

An Examination of Software Tool Features
Needed to Help Secure Energy Delivery

Industrial Control Systems
Taylor Andrews, Allen Moulton, and Stuart Madnick

Working Paper CISL# 2018-07

August 2018

Cybersecurity Interdisciplinary Systems Laboratory (CISL)
Sloan School of Management, Room E62-422

Massachusetts Institute of Technology
Cambridge, MA 02142

1
(working version 3.1)

Working Paper – August 2018

An Examination of Software Tool Features
Needed to Help Secure Energy Delivery

Industrial Control Systems

Cybersecurity at MIT Sloan (CAMS)
Massachusetts Institute of Technology

Cambridge, Massachusetts, United States of America

Taylor Andrews
Allen Moulton

Stuart E. Madnick

2
(working version 3.1)

Table of Contents

Table of Contents .. 2	

Table of Figures .. 3	

1.	 Abstract and Motivation ... 5	

1.1 Why is Systems Theoretic Cybersafety based on STAMP? ... 5	

1.2	 Identify Energy Distribution Cyber Weaknesses Before Attackers Do .. 7	

1.3	 A Brief Summary of Existing STAMP Tools ... 9	

2.	 A STAMP Software Tool Evaluation Framework .. 10	

2.1 General Software Features and Architectural Decisions .. 10	

2.2	 STAMP-Specific Software Features ... 11	

3.	 Software Trials Using an Example Energy Distribution Analysis .. 12	

3.0.1 What Steps Are Needed? ... 12	

3.1	 STPA-Sec Methodology Step 1.1: Define the Purpose of the Analysis 16	

3.1.1	 STPA-Sec Methodology Step 1.2: Identify Losses ... 18	

3.1.2	 STPA-Sec Methodology Step 1.3: Identify System-Level Hazards (Vulnerabilities) 19	

3.1.3	 STPA-Sec Methodology Step 1.4: Identify System-Level Constraints 23	

3.2	 STPA-Sec Methodology Step 2: Model the Control Structures ... 25	

3.3	 STPA-Sec Methodology Step 3: Identify Unsafe Control Actions (UCAs) 33	

3.3.1	 STPA Handbook Hazardous Four Control Action Possibility Support 35	

3.3.2 Hazardous System State Context Table Support ... 38	

3.1.1 NIST’s ACTS for Optimized T-Way Interaction Context Table Generation 39	

3.4	 STPA-Sec Methodology Step 4: Identify Scenarios ... 42	

3.5	 Final Steps: Outputs, Reports, and Traceability .. 45	

4	 Conclusions ... 46	

Appendix A – Detailed Categories of Software Features Supporting STAMP Analyst Items 49	

Appendix B – STAMP Software Tool General Attribute Framework .. 54	

Appendix C – Preliminary Systems Theoretic Cybersafety Data Structure Organization.......................... 57	

Citations .. 65	

Keywords: Systems Thinking, Cybersafety, Cyber Safety, Systems Theory, Systems Theoretic, Systems
Theoretic Cybersafety, STAMP, STPA, STPA-Sec, STPA-SafeSec, Industrial Control Systems, ICS,
Operational Technology, OT, Cyber Security, Cybersecurity, Cyber Physical, Cyber-physical,
Cyberphysical, Software Tools, Microsoft Office, Draw.IO, XSTAMPP, STAMP Workbench, RM
Studio, SafetyHAT

3
(working version 3.1)

Table of Figures

Figure 1. A Systems Theoretic Cybersafety Methodology Progression (STAMP) 11	
Figure 2. U.S. Dept. of Transportation Volpe's SafetyHAT MS Access Runtime System - Main View ... 13	
Figure 3. XSTAMPP Hierarchical View of STPA-Sec Analysis Items .. 14	
Figure 4. STAMP Workbench Hierarchical View of STPA Analysis Items ... 14	
Figure 5. MS Office Example Rich Canvas Functionality for System Purpose 16	
Figure 6. XSTAMPP Example Plaintext Functionality for System Purpose and Description 17	
Figure 7. MS Office Rich Text Description of System and Goals ... 17	
Figure 8. XSTAMPP Example Goals Management with Extended Plaintext Descriptions 18	
Figure 9. MS Office Example Table for Specifying Losses .. 18	
Figure 10. XSTAMPP Example Loss Manager with Extended Plaintext Descriptions 19	
Figure 11. STAMP Workbench Specifying Losses.. 19	
Figure 12. MS Office Example Table Format Specifying Hazards (Vulnerabilities) 20	
Figure 13. XSTAMPP Example Hazard/Vulnerability Manager with Extended Description & Linking.. 20	
Figure 14. MS Office Example Hazard/Vulnerability & Loss Linking Management Functionality) 21	
Figure 15. XSTAMPP Example Hazard/Vulnerability & Loss Linking Management Functionality 22	
Figure 16. SafetyHAT's Hazard Input Form and Loss/Accident Linking Features 22	
Figure 17. MS Office Example Table for Safety Constraints .. 23	
Figure 18 XSTAMPP Example Safety Constraint Manager and Linking Functionality 24	
Figure 19. MS Office Example Safety Constraint Linking Using Rich Text .. 24	
Figure 20. XSTAMPP’s Preliminary Features for Ordered List Support .. 25	
Figure 21. Draw.IO Example General Purpose Canvas Control Structure Drawing 26	
Figure 22. STAMP Workbench's Matrix Specification for Functional Control Structure Generation 27	
Figure 23. STAMP Workbench Control Action Manager and Editor .. 28	
Figure 24. STAMP Workbench Feedback Manager and Editor .. 28	
Figure 25. STAMP Workbench Control Structure Model After Generation and Brief Manual
Rearrangement .. 29	
Figure 26. Using XSTAMPP’s Drawing Canvas to Create a Functional Control Structure Drawing....... 30	
Figure 27. "Connection Fracture" Intelligent Drawing Canvas Optimizations 31	
Figure 28. [17, Figure G-2]. Detailed Socio-Technical Causal Control Model 32	
Figure 29. XSTAMPP Example Process Model Specific Features .. 33	
Figure 30. XSTAMPP Control Actions Summary Table .. 34	
Figure 31. STPA’s “Hazardous Four” Control Action Possibilities to Consider 35	
Figure 32 MS Office Table Evaluating Manually Evaluating Control Actions 35	
Figure 33. XSTAMPP Example Unsafe & Unsecure Control Action Matrix Evaluation Functionality ... 36	
Figure 34. XSTAMPP Example Allowing New Security and Safety Constraints Based On Unsafe Control
Actions ... 37	
Figure 35. MS Office Table Evaluating and Linking Control Actions with Hazardous Process Model
Variable Values (Context) .. 38	
Figure 36. XSTAMPP Context Table Manger: Security Critical Control Action Review 38	
Figure 37. XSTAMPP Context Table Generation: NIST CSRC’s ACTS Tool Interface 39	
Figure 38. [17, Figure 2.20]. STPA Handbook: Overview of Scenario Identification 42	
Figure 39. [17, Figure 2.17]. STPA Handbook: Two Types of Scenarios That Must Be Considered 42	

4
(working version 3.1)

Figure 40. [17, Figure 2.18]. STPA Handbook: Two Causes of UCAs Scenarios 43	
Figure 41. [17, Figure 2.19]. STPA Handbook’s Generic Control Loop, Control Path, and Other
Controlled Process Factors ... 43	
Figure 42. XSTAMPP Example Matrix Based Scenario Management ... 44	
Figure 43. MS Office Example General Purpose Tool Visual Scenario Diagram Example 45	

5
(working version 3.1)

1. Abstract and Motivation

In December 2015, coordinated cyberattacks targeting Ukrainian power distribution systems’
information technology (IT), industrial control systems (ICS), and operational technology (OT) resulted
in physical damage to Ethernet serial converters, intentional disabling of distribution facility backup
generators, denial of service attacks on customer support call centers, and permanent destruction of
workstation hard drive data, causing temporary citywide power grid failure that affected 225,000 people
[21]. It was discovered the attack in Ukraine took place months after initial network penetration, after
extensive surveillance and data gathering was first performed, indicating cyber attackers are attempting to
prolong intrusions and avoid detection in an effort to practice, simulate, and perfect militarized-style
attack architectures to maximize damages [21]. In March of 2018, after joint collaboration, the U.S.
Department of Homeland Security and FBI released an alert that documented details of a multi-year,
extensive surveillance and intrusion campaign from state sponsored “threat actors” that widely penetrated
U.S. energy distribution systems with malware designed to enable covert remote access and technical
manipulation abilities, to be able to perform similar attacks on American power grids [16].

The growing number of cyber-physical intrusions to energy distribution systems require
preventative, structured cybersecurity analysis to produce attack scenarios, causal factors, design changes,
and new requirements to secure energy systems before systems are compromised, ideally at system design
and development time. Hazard analysis, safety analysis, and reliability analysis must no longer be
considered solely from the point of view of single component, engineering-based failures, but must all
evolve to foresee premeditated, malicious, and coordinated actions of human organizations that
intentionally cause disastrous multi-component failure scenarios after careful reconnaissance and reverse-
engineering. In this paper, we explain systems theoretic cybersafety, we document an exploration of
software tool features that support systems theoretic cybersafety analysis automation, provide a detailed
list of STAMP software tool specification requirement areas to consider when designing future systems
theoretic cybersafety tools, and finally we include some data structures for systems theoretic cybersafety
analysis information organization. Through an energy distribution system example in Section 3, we also
demonstrate how one currently may use software tool features to perform systems theoretic cybersafety
analysis using STAMP, and produce system changes to defend and defeat when analyzing existing
systems or designing new ones.

1.1 Why is Systems Theoretic Cybersafety based on STAMP?

STAMP is an accident causality model developed by MIT’s Aeronautics and Astronautics

Department in the early 2000s by Nancy Leveson, which then led to the formation of STPA (System-
Theoretic Process Analysis) for preventative safety and hazard analysis [28]. In her paper, “A Systems
Theoretic Approach to Safety Engineering,” Nancy Leveson differentiates that “in STAMP, accidents are
conceived as resulting not from component failures, but from inadequate control or enforcement of
safety-related constraints on the design, development, and operation of the system” [25]. The 2018 STPA
Handbook written by Nancy Leveson and John Thomas states "STPA is a relatively new hazard analysis
technique based on an extended model of accident causation. In addition to component failures, STPA
assumes that accidents can also be caused by “unsafe interactions of system components, none of which
may have failed" [17]. Systems theoretic cybersafety analysis is rooted in this systems theoretic accident

6
(working version 3.1)

model called STAMP due to its focus on loss of system control, emergent interactions and behaviors, and
inadequate system “controller” decisions as potential causes that produce vulnerable system states, during
which system hazards and accidents can take place. “Controllers” in systems can be either human or
technical. Controllers use logic and algorithms to make decisions they believe are correct, but
unfortunately, unbeknownst to them, they may not have a clear picture of what the true state of the system
is; a malformed controller “process model” may lead them to believe otherwise. A process model is
nothing more than the “mental model” of the controller; a human controller who has had procedural
training (such as an operator or other employee) forms mental algorithms that allow them to
independently view the state of their work environment, using their human senses to update their mental
“process model,” and then to continuously make decisions (through the logic provided to them through
training) on how to perform their job responsibilities. Conversely, but in the same spirit, a technical
controller will possess numerous specific values in its memory (or perhaps sometimes periodically
persisted to disk for backup) that correspond to the technical controller’s process model. The internal
software algorithm programming is the technical controller’s “procedural training,” and the technical
controller’s “view” of its “work environment” comes from considering the digital information in its
process model, helping it decide how to perform its job function as well. “Control actions” and
“feedbacks” are also passed between controllers and the processes they control to enlighten the rest of the
system about the state of system operations, so all controllers can respond and manage the system
together. It is believed this systems-theoretic view of accidents and hazards (STAMP analysis) can also be
applied in a security context for cybersecurity, providing the theoretical foundation for systems theoretic
cybersafety.

Full Definition Abbreviated Mnemonic
Systems-Theoretic Accident Model and Processes STAMP
Causal (post) Analysis based on STAMP STAMP/CAST
Systems Theoretic Process Analysis STAMP/STPA
Systems Theoretic Process Analysis for Security STAMP/STPA-Sec
Safety Analysis (STPA) and Security Analysis (STPA-Sec) [20] STAMP/STPA-SafeSec

Table 1.Systems Theoretic Cybersafety STAMP Nomenclature

Some software tools aim to support STAMP/STPA analysis, so an in-depth examination of existing
features was first performed to examine what features currently exist, and to develop a list of feature
requirement areas where future development of tools must focus to support systems theoretic cybersafety.
This paper aims discuss a way to evaluate and compare STAMP software tools when integrating them
into existing systems engineering toolchains, existing software tool features available for performing
STAMP analysis (using an energy distribution industrial control system example), and finally a promising
list of systems theoretic cybersafety software feature requirement areas to inspire future tool development.

