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Resolution enhancement in standing-wave total
internal reflection microscopy:

a point-spread-function engineering approach
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The theoretical basis for resolution enhancement in standing-wave total internal reflection microscopy (SW-
TIRM) is examined. This technique relies on the formation of an excitation field containing super-diffraction-
limited spatial-frequency components. Although the fluorescence generated at the object planes contains
high-frequency information of the object distribution, this information is lost at the image plane, where the
detection optics acts as a low-pass filter. From the perspective of point-spread-function (PSF) engineering,
one can show that if this excitation field is translatable experimentally, the high-frequency information can be
extracted from a set of images where the excitation fields have different displacement vectors. We have de-
veloped algorithms to combine this image set to generate a composite image with an effective PSF that is equal
to the product of the excitation field and the Fraunhofer PSF. This approach can easily be extended to incor-
porate nonlinear excitation modalities into SW-TIRM for further resolution improvement. We theoretically
examine high-resolution imaging based on the addition of two-photon, pump–probe, and stimulated-emission
depletion methods to SW-TIRM and show that resolution better than 1/20 of the emission wavelength may be
achievable. © 2001 Optical Society of America
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1. INTRODUCTION
Light microscopy is widely used in biomedical research to
study living biological systems. A major limitation of op-
tical imaging is its inability to resolve objects with sepa-
ration below several hundred nanometers. Today, elec-
tron microscopy is one of the few ways to image
biomedical specimens on the nanometer scale. Although
electron microscopy is a powerful high-resolution imaging
technique, it is restricted to the study of fixed specimens.
A number of scanning-probe methods have also been de-
veloped to circumvent this limitation, including scanning
tunneling microscopy, atomic-force microscopy and near-
field optical microscopy.1–3 Unfortunately, while
scanning-probe microscopic techniques have achieved
atomic resolution in solid-state samples, there is signifi-
cant resolution degradation in soft biological specimens.
For example, while near-field optical microscopy can, in
principle, achieve resolution that is on the order of 10 nm
(Ref. 3), the practical resolution achieved in a biological
specimen is often on the range of 50–100 nm (Refs. 4–6).
In biological specimens, the application of scanning-probe
techniques further suffers from slow imaging speed, the
confinement to two dimensions, and the undesirable me-
chanical contact with the specimen. There is a need to
develop a completely optical imaging method with better
than 100-nm resolution.

The imaging resolution of microscopy imaging is lim-
ited by the Fraunhofer diffraction of light. The well-
known Abbe limit codifies the relationship between lat-
eral resolution (Dr) with the wavelength of the emission
(le) and the numerical aperture of the imaging optics
0740-3232/2001/112833-13$15.00 ©
(NA). By the Rayleigh criterion, the resolution of con-
ventional microscopy is given by the FWHM of its point-
spread function (PSF), Dr ' le /2NA. A number of co-
herent excitation and detection techniques such as
confocal7–10 and 4-p microscopy11–14 with use of high-
numerical-aperture objectives provides depth discrimina-
tion and allows three-dimensional (3-D) imaging. How-
ever, the improvement in lateral direction is modest, and
the typical resolution is Dr ' le/3 for high-numerical-
aperture objectives (NA ' 1). Another approach to im-
prove optical microscopy resolution involves the use of
nonlinear optical excitation. Most nonlinear methods
such as two-photon15–17 and pump–probe microscopy18–20

also provide three-dimensional (3-D) depth discrimination
but only very modest improvement in the lateral dimen-
sion. The most promising nonlinear excitation technique
for lateral resolution improvement is stimulated-emission
depletion (STED) microscopy.21–23 By driving the fluo-
rescence signal to response nonlinearly to the excitation
signal, this technique has achieved a fivefold resolution
improvement in axial direction and over twofold improve-
ment in the lateral direction.

Another promising way to improve microscopy resolu-
tion involves the use of standing-wave excitation.24,25

Standing-wave optical microscopy was first developed to
provide fast, 3-D-resolved wide-field imaging with an
axial resolution of le/4 (Refs. 26 and 27). In this imple-
mentation, there is no lateral resolution enhancement.
The use of standing-wave imaging in a total internal re-
flection and other geometry have shown that lateral reso-
lution better than le/7 can be achieved.28 This resolution
2001 Optical Society of America
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is comparable or better than near-field optical scanning
microscopy and atomic-force microscopy in many biologi-
cal specimens.

Although resolution improvement based on the forma-
tion of standing waves has been used for over a decade, a
number of theoretical issues remain to be explored. In
this paper, we will examine algorithms that allow the
generation of an improved final image containing the
same spatial-frequency content of the excitation light
field. We will show that these algorithms are not specific
to the SW-TIRM problem but are valid for a broad range
of imaging problems when there is a spatially translat-
able excitation field containing super-diffraction-limited
frequencies (a super-diffraction-limited excitation field is
defined as an optical field containing spatial frequencies
higher than NA/le). These theoretical results are used
to explore the potential for further resolution enhance-
ment in SW-TIRM by incorporating nonlinear processes
such as multiphoton, pump–probe, and STED excitations.
Finally, this paper considers only fluorescence SW-TIRM
under incoherent imaging condition. While SW-TIRM
may possibly work in reflected (scattered) light mode, this
case will not be considered because of greatly increased
difficulties in treating coherent imaging cases.

2. RESOLUTION ENHANCEMENT BASED
ON SUPER-DIFFRACTION-LIMITED
EXCITATION FIELD
The image-formation process in a fluorescent microscope
can be readily formulated mathematically. Let O(r) be
the distribution of fluorescent objects, the concentration
distribution of fluorophores. Let E(r) be the excitation
field, the intensity distribution of the excitation light.
The position vector r is a two-dimensional vector on the
object plane. With no loss of generality, the magnifica-
tion of the microscope can be assumed to be unity. In
this case, the position vector on the object plane also char-
acterizes the positions on the image plane. Let I(r) be
the signal-intensity distribution on the image plane.

Let P(r) be the objective emission point-spread func-
tion (PSF) based on the Fraunhofer approximation,

P~r! 5 F2J1~2pNAuru/le!

2pNAuru/le
G2

, (1)

where J1 is the first-order Bessel function and NA is the
numerical aperture of the objective.

