

A System Theoretic Approach to Cybersecurity Risk Analysis and
Mitigation for Autonomous Passenger Vehicles

Chee Wei Lee and Stuart Madnick

Working Paper CISL# 2018-09

February 2018

Cybersecurity Interdisciplinary Systems Laboratory (CISL)
Sloan School of Management, Room E62-422

Massachusetts Institute of Technology
Cambridge, MA 02142

A System Theoretic Approach to Cybersecurity Risk Analysis and
Mitigation for Autonomous Passenger Vehicles

Chee Wei Lee

Stuart Madnick

February 2018

MIT Sloan School of Management

Abstract

Urban Mobility is in the midst of a revolution, driven by the convergence of technologies such
as artificial intelligence, on-demand ride services, as well as connected and self-driving
vehicles. Technological advancements often lead to new hazards and changing nature in how
accidents can happen. Coupled with the increased levels of automation and connectivity in
the new generation of autonomous vehicles, cybersecurity is emerging as one of the key
threats affecting the safety of these vehicles. Traditional hazards analysis methods treat safety
and security in isolation, and are limited in their ability to account for interactions among
organizational, socio-technical, human, and technical components. In response to these
challenges, the System Theoretic Process Analysis (STPA) was developed to meet the
growing need for system engineers to holistically analyze complex socio-technical systems.

We applied STPA-Sec, an extension to STPA to include security analysis, to co-analyze safety
and security hazards, as well as identify mitigation requirements. The results were compared
with another promising method known as Combined Harm Analysis of Safety and Security for
Information Systems (CHASSIS). Both methods were applied to the Mobility-as-a-Service use
case, focusing on over-the-air software updates feature. Overall, STPA-Sec identified
additional hazards and more effective requirements compared to CHASSIS. In particular,
STPA-Sec demonstrated the ability to identify hazards due to unsafe/ unsecure interactions
among sociotechnical components. This research also suggested using CHASSIS methods
for information lifecycle analysis to complement and generate additional considerations for
STPA-Sec. Finally, results from both methods were back-tested against a past cyber hack on
a vehicular system, and we found that recommendations from STPA-Sec were likely to
mitigate the risks of the incident.

Keywords: Cybersecurity, Autonomous Vehicles, Risk Analysis, Mobility-as-a-Service, STPA-Sec,
System Theoretic Process Analysis, Cybersecurity Hazards Analysis

Table of Contents

Autonomous vehicles for urban mobility .. 3
State of the art .. 3
Evolving cybersecurity threats and impacts .. 3
Safety and cybersecurity analysis methods .. 5

System theoretic approach to cybersecurity risk analysis 6
STAMP theory ... 6
STPA-Sec: An extension to safety hazards analysis applied to security 7

Applying STPA-Sec on Mobility-as-a-Service vehicle fleets 7
Stage 1: Establish the system engineering foundation .. 8
Stage 2: Identify potentially unsafe/ unsecure control actions ... 8
Stage 3: Identify causes for unsafe/ unsecure control actions and propose mitigation
measures ... 11
Additional considerations to STPA-Sec ... 14
Summary of STPA-Sec analysis .. 15

Hazard and Risk Analysis Using CHASSIS .. 15
Stage 1: Eliciting functional requirements ... 16
Stage 2: Eliciting safety and security requirements ... 18
Stage 3: Summary of recommendations .. 21

Comparison between STPA-Sec and CHASSIS .. 22

Case Analysis of recommendations from STPA-Sec 24

Conclusion .. 31

Autonomous vehicles for urban mobility

State of the art

Mobility-as-a-Service (MAAS) is a fleet of autonomous, self-driving vehicles for ride-sharing
services. A concept widely perceived as the future of urban transportation, MAAS is expected
to radically change the car ownership model. Based on ARK’s research [1], the global MAAS
revenue will exceed $10 trillion in gross revenue by 2030, roughly ten times the market for
autonomous vehicles sale (see Figure 1). Companies such as Uber, Tesla, and nuTonomy
have on-going efforts to develop autonomous vehicles as ride-sharing service similar to the
MAAS. Figure 2 shows the generic architecture for the MAAS, which comprises the
autonomous vehicles, backend cloud infrastructure, as well as devices connected to the cloud.

Figure 1. Global revenue for autonomous cars and services [1]

Figure 2. Generic architecture for connected autonomous vehicles in MAAS

Evolving cybersecurity threats and impacts

As cyber-physical systems (CPS) in autonomous vehicles get more sophisticated, new threats
are beginning to surface, making safety and security analysis more challenging, as
exemplified by the following incidents involving automotive:

 Oct 18, 2016, Singapore: A driverless vehicle developed by nuTonomy was involved in a
minor accident with a lorry (see Figure 3). nuTonomy’s internal investigations concluded
that the incident was due to “an extremely rare combination of software anomalies” [2].
Although this was a minor accident with no personnel injuries and did not involve a cyber
attack, it shows how accidents can occur due to unexpected interactions between
software components that may individually be working perfectly well.

Figure 3. Minor accident involving nuTonomy AV in Singapore

 May 7, 2016, Florida: The first known fatal accident involving a semi-autonomous
vehicle, Tesla S70 collided with the side of a tractor-trailer (see Figure 4), resulting in
the death of the driver behind the wheels of the S70. According to Tesla, "the high,
white side of the box truck" — that apparently caused the system to believe the truck
was an overhead sign — "combined with a radar signature that would have looked
very similar to an overhead sign, caused automatic braking not to fire" [3].

Figure 4. Fatal accident involving Tesla semi-autonomous vehicle in Florida

 2015 – 2016: Two cybersecurity researchers demonstrated that they were able to
remotely control key features of the Jeep Cherokee, including its steering, braking,
transmission, and brakes (see Figure 5). The researchers exploited the vehicle’s
infotainment features to remotely plant vulnerabilities into the electronic control unit
(ECU). Although we have not seen such cyberattacks leading to accidents on the
roads, there has been numerous experiments to demonstrate the vulnerabilities of
communication device in connected vehicles [4] [5].

Figure 5. Remote car-jacking of Jeep Cherokee

Three key observations can be made from the above incidents. First, advanced features in
new generation of autonomous vehicles mean vehicles are increasingly complex and
connected, increasing the attack surface for cyber-attacks. Examples of such attacks include
installing malicious codes, and remotely taking control of vehicular safety-critical functions.
Such attacks can be conducted in large scale with relatively little effort, potentially affecting
the safety of passengers and other road users. These could lead to ominous possibilities
involving harm to both drivers and pedestrians.

Second, the development and operation of autonomous vehicles have increased coupling
among socio-technical components. Safety and security analysis are no longer limited to
standalone systems; interactions among components in the larger ecosystem comprising
technical, environmental, organizational, managerial, and regulatory aspects must be
holistically considered. The accident between the Tesla S70 and tractor-trailer demonstrated
how interactions between the vehicle, objects on the road (other vehicles and road signs), and
the environment (bright, sunny conditions) can lead to an accident.

Third, the pace of technology advancement and pressure to reduce the time to market means
developers have limited time to fully understand potential behaviours and risks before systems
become operationalized. Furthermore, the nature in which hazards and accidents occur
continue to evolve, leading to limited ability to learn from past knowledge and experiences.
Also, especially in the case of cyber attacks, the skills and approaches of attackers continue
to change.

Traditional analysis methods that aim to assess the safety of critical infrastructures are limited
in their ability to encompass the complexity of such emerging CPS. Independent studies have
also shown strong mutual influence between safety and security aspects [6]. To address the
above challenges, a holistic approach to co-analyze safety and security risks is necessary
with the emergence of the next generation of passenger autonomous vehicle. Systems-
Theoretic Process Analysis (STPA), a deductive hazards analysis methodology based on
systems theory, was developed by Nancy Leveson at MIT [7] to address this type of need.
Compared with traditional methods designed to prevent component failures, STPA also
addresses component interaction accidents that can arise from design flaws, dysfunctional
interactions or unsafe control actions. This research applies STPA-Sec, an extension from
STPA from safety analysis to cybersecurity analysis, to identify potential risk areas and
mitigations for passenger autonomous vehicle. The findings from STPA-Sec were compared
with another hazards analysis method – Combined Harm Analysis for Safety and Security for
Information Systems (CHASSIS) – to identify strengths and weaknesses in both approaches.

Safety and cybersecurity analysis methods

Traditional methods for safety hazards analysis include Failure Mode and Effect Analysis
(FMEA) detailed in [8] and Fault Tree Analysis (FTA) detailed in [9]. Both FMEA and FTA have
been widely used in various industries to analyze safety hazards and derive safety functional
requirements. However, they do not specifically cover cybersecurity hazards analysis.