STAMP analysis was used by the Composite Information Systems Laboratory (CISL) to explore and
document the Stuxnet cyberattack, which targeted Iranian nuclear enrichment centrifuges, and root-cause
the component interactions that had taken place [29]. STAMP analysis was also used by CISL to explore
and document the TJX cyberattack, which resulted in the theft of “millions of customer’s payment card
data” and “financial losses amounting to over $170 million” [30].

7
(working version 3.1)

1.2 Identify Energy Distribution Cyber Weaknesses Before Attackers Do

Significant dangers arise from dutifully engineered, thoughtfully timed, intentional attacks that inject,
omit, or otherwise tampering with specific control actions and feedbacks in the system to carefully
deviate controller process models (discussed in Section 1.1) to cause intentionally dangerous and
unexpected interactions between components of the system. Modern cyberattacks are now repeatedly
demonstrating this type of sophistication [21][29]. Systems theoretic cybersafety is currently being
performed on MIT's Cogeneration Plant by Cybersecurity at MIT Sloan (CAMS), and structured safety
analysis has been performed on nuclear facility industrial control systems [22]. These examples of
structured security analysis methods aim to allow engineers and analysts to identify unacceptable losses
and attack scenarios before they happen, and to generate safety constraints, requirements, and
architectural decisions that keep cyber-physical systems secure from cyberattacks. For this process,
CAMS recommends utilizing a system theoretic methodology called STAMP/STPA-Sec, along with
aspects of a complimenting methodology STAMP/STPA-SafeSec [19] [20].

Dr. Bill Young extended STAMP’s preventative STPA analysis for specific use in security, resulting
in Systems Theoretic Process Analysis for Security (STPA-Sec) [19]. STPA-Sec aims to provide an
analysis methodology that identifies a top-down approach to safety and security by identifying losses,
hazardous vulnerabilities, security constraints, and unsafe control actions to systematically create causal
factors and attack scenarios, identify security constraints, and necessary design or requirement changes in
a preventative manner during system development. STAMP/STPA-Sec methodology steps are analogous
to the 2018 STPA Handbook’s foundational STPA steps, with extensions to produce malicious attack
scenarios to drive secure system change. STAMP/STPA-SafeSec built upon STPA by integrating
formalization of some general physical network component structures and network interactions to
compliment the core functional control structures found in traditional STAMP analysis, and to organize
attack scenarios into a hierarchy to attempt to provide an interface for external attack-tree strategies [20].

Currently engineers and analysts often perform hazard, safety, and cybersecurity analyses by hand or
through general purpose document creation software platforms, using a variety of tools and
methodologies to produce custom structured reports, which aim to disseminate security related
information. We believe STAMP software tool features can further the ease of creating such reports, by
leveraging computer systems to aid in STAMP information organization/linking/prioritization, control
structure modelling, component interaction consideration, attack scenarios, and outputs to help make the
system changes necessary to secure the cyber-physical system before it is penetrated, explored, and
intentionally exploited. We conclude with a brief discussion of future systems theoretic cybersafety
software areas of exploration, a basic framework for evaluating and comparing general STAMP software
tool attributes when integrating them into existing systems engineering processes, and a detailed list of
STAMP feature requirement areas. We hope this paper will help inspire further development of future
software tools that help the analysist or engineer to performing systems theoretic cybersafety analysis,
starting with energy delivery systems.

The following section offers an evaluation of the existing STAMP tool features aimed primarily at
showcasing existing features required to perform STAMP analysis, specifically for systems theoretic
cybersafety analysis of energy delivery systems. Please first note this paper was not intended to document
bugs in the software tools, and instead aims to portray the landscape of available software tool features
available to aid in performing systems theoretic cybersafety analysis of energy distribution systems.

8
(working version 3.1)

This paper will next show the experiences gained from using some leading STAMP tools to duplicate
S. Khan’s cybersafety analysis of MIT’s Central Utilities Plant (CUP) Facility: a cybersafety analysis of
an energy distribution system (Section 3). All general purpose tool example screenshots showcasing MS
Office and Draw.IO based STAMP analysis using general purpose document creation software platforms
are from S. Khan’s working paper and research materials. This gas turbine generator example was chosen
to showcase many existing software features that already are available to support systems theoretic
cybersafety, and to familiarize the reader with a systems theoretic approach to analyzing and securing
energy distribution IT, industrial control, and OT systems through cybersafety. Again, as the reader
progresses through an understanding of the steps in the example analysis, software features are
highlighted that support the rapid, organized completion of analysis steps to produce structured reports for
organized and professional cybersafety information dissemination. Considering systems theoretic
cybersafety analysis findings can preventatively enlighten new architectural design decisions, system
security constraints generation, and system requirement generation, or refine existing systems. This paper
concludes by highlighting some areas of further research and feature development for new software
features to move systems theoretic cybersafety software tool capabilities forward. This collection of
content aims to help operationalize systems theoretic cybersafety analysis software tools to help secure
energy distribution cyber-physical systems.

9
(working version 3.1)

1.3 A Brief Summary of Existing STAMP Tools

There are various tools for STAMP assistance, in various stages of development, but all with the
expectation that the user has some level of STAMP analysis experience. Some aim to support specific
STAMP methods such as STAMP/STPA and, more recently, STAMP/STPA-Sec and STAMP/STPA-
SafeSec. The following bullet lists shows the current landscape, and a list is also available online from the
Partnership for Systems Approaches to Safety and Security (PSASS) [26].

Some STAMP tools are in the project planning phases and are considered in-development:

 A separate partnership between Stiki ̶ Information Security and Zurich University of Applied
Sciences advertises “a 2.5 year project” to create a STAMP/STPA plugin for their RM Studio
product, Stiki’s risk-management platform [2].

Some proprietary STAMP related tools are also available for purchase:

 Safeware Engineering Corporation offers a proprietary product SpecTRM that uses a
requirements language to produce models of software that can “support execution of the
specification as well as automated safety analyses” [3].

 Sparx Systems’ Enterprise Architect UML/SysML modeling tool had offered a STAMP/STPA
extension SAHRA, but it now claims to be transitioning to a successor “ANSHIN,” which will
“soon be available” [4].

Finally, three more STAMP tools are available for immediate and free evaluation and are evaluated in this
paper:

 The U.S. Dept. of Transportation has released a STAMP/STPA tool aimed at transportation
systems, called the Safety Hazard Analysis Tool (SafetyHAT) [5].

 STAMP Workbench (iSTAMP) was created by Japanese Information-technology Promotion
Agency (IPA), advertising STAMP/STPA support. IPA announced iSTAMP as open source in
2018, and a free productized version of the project was released branded as STAMP Workbench
[1] [27]. The product is Java based and cross platform, built to run on various PC operating
systems.

 The University of Stuttgart’s XSTAMPP Platform is a diverse open source STAMP software
platform, claiming to support a wide array of STAMP methods [6]. The product is Java based and
cross platform, built to run on various PC operating systems.

The following general-purpose drawing tools also implicitly support STAMP analysis. The following
software tools were also evaluated for supporting STAMP analysis:

○ Microsoft Office (MS Office) (Proprietary)
■ Microsoft Word
■ Microsoft PowerPoint
■ Microsoft Excel
■ Microsoft Access

○ Draw.IO (https://www.draw.io) (Evaluation Versions)

10
(working version 3.1)

2. A STAMP Software Tool Evaluation Framework

Some considerations for STAMP software tools were formalized that focused on safety
specification categories that STAMP software tool component classifications when considering common
software standards such as IEC 61508 (E/E/PE), EN50128 (Railway), ISO26262 (Automotive), and
finally D0-178C/D0-330 (Aerospace & Defense) [7]. These qualifications aim to quantify potential
dangers from software tool failures in a safety sense, rather than how a systems engineer would integrate
STAMP tools into their existing processes and software toolchains. When considering software tools for
effectiveness in automating and supporting systems theoretic cybersafety analysis of complex cyber-
physical systems, more managerial as well as technical categories must be considered for socio-technical
completeness. Deciding how different STAMP software tools may or may not compliment an existing IT
system architecture and as systems engineering toolchain is important for integrating STAMP tools into
existing processes. This framework first aims to expand these considerations by documenting a socio-
technical set of general STAMP software tool attributes, spanning from common traditional software
architectural decisions to IT managerial concerns. The framework then aims to set a future direction for
STAMP software tool development by describing some future research areas, and a preliminary set of
systems theoretic cybersafety software tool feature requirement areas to leverage STAMP. This paper
then evaluates some popular, widely available STAMP tool features to document a collection of novel,
existing STAMP-specific software tool features that aid in operationalizing systems theoretic
cybersecurity and cybersafety analysis. Complementing the general software attribute consideration
framework, a preliminary list of STAMP-specific feature set areas is provided to help guide future
software tools supporting analysts performing cybersafety analysis on energy distribution systems. The
paper concludes with a discussion of possible future feature development areas, a general STAMP
software attributes framework evaluating a popular STAMP tool (Appendix B – STAMP Software Tool
General Attribute Framework), a detailed list of feature set areas on which future systems theoretic
cybersafety tool development should focus (Appendix A – Detailed Categories of Software Features
Supporting STAMP Analyst Items), and an initial data structure and organization for systems theoretic
cybersafety analysis data.

2.1 General Software Features and Architectural Decisions

The STAMP tool evaluation begins with a traditional collection of software product attributes in a
table showcasing general software attributes. This captures a set of common software attributes generally
considered when comparing systems engineering software products for a production application, such as
technical details, software architecture information, acquisition availability and type, collaboration and
teamwork features, and other managerial and logistical concerns. In this respect, we believe STAMP
software tools can be first evaluated in a somewhat high-level, general way, allowing similar comparison
to other software products, before moving into STAMP methodology specific features (Section 3 and
Appendix A – Detailed Categories of Software Features Supporting STAMP Analyst Items). Appendix B
– STAMP Software Tool General Attribute shows general STAMP software attributes and how an
example STAMP software tool (XSTAMPP) is classified using them.

11
(working version 3.1)

2.2 STAMP-Specific Software Features

The compliment to the general software attributes evaluation provides STAMP-specific feature
areas that support completing STAMP analysis in an optimized, engaging, and rapid way to support
systems theoretic cybersafety. A detailed list of STAMP-specific software feature areas follows in
Appendix A – Detailed Categories of Software Features Supporting STAMP Analyst Items. In the same
spirt of STAMP’s top-down approach, the features were first aggregated into 15 general software feature
requirement areas.

1. Features supporting methodology guidance
2. Features supporting identification of system purpose and description
3. Features supporting the identification of system goals
4. Features supporting the identification of system accidents/losses
5. Features supporting the identification of system hazards/vulnerabilities
6. Features supporting the identification of system-level constraints
7. Features supporting the identification of links between analysis objects
8. Features supporting the modeling of functional control structure(s)
9. Features supporting the modeling of physical control structure(s) [23]
10. Features supporting the identification of process model(s), their variables, and values
11. Features supporting the modeling of the causal control model [17, Appendix G]
12. Features supporting the identification of unsafe control actions (UCAs)
13. Features supporting the identification, exploration, and navigation of context table states
14. Features supporting the identification of causal factors and attack scenarios
15. Features supporting the identification of new requirements, architecture design changes, and

safety / security constraints
16. Features supporting the automated creation of reports documenting cybersafety information

Figure 1. A Systems Theoretic Cybersafety Methodology Progression (STAMP)

12
(working version 3.1)

3. Software Trials Using an Example Energy Distribution Analysis

This section details the evaluation of leading STAMP software platforms (XSTAMPP, STAMP
Workbench, and SafetyHAT) and some general purpose document creation platforms (Microsoft Office
& Draw.IO) when performing an example systems theoretic cybersafety analysis with the high-level
STAMP-specific features from Section 2.2 in mind. Along the way, leading existing features are
showcased to provide a thorough landscape of some innovative features currently helping mature STAMP
software platforms into useful systems engineering tools that can help secure cyber-physical systems
using systems theoretic cybersafety. In conclusion, beginning with Section 4, we present some high-level
discussion points supporting longer term areas of new feature development, a thorough list of STAMP
feature requirement areas (Appendix A), a list of general STAMP software attributes to consider when
comparing or integrating STAMP software tools (Appendix B), and a preliminary description of a
STAMP data structure organization (Appendix C). Section 4 and the appendices aim to introduce an
initial starting point for formalizing new requirement specifications and design plans for future STAMP
software tool projects that aim to support systems theoretic cybersafety, specifically for securing
information technology, industrial control systems, and operational technology within energy generation
and distribution facilities.

