46 OPTICS LETTERS / Vol. 25, No. 1/ January 1, 2000

Lateral resolution enhancement with
standing evanescent waves

George E. Cragg and Peter T. C. So

Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139

Received August 10, 1999

A high-resolution fluorescence microscopy technique has been developed that achieves a lateral resolution of

better than one sixth of the emission wavelength (FWHM).
standing evanescent waves are generated that spatially modulate the excitation of the sample.

By use of a total-internal-reflection geometry,
An enhanced

two-dimensional image is formed from a weighted sum of images taken at different phases and directions of

the standing wave.

point-spread function and the optical transfer function.
170.0180, 180.2520, 180.3170, 180.5810.

OCIS codes:

The Rayleigh criterion quantifies the resolving capa-
bilities of an incoherent imaging system as the FWHM
of the point-spread function (PSF). By this criterion,
the lateral resolution (Ar) of conventional microscopy
is given approximately by Ar = A./2NA = A./2,
where A, is the emission wavelength and NA is the
numerical aperture of the imaging optics. Many
techniques such as confocal and 4 pi microscopy have
attained Ar = A./3 (Ref. 1; p. 48, Ref. 2). Addition-
ally, atomic scale resolution has been achieved in
semiconductor samples with scanning probe tech-
niques such as near-field scanning optical microscopy,
scanning tunnel microscopy, and atomic-force mi-
croscopy.>* However, not only do these scanning
probe techniques suffer from slow imaging speed
in general but they also have limited applicability
in soft biological specimens. We have developed
standing-wave total-internal-reflection fluorescence
(SWTIRF) imaging, an all-optical technique that can
achieve a lateral resolution of better than A, /6.

Axial subsectioning in thin specimens has been
demonstrated by use of standing-wave excitation to
produce a high-frequency intensity modulation along
the optical axis.>® With a total-internal-reflection’ ge-
ometry, a similar intensity pattern can be generated
laterally across a sample. In standard total-internal-
reflection microscopy, laser light is totally reflected off
the surface of a prism to form an exponentially decay-
ing evanescent wave that is confined to approximately
50-100 nm in the lower index medium. The evanes-
cent field then excites a fluorescently labeled specimen,
thus allowing an image to be formed. Retroreflect-
ing an s-polarized excitation beam back onto itself
generates standing evanescent waves of wavelength
A/nsin(6#;) on the surface, where A is the wavelength
of the excitation, n is the refractive index of the
prism, and 6; is the angle of incidence of the incoming
light.”® Because the excitation is spatially modu-
lated by the high-frequency standing wave, the inten-
sity distribution on the sample plane, I, (r), is given by

Isp(r) = O(I‘) [1 + COS(Kx + ¢)]a (D

K = 4wnsin(6;)/A, (2)
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The performance of such a system is examined through theoretical calculations of both the
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where the modulation is taken along the x axis and
¢ 1s an unknown phase that specifies the position of
the standing wave relative to the object function, O(r).
Assuming a magnification of unity throughout, the im-
age, I(r), is given by the convolution of the excitation
pattern with the PSF of conventional microscopy (p. 18,
Ref. 2), P(r):

Iy(r) = O(r)[1 + cos(Kx + ¢)] ® P(r), (3)

where ® denotes the convolution operation.

To illustrate a direct way to achieve resolution
improvement from a sum of appropriately weighted
standing-wave images, the method outlined by Kr-
ishnamurthi et al.®is recast in real space. In the
analysis, three images are required, each taken at a
different standing-wave phase from the other two. All
three can be compactly written in a single expres-
sion, I;(r):

Ii(r)=0(r)® P(r) + {(1/2)exp[i(Kx + ¢
+ j7m/2)]0(x)} ® P(r) + {(1/2)exp[—i(Kx + ¢
+ j7/2)]0(r)} ® P(r), j=0,1,2, 4)

where the phases of ¢, ¢ + 7/2,and ¢ + 7 are chosen.
These images can be algebraically manipulated:

O(r) ® P(r) = (1/2)[Io(r) + Ir(r)], (5)
{(1/2)expli(Kx + ¢)]O(r)} ® P(r)
= (1/9)[(A - DIo(r) + 2iI;(r) — (1 + D)I(r)],  (6)
{(1/2)exp[—i(Kx + ¢)]O0(r)} ® P(r)
= 1/9)[(A + D)Io(r) — 2iL1(x) + (-1 + DHIy(x)]. (7
Using the identity
{exp[*i(Kx + $)]0(x)} ® P(r)

= exp[*i(Kx + ¢){O(r) ® [exp(+iKx)P(r)]}, (8)
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we can transfer the modulation from the object function
to the conventional PSF by first multiplying Eqgs. (6)
and (7) by exp[—i(Kx + «)] and exp[i(Kx + «)], respec-
tively, and then summing the results with Eq. (5), thus
yielding an enhanced image, I(r):

I(r) =0O(r) ® {P(r)[1 + cos(Kx — ¢ + a)]}

= Io(r)(1/2)[1 + V2 cos(Kx + a + 7/4)]
+ Ii(r)sin(Kx + a) + Is(r) (1/2)

X [1 — V2 cos(Kx + a — 7/4)]. Q)

Hence, I(r) is the sum of the three images of Eq. (4),
each receiving its own sinusoidal weighting factor with
arbitrary phase a.

As the optimum resolution is achieved when a = ¢,
a must be properly chosen in the weighting factors.
This choice can be made in either of two main ways.
First, on integrating the left-hand side of Eq. (9)
over the detection area, one can see that the total
intensity is maximized for « = ¢. Therefore, « can
be adjusted until this maximum intensity image is
obtained. Alternatively, a point source on the prism
would serve as a reference against which ¢ could be
measured.

With ¢ determined, the PSF of the SWTIRF scan
along the x axis, Pswy(r), is given as

Pgwy(r) =[1 + cos(Kx)]P(r). (10)

Since the diffraction-limited PSF is modulated by the
1 + cos(Kx) term of the intensity distribution, the PSF
is narrowed along the x axis while its conventional
width along the y axis is retained [Fig. 1(b)]. Note
that the degree of enhancement along x depends
on the spatial frequency K, which, in turn, depends
linearly on the refractive index of the prism, n. Be-
cause the periodicity increases with n, high-index ma-
terials will provide the greatest narrowing of the PSF’s
central maximum. As is demonstrated in Fig. 1(a),
the FWHM (1D SWTIRF) along x is approximately
Ae/6 and A./9 for quartz (n = 1.46 at 532 nm) and
lithium niobate (LiNbOgs, n = ordinary index = 2.32
at 532 nm) prisms, respectively. However, as n is
increased, the sidebands in the PSF increase as well.
Fortunately, it may be possible to remove the side-
bands by wuse of simple deconvolution algo-
rithms.® Additionally, SWTIRF may be combined
with two-photon!® or stimulated-emission!*~!® imaging
techniques for further resolution enhancement as well
as sideband suppression.

An alternative way to describe the performance of
an optical system is to examine its optical transfer
function (OTF), which, as the Fourier transform of
the PSF, reveals both the spatial frequencies that
are present in the image and the relative weight of
these frequency components. Because the OTF can be
used to describe the low-pass filtering characteristics
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of the imaging system, the resolution is deter-
mined from the cutoff frequency of the OTF. The
OTF of the one-dimensional SWTIRF application,
Pswi (k) [Fig. 2(a)l, is given as the normalized Fourier
transform of Eq. (10):

Pswy(k) =[2 + P(-Ke,) + P(Ke,)]™"

X[2P(k) + P(k — Ke,) + P(k + Ke,)], (11)

where P(k) is the incoherent OTF of conventional
microscopy (p. 35, Ref. 2; Ref. 14) and K is defined
by Eq. (2). Therefore, the Pswy(k) function consists
of a sum of three P(k) functions, one at the center,
one shifted by K along k., and the third shifted by
—K along k,, where the center function has twice the
weight of the outer two. If K is large enough to create
frequency gaps along k., (K = 87wNA/A.), the outer
functions will separate from the center one, thereby
causing severe ringing in the PSF. For cases such as
those for quartz and LiNbOj3 prisms, in which there
are no frequency gaps, the cutoff frequency of the one-
dimensional SWTIRF is 47NA/A, + K along the k,
axis but retains the conventional value of 47NA/ A,
along the %, axis.