Recognizing the tight interplay between safety and security, combining safety and security
hazards analysis in the engineering process has become a new interesting research topic in
recent years [10][11]. Multiple approaches have been developed to support co-analysis of
safety and security for automotive hazards analysis: (1) SAHARA (A Security-Aware Hazard
and Risk Analysis Method) [12] extends the classical hazards and risks analysis with security
related guide words and an evaluation of risks; (2) FMVEA (Failure Mode, Vulnerabilities and
Effects Analysis) [13] extends FMEA with threat modes and vulnerabilities; (3) CHASSIS
(Combined Harm Assessment of Safety and Security for Information Systems) [14] is a
methodology for safety and security assessments and formulation of mitigation measures,
based on use case and sequence diagram modelling.

In the area of safety and security analysis for automotive, [15] proposes a risk assessment
framework or autonomous and cooperative automated driving. The proposed framework
adopts the convention of the NHTSA threat model and categorized attack methods using the
STRIDE classification: Spoofing Identity, Tampering with Data, Repudiation, Information
Disclosure, Denial of Service, and Elevation of Privilege. Each threat is consolidated in a threat
matrix (see Figure 6) considering the following factors:

 Attack potential (vertical axis): Considers the difference between the threat agent’s
ability to execute a successful attack and the system’s ability to withstand such
attacks. Parameters include the time required for an attacker to identify a vulnerability

and launch an attack; availability of attacker’s finances versus finances required to
launch a successful attack; attacker’s skills set versus the system’s required skills.

 Motivation (horizontal axis): Considers the motivation and determination of the threat
agent to execute the attack. Parameters include financial gain, ideology, passion, and
risk.

 Impact (size of circle). Considers the losses to stakeholders in the event of
successful attack, factoring financial loss, privacy and safety consequences.

Figure 6. Example threat matrix visualization for driverless valet parking example [15]

System theoretic approach to cybersecurity risk analysis

STAMP theory

Systems-Theoretic Accident Model and Processes (STAMP) was developed by Leveson from
MIT after many years of research on safety. The STAMP model of accident causation is built
on three basic concepts – safety constraints, a hierarchical safety control structure, and
process models – along with basic systems theory concepts [7]. In contrast to tradition
methods such of FMEA and FTA that are based on the reliability of individual components,
STAMP focuses on the emergent properties of engineered systems and treats safety as a
control system problem. STAMP uses system theory to represent the system as hierarchical
control structures, where each level imposes constraints on the activity of the level beneath it
[7]. This hierarchical structuring allows the system model to capture not only accidents due to
component failures and component interactions, but also extends to understanding incomplete
or missing requirements from external socio-technical components.

Figure 7 shows a generic hierarchical control structure that includes system development on
the left, and system operations on the right. Commands or control actions are given by higher
levels of control processes to lower levels throughout the hierarchy, and feedback is provided
from lower levels to higher level. Traditional safety hazards analysis typically focuses on the
operating process of system components, as shown in the bottom right of the figure. STAMP-
based analysis considers control structures that include regulatory, organizational,
engineering, and human components, and can therefore analyze additional causal scenarios
not included in traditional approaches.

Figure 7: Leveson’s general control structure of a social-technical control structure [7]

STPA-Sec: An extension to safety hazards analysis applied to security

STPA is a deductive hazard analysis method based on STAMP and is used to derive
requirements for accidents and loss prevention. One of the strengths of STPA is its
applicability to early stages of concept development phase.

STPA-Sec extends STPA from safety to cybersecurity analysis, and is used to identify system
vulnerabilities and requirements for cyber and cyber-physical systems. Since its inception,
STPA has been applied to a wide range of domains ranging from automotive systems, e.g.
[16]; automation and workplace safety, e.g. [17]; aviation systems, e.g. [18]; medical devices
[19]; and other emergent system properties such as security, e.g. [20]. In [20], Young and
Leveson introduced STPA-Sec, suggesting the use of a causality model based on system
theory to provide an integrated and more powerful approach to safety and security co-analysis.
In recent years, the STAMP-based approach has been applied to manage cybersecurity risks
of in various systems: [21] applies STAMP to analyze cyber-attacks on TJX, and revealed
insights which had been overlooked in prior investigations; [22] [23] utilizes STAMP-based
approach to analyze cyber threats in applied to the Stuxnet case, an attack designed to disrupt
the Iranian Nuclear program.

Applying STPA-Sec on Mobility-as-a-Service vehicle fleets
STPA-Sec analysis comprises three key stages as summarized below. While the analysis is
presented straight through, there has been a number of iterations in each step as new findings
were incorporated to refine the analysis. The three key stages are namely:

 Establish the system engineering foundation, which includes defining and framing
the problem, as well as identifying accidents / losses and hazards related to the case.

 Identify potentially unsafe/ unsecure control actions, which documents the generic
functional control structure and control actions that may lead to the identified hazards.

 Identify causes of unsafe/ unsecure control actions and eliminate or control
them, which includes identification of scenarios leading to unsafe/ unsecure control
actions, and using the identified unsafe control actions to create safety requirements
and constraints

Stage 1: Establish the system engineering foundation

Stage 1 covers the preliminary steps of STPA-Sec analysis: first to identify the goal/ purpose
of the system and then to identify the accidents / losses and hazards related to the system.
The key outcome from STPA-Sec is to derive a set of safety and security requirements to
eliminate or control unsafe interactions within the control structure. To achieve this, STPA-Sec
co-analyses security and safety hazards using a top-down approach, starting from the
identification of unacceptable accidents and losses, as well as potential hazards related to the
system. The method is further illustrated in the following sections.

Identifying accidents / losses related to the system
Accidents/ losses are defined by Leveson as “An undesirable or unplanned event that results
in a loss, including loss of human life or human injury, property damage, environmental
pollution, mission loss, etc.” [7]. The unacceptable losses and accidents considered in the
analysis are1:

‐ A1: Damage to vehicle or public property
‐ A2: Injury or death to people
‐ A3: Degradation of system availability or performance
‐ A4: Loss of critical information

Identifying hazards related to the system
Leveson defines hazards as “A system state or set of conditions that, together with a particular
set of worst-case environmental conditions, will lead to an accident (loss)” [7]. Although a
system that is in hazardous state does not guarantee that it will lead to an accident, it is crucial
to prevent the occurrence of hazards by mitigation through system design or organizational
polices and guidelines.

The high-level hazards and associated accidents/ losses identified in our analysis are shown
in Table 1.

Table 1. Hazards and associated accidents/ losses

Hazards Associated Accidents/
Losses

H1: Adversaries take over control of safety-critical functions of AV A1, A2, A3
H2: AV operating with unsafe/ unsecure/ outdated software A1, A2, A3
H3: Adversaries compromise network/ critical infrastructure supporting AV A3, A4
H4: AV travelling on unsafe/ unauthorized road A1, A2

Stage 2: Identify potentially unsafe/ unsecure control actions

Functional Control Structure

Our analysis focuses on the over-the-air (OTA) software updates, a key capability which
enables the connected autonomous vehicle to exchange live updates such as traffic/ road
conditions, routing instructions and location updates, as well as periodic firmware updates and
bug fixes. The ability to receive OTA software updates is key to realising the MAAS concept,
but it also poses a different range of attack surfaces that can be exploited.

1 The numbers, A1, etc., are just used for reference. There is no indication of priority implied.

Figure 8 shows the high-level functional control structure of socio-technical components in
the OTA software updates example. The functional control structure details the control loops
within the system, together with interactions among components at different hierarchical
levels. This functional control structure provides the basis to further analyze safety and
security constrains within the system. The system boundary under analysis in this study is
represented by components in the shaded box. Although the analysis is limited to components
within the system boundary, it is important to consider interactions with external socio-
technical systems to glean additional insights and context to the analysis.

Figure 8. Functional control structure for software OTA updates

Unsafe/ Unsecure Control Actions

The next step is to identify unsafe/ unsecure control actions by assessing control loops within
the functional control structure. This analysis is not limited to electro-mechanical components;
they can be used to analyze organizational or management components within the control
structure. Four types of unsafe control action that can lead to a hazardous outcome are
considered, namely:

 A control action required for safety is not provided
 An unsafe / unsecure control action is provided that leads to a hazard
 A potentially safe control action is provided too late, too early, or out of sequence
 A safe control action is stopped too soon or applied too long

Based on the four types of UCAs described above, this stage seeks to identify actions that
may cause the system to reach a hazardous state. A total of 15 UCAs were generated by
considering each interaction in the functional control. For brevity, only 7 examples will be
provided in Table 2. Starting from the interactions between the control center and the AVs,

three UCAs were identified. UCA-11 identifies a case where unauthorized updates are
provided to the AV, potentially leading to hazards H1 (adversaries take over control of safety-
critical features of AV) and H2 (AV operating with unsafe/ unsecure/ outdated software). UCA
10 & 12 identify cases where software updates are not applied to the AVs, or not applied in
timely manner, leading to the same hazards H1 and H2.

