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1. Abstract and Motivation 

In December 2015, coordinated cyberattacks targeting Ukrainian power distribution systems’ 
information technology (IT), industrial control systems (ICS), and operational technology (OT) resulted 
in physical damage to Ethernet serial converters, intentional disabling of distribution facility backup 
generators, denial of service attacks on customer support call centers, and permanent destruction of 
workstation hard drive data, causing temporary citywide power grid failure that affected 225,000 people 
[21]. It was discovered the attack in Ukraine took place months after initial network penetration, after 
extensive surveillance and data gathering was first performed, indicating cyber attackers are attempting to 
prolong intrusions and avoid detection in an effort to practice, simulate, and perfect militarized-style 
attack architectures to maximize damages [21]. In March of 2018, after joint collaboration, the U.S. 
Department of Homeland Security and FBI released an alert that documented details of a multi-year, 
extensive surveillance and intrusion campaign from state sponsored “threat actors” that widely penetrated 
U.S. energy distribution systems with malware designed to enable covert remote access and technical 
manipulation abilities, to be able to perform similar attacks on American power grids [16].  

The growing number of cyber-physical intrusions to energy distribution systems require 
preventative, structured cybersecurity analysis to produce attack scenarios, causal factors, design changes, 
and new requirements to secure energy systems before systems are compromised, ideally at system design 
and development time. Hazard analysis, safety analysis, and reliability analysis must no longer be 
considered solely from the point of view of single component, engineering-based failures, but must all 
evolve to foresee premeditated, malicious, and coordinated actions of human organizations that 
intentionally cause disastrous multi-component failure scenarios after careful reconnaissance and reverse-
engineering. In this paper, we explain systems theoretic cybersafety, we document an exploration of 
software tool features that support systems theoretic cybersafety analysis automation, provide a detailed 
list of STAMP software tool specification requirement areas to consider when designing future systems 
theoretic cybersafety tools, and finally we include some data structures for systems theoretic cybersafety 
analysis information organization. Through an energy distribution system example in Section 3, we also 
demonstrate how one currently may use software tool features to perform systems theoretic cybersafety 
analysis using STAMP, and produce system changes to defend and defeat when analyzing existing 
systems or designing new ones. 

1.1 Why is Systems Theoretic Cybersafety based on STAMP? 

 
STAMP is an accident causality model developed by MIT’s Aeronautics and Astronautics 

Department in the early 2000s by Nancy Leveson, which then led to the formation of STPA (System-
Theoretic Process Analysis) for preventative safety and hazard analysis [28]. In her paper, “A Systems 
Theoretic Approach to Safety Engineering,” Nancy Leveson differentiates that “in STAMP, accidents are 
conceived as resulting not from component failures, but from inadequate control or enforcement of 
safety-related constraints on the design, development, and operation of the system” [25]. The 2018 STPA 
Handbook written by Nancy Leveson and John Thomas states "STPA is a relatively new hazard analysis 
technique based on an extended model of accident causation. In addition to component failures, STPA 
assumes that accidents can also be caused by “unsafe interactions of system components, none of which 
may have failed" [17]. Systems theoretic cybersafety analysis is rooted in this systems theoretic accident 
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model called STAMP due to its focus on loss of system control, emergent interactions and behaviors, and 
inadequate system “controller” decisions as potential causes that produce vulnerable system states, during 
which system hazards and accidents can take place. “Controllers” in systems can be either human or 
technical. Controllers use logic and algorithms to make decisions they believe are correct, but 
unfortunately, unbeknownst to them, they may not have a clear picture of what the true state of the system 
is; a malformed controller “process model” may lead them to believe otherwise. A process model is 
nothing more than the “mental model” of the controller; a human controller who has had procedural 
training (such as an operator or other employee) forms mental algorithms that allow them to 
independently view the state of their work environment, using their human senses to update their mental 
“process model,” and then to continuously make decisions (through the logic provided to them through 
training) on how to perform their job responsibilities. Conversely, but in the same spirit, a technical 
controller will possess numerous specific values in its memory (or perhaps sometimes periodically 
persisted to disk for backup) that correspond to the technical controller’s process model. The internal 
software algorithm programming is the technical controller’s “procedural training,” and the technical 
controller’s “view” of its “work environment” comes from considering the digital information in its 
process model, helping it decide how to perform its job function as well. “Control actions” and 
“feedbacks” are also passed between controllers and the processes they control to enlighten the rest of the 
system about the state of system operations, so all controllers can respond and manage the system 
together. It is believed this systems-theoretic view of accidents and hazards (STAMP analysis) can also be 
applied in a security context for cybersecurity, providing the theoretical foundation for systems theoretic 
cybersafety. 
 

Full Definition Abbreviated Mnemonic  
Systems-Theoretic Accident Model and Processes STAMP 
Causal (post) Analysis based on STAMP STAMP/CAST 
Systems Theoretic Process Analysis STAMP/STPA  
Systems Theoretic Process Analysis for Security STAMP/STPA-Sec 
Safety Analysis (STPA) and Security Analysis (STPA-Sec) [20] STAMP/STPA-SafeSec 

Table 1.Systems Theoretic Cybersafety STAMP Nomenclature 

Some software tools aim to support STAMP/STPA analysis, so an in-depth examination of existing 
features was first performed to examine what features currently exist, and to develop a list of feature 
requirement areas where future development of tools must focus to support systems theoretic cybersafety. 
This paper aims discuss a way to evaluate and compare STAMP software tools when integrating them 
into existing systems engineering toolchains, existing software tool features available for performing 
STAMP analysis (using an energy distribution industrial control system example), and finally a promising 
list of systems theoretic cybersafety software feature requirement areas to inspire future tool development. 

STAMP analysis was used by the Composite Information Systems Laboratory (CISL) to explore and 
document the Stuxnet cyberattack, which targeted Iranian nuclear enrichment centrifuges, and root-cause 
the component interactions that had taken place [29]. STAMP analysis was also used by CISL to explore 
and document the TJX cyberattack, which resulted in the theft of “millions of customer’s payment card 
data” and “financial losses amounting to over $170 million” [30]. 
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1.2  Identify Energy Distribution Cyber Weaknesses Before Attackers Do 

Significant dangers arise from dutifully engineered, thoughtfully timed, intentional attacks that inject, 
omit, or otherwise tampering with specific control actions and feedbacks in the system to carefully 
deviate controller process models (discussed in Section 1.1) to cause intentionally dangerous and 
unexpected interactions between components of the system. Modern cyberattacks are now repeatedly 
demonstrating this type of sophistication [21][29]. Systems theoretic cybersafety is currently being 
performed on MIT's Cogeneration Plant by Cybersecurity at MIT Sloan (CAMS), and structured safety 
analysis has been performed on nuclear facility industrial control systems [22]. These examples of 
structured security analysis methods aim to allow engineers and analysts to identify unacceptable losses 
and attack scenarios before they happen, and to generate safety constraints, requirements, and 
architectural decisions that keep cyber-physical systems secure from cyberattacks. For this process, 
CAMS recommends utilizing a system theoretic methodology called STAMP/STPA-Sec, along with 
aspects of a complimenting methodology STAMP/STPA-SafeSec [19] [20]. 

Dr. Bill Young extended STAMP’s preventative STPA analysis for specific use in security, resulting 
in Systems Theoretic Process Analysis for Security (STPA-Sec) [19]. STPA-Sec aims to provide an 
analysis methodology that identifies a top-down approach to safety and security by identifying losses, 
hazardous vulnerabilities, security constraints, and unsafe control actions to systematically create causal 
factors and attack scenarios, identify security constraints, and necessary design or requirement changes in 
a preventative manner during system development. STAMP/STPA-Sec methodology steps are analogous 
to the 2018 STPA Handbook’s foundational STPA steps, with extensions to produce malicious attack 
scenarios to drive secure system change. STAMP/STPA-SafeSec built upon STPA by integrating 
formalization of some general physical network component structures and network interactions to 
compliment the core functional control structures found in traditional STAMP analysis, and to organize 
attack scenarios into a hierarchy to attempt to provide an interface for external attack-tree strategies [20]. 

Currently engineers and analysts often perform hazard, safety, and cybersecurity analyses by hand or 
through general purpose document creation software platforms, using a variety of tools and 
methodologies to produce custom structured reports, which aim to disseminate security related 
information. We believe STAMP software tool features can further the ease of creating such reports, by 
leveraging computer systems to aid in STAMP information organization/linking/prioritization, control 
structure modelling, component interaction consideration, attack scenarios, and outputs to help make the 
system changes necessary to secure the cyber-physical system before it is penetrated, explored, and 
intentionally exploited. We conclude with a brief discussion of future systems theoretic cybersafety 
software areas of exploration, a basic framework for evaluating and comparing general STAMP software 
tool attributes when integrating them into existing systems engineering processes, and a detailed list of 
STAMP feature requirement areas. We hope this paper will help inspire further development of future 
software tools that help the analysist or engineer to performing systems theoretic cybersafety analysis, 
starting with energy delivery systems. 

The following section offers an evaluation of the existing STAMP tool features aimed primarily at 
showcasing existing features required to perform STAMP analysis, specifically for systems theoretic 
cybersafety analysis of energy delivery systems. Please first note this paper was not intended to document 
bugs in the software tools, and instead aims to portray the landscape of available software tool features 
available to aid in performing systems theoretic cybersafety analysis of energy distribution systems. 
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This paper will next show the experiences gained from using some leading STAMP tools to duplicate 
S. Khan’s cybersafety analysis of MIT’s Central Utilities Plant (CUP) Facility: a cybersafety analysis of 
an energy distribution system (Section 3). All general purpose tool example screenshots showcasing MS 
Office and Draw.IO based STAMP analysis using general purpose document creation software platforms 
are from S. Khan’s working paper and research materials. This gas turbine generator example was chosen 
to showcase many existing software features that already are available to support systems theoretic 
cybersafety, and to familiarize the reader with a systems theoretic approach to analyzing and securing 
energy distribution IT, industrial control, and OT systems through cybersafety. Again, as the reader 
progresses through an understanding of the steps in the example analysis, software features are 
highlighted that support the rapid, organized completion of analysis steps to produce structured reports for 
organized and professional cybersafety information dissemination. Considering systems theoretic 
cybersafety analysis findings can preventatively enlighten new architectural design decisions, system 
security constraints generation, and system requirement generation, or refine existing systems. This paper 
concludes by highlighting some areas of further research and feature development for new software 
features to move systems theoretic cybersafety software tool capabilities forward. This collection of 
content aims to help operationalize systems theoretic cybersafety analysis software tools to help secure 
energy distribution cyber-physical systems. 
  



9 
(working version 3.1) 

1.3  A Brief Summary of Existing STAMP Tools 

There are various tools for STAMP assistance, in various stages of development, but all with the 
expectation that the user has some level of STAMP analysis experience. Some aim to support specific 
STAMP methods such as STAMP/STPA and, more recently, STAMP/STPA-Sec and STAMP/STPA-
SafeSec. The following bullet lists shows the current landscape, and a list is also available online from the 
Partnership for Systems Approaches to Safety and Security (PSASS) [26]. 
 