Obtaining resolution enhancement in two dimen-
sions requires multiple images taken along different
standing-wave directions in the sample plane. For the
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Fig. 1. For the representative parameters of N = 4, 6; =
75°, NA = 1.3, A = 532nm, and A, = 560 nm, plots
are generated that show (a) the PSF’s of conventional,
confocal, and SWTIRF microscopies, (b) the PSF of a
one-dimensional (1D) SWTIRF (quartz, n = 1.46) scan
[Eq. (10)], (c) the symmetric PSF of two-dimensional (2D)
SWTIRF (quartz) generated by Eq. (14).
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Fig. 2. (a) and (b), Frequency space counterparts (OTF’s)
of Figs. 1(b) and 1(c), respectively.

case in which the modulation is at some angle ¢ with
respect to the x axis, Eq. (10) may be rewritten as

Pgw(r, &) = {1 + cos[Kr cos(6 — £)]}P(r), (12)

where r = (r,0). In constructing the enhanced
two-dimensional image we impose several constraints
on the PSF and the OTF. First, the cutoff fre-
quency of the OTF must approach 47NA/A, + K
in all directions, thereby requiring a total of N > 2
scans to be performed, one at every #/N rad be-
tween 0 and 7 in the sample plane. Consistency
with incoherent imaging requires the enhanced im-
age to be linear in intensity (p. 33, Ref. 2). Hence
these N scans are added together, with all scans
weighted equally and no direction favored over any
other. As this summing operation may cause the
lower-frequency components (& < 47NA/A,) to domi-
nate the OTF, it may be necessary to subtract an
appropriately weighted diffraction-limited image.
Moreover, it is required that the PSF be nonnegative
and decay to zero for some r < A./2. Although the
nonnegativity requirement may not be essential, we in-
troduce it to conform to conventional optics. A linear
combination that realizes these considerations is, with
the help of Eq. (12), given in the two-dimensional
SWTIRF PSF, Psw(r, N):

1 1 N-1
Psw(r, N) = -3 (ﬁ D {1 + cos[Kr cos(d
m=0

—mm/N)]} — B)P(I‘) = ﬁ S(r,N)P(r), (13)
where S(r, N) is the term in parentheses, 1/(1 — B)
is the normalization factor, and B is a constant that
determines the weight of the diffraction-limited image.
In this case, the enhanced resolution is achieved
through the symmetric modulation S(r,N). By the
Rayleigh criterion, B is chosen to minimize the radial
distance between the center and the first minimum of
S(r,N). Inrestricting S(r, N) to nonnegative values,
we set this minimum to zero. It is therefore required
that S(r, N) and its first derivative with respect to r
vanish for some distance ry, < A./2, thereby obtaining
the constant 8 = 0.3. On substituting this value into
Eq. (13) we have

1 N-1
Psw(r,N) = 1'43(ﬁ Z {1 + cos[Kr cos(0

m=0

— maw/N)]} — 0.3)P(r); (14)

Fig. 1(c) shows the case for N = 4. The reciprocal
space counterpart of Eq. (14) is given as Psw(k, N)
[Fig. 2(b)]:

2N -1
> P{k + K[cos(mm/N)e,

~ 1
Psw(k,N) = Y(N
m=0

+ sin(ma/N)e,]} + 1.7P(k)) , (15)

where vy is a normalization factor. Whereas adding
scans together in this way produces a symmetric PSF
with reduced sidebands, the resultant PSF is slightly
broader than the x-axis profile of Pgswy(r). From
Fig. 1(a) it can be seen that Psw(r) has a FWHM of
approximately A./5 and A./8 for quartz and LiNbOs
prisms, respectively.

Finally, the range of applicability of SWTIRF must
be recognized. Because of the shallow depth of field,
this technique will find applications primarily in the
study of surface phenomena, such as in cell mem-
branes. Moreover, small vertical displacements of the
specimen will cause significant variations in inten-
sity. However, no mechanical contact with the spec-
imen is required, because the evanescent wave itself
acts as the probing mechanism. This would permit
high-fidelity imaging of soft biological samples. This
technique may make possible video rate image acqui-
sition, as not more than three images are required for
each standing-wave direction.
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