Table 2. Potentially unsafe/ unsecure control actions

Control Action Not providing causes hazard Providing
causes
hazard

Too early / too late/
wrong order causes

hazard

Stopping too
soon/ applying

too long
causes hazard

UCAs between MAAS Operator (Management) and software update provider

Service
agreement

UCA‐1: Service agreement
with network provider not
provided before system is
operationalized [H3, H4]

Not hazardous Not applicable Not applicable

UCAs between MAAS Operator (Management) and Control Center

Safety/ security
policies and
operating
procedure

UCA‐3: Safety policies and
operating procedure not
provided before system is
operationalized [H1 – H4]

Not hazardous Not applicable Not applicable

UCAs between software update providers and Control Center

Periodic
software
updates

UCA‐7: Software updates not
provided by providers when
new threats/ vulnerabilities
exist [H1, H2]

Not hazardous UCA‐8: Software
updates provided too
late by providers when
new threats/
vulnerabilities exist [H1,
H2]

Not applicable

UCAs between Control Center and AV

Periodic/
dynamic
software
updates

UCA‐10: Software updates not
applied to AVs when threats or
vulnerabilities exists in AV [H1,
H2]

UCA‐11:
Unauthorized
software
updated into
AVs [H1, H2,
H4]

UCA‐12: Software
update not applied to
AVs in timely manner
when threats or
vulnerabilities exists in
AV [H1, H2, H4]

Not applicable

For each identified UCA, Safety and Security Constrains (SSCs) were recommended at
component-level. Table 3 shows examples of SSCs. These SSCs are high-level requirements
and could serve as input for safety/ security features and requirements as part of the guided
design process.

Table 3. Extracts of Safety / Security Constrains

Unsafe / Unsecure Control Actions Possible Safety / Security Constrains

UCA‐1: Service agreement with network
provider not provided before system is
operationalized [H3, H4]

SC‐ 1: The MAAS operator shall establish service level agreement
with network service provider to ensure adequate coverage of
network, availability, and protection levels against cyber security
threats.

UCA‐3: Safety policies and operating
procedure not provided before system is
operationalized [H1 – H4]

SC‐ 2: The MAAS operator shall translate applicable regulatory
requirements and standards to safety policies and operating
procedures.

UCA‐7: Software updates not provided
by providers when new threats/
vulnerabilities exist [H1, H2]

SC‐ 7: The MAAS operator shall establish protocols for periodic or ad‐
hoc software updates upon detection of vulnerabilities.

UCA‐8: Software updates provided too
late by providers when new threats/
vulnerabilities exist [H1, H2]

SC‐ 3: The MAAS operator shall establish protocols for timely update
of critical software updates that need to be installed on AVs
expeditiously

UCA‐10: Software updates not applied to
AVs when threats or vulnerabilities exists
in AV [H1, H2]

SC‐ 10: The MAAS operator shall, by working with associated
providers, ensure that software updates are provided to provide fixes
for detected vulnerabilities.

UCA‐11: Unauthorized software updated
into AVs [H1, H2, H4]

SC‐ 11: The MAAS operator shall, by working with relevant parties,
prevent unauthorized software from being installed into AVs.

UCA‐12: Software update not applied to
AVs in timely manner when threats or
vulnerabilities exists in AV [H1, H2, H4]

SC‐ 12: The MAAS operator shall ensure timely response to vulnerable
software by providing fixes/ patches through pre‐emptive or quick
recovery approach

The high-level safety/ security constrains derived from the analysis up to stage 2 may be
sufficient for some analysis. In STPA Stage 3, we select a few UCAs for further analysis to
identify scenarios and causal factors which may cause the UCAs to occur.

Stage 3: Identify causes for unsafe/ unsecure control actions and
propose mitigation measures

Stage 3 aims to identify possible scenarios where unsafe/ unsecure control actions may occur.
This enables us to map out how unsafe control actions may be triggered, facilitating
recommendation of safety and security requirements and improvements to system design,
organizations policies, or security governance framework. STPA-Sec provides a method to
systematically identify possible causes for each identified UCAs. Using the classification of
potential control loop disruptions described in Figure 9, we analyzed control loops to identify
hazardous scenarios and causal factors that may lead to violation of any safety or security
constrains. The diagram includes additional considerations (underlined and bolded) extended
from STPA to include additional security analysis. For example, the communication between
the main controller and secondary controller also includes unauthorized communications (in
additional to missing or wrong communications) when we include cybersecurity considerations
in our analysis. The control loop analysis provides heuristics to identify potential disruptions
that may cause the system to reach a hazardous or vulnerable state.

Figure 9. Potential control loop disruptions leading to hazardous states (Adapted from [24])

Interactions between MAAS Control Center and AVs

This example demonstrates the analysis of process models to investigate scenarios and
causal factors leading to unsafe/ unsecure interactions between the MAAS control center and
the autonomous vehicles (see Figure 10). Starting from the top, software update providers
issue software updates to the MAAS control center. To control the distribution of software
updates, the control center’s process model considers the type of software update (periodic
or dynamic), criticality of software update, update mechanisms, and target AVs to be updated.
The update process is managed by the OTA software update management system, which
distributes approved software updates. Once the updates are downloaded to the AVs, the
software packages are installed and the update progress are feedback to the control center.

Figure 10. Process model for periodic/ dynamic software updates to AVs

The process model is a crucial step to help us understand why accidents occur. In the stable
state, the controllers, actuators, and feedback mechanism ensure the safe and secure
operation of software updates process. Using the generic causal factors shown in Figure 9 as

a guide, potential scenarios for unsafe interactions and their causal factors were identified.
The graphical representation of scenarios and causal factors of unsafe interactions is shown
in Figure 11. Working around the loop, causal factors for each of the components are shown
in boxes representing the controller, actuator, control process, and sensors. The detailed
scenarios, causal factors, and recommended safety/ security requirements are generated in
further details as shown in Table 4.

Figure 11. Causal scenarios analysis for periodic/ dynamic software updates to AVs

Table 4. STPA Stage 3 analysis results for periodic/ dynamics software updates to AV

Scenario Associated
Causal Factors

Requirements / Design Features Allocated to Rationale

UCA-7: Software updates not provided by providers when new threats/ vulnerabilities exist [H1, H2]
UCA-8: Software updates provided too late by providers when new threats/ vulnerabilities exist [H1, H2]
Outdated
software

Software
updates with
vulnerabilities

Inadequate
service level
agreement with
update providers

R‐1: Establish service level
agreement with update providers to
ensure preventive bugs and
vulnerability fixes are included

MAAS
Operator
(Management
team)

Improve
organizational
cybersecurity
plans and
strategies

Long lead time
to implement
software
updates

R‐2: Ensure pro‐active vulnerability
monitoring. For example, bug bounty
program to invite “ethical hackers” to
find security vulnerabilities
R‐3: Dedicated, independent cyber
security team actively looking into
regular security audit tests and
detecting any new threats/
vulnerabilities.

MAAS
Operator
(Management
team)

Improve
organizational
cybersecurity
plans and
strategies Lack of proactive

vulnerability
monitoring and
security
maintenance

UCA-10: Software updates not applied to AVs when threats or vulnerabilities exists in AV [H1, H2]
UCA-12: Software update not applied to AVs in timely manner when threats or vulnerabilities exists in AV
[H1, H2, H4]
Delayed
software
updates to AVs

Inadequate
policies and
operating
procedures

R‐4: Develop cybersecurity policies
and operating procedures to
determine update lead time based
on different levels criticality.