Some STAMP tools are in the project planning phases and are considered in-development: 

 A separate partnership between Stiki ̶ Information Security and Zurich University of Applied 
Sciences advertises “a 2.5 year project” to create a STAMP/STPA plugin for their RM Studio 
product, Stiki’s risk-management platform [2].  

 
Some proprietary STAMP related tools are also available for purchase: 

 Safeware Engineering Corporation offers a proprietary product SpecTRM that uses a 
requirements language to produce models of software that can “support execution of the 
specification as well as automated safety analyses” [3].  

 Sparx Systems’ Enterprise Architect UML/SysML modeling tool had offered a STAMP/STPA 
extension SAHRA, but it now claims to be transitioning to a successor “ANSHIN,” which will 
“soon be available” [4]. 

 
Finally, three more STAMP tools are available for immediate and free evaluation and are evaluated in this 
paper: 

 The U.S. Dept. of Transportation has released a STAMP/STPA tool aimed at transportation 
systems, called the Safety Hazard Analysis Tool (SafetyHAT) [5].  

 STAMP Workbench (iSTAMP) was created by Japanese Information-technology Promotion 
Agency (IPA), advertising STAMP/STPA support. IPA announced iSTAMP as open source in 
2018, and a free productized version of the project was released branded as STAMP Workbench 
[1] [27]. The product is Java based and cross platform, built to run on various PC operating 
systems. 

 The University of Stuttgart’s XSTAMPP Platform is a diverse open source STAMP software 
platform, claiming to support a wide array of STAMP methods [6]. The product is Java based and 
cross platform, built to run on various PC operating systems. 

 
The following general-purpose drawing tools also implicitly support STAMP analysis. The following 
software tools were also evaluated for supporting STAMP analysis: 

○ Microsoft Office (MS Office) (Proprietary) 
■ Microsoft Word 
■ Microsoft PowerPoint 
■ Microsoft Excel 
■ Microsoft Access 

○ Draw.IO (https://www.draw.io) (Evaluation Versions) 
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2. A STAMP Software Tool Evaluation Framework 

Some considerations for STAMP software tools were formalized that focused on safety 
specification categories that STAMP software tool component classifications when considering common 
software standards such as IEC 61508 (E/E/PE), EN50128 (Railway), ISO26262 (Automotive), and 
finally D0-178C/D0-330 (Aerospace & Defense) [7]. These qualifications aim to quantify potential 
dangers from software tool failures in a safety sense, rather than how a systems engineer would integrate 
STAMP tools into their existing processes and software toolchains. When considering software tools for 
effectiveness in automating and supporting systems theoretic cybersafety analysis of complex cyber-
physical systems, more managerial as well as technical categories must be considered for socio-technical 
completeness. Deciding how different STAMP software tools may or may not compliment an existing IT 
system architecture and as systems engineering toolchain is important for integrating STAMP tools into 
existing processes. This framework first aims to expand these considerations by documenting a socio-
technical set of general STAMP software tool attributes, spanning from common traditional software 
architectural decisions to IT managerial concerns. The framework then aims to set a future direction for 
STAMP software tool development by describing some future research areas, and a preliminary set of 
systems theoretic cybersafety software tool feature requirement areas to leverage STAMP. This paper 
then evaluates some popular, widely available STAMP tool features to document a collection of novel, 
existing STAMP-specific software tool features that aid in operationalizing systems theoretic 
cybersecurity and cybersafety analysis. Complementing the general software attribute consideration 
framework, a preliminary list of STAMP-specific feature set areas is provided to help guide future 
software tools supporting analysts performing cybersafety analysis on energy distribution systems. The 
paper concludes with a discussion of possible future feature development areas, a general STAMP 
software attributes framework evaluating a popular STAMP tool (Appendix B – STAMP Software Tool 
General Attribute Framework), a detailed list of feature set areas on which future systems theoretic 
cybersafety tool development should focus (Appendix A – Detailed Categories of Software Features 
Supporting STAMP Analyst Items), and an initial data structure and organization for systems theoretic 
cybersafety analysis data. 

2.1 General Software Features and Architectural Decisions 

The STAMP tool evaluation begins with a traditional collection of software product attributes in a 
table showcasing general software attributes. This captures a set of common software attributes generally 
considered when comparing systems engineering software products for a production application, such as 
technical details, software architecture information, acquisition availability and type, collaboration and 
teamwork features, and other managerial and logistical concerns. In this respect, we believe STAMP 
software tools can be first evaluated in a somewhat high-level, general way, allowing similar comparison 
to other software products, before moving into STAMP methodology specific features (Section 3 and 
Appendix A – Detailed Categories of Software Features Supporting STAMP Analyst Items). Appendix B 
– STAMP Software Tool General Attribute shows general STAMP software attributes and how an 
example STAMP software tool (XSTAMPP) is classified using them. 
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2.2  STAMP-Specific Software Features 

The compliment to the general software attributes evaluation provides STAMP-specific feature 
areas that support completing STAMP analysis in an optimized, engaging, and rapid way to support 
systems theoretic cybersafety. A detailed list of STAMP-specific software feature areas follows in 
Appendix A – Detailed Categories of Software Features Supporting STAMP Analyst Items. In the same 
spirt of STAMP’s top-down approach, the features were first aggregated into 15 general software feature 
requirement areas. 

 
1. Features supporting methodology guidance 
2. Features supporting identification of system purpose and description 
3. Features supporting the identification of system goals 
4. Features supporting the identification of system accidents/losses 
5. Features supporting the identification of system hazards/vulnerabilities 
6. Features supporting the identification of system-level constraints 
7. Features supporting the identification of links between analysis objects 
8. Features supporting the modeling of functional control structure(s) 
9. Features supporting the modeling of physical control structure(s) [23] 
10. Features supporting the identification of process model(s), their variables, and values 
11. Features supporting the modeling of the causal control model [17, Appendix G] 
12. Features supporting the identification of unsafe control actions (UCAs) 
13. Features supporting the identification, exploration, and navigation of context table states  
14. Features supporting the identification of causal factors and attack scenarios 
15. Features supporting the identification of new requirements, architecture design changes, and 

safety / security constraints 
16. Features supporting the automated creation of reports documenting cybersafety information 

 
 

 
Figure 1. A Systems Theoretic Cybersafety Methodology Progression (STAMP)   



12 
(working version 3.1) 

3. Software Trials Using an Example Energy Distribution Analysis 

This section details the evaluation of leading STAMP software platforms (XSTAMPP, STAMP 
Workbench, and SafetyHAT) and some general purpose document creation platforms (Microsoft Office 
& Draw.IO) when performing an example systems theoretic cybersafety analysis with the high-level 
STAMP-specific features from Section 2.2 in mind. Along the way, leading existing features are 
showcased to provide a thorough landscape of some innovative features currently helping mature STAMP 
software platforms into useful systems engineering tools that can help secure cyber-physical systems 
using systems theoretic cybersafety. In conclusion, beginning with Section 4, we present some high-level 
discussion points supporting longer term areas of new feature development, a thorough list of STAMP 
feature requirement areas (Appendix A), a list of general STAMP software attributes to consider when 
comparing or integrating STAMP software tools (Appendix B), and a preliminary description of a 
STAMP data structure organization (Appendix C). Section 4 and the appendices aim to introduce an 
initial starting point for formalizing new requirement specifications and design plans for future STAMP 
software tool projects that aim to support systems theoretic cybersafety, specifically for securing 
information technology, industrial control systems, and operational technology within energy generation 
and distribution facilities. 

The following sub-sections of Section 3 describe software features found in general purpose 
document creation tools, along with some leading STAMP software platforms’ optimized and STAMP-
specific features. The STAMP platforms were first used to recreate S. Khan’s systems theoretic 
cybersafety analysis of the MIT CUP Cogen Facility (a working paper in Cybersecurity at MIT Sloan), 
where systems theoretic cybersafety was used to analyze and secure an example generator turbine’s fuel 
industrial control system. It is important to note that when features were considered for supporting 
systems theoretic cybersafety analysis, it was assumed the user of the software tools would already have 
at least some familiarity with STAMP/STPA, specifically the introduction to STPA found in Chapters 1 
and 2 of the 2018 STPA Handbook [17]. However, in this paper, we assume the reader does not have any 
STAMP/STPA methodology experience, and we provide some background on the major steps required to 
perform systems theoretic cybersafety analysis using STAMP.  

3.0.1 What Steps Are Needed? 

STAMP software tools offer initial advantages over general purpose document creation tools by being 
able to provide an overall methodology guidance by showing an organized view of all the steps found in 
the process, with navigational links to views of each. SafetyHAT uses a main view that allows simple, 
organized access to the various areas of STAMP/STPA information used for systems theoretic 
cybersafety analysis. 
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Figure 2. U.S. Dept. of Transportation Volpe's SafetyHAT MS Access Runtime System - Main View 

 
XSTAMPP and STAMP Workbench also provide a structured, organized approach to conveying 

how to progress through the analysis methodology, highlighting access to the major steps a hierarchical 
rooted tree view. Figure 3 shows the user interface view that XSTAMPP uses to provide a navigational 
map through the given STAMP methodology, and Figure 4 shows STAMP Workbench’s version. The 
workflow viewing structure is arranged in a rooted tree structure, allowing for an iterative, non-linear 
progression through the steps in the analysis, specifically allowing the user to jump forwards and 
backwards to whichever step they desire to work on or revisit, and potentially can decouple information 
for collaboration optimization. 
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Figure 3. XSTAMPP Hierarchical View of STPA-Sec Analysis Items 

 

 
Figure 4. STAMP Workbench Hierarchical View of STPA Analysis Items 

A hierarchical view to navigate through analysis provides flexibility and potentially enables 
collaboration through multiple separate views. Conveying the overall workflow of a STAMP 
methodology in such a way provides a concise summary of the areas of work required to progress through 
the analysis, an area where general purpose tools like Microsoft Office (MS Office) and Draw.IO rely on 
external documentation to guide the creation and structuring of the information. XSTAMPP and STAMP 
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Workbench both concisely provide a customized hierarchical workflow view of each STAMP 
methodology that an analysis works through (such as STAMP/CAST, STAMP/STPA, and 
STAMP/STPA-Sec), but software tool considerations for methodologies other than STAMP/STPA-Sec 
and STAMP/STPA-SafeSec such as STAMP/CAST (post mortem and root cause Causal Analysis Based 
on STAMP) are outside the scope of this paper.  