In this case, the image function of a microscope can be
expressed as

I~r! 5 @O~r!E~r!# ^ P~r!, (2)

where ^ denotes a convolution operation. If E(r) is uni-
form, this expression represents the case of standard
wide-field fluorescence microscopy imaging.

The excitation field E(r) is assumed to possess two
properties. First, E(r) is translatable; its placement on
the object plane can be experimentally controlled. Sec-
ond, E(r) contains higher spatial frequencies than the
Fraunhofer PSF.

With the first assumption, Eq. (2) can be written more
generally as
I~r,r8! 5 @O~r!E~r 2 r8!# ^ P~r!, (3)

where r8 is a position vector on the object plane that mea-
sures the translation of the excitation light profile rela-
tive to an arbitrary origin.

For clarity, we will restrict our discussions to one di-
mension. The basic method for extending the one-
dimensional case to higher dimensions has been dis-
cussed in previous publications.24,25 A more in-depth
theoretical examination of this extension will be covered
in the future. Replacing positional variables r and r8
with x and x8, we can write Eq. (3) as

I~x, x8! 5 @O~x !E~x 2 x8!# ^ P~x !. (4)

Computationally, one can always synthesize a new image
I8(x) as a weighted sum of images recorded at a set of
translation shift vectors $x8%,

I8~x ! 5 (
$x8%

f~x, x8!I~x, x8!, (5)

where f(x, x8) is an arbitrary weighting function. In the
following discussions, we refer to I8(x) as the composite
image and the set of images, I(x, x8), as the intermediate
images.

Expanding the convolution integral explicitly, one ob-
tains

I8~x ! 5 (
$x8%

f~x, x8!E
2`

`

O~x9!E~x9 2 x8!P~x 2 x9!dx9.

(6)

After exchanging the order of the integral and the sum-
mation,

I8~x ! 5 E
2`

`

O~x9!F(
$x8%

f~x, x8!E~x9 2 x8!GP~x 2 x9!dx9.

(7)

If $x8% and f(x, x8) satisfy the following equation:

(
$x8%

f~x, x8!E~x9 2 x8! 5 E~x 2 x9!, (8)

Equation (7) can be rewritten as

I8~x ! 5 E
2`

}

O~x9!E~x 2 x9!P~x 2 x9!dx9. (9)

This gives

I8~x ! 5 O~x ! ^ @E~x !P~x !#. (10)

The new image I8(x) is the convolution of the object func-
tion with an effective PSF, E(x)P(x). From the second
assumption about the excitation field, this PSF contain-
ing super-diffraction-limited frequency components origi-
nated from E(x); the composite image has higher resolu-
tion than the intermediate images. The task of
generating a composite image with super-diffraction-
limited resolution reduces to finding a set of shift vectors
$x8% and a weighting function f(x, x8) that satisfies Eq.
(8). We will consider two approaches to accomplish this
task. The first algorithm will be based on Fourier decom-
position of f(x, x8), and the second algorithm will be
based on impulse-function decomposition.
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3. RESOLUTION ENHANCEMENT BASED
ON FOURIER DECOMPOSITION
An excitation profile with known functional form can al-
ways be expanded as a Fourier series. Consider a Fou-
rier expansion of E(x):

E~x ! 5 (
n50

`

an cos~nkx ! 1 bn sin~nkx !. (11)

Equation (8) can be written as

(
$x8%

(
n50

`

f~x, x8!$an cos@nk~x9 2 x8!#

1 bn sin@nk~x9 2 x8!#%

5 (
n50

`

an cos@nk~x 2 x9!# 1 bn sin@nk~x 2 x9!#.

(12)

The right-hand side of Eq. (12) can be written as

(
n50

`

an cos@nk~x 2 x9!# 1 bn sin@nk~x 2 x9!#

5 a0 1 @a1 cos~kx ! 1 b1 sin~kx !#cos~kx9!

1 @a1 sin~kx ! 2 b1 cos~kx !#sin~kx9! 1 ...

1 @an cos~nkx ! 1 bn sin~nkx !#cos~nkx9!

1 @an sin~nkx ! 2 bn cos~nkx !#sin~nkx9! 1 ¯ .

(13)

The left-hand side of Eq. (12) can be written as

(
$x8%

(
n50

`

f~x, x8!$an cos@nk~x9 2 x8!#

1 bn sin@nk~x9 2 x8!#%

5 a0(
$x8%

f~x, x8! 1 (
$x8%

f~x, x8!@a1 cos~kx8!

2 b1 sin~kx8!#cos~kx9!

1 (
$x8%

f~x, x8!@a1 sin~kx8!

1 b1 cos~kx8!#sin~kx9! 1 ¯

1 (
$x8%

f~x, x8!@an cos~nkx8!

2 bn sin~nkx8!#cos~nkx9!

1 (
$x8%

f~x, x8!@an sin~nkx8!

1 bn cos~nkx8!#sin~nkx9! 1 ¯ . (14)

Since x9 is an independent variable, the coefficients for
each cos(nkx9) and sin(nkx9) terms must be equal. A sys-
tem of equations is obtained:
(
$x8%

f~x, x8! 5 1,

(
$x8%

f~x, x8!@a1 cos~kx8! 2 b1 sin~kx8!#

5 a1 cos~kx ! 1 b1 sin~kx !,

(
$x8%

f~x, x8!@a1 sin~kx8! 1 b1 cos~kx8!#

5 a1 sin~kx ! 2 b1 cos~kx !

]

(
$x8%

f~x, x8!@an cos~nkx8! 2 bn sin~nkx8!#

5 an cos~nkx ! 1 bn sin~nkx !,

(
$x8%

f~x, x8!@an sin~nkx8! 1 bn cos~nkx8!#

5 an sin~nkx ! 2 bn cos~nkx !

] (15)

Let m be the index of the highest order of nonzero Fou-
rier component in the expansion of E(x). Equation (15)
is a system of 2m 1 1 equations. Since the set of vectors
Y 5 $1,cos(kx), sin(kx) ,... ., cos(nkx), sin(nkx) ,... .% is inde-
pendent and complete, f(x, x8) can be expanded in terms
of them:

f~x, x8! 5 A0~x8! 1 A1~x8!cos~kx ! 1 B1~x8!sin~kx ! 1 ¯

1 An~x8!cos~nkx ! 1 Bn~x8!sin~nkx ! 1 ¯ .

(16)

We can terminate the expansion at order m, as there
are no higher-frequency components in this problem. Af-
ter substituting Eq. (16) into Eq. (15), each equation in
the system [Eq. (15)] can be rewritten as 2m 1 1 inde-
pendent equations because of the orthogonality of the el-
ements in Y. Therefore, Eq. (15) actually represents a
system of (2m 1 1) 3 (2m 1 1) independent equations.

