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Abstract 

 

Urban Mobility is in the midst of a revolution, driven by the convergence of technologies such 
as artificial intelligence, on-demand ride services, as well as connected and self-driving 
vehicles. Technological advancements often lead to new hazards and changing nature in how 
accidents can happen. Coupled with the increased levels of automation and connectivity in 
the new generation of autonomous vehicles, cybersecurity is emerging as one of the key 
threats affecting the safety of these vehicles. Traditional hazards analysis methods treat safety 
and security in isolation, and are limited in their ability to account for interactions among 
organizational, socio-technical, human, and technical components. In response to these 
challenges, the System Theoretic Process Analysis (STPA) was developed to meet the 
growing need for system engineers to holistically analyze complex socio-technical systems. 

We applied STPA-Sec, an extension to STPA to include security analysis, to co-analyze safety 
and security hazards, as well as identify mitigation requirements. The results were compared 
with another promising method known as Combined Harm Analysis of Safety and Security for 
Information Systems (CHASSIS). Both methods were applied to the Mobility-as-a-Service use 
case, focusing on over-the-air software updates feature. Overall, STPA-Sec identified 
additional hazards and more effective requirements compared to CHASSIS. In particular, 
STPA-Sec demonstrated the ability to identify hazards due to unsafe/ unsecure interactions 
among sociotechnical components. This research also suggested using CHASSIS methods 
for information lifecycle analysis to complement and generate additional considerations for 
STPA-Sec. Finally, results from both methods were back-tested against a past cyber hack on 
a vehicular system, and we found that recommendations from STPA-Sec were likely to 
mitigate the risks of the incident. 
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Autonomous vehicles for urban mobility 
 

State of the art 

Mobility-as-a-Service (MAAS) is a fleet of autonomous, self-driving vehicles for ride-sharing 
services. A concept widely perceived as the future of urban transportation, MAAS is expected 
to radically change the car ownership model. Based on ARK’s research [1], the global MAAS 
revenue will exceed $10 trillion in gross revenue by 2030, roughly ten times the market for 
autonomous vehicles sale (see Figure 1). Companies such as Uber, Tesla, and nuTonomy 
have on-going efforts to develop autonomous vehicles as ride-sharing service similar to the 
MAAS. Figure 2 shows the generic architecture for the MAAS, which comprises the 
autonomous vehicles, backend cloud infrastructure, as well as devices connected to the cloud.  

 
Figure 1. Global revenue for autonomous cars and services [1] 

 

 

Figure 2. Generic architecture for connected autonomous vehicles in MAAS 

 

Evolving cybersecurity threats and impacts 

As cyber-physical systems (CPS) in autonomous vehicles get more sophisticated, new threats 
are beginning to surface, making safety and security analysis more challenging, as 
exemplified by the following incidents involving automotive: 

 Oct 18, 2016, Singapore: A driverless vehicle developed by nuTonomy was involved in a 
minor accident with a lorry (see Figure 3). nuTonomy’s internal investigations concluded 
that the incident was due to “an extremely rare combination of software anomalies” [2]. 
Although this was a minor accident with no personnel injuries and did not involve a cyber 
attack, it shows how accidents can occur due to unexpected interactions between 
software components that may individually be working perfectly well.    

 



 
Figure 3. Minor accident involving nuTonomy AV in Singapore 

 May 7, 2016, Florida: The first known fatal accident involving a semi-autonomous 
vehicle, Tesla S70 collided with the side of a tractor-trailer (see Figure 4), resulting in 
the death of the driver behind the wheels of the S70. According to Tesla, "the high, 
white side of the box truck" — that apparently caused the system to believe the truck 
was an overhead sign — "combined with a radar signature that would have looked 
very similar to an overhead sign, caused automatic braking not to fire" [3].  
 

  
Figure 4. Fatal accident involving Tesla semi-autonomous vehicle in Florida 

 2015 – 2016: Two cybersecurity researchers demonstrated that they were able to 
remotely control key features of the Jeep Cherokee, including its steering, braking, 
transmission, and brakes (see Figure 5). The researchers exploited the vehicle’s 
infotainment features to remotely plant vulnerabilities into the electronic control unit 
(ECU). Although we have not seen such cyberattacks leading to accidents on the 
roads, there has been numerous experiments to demonstrate the vulnerabilities of 
communication device in connected vehicles [4] [5]. 
 

 
Figure 5. Remote car-jacking of Jeep Cherokee 

Three key observations can be made from the above incidents. First, advanced features in 
new generation of autonomous vehicles mean vehicles are increasingly complex and 
connected, increasing the attack surface for cyber-attacks. Examples of such attacks include 
installing malicious codes, and remotely taking control of vehicular safety-critical functions. 
Such attacks can be conducted in large scale with relatively little effort, potentially affecting 
the safety of passengers and other road users. These could lead to ominous possibilities 
involving harm to both drivers and pedestrians. 



Second, the development and operation of autonomous vehicles have increased coupling 
among socio-technical components. Safety and security analysis are no longer limited to 
standalone systems; interactions among components in the larger ecosystem comprising 
technical, environmental, organizational, managerial, and regulatory aspects must be 
holistically considered. The accident between the Tesla S70 and tractor-trailer demonstrated 
how interactions between the vehicle, objects on the road (other vehicles and road signs), and 
the environment (bright, sunny conditions) can lead to an accident.  

Third, the pace of technology advancement and pressure to reduce the time to market means 
developers have limited time to fully understand potential behaviours and risks before systems 
become operationalized. Furthermore, the nature in which hazards and accidents occur 
continue to evolve, leading to limited ability to learn from past knowledge and experiences. 
Also, especially in the case of cyber attacks, the skills and approaches of attackers continue 
to change. 

Traditional analysis methods that aim to assess the safety of critical infrastructures are limited 
in their ability to encompass the complexity of such emerging CPS. Independent studies have 
also shown strong mutual influence between safety and security aspects [6]. To address the 
above challenges, a holistic approach to co-analyze safety and security risks is necessary 
with the emergence of the next generation of passenger autonomous vehicle. Systems-
Theoretic Process Analysis (STPA), a deductive hazards analysis methodology based on 
systems theory, was developed by Nancy Leveson at MIT [7] to address this type of need. 
Compared with traditional methods designed to prevent component failures, STPA also 
addresses component interaction accidents that can arise from design flaws, dysfunctional 
interactions or unsafe control actions. This research applies STPA-Sec, an extension from 
STPA from safety analysis to cybersecurity analysis, to identify potential risk areas and 
mitigations for passenger autonomous vehicle. The findings from STPA-Sec were compared 
with another hazards analysis method – Combined Harm Analysis for Safety and Security for 
Information Systems (CHASSIS) – to identify strengths and weaknesses in both approaches.    
 

Safety and cybersecurity analysis methods 

Traditional methods for safety hazards analysis include Failure Mode and Effect Analysis 
(FMEA) detailed in [8] and Fault Tree Analysis (FTA) detailed in [9]. Both FMEA and FTA have 
been widely used in various industries to analyze safety hazards and derive safety functional 
requirements. However, they do not specifically cover cybersecurity hazards analysis. 

Recognizing the tight interplay between safety and security, combining safety and security 
hazards analysis in the engineering process has become a new interesting research topic in 
recent years  [10][11]. Multiple approaches have been developed to support co-analysis of 
safety and security for automotive hazards analysis: (1) SAHARA (A Security-Aware Hazard 
and Risk Analysis Method) [12] extends the classical hazards and risks analysis with security 
related guide words and an evaluation of risks; (2) FMVEA (Failure Mode, Vulnerabilities and 
Effects Analysis) [13] extends FMEA with threat modes and vulnerabilities; (3) CHASSIS 
(Combined Harm Assessment of Safety and Security for Information Systems) [14] is a 
methodology for safety and security assessments and formulation of mitigation measures, 
based on use case and sequence diagram modelling.  