MAAS
Operator
(Management
team)

Improve
organizational
cybersecurity
plans and
strategies

Scenario Associated
Causal Factors

Requirements / Design Features Allocated to Rationale

Inadequate
cybersecurity
response plans
and strategies

R‐5: Develop cybersecurity response
plans and strategies, ensuring all
parties involved know their roles and
responsibilities in the event of cyber‐
attack (malicious software updates)
R‐6: Provide a system for response
plans to be exercised and lessons
learnt incorporated to improve
existing plans

MAAS
Operator
(Management
team)

Improve
organizational
cybersecurity
plans and
strategies

AV internal or
external
network over-
loaded

Excessive traffic
restricting
software
updates to AV

R‐7: AV gateway designed to prevent
unauthorized traffic

MAAS IT
Infra/ security
team

Improving Critical
Infra Protection

File size of
software
updates too
large

R‐8: MAAS operator to work with
providers to limit file size of software
updates

MAAS
Operator

Coordination and
cooperation with
external providers

Too many
concurrent
downloads

R‐9: MAAS operator to stagger
software updates in to minimize
network congestion

MAAS
Operator

Enhancing
internal policies
and procedures

Backdoor
attacks within
vehicular
network (CAN
bus)

R‐10: Segregate networks for safety‐
critical functions and non‐safety‐
critical functions

AV
Manufacturer

Improving AV
security design

Additional considerations to STPA-Sec
In the preceding section, we identified causal factors and scenarios by using heuristics in
Figure 9 to identify causal factors and scenarios in which UCAs can occur. While this
approach was effective in generating unique and important considerations as part of STPA-
Sec stage 3 analysis, other methods may also be used to complement and add additional
considerations. In the 2016 STAMP conference [25], Young proposed the use of information
lifecycle model to add considerations to the STPA-Sec analysis (see Figure 12). To this end,
CHASSIS hazards analysis mentioned in the earlier section may be considered. We will
compare recommended mitigations from both CHASSIS and STPA-Sec analysis and list
additional mitigations generated if we were to incorporate information lifecycle stages to
generate additional considerations.

Figure 12. Information lifecycle stages [25]

Summary of STPA-Sec analysis
Overall, STPA-Sec co-analysis of safety and security hazards with the MAAS software OTA
update use case demonstrated several potential benefits over traditional methods. Adopting
systems thinking approach and analyzing hazards using control theory provides guidance to
consider the broader system. Furthermore, the approach facilitates the identification of
hazardous state due to unsafe/ unsecure interactions among components, and readily
captures causal factors such as managerial decisions, organizational policies, and regulatory
landscape arising from socio-technical interactions. The full STPA-Sec analysis (refer to [26])
yielded 44 design requirements. From systems control perspective, these requirements aim
to mitigate safety and security risks by controlling feedback loops in order to prevent the
system from reaching the hazardous states as defined earlier in this chapter.

The key findings and take-away from the STPA-Sec analysis are summarized as follow:

 STPA is based on a top-down approach; its scope of analysis is bounded by
unacceptable accidents/ losses and hazards identified upfront. One key lesson from
this study is that even for a relatively narrow system boundary under analysis, the
number of causal scenarios and mitigation actions can expand substantially. It is
therefore recommended to begin the analysis at higher levels of abstraction, and then
go into further details by further in-zooming the functional control structure in
subsequent iterations.

 One of the distinguishing feature of STPA approach is the consideration of socio-
technical interactions beyond the technical operational aspects of the system.
Analyzing the interactions within the whole eco-system can be useful in finding insights
on how the external interactions may impact process model of components further
down the control structure.

 STPA incorporates heuristics to aid identification of unsafe/ unsecure interactions, as
well as causal scenarios in which such interactions may take place. In STPA Stage 2,
the four factors in which unsafe control actions can take place (e.g. control action not
provided, unsafe/ unsecure control action provided, control action provided too late/
too early/ out of sequence, and control action stopped too soon or applied too long)
are to some extend similar to HAZOP guidewords. In STPA Stage 3, in addition to
classification of causal factors for identifying possible accident scenarios, it may be
useful to apply the Confidentiality, Integrity, and Availability (“CIA”) guidewords as
creativity process for identifying cybersecurity causal factors.

 An additional benefit of STPA is the ability to trace mitigation requirements to the
hazard(s) that these requirements are intended to mitigate against. Having clear
traceability to the intent is important to help developers and testers validate the system,
as well as ensure that the mitigation measures are maintained should the system be
upgraded or replaced.

Hazard and Risk Analysis Using CHASSIS

Recognizing that safety and security areas are increasingly merged and interconnected in new
systems, CHASSIS was proposed as a combined safety and security assessment to minimize
resources compared to having separate assessments, as well as support the understanding
and resolving potential conflicts between the two areas [14]. Using techniques from both safety
and security fields, CHASSIS artefacts are built on the Unified Modelling Language (UML). As
part of the safety and security assessment, CHASSIS adopts the Hazard and Operability
studies (HAZOP) guidewords as creativity process for generating unsafe/ unsecure actions.
HAZOP provides a structured and systematic examination of potential actions by misusers
and attackers during the analysis. Figure 13 provides an overview of process activities in
CHASSIS method.

Figure 13. Process activities in CHASSIS [27]

Stage 1: Eliciting functional requirements

Stage 1 focuses on eliciting functional requirements. The functions, users and services within
the system are presented in the Diagrammatic-Use Case (D-UC) as shown in Figure 14. D-
UC showing functions, services, and users involved in the system

Figure 15. SD showing system interactions for periodic and dynamic software updates

Figure 16. SD showing interactions involving MAAS management
. The D-UC is further extended to represent the interactions and activities in the sequence
diagrams. Figure 15 shows the technical sequence of activities for both periodic and dynamic
updates that are disseminated to autonomous vehicles. Error! Reference source not found.
shows the managerial and organizational activities, including the establishment of service
agreements, generation of internal policies and guidelines, and funding and resources
allocated to strengthen cybersecurity measures. Further descriptions of the possible paths of
activities are elaborated in Textual use-case (T-UC) tables – see example in
Table 5.

Figure 14. D-UC showing functions, services, and users involved in the system

Figure 15. SD showing system interactions for periodic and dynamic software updates

Figure 16. SD showing interactions involving MAAS management

Table 5. Tabular Use Case (T-UC) – Detailed descriptions

Name MAAS Operator (Management) providing policies and operating procedure
Summary MAAS management team issues policies and operating procedures related to

cybersecurity, ensuring that staff at all level know their roles and responsibilities
Basic Path BP1: Management decides on applicable security/ safety standards, guidelines,

and regulations
BP2: Translate into policies and operating procedure for staff to adhere to.
BP3: Staff follow policies and operating procedures in their daily work

Alternative Path AP1: No internal policies and operating procedure; staff follow applicable
standards directly

Exception points ECP1: In BP2, management team ignores applicable security standards and
guidelines
ECP2: In BP3, staff unsure of CS organizational policies and operating procedure
and carry out unsafe/ unsecure actions

Extension Points ETP1: Management sends staff for additional training to build CS competencies
Triggers Applicable standards, guidelines, and regulations on safety and security for

automotive
Assumptions Management has policy team whose role is to manage internal organizational

policies and procedures
Related business rules Organizational CS strategy, objectives and missions

Stage 2: Eliciting safety and security requirements

Stage 2 focuses on eliciting and analyzing safety and security requirements. Using existing
work in [28][29][30], potential misuse cases (shaded in red) were extended to the D-UC to
derive the diagrammatic misuse case (D-MUC) diagrams, as shown in Figure 17. Next,
scenarios for misuses and harm cases were identified. These misuses and harm cases were
identified by associating use cases with guide words from hazard and operability study
(HAZOP). This provides a structured way to analyze possible cases. For example, using the
guide word “Other than”, the scenario where a flawed update provider may send outdated or
wrong updates was identified. Other common guidewords include: Before; After; Early; Late;
No or Not; Reverse, etc. To further consider cybersecurity threats, we used the Confidentiality,
Integrity, and Availability (CIA) model to identify security-related threats scenarios. For
example, by brainstorming possible “Confidentiality” threats, the threat scenario where an
attacker may eavesdrop on the network and gather sensitive information was identified.

Misuse scenarios (red boxes) were captured in the Failure Sequence Diagram (FSD), while
security threats scenarios (purple solid boxes) were captured in the Misuse Case Sequence
Diagrams (MUSD). Figure 18 shows the combined FSD and MUSD for the misuse case/
threats for periodic software updates originating from the cloud, while Figure 19 shows the
same for interactions involving the MAAS management. By identifying possible bad actors and
possible points where misuses can take place, vulnerable points within the system and their
downstream impacts can be identified. In the misuse case of flawed management or investors
placing more emphasis on areas other than cybersecurity, MUSD in Figure 19 identified
possible flaw with inadequate funding and resources allocated to the MAAS Control Center.
Inadequate cybersecurity measures can propagate to downstream impacts ranging from the
lack of policies and guidelines for protection and response strategies to an increase in
likelihood of cyber-attacks (V1 to V6 in Figure 18).

Figure 17. D-MUC for software/ firmware OTA update process

Figure 18. FSD and MUSD for periodic and dynamic software updates

Figure 19. FSD and MUSD for interactions involving MAAS management

System flaws and vulnerabilities from D-MUC and MUSD diagrams are detailed in the Textual-
Misuse Case (T-MUC). Table 6 shows an example T-MUC for the flawed provider sending
outdated or wrong updates to the AV manufacturer. The T-MUC further describes the
sequence of events leading to the system flaws or vulnerabilities, followed by
recommendations to mitigate the risks at various points. Further contextual information, such
as assumptions made, pre-conditions, misuser profile, stakeholders involved, and risks are
further elaborated in the T-MUC.