To ensure that Eq. (15) can be solved, the set of shift
vectors, $x8%, must contain enough independent variables.
For each new element xi in the set $x8%, we introduce
2m 1 2 independent variables, including 2m 1 1 coeffi-
cients of f(x, x8): A0(xi), A1(xi), B1(xi) ,...., Am(xi),
Bm(xi), and the shift vector itself, xi . This implies that
at least 2m 1 1 elements are needed in this set of shift
vectors to keep this system of equations from being over-
determined. However, the system is under-determined
with 2m 1 1 shift elements in the set. Among the (2m
1 2) 3 (2m 1 1) variables, 2m 1 1 of these variables
can be chosen arbitrarily. Experimentally, these 2m
1 1 variables are typically taken to be the shift vectors of
the excitation field.

Let $x0 , x1 ,...., x2m% be the set of chosen shift vectors,
and simplifying notations by introducing variables A00
5 A0(x0), A01 5 A0(x1), B01 5 B0(x1), A10 5 A1(x0),
B10 5 B1(x0), etc., Eq. (15) can be expressed compactly in
matrix form:



1 ¯ 1

a1 cos~kx0! 2 b1 sin~kx0! ¯ a1 cos~kx2m! 2 b1 sin~kx2m!

a1 sin~kx0! 1 b1 cos~kx0! ¯ a1 sin~kx2m! 1 b1 cos~kx2m!

] � ]
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3 am cos~mkx0! 2 bm sin~mkx0! ¯ am cos~mkx2m! 2 bm sin~mkx2m!

am sin~mkx0! 1 bm cos~mkx0! ¯ am sin~mkx2m! 1 bm cos~mkx2m!

4
3 F A00 A10 B10 ¯ Am,0 Bm,0

A01 A11 B11 ¯ Am,1 Bm,1

] ] ] � ] ]

A0,2m A1,2m B1,2,m ¯ Am,2m Bm,2m

G 5 3
1

a1 b1 0

2b1 a1

�

0 am bm

2bm am

4 . (17)
Each of these are a 2m 1 1 3 2m 1 1 square matrix.
The first matrix, S, contains the shift vectors and the Fou-
rier components of the excitation field; the second matrix,
A, contains the unknown variables of f(x, x8) that specify
this weighting function; the rightmost matrix, E, contains
Fourier components’ information of the excitation profile.

After redefining terms, this equation can be rewritten
as

S 3 A 5 E. (18)

This equation is solvable if S is nonsingular, i.e.,

det~S ! Þ 0, (19)

where det() is the determinant function.
For a nonsingular matrix S, its left inverse S21 exists

such that

S21S 5 I, (20)

where I is the identity matrix.
The unknown matrix A can be then be solved as

A 5 S21E. (21)

Therefore f(x, x8) is determined through the calculation
of the inverse of S.

The choice of shift vectors requires further discussion.
We have shown that for an excitation field with the
highest-order component being m, at least 2m 1 1 shift
vectors are needed. This requirement can also be seen
from Eq. (19); if any two shift vectors are equal, matrix S
will contain two identical columns, and its determinant
vanishes. In addition to being distinct, algebra imposes
no further constraints on the choice of the shift vectors.
Although mathematics alone does not dictate the choice of
shift vectors, a poor choice will compromise final image
S/N level. In the absence of a priori knowledge of fluoro-
phore distribution on the object plane, the shift vectors
should be chosen such that each location on the object
plane receives an approximately equal dose of light. The
effect of shift-vector choices will be further examined in
the following sections.

We will further consider a commonly occurring case
where the excitation profile is an even function, i.e. bn
5 0 for all n. The matrix equation [Eq. (17)] can be fur-
ther simplified. Matrix S is reduced to
S 5 3
1 ¯ 1

cos~kx0! ¯ cos~kx2m!

sin~kx0! ¯ sin~kx2m!

] � ]

cos~mkx0! ¯ cos~mkx2m!

sin~mkx0! ¯ sin~mkx2m!

4 , (22)

and matrix E reduces to the identity matrix I.
Therefore in the presence of an excitation field with

even symmetry the solution matrix A has a very simple
form:

A 5 S21. (23)

A. Standing-Wave Total Internal Reflection Microscopy
SW-TIRM is an exciting new method for high-resolution
imaging based on the generation of an excitation field
with super-diffraction-limited spatial frequencies. This
excitation field is generated through establishment of a
standing evanescence wave at the surface of a high-
refractive-index substrate on the basis of interference.
This standing-wave field has wavelength a factor of 2n
less than that of light in free space, where n is the index
of refraction of the substrate. The index of refraction can
be as high as 1.9 for quartz and over 3 for semiconductor
materials. Standing evanescence wave fields can obtain
spatial frequencies 4–6 times higher than is achievable
through use of traditional diffraction-limited optics. The
theory and application of SW-TIRM for super-diffraction-
limited imaging has been previously discussed,24 but not
in the general context of PSF engineering. In this sec-
tion, we will examine the resolution of SW-TIRM from the
perspective of PSF engineering. For SW-TIRM, the exci-
tation profile can be expanded as a Fourier series of only
two terms:

E~x ! 5 1 1 cos~Kx !. (24)

The spatial wave number is

K 5 4pn sin~u!/l, (25)

where n is the index of refraction of the substrate, u is the
incident angle of the light, and l is the wavelength of the
excitation light. The relevant Fourier components are
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a0 5 1, a1 5 1. All higher-order an and bn are zero.
The highest index of the Fourier components, m, is 1.

In this case, f(x, x8) can be expanded in terms of a set
of orthogonal vectors: $1, cos Kx, sin Kx%:

f~x, x8! 5 A0~x8! 1 A1~x8!cos Kx 1 A2~x8!sin Kx. (26)

Since the highest index of the Fourier component is one,
we will need three shift vectors in $x8% 5 $x0 , x1 , x2%.

