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Physics of Rock Climbing: Anchor Lab 
Lab purposes:  The Physics: To understand the vector nature of force. 
  The Climbing: To understand how force bears on climbing anchors. 
  The Experience: To use the physics understanding of the vector nature of   
  force to design climbing anchors according to the style and needs of the climber. 
 
Motivation: In the roped climbing game, climbers must periodically construct belay anchors whose 
integrity must be impeccable. Belay anchors are typically made with several individual anchoring devices, 
in part because redundancy is needed for impeccable integrity and in part because the strength of a single 
anchor may not be sufficient to withstand the most severe loads that might be expected (~20 kN). The 
individual anchor devices are then connected together with carabiners and webbing to complete the anchor. 
Figures 1a through 1e show the construction of a belay anchor. Figure 1a shows the rock at the belay 
stance; Figure 1b shows the anchor devices in place. Figure 1c shows the anchor devices connected 
together with a sling, and Figures 1d and 1e show the resulting anchor weighted by a climber. Construction 
of such an anchor requires an understanding of the limitations of the individual components and an 
understanding of how to combine the components. One fundamental aspect of the combination is an 
understanding of how the force applied by the climber is transmitted to the individual anchors. This lab 
teaches the vector analysis needed to add forces. 

  
Figure 1a A view of a typical belay 
stance. The climber must decide 
where to place anchor devices. 

Figure 1b Anchor devices in place. 

   
Figure 1c The rigged anchor: the 
anchor devices are connected by 
webbing.  

Figure 1d The weighted anchor: 
the magnitudes of the forces on 
each anchor point are about 
equal. 

Figure 1e The climber 
anchored at the belay stance. 
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Forces as Vectors 
 
A force is represented as a vector; it has both a magnitude and a direction. It can be depicted as an arrow; 
the arrow’s length shows the magnitude of the force, and the arrow’s orientation shows the direction of the 
force. A force or tension in a rope is transmitted along the rope’s length. The importance of the directional 
quality of force is understood intuitively by climbers: when top roping a vertical climb, it can be reassuring 
if there is a little bit of tension in the rope, a small force pulling upwards (Figure 2a). When climbing 
through an overhang, or along a traverse, the extra tension in the rope is disconcerting because it pulls the 
climber off the rock (Figure 2b). When force is expressed without the directional information, the direction 
is taken from context. For instance, one might say “I weigh 180 pounds,” without needing to say that this 
force pulls down.  
 
 

  
Figure 2a When the rope pulls up, it is generally 
reassuring. The arrow show the direction of the 
force exerted on the climber by the tension in the 
rope. 

Figure 2b When the tension in the rope pulls the 
climber out away from the rock, it can precipitate 
an unnerving swing. 
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Adding Forces 
 
Force addition takes both the magnitude and direction information into account. Graphically, force addition 
can be represented by placing the vectors head to tail; the orientation of the arrows must be maintained. If 
the vectors point in the same direction, the magnitudes can simply be added. If the vectors do not point in 
the same direction, then trigonometry must be invoked to calculate the sum. Several equivalent methods 
can be used according to whim, ease, or familiarity. Figure 3 shows examples of force addition in climbing 
situations.  
 

 
 

Figure 3a Forces due to the tension in a pair of half 
ropes. The forces are in line and point in the same 
direction 

Figure 3b The forces on a climber doing a pull-
up. These forces are in line, but the force of 
gravity points in the direction opposite the 
forces exerted by the climber’s hands. 

 

 

Figure 3c Forces due to the tensions in a pair of half 
ropes. In this example, both the magnitudes and 
directions of the forces differ, so trigonometric 
calculation is required to sum the two forces. The 
up/down and left/right components of the forces are 
shown as grey arrows. 

Figure 3d The forces on a climber doing a pull-
up while being pulled sideways by a rope. All 
the forces are either in the up/down or the 
left/right direction, so total force can be 
expressed as the sum of the up/down forces in 
the up/down direction and the sum of the 
left/right forces in the left/right direction. 

 
 
Figure 3a shows an example the forces that might be exerted on a climber due to tension in a pair of half 
ropes. (A climber might choose to climb with a pair of half ropes rather than with a single rope. A pair of 
half ropes has the advantage of redundancy and the disadvantage of extra weight.) Here, both the 
magnitudes and the directions of the tensions are identical; the resulting sum is twice as large and points in 
the same direction.  
 