Table 6. T-MUC detailed description

Name F1) Flawed provider send outdated or wrong update to AV manufacturer
Basic Path BP1: Provider sends outdated or wrong update to MAAS Operator in Control

Center
BP2: Wrong/ outdated update not detected and is updated on the AVs
BP3: Outdated software with vulnerabilities installed on AV, leading to possible
hazards

Mitigation points MP- 1: A process or system to prevent wrong or outdated updates from being
issued by providers.
MP- 2: A mechanism or system to detect wrong or outdated updates from
being received by MAAS operator

MP- 3: A system to prevent wrong or outdated update from being installed on
AVs.

Assumptions 1) There is a software system to facilitate software updates and distribution
Pre-conditions 1) Wrong or outdated updates can lead to hazards
Misuser profile 1) Mistake/ lapse from faulty provider
Stakeholders, risks 1) Safety of passengers of pedestrians in danger

2) Damage to vehicles or physical properties
3) Both MAAS operator and provider’s reputation is at stake

Stage 3: Summary of recommendations
CHASSIS analysis identified a total of eight safety-related flaws and eight security-related
system vulnerabilities. The analysis result also found 23 mitigation points to address these
system flaws and vulnerabilities. In CHASSIS Stage 3, a summary of the analysis results is
presented in HAZOP tables (see example in

Table 7) to record functions that were analyzed, together with parameters and guidewords
used to identify potential misuse cases.

Table 7. HAZOP table for software update providers

Function Guideword Consequence Cause Harm Recommendation

Provide
periodic
or
dynamic
updates

HAZOP
“Other
than”

F1) Flawed provider
sends outdated or
wrong update to
MAAS operator; the
update is distributed
to AVs causing it to
operate in
hazardous state

Mistake/
lapse
from
flawed
provider

AV
operating
with
vulnerable/
unsafe
software

MP- 4: A process or system to
prevent wrong or outdated
updates from being issued by
providers.
MP- 5: A mechanism or system
to detect wrong or outdated
updates from being received by
MAAS operator
MP- 6: A system to prevent wrong
or outdated update from being
installed on AVs.

Table 8 provides the summary of requirements generated from CHASSIS analysis,
categorized into managerial aspects, organizational/ operational aspects, technical (AV
design) aspects, and technical (MAAS IT infrastructure) aspects.

Table 8. Summary of requirements and design considerations from CHASSIS analysis.

MAAS
Managerial

MAAS Organizational /
Operations

Technical
(AV Design)

Technical (MAAS IT
Infrastructure design)

2 requirements 7 requirements 10 requirements 4 requirements
MP-18:
Establish
acceptable
agreement and
mutual
understanding
on acceptable
software
support

MP-19:
Establish
acceptable
agreement and
mutual
understanding

Organizational Policies &
Processes

MP‐ 11: Develop contingency
plans and strategies to
recover from potential attacks
MP‐ 20: Develop
organizational multi‐year CS
strategy and plan; ensure
adequate funding and
resources are allocated to
meet the plans
MP‐ 21: Provide clear CS
guidelines, policies, and
training to ensure that staff at
all levels are familiar with

Organizational Policies &
Processes

MP‐ 3: A system to prevent
wrong or outdated update from
being installed on AVs.
MP‐ 6: Design and develop a
mechanism to certify updates are
from trusted sources
MP‐ 8: AV shall have capability to
detect messages that may be
altered or are from unidentified
sources
MP‐ 9: AV shall ensure updates
are from authorized and
authenticated sources before
receiving these updates

Data-at-rest
Protection

MP‐ 4: Ensure Critical
IT infrastructure is
protected 24/7, with
access controls in place
MP‐ 5: Ensure network
access to internal IT
system is adequately
protected with
authentication and
authorization
mechanisms
MP‐ 10: Design and
implement protection
of critical

on acceptable
network
coverage within
AV’s area of
operations

their CS roles and
responsibilities

Operations

MP‐ 1: A process or system to
prevent wrong or outdated
updates from being issued by
providers.
MP‐ 2: A mechanism or
system to detect wrong or
outdated updates from being
received by MAAS operator
MP‐ 22: Include standard
operating procedures to
update management on CS
incidents based on criticality/
severity
MP‐ 23: Automated system to
alert management on critical
CS incidents

MP‐ 12: Design the AV such that
it does not allow installation of
critical software updates while
driving
MP‐ 13: Ensure that security
feature that prevents software
installation in hazardous mode is
tamper‐proof
MP‐ 14: Design and implement
authentication and authorization
mechanism
MP‐ 15: Ensure that the
authentication and authorization
mechanism is tamper‐proof
MP‐ 16: Design and implement
tamper‐proof ECU to prevent
unauthorized inject of commands
to ECU to send wrong/ inaccurate
metrics
MP‐ 17: Design and implement
tamper‐proof communications
module to prevent the module
from being disabled

infrastructure to block
any invalid traffic (e.g.
firewalls, strong
password, network
encryption)

Data-in-transit
Protection

MP‐ 7: (1) Ensure
security‐critical
information are sent
using secure network
protocol; (2) Ensure
security‐critical
information are
encrypted before
transmission

Comparison between STPA-Sec and CHASSIS

Another key objective of this research is to compare the results from STPA-Sec analysis with
another safety/ security hazard analysis method – CHASSIS. Table 9 compares the number
of requirements for each category generated from both STPA-Sec and CHASSIS. Across all
categories, it is observed that more requirements were generated from STPA-Sec analysis.

Table 9. Comparison of recommended mitigation measure types between STPA-Sec and CHASSIS
Categories of requirements STPA-Sec CHASSIS

Managerial aspects 7 2
Organizational / Operations aspects 14 7
Technical (AV design) aspects 13 10
Technical (MAAS IT Infrastructure) aspects 14 4

Total requirements 48 23

A qualitative comparison of both hazards analysis methods is provided in Table 10. In the
previous section, the use of CHASSIS for information lifecycle analysis to add considerations
to STPA-Sec analysis was suggested. Based on the comparison of analysis results, there are
strengths in CHASSIS analysis that makes it feasible to complement STPA-Sec stage 3
analysis to generate additional considerations. In particular, we found that because CHASSIS
focuses on possible activities by misusers and attackers at various stages of information
lifecycle, the analysis generated layered defense requirements with specific prevention and
detection mechanisms at key components to prevent propagation of vulnerabilities. The
information lifecycle analysis (using CHASSIS models) could be conducted in subsequent
stages of STPA-Sec to derive additional requirements at components level.

Table 8. Qualitative Comparison of recommended mitigations from STPA-Sec and CHASSIS
Mitigations in both STPA-Sec

and CHASSIS
Mitigations in STPA-Sec only Mitigations in CHASSIS only

Both methods identified
mitigations to strengthen control

- Strength in identifying mitigations
from socio-technical aspects that

- Strength in identifying layered
defense; specific prevention and

and protection at key components
under system boundary.

have indirect interactions with
technical system (considered
investors, standards and
regulations, staff training and
competency, environmental
impacts, etc.).
- Significantly more requirements
from managerial, organizational
policies/ processes from STPA-
Sec; more focus on top-down
control mechanisms than bottom-
up fixes

detection requirements for each
component within information
chain.
- Focused on possible activities by
misusers and attackers
- Unique requirements include:
identification of wrong or outdated
software updates due to human
error; tamper-proof design for
critical features to mitigate
attackers’ activities

The in-depth comparisons between STPA-Sec and CHASSIS are shown below. Several
differences which may affect its effectiveness in specific context are highlighted.

Analysis approach
Both STPA-Sec and CHASSIS encompass co-analysis of safety and security hazards. At its
core, STPA-Sec is built on control theory with hazards and vulnerabilities a result of
inadequate controls within the system. As a result, the technique enables identification of
unsafe interactions even if individual components are working perfectly. On the other hand,
CHASSIS model system behavior based on information flow and interactions; it facilitates
identification of system failures or vulnerabilities based on activities introduced by misusers or
attackers. We also observed that for analysis at high-level abstractions, in-depth knowledge
of the system is not a necessity, which makes both STPA-Sec and CHASSIS feasible for
teams without strong expertise in the system.

Level of abstraction
Since STPA-Sec is based on STAMP, its underlying concept is to analyze the system taken
as a whole, rather than its components taken separately. STPA-Sec is a high-level, top-down
approach, focusing on emergent properties that arise from relationships among components.
Therefore, the technique is well suited for systems in early stages of development and concept
phase where architectural artefacts have not been established. STPA-Sec generates more
high-level requirements considering the larger socio-technical aspects of the system. In
contrast, CHASSIS can be considered a bottom-up approach building upon functional
decomposition of key components use cases and their interactions. To establish the use cases
and information sequence flow of the system, some high-level functional requirements and
information transactions would be required during analysis. The mitigations generated by
CHASSIS are strong in generating layered defense against possible activities by misusers
and attackers to prevent the vulnerability/ fault from propagating through the system.