The following sub-sections of Section 3 describe software features found in general purpose
document creation tools, along with some leading STAMP software platforms’ optimized and STAMP-
specific features. The STAMP platforms were first used to recreate S. Khan’s systems theoretic
cybersafety analysis of the MIT CUP Cogen Facility (a working paper in Cybersecurity at MIT Sloan),
where systems theoretic cybersafety was used to analyze and secure an example generator turbine’s fuel
industrial control system. It is important to note that when features were considered for supporting
systems theoretic cybersafety analysis, it was assumed the user of the software tools would already have
at least some familiarity with STAMP/STPA, specifically the introduction to STPA found in Chapters 1
and 2 of the 2018 STPA Handbook [17]. However, in this paper, we assume the reader does not have any
STAMP/STPA methodology experience, and we provide some background on the major steps required to
perform systems theoretic cybersafety analysis using STAMP.

3.0.1 What Steps Are Needed?

STAMP software tools offer initial advantages over general purpose document creation tools by being
able to provide an overall methodology guidance by showing an organized view of all the steps found in
the process, with navigational links to views of each. SafetyHAT uses a main view that allows simple,
organized access to the various areas of STAMP/STPA information used for systems theoretic
cybersafety analysis.

13
(working version 3.1)

Figure 2. U.S. Dept. of Transportation Volpe's SafetyHAT MS Access Runtime System - Main View

XSTAMPP and STAMP Workbench also provide a structured, organized approach to conveying

how to progress through the analysis methodology, highlighting access to the major steps a hierarchical
rooted tree view. Figure 3 shows the user interface view that XSTAMPP uses to provide a navigational
map through the given STAMP methodology, and Figure 4 shows STAMP Workbench’s version. The
workflow viewing structure is arranged in a rooted tree structure, allowing for an iterative, non-linear
progression through the steps in the analysis, specifically allowing the user to jump forwards and
backwards to whichever step they desire to work on or revisit, and potentially can decouple information
for collaboration optimization.

14
(working version 3.1)

Figure 3. XSTAMPP Hierarchical View of STPA-Sec Analysis Items

Figure 4. STAMP Workbench Hierarchical View of STPA Analysis Items

A hierarchical view to navigate through analysis provides flexibility and potentially enables
collaboration through multiple separate views. Conveying the overall workflow of a STAMP
methodology in such a way provides a concise summary of the areas of work required to progress through
the analysis, an area where general purpose tools like Microsoft Office (MS Office) and Draw.IO rely on
external documentation to guide the creation and structuring of the information. XSTAMPP and STAMP

15
(working version 3.1)

Workbench both concisely provide a customized hierarchical workflow view of each STAMP
methodology that an analysis works through (such as STAMP/CAST, STAMP/STPA, and
STAMP/STPA-Sec), but software tool considerations for methodologies other than STAMP/STPA-Sec
and STAMP/STPA-SafeSec such as STAMP/CAST (post mortem and root cause Causal Analysis Based
on STAMP) are outside the scope of this paper.

We will discuss requirements formally in future work, but we note that systems theoretic
cybersafety navigation views should leverage Dr. Nancy Leveson’s and Dr. John Thomas’s March 2018
STPA Handbook Chapter 2 overview of STPA analysis in a complimenting way, ideally where the
handbook could provide guidance when using systems theoretic cybersafety software tools [17].

16
(working version 3.1)

3.1 STPA-Sec Methodology Step 1.1: Define the Purpose of the Analysis

Step 1.1 of STPA-Sec is to define a system purpose statement. An example robust structure for a system
purpose statement is recommended as follows [19]:

“A system to do {what = purpose} by means of {how = method} in order to contribute to {why = goals}
while {constraints / restraints}.”

The system purpose statement is analogous to a short yet complete thesis statement for the system
purpose. Using rich text in MS Office, one can summarize systems in a concise, yet thorough way using a
simple to-by-using structure. Framing the system purpose statement up sets the stage for the rests of the
analysis and sets alignment for the top areas of consideration when considering what primary value
function the system performs, what functional process the system uses to do it, and what physical form
the system implements to provide such functionality.

Figure 5. MS Office Example Rich Canvas Functionality for System Purpose

The system purpose definition also consists of a more in-depth description of the system,
sometimes including more contextual information in the form of diagrams or tables. In this respect,
Microsoft Office (MS Office) provides more flexibility than XSTAMPP in that it provides an opportunity
to include a rich format for describing the high-level purpose and surrounding landscape of a given
system under analysis, including links and images. Figure 7 shows the use of MS Office to provide this
type of functionality by including an image showing where the system fits into an external surrounding
context, while Figure 6 shows a plaintext implementation in XSTAMPP.

17
(working version 3.1)

Figure 6. XSTAMPP Example Plaintext Functionality for System Purpose and Description

Part of the system purpose statement defines high-level goals of the system. In a general-purpose

document-editing tool such as MS Office, this is most productively specified implicitly within rich text
descriptions of the system (Figure 7).

Figure 7. MS Office Rich Text Description of System and Goals

XSTAMPP claims to provide STAMP functionality to organize and identify system goals in a
way a general-purpose document editor such as MS Office simply cannot. Figure 8 shows the goal
manager in XSTAMPP. Although its description is limited to plaintext, the software allows for more
organized storage of goal information that can be uniquely identified, linked to, and navigated, which
supports traceability. When these types of features are fully functional, they allow for the rapid
reordering, reprioritization, and automatic cross-referencing of the list items that are tracked with the
system, such as losses, vulnerabilities, constraints, control actions, requirements, and possibly others,
allowing for the enrichment of report information through software automation tools.

18
(working version 3.1)

Figure 8. XSTAMPP Example Goals Management with Extended Plaintext Descriptions

3.1.1 STPA-Sec Methodology Step 1.2: Identify Losses

Step 1.2 of STPA-Sec is to identify losses (Accidents in STAMP/STPA). The STPA Handbook defines
losses as:

“A loss involves something of value to stakeholders. Losses may include a loss of human life or human
injury, property damage, environmental pollution, loss of mission, loss of reputation, loss or leak of
sensitive information, or any other loss that is unacceptable to the Stakeholders” [2].

The example systems theoretic cybersafety analysis on the MIT CUP Cogen Power Plant used to
evaluate STAMP software tools specifies these losses in plaintext table form. Figure 9 shows MS Office’s
functionality for quickly specifying losses, although the indexing and unique identification must be
performed and managed by the user, a noted tedious and time consuming step identified by the author of
the example MIT CUP Cogen cybersafety analysis, S. Khan. We believe these types of opportunities
present themselves as areas of further formalization for the purpose of software automation, discussed
further in 4. Conclusions and Appendix A – Detailed Categories of Software Features Supporting
STAMP Analyst Items.

Figure 9. MS Office Example Table for Specifying Losses

XSTAMPP automatically indexes the losses similarly to goals, allowing the user to enter each
one, and provides a feature for an extended plaintext description. When user feedback ensures their

19
(working version 3.1)

effectiveness, natural keyboard shortcuts can allow much more rapid entry and refinement of ordered lists
such as losses and goals, and tools can help manage reprioritization of ordered list items by managing
unique identifiers and data structures internally. The XSTAMPP loss manager also provides linking to
vulnerabilities and safety constraints, which will be detailed in subsequent steps showing how linking is
important for traceability.

Figure 10. XSTAMPP Example Loss Manager with Extended Plaintext Descriptions

 STAMP Workbench similarly identifies and allows the rapid addition of losses in the form of
accidents (Figure 11). Although the losses are uniquely identified, like XSTAMPP, reordering and
reprioritizing losses is not yet implemented in STAMP Workbench.

Figure 11. STAMP Workbench Specifying Losses

3.1.2 STPA-Sec Methodology Step 1.3: Identify System-Level Hazards
(Vulnerabilities)

STPA-Sec Step 1.3 is to identify system-level hazards (or vulnerabilities in STPA-Sec). The STPA
handbook provides the following definitions.

“Definition: A hazard [or vulnerability] is a system state or set of conditions that, together with a
particular set of worst-case environmental conditions, will lead to a loss” [17].

20
(working version 3.1)

“Definition: A system is a set of components that act together as a whole to achieve some common goal,
objective, or end. A system may contain subsystems and may also be part of a larger system” [17].

Similar to the previous steps, hazards/vulnerabilities can be specified rapidly in MS Office with a
table, but requires tedious manual management of the unique identifiers, something that could be
automated with software tools when internal data structure architecture allows for easy implementation of
automation.

Figure 12. MS Office Example Table Format Specifying Hazards (Vulnerabilities)

XSTAMPP again provides a manager for hazards/vulnerabilities, which features automatic
indexing, and the ability to link back to specific losses. Figure 13 shows XSTAMPP’s hazard/vulnerability
manager, with extended plaintext description and loss linking functionality.

Figure 13. XSTAMPP Example Hazard/Vulnerability Manager with Extended Description & Linking

XSTAMPP and SafetyHAT include features that focuses directly on the linking of losses and
vulnerabilities that aims to make the process much quicker and more organized than in a general editor
such as MS Office. When doing example systems theoretic cybersafety analysis manually by hand,
CAMS analysts had to reference and link to losses and vulnerabilities implicitly in the text, updating them
as they changed, a time consuming and tedious task. MS Office (MS Word) provides a general cross-
reference feature set, which may be able to be adapted as an initial way to reduce this workload within
MS Office. Further formalized structure for systems theoretic cybersafety data structures could allow
guidance for how the informational structure could be formed in software, which further increases the
chances that new algorithms and external tools could then provide further automation and leverage the
data later in the systems engineering process. An example time-saving improvement that standardizing

21
(working version 3.1)

vulnerability parsing could enable is the auto generation of system level constraint syntax, saving the
analyst or engineer from having to do simple, yet manual conversion (see Section 1.4).

Figure 15 shows XSTAMPP’s hazard vulnerability and loss linking functionality, Figure 16 shows

SafetyHAT’s equivalent linking functionality, while MS Office only supports general purpose
management of these ordered lists and each item’s identifier using a traditional table (Figure 14).

Figure 14. MS Office Example Hazard/Vulnerability & Loss Linking Management Functionality)

22
(working version 3.1)

Figure 15. XSTAMPP Example Hazard/Vulnerability & Loss Linking Management Functionality

Figure 16. SafetyHAT's Hazard Input Form and Loss/Accident Linking Features

23
(working version 3.1)

3.1.3 STPA-Sec Methodology Step 1.4: Identify System-Level Constraints

STPA-Sec 1.4 is to identify system-level constraints. The STPA Handbook provides the following
definition:

“Definition: A system-level constraint specifies system conditions or behaviors that need to be satisfied to
prevent hazards (and ultimately prevent losses)” [17].

Figure 17 shows an example of manual specification of these system-level constraints using a standard MS
Office table.

Figure 17. MS Office Example Table for Safety Constraints

These system-level constraints are directly derived from the hazardous vulnerabilities in a form
specifying what the system “must” do to remain in a safe operating state. Safety constraints must be
specified using “must not” statements, to facilitate proving during verification and validation due to the
ease of disproving “must not” statements compared with proving “must” statements.

24
(working version 3.1)

Figure 18 shows XSTAMPP’s system-level constraint manager providing extended description
functionality as well as linking to accidents (losses) and design requirements.

Analogous to the previously described linking functionality, in a general purpose document editor
like MS Office, these links are specified and managed manually by the user in plaintext (Figure 19), which
is noted to be a potentially time consuming process to refine and iterate.

Figure 19. MS Office Example Safety Constraint Linking Using Rich Text

The various structured linking that XSTAMPP provides for these various ordered lists is a noted

improvement over managing the references between the various systems theoretic cybersafety artifacts
and the management of their unique identifiers using general-purpose document editors such as MS
Office. Linking of information allows computers to navigate the structure, potentially assisting in new
ways. These features also allow for the dynamic re-identification of the listed items (goals, design
requirements, losses, hazardous vulnerabilities, system-level constraints, etc.). Re-identification allows

Figure 18 XSTAMPP Example Safety Constraint Manager and Linking Functionality

25
(working version 3.1)

cross-references to be updated for list items due to managing identifiers for each item, and allows the
notion of priority in the lists (if deemed necessary). XSTAMPP offers an aesthetic level example of such
functionality, although the order of identifiers remains unchanged. A function similar to a software
development IDE’s “refactor” global renaming functionality could likewise update all links to the item’s
new identifier as part of the reprioritization similar to updating a cross-reference in MS Word, saving time
when revisiting these ordered items elsewhere.

Figure 20 demonstrates some first steps towards this functionality.