We will discuss requirements formally in future work, but we note that systems theoretic 
cybersafety navigation views should leverage Dr. Nancy Leveson’s and Dr. John Thomas’s March 2018 
STPA Handbook Chapter 2 overview of STPA analysis in a complimenting way, ideally where the 
handbook could provide guidance when using systems theoretic cybersafety software tools [17].  
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3.1  STPA-Sec Methodology Step 1.1: Define the Purpose of the Analysis 

 
Step 1.1 of STPA-Sec is to define a system purpose statement. An example robust structure for a system 
purpose statement is recommended as follows [19]: 
 
“A system to do {what = purpose} by means of {how = method} in order to contribute to {why = goals} 
while {constraints / restraints}.”  
 

The system purpose statement is analogous to a short yet complete thesis statement for the system 
purpose. Using rich text in MS Office, one can summarize systems in a concise, yet thorough way using a 
simple to-by-using structure. Framing the system purpose statement up sets the stage for the rests of the 
analysis and sets alignment for the top areas of consideration when considering what primary value 
function the system performs, what functional process the system uses to do it, and what physical form 
the system implements to provide such functionality.  
 

 
Figure 5. MS Office Example Rich Canvas Functionality for System Purpose 

The system purpose definition also consists of a more in-depth description of the system, 
sometimes including more contextual information in the form of diagrams or tables. In this respect, 
Microsoft Office (MS Office) provides more flexibility than XSTAMPP in that it provides an opportunity 
to include a rich format for describing the high-level purpose and surrounding landscape of a given 
system under analysis, including links and images. Figure 7 shows the use of MS Office to provide this 
type of functionality by including an image showing where the system fits into an external surrounding 
context, while Figure 6 shows a plaintext implementation in XSTAMPP. 
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Figure 6. XSTAMPP Example Plaintext Functionality for System Purpose and Description 

 
Part of the system purpose statement defines high-level goals of the system. In a general-purpose 

document-editing tool such as MS Office, this is most productively specified implicitly within rich text 
descriptions of the system (Figure 7). 
 

 
Figure 7. MS Office Rich Text Description of System and Goals 

XSTAMPP claims to provide STAMP functionality to organize and identify system goals in a 
way a general-purpose document editor such as MS Office simply cannot. Figure 8 shows the goal 
manager in XSTAMPP. Although its description is limited to plaintext, the software allows for more 
organized storage of goal information that can be uniquely identified, linked to, and navigated, which 
supports traceability. When these types of features are fully functional, they allow for the rapid 
reordering, reprioritization, and automatic cross-referencing of the list items that are tracked with the 
system, such as losses, vulnerabilities, constraints, control actions, requirements, and possibly others, 
allowing for the enrichment of report information through software automation tools. 
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Figure 8. XSTAMPP Example Goals Management with Extended Plaintext Descriptions 

 

3.1.1 STPA-Sec Methodology Step 1.2: Identify Losses 

 
Step 1.2 of STPA-Sec is to identify losses (Accidents in STAMP/STPA). The STPA Handbook defines 
losses as:  
 
“A loss involves something of value to stakeholders. Losses may include a loss of human life or human 
injury, property damage, environmental pollution, loss of mission, loss of reputation, loss or leak of 
sensitive information, or any other loss that is unacceptable to the Stakeholders” [2]. 
 

The example systems theoretic cybersafety analysis on the MIT CUP Cogen Power Plant used to 
evaluate STAMP software tools specifies these losses in plaintext table form. Figure 9 shows MS Office’s 
functionality for quickly specifying losses, although the indexing and unique identification must be 
performed and managed by the user, a noted tedious and time consuming step identified by the author of 
the example MIT CUP Cogen cybersafety analysis, S. Khan. We believe these types of opportunities 
present themselves as areas of further formalization for the purpose of software automation, discussed 
further in 4. Conclusions and Appendix A – Detailed Categories of Software Features Supporting 
STAMP Analyst Items. 
 

 
Figure 9. MS Office Example Table for Specifying Losses 

XSTAMPP automatically indexes the losses similarly to goals, allowing the user to enter each 
one, and provides a feature for an extended plaintext description. When user feedback ensures their 
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effectiveness, natural keyboard shortcuts can allow much more rapid entry and refinement of ordered lists 
such as losses and goals, and tools can help manage reprioritization of ordered list items by managing 
unique identifiers and data structures internally. The XSTAMPP loss manager also provides linking to 
vulnerabilities and safety constraints, which will be detailed in subsequent steps showing how linking is 
important for traceability. 

 

 
Figure 10. XSTAMPP Example Loss Manager with Extended Plaintext Descriptions 

 STAMP Workbench similarly identifies and allows the rapid addition of losses in the form of 
accidents (Figure 11). Although the losses are uniquely identified, like XSTAMPP, reordering and 
reprioritizing losses is not yet implemented in STAMP Workbench. 
 

 
Figure 11. STAMP Workbench Specifying Losses 

 

3.1.2 STPA-Sec Methodology Step 1.3: Identify System-Level Hazards 
(Vulnerabilities) 

STPA-Sec Step 1.3 is to identify system-level hazards (or vulnerabilities in STPA-Sec). The STPA 
handbook provides the following definitions. 
 
“Definition: A hazard [or vulnerability] is a system state or set of conditions that, together with a 
particular set of worst-case environmental conditions, will lead to a loss” [17]. 
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“Definition: A system is a set of components that act together as a whole to achieve some common goal, 
objective, or end. A system may contain subsystems and may also be part of a larger system” [17]. 
 

Similar to the previous steps, hazards/vulnerabilities can be specified rapidly in MS Office with a 
table, but requires tedious manual management of the unique identifiers, something that could be 
automated with software tools when internal data structure architecture allows for easy implementation of 
automation.  
 

 
Figure 12. MS Office Example Table Format Specifying Hazards (Vulnerabilities) 

XSTAMPP again provides a manager for hazards/vulnerabilities, which features automatic 
indexing, and the ability to link back to specific losses. Figure 13 shows XSTAMPP’s hazard/vulnerability 
manager, with extended plaintext description and loss linking functionality.  

 

 
Figure 13. XSTAMPP Example Hazard/Vulnerability Manager with Extended Description & Linking 

XSTAMPP and SafetyHAT include features that focuses directly on the linking of losses and 
vulnerabilities that aims to make the process much quicker and more organized than in a general editor 
such as MS Office. When doing example systems theoretic cybersafety analysis manually by hand, 
CAMS analysts had to reference and link to losses and vulnerabilities implicitly in the text, updating them 
as they changed, a time consuming and tedious task. MS Office (MS Word) provides a general cross-
reference feature set, which may be able to be adapted as an initial way to reduce this workload within 
MS Office. Further formalized structure for systems theoretic cybersafety data structures could allow 
guidance for how the informational structure could be formed in software, which further increases the 
chances that new algorithms and external tools could then provide further automation and leverage the 
data later in the systems engineering process. An example time-saving improvement that standardizing 
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vulnerability parsing could enable is the auto generation of system level constraint syntax, saving the 
analyst or engineer from having to do simple, yet manual conversion (see Section 1.4). 

 
Figure 15 shows XSTAMPP’s hazard vulnerability and loss linking functionality, Figure 16 shows 

SafetyHAT’s equivalent linking functionality, while MS Office only supports general purpose 
management of these ordered lists and each item’s identifier using a traditional table (Figure 14).  

 

 
Figure 14. MS Office Example Hazard/Vulnerability & Loss Linking Management Functionality) 
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Figure 15. XSTAMPP Example Hazard/Vulnerability & Loss Linking Management Functionality 

 
Figure 16. SafetyHAT's Hazard Input Form and Loss/Accident Linking Features 
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3.1.3 STPA-Sec Methodology Step 1.4: Identify System-Level Constraints 

 
STPA-Sec 1.4 is to identify system-level constraints. The STPA Handbook provides the following 
definition: 
 
“Definition: A system-level constraint specifies system conditions or behaviors that need to be satisfied to 
prevent hazards (and ultimately prevent losses)” [17]. 
 
Figure 17 shows an example of manual specification of these system-level constraints using a standard MS 
Office table. 
 

Figure 17. MS Office Example Table for Safety Constraints 

These system-level constraints are directly derived from the hazardous vulnerabilities in a form 
specifying what the system “must” do to remain in a safe operating state. Safety constraints must be 
specified using “must not” statements, to facilitate proving during verification and validation due to the 
ease of disproving “must not” statements compared with proving “must” statements. 
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Figure 18 shows XSTAMPP’s system-level constraint manager providing extended description 
functionality as well as linking to accidents (losses) and design requirements. 

  

  

Analogous to the previously described linking functionality, in a general purpose document editor 
like MS Office, these links are specified and managed manually by the user in plaintext (Figure 19), which 
is noted to be a potentially time consuming process to refine and iterate. 

 

 
Figure 19. MS Office Example Safety Constraint Linking Using Rich Text 

 
The various structured linking that XSTAMPP provides for these various ordered lists is a noted 

improvement over managing the references between the various systems theoretic cybersafety artifacts 
and the management of their unique identifiers using general-purpose document editors such as MS 
Office. Linking of information allows computers to navigate the structure, potentially assisting in new 
ways. These features also allow for the dynamic re-identification of the listed items (goals, design 
requirements, losses, hazardous vulnerabilities, system-level constraints, etc.). Re-identification allows 

Figure 18  XSTAMPP Example Safety Constraint Manager and Linking Functionality 
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cross-references to be updated for list items due to managing identifiers for each item, and allows the 
notion of priority in the lists (if deemed necessary). XSTAMPP offers an aesthetic level example of such 
functionality, although the order of identifiers remains unchanged. A function similar to a software 
development IDE’s “refactor” global renaming functionality could likewise update all links to the item’s 
new identifier as part of the reprioritization similar to updating a cross-reference in MS Word, saving time 
when revisiting these ordered items elsewhere.  

Figure 20 demonstrates some first steps towards this functionality.  

 

 
Figure 20. XSTAMPP’s Preliminary Features for Ordered List Support 

3.2  STPA-Sec Methodology Step 2: Model the Control Structures 

 
After the purpose of the analysis is specified, the next step is to build the control structure, leading to the 
overall “Step 2” of STPA-Sec analysis. The STPA Handbook provides the following definition: 
 
“Definition: A hierarchical control structure is a system model that is composed of feedback control  
loops. An effective control structure will enforce constraints on the behavior of the overall system” [17]. 
 

Figure 21 shows the general purpose drawing tool Draw.IO providing a general purpose graphical 
drawing canvas tool to facilitate creating a view of the functional control structure from the example 
systems theoretic cybersafety analysis, as well as contextual, rich information and images to help describe 
what the user is seeing. 
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Figure 21. Draw.IO Example General Purpose Canvas Control Structure Drawing 

MS Office and Draw.IO provides robust features for aligning and connecting objects on their 
well-funded, proprietary, mature, and general-purpose canvas. The auto alignment works very well and 
resizing and moving objects on the general-purpose canvas can produce simple diagrams quickly that are 
extremely customizable. 

 
STAMP Workbench takes a unique approach to specifying the functional control structure by 

first allowing the specification of all components in a matrix view. This can be helpful once a preliminary 
control structure has been brainstormed on scrap paper or notes, and prevents the drawing canvas from 
becoming unruly as more functional components, control actions, and feedbacks are specified. STAMP 
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Workbench also supports the explicit enumeration of inputs and outputs for each controller, as well as 
extended plaintext descriptions of all functional components. 