In the area of safety and security analysis for automotive, [15] proposes a risk assessment 
framework or autonomous and cooperative automated driving. The proposed framework 
adopts the convention of the NHTSA threat model and categorized attack methods using the 
STRIDE classification: Spoofing Identity, Tampering with Data, Repudiation, Information 
Disclosure, Denial of Service, and Elevation of Privilege. Each threat is consolidated in a threat 
matrix (see Figure 6) considering the following factors:  

 Attack potential (vertical axis): Considers the difference between the threat agent’s 
ability to execute a successful attack and the system’s ability to withstand such 
attacks. Parameters include the time required for an attacker to identify a vulnerability 



and launch an attack; availability of attacker’s finances versus finances required to 
launch a successful attack; attacker’s skills set versus the system’s required skills. 

 Motivation (horizontal axis): Considers the motivation and determination of the threat 
agent to execute the attack. Parameters include financial gain, ideology, passion, and 
risk.  

 Impact (size of circle). Considers the losses to stakeholders in the event of 
successful attack, factoring financial loss, privacy and safety consequences. 

 

 
Figure 6. Example threat matrix visualization for driverless valet parking example [15] 

System theoretic approach to cybersecurity risk analysis 
 

STAMP theory 

Systems-Theoretic Accident Model and Processes (STAMP) was developed by Leveson from 
MIT after many years of research on safety. The STAMP model of accident causation is built 
on three basic concepts – safety constraints, a hierarchical safety control structure, and 
process models – along with basic systems theory concepts [7]. In contrast to tradition 
methods such of FMEA and FTA that are based on the reliability of individual components, 
STAMP focuses on the emergent properties of engineered systems and treats safety as a 
control system problem. STAMP uses system theory to represent the system as hierarchical 
control structures, where each level imposes constraints on the activity of the level beneath it 
[7]. This hierarchical structuring allows the system model to capture not only accidents due to 
component failures and component interactions, but also extends to understanding incomplete 
or missing requirements from external socio-technical components.  

Figure 7 shows a generic hierarchical control structure that includes system development on 
the left, and system operations on the right. Commands or control actions are given by higher 
levels of control processes to lower levels throughout the hierarchy, and feedback is provided 
from lower levels to higher level. Traditional safety hazards analysis typically focuses on the 
operating process of system components, as shown in the bottom right of the figure. STAMP-
based analysis considers control structures that include regulatory, organizational, 
engineering, and human components, and can therefore analyze additional causal scenarios 
not included in traditional approaches.  



 

Figure 7: Leveson’s general control structure of a social-technical control structure [7] 

 

STPA-Sec: An extension to safety hazards analysis applied to security 

STPA is a deductive hazard analysis method based on STAMP and is used to derive 
requirements for accidents and loss prevention. One of the strengths of STPA is its 
applicability to early stages of concept development phase.  

STPA-Sec extends STPA from safety to cybersecurity analysis, and is used to identify system 
vulnerabilities and requirements for cyber and cyber-physical systems. Since its inception, 
STPA has been applied to a wide range of domains ranging from automotive systems, e.g. 
[16]; automation and workplace safety, e.g. [17]; aviation systems, e.g. [18]; medical devices 
[19]; and other emergent system properties such as security, e.g. [20]. In [20], Young and 
Leveson introduced STPA-Sec, suggesting the use of a causality model based on system 
theory to provide an integrated and more powerful approach to safety and security co-analysis. 
In recent years, the STAMP-based approach has been applied to manage cybersecurity risks 
of in various systems: [21] applies STAMP to analyze cyber-attacks on TJX, and revealed 
insights which had been overlooked in prior investigations; [22] [23] utilizes STAMP-based 
approach to analyze cyber threats in applied to the Stuxnet case, an attack designed to disrupt 
the Iranian Nuclear program. 

 

Applying STPA-Sec on Mobility-as-a-Service vehicle fleets 
STPA-Sec analysis comprises three key stages as summarized below. While the analysis is 
presented straight through, there has been a number of iterations in each step as new findings 
were incorporated to refine the analysis. The three key stages are namely: 

 Establish the system engineering foundation, which includes defining and framing 
the problem, as well as identifying accidents / losses and hazards related to the case. 



 Identify potentially unsafe/ unsecure control actions, which documents the generic 
functional control structure and control actions that may lead to the identified hazards. 

 Identify causes of unsafe/ unsecure control actions and eliminate or control 
them, which includes identification of scenarios leading to unsafe/ unsecure control 
actions, and using the identified unsafe control actions to create safety requirements 
and constraints 

 

Stage 1: Establish the system engineering foundation 

Stage 1 covers the preliminary steps of STPA-Sec analysis: first to identify the goal/ purpose 
of the system and then to identify the accidents / losses and hazards related to the system. 
The key outcome from STPA-Sec is to derive a set of safety and security requirements to 
eliminate or control unsafe interactions within the control structure. To achieve this, STPA-Sec 
co-analyses security and safety hazards using a top-down approach, starting from the 
identification of unacceptable accidents and losses, as well as potential hazards related to the 
system.  The method is further illustrated in the following sections.  

Identifying accidents / losses related to the system 
Accidents/ losses are defined by Leveson as “An undesirable or unplanned event that results 
in a loss, including loss of human life or human injury, property damage, environmental 
pollution, mission loss, etc.” [7]. The unacceptable losses and accidents considered in the 
analysis are1: 

‐ A1:  Damage to vehicle or public property 
‐ A2:  Injury or death to people 
‐ A3:  Degradation of system availability or performance 
‐ A4:  Loss of critical information 

Identifying hazards related to the system 
Leveson defines hazards as “A system state or set of conditions that, together with a particular 
set of worst-case environmental conditions, will lead to an accident (loss)” [7]. Although a 
system that is in hazardous state does not guarantee that it will lead to an accident, it is crucial 
to prevent the occurrence of hazards by mitigation through system design or organizational 
polices and guidelines.  

The high-level hazards and associated accidents/ losses identified in our analysis are shown 
in Table 1.  

Table 1. Hazards and associated accidents/ losses 

Hazards Associated Accidents/ 
Losses 

H1: Adversaries take over control of safety-critical functions of AV A1, A2, A3 
H2: AV operating with unsafe/ unsecure/ outdated software A1, A2, A3 
H3: Adversaries compromise network/ critical infrastructure supporting AV  A3, A4 
H4: AV travelling on unsafe/ unauthorized road  A1, A2 

 

Stage 2: Identify potentially unsafe/ unsecure control actions 

Functional Control Structure  

Our analysis focuses on the over-the-air (OTA) software updates, a key capability which 
enables the connected autonomous vehicle to exchange live updates such as traffic/ road 
conditions, routing instructions and location updates, as well as periodic firmware updates and 
bug fixes. The ability to receive OTA software updates is key to realising the MAAS concept, 
but it also poses a different range of attack surfaces that can be exploited.   

                                                       
1 The numbers, A1, etc., are just used for reference. There is no indication of priority implied. 



 

Figure 8 shows the high-level functional control structure of socio-technical components in 
the OTA software updates example. The functional control structure details the control loops 
within the system, together with interactions among components at different hierarchical 
levels. This functional control structure provides the basis to further analyze safety and 
security constrains within the system. The system boundary under analysis in this study is 
represented by components in the shaded box. Although the analysis is limited to components 
within the system boundary, it is important to consider interactions with external socio-
technical systems to glean additional insights and context to the analysis.   

 

 

Figure 8. Functional control structure for software OTA updates 

Unsafe/ Unsecure Control Actions  

The next step is to identify unsafe/ unsecure control actions by assessing control loops within 
the functional control structure. This analysis is not limited to electro-mechanical components; 
they can be used to analyze organizational or management components within the control 
structure. Four types of unsafe control action that can lead to a hazardous outcome are 
considered, namely: 

 A control action required for safety is not provided 
 An unsafe / unsecure control action is provided that leads to a hazard 
 A potentially safe control action is provided too late, too early, or out of sequence 
 A safe control action is stopped too soon or applied too long 

Based on the four types of UCAs described above, this stage seeks to identify actions that 
may cause the system to reach a hazardous state.  A total of 15 UCAs were generated by 
considering each interaction in the functional control. For brevity, only 7 examples will be 
provided in Table 2. Starting from the interactions between the control center and the AVs, 



three UCAs were identified. UCA-11 identifies a case where unauthorized updates are 
provided to the AV, potentially leading to hazards H1 (adversaries take over control of safety-
critical features of AV) and H2 (AV operating with unsafe/ unsecure/ outdated software). UCA 
10 & 12 identify cases where software updates are not applied to the AVs, or not applied in 
timely manner, leading to the same hazards H1 and H2.  