Figure 20. XSTAMPP’s Preliminary Features for Ordered List Support

3.2 STPA-Sec Methodology Step 2: Model the Control Structures

After the purpose of the analysis is specified, the next step is to build the control structure, leading to the
overall “Step 2” of STPA-Sec analysis. The STPA Handbook provides the following definition:

“Definition: A hierarchical control structure is a system model that is composed of feedback control
loops. An effective control structure will enforce constraints on the behavior of the overall system” [17].

Figure 21 shows the general purpose drawing tool Draw.IO providing a general purpose graphical
drawing canvas tool to facilitate creating a view of the functional control structure from the example
systems theoretic cybersafety analysis, as well as contextual, rich information and images to help describe
what the user is seeing.

26
(working version 3.1)

Figure 21. Draw.IO Example General Purpose Canvas Control Structure Drawing

MS Office and Draw.IO provides robust features for aligning and connecting objects on their
well-funded, proprietary, mature, and general-purpose canvas. The auto alignment works very well and
resizing and moving objects on the general-purpose canvas can produce simple diagrams quickly that are
extremely customizable.

STAMP Workbench takes a unique approach to specifying the functional control structure by

first allowing the specification of all components in a matrix view. This can be helpful once a preliminary
control structure has been brainstormed on scrap paper or notes, and prevents the drawing canvas from
becoming unruly as more functional components, control actions, and feedbacks are specified. STAMP

27
(working version 3.1)

Workbench also supports the explicit enumeration of inputs and outputs for each controller, as well as
extended plaintext descriptions of all functional components.

Figure 22. STAMP Workbench's Matrix Specification for Functional Control Structure Generation

28
(working version 3.1)

Listing and maintaining all control actions and feedbacks on drawing canvases can become
tedious and time consuming, so STAMP Workshop includes a batch editor of control action and feedback
lists, with “to target component” list boxes populated with the components currently loaded into the
matrix. Figure 23 shows the control action manager and editor and Figure 24 shows the feedback manager
and editor for specifying the control action and feedback structure of the functional control structure
without having to drag, drop, position, and resize each on a drawing canvas.

Figure 23. STAMP Workbench Control Action Manager and Editor

Figure 24. STAMP Workbench Feedback Manager and Editor

29
(working version 3.1)

 After generation, the controllers, controlled processes, actuators, sensors, control actions, and

feedback are used to generate the relationships on a drawing canvas in STAMP Workbench. After a brief
session of rearranging, editing, and refining connections, a control structure diagram is produced and
shown in Figure 25.

Figure 25. STAMP Workbench Control Structure Model After Generation and Brief Manual Rearrangement

30
(working version 3.1)

 XSTAMPP’s free form drawing canvas has some improvements when compared to general
purpose canvas tools and tools that aim to generate the control structure from a specification such as
STAMP Workbench. XSTAMPP already boasts favorable graphical distinctions between Controllers,
Control Actions, Feedbacks, Controlled Processes, as well as Actuators and Sensors, which greatly aid in
the categorization and recognition of various control structure objects.

Figure 26 and Figure 27 show a common two-dimensional canvas behavior in a red box when
moving connected items – we will refer to them here as “connection fractures” (highlighted in red boxes).
“Connection fractures” require a large overhead for aesthetic realignment, and reduce usefulness and
efficiency of using drawing canvases if they appear too often, or are too time consuming to correct.
Fortunately, mature and robust software drawing canvas tools can geometrically calculate when
adjustments to the drawing objects can retain existing connections without introducing connection
fractures, or even offer features to possibly fix existing ones, greatly speeding up the control structure
creation process. Keyboard shortcuts for batch input of control actions and feedbacks further speed the

Figure 26. Using XSTAMPP’s Drawing Canvas to Create a Functional Control Structure Drawing

31
(working version 3.1)

process up and organize the information in STAMP-specific forms internally that general purpose tools
cannot.

Fortunately, some standard drawing canvas features already exist that aim to assist in preventing
connection fractures when rearranging or fine-tuning drawing canvas object positions. These include
intelligently rooting connections on object edges during small movements where the canvas calculates
that geometrically, the connection is possible to remain intact (with no connection fractures) while the
selected canvas object(s) move and or resize. This is a time-saving feature that allows analysts to rapidly
create control structure drawings in a timely, organized, and professional manner and perfect the layout
without inducing large amounts of rework. Figure 27 aims to demonstrate a typical user experience
example when leveraging these types of drawing canvas features.

Figure 27. "Connection Fracture" Intelligent Drawing Canvas Optimizations

Drawing canvases aim to allow for the rapid iterative reformatting and expansion of drawings, as
more objects are connected and subsystems are identified. Subsystem boundary identification is supported
in some form in both the general purpose tools as well as XSTAMPP, however both of which offer no
specific sub-system navigational functionality at this time. Another general-purpose drawing canvas tool,
Draw.IO, can also produce clean control structure diagrams, although its functionality is comparable to a
cloud-based version of MS Office’s general purpose drawing features. It should be noted that all canvas
type drawing tools evaluated all had some unique benefits, and software tools that provide accelerated and
optimized control structure diagram design are believed to greatly aid in the rapid organization and
automation of systems theoretic cybersafety reports. Some areas of improvement would include
environmental input and output support, with features more powerful than dotted lines to imply system
boundaries, such as support for multiple control structure drawings that provide different “views” of the
model showing different levels of abstraction. XSTAMPP and general-purpose tools do not explicitly
support assigning responsibilities for controllers. XSTAMPP and general-purpose tools do not explicitly
support assigning unique identifiers to label/tag control actions, feedbacks, or other control structure
objects for quick reference from elsewhere in the documentation or information. Human and technical
controller distinction is not explicitly supported. The newer, more socio-technical general causal control
model for casual scenario generation is not yet explicitly supported with specific features by XSTAMPP
or general purpose tools [17]. Figure 18a shows the STPA Handbook’s socio-technical causal control
model.

32
(working version 3.1)

Figure 28. [17, Figure G-2]. Detailed Socio-Technical Causal Control Model

Where MS Office and general-purpose tools lack features, process models are explicitly
supported in XSTAMPP. This enables the organization of a fair number of process model variables and
their values, with enough freedom to customize the organization of the information. Physical controlled
processes are also not currently differentiated. In some cases, tools offer no specific functionality to add
detailed information about the process model elements for assumptions, notes, or to include URL
references. There is currently no notion of variable types in STAMP software tools that would aid in
software performing automation. Intelligent navigation of system states has already been shown to allow
more flexibility and generate optimal sets of values to consider rather than requiring a human to
enumerating all possible system states (discussed further in 3.3). Similar optimizations may be possible
by first further formalizing specifications for a set of typed data structures that describe STPA for
cybersafety and cybersecurity for use in interfacing between different system engineering tools and
processes (see Appendix C – Preliminary Systems Theoretic Cybersafety Data Structure Organization).

33
(working version 3.1)

After control structure creation, the next step is to design each controller’s process model. Figure
29 shows XSTAMPP’s features for process models. Support for extended process models in multiple
controllers currently is necessary for software drawing canvases to allow organization of the process
model variables and values.

Figure 29. XSTAMPP Example Process Model Specific Features

In conclusion of our exploration of control structures and process models, XSTAMPP leads with a
free form drawing canvas implementation that includes graphical controls that correspond nicely to
STAMP control structure objects (controllers, controlled processes, actuators, and sensors). Drawing
features to mitigate connection fractures (see 3.2) can greatly drive drawing canvas usefulness when
creating coherent control structure diagram(s) rapidly. STAMP Workbench leads in importing structured
forms of control structures and their control action and feedback interactions, which is then used to
generate control structures; a likely helpful feature if a crude control structure has been first created
external to the tool, or perhaps first sketched manually by hand.

3.3 STPA-Sec Methodology Step 3: Identify Unsafe Control Actions (UCAs)

The next step in the analysis is to proceed through the control actions in an effort to locate unsafe
and insecure control actions. The STPA Handbook provides the following definition:

“Definition: An Unsafe Control Action (UCA) is a control action that, in a particular context and worst-
case environment, will lead to a hazard” [17].

34
(working version 3.1)

 XSTAMPP leads general purpose tools by allowing the functional control structure to specify and
link control actions and feedbacks from and to controllers, actuators, controlled processes, and sensors.
XSTAMPP generates a view of control actions once they are successfully added to the functional control
structure; capturing structured information STAMP optimized ways can produce time saving collection of
cybersafety analysis information for further software automation.

Figure 30. XSTAMPP Control Actions Summary Table

35
(working version 3.1)

3.3.1 STPA Handbook Hazardous Four Control Action Possibility Support

An effective process for identifying UCAs involves mapping the control actions against a set of
standard four possibilities that may lead to losses when the system is in a hazardous vulnerable system
state. The collection of hazardous process model variable values that create the system state conditions
are specified in what is known as a “context table” (discussed further in Section 3.3.2). These four
possibilities for when control actions may become unsafe are defined in the STPA Handbook, and are
shown in Figure 31.

Figure 31. STPA’s Hazardous Four Control Action Possibilities to Consider

XSTAMPP offers a helpful feature for these common hazardous four control manipulation

possibilities by providing a matrix to evaluate all the control actions that have been captured until this
point, as well as being able to link to previously captured hazards. Figure 32 shows a manually managed
matrix using MS Office while Figure 33 shows XSTAMPP’s control action matrix functionality.
Research has shown that completing the evaluation of this table without specialized software tools is a
significant, time-consuming process and software proof of concepts were built [11] [12]. STAMP-specific
software tools are able to help facilitate this step much more so than a standard general purpose tool.

Figure 32 MS Office Table Evaluating Manually Evaluating Control Actions

36
(working version 3.1)

Figure 33. XSTAMPP Example Unsafe & Unsecure Control Action Matrix Evaluation Functionality

When control actions are imported from the control structure, software can produce these types of
features to save time and cognitive effort on behalf of engineers and analysists performing systems
theoretic cybersafety analysis. Logical simplification was proposed by John Thomas in an effort to
eliminate duplicate rows in the matrix, and observations on the cognitive patterns people exhibit when
filling out the matrix were highlighted [10]. Features that guide the user through an intuitive path through
the matrix as they consider the hazardous possibilities would likely reduce the time required for this
combinatorically challenging step of STAMP analysis. A more immersive view of the matrix, perhaps
with another layer of UI depth such as pop-up or right click menus, may help to organize the massive
amount of information in new ways.

Although it contains more information, and the ability to import and export the information to
other software modules, the editing of UCAs in the XSTAMPP generated matrix is not as rapid as using a
standard MS Office table. However, the UCA linking functionality realized by XSTAMPP is a promising
improvement over standard general-purpose tables, and the ability to encapsulate dynamics links to
hazards and control actions would likely gain analyst and engineer time back. Once the UCAs are
identified, they must be organized and uniquely indexed. In a general-purpose tool, again, tedious manual
indexing of the items in a traditional table does this, and consumes significant time as the number of
UCAs scale. (See Figure 32).

Neither XSTAMPP nor general-purpose tools provide specific features for identifying and
differentiating human and technical control actions. The distinct differences between human and

37
(working version 3.1)

technologic behavior is extremely important to keep separate in the control structure and should be
visually apparent, as they exhibit different capabilities and potential vulnerabilities.

From the UCAs, safety constraints are derived to prevent the vulnerable system states to be ever
(including intentionally) achieved. XSTAMPP offers line-by-line editing of safety constraints on the list
of UCAs derived from the matrix generation evaluation, although edits to UCAs require returning to the
matrix-editing mode (see Figure 34). This can become more complicated than returning to a general
purpose table, but the UCA matrix feature does offer the additional functionality of containing and
working with much larger matrices than a standard table, and more potential to embed and encapsulate
more information.

Figure 34. XSTAMPP Example Allowing New Security and Safety Constraints Based On Unsafe Control Actions

38
(working version 3.1)

3.3.2 Hazardous System State Context Table Support

Included with the unsafe control action is the “context” that makes it unsafe. The context is a
collection of process model variable values that put the system in an unsafe or insecure state, where then
interactions with the surrounding external environment (including remote attackers) can cause losses
when the unsafe control action(s) take place. This step has already been shown to have the potential to be
improved with logic, natural language processing, and software tools [12]. In a general-purpose tool such
as MS Office, this analysis is performed using a standard general purpose table as shown in Figure 35.

Figure 35. MS Office Table Evaluating and Linking Control Actions with Hazardous Process Model Variable
Values (Context)

 In XSTAMPP, there is a context table manager with various features related to the examination of
the combinations of process model variable values (system states) when considering control actions that
could result in damages if they are tampered with at certain times. The first view lists all control actions,
with the option to flag them as security critical. Figure 36 shows this additional helpful functionality to
highlight systems theoretic cybersafety related unsafe control actions.

