth
muscle cells, shown in Figure 2E, can be seen
migrating through the break in the IEL into the
intima. Smooth muscle cell migration is a char-
acteristic of atherosclerotic disease progression.
In addition, one can identify a prominent
collagen fiber (2F) in the media atop a diffuse
connective tissue background, a feature that is
difficult to fully appreciate from the phase
contrast image.

Figure 3 shows Raman images of a normal
human breast duct obtained using a morpholo-
gical model [Shafer-Peltier et al., 2002] created
specifically to analyze breast tissue (Fig. 3A-D).
These images can be compared with those
created by plotting the intensities of two Raman
bands (Fig. 3E and F) characteristic of the DNA
phosphate stretch (1,094 cm ') and the amide I
band (1,664 cm ). The morphologically based
Raman images represent the regions where
a particular component (cell cytoplasm (3A),
cell nucleus (3B), fat (3C), or collagen (3D))
contribute strongly to the spectrum (bright
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Fig. 1. Raman images (A—E) of HT29 cells with corresponding

phase contrastimage (F). Raman spectra are fit with phosphatidyl
choline (A), DNA (B), cholesterol linoleate (C), triolein (D), and
morphologically derived cell cytoplasm (E) spectra to produce

regions). Histological analysis of the tissue
sample showed a normal breast duct with a
diameter of approximately 25 pm. A typical
breast duct of this size consists of a ring of
epithelial cells surrounded by a basement
membrane (primarily collagen). Within and
surrounding the duct is some fat. The morpho-
logical model images clearly show the architec-
ture of the duct, whereas the peak height
images produced using the Raman bands found
at 1,094 and 1,664 cm ! are much less informa-
tive. Although the DNA phosphate stretch

10

Shafer-Peltier et al.

»
F.

10 pm

15 % Phosphatidyl Choline
10 % DNA

9 % Cholesterol Linoleate
30 % Triolein

36 % Cell Cytoplasm

chemical maps of the cells. G: shows the spectrum (-) acquired
from within the box indicated in image E along with the
corresponding fit (—) and residual (below, with zero line drawn).
The fit contributions of each model element are listed to the side.

(1,094 cm !, Fig. 3E) should be found primarily
in cellular regions, while the amide I band
(1,664 cm !, Fig. 3F), indicative of protein,
should be found mainly in collagenous regions,
the images produced show neither the cellular
component nor the collagen as clearly as the
morphological model images do. This is because
the amide I band can be found in many proteins,
including those that form the cell cytoskeleton,
whereas the phosphate stretch overlaps with
bands present in the collagen spectrum. The
inability of peak height analysis to accurately
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Fig. 2. Phase contrast images (A and G) of a mildly atherosclerotic artery, with the internal elastic lamina
(IEL) and collagen fibers highlighted in G. Also shown are the Raman images of cholesterol (B), foam cells and
necrotic core (C), IEL (D), smooth muscle cells (E), and collagen (F). Key morphological features, such as the

fenestration of the IEL can be observed.

distinguish morphological features due to spec-
tral overlap results in a much less informative
image.

The Raman spectrum in Figure 3G represents
a single point in the Raman image. The spect-
rum is a mixture of many chemical components,
all of which contribute to the Raman spectrum.

By fitting the spectrum with a morphological
model it is possible to account for the major
spectral features in the data. The residual of the
fit, also shown in Figure 3G, is predominately
noise, indicating that all of the information in
the Raman imaging data hypercube can be re-
presented by model-based images.
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Although morphological modeling is an effec-
tive means of representing Raman images,
it requires much advanced knowledge of the
sample being studied. As discussed earlier,
PCA, MCR, and Euclidean distance can also be

B.