Scope of analysis
STPA-Sec first establishes the high-level control structure encompassing socio-technical
interactions with components of the system. The system boundary is then defined to set the
focus of analysis on components that are within the team’s influence. Next, definition of
unacceptable losses/ accidents and hazards also narrow down identification of unsafe control
actions to those that attribute to the hazards. Based on using STPA-Sec in this research, it is
common to see the scope of analysis can expand, especially in STPA-Sec Stages 2 and 3.
Therefore, it is worthwhile to consider starting with a high-level abstraction for the control
structure and unacceptable losses/ accidents and then proceed with more in-depth analysis
in later stages of STPA-Sec analysis.

One of the key features of CHASSIS is the use of UML to model system interactions using
use case/ misuse case diagrams and sequence diagrams. These artefacts may be extended
from system design documentations to include system flaws and vulnerabilities that may lead
to harm. Furthermore, the diagrammatic UML representations provides a key strength of
CHASSIS as these representations of system interactions are intuitive and can easily be
conveyed to key stakeholders during discussions. Although CHASSIS have not been
designed to consider external organizational and environmental interactions, it is possible to

expand the boundary in subsequent iterations, as demonstrated where the interactions
between the management team and control center was expanded to the risk scenario
considerations.

Case Analysis of recommendations from STPA-Sec

Next, we evaluate effectiveness of the list of recommendations generated from the STPA-Sec
analysis by back testing against a past cyber hack scenario. In a series of hacks starting in
2013, Miller and Valasek demonstrated how potential hackers can gain access to the vehicles
over the internet. The experiment, conducted on various car models including the Jeep
Cherokee, Toyota Prius, and Ford Escape, demonstrated the ability to remotely control the
vehicle’s fan, music volume, wipers, and even safety-critical features like the steering wheels,
accelerator and brakes [31]. The generic system architecture of the Jeep Cherokee is shown
in Figure 20. Generic system architecture and features of the Jeep Cherokee

Figure 20. Generic system architecture and features of the Jeep Cherokee

Millier and Valasek identified several vulnerabilities which enabled them to gain access to the
vehicle’s safety-critical features2, as depicted in Figure 21 and summarized as follow:

 The researchers identified a micro-controller and software within the UConnect head
unit that connects to other components of the vehicle through the vehicle’s internal
network known as the CAN (Controller Area Network) bus. The CAN bus is a critical
infrastructure that enable communications among the vehicle’s electronic control units.

 Using this as an entry point, Miller and Velasek planted their code on the firmware of
an entertainment system hardware, disabling checks and balances in the vehicle
computer units, and enabling them to send commands to the vehicle’s CAN bus.

 To access the vehicular network wirelessly using WIFI, the researchers identified that
each vehicle’s WPA password was generated based on the epoch time (in seconds)
from the time the vehicle was manufactured to the first start up. The researchers were
able to narrow down to a few dozen combinations and the WPA password used to
access the vehicle network can be guessed quite easily.

2 There has been some confusion as to whether physical access to the vehicle was required.
Although physical access to one such vehicle might have been needed to determine the details, the
actual cyber attack was conducted remotely without any physical access to that vehicle.

 The UConnect system uses Sprint’s 3G network to communicate with other vehicles,
and with the vehicle manufacturer for software updates. The researchers found that
that it was possible to communicate with other Sprint devices connected anywhere in
the country. This network vulnerability allowed the researchers to increase their range
of attack by exploiting cellular access into the vehicle.

Figure 21. Key vulnerabilities of the Jeep Cherokee

Using the same systems theory based on STAMP, a simplified Causal Analysis using System
Theory (CAST) analysis was conducted to analyze deficiencies in the control structure of the
Jeep Cherokee case. The goal of this analysis is to identify how system constrains were
violated leading to the successful hacks by Miller and Valasek. The accidents/ losses, system
hazards and system constrain associated with this incident is shown below.

Associated accidents/ losses:
A1: Financial loss to manufacturer due to recall and rectification of vulnerability
A2: Loss of reputation for manufacturer
A3: Loss of consumer confidence in smart vehicles

Associated system hazard:
H1: Attacker gain access to vehicle to load malicious software [A1, A2, A3]
H2: Attacker gain control of safety-critical functions of vehicle [A1, A2, A3]

Associated system constrain:
SC1: The system control structure must prevent unauthorized software from being loaded to
vehicle [H1]
SC2: The system control structure must prevent unauthorized control over safety-critical
functions of vehicle [H2]

Figure 22 shows the generic control structure of the vehicle with infotainment controller unit
similar to Jeep Cherokee’s UConnect feature. The feature allows the human operator (driver)
to access and control infotainment features of the vehicles through on-board UConnect
Dashboard. The UConnect infotainment system also acts as the visual interface between the
driver and vehicular ECUs (such as entertainment system). Vehicular features such as
software updates, navigation, telematics, entertainment, and connectivity are available
through the vehicle’s UConnect feature. The control structure is extended to include the
manufacturer, which may receive software update requests following authorization by the

human operator. The manufacturer has the capability to provide software updates to the
vehicle over the air.

Figure 22. Generic control structure of the Jeep Cherokee system under analysis

Table 11 – 13 provide analysis of safety/ security constrains violated. The analysis highlights
key safety responsibilities and constrains violated in each component, together with any
emergency and safety equipment present, physical failures and inadequate controls, as well
as contextual factors:

 At the physical system (vehicle) level, the unauthorized control of vehicle’s safety-
critical components results in violation of safety/ security constrain. The driver is also
unable to safely over-ride or take-over control of the vehicle. Based on the analysis,
the physical failure or inadequate control that led to the violation are due to the
Electronic Control Unit (ECU) executing unauthorised command, as well as indirect
linkages in ECUs performing safety-critical functions and infotainment functions. Refer
to Error! Reference source not found. for details.

 For the in-car controller, the safety/ security constrains violated include the
transmission and execution of unauthorised commands, and the unauthorised access
to the vehicle’s safety-critical features. A number of inadequate controls were
observed, ranging from non-encrypted messages, inadequate authorisation and
authentication mechanisms, and availability of a back door for attackers to insert
malicious codes. Refer to Error! Reference source not found. for details.

 For the vehicle manufacturer, possible safety/ security constrains include inadequate
secure development process, cyber-security-related competencies and as well quality
assurance processes to ensure cybersecurity risks are mitigated. It is also important
to consider contextual factors, such as the supply of parts from different
manufacturers, and the competitive industry that calls for new features that may lead
to new attack surfaces. Refer to Error! Reference source not found. for details.

Table 9. Analysis of Physical System (Vehicle)

Domain Analysis

Safety and security
responsibilities and
constraints violated

- Prevent unauthorized control of vehicle’s safety-critical components

Emergency and Safety
Equipment (Controls)

- Driver unable to over-ride or take over command of vehicle
- Driver may attempt to take over control or switch off the vehicle

Physical Failures and
Inadequate Controls

- ECU for safety-critical components execute unauthorized command
- ECU for safety-critical components (e.g. accelerator, brakes, steering) and
non-safety critical components (infotainment, wipers, etc.) on the same
network bus

Contextual Factors - Driver may completely switch off vehicle but this may be dangerous while
the vehicle is driving.
- Driver may enable vehicular network (e.g. WIFI, cellular) and expose the
vulnerability

Table 10: Analysis of Physical System (in-car controller)

Domain Analysis

Safety and security
responsibilities and
constraints violated

- Prevent unauthorized software or command from being sent and executed
on vehicle controller
- Prevent access to vehicle’s safety-critical features

Emergency and Safety
Equipment (Controls)

- UConnect system do not have direct features to control safety-critical
features of the vehicle.