Figure 36. XSTAMPP Context Table Manger: Security Critical Control Action Review

39
(working version 3.1)

The next set of context table specific features XSTAMPP offers have to do with the management
of relevant process model variables that contribute to the control action becoming unsafe. This is where
STAMP-specific tools take a lead over manual general purpose tools such as MS Office in terms of
productivity, which can’t offer such optimized linking of information with general purpose features.
When the system is in such a vulnerable state, control actions can then be considered unsafe or insecure if
the system encounters environmental conditions that cause a hazard. In the case of cyberattacks, the
environment is considered potentially malicious rather than simply providing external interactions and
disturbances to the system, and when the system has process model variables values that put the system in
a hazardous state, environment interactions can become disastrous. Combinations of vulnerable process
model variable values can be specified in a dynamic interface after the relevant process model variable
values are listed as dependencies for the control action under consideration.

3.1.1 NIST’s ACTS for Optimized T-Way Interaction Context Table Generation

Context table generation features are supported by XSTAMPP in a way that general purpose tools
simply cannot compete with. Context tables can be generated with ACTS, NIST Computer Security
Resource Center (CSRC) government website’s “Automated Combinatorial Testing for Software,” which
supports multiple t-way combinatorial test set generation algorithms to produce an optimized number of
interaction combinations in the system likely to uncover unexpected interactions [24] [37] [38]. This type
of optimized system test set generation comes from NIST software testing theory [37].

Figure 37. XSTAMPP Context Table Generation: NIST CSRC’s ACTS Tool Interface

The tool runs on a generic Java interface, and offers both command line and graphical user
interface options. XSTAMPP currently supports ACTS configuration file input to intelligently control,
direct, and optimize the generation of context tables to consider. NIST’s Automated Combinatorial
Testing for Software (ACTS) is a “generation tool for constructing t-way combinatorial test tests,” and is
commonly used to efficiently create exhaustive software tests that are very effective at detecting faults
that come from “unexpected interactions between different contributing factors” [37]. This is to support
efficient creation of system tests that require combinatorial and pairwise testing, sometimes for regulatory
compliance (citation pending). By levering some of the features of the generation engine such as
constraint rules, the ACTS framework can be utilized to manage large-scale context table variable
combinations by pruning invalid process model variable combinations from further consideration using
constraint rules specified in restricted first-order logic expressions. Another feature allows the generation

40
(working version 3.1)

of combinations given subsets of variables that the analyst is interested in exploring; the ACTS
framework supports this notion of “related” variables (parameters), which can be used to select subsets of
process model variable values, allowing targeted generation of combinations involving a respective set of
variables and their respective values. For example, if an analyst suspected a variable frequency drive may
be attacked, they may group a variable frequency drive speed variable with many other process model
variables using a numerical relationship strength to limit the generation of context tables to combinations
that involve the variable frequency drive speed variable.

As the control structure diagrams scale to support larger systems, the number of variable value
combinations currently results in time-consuming cognitive and manual tasks, as noted by S. Khan during
his systems theoretic cybersafety analysis of MIT’s CUP Cogen Facility. The ACTS framework
generation engine will likely aid in enforcing constraints to allow the analyst to prevent themselves from
being distracted from considering invalid combinations of process model variable values. The ACTS
framework can also allow the analyst the benefits of focusing solely on interesting combinations of
variables using the relationship feature’s subset grouping functionality. Examples of constraints illustrated
in the ACTS User Guide are shown below in Table 2 [Page 9, 24].

Constraint 1: (OS = “Windows”) => (Browser = “IE” ||
Browser = “FireFox” || Browser = “Netscape”), where
OS and Browser are two parameters of type Enum.

This constraint specifies that if OS is
Windows, then Browser has to be IE,
FireFox,or Netscape.

Constraint 2: (P1 > 100) || (P2 > 100), where P1 and P2
are two parameters of type Number or Range.

This constraint specifies that P1 or P2 must
be greater than 100.

Constraint 3: (P1 > P2) => (P3 > P4), where P1, P2, P3,
and P4 are parameters of type Number or Range.

This constraint specifies that if P1 is greater
than P2, then P3 must be greater than P4.

Constraint 4: (P1 = true || P2 >= 100) => (P3 = “ABC”),
where P1 is a Boolean parameter, P2 is a parameter of
type Number or Ranger, and P3 is of type Enum.

This constraint specifies that if P1 is true
and P2 is greater than or equal to 100, then
P3 must be “ABC”.

 Table 2: ACTS Constraint Logic Examples [Page 9, 37]

ACTS supports multiple generation algorithms for creating the combinations of variable values,

but two offer support for “constraint” expressions using first order propositional logic: IPOG and IPOG-
F, which generate variable (parameter) value combinations for “systems of moderate size (less than 20
parameters and 10 values per parameter on average)” [24]. If the system can be abstracted to less than 20
process model variables, with up to 10 values per process model variable, first order propositional logic
rules can be applied to eliminate undesirable combinations. The “Forbidden Tuples” constraint option is
recommended for larger numbers of variables and values with many constraints, and relationship
strengths greater than or equal to 2, while “CSP Solver” constraint option is faster for small parameter
numbers with few constraints, and relationship strengths less than or equal to 2. Evaluating the specified
constraints and relationships could likely produce a best-guess default recommendation from the software
tool automatically. A third algorithm called IPOG-D supports “larger systems” and appears to scale with
larger combinations of process model variable values, but support for constraints using first order
propositional logic is not currently supported, but is “planned in a future release” [24].

41
(working version 3.1)

An optimal process model variable value combination generation tool would aim to support
larger systems as well as logical expression based constraints, as well as relationships and grouping to
govern and target variable value combination generation to where the analyst chooses to look. The format
of the ACTS configuration is shown in the tool’s documentation and shows the current syntax for
defining constraints and relationships using ACTS to run the various generation algorithms and generate
customized, optimized variable value combination sets [24].

The generated variable combinations can be exported into STAMP tools like XSTAMPP to
support specific features that provide an efficient navigation and analysis mechanism for the oftentimes
numerous context tables generated from an exhaustive consideration of all combinations of the process
model variables. Features like this are game-changers for STAMP tools and have the potential to enable
large time savings (when leveraged effectively) compared to STPA-Sec analysis using traditional general
purpose editors such as MS Office or Draw.IO. By eliminating invalid combinations of process model
variable values, considering sets of values that at minimum cover t-way interactions, as well as explicitly
listing groups of variables of interest, STAMP software can enable the analyst to consider a more targeted
set of context tables and process model variable value combinations instead of trying to exhaustively
manage the combinations manually. These types of context table navigation features allow more efficient
and flexible use of analyst time when considering what could potentially contribute to factors that may
place the system in an unsafe or insecure state where losses could occur, and help mitigate the burden of
having to exhaustively consider (sometimes extremely numerous) combinations of process model variable
values.

42
(working version 3.1)

3.4 STPA-Sec Methodology Step 4: Identify Scenarios

The last step of STPA-Sec analysis is to identify scenarios that could lead to the previously determined
unsafe and insecure control actions, from a perspective theorizing a possible attack. The STPA Handbook
provides the following definition:

“Definition: A loss scenario describes the causal factors that can lead to the unsafe control actions and to
hazards” [17].

The process and work involved in this step is currently left almost completely to the analyst, as
they work backwards from UCAs in an effort to theorize how someone may attack the system, in an
intentional effort to cause losses.

The inputs and outputs for the STPA-Sec Step 4 are shown in Figure 26. Two main categories of
strategy for forming loss scenarios are described in Figure 38 below.

Figure 38. [17, Figure 2.20]. STPA Handbook: Overview of Scenario Identification

Figure 39. [17, Figure 2.17]. STPA Handbook: Two Types of Scenarios That Must Be Considered

“Purple”
Domain

“Green”
Domain

43
(working version 3.1)

STPA-Sec Step 4.1 consists of enumerating loss scenarios that lead to unsafe control actions,
shown above in Figure 39 when focusing in the purple region of the control structure. Figure 40 below
shows two main causes of unsafe control actions that can help guide the analyst’s focus and creativity
during this step.

Figure 40. [17, Figure 2.18]. STPA Handbook: Two Causes of UCAs Scenarios

STPA-Sec Step 4.2 consists of enumerating loss scenarios that result from control actions being

improperly executed or not executed, shown above in Figure 39 when focusing in the green region of the
control structure. In addition to considering UCAs, the STPA Handbook suggests it is helpful to focus on
the control path and other factors related to the controlled process, with example regions of each shown
below in Figure 41 in red and blue, respectively.

Figure 41. [17, Figure 2.19]. STPA Handbook’s Generic Control Loop, Control Path, and Other Controlled

Process Factors

“Blue”
Domain

“Red” Domain

“Red” Domain

“Blue” Domain

44
(working version 3.1)

Both of these sub-steps involved in the creation of STPA-Sec loss scenarios require cognitive
creativity on the part of the analyst to identify the loss scenarios and both general purpose tools as well as
XSTAMPP have a significant challenge supporting these open-ended steps. The STPA practice analysis
performed in the SDM core project team used a brainstorming process of hypothesizing together to arrive
at scenarios through games of “what if” postulates. It is assumed it would require significant application
of synthetic knowledge organization for a tool to suggest somewhat helpful scenarios to consider based
on the surrounding environment and external system inputs in a very natural way.

XSTAMPP takes the approach of providing the analyst with an organized view of as much of the
important factors to help the analyst leverage their creativity to quickly identify loss (and potential attack)
scenarios. XSTAMPP provides a matrix view where components can be linked with UCAs and
vulnerabilities, scenarios can be described, and corresponding security constraints can be entered along
with notes. The XSTAMPP matrix-based features for organizing large amounts of UCAs, vulnerabilities,
and security constraints around scenarios provides a level of organization for the scenario creation process
not natively found in general purpose editor tools such as MS Office, but is awkwardly implemented. The
ability to focus on components, UCAs, and vulnerabilities in a single view shows great promise for
providing a rich thought environment to seed creative combinations of external and environmental effects.
This enables the identification of scenarios that could lead to losses, and appears to help when comparing
with starting from a general purpose document with information dispersed such as in MS Office. Figure
30 shows XSTAMPPs causal factor scenario matrix-based management features.

Figure 42. XSTAMPP Example Matrix Based Scenario Management

In contrast, generic drawing tools allow for a less structured, perhaps more artistic organization of
the information involved in each scenario, at the expense of more analyst time. Figure 43 shows an
example of creating a MS Office based visualization of a scenario that could lead to loss in the example
analysis.

45
(working version 3.1)

Figure 43. MS Office Example General Purpose Tool Visual Scenario Diagram Example

In general purpose tools, rich text is available to document the scenario in a wide array of custom
formats. Using existing software features, scenario generation could potentially be expedited through the
creation of thoughtful and robust template documents (such as the format in Figure 43) to capture
structured scenario information such as attack descriptions, causal factors, and rationale notes.

3.5 Final Steps: Outputs, Reports, and Traceability

The final steps of systems theoretic cybersafety analysis, and potentially the most important and
influential for implementing security changes, is a tool’s ability to compile the analysis information into a
manageable, organized, and neat report for information dissemination and discussion. XSTAMPP aims to
have a simple export feature where a final PDF report is created. It is highly likely STPA-specific tools

46
(working version 3.1)

like XSTAMPP, with a more structured input and organization of STAMP analysis data, are more easily
able to produce standardized and more compact reports compared with general-purpose tools such as MS
Office and Draw.IO. General-purpose templates could guide the creation of critical aspects of the report
and may increase analyst efficiency, but it is likely that specialized report generation capabilities from
STAMP specific tools would have significant advantage when compiling the final analysis report.

4 Conclusions

Software has been helping humans visualize, organize, and navigate information for as long as
computing machines have existed. It is believed there is opportunity for new software features to reduce
the manual workloads placed on engineers or analysts who want to perform systems theoretic cybersafety
analysis, especially to support the rapid analysis of OT systems found in energy distribution systems in
response to recent destructive cyberattacks on similar cyber-physical energy distribution systems [21].

Various opportunities exist to utilize existing STAMP tool features for supporting systems
theoretic cybersafety analysis; Section 3 documents the evaluation of some leading STAMP tool features
as well as existing general purpose document creation features to demonstrate using software to assist in
an example analysis of energy distribution systems. Along the way, an introduction to STAMP analysis
steps was included to provide background on the systems theoretic methodologies that can be applied to
cybersafety.