 

Table 2. Potentially unsafe/ unsecure control actions 

Control Action Not providing causes hazard Providing 
causes 
hazard 

Too early / too late/ 
wrong order causes 

hazard 

Stopping too 
soon/ applying 

too long 
causes hazard 

UCAs between MAAS Operator (Management) and software update provider 

Service 
agreement 

UCA‐1:  Service  agreement 
with  network  provider  not 
provided  before  system  is 
operationalized [H3, H4] 

Not hazardous Not applicable Not applicable 

UCAs between MAAS Operator (Management) and Control Center  

Safety/ security 
policies and 
operating 
procedure 

UCA‐3:  Safety  policies  and 
operating  procedure  not 
provided  before  system  is 
operationalized [H1 – H4] 

Not hazardous Not applicable Not applicable 

UCAs between software update providers and Control Center 

Periodic 
software 
updates 

UCA‐7:  Software  updates  not 
provided  by  providers  when 
new  threats/  vulnerabilities 
exist [H1, H2] 

Not hazardous UCA‐8:  Software 
updates  provided  too 
late  by  providers when 
new  threats/ 
vulnerabilities exist [H1, 
H2] 

Not applicable 

UCAs between Control Center and AV 

Periodic/ 
dynamic 
software 
updates 

UCA‐10: Software updates not 
applied to AVs when threats or 
vulnerabilities exists in AV [H1, 
H2] 

UCA‐11: 
Unauthorized 
software 
updated  into 
AVs  [H1,  H2, 
H4] 

UCA‐12:  Software 
update  not  applied  to 
AVs  in  timely  manner 
when  threats  or 
vulnerabilities  exists  in 
AV [H1, H2, H4] 

Not applicable 

 

For each identified UCA, Safety and Security Constrains (SSCs) were recommended at 
component-level. Table 3 shows examples of SSCs. These SSCs are high-level requirements 
and could serve as input for safety/ security features and requirements as part of the guided 
design process.  

 

Table 3. Extracts of Safety / Security Constrains 

Unsafe / Unsecure Control Actions Possible Safety / Security Constrains 

UCA‐1: Service agreement with network 
provider  not  provided  before  system  is 
operationalized [H3, H4] 

SC‐  1:    The MAAS  operator  shall  establish  service  level  agreement 
with  network  service  provider  to  ensure  adequate  coverage  of 
network,  availability,  and  protection  levels  against  cyber  security 
threats. 

UCA‐3:  Safety  policies  and  operating 
procedure not provided before system is 
operationalized [H1 – H4] 

SC‐  2:    The  MAAS  operator  shall  translate  applicable  regulatory 
requirements  and  standards  to  safety  policies  and  operating 
procedures. 



UCA‐7:  Software  updates  not  provided 
by  providers  when  new  threats/ 
vulnerabilities exist [H1, H2] 

SC‐ 7:  The MAAS operator shall establish protocols for periodic or ad‐
hoc software updates upon detection of vulnerabilities.   

UCA‐8:  Software  updates  provided  too 
late  by  providers  when  new  threats/ 
vulnerabilities exist [H1, H2] 

SC‐ 3:  The MAAS operator shall establish protocols for timely update 
of  critical  software  updates  that  need  to  be  installed  on  AVs 
expeditiously    

UCA‐10: Software updates not applied to 
AVs when threats or vulnerabilities exists 
in AV [H1, H2] 

SC‐  10:  The  MAAS  operator  shall,  by  working  with  associated 
providers, ensure that software updates are provided to provide fixes 
for detected vulnerabilities. 

UCA‐11: Unauthorized software updated 
into AVs [H1, H2, H4] 

SC‐ 11:  The MAAS operator shall, by working with relevant parties, 
prevent unauthorized software from being installed into AVs. 

UCA‐12: Software update not applied to 
AVs  in  timely  manner  when  threats  or 
vulnerabilities exists in AV [H1, H2, H4] 

SC‐ 12: The MAAS operator shall ensure timely response to vulnerable 
software  by  providing  fixes/  patches  through pre‐emptive  or  quick 
recovery approach   

 

The high-level safety/ security constrains derived from the analysis up to stage 2 may be 
sufficient for some analysis. In STPA Stage 3, we select a few UCAs for further analysis to 
identify scenarios and causal factors which may cause the UCAs to occur.  

 

Stage 3: Identify causes for unsafe/ unsecure control actions and 
propose mitigation measures 
 
Stage 3 aims to identify possible scenarios where unsafe/ unsecure control actions may occur. 
This enables us to map out how unsafe control actions may be triggered, facilitating 
recommendation of safety and security requirements and improvements to system design, 
organizations policies, or security governance framework. STPA-Sec provides a method to 
systematically identify possible causes for each identified UCAs. Using the classification of 
potential control loop disruptions described in Figure 9, we analyzed control loops to identify 
hazardous scenarios and causal factors that may lead to violation of any safety or security 
constrains. The diagram includes additional considerations (underlined and bolded) extended 
from STPA to include additional security analysis. For example, the communication between 
the main controller and secondary controller also includes unauthorized communications (in 
additional to missing or wrong communications) when we include cybersecurity considerations 
in our analysis. The control loop analysis provides heuristics to identify potential disruptions 
that may cause the system to reach a hazardous or vulnerable state.  



 

Figure 9. Potential control loop disruptions leading to hazardous states (Adapted from [24]) 

Interactions between MAAS Control Center and AVs 

This example demonstrates the analysis of process models to investigate scenarios and 
causal factors leading to unsafe/ unsecure interactions between the MAAS control center and 
the autonomous vehicles (see Figure 10). Starting from the top, software update providers 
issue software updates to the MAAS control center. To control the distribution of software 
updates, the control center’s process model considers the type of software update (periodic 
or dynamic), criticality of software update, update mechanisms, and target AVs to be updated. 
The update process is managed by the OTA software update management system, which 
distributes approved software updates. Once the updates are downloaded to the AVs, the 
software packages are installed and the update progress are feedback to the control center. 

 

 

Figure 10. Process model for periodic/ dynamic software updates to AVs 

The process model is a crucial step to help us understand why accidents occur. In the stable 
state, the controllers, actuators, and feedback mechanism ensure the safe and secure 
operation of software updates process. Using the generic causal factors shown in Figure 9 as 



a guide, potential scenarios for unsafe interactions and their causal factors were identified. 
The graphical representation of scenarios and causal factors of unsafe interactions is shown 
in Figure 11. Working around the loop, causal factors for each of the components are shown 
in boxes representing the controller, actuator, control process, and sensors. The detailed 
scenarios, causal factors, and recommended safety/ security requirements are generated in 
further details as shown in Table 4.  

 

Figure 11. Causal scenarios analysis for periodic/ dynamic software updates to AVs 

 

Table 4. STPA Stage 3 analysis results for periodic/ dynamics software updates to AV 

Scenario Associated 
Causal Factors 

Requirements / Design Features Allocated to Rationale 

UCA-7: Software updates not provided by providers when new threats/ vulnerabilities exist [H1, H2] 
UCA-8: Software updates provided too late by providers when new threats/ vulnerabilities exist [H1, H2] 
Outdated 
software 
 
Software 
updates with 
vulnerabilities 

Inadequate 
service level 
agreement with 
update providers 

R‐1: Establish service level 
agreement with update providers to 
ensure preventive bugs and 
vulnerability fixes are included 

MAAS 
Operator 
(Management 
team) 

Improve 
organizational 
cybersecurity 
plans and 
strategies 

Long lead time 
to implement 
software 
updates 

R‐2: Ensure pro‐active vulnerability 
monitoring. For example, bug bounty 
program to invite “ethical hackers” to 
find security vulnerabilities 
R‐3: Dedicated, independent cyber 
security team actively looking into 
regular security audit tests and 
detecting any new threats/ 
vulnerabilities.    