Matrix S can be written as

S 5 F 1 1 1

cos Kx0 cos Kx1 cos Kx2

sin Kx0 sin Kx1 sin Kx2

G . (27)

From the periodicity of these equations, the element in
the set needs to span only a range of 0 –2p/K. We will
choose a set of shift vectors that equally spans this range:

$x8% 5 H 0,
2p

3
, 2

2p

3 J (28)

Therefore

S 5 F 1 1 1

1 21/2 21/2

0 A3/2 2A3/2
G . (29)

The determinant of this matrix is nonzero, and the in-
verse of the matrix can be readily calculated:

A 5 S21 5 F 1/3 2/3 0

1/3 21/3 A3/3

1/3 21/3 2A3/3
G . (30)

The specification of the set of shift vectors and the as-
sociated weighting function [Eqs. (26), (28), and (30)] com-
pletely determines the algorithm for constructing a high-
resolution composite image in the SW-TIRM setting.
This algorithm will be evaluated on the basis of numeri-
cally simulated composite images generated from two ob-
ject functions:

O1~x ! 5 H 1 if uxu , 1 nm

0 elsewhere
, (31)

O2~x, a ! 5 H 1 a , x , a 1 2 nm

1 2a 2 2 nm , x , 2a

0 elsewhere
.

(32)

The object function O1(x) represents an effective point
source centered at the origin. The fluorescence image
generated from this object function is the PSF. For any
arbitrary extended object function, the fluorescence image
can be calculated by convoluting the object function with
the PSF as described by Eq. (2). The object function
O2(x, a) represents two point sources separated by a dis-
tance of 2a.

For the simulations in this report, we use parameters
that are experimentally realizable. The refractive index
of the high-index quartz substrate, n, is assumed to be
1.75. The refractive index of the specimen, nw , is as-
sumed to be 1.33 (index of water). The wavelengths of
the excitation and the emission light are assumed to be
450 and 510 nm, respectively. The incident angle of the
excitation light up on the substrate is chosen to be 75°.
The signal will be detected by an objective with numerical
aperture NA equal to 1.6.

Using the algorithm specified by Eqs. (5), (26), (28), and
(30), we can numerically simulate the composite image
generated from the point-source object function O1(x).
The result represents the effective PSF of the composite
image [Fig. 1(a)]. This PSF is identical to the product of
the Fraunhofer PSF with the high-frequency excitation
field, as predicted by Eq. (10). To demonstrate resolution
improvement based on SW-TIRM method, we have also
plotted the conventional diffraction-limited PSF [Fig.
1(a)]. In comparison, we can see that the SW-TIRM of-
fers a PSF with a FWHM that is almost a factor of three
narrower than the conventional method. The modula-
tion transfer functions (MTFs) of these PSFs can be
readily calculated and are presented in Fig. 1(b).

Using SW-TIRM, we present the composite images of
two point objects at different separation distances, O2(x),
in Fig. 2(a). We also simulated composite images based
on the same object functions by using a conventional fluo-
rescence microscope [Fig. 2(b)]. We can see that SW-
TIRM is capable of resolving objects separated by about
60–70 nm based on the Rayleigh criterion.

The issue of shift-vector choice can be further investi-
gated. Assuming that photon shot noise is the dominant

Fig. 1. (a) Franhoffer diffraction-limited PSF (dotted curves),
the SW-TIRM PSF predicted by Eq. (10) (solid curves), and the
composite image of a point source generated by numerical simu-
lation (data points). (b) Franhoffer diffraction-limited MTF
(dotted curves), and the SW-TIRM MTF (solid curves).
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noise source in each of the intermediate images, the noise
amplitude distribution in the final image can be calcu-
lated as29

N~x ! 5 F(
$x8%

I~x, x8!f~x, x8!2G 1/2

. (33)

This gives signal-to-noise (S/N) ratio distribution as

S/N~x ! 5
I8~x !

N~x !
. (34)

The effect of S/N as a function of shift-vector choice will
be investigated with use of an object function,

O3~x ! 5 O0 , (35)

where O0 is a constant. This object function represents a
uniform fluorophore distribution on the object plane. We
found that the final composite image I8(x) is approxi-
mately independent of shift-vector choice as expected.
The S/N distributions, S/N(x), are presented in Fig. 3
with use of different sets of shift vectors. We can see that
the noise is minimized in the composite image if the shift
vectors equally span the period of the lowest nonzero fre-
quency component of the excitation field [Fig. 3(a)]. This
is the choice that was made in the preceding discussions.

Fig. 2. (a) Simulated composite images for SW-TIRM imaging of
two point objects separated by 20, 30, 40, 50, 60, 70, 80, 100, and
200 nm. (b) Simulated composite images for conventional fluo-
rescence microscopic imaging of two point objects separated by
20, 30, 40, 50, 60, 70, 80, 100, and 200 nm. These images are
normalized and are displaced from each other vertically for the
clarity of the presentation.
It can be shown that this condition corresponds to maxi-
mizing det(S). As the shift vectors become more clus-
tered [Figs. 3(b)–3(f )], they span a narrower phase space.
There is a steady degradation of S/N level at the regions
of the object plane that fall outside the maxima of the ex-
citation field [Figs. 3(b)–3(f )]. Note that while a lower
S/N level reduces image information content, the resolu-
tion of an image is not directly affected as long as S/N
level remains above unity. Furthermore, the choosing of
equally spaced shift vectors optimizes the S/N level only
for a uniform fluorophore distribution. However, this
choice is also appropriate for the case that the fluorophore
distribution is unknown.

B. Two-Photon Standing-Wave Total Internal Reflection
Microscopy
Two-photon excitation is a promising direction for improv-
ing SW-TIRM images. The algorithm described in Sub-

Fig. 3. The S/N distribution in reconstructed SW-TIRM images
for different shift-vector choices: (a) $x8% 5 $0, 2p/3, 22p/3%,
(b) $x8% 5 $0, p/2, 2p/2%, (c) $x8% 5 $0, p/3, 2p/3%, (d) $x8%
5 $0, p/4, 2p/4%, (d) $x8% 5 $0, p/8, 2p/8%, (e) $x8%
5 $0, p/16, 2p/16%.
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section 3.A can be extended to cover the two-photon case.
For two-photon, the fluorescence signal is a quadratic
function of the excitation field. Equation (13) is modified
as

E2p~x ! 5 E~x !2 5
1

4
@1 1 cos~Kx !#2

5
3

8
1

1

2
cos~Kx ! 1

1

8
cos~2Kx !. (36)

Note that two-photon excitation of a given fluorophore
typically requires an excitation wavelength that is ap-
proximately twice that of the one-photon case; hence, the
wave vector K is about half of the standard SW-TIRM
case.