Tools that aim to support systems theoretic cybersafety should be evaluated using general software
attributes covering general software features such as architecture, auto-save and auto-recovery, standard
drawing canvas features, undo and redo, etc. (see Appendix B – STAMP Software Tool General
Attribute). Future systems theoretic cybersafety tools should be designed with a detailed list of feature
areas in mind (see Appendix A – Detailed Categories of Software Features Supporting STAMP Analyst
Items). Software tools aimed at supporting STAMP methodologies should also match the 2018 STPA
Handbook terminology and structure to facilitate standardizing training program development and
educational sustainability.

Leading STAMP software features have already been realized by software, especially in the area of
linking various pieces of information in the analysis. Linking allows the tool to understand the structure
of the information, and navigate it, which is required to enable further automation features. XSTAMPP
offers some features that bring together information in rich, visual ways that can help analysts view the
relevant information when considering attack scenarios. We believe finding more visual organizations of
the data will continue to enable the engineer or analyst to spend their time efficiently when performing
systems theoretic cybersafety analysis. The hierarchical view and guidance through the method’s
progression can help analyst learn quicker, and is powerful for navigating through the analysis
information quickly. Finally, XSTAMPP and STAMP Workbench run on the Eclipse platform, which
offer the benefits of being cross platform, free, and open source, all noted positives for software tools.
Both projects are considerable candidates for implementing new features.

The context table management was observed to be a large source of tedious edits and manipulations
when performing alterations in MS Office both by an MIT SDM class team as well as the MIT Cogen
Analysis [18] [S. Khan working paper]. Fundamentally the analysis process aims to have the analyst or
engineer mentally enumerate all the state combinations and consider if they leave the state in a
hazardous/vulnerable state. The context table is a collection of hazardous process model and environment
values that lead to a vulnerable system state, and XSTAMPP claims to offer it can be auto-generated with

47
(working version 3.1)

ACTS-based automation optimizations to save human time [24]. The context feature set is forming but is
still considered somewhat in-development at this time.

In existing functional control structure diagrams, controllers, sensors, and actuators currently do not
have software features that support showing information about external I/O. Sensors do not currently have
software features that support showing information about input, or feedback output. Actuators do not
currently have software features that support showing information about control input, or output. The
ability to refer to a physical control structure allows analysts another view of the system, and to allocate
implementations from the functional control structure, which is currently not supported by software
features [23]. When linked with the functional control structure, the two control structure views would
likely aid in the faster navigation of the system in the pursuit of uncovering vulnerabilities, unsafe control
actions, and attack scenarios. Multiple control structures were observed to be necessary in practice to
capture the larger context by S. Khan’s MIT CUP Cogen cybersafety analysis experience, but is not
currently supported in XSTAMPP.

A final set of missing features for supporting systems theoretic analysis on industrial control systems
are related to supporting a physical control structure. Formalizing the creation of a physical component
layer editor to show network devices, networks, and network connections would provide foundational
physical control structure objects for industrial control systems that use networks to communicate aimed
at cybersecurity and cyber safety [23]. Software features to integrate the possibilities of general network
integrity threats, highlight known vulnerabilities from databases, and integrating STPA-SafeSec’s general
availability threats could further formalize and expand the process of evaluating control actions by
considering the form that the control functionality maps to [23].

48
(working version 3.1)

Additional initial future work and research that remain after this examination are as follows:

● How can standardization of STPA-Sec data allow interfacing with other software tools and

processes in a systems engineering toolchain?

● How could a client-server software model provide additional computational resources, security,
as well as portability and availability for STPA-Sec software tools?

● Where can additional logical structure or propositional logic be formalized in STPA-Sec to
enable software automation?

● How could hardware accelerated graphical control structure design features enable more rapid

and detailed control structure design? What new organization, visualizations, navigation, and
automation options would next-generation drawing and simulation software features enable?

● What would a more formalized subsystem mechanism enabling a notion of zooming, abstracting,

or aggregation in hierarchical control structures look like?

● Would further integration of process model and process model variables into the control structure
drawing features allow for more organization of the hazardous/vulnerable system states? In
addition, how could one view the information while preserving diagrammatic simplicity?

 Would the addition of features to support the management and potentially simulation of a
physical control structure aid in the discovery of unsafe control actions and attack scenarios?

Longer term future research areas:

 What generation or automation opportunity would be enabled through specifying systems
theoretic information through an optimized structured input mechanism using a domain specific
language to specify data structures found in Appendix C – Preliminary Systems Theoretic
Cybersafety Data Structure Organization

 Could artificial intelligence assist in software automation of the capture of data structures found
in Appendix C – Preliminary Systems Theoretic Cybersafety Data Structure Organization?

49
(working version 3.1)

Appendix A – Detailed Categories of Software Features Supporting
STAMP Analyst Items

STPA HANDBOOK
STEP REFERENCE
(And Local Reference)

Areas of Software Feature Requirements Supporting Systems Theoretic
Cybersecurity and Cybersafety

STEP 1 (3.1) STPA-Sec Methodology Step 1.1: Define the Purpose of the Analysis

(3.1) Support identifying rich system purpose statement

(3.1) Support identifying rich system description

(3.1) Support identifying rich system goals

(3.1.1) STPA-Sec Methodology Step 1.2: Identify Losses

(3.1.1) Support unique identifiers on losses

(3.1.2) STPA-Sec Methodology Step 1.3: Identify System-Level Hazards (Vulnerabilities)

(3.1.2) Support unique identifiers on hazards

(3.1.3) STPA-Sec Methodology Step 1.4: Identify System-Level Constraints

(3.1.3) Support refining hazards (optional)

STEP 2 (3.2) STPA-Sec Methodology Step 2: Model the Control Structures

(3.2) Support unique identifiers for all control structure objects

(3.2) Support reference label identifiers for all control structure objects [23]

(3.2) Support subsystem identification

(3.2) Support multiple levels of abstraction and multiple control structure views

(3.2) Support environmental inputs

(3.2) Support written/trained procedures & other training inputs

(3.2) Support external controllers

(3.2) Support human controller model of environment

(3.2) Support human controller model of automation

(3.2) Support human controller model of controlled process

(3.2) Support human controller model of other controllers

(3.2) Support human controller control action generation / mental processing

(3.2) Support controllers (general)

(3.2) Support controller control and feedback [23]

(3.2) Support sensors (general)

(3.2) Support sensor input and feedback output [23]

50
(working version 3.1)

(3.2) Support actuators

(3.2) Support actuators output and control input [23]

(3.2) Support controller, sensors, and actuators external I/O [23]

(3.2) Support sensor displays, alarms, and other sensory feedback

(3.2) Support automated controller control algorithm

(3.2) Support automated controller model of human controller

(3.2) Support automated controller model of other controllers

(3.2) Support automated controller operational mode

(3.2) Support automated controller model of controlled process

(3.2)
Support other controllers and other systems (external to control structure system
boundary)

(3.2) Support process model creation and encapsulation inside controller

(3.2) Support process model variables

(3.2) Support process model variable values (PMVVs)

(3.2) Support process model variable types

(3.2) Support assigning responsibilities to functional control structure (FCS)

(3.2) Support controlled process creation

(3.2) Support controlled process inputs and outputs

(3.2) Support controlled process disturbances

(3.2) Support controlled process operational mode

(3.2) Support control action creation

(3.2) Support differentiation between technical and human control actions

(3.2) Support feedback creation

(3.2) Support hierarchical functional control structure

(3.2) Support iterative control structure expansion and refinement

(3.2) Support functional relationships and functional interactions

(3.2) Support physical processes creation [23]

(3.2) Support physical component structure mapping to functional control structure(s)

(3.2) Support physical process inputs and outputs (state) [23]

(3.2) Support multiple levels of functional control structure hierarchy (abstraction levels)

(3.2) Support documenting additional information about controllers

(3.2) Support documenting additional information about control actions and feedbacks

(3.2) Support documenting additional information about controlled processes

51
(working version 3.1)

(3.2)
Support common physical control structure network (devices, network connections,
networks, network devices, and standard network integrity/availability threats [23])

(3.2) Support control action unique identifiers

(3.2) Support control action organized appearance on functional control structure (FCS)

(3.2) Support control action expand and collapse functionality to save space on FCS

(3.2)
Support documenting additional information about all control structure objects (both
physical & functional)

STEP 3 (3.3) STPA-Sec Methodology Step 3: Identify Unsafe Control Actions (UCAs)

(3.3) Support STPA Handbook Four UCA Type Matrix Generation [10, Page 38, 80-87]

(3.3) Support linking UCAs to hazards

(3.3) Support identifying human UCAs

(3.3) Support identifying technical UCAs

(3.3) Support differentiating between human and technical UCAs

(3.3) Support defining controller constraints

(3.3) Support evaluating UCAs by providing CA [10, Page 38, 80-87]

(3.3) Support control source providing control action ID

(3.3) Support context for control action (with vulnerable PMVVs)

(3.3) Support evaluating UCAs by not providing CA [10, Page 38, 80-87]

(3.3) Support control source providing control action ID

(3.3) Support context for control action (with vulnerable PMVVs)

(3.3)
Support evaluating UCAs by considering providing potentially safe CA too early,
too late, or in wrong order [10, Page 38, 80-87]

(3.3) Support control source providing control action ID

(3.3) Support context for control action (with vulnerable PMVVs)

(3.3)
Support evaluating UCAs by considering if CA lasts too long or is stopped to soon
[10, Page 38, 80-87]

(3.3) Support control source providing control action ID

(3.3) Support context for unsafe control action (with vulnerable PMVs / PMVVs)

STEP 4 (3.4) STPA-Sec Methodology Step 4: Identify Scenarios

(3.4) Support hazardous control actions information flow identification

(3.4) Support unsafe CA scenarios ID (using NL STPA Step 2 safety control flaw analysis)

(3.4) Support unsecure CA scenarios ID (using Young's expanded control flaw analysis)

(3.4) STPA Handbook
a) “Purple Domain”

Support scenarios by identifying why UCA(s) occur & scenarios that lead to
UCA(s)

52
(working version 3.1)

[17, Page 52, Figure
2.17 & Figure 2.20]

(3.4) Support scenarios by identifying UCAs and working backwards

(3.4) Support scenarios by identifying UCAs from physical failures involving controller

(3.4) Support scenarios by identifying UCAs from inadequate control algorithm

(3.4)
Support scenarios by identifying UCAs from unsafe or insecure control input from
another controller

(3.4) Support scenarios by identifying UCAs from inadequate process model

(3.4) STPA Handbook
1) “Red” Domain
[17, Page 44, Figure
2.18] Support scenarios by identifying UCAs from unsafe controller behavior

(3.4) STPA Handbook
2) “Blue” Domain
[17, Page 44, Figure
2.18]

Support scenarios by identifying UCAs from causes of inadequate feedback and
information

(3.4) Support scenarios by identifying UCAs from feedback or information not received

(3.4) Support scenarios by identifying UCAs from inadequate feedback received

(3.4) STPA Handbook
b.) “Green Domain”
[17, Page 52, Figure
2.17 and Figure 2.20]

Support scenarios by identifying why control actions (CAs) would be improperly
executed or not executed

(3.4) STPA Handbook
3) “Red” Domain
[17, Page 49, Figure
2.19]

Support functional control structure control path identification and linking to the
control path

(3.4) Support scenarios by identifying from control action not executed

(3.4) Support scenarios by identifying from control action improperly executed

(3.4) STPA Handbook
4) “Blue” Domain
[17, Page 49, Figure
2.19] Support scenarios by identifying other factors related to the controlled process

FINAL STEPS OUTPUTS

 Report Generation

Support existing system architecture design feature identification and alteration
identification

 Support new executable requirements creation

53
(working version 3.1)

 Support identification of design requirements

 Support identification of necessary mitigations and safeguards

 Support defining test cases and creation of test plans

 Support new design decisions (during development)

Support evaluation of existing design decisions for gaps and changes (after
development)

 Support development of leading indicators of risk

 Support designing more effective safety management systems

 Support generation of organized views of STAMP analysis information

Support traceability through intelligent automated information linking [17, Page 52,
Figure 2.21]

54
(working version 3.1)

Appendix B – STAMP Software Tool General Attribute Framework

Software Tool General Attributes XSTAMPP

General Software Attribute State Explanation

Safety Standard Qualifications [7]

 IEC 61508 - E/E/PE Yes. Tool T2 category with generation of any test cases, T1
otherwise. (pending vendor confirmation)

 EN50128 - Railway Yes. Tool T2 category with generation of any test cases, T1
otherwise. (pending vendor confirmation)

 D0-178C/D0-330 - Aerospace &
Defense

Yes. Can only be classified as TQL-5 (likely software Level
B-D) by an end user, other levels of support require developer
involvement providing qualification data. (pending vendor
confirmation)

 ISO26262 - Automotive Yes. Tool Impact Level 2 (TI2). Tool Confidence Level 3
(TCL3). Possibly TCL1-2 if LSA was implemented.
Presentation shows ISO26262 limitations for AVs,
compliments to (and differences from) HARA, details in [15].
(pending vendor confirmation)

Open Source Compliance (from opensource.org)

 Apache License 2.0 No

 BSD 3-Clause "New" or "Revised"
license

No

 BSD 2-Clause "Simplified" or
"FreeBSD" license

No

 GNU General Public License (GPL) No

 GNU Library or "Lesser" General
Public License (LGPL)

No

 MIT license No

 Mozilla Public License 2.0 No

 Common Development and
Distribution License

No

 Eclipse Public License Yes. "XSTAMPP is published under the Eclipse public
license. All software is provided free of charge and will
remain free in the future."