 

 
Figure 22. STAMP Workbench's Matrix Specification for Functional Control Structure Generation 
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Listing and maintaining all control actions and feedbacks on drawing canvases can become 
tedious and time consuming, so STAMP Workshop includes a batch editor of control action and feedback 
lists, with “to target component” list boxes populated with the components currently loaded into the 
matrix. Figure 23 shows the control action manager and editor and Figure 24 shows the feedback manager 
and editor for specifying the control action and feedback structure of the functional control structure 
without having to drag, drop, position, and resize each on a drawing canvas. 

 

 

 
 

  

Figure 23. STAMP Workbench Control Action Manager and Editor 

Figure 24. STAMP Workbench Feedback Manager and Editor 
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 After generation, the controllers, controlled processes, actuators, sensors, control actions, and 

feedback are used to generate the relationships on a drawing canvas in STAMP Workbench. After a brief 
session of rearranging, editing, and refining connections, a control structure diagram is produced and 
shown in Figure 25.  

 
  

Figure 25. STAMP Workbench Control Structure Model After Generation and Brief Manual Rearrangement 
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 XSTAMPP’s free form drawing canvas has some improvements when compared to general 
purpose canvas tools and tools that aim to generate the control structure from a specification such as 
STAMP Workbench. XSTAMPP already boasts favorable graphical distinctions between Controllers, 
Control Actions, Feedbacks, Controlled Processes, as well as Actuators and Sensors, which greatly aid in 
the categorization and recognition of various control structure objects.  

 

Figure 26 and Figure 27 show a common two-dimensional canvas behavior in a red box when 
moving connected items – we will refer to them here as “connection fractures” (highlighted in red boxes). 
“Connection fractures” require a large overhead for aesthetic realignment, and reduce usefulness and 
efficiency of using drawing canvases if they appear too often, or are too time consuming to correct. 
Fortunately, mature and robust software drawing canvas tools can geometrically calculate when 
adjustments to the drawing objects can retain existing connections without introducing connection 
fractures, or even offer features to possibly fix existing ones, greatly speeding up the control structure 
creation process. Keyboard shortcuts for batch input of control actions and feedbacks further speed the 

Figure 26. Using XSTAMPP’s Drawing Canvas to Create a Functional Control Structure Drawing 
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process up and organize the information in STAMP-specific forms internally that general purpose tools 
cannot. 

Fortunately, some standard drawing canvas features already exist that aim to assist in preventing 
connection fractures when rearranging or fine-tuning drawing canvas object positions. These include 
intelligently rooting connections on object edges during small movements where the canvas calculates 
that geometrically, the connection is possible to remain intact (with no connection fractures) while the 
selected canvas object(s) move and or resize. This is a time-saving feature that allows analysts to rapidly 
create control structure drawings in a timely, organized, and professional manner and perfect the layout 
without inducing large amounts of rework. Figure 27 aims to demonstrate a typical user experience 
example when leveraging these types of drawing canvas features.  

 
Figure 27. "Connection Fracture" Intelligent Drawing Canvas Optimizations 

Drawing canvases aim to allow for the rapid iterative reformatting and expansion of drawings, as 
more objects are connected and subsystems are identified. Subsystem boundary identification is supported 
in some form in both the general purpose tools as well as XSTAMPP, however both of which offer no 
specific sub-system navigational functionality at this time. Another general-purpose drawing canvas tool, 
Draw.IO, can also produce clean control structure diagrams, although its functionality is comparable to a 
cloud-based version of MS Office’s general purpose drawing features. It should be noted that all canvas 
type drawing tools evaluated all had some unique benefits, and software tools that provide accelerated and 
optimized control structure diagram design are believed to greatly aid in the rapid organization and 
automation of systems theoretic cybersafety reports. Some areas of improvement would include 
environmental input and output support, with features more powerful than dotted lines to imply system 
boundaries, such as support for multiple control structure drawings that provide different “views” of the 
model showing different levels of abstraction. XSTAMPP and general-purpose tools do not explicitly 
support assigning responsibilities for controllers. XSTAMPP and general-purpose tools do not explicitly 
support assigning unique identifiers to label/tag control actions, feedbacks, or other control structure 
objects for quick reference from elsewhere in the documentation or information. Human and technical 
controller distinction is not explicitly supported. The newer, more socio-technical general causal control 
model for casual scenario generation is not yet explicitly supported with specific features by XSTAMPP 
or general purpose tools [17]. Figure 18a shows the STPA Handbook’s socio-technical causal control 
model. 
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Figure 28. [17, Figure G-2]. Detailed Socio-Technical Causal Control Model 

Where MS Office and general-purpose tools lack features, process models are explicitly 
supported in XSTAMPP.  This enables the organization of a fair number of process model variables and 
their values, with enough freedom to customize the organization of the information. Physical controlled 
processes are also not currently differentiated. In some cases, tools offer no specific functionality to add 
detailed information about the process model elements for assumptions, notes, or to include URL 
references. There is currently no notion of variable types in STAMP software tools that would aid in 
software performing automation. Intelligent navigation of system states has already been shown to allow 
more flexibility and generate optimal sets of values to consider rather than requiring a human to 
enumerating all possible system states (discussed further in 3.3). Similar optimizations may be possible 
by first further formalizing specifications for a set of typed data structures that describe STPA for 
cybersafety and cybersecurity for use in interfacing between different system engineering tools and 
processes (see Appendix C – Preliminary Systems Theoretic Cybersafety Data Structure Organization). 
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After control structure creation, the next step is to design each controller’s process model. Figure 
29 shows XSTAMPP’s features for process models. Support for extended process models in multiple 
controllers currently is necessary for software drawing canvases to allow organization of the process 
model variables and values.  

 
Figure 29. XSTAMPP Example Process Model Specific Features 

In conclusion of our exploration of control structures and process models, XSTAMPP leads with a 
free form drawing canvas implementation that includes graphical controls that correspond nicely to 
STAMP control structure objects (controllers, controlled processes, actuators, and sensors). Drawing 
features to mitigate connection fractures (see 3.2) can greatly drive drawing canvas usefulness when 
creating coherent control structure diagram(s) rapidly. STAMP Workbench leads in importing structured 
forms of control structures and their control action and feedback interactions, which is then used to 
generate control structures; a likely helpful feature if a crude control structure has been first created 
external to the tool, or perhaps first sketched manually by hand. 
 

3.3  STPA-Sec Methodology Step 3: Identify Unsafe Control Actions (UCAs) 

The next step in the analysis is to proceed through the control actions in an effort to locate unsafe 
and insecure control actions. The STPA Handbook provides the following definition: 
 
“Definition: An Unsafe Control Action (UCA) is a control action that, in a particular context and worst-
case environment, will lead to a hazard” [17]. 
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 XSTAMPP leads general purpose tools by allowing the functional control structure to specify and 
link control actions and feedbacks from and to controllers, actuators, controlled processes, and sensors. 
XSTAMPP generates a view of control actions once they are successfully added to the functional control 
structure; capturing structured information STAMP optimized ways can produce time saving collection of 
cybersafety analysis information for further software automation. 
 

 
Figure 30. XSTAMPP Control Actions Summary Table  
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3.3.1 STPA Handbook Hazardous Four Control Action Possibility Support 

An effective process for identifying UCAs involves mapping the control actions against a set of 
standard four possibilities that may lead to losses when the system is in a hazardous vulnerable system 
state. The collection of hazardous process model variable values that create the system state conditions 
are specified in what is known as a “context table” (discussed further  in Section 3.3.2). These four 
possibilities for when control actions may become unsafe are defined in the STPA Handbook, and are 
shown in Figure 31. 

 

 
Figure 31. STPA’s Hazardous Four Control Action Possibilities to Consider 

 
XSTAMPP offers a helpful feature for these common hazardous four control manipulation 

possibilities by providing a matrix to evaluate all the control actions that have been captured until this 
point, as well as being able to link to previously captured hazards. Figure 32 shows a manually managed 
matrix using MS Office while Figure 33 shows XSTAMPP’s control action matrix functionality. 
Research has shown that completing the evaluation of this table without specialized software tools is a 
significant, time-consuming process and software proof of concepts were built [11] [12]. STAMP-specific 
software tools are able to help facilitate this step much more so than a standard general purpose tool. 

 

Figure 32 MS Office Table Evaluating Manually Evaluating Control Actions 
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Figure 33. XSTAMPP Example Unsafe & Unsecure Control Action Matrix Evaluation Functionality 

When control actions are imported from the control structure, software can produce these types of 
features to save time and cognitive effort on behalf of engineers and analysists performing systems 
theoretic cybersafety analysis. Logical simplification was proposed by John Thomas in an effort to 
eliminate duplicate rows in the matrix, and observations on the cognitive patterns people exhibit when 
filling out the matrix were highlighted [10]. Features that guide the user through an intuitive path through 
the matrix as they consider the hazardous possibilities would likely reduce the time required for this 
combinatorically challenging step of STAMP analysis. A more immersive view of the matrix, perhaps 
with another layer of UI depth such as pop-up or right click menus, may help to organize the massive 
amount of information in new ways. 

Although it contains more information, and the ability to import and export the information to 
other software modules, the editing of UCAs in the XSTAMPP generated matrix is not as rapid as using a 
standard MS Office table. However, the UCA linking functionality realized by XSTAMPP is a promising 
improvement over standard general-purpose tables, and the ability to encapsulate dynamics links to 
hazards and control actions would likely gain analyst and engineer time back. Once the UCAs are 
identified, they must be organized and uniquely indexed. In a general-purpose tool, again, tedious manual 
indexing of the items in a traditional table does this, and consumes significant time as the number of 
UCAs scale. (See Figure 32). 

Neither XSTAMPP nor general-purpose tools provide specific features for identifying and 
differentiating human and technical control actions. The distinct differences between human and 
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technologic behavior is extremely important to keep separate in the control structure and should be 
visually apparent, as they exhibit different capabilities and potential vulnerabilities. 

From the UCAs, safety constraints are derived to prevent the vulnerable system states to be ever 
(including intentionally) achieved. XSTAMPP offers line-by-line editing of safety constraints on the list 
of UCAs derived from the matrix generation evaluation, although edits to UCAs require returning to the 
matrix-editing mode (see Figure 34). This can become more complicated than returning to a general 
purpose table, but the UCA matrix feature does offer the additional functionality of containing and 
working with much larger matrices than a standard table, and more potential to embed and encapsulate 
more information. 

 

  

Figure 34. XSTAMPP Example Allowing New Security and Safety Constraints Based On Unsafe Control Actions 
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3.3.2 Hazardous System State Context Table Support 

Included with the unsafe control action is the “context” that makes it unsafe. The context is a 
collection of process model variable values that put the system in an unsafe or insecure state, where then 
interactions with the surrounding external environment (including remote attackers) can cause losses 
when the unsafe control action(s) take place. This step has already been shown to have the potential to be 
improved with logic, natural language processing, and software tools [12].  In a general-purpose tool such 
as MS Office, this analysis is performed using a standard general purpose table as shown in Figure 35. 