MAAS 
Operator 
(Management 
team) 

Improve 
organizational 
cybersecurity 
plans and 
strategies Lack of proactive 

vulnerability 
monitoring and 
security 
maintenance 

UCA-10: Software updates not applied to AVs when threats or vulnerabilities exists in AV [H1, H2] 
UCA-12: Software update not applied to AVs in timely manner when threats or vulnerabilities exists in AV 
[H1, H2, H4] 
Delayed 
software 
updates to AVs 

Inadequate 
policies and 
operating 
procedures 

R‐4: Develop cybersecurity policies 
and operating procedures to 
determine update lead time based 
on different levels criticality. 

MAAS 
Operator 
(Management 
team) 

Improve 
organizational 
cybersecurity 
plans and 
strategies 



Scenario Associated 
Causal Factors 

Requirements / Design Features Allocated to Rationale 

Inadequate 
cybersecurity 
response plans 
and strategies 

R‐5: Develop cybersecurity response 
plans and strategies, ensuring all 
parties involved know their roles and 
responsibilities in the event of cyber‐
attack (malicious software updates) 
R‐6: Provide a system for response 
plans to be exercised and lessons 
learnt incorporated to improve 
existing plans 

MAAS 
Operator 
(Management 
team) 

Improve 
organizational 
cybersecurity 
plans and 
strategies 

AV internal or 
external 
network over-
loaded 

Excessive traffic 
restricting 
software 
updates to AV 

R‐7: AV gateway designed to prevent 
unauthorized traffic 
 

MAAS IT 
Infra/ security 
team 

Improving Critical 
Infra Protection 

File size of 
software 
updates too 
large 

R‐8: MAAS operator to work with 
providers to limit file size of software 
updates 

MAAS 
Operator 

Coordination and 
cooperation with 
external providers 

Too many 
concurrent 
downloads 

R‐9: MAAS operator to stagger 
software updates in to minimize 
network congestion 

MAAS 
Operator 

Enhancing 
internal policies 
and procedures 

Backdoor 
attacks within 
vehicular 
network (CAN 
bus) 

R‐10: Segregate networks for safety‐
critical functions and non‐safety‐
critical functions 

AV 
Manufacturer 

Improving AV 
security design 

 

Additional considerations to STPA-Sec 
In the preceding section, we identified causal factors and scenarios by using heuristics in 
Figure 9 to identify causal factors and scenarios in which UCAs can occur. While this 
approach was effective in generating unique and important considerations as part of STPA-
Sec stage 3 analysis, other methods may also be used to complement and add additional 
considerations. In the 2016 STAMP conference [25], Young proposed the use of information 
lifecycle model to add considerations to the STPA-Sec analysis (see Figure 12). To this end, 
CHASSIS hazards analysis mentioned in the earlier section may be considered. We will 
compare recommended mitigations from both CHASSIS and STPA-Sec analysis and list 
additional mitigations generated if we were to incorporate information lifecycle stages to 
generate additional considerations.   

 

 

Figure 12. Information lifecycle stages [25] 

 



Summary of STPA-Sec analysis 
Overall, STPA-Sec co-analysis of safety and security hazards with the MAAS software OTA 
update use case demonstrated several potential benefits over traditional methods. Adopting 
systems thinking approach and analyzing hazards using control theory provides guidance to 
consider the broader system. Furthermore, the approach facilitates the identification of 
hazardous state due to unsafe/ unsecure interactions among components, and readily 
captures causal factors such as managerial decisions, organizational policies, and regulatory 
landscape arising from socio-technical interactions. The full STPA-Sec analysis (refer to [26]) 
yielded 44 design requirements. From systems control perspective, these requirements aim 
to mitigate safety and security risks by controlling feedback loops in order to prevent the 
system from reaching the hazardous states as defined earlier in this chapter.  

The key findings and take-away from the STPA-Sec analysis are summarized as follow: 

 STPA is based on a top-down approach; its scope of analysis is bounded by 
unacceptable accidents/ losses and hazards identified upfront. One key lesson from 
this study is that even for a relatively narrow system boundary under analysis, the 
number of causal scenarios and mitigation actions can expand substantially. It is 
therefore recommended to begin the analysis at higher levels of abstraction, and then 
go into further details by further in-zooming the functional control structure in 
subsequent iterations. 

 One of the distinguishing feature of STPA approach is the consideration of socio-
technical interactions beyond the technical operational aspects of the system. 
Analyzing the interactions within the whole eco-system can be useful in finding insights 
on how the external interactions may impact process model of components further 
down the control structure. 

 STPA incorporates heuristics to aid identification of unsafe/ unsecure interactions, as 
well as causal scenarios in which such interactions may take place. In STPA Stage 2, 
the four factors in which unsafe control actions can take place (e.g. control action not 
provided, unsafe/ unsecure control action provided, control action provided too late/ 
too early/ out of sequence, and control action stopped too soon or applied too long) 
are to some extend similar to HAZOP guidewords. In STPA Stage 3, in addition to 
classification of causal factors for identifying possible accident scenarios, it may be 
useful to apply the Confidentiality, Integrity, and Availability (“CIA”) guidewords as 
creativity process for identifying cybersecurity causal factors.  

 An additional benefit of STPA is the ability to trace mitigation requirements to the 
hazard(s) that these requirements are intended to mitigate against. Having clear 
traceability to the intent is important to help developers and testers validate the system, 
as well as ensure that the mitigation measures are maintained should the system be 
upgraded or replaced.   

 

Hazard and Risk Analysis Using CHASSIS 
 
Recognizing that safety and security areas are increasingly merged and interconnected in new 
systems, CHASSIS was proposed as a combined safety and security assessment to minimize 
resources compared to having separate assessments, as well as support the understanding 
and resolving potential conflicts between the two areas [14]. Using techniques from both safety 
and security fields, CHASSIS artefacts are built on the Unified Modelling Language (UML). As 
part of the safety and security assessment, CHASSIS adopts the Hazard and Operability 
studies (HAZOP) guidewords as creativity process for generating unsafe/ unsecure actions. 
HAZOP provides a structured and systematic examination of potential actions by misusers 
and attackers during the analysis. Figure 13 provides an overview of process activities in 
CHASSIS method. 
 



 
Figure 13. Process activities in CHASSIS [27] 

 

Stage 1: Eliciting functional requirements 
 
Stage 1 focuses on eliciting functional requirements. The functions, users and services within 
the system are presented in the Diagrammatic-Use Case (D-UC) as shown in Figure 14. D-
UC showing functions, services, and users involved in the system 

 

 

Figure 15. SD showing system interactions for periodic and dynamic software updates 

 



 

Figure 16. SD showing interactions involving MAAS management 
. The D-UC is further extended to represent the interactions and activities in the sequence 
diagrams. Figure 15 shows the technical sequence of activities for both periodic and dynamic 
updates that are disseminated to autonomous vehicles. Error! Reference source not found. 
shows the managerial and organizational activities, including the establishment of service 
agreements, generation of internal policies and guidelines, and funding and resources 
allocated to strengthen cybersecurity measures. Further descriptions of the possible paths of 
activities are elaborated in Textual use-case (T-UC) tables – see example in  
Table 5. 
 