2

Intensity (a.u.)

residual E

800 &gg,nnan shift (c1n§|9?) 2000

used to compress the data into a manageable
form and are much more effective when little is
known about the system. Figure 4 shows a side-
by-side comparison of PCA, MCR, Euclidean
distance, and morphological modeling. The im-
ages, generated from the same data set, are of a
sample of normal breast tissue containing three
ductal units (mostly cells) surrounded by a col-
lagen matrix. As can be seen, the images created
by all four techniques are similar. The Eucli-
dean distance images are shown as inverses (as
they represent differences from input spectra
rather than similarities as the other methods
do) for easy comparison with the other techni-
ques. On the left, the contributions attributable
to collagen are shown, while on the right, the
more subtle contributions of the cell nucleus
(mostly DNA) are displayed. Both PCA (Fig. 4A)
and MCR (Fig. 4B) were able to find seven
independently varying basis spectra. Our com-
plete morphological model for breast tissue
has nine basis spectra, however, this includes
several elements, such as microcalcifications,
that are pathologically very important but that
are observed only rarely in human breast tissue
and not at all in this specimen [Haka et al.,
2002].

The first two principal components, two of the
spectra derived using MCR, and the collagen
and cell nucleus basis spectra are shown in
Figure 4E. The first principal component and
the MCR spectra are similar to the collagen
spectrum, the largest contributor to the image.
The second principal component and the spec-
trum produced by MCR both contain some
features of the cell nucleus spectrum (as
negative peaks), but as can be seen from the
image produced (Fig. 4A,B, right), they are
much less effective at extracting the nuclear
content within the ductal units than the mor-
phological model (Fig. 4D, right). The filled-in
rounded shape of the ductal units observed in

Fig. 3. Raman images of normal breast duct based on ordinary
least-squares fitting of morphologically derived components: cell
cytoplasm (A), cell nucleus (B), fat (C), and collagen (D). Images E
and F plot the intensity of single bands: the DNA phosphate
(1,094 cm™") and the protein-based amide | (1,664 cm™) peaks
respectively. Demonstration of the fitting of a morphologically
based model (-) to the spectrumof an individual pixel (locatedina
region with cellular content) in a Raman image (—) is shown in G.
Theresidual of the fitis plotted below the spectrum (with the zero
line drawn).
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Fig. 4. Comparison of four different methods for analyzing
Raman images of a region with multiple ductal units, separated
by collagen. The images produced by the fit coefficients of the
first two principal components are shown in A. B: This shows the
two corresponding images produced by multivariate curve
resolution (MCR). C: This shows images based on Euclidean
distance, using the collagen (left) and cell nucleus (right) spectra
from the morphological model. The images in D are produced
using the fit coefficients produced by ordinary least-squares
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Raman shift (cm-1)

fitting with the morphological model, only collagen (left) and cell
nucleus (right) are shown, but the complete model was used. E:
shows the basis vectors used to create the images, from top to
bottom: the first two principal components, the corresponding
spectra produced by MCR, the morphologically derived spec-
trum of collagen and the morphologically derived spectrum of
the cell nucleus. The last two spectra were used in both the
Euclidean distance measurements and morphological modeling.
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Intensity (a.u)
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Fig. 5. A: Raman image (same as Fig. 4D, left) with third row indicated by white line and (B) heights for
corresponding fit coefficients for the indicated row obtained using the four different models: PCA (A), MCR
(), Euclidean distance (O), and morphological model (X).

Figure 4D (right) is consistent with the path- Figure 4A-D, left (row indicated in Fig. 5A).
ology of this tissue slice. Although PCA (A), MCR (), Euclidean dis-

Figure 5 shows the normalized fit coefficients tance (O), and morphological model (X) all
of a particular row of the Raman images used in display some form of transition from the
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collagenous to cellular regions of the tissue,
indicated by a change in the intensity of the
fit coefficient, the transition is sharpest when
using the morphological model. Therefore, not
only does the morphological model provide
information about more of the constituents
of the sample (e.g., cell nucleus), but it also
produces images with a higher resolution.