Physical Failures and
Inadequate Controls

- Messages transmitted over the air is not encrypted which allow attackers to
interpret messages and plan attacks
- Inadequate authorization and authentication allow unauthorized software to
be installed in vehicle
- Vehicle installed with vulnerable software provide backdoor for attackers to
send commands and remotely control safety-features of vehicle

Contextual Factors - By default, UConnect is designed with features for drivers to remotely control
non-safety critical features of vehicle.
- Vehicle is accessible from anywhere through the internet which makes it
possible for vehicle to launch large-scale attacks remotely
- Unsecure interaction between the infotainment system and CAN bus that
connects to safety-critical features

Table 11: Analysis of vehicle manufacturer

Domain Analysis

Safety and security -related
responsibilities

- Ensure secure development process, including safety/ security hazards
analysis, development, and testing.
- Ensure staff are trained in cybersecurity
- Ensure vehicles manufactured are secure with cybersecurity risks mitigated

Unsafe decisions and control - Unsafe interactions of new UConnect feature with existing architecture that
shares vehicular network between safety-critical and non-safety critical
features
- Procure parts/ components with vulnerabilities
- Inadequate training or resources on cybersecurity

Process/ mental flaws - Manufacturer assumed UConnect can only access infotainment features and
it is not possible to remotely access safety-critical features
- Use of legacy components and parts

Context in which decisions
were made

- Highly competitive industry which may cause manufacturers to develop new
features to attract buyers
- May not be aware of security vulnerabilities for parts/ components procured
from suppliers.
- Automotive industry may be new to cybersecurity risks and the team may
not have adequate competencies

Besides identifying causal factors of safety/ security incidents, CAST advocates the
understanding of contextual factors to help us consider external conditions and systemic
factors that result in the inadequate controls or unsafe decisions. For instance, based on the
analysis of physical failures and inadequate controls, one may be tempted to conclude that
the root causes for vulnerabilities were due to poor engineering design which allowed the
attackers to access the vehicle’s CAN bus indirectly through the infotainment system. Another
possible root cause could be due to inadequate transmission and data protection to prevent
the system from receiving and executing unauthorized commands. However, based on the
report, there were some levels of cybersecurity protections and the researchers were only
able to perform the hacks after extensive research. To look beyond human flaws and design
errors, CAST also considers other factors such as emergency and safety equipment controls
that may not have worked during the accident, as well as contextual factors leading to how
existing controls were not effective in preventing the accident.

The in-depth analysis identified several additional unsafe interactions such as:

 Inadequate control for driver to over-ride or take over control of vehicle when vehicle
is compromised by attacker

 Unsafe/ unsecure interactions between remote-accessible infotainment system and
CAN bus connected to safety-critical features can lead to security vulnerability

 Lack of feedback to alert the driver or manufacturer when the vehicle’s safety and
security features were compromised. Possible points of compromise include
jailbreaking the UConnect console to enable unauthorized software updates,
installation of unauthorized software updates, or suspicious access into the system to
alter safety-critical features of the vehicle.

Additionally, by extending the control structure to higher hierarchical levels, more in-depth
analysis was conducted to analyze contributions of managerial and organizational factors to
the vehicle’s vulnerabilities:

 Awareness and technical competencies of staff in vehicular cybersecurity
 Effect of competition and time to market on security test adequacy
 Effect of the lack of standards and regulations on cybersecurity in the automotive

industry
 Adequacy of cybersecurity activities (design, build, test) in the automotive

development approach
 Adequacy of training and resources allocated to cybersecurity efforts in the

organization

The unsafe and unsecure interactions identified from the research are represented in the
updated control structure found in Figure 23 (boxes and lines in red represent the unsafe/
unsecure interactions). Evidently, some inadequate controls and feedback were identified
which enabled the researchers to identify vulnerabilities and gain access into the system.
Some critical control loops not present in the initial control structure (Figure 22) were
identified. For instance, vulnerabilities in the cellular network access allowed the researchers
to identify IOT devices connected within the Sprint network. While it may not be clear whether
the network service provider is responsible for securing communications to IOT devices
connected to their network, it is a clear indication on the importance to consider network
service providers in security risk analysis and to ensure that cybersecurity responsibilities of
key parties in the supply chain are clearly defined and executed.

Figure 23. Revised control structure representing unsafe/ unsecure interactions identified from research

Table 12 summarizes the inadequate controls and unsafe decisions identified from this
simplified CAST analysis. Requirements generated from both CHASSIS and STPA-Sec
analysis (discussed in the earlier sections) that may mitigate these inadequate controls and
unsafe decisions are included in the table. We observe that all identified inadequate controls
and unsafe decisions are mapped to at least one high-level mitigation measure from STPA-
Sec. In contrast, mitigation measures from CHASSIS analysis did not cover some of the
identified inadequate controls and unsafe decisions identified in this CAST analysis. It is
worthwhile to note that the cases under analysis in STPA-Sec method and CAST method are
slightly different – the STPA-Sec method is applied on analyzing hazards and mitigations for
OTA software update on autonomous vehicle case, while the CAST method is applied on
analyzing causes for a cyber hack on a connected vehicle platform (UConnect). Despite the
differences in cases under analysis, the high-level analysis approach in STPA-Sec is able to
generate broader requirements that cover both cases. Although this does not guarantee that
this cyber hack would not have been possible if the manufacturer had followed all
requirements generated from the STPA-Sec analysis, it would be able to address some of the
loopholes identified by the researchers, making the hacks more difficult.

Table 12: Inadequate controls/ unsafe decisions identified from CAST analysis and mapping to mitigations from
STPA-Sec/ CHASSIS analysis

Inadequate controls/
unsafe decisions

Example of mitigations from STPA-
Sec

Examples of mitigations from
CHASSIS

ECU for safety-critical
components execute
unauthorized command

R-7: AV gateway designed to prevent
unauthorized traffic
R-21: AVs to check for certified
updates before processing these
updates
R-26: In‐build intrusion detection
system
R-32: build in tamper‐proof design for
critical functions of AV

MP‐ 6: Design and develop a
mechanism to certify updates are
from trusted sources
MP‐ 8: AV shall have capability to
detect messages that may be
altered or are from unidentified
sources
MP‐ 9: AV shall ensure updates are
from authorized and authenticated

Inadequate controls/
unsafe decisions

Example of mitigations from STPA-
Sec

Examples of mitigations from
CHASSIS

sources before receiving these
updates

ECU for safety-critical
components (e.g.
accelerator, brakes,
steering) and non-safety
critical components
(infotainment, wipers, etc.)
on the same network bus

R-10: Segregate networks for safety‐
critical functions and non‐safety‐
critical functions
R‐33: Build protection mechanism to
prevent unauthorized traffic from
accessing AV internal traffic

Nil

Messages transmitted over
the air not encrypted which
allow attackers to interpret
messages and plan attacks

R-15: Protect communications
channel, using secure transport
protocol and encryption techniques
whenever possible

MP‐7: (1) Ensure security‐critical
information are sent using secure
network protocol; (2) Ensure
security‐critical information are
encrypted before transmission

Inadequate authorization
and authentication allow
unauthorized software to be
installed in vehicle ECU

R-23: Enforce strong authentication
and authorization mechanisms to
ensure validity of commands/
software
R-20: Create a certificate authority,
with all updates submitted for
certification before they can be
accepted by AV

MP‐ 14: Design and implement
authentication and authorization
mechanism
MP‐ 15: Ensure that the
authentication and authorization
mechanism is tamper‐proof
MP‐ 6: Design and implement
tamper‐proof ECU to prevent
unauthorized inject of commands to
ECU to send wrong/ inaccurate
metrics

Vehicle installed with
vulnerable software provide
backdoor for attackers to
send commands and
remotely control safety-
features of vehicle

R-46: Provide anomalies detection
and analysis tool to detect potential
attacks.
R‐25: Send alerts to control stations
when unauthorized modifications are
detected

Nil

Unsafe interactions of new
UConnect feature with
existing architecture that
shares vehicular network
between safety-critical and
non-safety critical features

R‐22: Enforce secure software
development lifecycle (SDLC) and
conduct audits/ checks to ensure
development teams follow them

Nil

Inadequate training or
resources on cybersecurity

R-37: Build/ strengthen CS technical
competencies in organization
R‐43: Ensure AV manufacturer has
known track records for safety and
security
R‐39: Ensure that staffs at all levels
are familiar with their CS roles and
responsibilities
R‐42: Translate applicable standards
and regulatory guidelines into
actionable tasks for the organization

MP‐21: Provide clear CS guidelines,
policies, and training to ensure that
staff at all levels are familiar with
their CS roles and responsibilities
MP‐22: Include standard operating
procedures to update management
on CS incidents based on criticality/
severity

Conclusion

This research presented the application of a new safety and security co-analysis based on
STAMP theory. Premised on viewing safety as control issues (rather than reliability problem),
STAMP has been applied on a wide variety of applications to find inadequate controls that led
to an accident or loss (CAST) and to find new requirements to prevent accidents and losses
(STPA). STPA-Sec is an extension to STPA to include security analysis. The results were
compared with another promising safety and security co-analysis method, CHASSIS, which is
built on existing safety and security concepts and information flows to represent both use
cases and misuse cases.