General Availability

 Immediate Yes. Easily downloadable.

 On Request N/A

 Other (Including Future / Planned / In
Development)

N/A

Cross Platform Compatibility (Runtime required)

 Linux (PC) Yes. (Java 8 JRE)

 Apple Mac OS (PC) Yes. (Java 8 JRE)

 Microsoft Windows OS x64 (PC) Yes. (Java 8 JRE)

 Apple iOS (Mobile) No. Not at this time.

 Android OS (Mobile) No. Not at this time.

Device Compatibility

 Desktop PC Workstation Compatible Yes.

 Mobile Laptop Workstation
Compatible

Yes.

55
(working version 3.1)

 Mobile Tablet Compatible Depends; Not natively on mobile OS at this time, but possibly
functional with remote desktop connection.

 Mobile Smartphone Compatible No. Not at this time.

Architecture

 Standalone Application Yes. Wrapper of Eclipse Platform.

 OnPrem Client-Server Partially. App is standalone but shared storage could provide
shared workspace and collaboration. No real time
collaboration functionality.

 3rd Party Cloud-Based No. Not at this time.

Dependencies

 Interfaces with and requires larger
software platform product(s)

Yes. Requires Eclipse Platform.

 Interfaces with and requires larger
software runtime(s)

Yes. Requires Java 8+ Runtime Environment (JRE 8+)

 Standalone or all-inclusive product Somewhat. Eclipse Platform included, which offers to help
install JRE as well.

System Versioning

 Numerical Yes. Currently Version 2.5 released Sep 29, 2017

 Version Control System Based Yes. Freely and immediately available at
https://github.com/asimabdulkhaleq/XSTAMPP.git

Content Versioning

 Numerical Yes. Manual version management.

 Version Control System Based No. Supports static saving of project and no integrated
versioning control system.

Reliability

 Automatic Save No. Not at this time.

 Automatic Project Recovery (in the
event of a crash)

No. Not at this time.

 Automatic Crash Reporting No. Not at this time.

 Maintains Backwards Compatibility Partially. Requires JRE8+. Unclear if previous Workspaces
and Projects are guaranteed to be backwards compatible in
future XSTAMPP versions.

 Telemetry No. Not at this time.

 User Experience Improvement
Program

No. Not at this time.

Help and Support

 Integrated Help Content Partially. Implemented but 500 error accessing integrated help
on Linux. Not 4K screen compatible.

 Online Help Content Yes. Tutorials as well as Video Demos.

 "Contact Us" Direct Support Yes. Accessible online help form provided.

 User Community Forums No. Not at this time.

Monetary Cost

 Free Yes. All software is provided free of charge and will remain
free in the future.

 One Time Purchase No.

 Service Purchase No.

Deployment Time Cost

56
(working version 3.1)

 Low (user manages independently) Yes. Application and source code can be acquired and
deployed in <5 minutes.

 Medium (considerable setup time) No.

 High (requires staff allocation to
maintain)

No.

Collaboration Does the software support multiple
users working together on projects in
real-time?

No.

Drawing Canvas Supports drag and drop functionality? Yes.

 Supports drag multi-object selection? Yes. (but only after clicking Marquee button)

 Supports keyboard shortcuts to
duplicate controls?

Yes.

 Supports connection fracture
mitigation optimizations?

Yes.

 Supports auto-alignment of objects? Yes.

 Supports auto-resize of objects? Partially. Control actions can be added to control action lists.

 Supports drawing generation from
structured user input data?

No.

 Supports undo and redo features? Yes.

 Supports batch entry of objects? Yes.

Textual Input Supports rich text? No.

 Supports undo and redo features? Partially. Some text boxes support common Ctrl-Z and Ctrl-Y
keyboard shortcuts to undo and redo, however other text
boxes are limited.

57
(working version 3.1)

Appendix C – Preliminary Systems Theoretic Cybersafety Data
Structure Organization

OBJECT ATTRIBUTES TYPE Notes
(General supporting abstract objects below)

UNIQUE EXPORTABLE OBJECT

A general object for
each object to extend
that requires a unique
identifier and rich
description for all
important relevant
information

 Identifier UUID
 Title Plain Text string
 Description Rich Text

 Browser Exporter HTML Serializer

Necessary to interface
with other tools,
toolchains, or services

 Service Exporter JSON Serializer (and or XML)

Necessary to interface
with other tools,
toolchains, or services

 Implements / Enforces
(some serializable interface, JSON
and maybe XML)

An interface to export
the object to a report
form or other tool

ORDERED LIST ITEM
 Item Unique Exportable Object
 List Index Integer Position in list
 Links Links [] set
TOOL INPUT
 Identity Unique Exportable Object

 Browser Importer HTML Deserializer

Necessary to interface
with other tools,
toolchains, or services

 Service Importer JSON Deserializer (and or XML)

Necessary to interface
with other tools,
toolchains, or services

(STPA-SafeSec specific objects below [23])
NETWORK From SafeSec paper
 Identity Unique Exportable Object
 Subnet Network Subnet
DEVICE
 Extends Controller
LINK

58
(working version 3.1)

 Label Object (UUID)
 From Object (UUID)
 To Object (UUID)
NETWORK CONNECTION From SafeSec paper
 Extends Link
 Identity Unique Exportable Object
NETWORK DEVICE From SafeSec paper
 Extends Device

 Network Address Network Address
IP or other network
visible address

 Network ID UUID

A unique fingerprint
differentiating the
device. Potentially
could use MAC address
fingerprint, though they
can be easily spoofed.

 Services Software Service

Port and the version of
the services listening on
them

NETWORK CONNECTION
 Extends Link From SafeSec paper
(Step 1 information below)
SYSTEM
PURPOSE
 Purpose of Analysis Rich Text
 System Description Rich Text
 System Goals Goals [] set
GOAL
 Extends Ordered List Item
LOSS
 Extends Ordered List Item
HAZARD / VULNERABILITY
 Extends Ordered List Item
CONSTRAINT
 Extends Ordered List Item
 Applicable Process Model Variables Process Model Variables [] set

Applicable Process Model Var.
Value Limits Process Model Variable Values [] set

 Applicable Objects Link [] set
SYSTEM-LEVEL SAFETY CONSTRAINT
 Extends Constraint

 Boundary Graph? Tree? Points in space?

Something is necessary
to show this type of
constraint applies to the
system level

(Step 2 below)

59
(working version 3.1)

OUTPUT
 Identity Unique Exportable Object
 Links Links [] set
INPUT
 Identity Unique Exportable Object
 Links Links [] set
ENVIRONMENTAL OUTPUT
 Extends Output
 Links Links [] set
ENVIRONMENTAL INPUT
 Extends Input
 Links Links [] set
ENVIRONMENT
 Identity Unique Exportable Object
 Inputs Environmental Inputs [] set
 Outputs Environmental Outputs [] set
TRAINING
 Identity Unique Exportable Object
CONTROLLER
 Identity Unique Exportable Object
 Inputs Inputs [] set
 Outputs Outputs [] set
CONTROLLED PROCESS
 Identity Unique Exportable Object
 Inputs Inputs [] set
 Outputs Outputs [] set
 Disturbances Disturbances [] set
 Operational Mode Operational Mode [] set
EXTERNAL CONTROLLERS
 Extends Controller

 Boundary Graph? DAG? Tree? Points in space?

Specifies the boundary
that the controller is
external to.

AUTOMATION
 Identity Unique Exportable Object
DISTURBANCE
 Identity Unique Exportable Object
OPERATIONAL MODE
 Identity Unique Exportable Object
MODEL
 Identity Unique Exportable Object
PROCESS MODEL
 Extends Model

60
(working version 3.1)

 Controlled Process (Perceived) Controlled Process
PROCESS MODEL VARIABLE
 Identity Unique Exportable Object
 Value Process Model Variable Value
PROCESS MODEL VARIABLE VALUE
 Identity Unique Exportable Object
 Value Measurable

 Type Classifiable

If strong static typing is
required, type must be
captured and checked

 Hazardous or Unsafe Boolean (True or False)
ENVIRONMENT MODEL
 Extends Model
 Environment (Perceived) Environment
OTHER CONTROLLER MODEL
 Extends Model
 Other Controller (Perceived) Controller
CONTROL ALGORITHM
 Identity Unique Exportable Object
HUMAN CONTROLLER
 Name Text
 Title Text
 Identity Unique Exportable Object
 Extends Controller
 Env. Model Environment Model
 Automation Model Automation Model
 Controlled Process Model Controlled Process Model
 Other Controller Model Other Controllers Model

Control Action Generation / Mental
Processing Control Algorithm

HUMAN CONTROLLER MODEL
 Extends Model
 Human Controller (Perceived) Human Controller
AUTOMATED CONTROLLER
 Extends Controller
 Control Algorithm Contorl Algorithm
 Human Controller Model Human Controller Model
 Other Controllers Model Other Controller Model
 Operational Mode Operational Mode
 Controlled Process Model Controlled Process Model
SENSOR
 Identity Unique Exportable Object
ACTUATOR
 Identity Unique Exportable Object

61
(working version 3.1)

DISPLAY
 Identity Unique Exportable Object
 Content Rich Text
ALARM
 Identity Unique Exportable Object
 Description Rich Text
 Trigger Condition Rich Text
OTHER SENSORY FEEDBACK
 Identity Unique Exportable Object
RESPONSIBILITIES
 Identity Unique Exportable Object
 Relevant Object(s) Link [] set
FUNCTIONAL CONTROL STRUCTURE

 Extends Control Structure

The functional control
structure is a functional
implementation of a
control structure

 Hierarchy
Directed Graph? Tree? Points in
space?

The functional control
structure must support
the notion of a
hierarchy of objects

 Boundary Graph? Tree? Points in space?

The functional control
structure must support
the notion of a
boundary for sub-
system identification or
description.

 Environmental Inputs Environmental Input [] set
 Environmental Outputs Environmental Output [] set
 Controllers Controller [] set
 Controlled Processes Controlled Process [] set
 Sensors Sensor [] set
 Actuators Actuator [] set
 Displays Display [] set
 Alarms Alarm [] set
 Other Sensory Feedbacks Other Sensory Feedback [] set
 Networks Network [] set
 Links Link [] set
 Control Actions Control Action [] set
CONTROL ACTION
 Identity Unique Exportable Object
TECHNICAL CONTROL ACTION
 Extends Control Action
HUMAN CONTROL ACTION
 Extends Control Action

62
(working version 3.1)

FEEDBACK
 Identity Unique Exportable Object
FUNCTIONAL RELATIONSHIP
 Identity Unique Exportable Object
 Link Link
FUNCTIONAL INTERACTION
 Identity Unique Exportable Object
 Link Link
PHYSICAL INTERFACE
 Identity Unique Exportable Object
PHYSICAL CONTROLLED PROCESS
 Extends Controlled Process
 Physical Interface Physical Interface [] set
(Step 3 below)
CONTEXT TABLE
 System Variables Process Model Variables [] set
 System Variable Values Process Model Variable Values [] set
UNSAFE CONTROL ACTION (UCA)
 Extends Control Action
 Source Controller

 Type
One of Handbook Common Four
Possibilities

Enumeration {Provides,
Not Provides, Wrong
Timing, Wrong
Duration}

 Context Context Table
Matrix of Process
Model Variable Values

 Linked Vulnerabilities Link [] set
HUMAN UCA
 Extends UCA
 Linked Human Controllers Link [] set
TECHNICAL UCA
 Extends UCA
 Linked Automated Controllers Link [] set
CONTROLLER CONSTRAINT
 Extends Constraint
 Applicable Controller Controller
(Step 4 below)
CONTROL ACTION INFORMATION LINK
 Extends Link
 Hazardous Boolean (True or False)
CONTROL ACTION DISRUPTION
 Control Path Tree? DAG? Graph?