The excitation profile for two-photon excitation is even
with a0 5 3/8, a1 5 1/2, and a2 5 1/8. All higher-order
an and all bn are zero. We can expand f(x, x8) in terms
of the relevant basis vectors:

f~x, x8! 5 A0~x8! 1 A1~x8!cos Kx 1 A2~x8!sin Kx

1 A3~x8!cos 2Kx 1 A4~x8!sin 2Kx. (37)

Since the highest order of the Fourier component is 2, the
set of shift vectors must contain at least five distinct ele-
ments:

$x8% 5 H 0,
2p

5K
, 2

2p

5K
,

4p

5K
, 2

4p

5KJ . (38)

Fig. 4. (a) Theoretical PSF of two-photon SW-TIRM at 900-nm
excitation as predicted by Eq. (10) (solid curves) and simulated
composite image of a point source imaged by two-photon SW-
TIRM at 900 nm (data points). (b) MTF of two-photon SW-
TIRM with 900-nm excitation (solid curves) and MTF of Fraun-
hofer diffraction PSF (dotted curves). (c) Theoretical PSF of
two-photon SW-TIRM at 750-nm excitation as predicted by Eq.
(10) (solid curves) and simulated composite image of a point
source imaged by two-photon SW-TIRM at 750 nm (data points).
(d) MTF of two-photon SW-TIRM with 750-nm excitation (solid
curves) and MTF of Fraunhofer diffraction PSF (dotted curves).
(e) S/N distribution in two-photon SW-TIRM images with excita-
tion wavelength at 750 nm (upper curve) and at 900 nm (lower
curve).
The matrix A for two-photon excitation can be evaluated
to be

A 5 F 0.2 0.4 0 0.4 0

0.2 0.124 0.38 20.324 0.235

0.2 0.124 20.38 20.324 20.235

0.2 20.324 0.235 0.124 20.38

0.2 20.324 20.235 0.124 0.38

G .

(39)
For numerical simulation, we choose an excitation

wavelength of 900 nm that is twice the one-photon case
value while keeping all other parameters constant. The
expected PSF for the two-photon SW-TIRM, as predicted
by Eq. (10), is presented in Fig. 4(a). The simulated com-
posite image generated from the point-source objective
function O1(x) is presented in Fig. 4(a). As expected, the
simulated PSF is equal to the product of the two-photon
excitation field with the Franunhofer diffraction PSF.
The MTF of two-photon SW-TIRM is presented in Fig.
4(b). The S/N distribution under uniform illumination,
i.e., object function O3(x), is shown in Fig. 4(e). To fur-

Fig. 5. (a) Simulated composite images for two-photon
SW-TIRM imaging at 900-nm excitation of two point objects
separated by 20, 30, 40, 50, 60, 70, 80, 100, and 200 nm. (b)
Simulated composite images of two-photon SW-TIRM imaging at
750-nm excitation of two point objects separated by 20, 30, 40,
50, 60, 70, 80, 100, and 200 nm. These images are normalized
and are displaced from each other vertically for the clarity of the
presentation.
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ther investigate the ability of this method to resolve
closely spaced objects, we generated numerical simulated
composite images with use of object functions O2(x) [Fig.
5(a)]. One concludes that two-photon excitation has
lower resolution than one-photon SW-TIRM. However,
the use of two-photon excitation effectively suppresses the
sidebands of the PSF by over one order of magnitude.
Similar results are observed in other forms of high-
resolution microscopy.13

Since many fluorophores can be excited under two-
photon mode at wavelengths substantially shorter than
their twice one-photon excitation wavelengths,30,31 simu-
lation results by use of an excitation wavelength at 750
nm are also presented [Figs. 4(c), 4(d) and 5(b)]. In this
case, the FWHM of the PSF is comparable to that of one-
photon SW-TIRM but provides better sideband suppres-
sion.

C. Pump–Probe Standing-Wave Total Internal
Reflection Microscopy
The use of pump-probe techniques has been shown to im-
prove resolution in fluorescence microscopy. Pump–
probe microscopy can be implemented in two ways: it
can be based on transient absorption or on stimulated
emission processes.32 In the transient-absorption mode,
the pump and probe beams have the same wavelengths
that are equal to the one-photon excitation wavelength of
the fluorophore. Each of these beams produces standing-
wave excitation field of the forms

Fig. 6. (a) Theoretical PSF of pump-probe SW-TIRM in tran-
sient absorption mode as predicted by Eq. (10) (solid curves) and
simulated composite image of a point source imaged by pump–
probe SW-TIRM in transient absorption mode (data points).
(b) MTF of pump–probe SW-TIRM in transient absorption mode
(solid curves) and MTF of Fraunhofer diffraction PSF (dotted
curves). (c) Theoretical PSF of pump–probe SW-TIRM in
stimulated-emission mode as predicted by Eq. (10) (solid curves)
and simulated composite image of a point source imaged by
pump-probe SW-TIRM in stimulated-emission mode (data
points). (d) MTF of pump-probe SW-TIRM in stimulated-
emission mode (solid curves) and MTF of Fraunhofer diffraction
PSF (dotted curve). (e) S/N distribution in pump–probe SW-
TIRM images in stimulated-emission mode (upper curve) and in
transient absorption mode (lower curve).
Epu~x ! 5 1 1 cos~Kx !, (40)

Epr~x ! 5 1 1 cos~Kx 1 f !. (41)

For the case f 5 0, the transient absorption signal has
the form

Epu–pr~x ! 5 @1 1 cos~Kx !#2. (42)

It should be noted that Epu–pr(x) is not just an excitation
field, as in the SW-TIRM or in the two-photon SW-TIRM
cases but is a fluorescence signal distribution created by
the interaction of the pump and the probe beams. Fur-
ther, the signal Epu–pr(x) is mixed with a background fluo-
rescence signal that must be isolated experimentally on
the basis of time-resolved techniques, as previously
described.18 Nevertheless, in terms of exploiting the
high-frequency content of Epu–pr(x) for standing-wave im-
aging, it can be treated theoretically as any other excita-
tion field.