Figure 3b shows the forces on a climber doing a pull-up; two equal forces at the hands pull upwards, and 
gravity pulls down. (The gravity vector is shown in grey). Summing the vectors by placing them head to 
tail results in a net force whose magnitude is two times the force exerted by a single hand minus the force 
of gravity. The direction of the net force points up or down depending on whether the arms are pulling up 
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more than gravity pulls down. Here, the climber is pulling more than gravity and the net force is in the up 
direction. 
 
Figure 3c shows another example of forces that might result from a pair of half ropes. In this situation, the 
tensions in the ropes differ in both magnitude and direction. Placing the two force vectors head to toe 
provides a graphical representation of the sum of forces due to the ropes. Trigonometry is needed to 
numerically calculate the magnitude and direction of the sum. Different strategies can be used to arrive at 
the sum. One approach is to use the law of cosines to find the length and angle of the sum; in this example: 
Length=1.22+1.92-(2×1.2×1.9×cos(105°))=2.5 and Angle=120°-arcos((1.92-1.22-2.52)/( -2×1.2×2.5)=73°. 
A second approach is to componentize the vectors and add the components. The left/right component of the 
1.2 kN force is 0.6 kN (1.2×cos60°) pointing to the left; the up down component is 1.04 kN (1.2×sin60°) in 
the up direction. The magnitudes of both the left/right component and the up/down of the 1.9 kN force are 
1.34 kN (1.9×cos45° and 1.9×sin45°), pointing right and up respectively. The sum of the forces is a vector 
whose components are 1.34 kN minus 0.6 kN, 0.74 kN to the right and 1.34 kN up plus 1.04 kN up, 
2.38 kN up. The angle is the arctan(2.38/0.74), 73°. 
 
Figure 3d shows all the forces on a climber doing a pull-up and being pulled sideways by a rope. In this 
example, the forces are already componentized, so the sum of the forces can be found by adding the forces 
in the up/down direction (twice the force exerted by each hand minus the force of gravity) to get the total 
force in the up/down direction and by adding the forces in the left/right direction—only the force due to the 
tension in the rope—to get the total force in the right/left direction.  
 
Estimating the Force on an Anchor Device 
 
Successful anchors keep climbers stationary, a situation that lends itself to an analysis using Newton’s 2nd 
and 3rd laws: force is equal to mass times acceleration (F=ma) and for every action there is an equal and 
opposite reaction. This class of problems is often referred to as statics. Solutions are derived by setting the 
sum of all the forces on an object to zero. This net force must be zero for the object to remain static; if the 
net force is not zero, the object accelerates. One statics problem that confronts climbers is the estimation of 
the force on an anchor device. 
 
Figure 4 shows a way to determine the forces on the anchor devices in the anchor set-up depicted in Figure 
1. Figure 4a shows the directions of the different forces, which are in line with the tensioned webbing. 
Given the angles at which the forces act and the presumption that the magnitudes of the forces on the 
anchor devices are equal, the three anchor device forces are added by placing them head to tail; the sum 
must be equal and opposite to the force on the climber. The result is that the magnitude of the force on each 
anchor is 1/2.64 (0.38) the force on the climber. This result does not differ much from the expectation that 
with three anchor devices, the force on each would be 1/3 of the total. In this example, each anchor device 
is capable of sustaining a load of 12 kN, so the maximum load the anchor can sustain is about 31.5 kN, 
significantly more than the maximum force climbers can generate even in a worst case scenario. 
 
The force on an anchor device rises swiftly as the angles become more obtuse. Figure 5 shows such a 
situation, which can be recognized by the “wide Y” formed by the anchor webbing. In this example, the 
force on each anchor device is nearly double that of the force on the climber. If each anchor device is 
capable of sustaining a load of 12 kN, the maximum load the anchor can sustain is only 6 kN, a fraction of 
the expected load. 
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Figure 4a Diagram of the angles at which the 
forces in Figure 1d act. The forces act in line with 
the webbing and converge at the knot. For the 
knot to remain stationary, the net force exerted on 
the knot must be zero; conversely, the force 
exerted on the climber must be equal and opposite 
to sum of the forces on the anchor devices. 

Figure 4b The force exerted by the climber is equal 
and opposite to the force exerted by the anchors. Laid 
head to tail, the anchor force vectors sum to the force 
exerted on the climber. Presuming the anchor is 
equalized, the magnitude of the force on the climber in 
this situation is about 2.64 times the magnitude of the 
force on each anchor device.  

 
 

Figure 5a An example of an anchor with a 
“wide Y” that results in high forces on each 
anchor device. 