 

Figure 14. D-UC showing functions, services, and users involved in the system 

 



 

Figure 15. SD showing system interactions for periodic and dynamic software updates 

 

 

Figure 16. SD showing interactions involving MAAS management 
 

Table 5. Tabular Use Case (T-UC) – Detailed descriptions 

Name MAAS Operator (Management) providing policies and operating procedure 
Summary MAAS management team issues policies and operating procedures related to 

cybersecurity, ensuring that staff at all level know their roles and responsibilities  
Basic Path BP1: Management decides on applicable security/ safety standards, guidelines, 

and regulations 
BP2: Translate into policies and operating procedure for staff to adhere to.  
BP3: Staff follow policies and operating procedures in their daily work 

Alternative Path AP1: No internal policies and operating procedure; staff follow applicable 
standards directly 

Exception points ECP1: In BP2, management team ignores applicable security standards and 
guidelines 
ECP2: In BP3, staff unsure of CS organizational policies and operating procedure 
and carry out unsafe/ unsecure actions 

Extension Points ETP1: Management sends staff for additional training to build CS competencies 
Triggers Applicable standards, guidelines, and regulations on safety and security for 

automotive 
Assumptions Management has policy team whose role is to manage internal organizational 

policies and procedures 
Related business rules Organizational CS strategy, objectives and missions 

 

Stage 2: Eliciting safety and security requirements 
 



Stage 2 focuses on eliciting and analyzing safety and security requirements. Using existing 
work in [28][29][30], potential misuse cases (shaded in red) were extended to the D-UC to 
derive the diagrammatic misuse case (D-MUC) diagrams, as shown in Figure 17. Next, 
scenarios for misuses and harm cases were identified. These misuses and harm cases were 
identified by associating use cases with guide words from hazard and operability study 
(HAZOP). This provides a structured way to analyze possible cases. For example, using the 
guide word “Other than”, the scenario where a flawed update provider may send outdated or 
wrong updates was identified. Other common guidewords include: Before; After; Early; Late; 
No or Not; Reverse, etc. To further consider cybersecurity threats, we used the Confidentiality, 
Integrity, and Availability (CIA) model to identify security-related threats scenarios. For 
example, by brainstorming possible “Confidentiality” threats, the threat scenario where an 
attacker may eavesdrop on the network and gather sensitive information was identified.  

Misuse scenarios (red boxes) were captured in the Failure Sequence Diagram (FSD), while 
security threats scenarios (purple solid boxes) were captured in the Misuse Case Sequence 
Diagrams (MUSD). Figure 18 shows the combined FSD and MUSD for the misuse case/ 
threats for periodic software updates originating from the cloud, while Figure 19 shows the 
same for interactions involving the MAAS management. By identifying possible bad actors and 
possible points where misuses can take place, vulnerable points within the system and their 
downstream impacts can be identified. In the misuse case of flawed management or investors 
placing more emphasis on areas other than cybersecurity, MUSD in Figure 19 identified 
possible flaw with inadequate funding and resources allocated to the MAAS Control Center. 
Inadequate cybersecurity measures can propagate to downstream impacts ranging from the 
lack of policies and guidelines for protection and response strategies to an increase in 
likelihood of cyber-attacks (V1 to V6 in Figure 18). 

 

 

Figure 17. D-MUC for software/ firmware OTA update process 

 

 



 

Figure 18. FSD and MUSD for periodic and dynamic software updates 

 

 

 

Figure 19. FSD and MUSD for interactions involving MAAS management 

 

System flaws and vulnerabilities from D-MUC and MUSD diagrams are detailed in the Textual-
Misuse Case (T-MUC). Table 6 shows an example T-MUC for the flawed provider sending 
outdated or wrong updates to the AV manufacturer. The T-MUC further describes the 
sequence of events leading to the system flaws or vulnerabilities, followed by 
recommendations to mitigate the risks at various points. Further contextual information, such 
as assumptions made, pre-conditions, misuser profile, stakeholders involved, and risks are 
further elaborated in the T-MUC.  

Table 6. T-MUC detailed description 

Name F1) Flawed provider send outdated or wrong update to AV manufacturer 
Basic Path BP1: Provider sends outdated or wrong update to MAAS Operator in Control 

Center 
BP2: Wrong/ outdated update not detected and is updated on the AVs 
BP3: Outdated software with vulnerabilities installed on AV, leading to possible 
hazards 

Mitigation points MP- 1: A process or system to prevent wrong or outdated updates from being 
issued by providers. 
MP- 2:  A mechanism or system to detect wrong or outdated updates from 
being received by MAAS operator 



MP- 3: A system to prevent wrong or outdated update from being installed on 
AVs.   

Assumptions 1) There is a software system to facilitate software updates and distribution  
Pre-conditions 1) Wrong or outdated updates can lead to hazards 
Misuser profile 1) Mistake/ lapse from faulty provider 
Stakeholders, risks 1) Safety of passengers of pedestrians in danger 

2) Damage to vehicles or physical properties 
3) Both MAAS operator and provider’s reputation is at stake 

 

Stage 3: Summary of recommendations 
CHASSIS analysis identified a total of eight safety-related flaws and eight security-related 
system vulnerabilities. The analysis result also found 23 mitigation points to address these 
system flaws and vulnerabilities. In CHASSIS Stage 3, a summary of the analysis results is 
presented in HAZOP tables (see example in 

Table 7) to record functions that were analyzed, together with parameters and guidewords 
used to identify potential misuse cases.  

Table 7. HAZOP table for software update providers 

Function Guideword  Consequence Cause Harm Recommendation 

Provide 
periodic 
or 
dynamic 
updates 

HAZOP 
“Other 
than” 
 

F1) Flawed provider 
sends outdated or 
wrong update to 
MAAS operator; the 
update is distributed 
to AVs causing it to 
operate in 
hazardous state 

Mistake/ 
lapse 
from 
flawed 
provider 

AV 
operating 
with 
vulnerable/ 
unsafe 
software 

MP- 4: A process or system to 
prevent wrong or outdated 
updates from being issued by 
providers. 
MP- 5:  A mechanism or system 
to detect wrong or outdated 
updates from being received by 
MAAS operator 
MP- 6: A system to prevent wrong 
or outdated update from being 
installed on AVs.   

 
Table 8 provides the summary of requirements generated from CHASSIS analysis, 
categorized into managerial aspects, organizational/ operational aspects, technical (AV 
design) aspects, and technical (MAAS IT infrastructure) aspects. 

 
Table 8. Summary of requirements and design considerations from CHASSIS analysis. 

MAAS 
Managerial  

MAAS Organizational / 
Operations 

Technical  
(AV Design) 

Technical (MAAS IT 
Infrastructure design) 

2 requirements 7 requirements 10 requirements 4 requirements 
MP-18: 
Establish 
acceptable 
agreement and 
mutual 
understanding 
on acceptable 
software 
support  
 
MP-19: 
Establish 
acceptable 
agreement and 
mutual 
understanding 

Organizational Policies & 
Processes  

MP‐ 11: Develop contingency 
plans and strategies to 
recover from potential attacks 
MP‐ 20: Develop 
organizational multi‐year CS 
strategy and plan; ensure 
adequate funding and 
resources are allocated to 
meet the plans 
MP‐ 21: Provide clear CS 
guidelines, policies, and 
training to ensure that staff at 
all levels are familiar with 

Organizational Policies & 
Processes  

MP‐ 3: A system to prevent 
wrong or outdated update from 
being installed on AVs.   
MP‐ 6: Design and develop a 
mechanism to certify updates are 
from trusted sources 
MP‐ 8: AV shall have capability to 
detect messages that may be 
altered or are from unidentified 
sources 
MP‐ 9: AV shall ensure updates 
are from authorized and 
authenticated sources before 
receiving these updates 

Data-at-rest 
Protection 

MP‐ 4: Ensure Critical 
IT infrastructure is 
protected 24/7, with 
access controls in place 
MP‐ 5: Ensure network 
access to internal IT 
system is adequately 
protected with 
authentication and 
authorization 
mechanisms 
MP‐ 10: Design and 
implement protection 
of critical 



on acceptable 
network 
coverage within 
AV’s area of 
operations 
 
 

their CS roles and 
responsibilities 

Operations 

MP‐ 1: A process or system to 
prevent wrong or outdated 
updates from being issued by 
providers. 
MP‐ 2:  A mechanism or 
system to detect wrong or 
outdated updates from being 
received by MAAS operator 
MP‐ 22: Include standard 
operating procedures to 
update management on CS 
incidents based on criticality/ 
severity 
MP‐ 23: Automated system to 
alert management on critical 
CS incidents 

 
MP‐ 12: Design the AV such that 
it does not allow installation of 
critical software updates while 
driving 
MP‐ 13: Ensure that security 
feature that prevents software 
installation in hazardous mode is 
tamper‐proof 
MP‐ 14: Design and implement 
authentication and authorization 
mechanism 
MP‐ 15: Ensure that the 
authentication and authorization 
mechanism is tamper‐proof 
MP‐ 16: Design and implement 
tamper‐proof ECU to prevent 
unauthorized inject of commands 
to ECU to send wrong/ inaccurate 
metrics 
MP‐ 17: Design and implement 
tamper‐proof communications 
module to prevent the module 
from being disabled 

infrastructure to block 
any invalid traffic (e.g. 
firewalls, strong 
password, network 
encryption) 
 
 

Data-in-transit 
Protection 

MP‐ 7: (1) Ensure 
security‐critical 
information are sent 
using secure network 
protocol; (2) Ensure 
security‐critical 
information are 
encrypted before 
transmission 

 

Comparison between STPA-Sec and CHASSIS 
 
Another key objective of this research is to compare the results from STPA-Sec analysis with 
another safety/ security hazard analysis method – CHASSIS. Table 9 compares the number 
of requirements for each category generated from both STPA-Sec and CHASSIS. Across all 
categories, it is observed that more requirements were generated from STPA-Sec analysis.  