  

Figure 35. MS Office Table Evaluating and Linking Control Actions with Hazardous Process Model Variable 
Values (Context) 

 In XSTAMPP, there is a context table manager with various features related to the examination of 
the combinations of process model variable values (system states) when considering control actions that 
could result in damages if they are tampered with at certain times. The first view lists all control actions, 
with the option to flag them as security critical. Figure 36 shows this additional helpful functionality to 
highlight systems theoretic cybersafety related unsafe control actions. 

 
Figure 36. XSTAMPP Context Table Manger: Security Critical Control Action Review 
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The next set of context table specific features XSTAMPP offers have to do with the management 
of relevant process model variables that contribute to the control action becoming unsafe. This is where 
STAMP-specific tools take a lead over manual general purpose tools such as MS Office in terms of 
productivity, which can’t offer such optimized linking of information with general purpose features. 
When the system is in such a vulnerable state, control actions can then be considered unsafe or insecure if 
the system encounters environmental conditions that cause a hazard. In the case of cyberattacks, the 
environment is considered potentially malicious rather than simply providing external interactions and 
disturbances to the system, and when the system has process model variables values that put the system in 
a hazardous state, environment interactions can become disastrous.  Combinations of vulnerable process 
model variable values can be specified in a dynamic interface after the relevant process model variable 
values are listed as dependencies for the control action under consideration. 
 

3.1.1 NIST’s ACTS for Optimized T-Way Interaction Context Table Generation 

Context table generation features are supported by XSTAMPP in a way that general purpose tools 
simply cannot compete with. Context tables can be generated with ACTS, NIST Computer Security 
Resource Center (CSRC) government website’s “Automated Combinatorial Testing for Software,” which 
supports multiple t-way combinatorial test set generation algorithms to produce an optimized number of 
interaction combinations in the system likely to uncover unexpected interactions [24] [37] [38]. This type 
of optimized system test set generation comes from NIST software testing theory [37]. 

 
Figure 37. XSTAMPP Context Table Generation: NIST CSRC’s ACTS Tool Interface 

The tool runs on a generic Java interface, and offers both command line and graphical user 
interface options. XSTAMPP currently supports ACTS configuration file input to intelligently control, 
direct, and optimize the generation of context tables to consider. NIST’s Automated Combinatorial 
Testing for Software (ACTS) is a “generation tool for constructing t-way combinatorial test tests,” and is 
commonly used to efficiently create exhaustive software tests that are very effective at detecting faults 
that come from “unexpected interactions between different contributing factors” [37]. This is to support 
efficient creation of system tests that require combinatorial and pairwise testing, sometimes for regulatory 
compliance (citation pending). By levering some of the features of the generation engine such as 
constraint rules, the ACTS framework can be utilized to manage large-scale context table variable 
combinations by pruning invalid process model variable combinations from further consideration using 
constraint rules specified in restricted first-order logic expressions. Another feature allows the generation 
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of combinations given subsets of variables that the analyst is interested in exploring; the ACTS 
framework supports this notion of “related” variables (parameters), which can be used to select subsets of 
process model variable values, allowing targeted generation of combinations involving a respective set of 
variables and their respective values. For example, if an analyst suspected a variable frequency drive may 
be attacked, they may group a variable frequency drive speed variable with many other process model 
variables using a numerical relationship strength to limit the generation of context tables to combinations 
that involve the variable frequency drive speed variable. 
 

As the control structure diagrams scale to support larger systems, the number of variable value 
combinations currently results in time-consuming cognitive and manual tasks, as noted by S. Khan during 
his systems theoretic cybersafety analysis of MIT’s CUP Cogen Facility. The ACTS framework 
generation engine will likely aid in enforcing constraints to allow the analyst to prevent themselves from 
being distracted from considering invalid combinations of process model variable values. The ACTS 
framework can also allow the analyst the benefits of focusing solely on interesting combinations of 
variables using the relationship feature’s subset grouping functionality. Examples of constraints illustrated 
in the ACTS User Guide are shown below in Table 2 [Page 9, 24].  

 

Constraint 1: (OS = “Windows”) => (Browser = “IE” || 
Browser = “FireFox” || Browser = “Netscape”), where 
OS and Browser are two parameters of type Enum. 

This constraint specifies that if OS is 
Windows, then Browser has to be IE, 
FireFox,or Netscape. 

Constraint 2: (P1 > 100) || (P2 > 100), where P1 and P2 
are two parameters of type Number or Range.  

This constraint specifies that P1 or P2 must 
be greater than 100. 

Constraint 3: (P1 > P2) => (P3 > P4), where P1, P2, P3, 
and P4 are parameters of type Number or Range. 

This constraint specifies that if P1 is greater 
than P2, then P3 must be greater than P4. 

Constraint 4: (P1 = true || P2 >= 100) => (P3 = “ABC”), 
where P1 is a Boolean parameter, P2 is a parameter of 
type Number or Ranger, and P3 is of type Enum.  

This constraint specifies that if P1 is true 
and P2 is greater than or equal to 100, then 
P3 must be “ABC”. 

 Table 2: ACTS Constraint Logic Examples [Page 9, 37] 

 
ACTS supports multiple generation algorithms for creating the combinations of variable values, 

but two offer support for “constraint” expressions using first order propositional logic: IPOG and IPOG-
F, which generate variable (parameter) value combinations for “systems of moderate size (less than 20 
parameters and 10 values per parameter on average)” [24]. If the system can be abstracted to less than 20 
process model variables, with up to 10 values per process model variable, first order propositional logic 
rules can be applied to eliminate undesirable combinations. The “Forbidden Tuples” constraint option is 
recommended for larger numbers of variables and values with many constraints, and relationship 
strengths greater than or equal to 2, while “CSP Solver” constraint option is faster for small parameter 
numbers with few constraints, and relationship strengths less than or equal to 2. Evaluating the specified 
constraints and relationships could likely produce a best-guess default recommendation from the software 
tool automatically. A third algorithm called IPOG-D supports “larger systems” and appears to scale with 
larger combinations of process model variable values, but support for constraints using first order 
propositional logic is not currently supported, but is “planned in a future release” [24]. 
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An optimal process model variable value combination generation tool would aim to support 
larger systems as well as logical expression based constraints, as well as relationships and grouping to 
govern and target variable value combination generation to where the analyst chooses to look. The format 
of the ACTS configuration is shown in the tool’s documentation and shows the current syntax for 
defining constraints and relationships using ACTS to run the various generation algorithms and generate 
customized, optimized variable value combination sets [24]. 

The generated variable combinations can be exported into STAMP tools like XSTAMPP to 
support specific features that provide an efficient navigation and analysis mechanism for the oftentimes 
numerous context tables generated from an exhaustive consideration of all combinations of the process 
model variables. Features like this are game-changers for STAMP tools and have the potential to enable 
large time savings (when leveraged effectively) compared to STPA-Sec analysis using traditional general 
purpose editors such as MS Office or Draw.IO. By eliminating invalid combinations of process model 
variable values, considering sets of values that at minimum cover t-way interactions, as well as explicitly 
listing groups of variables of interest, STAMP software can enable the analyst to consider a more targeted 
set of context tables and process model variable value combinations instead of trying to exhaustively 
manage the combinations manually. These types of context table navigation features allow more efficient 
and flexible use of analyst time when considering what could potentially contribute to factors that may 
place the system in an unsafe or insecure state where losses could occur, and help mitigate the burden of 
having to exhaustively consider (sometimes extremely numerous) combinations of process model variable 
values. 
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3.4  STPA-Sec Methodology Step 4: Identify Scenarios 

The last step of STPA-Sec analysis is to identify scenarios that could lead to the previously determined 
unsafe and insecure control actions, from a perspective theorizing a possible attack. The STPA Handbook 
provides the following definition:  
 
“Definition: A loss scenario describes the causal factors that can lead to the unsafe control actions and to 
hazards” [17]. 
 

The process and work involved in this step is currently left almost completely to the analyst, as 
they work backwards from UCAs in an effort to theorize how someone may attack the system, in an 
intentional effort to cause losses.  

The inputs and outputs for the STPA-Sec Step 4 are shown in Figure 26. Two main categories of 
strategy for forming loss scenarios are described in Figure 38 below. 
 

 
Figure 38. [17, Figure 2.20]. STPA Handbook: Overview of Scenario Identification 

 

 
Figure 39. [17, Figure 2.17]. STPA Handbook: Two Types of Scenarios That Must Be Considered 

“Purple” 
Domain 

“Green” 
Domain 
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STPA-Sec Step 4.1 consists of enumerating loss scenarios that lead to unsafe control actions, 
shown above in Figure 39 when focusing in the purple region of the control structure. Figure 40 below 
shows two main causes of unsafe control actions that can help guide the analyst’s focus and creativity 
during this step. 

 
Figure 40.  [17, Figure 2.18]. STPA Handbook: Two Causes of UCAs Scenarios 

 
STPA-Sec Step 4.2 consists of enumerating loss scenarios that result from control actions being 

improperly executed or not executed, shown above in Figure 39 when focusing in the green region of the 
control structure. In addition to considering UCAs, the STPA Handbook suggests it is helpful to focus on 
the control path and other factors related to the controlled process, with example regions of each shown 
below in Figure 41 in red and blue, respectively.  

 
Figure 41. [17, Figure 2.19]. STPA Handbook’s Generic Control Loop, Control Path, and Other Controlled 

Process Factors 

“Blue” 
Domain 

“Red” Domain 

“Red” Domain 

“Blue” Domain 
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Both of these sub-steps involved in the creation of STPA-Sec loss scenarios require cognitive 
creativity on the part of the analyst to identify the loss scenarios and both general purpose tools as well as 
XSTAMPP have a significant challenge supporting these open-ended steps. The STPA practice analysis 
performed in the SDM core project team used a brainstorming process of hypothesizing together to arrive 
at scenarios through games of “what if” postulates. It is assumed it would require significant application 
of synthetic knowledge organization for a tool to suggest somewhat helpful scenarios to consider based 
on the surrounding environment and external system inputs in a very natural way.  
 

XSTAMPP takes the approach of providing the analyst with an organized view of as much of the 
important factors to help the analyst leverage their creativity to quickly identify loss (and potential attack) 
scenarios. XSTAMPP provides a matrix view where components can be linked with UCAs and 
vulnerabilities, scenarios can be described, and corresponding security constraints can be entered along 
with notes. The XSTAMPP matrix-based features for organizing large amounts of UCAs, vulnerabilities, 
and security constraints around scenarios provides a level of organization for the scenario creation process 
not natively found in general purpose editor tools such as MS Office, but is awkwardly implemented. The 
ability to focus on components, UCAs, and vulnerabilities in a single view shows great promise for 
providing a rich thought environment to seed creative combinations of external and environmental effects. 
This enables the identification of scenarios that could lead to losses, and appears to help when comparing 
with starting from a general purpose document with information dispersed such as in MS Office. Figure 
30 shows XSTAMPPs causal factor scenario matrix-based management features.  