Since pump–probe transient absorption has the same
functional form as two-photon excitation, the algorithm
represented by Eqs. (37)–(39) is also appropriate for this
case. For numerical simulation, the excitation wave-

Fig. 7. (a) Simulated composite images for pump–probe SW-
TIRM imaging in transient absorption mode of two point objects
separated by 20, 30, 40, 50, 60, 70, 80, 100, and 200 nm. (b)
Simulated composite images of pump–probe SW-TIRM imaging
in stimulated-emission mode of two point objects separated by
20, 30, 40, 50, 60, 70, 80, 100, and 200 nm. These images are
normalized and are displaced from each other vertically for the
clarity of the presentation.
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length is chosen to be 450 nm. Pump–probe SW-TIRM in
transient absorption provides further resolution improve-
ment. The simulated PSF of the composite image based
on object function O1(x) is shown in Fig. 6(a), and its as-
sociated modulation transfer function is shown in Fig.
6(b). The S/N distribution on the image plane for uni-
form excitation, O3(x), is shown in Fig. 6(e). The com-
posite images resulted from the object function, O2(x), at
various separation parameters are shown in Fig. 7(a).

In the stimulated-emission mode, the selection of exci-

tation and de-excitation wavelengths involves choosing a
de-excitation wavelength that is far from the excitation
band; this optimizes the de-excitation process and mini-
mizes the re-excitation of the fluorophores. The applica-
tion of stimulated-emission pump–probe microscopy in a
standing-wave setting has an additional constraint that
the excitation and emission wavelengths must be approxi-
mately integer multiple of each other; otherwise, there
will be no long-range phase correlation that permits SW-
TIRM imaging. Pump and probe beams with wave-
lengths that are exact multiples can be created by second
(or third) harmonic generation.

The standing-wave field of the pump beam can be ex-
pressed as

Epu~x ! 5 1 1 cos~2Kx !. (43)

The standing-wave field of the probe beam with half the
spatial frequency can be expressed as

Epr~x ! 5 1 1 cos~Kx 1 f !. (44)

In this equation, K is the wave vector of the evanescence
wave generated by the probe beam. The pump–probe
signal will have a spatial profile that is a product of the
pump and probe beam. The most important case is for
f 5 0:

Epu–pr~x ! 5
1

4
@1 1 cos~2Kx !#@1 1 cos~Kx !#

5
1

4
1

3

8
cos~Kx ! 1

1

4
cos~2Kx !

1
1

8
cos~3Kx !. (45)

This is an even excitation field with Fourier components
a0 5 1/4, a1 5 3/8, a2 5 1/4, and a3 5 1/8. All higher-
order an and all bn are zero. The algorithm to apply this
excitation profile for standing-wave imaging can be de-

A 5 3
0.143

0.143

0.143

0.143 2

0.143 2

0.143 2

0.143 2
rived similarly. Since the highest Fourier order, m, is 3,
this system will require seven shift vectors:

$x8% 5 H 0,
2p

7K
, 2

2p

7K
,

4p

7K
, 2

4p

7K
,

6p

7K
, 2

6p

7KJ , (46)

f~x, x8! 5 A0~x8! 1 A1~x8!cos Kx 1 A2~x8!sin Kx

1 A3~x8!cos 2Kx 1 A4~x8!sin 2Kx

1 A5~x8!cos 3Kx 1 A6~x8!sin 3Kx, (47)

For the simulation of pump–probe SW-TIRM in
stimulated-emission mode, the pump and probe wave-
lengths are 450 and 900 nm, respectively. The simulated
composite image of a point source, O1(x), is shown in Fig.
6(c). The associated MTF is shown in Fig. 6(d). The S/N
distribution in the composite image for uniform excita-
tion, O3(x), is shown in Fig. 6(e). The composite images
that resulted from the object function, O2(x), at various
separation parameters are shown in Fig. 7(b).

4. RESOLUTION ENHANCEMENT BASED
ON IMPULSE-FUNCTION DECOMPOSITION
When the excitation field cannot be expanded in terms of
a few Fourier components, the computational complexity
is significant for the algorithm based on Fourier decompo-
sition. More importantly, there are situations where the
exact functional form of the excitation field is unknown.
An example of these difficulties arising is stimulated
emission depletion (STED) SW-TIRM. In this session,
we will derive an alternative algorithm based on impulse
function decomposition of f(x, x8) that does not require an
exact knowledge of the excitation field’s functional form.

A. Non-periodic Excitation Field
Let E(x) be the excitation field that is consistent with the
previous assumptions: (1) it can be translated along the
object plane and (2) it contains super-diffraction-limited
frequency components. For the following discussion, we
will further assume that E(x) is inversion invariant, i.e.,

E~2x ! 5 E~x !. (49)

With inversion symmetry, Eq. (8) can be written as

(
$x8%

f~x, x8!E~x8 2 x9! 5 E~x 2 x9!. (50)

A solution of Eq. (50) consists of a set of shift vectors that
covers the whole real line,

6 0 0.286 0 0.286 0

8 0.223 20.064 0.279 20.257 0.124

78 20.223 20.064 20.279 20.257 20.124

64 0.279 20.257 20.124 0.178 20.223

64 20.279 20.257 0.124 0.178 0.223

57 0.124 0.178 20.223 20.064 0.279

57 20.124 0.178 0.223 20.064 20.279

4 . (48)
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$x8% 5 R, (51)

and the weighting function

f~x, x8! 5 dx2x8 , (52)

where dx is the Kronecker delta function, where

dx 5 H 0 x Þ 0

1 x 5 0
. (53)

To demonstrate that for this choice of $x8% Eq. (52) is a so-
lution of Eq. (50), we can substitute Eqs. (51) and (52) into
the left-hand side of Eq. (50) and obtain

(
$x8%

f~x, x8!E~x8 2 x9! 5 (
$x8%PR

dx2x8E~x8 2 x9!

5 E~x 2 x9!. (54)

The last equality holds, since the only nonvanishing term
in the sum is x8 5 x.