Table 9. Comparison of recommended mitigation measure types between STPA-Sec and CHASSIS 
Categories of requirements STPA-Sec CHASSIS 

Managerial aspects 7 2 
Organizational / Operations aspects 14 7 
Technical (AV design) aspects 13 10 
Technical (MAAS IT Infrastructure) aspects 14 4 

Total requirements 48 23 

 
A qualitative comparison of both hazards analysis methods is provided in Table 10. In the 
previous section, the use of CHASSIS for information lifecycle analysis to add considerations 
to STPA-Sec analysis was suggested. Based on the comparison of analysis results, there are 
strengths in CHASSIS analysis that makes it feasible to complement STPA-Sec stage 3 
analysis to generate additional considerations. In particular, we found that because CHASSIS 
focuses on possible activities by misusers and attackers at various stages of information 
lifecycle, the analysis generated layered defense requirements with specific prevention and 
detection mechanisms at key components to prevent propagation of vulnerabilities. The 
information lifecycle analysis (using CHASSIS models) could be conducted in subsequent 
stages of STPA-Sec to derive additional requirements at components level.    
 

Table 8. Qualitative Comparison of recommended mitigations from STPA-Sec and CHASSIS 
Mitigations in both STPA-Sec 

and CHASSIS 
Mitigations in STPA-Sec only Mitigations in CHASSIS only 

Both methods identified 
mitigations to strengthen control 

- Strength in identifying mitigations 
from socio-technical aspects that 

- Strength in identifying layered 
defense; specific prevention and 



and protection at key components 
under system boundary. 

have indirect interactions with 
technical system (considered 
investors, standards and 
regulations, staff training and 
competency, environmental 
impacts, etc.). 
- Significantly more requirements 
from managerial, organizational 
policies/ processes from STPA-
Sec; more focus on top-down 
control mechanisms than bottom-
up fixes 

detection requirements for each 
component within information 
chain.  
- Focused on possible activities by 
misusers and attackers 
- Unique requirements include: 
identification of wrong or outdated 
software updates due to human 
error; tamper-proof design for 
critical features to mitigate 
attackers’ activities 
 

 
The in-depth comparisons between STPA-Sec and CHASSIS are shown below. Several 
differences which may affect its effectiveness in specific context are highlighted.  

Analysis approach 
Both STPA-Sec and CHASSIS encompass co-analysis of safety and security hazards. At its 
core, STPA-Sec is built on control theory with hazards and vulnerabilities a result of 
inadequate controls within the system. As a result, the technique enables identification of 
unsafe interactions even if individual components are working perfectly. On the other hand, 
CHASSIS model system behavior based on information flow and interactions; it facilitates 
identification of system failures or vulnerabilities based on activities introduced by misusers or 
attackers. We also observed that for analysis at high-level abstractions, in-depth knowledge 
of the system is not a necessity, which makes both STPA-Sec and CHASSIS feasible for 
teams without strong expertise in the system.    

Level of abstraction 
Since STPA-Sec is based on STAMP, its underlying concept is to analyze the system taken 
as a whole, rather than its components taken separately. STPA-Sec is a high-level, top-down 
approach, focusing on emergent properties that arise from relationships among components. 
Therefore, the technique is well suited for systems in early stages of development and concept 
phase where architectural artefacts have not been established. STPA-Sec generates more 
high-level requirements considering the larger socio-technical aspects of the system. In 
contrast, CHASSIS can be considered a bottom-up approach building upon functional 
decomposition of key components use cases and their interactions. To establish the use cases 
and information sequence flow of the system, some high-level functional requirements and 
information transactions would be required during analysis. The mitigations generated by 
CHASSIS are strong in generating layered defense against possible activities by misusers 
and attackers to prevent the vulnerability/ fault from propagating through the system.  

Scope of analysis 
STPA-Sec first establishes the high-level control structure encompassing socio-technical 
interactions with components of the system. The system boundary is then defined to set the 
focus of analysis on components that are within the team’s influence. Next, definition of 
unacceptable losses/ accidents and hazards also narrow down identification of unsafe control 
actions to those that attribute to the hazards. Based on using STPA-Sec in this research, it is 
common to see the scope of analysis can expand, especially in STPA-Sec Stages 2 and 3. 
Therefore, it is worthwhile to consider starting with a high-level abstraction for the control 
structure and unacceptable losses/ accidents and then proceed with more in-depth analysis 
in later stages of STPA-Sec analysis.  

One of the key features of CHASSIS is the use of UML to model system interactions using 
use case/ misuse case diagrams and sequence diagrams. These artefacts may be extended 
from system design documentations to include system flaws and vulnerabilities that may lead 
to harm. Furthermore, the diagrammatic UML representations provides a key strength of 
CHASSIS as these representations of system interactions are intuitive and can easily be 
conveyed to key stakeholders during discussions. Although CHASSIS have not been 
designed to consider external organizational and environmental interactions, it is possible to 



expand the boundary in subsequent iterations, as demonstrated where the interactions 
between the management team and control center was expanded to the risk scenario 
considerations.   

 

Case Analysis of recommendations from STPA-Sec 
 
Next, we evaluate effectiveness of the list of recommendations generated from the STPA-Sec 
analysis by back testing against a past cyber hack scenario. In a series of hacks starting in 
2013, Miller and Valasek demonstrated how potential hackers can gain access to the vehicles 
over the internet. The experiment, conducted on various car models including the Jeep 
Cherokee, Toyota Prius, and Ford Escape, demonstrated the ability to remotely control the 
vehicle’s fan, music volume, wipers, and even safety-critical features like the steering wheels, 
accelerator and brakes [31]. The generic system architecture of the Jeep Cherokee is shown 
in Figure 20. Generic system architecture and features of the Jeep Cherokee 

 

 

 
Figure 20. Generic system architecture and features of the Jeep Cherokee 

 

Millier and Valasek identified several vulnerabilities which enabled them to gain access to the 
vehicle’s safety-critical features2, as depicted in Figure 21 and summarized as follow: 

 The researchers identified a micro-controller and software within the UConnect head 
unit that connects to other components of the vehicle through the vehicle’s internal 
network known as the CAN (Controller Area Network) bus. The CAN bus is a critical 
infrastructure that enable communications among the vehicle’s electronic control units. 

 Using this as an entry point, Miller and Velasek planted their code on the firmware of 
an entertainment system hardware, disabling checks and balances in the vehicle 
computer units, and enabling them to send commands to the vehicle’s CAN bus.  

 To access the vehicular network wirelessly using WIFI, the researchers identified that 
each vehicle’s WPA password was generated based on the epoch time (in seconds) 
from the time the vehicle was manufactured to the first start up. The researchers were 
able to narrow down to a few dozen combinations and the WPA password used to 
access the vehicle network can be guessed quite easily.  

                                                       
2 There has been some confusion as to whether physical access to the vehicle was required.  
Although physical access to one such vehicle might have been needed to determine the details, the 
actual cyber attack was conducted remotely without any physical access to that vehicle. 



 The UConnect system uses Sprint’s 3G network to communicate with other vehicles, 
and with the vehicle manufacturer for software updates. The researchers found that 
that it was possible to communicate with other Sprint devices connected anywhere in 
the country. This network vulnerability allowed the researchers to increase their range 
of attack by exploiting cellular access into the vehicle.    