 
Figure 42. XSTAMPP Example Matrix Based Scenario Management 

In contrast, generic drawing tools allow for a less structured, perhaps more artistic organization of 
the information involved in each scenario, at the expense of more analyst time. Figure 43 shows an 
example of creating a MS Office based visualization of a scenario that could lead to loss in the example 
analysis.  
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Figure 43. MS Office Example General Purpose Tool Visual Scenario Diagram Example 

In general purpose tools, rich text is available to document the scenario in a wide array of custom 
formats. Using existing software features, scenario generation could potentially be expedited through the 
creation of thoughtful and robust template documents (such as the format in Figure 43) to capture 
structured scenario information such as attack descriptions, causal factors, and rationale notes.  

3.5  Final Steps: Outputs, Reports, and Traceability  

The final steps of systems theoretic cybersafety analysis, and potentially the most important and 
influential for implementing security changes, is a tool’s ability to compile the analysis information into a 
manageable, organized, and neat report for information dissemination and discussion. XSTAMPP aims to 
have a simple export feature where a final PDF report is created. It is highly likely STPA-specific tools 



46 
(working version 3.1) 

like XSTAMPP, with a more structured input and organization of STAMP analysis data, are more easily 
able to produce standardized and more compact reports compared with general-purpose tools such as MS 
Office and Draw.IO. General-purpose templates could guide the creation of critical aspects of the report 
and may increase analyst efficiency, but it is likely that specialized report generation capabilities from 
STAMP specific tools would have significant advantage when compiling the final analysis report. 

4 Conclusions 

Software has been helping humans visualize, organize, and navigate information for as long as 
computing machines have existed. It is believed there is opportunity for new software features to reduce 
the manual workloads placed on engineers or analysts who want to perform systems theoretic cybersafety 
analysis, especially to support the rapid analysis of OT systems found in energy distribution systems in 
response to recent destructive cyberattacks on similar cyber-physical energy distribution systems [21]. 

Various opportunities exist to utilize existing STAMP tool features for supporting systems 
theoretic cybersafety analysis; Section 3 documents the evaluation of some leading STAMP tool features 
as well as existing general purpose document creation features to demonstrate using software to assist in 
an example analysis of energy distribution systems. Along the way, an introduction to STAMP analysis 
steps was included to provide background on the systems theoretic methodologies that can be applied to 
cybersafety.  

Tools that aim to support systems theoretic cybersafety should be evaluated using general software 
attributes covering general software features such as architecture, auto-save and auto-recovery, standard 
drawing canvas features, undo and redo, etc. (see Appendix B – STAMP Software Tool General 
Attribute). Future systems theoretic cybersafety tools should be designed with a detailed list of feature 
areas in mind (see Appendix A – Detailed Categories of Software Features Supporting STAMP Analyst 
Items). Software tools aimed at supporting STAMP methodologies should also match the 2018 STPA 
Handbook terminology and structure to facilitate standardizing training program development and 
educational sustainability. 

Leading STAMP software features have already been realized by software, especially in the area of 
linking various pieces of information in the analysis. Linking allows the tool to understand the structure 
of the information, and navigate it, which is required to enable further automation features. XSTAMPP 
offers some features that bring together information in rich, visual ways that can help analysts view the 
relevant information when considering attack scenarios. We believe finding more visual organizations of 
the data will continue to enable the engineer or analyst to spend their time efficiently when performing 
systems theoretic cybersafety analysis. The hierarchical view and guidance through the method’s 
progression can help analyst learn quicker, and is powerful for navigating through the analysis 
information quickly. Finally, XSTAMPP and STAMP Workbench run on the Eclipse platform, which 
offer the benefits of being cross platform, free, and open source, all noted positives for software tools. 
Both projects are considerable candidates for implementing new features. 

The context table management was observed to be a large source of tedious edits and manipulations 
when performing alterations in MS Office both by an MIT SDM class team as well as the MIT Cogen 
Analysis [18] [S. Khan working paper]. Fundamentally the analysis process aims to have the analyst or 
engineer mentally enumerate all the state combinations and consider if they leave the state in a 
hazardous/vulnerable state. The context table is a collection of hazardous process model and environment 
values that lead to a vulnerable system state, and XSTAMPP claims to offer it can be auto-generated with 
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ACTS-based automation optimizations to save human time [24]. The context feature set is forming but is 
still considered somewhat in-development at this time. 

In existing functional control structure diagrams, controllers, sensors, and actuators currently do not 
have software features that support showing information about external I/O. Sensors do not currently have 
software features that support showing information about input, or feedback output. Actuators do not 
currently have software features that support showing information about control input, or output. The 
ability to refer to a physical control structure allows analysts another view of the system, and to allocate 
implementations from the functional control structure, which is currently not supported by software 
features [23]. When linked with the functional control structure, the two control structure views would 
likely aid in the faster navigation of the system in the pursuit of uncovering vulnerabilities, unsafe control 
actions, and attack scenarios. Multiple control structures were observed to be necessary in practice to 
capture the larger context by S. Khan’s MIT CUP Cogen cybersafety analysis experience, but is not 
currently supported in XSTAMPP.  

A final set of missing features for supporting systems theoretic analysis on industrial control systems 
are related to supporting a physical control structure. Formalizing the creation of a physical component 
layer editor to show network devices, networks, and network connections would provide foundational 
physical control structure objects for industrial control systems that use networks to communicate aimed 
at cybersecurity and cyber safety [23]. Software features to integrate the possibilities of general network 
integrity threats, highlight known vulnerabilities from databases, and integrating STPA-SafeSec’s general 
availability threats could further formalize and expand the process of evaluating control actions by 
considering the form that the control functionality maps to [23]. 
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Additional initial future work and research that remain after this examination are as follows:  

 
● How can standardization of STPA-Sec data allow interfacing with other software tools and 

processes in a systems engineering toolchain? 
 

● How could a client-server software model provide additional computational resources, security, 
as well as portability and availability for STPA-Sec software tools? 
 

● Where can additional logical structure or propositional logic be formalized in STPA-Sec to 
enable software automation? 

 
● How could hardware accelerated graphical control structure design features enable more rapid 

and detailed control structure design? What new organization, visualizations, navigation, and 
automation options would next-generation drawing and simulation software features enable? 

 
● What would a more formalized subsystem mechanism enabling a notion of zooming, abstracting, 

or aggregation in hierarchical control structures look like? 
 

● Would further integration of process model and process model variables into the control structure 
drawing features allow for more organization of the hazardous/vulnerable system states? In 
addition, how could one view the information while preserving diagrammatic simplicity? 

 

 Would the addition of features to support the management and potentially simulation of a 
physical control structure aid in the discovery of unsafe control actions and attack scenarios? 
 

Longer term future research areas: 
 

 What generation or automation opportunity would be enabled through specifying systems 
theoretic information through an optimized structured input mechanism using a domain specific 
language to specify data structures found in Appendix C – Preliminary Systems Theoretic 
Cybersafety Data Structure Organization 
 

 Could artificial intelligence assist in software automation of the capture of data structures found 
in Appendix C – Preliminary Systems Theoretic Cybersafety Data Structure Organization? 
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Appendix A – Detailed Categories of Software Features Supporting 
STAMP Analyst Items 

 

STPA HANDBOOK 
STEP REFERENCE 
(And Local Reference) 

Areas of Software Feature Requirements Supporting Systems Theoretic 
Cybersecurity and Cybersafety 

STEP 1 (3.1)  STPA-Sec Methodology Step 1.1: Define the Purpose of the Analysis 

(3.1) Support identifying rich system purpose statement 

(3.1) Support identifying rich system description 

(3.1) Support identifying rich system goals 

(3.1.1) STPA-Sec Methodology Step 1.2: Identify Losses 

(3.1.1) Support unique identifiers on losses 

(3.1.2) STPA-Sec Methodology Step 1.3: Identify System-Level Hazards (Vulnerabilities) 

(3.1.2) Support unique identifiers on hazards 

(3.1.3) STPA-Sec Methodology Step 1.4: Identify System-Level Constraints 

(3.1.3) Support refining hazards (optional) 

STEP 2 (3.2) STPA-Sec Methodology Step 2: Model the Control Structures 

(3.2) Support unique identifiers for all control structure objects  

(3.2) Support reference label identifiers for all control structure objects [23] 

(3.2) Support subsystem identification 

(3.2) Support multiple levels of abstraction and multiple control structure views 

(3.2) Support environmental inputs 

(3.2) Support written/trained procedures & other training inputs 

(3.2) Support external controllers 

(3.2) Support human controller model of environment 

(3.2) Support human controller model of automation 

(3.2) Support human controller model of controlled process 

(3.2) Support human controller model of other controllers 

(3.2) Support human controller control action generation / mental processing 

(3.2) Support controllers (general) 

(3.2) Support controller control and feedback [23] 

(3.2) Support sensors (general) 

(3.2) Support sensor input and feedback output [23] 
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(3.2) Support actuators 

(3.2) Support actuators output and control input [23] 

(3.2) Support controller, sensors, and actuators external I/O [23] 

(3.2) Support sensor displays, alarms, and other sensory feedback 

(3.2) Support automated controller control algorithm 

(3.2) Support automated controller model of human controller 

(3.2) Support automated controller model of other controllers 

(3.2) Support automated controller operational mode 

(3.2) Support automated controller model of controlled process 

(3.2) 
Support other controllers and other systems (external to control structure system 
boundary) 

(3.2) Support process model creation and encapsulation inside controller 

(3.2) Support process model variables 

(3.2) Support process model variable values (PMVVs) 

(3.2) Support process model variable types 

(3.2) Support assigning responsibilities to functional control structure (FCS) 

(3.2) Support controlled process creation 

(3.2) Support controlled process inputs and outputs 

(3.2) Support controlled process disturbances 

(3.2) Support controlled process operational mode 

(3.2) Support control action creation 

(3.2) Support differentiation between technical and human control actions 

(3.2) Support feedback creation 

(3.2) Support hierarchical functional control structure 

(3.2) Support iterative control structure expansion and refinement 

(3.2) Support functional relationships and functional interactions 

(3.2) Support physical processes creation [23] 

(3.2) Support physical component structure mapping to functional control structure(s) 

(3.2) Support physical process inputs and outputs (state) [23] 

(3.2) Support multiple levels of functional control structure hierarchy (abstraction levels) 

(3.2) Support documenting additional information about controllers 

(3.2) Support documenting additional information about control actions and feedbacks 

(3.2) Support documenting additional information about controlled processes 
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(3.2) 
Support common physical control structure network (devices, network connections, 
networks, network devices, and standard network integrity/availability threats [23]) 