Applying STPA-Sec on the MAAS OTA software update case, the analysis identified several
unique and important causal factors and mitigation requirements not identified under
CHASSIS analysis. The key strengths of STPA-Sec include the ability to identify unsafe
interactions among components that may lead the system to hazardous state, and
considerations of socio-technical interactions beyond the technical aspects of the system.
Overall, STPA-Sec generated more requirements that have greater impact on addressing
control weaknesses in the system. The research demonstrated STPA-Sec’s ability to identify
control flaws which may be missed out in traditional hazards analysis methods. Some
strengths in CHASSIS analysis were identified and it was proposed to complement CHASSIS
for information lifecycle to generate additional considerations analysis in STPA-Sec stage 3.
Several differences between STPA-Sec and CHASSIS which may affect their effectiveness in
specific contexts were highlighted.

Finally, the mitigation requirements from both methods were evaluated by back testing against
a past cyber hack scenario involving the remote hack experiment of the Jeep Cherokee. Using
a simplified CAST analysis, inadequate controls and unsafe decisions from the cyber hack
scenario were generated, and mitigation requirements from STPA-Sec analysis were
assessed to evaluate the adequacy in addressing vulnerabilities identified in the CAST
analysis. It was observed that STPA-Sec generated requirements that were mapped to all
inadequate controls and unsafe decisions identified in the CAST analysis, although the cases
under analysis and the control structures in both cases were slightly different. In contrast,
mitigation requirements from CHASSIS analysis did not address some of the inadequate
controls and unsafe decisions identified in the Jeep Cherokee case.

Overall, this research, along with the new STPA-Sec method should serve to encourage
further exploration of STAMP-based approach in cybersecurity, particularly in the automotive
domain. Although inherent cybersecurity risks will continue to exist with new features and
technologies introduced to vehicles, it is possible to mitigate most of the risks by adopting a
holistic, top-down approach and considering socio-technical interactions within the system.

Acknowledgements

This material is based, in part, upon work supported by Cybersecurity at MIT Sloan (CAMS):
The Interdisciplinary Consortium for Improving Critical Infrastructure Cybersecurity, (IC)3.

Bibliography

[1] Tasha Keeney, "Mobility-as-a-Service: Why Self-Driving Cars Could Change
Everything." ARK Invest, 25-Oct-2017.

[2] S. Weilun, “nuTonomy driverless-car accident due to ‘extremely rare’ software glitches;
one-north trial resumes,” The Business Times. [Online]. Available:

http://www.businesstimes.com.sg/transport/nutonomy-driverless-car-accident-due-to-
extremely-rare-software-glitches-one-north-trial.

[3] J. Golson, “Tesla and Mobileye disagree on lack of emergency braking in deadly
Autopilot crash,” The Verge, 01-Jul-2016. [Online]. Available:
https://www.theverge.com/2016/7/1/12085218/tesla-autopilot-crash-investigation-radar-
automatic-emergency-braking.

[4] “Controlling vehicle features of Nissan LEAFs across the globe via vulnerable APIs,”
Troy Hunt, 24-Feb-2016. [Online]. Available: https://www.troyhunt.com/controlling-
vehicle-features-of-nissan/.

[5] “Hackers Remotely Kill a Jeep on the Highway—With Me in It,” WIRED. [Online].
Available: https://www.wired.com/2015/07/hackers-remotely-kill-jeep-highway/.

[6] “ASQ: Automotive Security: Challenges, Standards, and Solutions.” ASQ, 2016.
[7] N. G. Leveson, Engineering a safer world: systems thinking applied to safety.

Cambridge, Mass.: The MIT Press, 2012.
[8] “J1739: Potential Failure Mode and Effects Analysis in Design (Design FMEA) and

Potential Failure Mode and Effects Analysis in Manufacturing and Assembly Processes
(Process FMEA) and Effects Analysis for Machinery (Machinery FMEA) - SAE
International.” [Online]. Available: http://standards.sae.org/j1739_200208/. [Accessed:
01-Sep-2017].

[9] C. A. Ericson (II.), Fault Tree Analysis Primer. CreateSpace Independent Publishing
Platform, 2011.

[10] A. Banerjee, K. K. Venkatasubramanian, T. Mukherjee, and S. K. S. Gupta, “Ensuring
Safety, Security, and Sustainability of Mission-Critical Cyber #x2013;Physical
Systems,” Proc. IEEE, vol. 100, no. 1, pp. 283–299, Jan. 2012.

[11] D. Schneider, E. Armengaud, and E. Schoitsch, “Towards Trust Assurance and
Certification in Cyber-Physical Systems,” in Computer Safety, Reliability, and Security,
2014, pp. 180–191.

[12] G. Macher, H. Sporer, R. Berlach, E. Armengaud, and C. Kreiner, “SAHARA: A
security-aware hazard and risk analysis method,” in 2015 Design, Automation Test in
Europe Conference Exhibition (DATE), 2015, pp. 621–624.

[13] “Security Application of Failure Mode and Effect Analysis (FMEA) | SpringerLink.”
[Online]. Available: https://link.springer.com/chapter/10.1007/978-3-319-10506-2_21.
[Accessed: 19-Aug-2017].

[14] C. Raspotnig, P. Karpati, and V. Katta, “A Combined Process for Elicitation and
Analysis of Safety and Security Requirements,” in Enterprise, Business-Process and
Information Systems Modeling, Springer, Berlin, Heidelberg, 2012, pp. 347–361.

[15] D. Dominic, S. Chhawri, R. M. Eustice, D. Ma, and A. Weimerskirch, “Risk
Assessment for Cooperative Automated Driving,” in Proceedings of the 2Nd ACM
Workshop on Cyber-Physical Systems Security and Privacy, New York, NY, USA,
2016, pp. 47–58.

[16] Rodrigo Sotomayor Martinez, “System Theoretic Process Analysis of Electric Power
Steering for Automotive Applications.” Jun-2015.

[17] Nathaniel Arthur Peper, “Systems Thinking Applied to Automation and Workplace
Safety.” Jun-2017.

[18] Cody Harrison Fleming and Nancy Leveson, “Improving Hazard Analysis and
Certification of Integrated Modular Avionics,” J. Aerosp. Inf. Syst., vol. 11, no. 6, Jun.
2014.

[19] Todd Pawlicki, Aubrey Samost, Derek Brown, Ryan Manger, Gwe-Ya Kim, and Nancy
Leveson, “Application of systems and control theory-based hazard analysis to radiation
oncology,” J. Med. Phys., 2016.

[20] William Young and Nancy Leveson, “An Integrated Approach to Safety and Security
Based on Systems Theory,” Commun. ACM, no. 57, pp. 31–35, Feb. 2014.

[21] Hamid Salim; Stuart Madnick, “Cyber Safety: A Systems Theory Approach to
Managing Cyber Security Risks – Applied to TJX Cyber Attack,” Work. Pap. CISL
2016-09, Aug. 2016.

[22] A. Nourian and S. Madnick, “A Systems Theoretic Approach to the Security Threats in
Cyber Physical Systems Applied to Stuxnet,” Work. Pap. CISL 2014-13, Sep. 2014.

[23] Arash Nourian ; Stuart Madnick, “A Systems Theoretic Approach to the Security
Threats in Cyber Physical Systems Applied to Stuxnet,” IEEE Trans. Dependable
Secure Comput., vol. 15, no. 1, pp. 2–13, Feb. 2018.

[24] William Young and Nancy Leveson, “Systems thinking for safety and security,” Proc.
29th Annu. Comput. Secur. Appl. Conf. ACSAC 13 ACM, 2013.

[25] William Young Jr, “Understanding STPA-Sec Through a Simple Roller Coaster
Example.” 2016 STAMP Conference Boston, MA, 23-Mar-2016.

[26] Chee Wei, Lee, “A System Theoretic Approach to Cybersecurity Risks Analysis of
Passenger Autonomous Vehicles.” Feb-2018.

[27] V. Katta, C. Raspotnig, P. Karpati, and T. Stålhane, Investigating fulfilment of
traceability requirements in a combined process for safety and security assessments,
vol. 6. 2015.

[28] S. Checkoway et al., “Comprehensive Experimental Analyses of Automotive Attack
Surfaces,” in Proceedings of the 20th USENIX Conference on Security, Berkeley, CA,
USA, 2011, pp. 6–6.

[29] D. K. Nilsson, L. Sun, and T. Nakajima, “A Framework for Self-Verification of
Firmware Updates over the Air in Vehicle ECUs,” in 2008 IEEE Globecom Workshops,
2008, pp. 1–5.

[30] M. S. Idrees, H. Schweppe, Y. Roudier, M. Wolf, D. Scheuermann, and O. Henniger,
“Secure Automotive On-Board Protocols: A Case of Over-the-Air Firmware Updates,”
in Communication Technologies for Vehicles, 2011, pp. 224–238.

[31] Chris Valasek; Charlie Millier, “Remote Exploitation of an Unaltered Passenger
Vehicle.” 2015.