Figure 5b Each anchor must sustain about twice the 
force applied by the climber. For many anchoring 
devices, this anchor would not sustain the forces that 
might be applied. 
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Exercises  
1) Estimate the ratio of the magnitude of the force on the climber to the magnitude of the force on each anchor device. 
For each configuration, assume that the magnitude of the forces on each anchor point is equal. 

 
2) Calculate the ratio of the magnitude of the force on the climber to the magnitude of the force on each anchor device. 
For each configuration, assume that the magnitude of the forces on each anchor point is equal.  

 
3) For the configurations shown below, determine the maximum force that the climber can apply to the anchor. In what 
direction does the force exerted by the climber point? 
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Lab, Part I 
 
Venue: Can be done in the classroom or at the cliff. Perhaps best to do this part in the classroom as 
variables may be easier to isolate. 
 
Equipment: Anchor points; force measurement devices (tension, e.g. fish scale or load cell), at least 2, 3 or 
4 would be best; a weight or two, commensurate with the forces measurable by the scales, best not to use 
actual students without plenty of supervision; sling, cord, or rope, again commensurate with weights and 
scales. A poor man’s version might be possible with paper clips, rubber bands, pennies (weights) and 
string. 
 
Objective: Develop an ability to estimate the forces on anchor devices. 
 
Deliverables: 
 Identify good, bad, and in between anchor configurations 
 Construct an equalized anchor, given anchor points 
 Estimate maximum anchor load, given anchor device strengths 
 
Activity: Construct different anchor configurations and measure the resulting forces 
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Anchor Design 
 
Force considerations are only one factor that must be addressed in anchor construction. In general, several 
qualities are desirable in an anchor. The word on the street is that anchors must be “SERENE”: Solid, 
Equalized, Redundant, and Non-Extensible. Further the anchors should be constructible in a timely fashion, 
should be simple enough that their integrity is easy to see by inspection, and should be able to sustain 
loading in all likely directions. These seven desirable qualities are rarely all satisfied by a single anchor 
configuration. Instead, the climber must make design tradeoffs. To do so requires an understanding of what 
should be maximized, a quality that each climber must determine according to his/her inclinations and the 
particular situation. For example, climbers in danger of being caught in a thunderstorm might opt to make 
anchors from fewer anchor devices to save time and thus reduce the danger of being struck by lightning. Or 
a climbing instructor teaching a group of novices might elect to construct an elaborate, time consuming 
anchor because anchor impeccability is of the highest concern when novices are climbing. Thus, the 
climber needs to choose what qualities to maximize and then design around these qualities. 
 
One trade-off situation that is common when building an anchor is the choice between equalization, 
redundancy, and non-extension. The equalization scheme shown in Figures 6d-f permits extension in the 
event of the failure of a single anchor device. Further, the failure of the sling would result in catastrophic 
anchor failure. A simple remedy is to tie an overhand knot at the nexus as shown in Figures 6a-c; doing so 
greatly reduces the possible extension and creates two independent loop pairs—if the sling cuts in one 
place, the anchor is still viable. The disadvantage of the added knot is that it eliminates the equalization of 
forces if the force is not applied in the single, equalized direction (Figures 6a and 6c). 
 
 

 
Figure 6a The knot at the nexus 
reduces extension in the event of 
the failure of a single anchor 
device but removes the 
equalization of forces. 

Figure 6b This anchor is both 
equalized and the extension is 
reduced by the knot. The slings 
are now redundant. 

Figure 6c Again, the knot at the 
nexus reduces extension in the 
event of the failure of a single 
anchor device but removes the 
equalization of forces. 

 
Figure 6d The equalized sling is 
not redundant, and the extension 
is large in the event of anchor 
device failure. 

Figure 6e The equalized sling 
maintains equal forces regardless 
of the direction of the force 
applied by the climber. 

Figure 6d As the force revolves 
around the anchor, the nexus point 
traces the shape of an oval. 
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Lab, Part II 
 
Venue: Best done at the cliff but can be done in the classroom.  
 
Equipment: Anchor devices, webbing, carabiners. Force measurement devices might be a plus. If the 
exercise occurs in the classroom, Velcro attachments points, dental floss/cord, and paperclips. 
 
Objective: Develop the ability to construct quality anchors. 
 
Deliverables: 
 The ability to reliably construct quality anchors 
 The ability to estimate the maximum force an anchor can sustain. 
 
Activity: Construct climbing anchors based on different situations. Can be turned into competitions for 
anchors that: 
 Take the least time to build 
 Sustain the highest force 
 Are constructed using the fewest components  
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