 

 
Figure 21. Key vulnerabilities of the Jeep Cherokee 

 
Using the same systems theory based on STAMP, a simplified Causal Analysis using System 
Theory (CAST) analysis was conducted to analyze deficiencies in the control structure of the 
Jeep Cherokee case. The goal of this analysis is to identify how system constrains were 
violated leading to the successful hacks by Miller and Valasek. The accidents/ losses, system 
hazards and system constrain associated with this incident is shown below. 

Associated accidents/ losses: 
A1: Financial loss to manufacturer due to recall and rectification of vulnerability 
A2: Loss of reputation for manufacturer 
A3: Loss of consumer confidence in smart vehicles 
 

Associated system hazard: 
H1: Attacker gain access to vehicle to load malicious software [A1, A2, A3] 
H2: Attacker gain control of safety-critical functions of vehicle [A1, A2, A3] 
 
Associated system constrain: 
SC1: The system control structure must prevent unauthorized software from being loaded to 
vehicle [H1] 
SC2: The system control structure must prevent unauthorized control over safety-critical 
functions of vehicle [H2] 
 
Figure 22 shows the generic control structure of the vehicle with infotainment controller unit 
similar to Jeep Cherokee’s UConnect feature. The feature allows the human operator (driver) 
to access and control infotainment features of the vehicles through on-board UConnect 
Dashboard. The UConnect infotainment system also acts as the visual interface between the 
driver and vehicular ECUs (such as entertainment system). Vehicular features such as 
software updates, navigation, telematics, entertainment, and connectivity are available 
through the vehicle’s UConnect feature. The control structure is extended to include the 
manufacturer, which may receive software update requests following authorization by the 



human operator. The manufacturer has the capability to provide software updates to the 
vehicle over the air.  

 

 
Figure 22. Generic control structure of the Jeep Cherokee system under analysis 

 
Table 11 – 13 provide analysis of safety/ security constrains violated. The analysis highlights 
key safety responsibilities and constrains violated in each component, together with any 
emergency and safety equipment present, physical failures and inadequate controls, as well 
as contextual factors: 

 At the physical system (vehicle) level, the unauthorized control of vehicle’s safety-
critical components results in violation of safety/ security constrain. The driver is also 
unable to safely over-ride or take-over control of the vehicle. Based on the analysis, 
the physical failure or inadequate control that led to the violation are due to the 
Electronic Control Unit (ECU) executing unauthorised command, as well as indirect 
linkages in ECUs performing safety-critical functions and infotainment functions. Refer 
to Error! Reference source not found. for details.  

 For the in-car controller, the safety/ security constrains violated include the 
transmission and execution of unauthorised commands, and the unauthorised access 
to the vehicle’s safety-critical features. A number of inadequate controls were 
observed, ranging from non-encrypted messages, inadequate authorisation and 
authentication mechanisms, and availability of a back door for attackers to insert 
malicious codes. Refer to Error! Reference source not found. for details.  

 For the vehicle manufacturer, possible safety/ security constrains include inadequate 
secure development process, cyber-security-related competencies and as well quality 
assurance processes to ensure cybersecurity risks are mitigated. It is also important 
to consider contextual factors, such as the supply of parts from different 
manufacturers, and the competitive industry that calls for new features that may lead 
to new attack surfaces. Refer to Error! Reference source not found. for details.  

 

Table 9. Analysis of Physical System (Vehicle) 

Domain Analysis 

Safety and security 
responsibilities and 
constraints violated 

- Prevent unauthorized control of vehicle’s safety-critical components 

Emergency and Safety 
Equipment (Controls) 

- Driver unable to over-ride or take over command of vehicle 
- Driver may attempt to take over control or switch off the vehicle 



Physical Failures and 
Inadequate Controls 

- ECU for safety-critical components execute unauthorized command  
- ECU for safety-critical components (e.g. accelerator, brakes, steering) and 
non-safety critical components (infotainment, wipers, etc.) on the same 
network bus  

Contextual Factors - Driver may completely switch off vehicle but this may be dangerous while 
the vehicle is driving. 
- Driver may enable vehicular network (e.g. WIFI, cellular) and expose the 
vulnerability 

 

Table 10: Analysis of Physical System (in-car controller) 

Domain Analysis 

Safety and security 
responsibilities and 
constraints violated 

- Prevent unauthorized software or command from being sent and executed 
on vehicle controller 
- Prevent access to vehicle’s safety-critical features 

Emergency and Safety 
Equipment (Controls) 

- UConnect system do not have direct features to control safety-critical 
features of the vehicle.  

Physical Failures and 
Inadequate Controls 

- Messages transmitted over the air is not encrypted which allow attackers to 
interpret messages and plan attacks 
- Inadequate authorization and authentication allow unauthorized software to 
be installed in vehicle 
- Vehicle installed with vulnerable software provide backdoor for attackers to 
send commands and remotely control safety-features of vehicle 

Contextual Factors - By default, UConnect is designed with features for drivers to remotely control 
non-safety critical features of vehicle.  
- Vehicle is accessible from anywhere through the internet which makes it 
possible for vehicle to launch large-scale attacks remotely 
- Unsecure interaction between the infotainment system and CAN bus that 
connects to safety-critical features 

 
Table 11: Analysis of vehicle manufacturer 

Domain Analysis 

Safety and security -related 
responsibilities 

- Ensure secure development process, including safety/ security hazards 
analysis, development, and testing. 
- Ensure staff are trained in cybersecurity 
- Ensure vehicles manufactured are secure with cybersecurity risks mitigated 

Unsafe decisions and control - Unsafe interactions of new UConnect feature with existing architecture that 
shares vehicular network between safety-critical and non-safety critical 
features 
- Procure parts/ components with vulnerabilities 
- Inadequate training or resources on cybersecurity 

Process/ mental flaws - Manufacturer assumed UConnect can only access infotainment features and 
it is not possible to remotely access safety-critical features 
- Use of legacy components and parts 

Context in which decisions 
were made 

- Highly competitive industry which may cause manufacturers to develop new 
features to attract buyers 
- May not be aware of security vulnerabilities for parts/ components procured 
from suppliers. 
- Automotive industry may be new to cybersecurity risks and the team may 
not have adequate competencies  

 



Besides identifying causal factors of safety/ security incidents, CAST advocates the 
understanding of contextual factors to help us consider external conditions and systemic 
factors that result in the inadequate controls or unsafe decisions. For instance, based on the 
analysis of physical failures and inadequate controls, one may be tempted to conclude that 
the root causes for vulnerabilities were due to poor engineering design which allowed the 
attackers to access the vehicle’s CAN bus indirectly through the infotainment system. Another 
possible root cause could be due to inadequate transmission and data protection to prevent 
the system from receiving and executing unauthorized commands. However, based on the 
report, there were some levels of cybersecurity protections and the researchers were only 
able to perform the hacks after extensive research. To look beyond human flaws and design 
errors, CAST also considers other factors such as emergency and safety equipment controls 
that may not have worked during the accident, as well as contextual factors leading to how 
existing controls were not effective in preventing the accident.  

The in-depth analysis identified several additional unsafe interactions such as:  

 Inadequate control for driver to over-ride or take over control of vehicle when vehicle 
is compromised by attacker 

 Unsafe/ unsecure interactions between remote-accessible infotainment system and 
CAN bus connected to safety-critical features can lead to security vulnerability 

 Lack of feedback to alert the driver or manufacturer when the vehicle’s safety and 
security features were compromised. Possible points of compromise include 
jailbreaking the UConnect console to enable unauthorized software updates, 
installation of unauthorized software updates, or suspicious access into the system to 
alter safety-critical features of the vehicle.   
 