DISCUSSION

The simplest method for displaying a Raman
image is to plot the intensity of a particular
Raman band, or alternatively the ratio of two
Raman bands. This method of analysis only
takes advantage of a small portion of the data
and because most biological samples contain
many compounds with similar spectral fea-
tures, is not applicable to biological systems.
Spectral overlap makes it difficult to obtain
structural or chemical information about a
sample from a Raman image based solely on
peak height.

In this article, four techniques which utilize
the full spectrum for creating Raman images
are presented: PCA, MCR, Euclidean distance,
and morphological modeling. These imaging
techniques are applicable not only to Raman,
but also to many other spectroscopic imaging
techniques, such as fluorescence. Each techni-
que has its advantages and disadvantages.
Some require no (PCA) or little (MCR) prior
knowledge of the sample being studied, while
others require some (Euclidean distance) or
complete (morphological modeling) knowledge.
The quality of the images produced is usually
related to how much information is known.

PCA requires the least input from the user
and consequently is the best tool for studying
new types of samples. PCA is used to map out
regions based on their spectral variance. Due to
the mathematical process by which they are
created, the principal components will always
explain all of the spectral features presentin the
data. However, as the principal components
themselves are mathematical constructs, they
can be difficult or impossible to correlate with
known chemicals. Despite this drawback, infor-
mation gained from PCA can be used to build
more sophisticated models, such as the morpho-
logical models developed for breast and artery
tissues.

While MCR is also mathematically driven,
non-negativity constraints can be applied to

ensure that the basis spectra developed have
more identifiable features than those produced
by PCA. In fact, spectra determined using MCR
can be very similar to the true chemical spectra.
The disadvantage of MCR is that the more
complex the system being studied, especially if
there is much overlap in spectral features, the
more difficult it is to perform the analysis. A
skilled user can recognize when MCR has failed
and adjust the parameters accordingly if the
system is simple enough, but this too becomes
more challenging as more component spectra
are added to the sample mixture. In addition, as
more curves are resolved in a complex system,
noise plays a larger and larger role. None-
theless, MCR is extremely useful for obtaining
spectral lineshapes that can be used to direct
further analysis of a sample.

When some, but not all, of the components of a
sample are known, Euclidean distance is very
effective. For example, it is not uncommon to
have a sample in which the spectrum of the
specific chemical being studied is known, but
where the background chemicals are unknown.
In this case, Euclidean distance can map the
distribution of that particular chemical within
the sample, unencumbered by the lack of
knowledge of the background.

For detailed analysis of a system, especially
for producing images with similar information
content to pathology slides, morphological mod-
eling is the best technique. However, develop-
ment of a good morphological model can take
time and requires much data acquisition in its
own right. If the model is incomplete, the images
will give less accurate information. Therefore,
morphological modeling is best used when ex-
tensive studies are being performed and model
development is a part of the experiment.

CONCLUSIONS

Raman spectral imaging is a powerful tool for
determining chemical information in a biologi-
cal specimen. The challenge is to capitalize on
all of the spectral information, condensingit into
an image with maximal information content. In
this article, we introduced a new technique,
morphological modeling, and reviewed three
of the more common imaging approaches: PCA,
MCR, and Euclidean distance. Each technique
has its time and place. PCA and MCR are ex-
cellent for studying samples about which little is
known a priori, whereas Euclidean distance can
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produce improved images when some infor-
mation about the sample is known. Using a
morphological model, it is possible to obtain
structural and chemical information about sub-
cellular features, although it is ineffective if the
system being studied is not well understood.

The ability to combine Raman confocal micro-
scopy with imaging modalities to produce im-
ages of tissue or cells will be important for future
biological studies. Although, Raman has only
recently begun to be used as a tool for studying
biological processes, because Raman is non-
damaging at low laser powers, it will be used
more and more to study biological samples,
including live cells. Soon researchers will be
monitoring sub-cellular processes using Raman
imaging.
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