(3.2) Support control action unique identifiers 

(3.2) Support control action organized appearance on functional control structure (FCS) 

(3.2) Support control action expand and collapse functionality to save space on FCS 

(3.2) 
Support documenting additional information about all control structure objects (both 
physical & functional) 

STEP 3 (3.3) STPA-Sec Methodology Step 3: Identify Unsafe Control Actions (UCAs) 

(3.3) Support STPA Handbook Four UCA Type Matrix Generation [10, Page 38, 80-87] 

(3.3) Support linking UCAs to hazards 

(3.3) Support identifying human UCAs 

(3.3) Support identifying technical UCAs 

(3.3) Support differentiating between human and technical UCAs 

(3.3) Support defining controller constraints 

(3.3) Support evaluating UCAs by providing CA [10, Page 38, 80-87] 

(3.3) Support control source providing control action ID 

(3.3) Support context for control action (with vulnerable PMVVs) 

(3.3) Support evaluating UCAs by not providing CA [10, Page 38, 80-87] 

(3.3) Support control source providing control action ID 

(3.3) Support context for control action (with vulnerable PMVVs) 

(3.3) 
Support evaluating UCAs by considering providing potentially safe CA too early, 
too late, or in wrong order [10, Page 38, 80-87] 

(3.3) Support control source providing control action ID 

(3.3) Support context for control action (with vulnerable PMVVs) 

(3.3) 
Support evaluating UCAs by considering if CA lasts too long or is stopped to soon 
[10, Page 38, 80-87] 

(3.3) Support control source providing control action ID 

(3.3) Support context for unsafe control action (with vulnerable PMVs / PMVVs) 

STEP 4 (3.4) STPA-Sec Methodology Step 4: Identify Scenarios 

(3.4) Support hazardous control actions information flow identification 

(3.4) Support unsafe CA scenarios ID (using NL STPA Step 2 safety control flaw analysis) 

(3.4) Support unsecure CA scenarios ID (using Young's expanded control flaw analysis) 

(3.4) STPA Handbook  
a) “Purple Domain” 

Support scenarios by identifying why UCA(s) occur & scenarios that lead to 
UCA(s) 
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[17, Page 52, Figure 
2.17 & Figure 2.20] 

(3.4) Support scenarios by identifying UCAs and working backwards 

(3.4) Support scenarios by identifying UCAs from physical failures involving controller 

(3.4) Support scenarios by identifying UCAs from inadequate control algorithm 

(3.4) 
Support scenarios by identifying UCAs from unsafe or insecure control input from 
another controller 

(3.4) Support scenarios by identifying UCAs from inadequate process model 

(3.4) STPA Handbook  
1) “Red” Domain 
[17, Page 44, Figure 
2.18] Support scenarios by identifying UCAs from unsafe controller behavior 

(3.4) STPA Handbook 
2) “Blue” Domain 
[17, Page 44, Figure 
2.18] 

Support scenarios by identifying UCAs from causes of inadequate feedback and 
information 

(3.4) Support scenarios by identifying UCAs from feedback or information not received 

(3.4) Support scenarios by identifying UCAs from inadequate feedback received 

(3.4) STPA Handbook  
b.) “Green Domain” 
[17, Page 52, Figure 
2.17 and Figure 2.20] 

Support scenarios by identifying why control actions (CAs) would be improperly 
executed or not executed 

(3.4) STPA Handbook  
3) “Red” Domain 
[17, Page 49, Figure 
2.19] 

Support functional control structure control path identification and linking to the 
control path 

(3.4) Support scenarios by identifying from control action not executed 

(3.4) Support scenarios by identifying from control action improperly executed 

(3.4) STPA Handbook 
4) “Blue” Domain 
[17, Page 49, Figure 
2.19] Support scenarios by identifying other factors related to the controlled process 

FINAL STEPS OUTPUTS 

 Report Generation 

 
Support existing system architecture design feature identification and alteration 
identification 

 Support new executable requirements creation 
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 Support identification of design requirements 

 Support identification of necessary mitigations and safeguards 

 Support defining test cases and creation of test plans 

 Support new design decisions (during development) 

 
Support evaluation of existing design decisions for gaps and changes (after 
development) 

 Support development of leading indicators of risk 

 Support designing more effective safety management systems 

 Support generation of organized views of STAMP analysis information 

 
Support traceability through intelligent automated information linking [17, Page 52, 
Figure 2.21] 
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Appendix B – STAMP Software Tool General Attribute Framework 

Software Tool General Attributes XSTAMPP 

General Software Attribute State Explanation 

Safety Standard Qualifications [7]  

 IEC 61508 - E/E/PE Yes. Tool T2 category with generation of any test cases, T1 
otherwise.  (pending vendor confirmation) 

 EN50128 - Railway Yes. Tool T2 category with generation of any test cases, T1 
otherwise.  (pending vendor confirmation) 

 D0-178C/D0-330 - Aerospace & 
Defense 

Yes. Can only be classified as TQL-5 (likely software Level 
B-D) by an end user, other levels of support require developer 
involvement providing qualification data. (pending vendor 
confirmation) 

 ISO26262 - Automotive Yes. Tool Impact Level 2 (TI2). Tool Confidence Level 3 
(TCL3). Possibly TCL1-2 if LSA was implemented. 
Presentation shows ISO26262 limitations for AVs, 
compliments to (and differences from) HARA, details in [15].  
(pending vendor confirmation) 

Open Source Compliance (from opensource.org)  

 Apache License 2.0 No 

 BSD 3-Clause "New" or "Revised" 
license 

No 

 BSD 2-Clause "Simplified" or 
"FreeBSD" license 

No 

 GNU General Public License (GPL) No 

 GNU Library or "Lesser" General 
Public License (LGPL) 

No 

 MIT license No 

 Mozilla Public License 2.0 No 

 Common Development and 
Distribution License 

No 

 Eclipse Public License Yes. "XSTAMPP is published under the Eclipse public 
license. All software is provided free of charge and will 
remain free in the future." 

General Availability  

 Immediate Yes. Easily downloadable. 

 On Request N/A 

 Other (Including Future / Planned / In 
Development) 

N/A 

Cross Platform Compatibility (Runtime required)  

 Linux (PC) Yes. (Java 8 JRE) 

 Apple Mac OS (PC) Yes. (Java 8 JRE) 

 Microsoft Windows OS x64 (PC) Yes. (Java 8 JRE) 

 Apple iOS (Mobile) No. Not at this time. 

 Android OS (Mobile) No. Not at this time. 

Device Compatibility  

 Desktop PC Workstation Compatible Yes. 

 Mobile Laptop Workstation 
Compatible 

Yes. 



55 
(working version 3.1) 

 Mobile Tablet Compatible Depends; Not natively on mobile OS at this time, but possibly 
functional with remote desktop connection.  

 Mobile Smartphone Compatible No. Not at this time. 

Architecture   

 Standalone Application Yes. Wrapper of Eclipse Platform. 

 OnPrem Client-Server Partially. App is standalone but shared storage could provide 
shared workspace and collaboration. No real time 
collaboration functionality. 

 3rd Party Cloud-Based No. Not at this time. 

Dependencies   

 Interfaces with and requires larger 
software platform product(s) 

Yes. Requires Eclipse Platform. 

 Interfaces with and requires larger 
software runtime(s) 

Yes. Requires Java 8+ Runtime Environment (JRE 8+) 

 Standalone or all-inclusive product Somewhat. Eclipse Platform included, which offers to help 
install JRE as well. 

System Versioning  

 Numerical Yes. Currently Version 2.5 released Sep 29, 2017 

 Version Control System Based Yes. Freely and immediately available at  
https://github.com/asimabdulkhaleq/XSTAMPP.git 

Content Versioning  

 Numerical Yes. Manual version management. 

 Version Control System Based No. Supports static saving of project and no integrated 
versioning control system. 

Reliability   

 Automatic Save No. Not at this time. 

 Automatic Project Recovery (in the 
event of a crash) 

No. Not at this time. 

 Automatic Crash Reporting No. Not at this time. 

 Maintains Backwards Compatibility Partially. Requires JRE8+. Unclear if previous Workspaces 
and Projects are guaranteed to be backwards compatible in 
future XSTAMPP versions. 

 Telemetry No. Not at this time. 

 User Experience Improvement 
Program 

No. Not at this time. 

Help and Support  

 Integrated Help Content Partially. Implemented but 500 error accessing integrated help 
on Linux. Not 4K screen compatible. 

 Online Help Content Yes. Tutorials as well as Video Demos. 

 "Contact Us" Direct Support Yes. Accessible online help form provided. 

 User Community Forums No. Not at this time. 

Monetary Cost   

 Free Yes. All software is provided free of charge and will remain 
free in the future. 

 One Time Purchase No. 

 Service Purchase No. 

Deployment Time Cost  
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 Low (user manages independently) Yes. Application and source code can be acquired and 
deployed in <5 minutes. 

 Medium (considerable setup time) No.  

 High (requires staff allocation to 
maintain) 

No.  

Collaboration Does the software support multiple 
users working together on projects in 
real-time? 

No. 

Drawing Canvas Supports drag and drop functionality? Yes. 

 Supports drag multi-object selection? Yes. (but only after clicking Marquee button) 

 Supports keyboard shortcuts to 
duplicate controls? 

Yes. 

 Supports connection fracture 
mitigation optimizations? 

Yes. 

 Supports auto-alignment of objects? Yes. 

 Supports auto-resize of objects? Partially. Control actions can be added to control action lists. 

 Supports drawing generation from 
structured user input data? 

No. 

 Supports undo and redo features? Yes. 

 Supports batch entry of objects? Yes. 

Textual Input Supports rich text? No. 

 Supports undo and redo features? Partially. Some text boxes support common Ctrl-Z and Ctrl-Y 
keyboard shortcuts to undo and redo, however other text 
boxes are limited. 
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Appendix C – Preliminary Systems Theoretic Cybersafety Data 
Structure Organization 

OBJECT ATTRIBUTES TYPE Notes 
(General supporting abstract objects below)   

UNIQUE EXPORTABLE OBJECT  

A general object for 
each object to extend 
that requires a unique 
identifier and rich 
description for all 
important relevant 
information 

 Identifier UUID  
 Title Plain Text string 
 Description Rich Text  

 Browser Exporter HTML Serializer  

Necessary to interface 
with other tools, 
toolchains, or services 

 Service Exporter JSON Serializer (and or XML) 

Necessary to interface 
with other tools, 
toolchains, or services 

 Implements / Enforces 
(some serializable interface, JSON 
and maybe XML) 

An interface to export 
the object to a report 
form or other tool  

ORDERED LIST ITEM   
 Item Unique Exportable Object  
 List Index Integer Position in list 
 Links Links [ ] set 
TOOL INPUT   
 Identity Unique Exportable Object  

 Browser Importer HTML Deserializer  

Necessary to interface 
with other tools, 
toolchains, or services 

 Service Importer JSON Deserializer (and or XML) 

Necessary to interface 
with other tools, 
toolchains, or services 

(STPA-SafeSec specific objects below [23])   
NETWORK   From SafeSec paper 
 Identity Unique Exportable Object  
 Subnet Network Subnet  
DEVICE    
 Extends Controller  
LINK    
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 Label Object (UUID)  
 From Object (UUID)  
 To  Object (UUID)  
NETWORK CONNECTION  From SafeSec paper 
 Extends Link  
 Identity Unique Exportable Object  
NETWORK DEVICE  From SafeSec paper 
 Extends Device  

 Network Address Network Address 
IP or other network 
visible address 

 Network ID UUID  

A unique fingerprint 
differentiating the 
device. Potentially 
could use MAC address  
fingerprint, though they 
can be easily spoofed. 