Equation (5) can now be written as

I8~x ! 5 (
$x8%PR

I~x, x8!dx2x8 . (55)

Note that the domain of x8 is, in principle, the whole real
line; however, since the Kronecker delta is zero unless
x8 5 x, the only relevant subset of $x8% consists of posi-
tions x where the final image is to be evaluated. Since
the final image is evaluated only at discrete points, this
allows practical implementation of this algorithm. At
each position x where the final high-resolution image
I8(x) is to be evaluated, an intermediate image I(x, x8) is
acquired, with the inversion center of its excitation field,
x8, positioned at x. The intensity of the final image at po-
sition x is equal to the intensity of this intermediate im-
age evaluated at the same position (Fig. 10 below).

B. Periodic Excitation Field
When E(x) is periodic, there can be further simplifica-
tions. Let X be the period of E(x). In this case, Eq. (8)
can be solved with a subset of shift vectors where

$x8% P 0 < x8 < X. (56)

In solving Eq. (8), it is clear that f(x, x8) must have the
same periodicity as E(x). Extending Eq. (52), we have
the following weighting function:

f~x, x8! 5 dx2nX2x8 , (57)

where n is the largest positive integer in which nX < x.
One can show that Eqs. (56) and (57) are a solution of Eq.
(50) by substitution:

(
$x8%

f~x, x8!E~x8 2 x9! 5 (
0<x8<X

dx2nX2x8E~x8 2 x9!

5 E~x 2 nX 2 x9! 5 E~x 2 x9!.

(58)

The second equality is based on the fact that the only non-
zero term of this sum is when x8 5 x 2 nX. The third
inequality is based on the periodicity of E(x).

For a nonperiodic excitation field, the intermediate im-
age generated by a given shift vector x8 determines the
value at a single point x in the final image where x
5 x8. For the periodic excitation field, the intermediate
image generated by a given shift vector x8 determines the
values of the composite image at multiple points x at pe-
riodic intervals where x 1 nX 5 x8 and n 5 0, 61,
6 2 ,... .

C. Stimulated Emission Depletion Standing-Wave Total
Internal Reflection Microscopy
Impulse decomposition algorithm is needed in STED SW-
TIRM. The concept of STED is similar to pump–probe
microscopy. However, unlike pump–probe microscopy,
where the signal is bilinear with the pump and probe
beam intensities, the stimulated-emission beam used in
STED microscopy operates in a highly nonlinear regime,
resulting in a strong suppression of fluorescence in the
outer region of the PSF. This results in a significant nar-
rowing of the PSF.

It is clear that the concept of STED can be applied to
SW-TIRM to provide further resolution enhancement.
The basic theory of STED has been previously
described.21 Briefly, the spatial-temporal behavior of a
fluorophore in the presence of pump (excitation) and
probe (STED) beams can be described as

dn0

dt
5 hexc~x, t !s01~n1 2 n0! 1

1

tvibr
n3 ,

dn1

dt
5 hexc~x, t !s01~n0 2 n1! 2

1

tvibr
n1 ,

dn2

dt
5

1

tvibr
n1 1 hSTED~x, t !s23~n3 2 n2!

2 S 1

tfluor
1 Q Dn2 ,

dn3

dt
5 hSTED~x, t !s23~n2 2 n3! 1 S 1

tfluor
1 Q Dn2

2
1

tvibr
n3 . (59)

In this set of differential equations, n0 , n1 , n2 , and n3
are, respectively, the population of the lowest vibrational
level in the electronic ground state, the population of an
upper vibrational level in the electronic excited state, the
population of the lowest vibrational level in the electronic
excited state, and the population level of an upper vibra-
tional level in the electronic ground state. The fluores-
cence signal detected is proportional to the population of
n2 , the population of molecules undergoing spontaneous
de-excitation. s01 and s23 are the absorption and stimu-
lated emission cross sections of the fluorophore. tfluor
and tvibr are the fluorescence lifetime and the vibrational
relaxation time of the fluorophore. Q is the spontaneous
quenching rate. hexc(x, t) and hSTED(x, t) are the spatial
temporal profiles of the excitation and the STED fields.
Similar to pump–probe microscopy, the need for long-
range correlation of the pump and probe fields requires
that the excitation and STED wavelengths be exact mul-
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tiples. We will consider the case where the STED wave-
length is exactly twice that of the excitation wavelength.

The standing-wave field of the excitation beam can be
expressed as

hexc~x, t ! 5 hexc~t !@1 1 cos~2Kx !#. (60)

The standing-wave field of the STED beam with half the
spatial frequency can be expressed as

hSTED~x, t ! 5 hSTED~t !@1 1 cos~Kx 1 f !#. (61)

While the phase factor f can assume different values, we
will focus on the case of f 5 p/2, where the most efficient
suppression of the outer region of the PSF can be
achieved. In this case, Eq. (61) can be rewritten as

hSTED~x, t ! 5 hSTED~t !@1 2 cos~Kx !#. (62)

The set of differential equations [Eq. (59)] describing
STED SW-TIRM can be solved numerically. The spatial
distribution of the fluorescence signal at increasing
strength of STED beam under a constant excitation beam
was calculated numerically with use of a fourth-order
Runge–Kutta algorithm that used realizable parameters

Fig. 8. (a) Fluorescence intensity distribution generated by eva-
nescence fields in STED configuration. The parameters of this
simulation are: s01 5 s23 5 5 3 1027 mm2, tfluor 5 2 ns, tvibr
5 0.002 ns, Q 5 0.1 ns21, hexc 5 2 W mm22. A range of STED
beam intensity is evaluated: hSTED 5 0 W mm22 (square),
hSTED 5 0.1 W mm22 (circle), hSTED 5 1 W mm22 (triangle),
hSTED 5 10 W mm22 (diamond), hSTED 5 50 W mm22 (solid
curve). Other parameters used in the simulation are specified
in Section 3.B; in particular, the wavelength of the excitation
beam is set at 450 nm, and the wavelength of the STED beam is
set at 900 nm. (b) Fourier transform of fluorescence intensity dis-
tribution generated by evanescence fields in STED configuration
with STED beam intensities of 50 W mm22 (circles) and 0
W mm22 (squares).
[Fig. 8(a)].33 The number of Fourier components re-
quired to describe the STED excitation field can be calcu-
lated from the Fourier transform of these fluorescence
distributions. The Fourier transforms at the highest and
lowest STED beam intensities are shown [Fig. 8(b)].
This shows that the highly nonlinear nature of the exci-

Fig. 9. (a) Theoretical PSF of STED SW-TIRM imaged with use
of 50 W mm22 STED beam intensity as predicted by Eq. (10)
(solid curves) and simulated composite image of a point source
imaged by STED SW-TIRM with use of 50 W mm22 STED beam
(data points). (b) Simulated PSFs of STED SW-TIRM imaged
with use of 50 W mm22 STED beam intensity (solid curves), 10
W mm22 STED beam intensity (circles), 1 W mm22 STED beam
intensity (squares), 0.1 W mm22 STED beam intensity (tri-
angles), and 0 W mm22 STED beam intensity (diamonds). (c)
MTFs of STED SW-TIRM PSFs with STED beam intensity set to
50 W mm22, 10 W mm22, 1 W mm22, 0.1 W mm22, and 0 W mm22

(from right to left).