ID'd From Control Action Not
Executed Boolean

63
(working version 3.1)

ID'd From Control Action
Improperly Executed Boolean

CONTROL ACTION SCENARIO

ID'd From Failures Involving
Controller (physical) Boolean

part of a two-byte
bitmap (for
compression)

ID'd From Inadequate Control
Algorithm Boolean

part of a two-byte
bitmap (for
compression)

ID'd From Unsafe Control Input
(from another controller) Boolean

part of a two-byte
bitmap (for
compression)

ID'd From Inadequate Process
Model Boolean

part of a two-byte
bitmap (for
compression)

ID'd From Unsafe Controller
Behavior Boolean

part of a two-byte
bitmap (for
compression)

ID'd From Causes Of Inadequate
Feedback and Information Boolean

part of a two-byte
bitmap (for
compression)

ID'd From Feedback or Information
Not Received Boolean

part of a two-byte
bitmap (for
compression)

ID'd From Inadequate Feedback Is
Received Boolean

part of a two-byte
bitmap (for
compression)

ID'd From Control Path
Examination Boolean

part of a two-byte
bitmap (for
compression)

ID'd From Controlled Process
Examination Boolean

part of a two-byte
bitmap (for
compression)

Other Factors Related To Controlled
Process Examination Rich Text

UNSAFE CONTROL ACTION SCENARIO
 Identity Unique Exportable Object
 UCA Link Link
UNSECURE CONTROL ACTION SCENARIO
 Identity Unique Exportable Object
 UCA Link Link
(Outputs below; informally referred to as Step 5, or
Final Steps)
TOOL OUTPUT
 Identity Unique Exportable Object
 Relevant Objects Unique Exportable Object [] set

64
(working version 3.1)

 Browser Standardizer HTML Serializer/Deserializer

Necessary to interface
with other tools,
toolchains, or services

 Service Standardizer
JSON and XML
Serializer/Desearalizer

Necessary to interface
with other tools,
toolchains, or services

REQUIREMENT (GENERATION)
 Extends Tool Output
REQUIREMENT (ALTERATION)
 Extends Requirement
 Change / Difference Rich Text
SYSTEM ARCHITECTURE ALTERATION
 Extends Tool Output
 Change / Difference Rich Text
REPORT (COLLECTION OF TOOL OUTPUTS)
 Outputs Tool Output [] set
 System Purpose System Purpose [] set
 System Description Rich Text
 Goals Goal [] set
 Losses Loss [] set
 Vulnerabilities Vulnerability [] set
 System Level Constraints System Level Constraints [] set

Relevant Functional Control
Structure Diagram(s)

Functional Control Structure
(rendered) [] set

 Unsafe Control Actions UCA [] set
 Relevant Context Tables Context Table [] set
 Relevant Environments Environment [] set

Unsafe & Unsecure Control Action
Scenarios Control Action Scenarios [] set

65
(working version 3.1)

Citations

[1] IPA/SEC. “The 2nd Japanese STAMP Workshop Abstracts.” 2nd Japanese STAMP Workshop,
Japanese Information-Technology Promotion Agency (IPA), 2017,
www.ipa.go.jp/english/sec/complex_systems/stamp_workshop-2.html.

[2] Stiki-Information Security. “STPA Module.” Risk Management Studio, RM Studio, 2017,
www.riskmanagementstudio.com/features/stpa.

[3] Engineering, Safeware. “SpecTRM: Specification Tools and Requirements Methodology.” Safeware
Engineering Corporation: Products, Safeware Engineering, 2 Feb. 2018, www.safeware-
eng.com/software%20safety%20products/software%20safety%20products.htm.

[4] Safety-Critical Systems Research Lab Team of ZHAW Zurich University of Applied Sciences.
“SAHRA - STPA Based Hazard and Risk Analysis.” SAHRA Becomes ANSHIN, SAHRA, 2 Feb. 2018,
www.sahra.ch.

[5] “Transportation Systems Safety Hazard Analysis Tool (SafetyHAT) User Guide (Version 1.0).”
National Transportation Library, U.S. Department of Transportation, 24 Mar. 2014,
rosap.ntl.bts.gov/view/dot/12034.

[6] Abdulkhaleq, Asim, and Stefan Wagner. “XSTAMPP: An EXtensible STAMP Platform as Tool
Support for Safety Engineering.” OPUS Publication Server, University of Stuttgart , 2015, elib.uni-
stuttgart.de/handle/11682/3550.

[7] Krauss, Sven Stefan, et al. “Tool Qualification Considerations for Tools Supporting STPA.” Tool
Qualification Considerations for Tools Supporting STPA, 3rd European STAMP Workshop, 2015.

[8] F. Asplund, Safety and Tool Integration: A System-Theoretic Process Analysis, Technical Report
ISRN/KTH/MMK-R-12/01-SE,KTHRoyal Institute of Technology, Stockholm, Sweden,2012.

[9] Bandor, Michael S. “Quantitative Methods for Software Selection and Evaluation.” Software
Engineering Institute, Carnegie Mellon University, 2006, www.sei.cmu.edu/reports/06tn026.pdf.

[10] Thomas, John. “Extending And Automating A Systems Theoretic Hazard Analysis For
Requirements Generation and Analysis.” MIT, 2013.

[11] Thomas, John, and Dajing Suo. “A Tool-Based STPA Process.” STPA with Tool Assistance, MIT
Partnership for a Systems Approach to Safety (PSAS), psas.scripts.mit.edu/home/wp-content/.../Thomas-
Suo-Tool-based-STPA-process.pdf.

[12] Suo, Dajing, and John Thomas. An STPA Tool. MIT Partnership for a Systems Approach to Safety
(PSAS), Mar. 2015 psas.scripts.mit.edu/home/wp-content/uploads/2014/03/STPA_ToolV1.4-san.pdf.

66
(working version 3.1)

[13] Suo, Dajing, and John Thomas. “An STPA Tool.” Vimeo, Michael Stone, 6 Feb. 2015,
vimeo.com/96580336.

[14] Gurgel, Danilo Lopes, et al. A Rule-Based Approach for Safety Analysis Using STAMP/STPA . IEEE
Conference Publication, 2015, ieeexplore.ieee.org/document/7311464/.

[15] Abdulkhaleq, Asim, and Daniel Lammering. “Using STPA in Compliance with ISO26262 for
Developing a Safe Architecture for Fully Automated Vehicles.” Automotive-Safety and Security 2017,
www.automotive2017.de/programm/Vortraege/S4V2%20Lammering_Abdulhaleq%20Automotive_Prese
ntation%202017_v5.pdf.

[16] "Russian Government Cyber Activity Targeting Energy and Other Critical Infrastructure Sectors |
US-CERT". US-CERT.Gov, 2018, https://www.us-cert.gov/ncas/alerts/TA18-074A. Accessed 23 July
2018.

[17] Leveson, Nancy G, and John P Thomas. STPA Handbook, MIT, Mar. 2018,
psas.scripts.mit.edu/home/get_file.php?name=STPA_handbook.pdf.

[18] Andrews, T., Clohessy, A., English, E., Jindal, S., & Kher, P.EM.413 OS14 System Reliability and
Safety - Team 19 Project: Holographic Human Machine Interface (Holographic HMI) [Scholarly
project]. In MIT SDM - System Design and Management. Mar. 2017. https://sdm.mit.edu/
(available upon request)

[19] Dr. Bill Young’s 2018 STAMP Workshop STPA-Sec for Cybersecurity presentation (not yet
publicly available).

[20] Friedberg, I., McLaughlin, K., Smith, P., Laverty, D., & Sezer, S. STPA-SafeSec: Safety and
security analysis for cyber-physical systems. Journal of Information Security and Applications. 2016.
http://www.sciencedirect.com/science/article/pii/S2214212616300850#15-STPA-SafeSec - 1-s2.0-
S2214212616300850-main.pdf

[21] E-ISAC, and SANS ICS. “Analysis of the Cyber Attack on the Ukrainian Power Grid.” Analysis of
the Cyber Attack on the Ukrainian Power Grid, 18 Mar. 2016.

[22] Thomas, J., deLemos, F., Leveson, N. (2012, Evaluating the Safety of Digital Instrumentation and
Control Systems in Nuclear Power Plants. MIT, Nov. 2012, sunnyday.mit.edu/papers/MIT-Research-
Report-NRC-7-28.pdf.

[23] Friedberg, I., McLaughlin, K., Smith, P., Laverty, D., & Sezer, S. (2016). STPA-SafeSec: Safety and
security analysis for cyber-physical systems. Journal of Information Security and Applications.
http://www.sciencedirect.com/science/article/pii/S2214212616300850#15-STPA-SafeSec - 1-s2.0-
S2214212616300850-main.pdf

67
(working version 3.1)

[24] “User Guide for ACTS.” Computer Security Resource Center (CSRC), June 2018,
csrc.nist.gov/CSRC/media/Projects/Automated-Combinatorial-Testing-for-
Software/documents/acts_user_guide_2_92.pdf.

[25] Leveson, N., Daouk, M., Dulac, N., & Marais, K. (2003, October 30). A Systems Theoretic Approach
to Safety Engineering [Scholarly project]. In MIT Aero/Astro System Safety and Software Engineering
Research Papers. Retrieved July, 2018, from http://sunnyday.mit.edu/accidents/external2.pdf

[26] "STAMP Tools | Partnership For Systems Approaches To Safety And Security (PSASS)".
Psas.Scripts.Mit.Edu, 2018, https://psas.scripts.mit.edu/home/2016-2/. Accessed 20 Jan 2018.

[27] "Reference — STAMP Workbench 1.0.0 Documentation". Ipa.Go.Jp, 2018,
https://www.ipa.go.jp/sec/stamp_wb/manual/reference.html. Accessed 23 June 2018.

[28] Leveson, Nancy G. A New Approach To Hazard Analysis For Complex Systems. Massachusetts
Institute Of Technology, 2018, http://sunnyday.mit.edu/papers/issc03-stpa.doc. Accessed 23 July 2018.

[29] Nourian, Arash, and Stuart Madnick. A System Theoretic Approach To The Security Threats In
Cyber Physical Systems: Applied To Stuxnet. Composite Information Systems Laboratory (CISL), 2014,
https://ic3.mit.edu/wp-content/uploads/2014-13.pdf. Accessed 23 July 2018.

[30] Salim, Hamid, and Stuart Madnick. Cyber Safety: A Systems Thinking And Systems Theory
Approach To Managing Cyber Security Risks. Composite Information Systems Laboratory (CISL), 2014,
https://ic3.mit.edu/wp-content/uploads/2014-12.pdf. Accessed 23 July 2018.

[31] von Neumann, John, and Arthur W. Burks. Theory Of Self-Reproducing Automata. University of
Illinois Press, 1966.

[32] Niazi, Muaz; Hussain, Amir (2011). "Agent-based Computing from Multi-agent Systems to Agent-
Based Models: A Visual Survey" (PDF). Scientometrics. Springer. 89 (2): 479–499. doi:10.1007/s11192-
011-0468-9. Archived from the original (PDF) on October 12, 2013.

[33] Sargent, R. G. (2000). "Verification, validation and accreditation of simulation models". 2000 Winter
Simulation Conference Proceedings (Cat. No.00CH37165). 1. pp. 50–59.
doi:10.1109/WSC.2000.899697. ISBN 0-7803-6579-8.

[34] Niazi, Muaz; Hussain, Amir; Kolberg, Mario. "Verification and Validation of Agent-Based
Simulations using the VOMAS approach" (PDF). Proceedings of the Third Workshop on Multi-Agent
Systems and Simulation '09 (MASS '09), as part of MALLOW 09, Sep 7–11, 2009, Torino, Italy.
Archived from the original (PDF) on June 14, 2011.

[35] "Agent-Based Model". En.Wikipedia.Org, 2018, https://en.wikipedia.org/wiki/Agent-based_model.
Accessed 15 Aug 2018.

68
(working version 3.1)

[36] Niazi, Muaz A. K. (June 11, 2011). "Towards A Novel Unified Framework for Developing Formal,
Network and Validated Agent-Based Simulation Models of Complex Adaptive Systems". University of
Stirling.

[37] Kuhn, D. Richard et al. "Advanced Combinatorial Test Methods For System Reliability | CSRC".
Csrc.Nist.Gov, 2010, https://csrc.nist.gov/publications/detail/journal-article/2010/advanced-
combinatorial-test-methods-for-system-reliability. Accessed 21 July 2018.

[38] Yu, Linbin et al. "Efficient Algorithms For T-Way Test Sequence Generation - IEEE Conference
Publication". Ieeexplore.Ieee.Org, 2018, https://ieeexplore.ieee.org/document/6299217/. Accessed 21
July 2018.