 Services Software Service 

Port and the version of 
the services listening on 
them 

NETWORK CONNECTION   
 Extends Link From SafeSec paper 
(Step 1 information below)   
SYSTEM 
PURPOSE    
 Purpose of Analysis  Rich Text  
 System Description Rich Text  
 System Goals Goals [ ] set 
GOAL    
 Extends  Ordered List Item  
LOSS    
 Extends  Ordered List Item  
HAZARD / VULNERABILITY    
 Extends Ordered List Item  
CONSTRAINT   
 Extends Ordered List Item  
 Applicable Process Model Variables Process Model Variables [ ] set 

 
Applicable Process Model Var. 
Value Limits Process Model Variable Values [ ] set 

 Applicable Objects Link [ ] set 
SYSTEM-LEVEL SAFETY CONSTRAINT   
 Extends Constraint  

 Boundary Graph? Tree? Points in space? 

Something is necessary 
to show this type of 
constraint applies to the 
system level 

(Step 2 below)    
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OUTPUT    
 Identity Unique Exportable Object  
 Links Links [ ] set 
INPUT    
 Identity Unique Exportable Object  
 Links Links [ ] set 
ENVIRONMENTAL OUTPUT   
 Extends Output  
 Links Links [ ] set 
ENVIRONMENTAL INPUT   
 Extends Input  
 Links Links [ ] set 
ENVIRONMENT   
 Identity Unique Exportable Object  
 Inputs Environmental Inputs [ ] set 
 Outputs Environmental Outputs [ ] set 
TRAINING    
 Identity Unique Exportable Object  
CONTROLLER   
 Identity Unique Exportable Object  
 Inputs Inputs [ ] set  
 Outputs Outputs [ ] set  
CONTROLLED PROCESS   
 Identity Unique Exportable Object  
 Inputs Inputs [ ] set  
 Outputs Outputs [ ] set  
 Disturbances Disturbances [ ] set  
 Operational Mode Operational Mode [ ] set  
EXTERNAL CONTROLLERS   
 Extends Controller  

 Boundary Graph? DAG? Tree? Points in space? 

Specifies the boundary 
that the controller is 
external to. 

AUTOMATION   
 Identity Unique Exportable Object  
DISTURBANCE   
 Identity Unique Exportable Object  
OPERATIONAL MODE   
 Identity Unique Exportable Object  
MODEL    
 Identity Unique Exportable Object  
PROCESS MODEL   
 Extends Model  
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 Controlled Process (Perceived) Controlled Process  
PROCESS MODEL VARIABLE   
 Identity Unique Exportable Object  
 Value Process Model Variable Value  
PROCESS MODEL VARIABLE VALUE   
 Identity Unique Exportable Object  
 Value Measurable  

 Type Classifiable  

If strong static typing is 
required, type must be 
captured and checked 

 Hazardous or Unsafe Boolean (True or False)  
ENVIRONMENT MODEL   
 Extends Model  
 Environment (Perceived) Environment  
OTHER CONTROLLER MODEL   
 Extends Model  
 Other Controller (Perceived) Controller  
CONTROL ALGORITHM   
 Identity Unique Exportable Object  
HUMAN CONTROLLER   
 Name Text  
 Title Text  
 Identity Unique Exportable Object  
 Extends Controller  
 Env. Model Environment Model  
 Automation Model Automation Model  
 Controlled Process Model Controlled Process Model  
 Other Controller Model Other Controllers Model  

 
Control Action Generation / Mental 
Processing Control Algorithm  

HUMAN CONTROLLER MODEL   
 Extends Model  
 Human Controller (Perceived) Human Controller  
AUTOMATED CONTROLLER   
 Extends Controller  
 Control Algorithm Contorl Algorithm  
 Human Controller Model Human Controller Model  
 Other Controllers Model Other Controller Model  
 Operational Mode Operational Mode  
 Controlled Process Model Controlled Process Model  
SENSOR    
 Identity Unique Exportable Object  
ACTUATOR    
 Identity Unique Exportable Object  



61 
(working version 3.1) 

DISPLAY    
 Identity Unique Exportable Object  
 Content Rich Text  
ALARM    
 Identity Unique Exportable Object  
 Description Rich Text  
 Trigger Condition Rich Text  
OTHER SENSORY FEEDBACK   
 Identity Unique Exportable Object  
RESPONSIBILITIES   
 Identity Unique Exportable Object  
 Relevant Object(s) Link [ ] set 
FUNCTIONAL CONTROL STRUCTURE   

 Extends Control Structure 

The functional control 
structure is a functional 
implementation of a 
control structure 

 Hierarchy 
Directed Graph? Tree? Points in 
space? 

The functional control 
structure must support 
the notion of a 
hierarchy of objects 

 Boundary Graph? Tree? Points in space? 

The functional control 
structure must support 
the notion of a 
boundary for sub-
system identification or 
description. 

 Environmental Inputs Environmental Input  [ ] set 
 Environmental Outputs Environmental Output [ ] set 
 Controllers Controller [ ] set 
 Controlled Processes Controlled Process [ ] set 
 Sensors Sensor [ ] set 
 Actuators Actuator [ ] set 
 Displays Display  [ ] set 
 Alarms Alarm [ ] set 
 Other Sensory Feedbacks Other Sensory Feedback [ ] set 
 Networks Network [ ] set 
 Links Link [ ] set 
 Control Actions Control Action [ ] set 
CONTROL ACTION   
 Identity Unique Exportable Object  
TECHNICAL CONTROL ACTION   
 Extends Control Action  
HUMAN CONTROL ACTION   
 Extends Control Action  



62 
(working version 3.1) 

FEEDBACK    
 Identity Unique Exportable Object  
FUNCTIONAL RELATIONSHIP   
 Identity Unique Exportable Object  
 Link Link  
FUNCTIONAL INTERACTION   
 Identity Unique Exportable Object  
 Link Link  
PHYSICAL INTERFACE   
 Identity Unique Exportable Object  
PHYSICAL CONTROLLED PROCESS   
 Extends Controlled Process  
 Physical Interface Physical Interface [ ] set 
(Step 3 below)   
CONTEXT TABLE   
 System Variables Process Model Variables [ ] set 
 System Variable Values Process Model Variable Values [ ] set 
UNSAFE CONTROL ACTION (UCA)   
 Extends Control Action  
 Source Controller  

 Type 
One of Handbook Common Four 
Possibilities 

Enumeration {Provides, 
Not Provides, Wrong 
Timing, Wrong 
Duration} 

 Context Context Table 
Matrix of Process 
Model Variable Values 

 Linked Vulnerabilities Link [ ] set 
HUMAN UCA   
 Extends UCA  
 Linked Human Controllers Link [ ] set 
TECHNICAL UCA   
 Extends UCA  
 Linked Automated Controllers Link [ ] set 
CONTROLLER CONSTRAINT   
 Extends Constraint  
 Applicable Controller Controller  
(Step 4 below)   
CONTROL ACTION INFORMATION LINK   
 Extends  Link  
 Hazardous Boolean (True or False)  
CONTROL ACTION DISRUPTION   
 Control Path Tree? DAG? Graph?   

 
ID'd From Control Action Not 
Executed Boolean  
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ID'd From Control Action 
Improperly Executed Boolean  

CONTROL ACTION SCENARIO   

 
ID'd From Failures Involving 
Controller (physical) Boolean 

part of a two-byte 
bitmap (for 
compression) 

 
ID'd From Inadequate Control 
Algorithm  Boolean 

part of a two-byte 
bitmap (for 
compression) 

 
ID'd From Unsafe Control Input 
(from another controller) Boolean 

part of a two-byte 
bitmap (for 
compression) 

 
ID'd From Inadequate Process 
Model Boolean 

part of a two-byte 
bitmap (for 
compression) 

 
ID'd From Unsafe Controller 
Behavior Boolean 

part of a two-byte 
bitmap (for 
compression) 

 
ID'd From Causes Of Inadequate 
Feedback and Information Boolean 

part of a two-byte 
bitmap (for 
compression) 

 
ID'd From Feedback or Information 
Not Received Boolean 

part of a two-byte 
bitmap (for 
compression) 

 
ID'd From Inadequate Feedback Is 
Received Boolean 

part of a two-byte 
bitmap (for 
compression) 

 
ID'd From Control Path 
Examination Boolean 

part of a two-byte 
bitmap (for 
compression) 

 
ID'd From Controlled Process 
Examination Boolean 

part of a two-byte 
bitmap (for 
compression) 

 
Other Factors Related To Controlled 
Process Examination Rich Text  

UNSAFE CONTROL ACTION SCENARIO   
 Identity Unique Exportable Object  
 UCA Link Link  
UNSECURE CONTROL ACTION SCENARIO   
 Identity Unique Exportable Object  
 UCA Link Link  
(Outputs below; informally referred to as Step 5, or 
Final Steps)   
TOOL OUTPUT   
 Identity  Unique Exportable Object  
 Relevant Objects Unique Exportable Object [ ] set 
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 Browser Standardizer HTML Serializer/Deserializer 

Necessary to interface 
with other tools, 
toolchains, or services 

 Service Standardizer 
JSON and XML 
Serializer/Desearalizer  

Necessary to interface 
with other tools, 
toolchains, or services 

REQUIREMENT (GENERATION)   
 Extends Tool Output  
REQUIREMENT (ALTERATION)   
 Extends Requirement  
 Change / Difference Rich Text  
SYSTEM ARCHITECTURE ALTERATION   
 Extends Tool Output  
 Change / Difference Rich Text  
REPORT (COLLECTION OF TOOL OUTPUTS)   
 Outputs Tool Output [ ] set 
 System Purpose System Purpose [ ] set 
 System Description Rich Text  
 Goals Goal [ ] set 
 Losses Loss [ ] set 
 Vulnerabilities Vulnerability [ ] set 
 System Level Constraints System Level Constraints [ ] set 

 
Relevant Functional Control 
Structure Diagram(s) 

Functional Control Structure 
(rendered) [ ] set 

 Unsafe Control Actions UCA [ ] set 
 Relevant Context Tables Context Table [ ] set 
 Relevant Environments Environment [ ] set 

 
Unsafe & Unsecure Control Action 
Scenarios Control Action Scenarios [ ] set 
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