Fig. 10. Simulated composite images for STED SW-TIRM imag-
ing with 50 W mm22 STED beam intensity of two point objects
separated by 10, 20, 30, 40, 50, 60, 70, 80, 100, and 200 nm.
These images are normalized and are displaced from each other
vertically for the clarity of the presentation.
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tation profile under high-intensity STED beams cannot be
adequately approximated by a few Fourier components.
This large number of nonzero components makes the ap-
plication of Fourier decomposition algorithm computa-
tionally cumbersome. More importantly, a large number
of experimental parameters such as the excitation cross
section, the stimulated emission cross section, and the
fluorescence lifetime, either are not precisely known or
are sensitive to specimen chemical environment. The ex-
act fluorescence profile is further highly dependent upon
STED beam intensity [Fig. 8(a)]. Therefore the fluores-
cence profile in the STED case cannot be quantified a pri-
ori in practice. This is very different from the case of
SW-TIRM, where the excitation profile is very close to
theoretical prediction as long as there is no excitation
saturation. Clearly, impulse function decomposition ap-
proach is more appropriate for the STED SW-TIRM case.
The accuracy of this algorithm to produce the expected
PSF is tested by simulation. The simulated result gen-
erated by imaging a point object O1(x) is presented in
Fig. 9(a). This result is in good agreement with the ex-
pected PSF, which is equal to the product of the calculated
fluorescence distribution [Fig. 8(a)] with the Fraunhofer
PSF. The composite images of a point source imaged
with use of STED SW-TIRM at different STED beam in-
tensities are shown in Fig. 9(b). The corresponding
MTFs are shown in Fig. 9(c). The ability of this tech-
nique to resolve two closely spaced point objects, O2(x), is
shown in Fig. 10. The incorporation of STED method is
very promising and allows significant resolution enhance-
ment of standard SW-TIRM by almost another factor of
two to three. This method allows point objects to be re-
solved that are separated by as little as 30 nm, corre-
sponding to about le/20.

5. CONCLUSIONS
Standing-wave microscopy belongs to a class of imaging
technique where super-diffraction limited images can be
generated. The origin of this ability to produce very-
high-resolution images lies in the presence of an excita-
tion field that contains super-diffraction-limited fre-
quency components. While the fluorescence generated at
the object planes contains high-frequency information of
the object distribution, this information is lost at the im-
age plane where the detection optics act as a low-pass fil-
ter. In this report, we have shown if this excitation field
can be translated spatially, the high-frequency informa-
tion encoded in the intensity distribution of the image can
be extracted from a set of intermediate images where the
origins of the excitation fields are translated to different
locations. Further, the properties of the detection optics,
such as the objective, play a relatively minor role in set-
ting resolution limits. Two algorithms are developed to
combine this set of images into a high-resolution compos-
ite image. One of these algorithms, based on Fourier de-
composition, requires knowledge of the exact functional
form of the excitation field, while the other algorithm
based on impulse function decomposition requires only
that the excitation field have inversion symmetry. We
should stress that these algorithms developed are general
methods in PSF engineering and are not specific to the
SW-TIRM case. They are applicable to any situation
where a translatable, high-frequency excitation field is
present.

Since these algorithms are general, they allow easy
evaluation of the potential of incorporating a variety of
nonlinear excitation techniques to improve the resolution
of SW-TIRM. The nonlinear excitation techniques evalu-
ated include two-photon, pump–probe and STED meth-
ods. The potential of these methods for super-diffraction-
limited imaging has been studied by use of numerical
simulation. The simulation results are summarized in
Table 1. We found that the use of two-photon excitation
produces PSF with FWHM that is wider or comparable to
SW-TIRM. However, this excitation does provide better
suppression of the sidebands of the PSF. This is particu-
larly important when objective lenses with lower numeri-
cal aperture are used. Pump–probe microscopy is an-
other valuable addition to SW-TIRM. Operating in
either transient absorption or stimulated emission mode,
pump–probe SW-TIRM provides higher resolution than
Table 1. Characteristics of PSFs and MTFs of Fluorescence Microscopy (FM), SW-TIRM, Two-Photon
SW-TIRM (2p SW-TIRM), Pump–Probe SW-TIRM (pp SW-TIRM), and STED SW-TIRM

Methods
FWHM

of PSF (nm)
First sideband
Location (nm)

Amplitude
Ratioa

Maximum Frequency
of MTFb (mm21)

FM 162 260 0.02 6
SW-TIRM 60 112 0.18 14
2p SW-TIRM
(lexc 5 900 nm)

80 265 0.02 13

2p SW-TIRM
(lexc 5 750 nm)

68 163c 0.004 15

pp SW-TIRM
(transient absorption)

44 120 0.15 22

pp SW-TIRM
(stimulated emission)

48 79 0.04 20

STED SW-TIRM
(hSTED 5 50 W/mm22)

21 108 0.01 56

a Ratio of the first sideband and the main peak.
b Second sideband has higher amplitude in this case. It locates at 244 nm away with an amplitude ratio of 0.01.
c Maximum frequency of MTF is measured to be the frequency where the amplitude falls to the 1% level.
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SW-TIRM. Pump–probe SW-TIRM in transient-
absorption mode has slightly better resolution, but the
stimulated-emission mode provides better sideband sup-
pression. The highest resolution can be achieved with
use of STED SW-TIRM. Resolving point objects with
separations of less than 30 nm appears to be feasible.
STED SW-TIRM also provides excellent sideband sup-
pression. One drawback of this method is that the PSF
is no longer known a priori, nor is it invariant in the im-
age, since the PSF is a function of the fluorophores’ pho-
tophysical properties and their local chemical environ-
ment.
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