Additionally, by extending the control structure to higher hierarchical levels, more in-depth 
analysis was conducted to analyze contributions of managerial and organizational factors to 
the vehicle’s vulnerabilities: 

 Awareness and technical competencies of staff in vehicular cybersecurity 
 Effect of competition and time to market on security test adequacy 
 Effect of the lack of standards and regulations on cybersecurity in the automotive 

industry 
 Adequacy of cybersecurity activities (design, build, test) in the automotive 

development approach 
 Adequacy of training and resources allocated to cybersecurity efforts in the 

organization 

The unsafe and unsecure interactions identified from the research are represented in the 
updated control structure found in Figure 23 (boxes and lines in red represent the unsafe/ 
unsecure interactions). Evidently, some inadequate controls and feedback were identified 
which enabled the researchers to identify vulnerabilities and gain access into the system. 
Some critical control loops not present in the initial control structure (Figure 22) were 
identified. For instance, vulnerabilities in the cellular network access allowed the researchers 
to identify IOT devices connected within the Sprint network. While it may not be clear whether 
the network service provider is responsible for securing communications to IOT devices 
connected to their network, it is a clear indication on the importance to consider network 
service providers in security risk analysis and to ensure that cybersecurity responsibilities of 
key parties in the supply chain are clearly defined and executed.  



 

Figure 23. Revised control structure representing unsafe/ unsecure interactions identified from research 

 

Table 12 summarizes the inadequate controls and unsafe decisions identified from this 
simplified CAST analysis. Requirements generated from both CHASSIS and STPA-Sec 
analysis (discussed in the earlier sections) that may mitigate these inadequate controls and 
unsafe decisions are included in the table. We observe that all identified inadequate controls 
and unsafe decisions are mapped to at least one high-level mitigation measure from STPA-
Sec. In contrast, mitigation measures from CHASSIS analysis did not cover some of the 
identified inadequate controls and unsafe decisions identified in this CAST analysis. It is 
worthwhile to note that the cases under analysis in STPA-Sec method and CAST method are 
slightly different – the STPA-Sec method is applied on analyzing hazards and mitigations for 
OTA software update on autonomous vehicle case, while the CAST method is applied on 
analyzing causes for a cyber hack on a connected vehicle platform (UConnect). Despite the 
differences in cases under analysis, the high-level analysis approach in STPA-Sec is able to 
generate broader requirements that cover both cases. Although this does not guarantee that 
this cyber hack would not have been possible if the manufacturer had followed all 
requirements generated from the STPA-Sec analysis, it would be able to address some of the 
loopholes identified by the researchers, making the hacks more difficult.  

 
Table 12: Inadequate controls/ unsafe decisions identified from CAST analysis and mapping to mitigations from 
STPA-Sec/ CHASSIS analysis 

Inadequate controls/ 
unsafe decisions 

Example of mitigations from STPA-
Sec 

Examples of mitigations from 
CHASSIS 

ECU for safety-critical 
components execute 
unauthorized command  

R-7: AV gateway designed to prevent 
unauthorized traffic 
R-21: AVs to check for certified 
updates before processing these 
updates 
R-26: In‐build intrusion detection 
system 
R-32: build in tamper‐proof design for 
critical functions of AV 
 

MP‐ 6: Design and develop a 
mechanism to certify updates are 
from trusted sources 
MP‐ 8: AV shall have capability to 
detect messages that may be 
altered or are from unidentified 
sources 
MP‐ 9: AV shall ensure updates are 
from authorized and authenticated 



Inadequate controls/ 
unsafe decisions 

Example of mitigations from STPA-
Sec 

Examples of mitigations from 
CHASSIS 

sources before receiving these 
updates 

ECU for safety-critical 
components (e.g. 
accelerator, brakes, 
steering) and non-safety 
critical components 
(infotainment, wipers, etc.) 
on the same network bus 

R-10: Segregate networks for safety‐
critical functions and non‐safety‐
critical functions 
R‐33: Build protection mechanism to 
prevent unauthorized traffic from 
accessing AV internal traffic 

Nil 

Messages transmitted over 
the air not encrypted which 
allow attackers to interpret 
messages and plan attacks 

R-15: Protect communications 
channel, using secure transport 
protocol and encryption techniques 
whenever possible 

MP‐7: (1) Ensure security‐critical 
information are sent using secure 
network protocol; (2) Ensure 
security‐critical information are 
encrypted before transmission 

Inadequate authorization 
and authentication allow 
unauthorized software to be 
installed in vehicle ECU 

R-23: Enforce strong authentication 
and authorization mechanisms to 
ensure validity of commands/ 
software  
R-20: Create a certificate authority, 
with all updates submitted for 
certification before they can be 
accepted by AV 

MP‐ 14: Design and implement 
authentication and authorization 
mechanism 
MP‐ 15: Ensure that the 
authentication and authorization 
mechanism is tamper‐proof 
MP‐ 6: Design and implement 
tamper‐proof ECU to prevent 
unauthorized inject of commands to 
ECU to send wrong/ inaccurate 
metrics 

Vehicle installed with 
vulnerable software provide 
backdoor for attackers to 
send commands and 
remotely control safety-
features of vehicle 

R-46: Provide anomalies detection 
and analysis tool to detect potential 
attacks. 
R‐25: Send alerts to control stations 
when unauthorized modifications are 
detected 
 

Nil 

Unsafe interactions of new 
UConnect feature with 
existing architecture that 
shares vehicular network 
between safety-critical and 
non-safety critical features 

R‐22: Enforce secure software 
development lifecycle (SDLC) and 
conduct audits/ checks to ensure 
development teams follow them 

Nil 

Inadequate training or 
resources on cybersecurity 

R-37: Build/ strengthen CS technical 
competencies in organization 
R‐43: Ensure AV manufacturer has 
known track records for safety and 
security 
R‐39: Ensure that staffs at all levels 
are familiar with their CS roles and 
responsibilities 
R‐42: Translate applicable standards 
and regulatory guidelines into 
actionable tasks for the organization 

MP‐21: Provide clear CS guidelines, 
policies, and training to ensure that 
staff at all levels are familiar with 
their CS roles and responsibilities 
MP‐22: Include standard operating 
procedures to update management 
on CS incidents based on criticality/ 
severity 
 

 

  



Conclusion 
 
This research presented the application of a new safety and security co-analysis based on 
STAMP theory. Premised on viewing safety as control issues (rather than reliability problem), 
STAMP has been applied on a wide variety of applications to find inadequate controls that led 
to an accident or loss (CAST) and to find new requirements to prevent accidents and losses 
(STPA). STPA-Sec is an extension to STPA to include security analysis. The results were 
compared with another promising safety and security co-analysis method, CHASSIS, which is 
built on existing safety and security concepts and information flows to represent both use 
cases and misuse cases. 

Applying STPA-Sec on the MAAS OTA software update case, the analysis identified several 
unique and important causal factors and mitigation requirements not identified under 
CHASSIS analysis. The key strengths of STPA-Sec include the ability to identify unsafe 
interactions among components that may lead the system to hazardous state, and 
considerations of socio-technical interactions beyond the technical aspects of the system. 
Overall, STPA-Sec generated more requirements that have greater impact on addressing 
control weaknesses in the system. The research demonstrated STPA-Sec’s ability to identify 
control flaws which may be missed out in traditional hazards analysis methods. Some 
strengths in CHASSIS analysis were identified and it was proposed to complement CHASSIS 
for information lifecycle to generate additional considerations analysis in STPA-Sec stage 3. 
Several differences between STPA-Sec and CHASSIS which may affect their effectiveness in 
specific contexts were highlighted. 

Finally, the mitigation requirements from both methods were evaluated by back testing against 
a past cyber hack scenario involving the remote hack experiment of the Jeep Cherokee. Using 
a simplified CAST analysis, inadequate controls and unsafe decisions from the cyber hack 
scenario were generated, and mitigation requirements from STPA-Sec analysis were 
assessed to evaluate the adequacy in addressing vulnerabilities identified in the CAST 
analysis. It was observed that STPA-Sec generated requirements that were mapped to all 
inadequate controls and unsafe decisions identified in the CAST analysis, although the cases 
under analysis and the control structures in both cases were slightly different. In contrast, 
mitigation requirements from CHASSIS analysis did not address some of the inadequate 
controls and unsafe decisions identified in the Jeep Cherokee case. 

Overall, this research, along with the new STPA-Sec method should serve to encourage 
further exploration of STAMP-based approach in cybersecurity, particularly in the automotive 
domain. Although inherent cybersecurity risks will continue to exist with new features and 
technologies introduced to vehicles, it is possible to mitigate most of the risks by adopting a 
holistic, top-down approach and considering socio-technical interactions within the system.  
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