
 

 

 

A Survey of Methods for  

Data Inclusion in System Dynamics Models:  

Methods, Tools and Applications 

 
James Houghton, Michael Siegel, Anton Wirsch,  

Allen Moulton, Stuart Madnick, Daniel Goldsmith 

 

 

 

Working Paper CISL# 2014-03 

 

May 2014 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Composite Information Systems Laboratory (CISL) 

Sloan School of Management, Room E62-422 

Massachusetts Institute of Technology 

Cambridge, MA 02142 



 1 

A Survey of Methods for Data Inclusion 
in System Dynamics Models 

Methods, Tools and Applications  

James Houghton, Michael Siegel, Anton Wirsch, Allen Moulton, Stuart Madnick, Daniel 

Goldsmith 

 

In 1980, Jay Forrester 1 enumerated three types of data needed to develop the structure and 

decision rules in models: numerical, written and mental data, in increasing order of 

importance. While this prioritization is appropriate, it is numerical data that has 

experienced the most development in the 25 years since Forester made his enumeration. In 

this paper, we’ll focus on how numerical data can be incorporated into models when 

written and mental data are known, and survey the techniques for doing so. 

Motivation and Purpose 

Numerical data is experiencing a renaissance because 1) traditional data such as census and 

economic surveys are more readily accessible 2) new sensors are measuring things that 

have never been measured before, and 3) previously 'unstructured' data - such as raw text, 

audio, images, and videos - is becoming more amenable to quantification2.  

Because of this explosion and the popular buzz surrounding ‘Big Data’, clients expect to see 

strong incorporation of data methods into dynamic models, and it is imperative that System 

Dynamics Modelers are fully versed in the techniques for doing so. 

The SD literature contains surveys (Peterson 19763 and Eberlein 19854) that explain 

methods for including data in system dynamics modeling, but techniques have continued to 

develop. This paper attempts to bring these surveys up to date, and serve as a menu of modern 

techniques.  

Structure 

The paper is structured to follow the modeling process laid out by John Sterman in 

'Business Dynamics'5: 1) Problem Articulation and Boundary Selection, 2) Formulation of a 

Dynamic Hypothesis, 3) Formulation of a Simulation Model, 4) Testing, 5) Policy Design and 

Evaluation.  

Within each major step we discuss specific modeling tasks and relevant data techniques, 

and give a brief overview of the mechanics of that technique. We refer the reader to seminal 

works and good tutorials for further learning. Where appropriate we list some of the major 

software packages that support each technique. We show how the technique can be used 

specifically in the modeling task, with examples drawn from System Dynamics and related 

literature. 



 2 

Scope 

This is clearly not an exhaustive list of data techniques that could be applied to System 

Dynamics. Instead, we survey the techniques that have precedent in the SD literature, and 

draw support from outside traditions. 

We choose only to touch on the parts of the model building process that show clear promise 

of benefitting from numerical data. We choose not to investigate methods of data collection 

or elicitation, which are covered elsewhere6. 

1 Problem Articulation and Boundary Selection 
The first and most important model-building step is to clearly identify the purpose for a 

model and the problem that it hopes to solve. This step requires investigation of the 

dynamic behavior of the system and its problem symptoms, and determination of the 

appropriate scope and resolution of the model. Randers explains this step in the classic 

'Guidelines for Model Conceptualization'7; Mashayekhi and Ghili8 discuss problem definition as 

an inherently iterative process. From this section we omit qualitative tasks: phrasing the 

research question, description of problem behavior, and choice of model structure 

boundary, in order to focus on tasks with a strong data dependency. 

1.1 Identify Reference Modes 

A modeler should be able to identify the symptoms of problem behavior in the time-series 

data that the problem system generates. The process of identifying these reference modes is 

described well by Saeed9 and VanderWerf10. 

Finding reference modes within time-series data is not always straightforward, and may 

require the modeler to look at the data in a variety of ways before the behavior becomes 

clear. 

1.1.1 Exploratory Data Analysis and Data Visualization  

Exploratory Data Analysis refers to visualization and statistical summary techniques that 

are designed to give the modeler an intuitive understanding of the nature of the data. 

Description  

Visualization methods generally show how a parameter of interest varies according to an 

independent attribute (time, geography, property, or relationship). Summary statistics can 

investigate the relationship of data with itself, by looking at averages, variances, and 

correlations. 

Among others, Tukey11 promoted Exploratory Data Analysis for development of intuition 

about data; in the years that followed, data visualization and summary statistics have 

become an integral part of introductory statistics courses, and are an ongoing area of 

research. Tufte12 provides the quintessential resource for visualization of quantitative 

information, and Yau13 gives an introduction to modern techniques and tools. Keim14 

discusses visualization as a form of Data Mining. 
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The vast majority of data or numerical analysis software suites provide some form of 

summary statistic and data visualization capability: Python(NumPy15, Matplotlib16, 

Bokeh17), R(native), Javascript(D318), Matlab19(native), Gnuplot20, etc. 

Application to Reference Mode Identification 

To identify behavior modes, the modeler needs to have a good understanding of the 

dynamic behavior of the system. Exploratory Data Analysis in the form of visualization and 

simple summary statistics allows the modeler to form that intuition by presenting 

numerical data in human-digestible formats. These formats allow the modeler’s eyes to look 

past noise to see the variety of growth, decay, or oscillatory modes that constitute the 

behavior of interest. Khan, McLucas and Linard21 use a variety of visual and aggregation 

methods to develop reference modes for the salinity of the Murray Darling basin. 

1.1.2 Frequency Spectrum Analysis 

Frequency Spectrum Analysis allows the modeler to see the strength of each of the 

oscillatory modes in her sample data. 

Description 

It is not uncommon to think about time-series data as being 

composed of a number of oscillations at different frequencies 

superimposed on one another. Fourier transforms are used to 

estimate the relative contribution of each of these oscillatory 

modes to the measurements. Fourier transforms come out of the 

signal processing community, with a seminal paper by Cooley and 

Tukey22, and a good overview of the method by Duhamel23. 

Software packages that support Fast Fourier Transforms and 

Frequency Spectrum Analysis include Python (Numpy.fft24), R 

(Stats.spectrum25), Matlab26 (fft), and Excel (Analysis Toolpack) 

Application to Reference Mode Identification 

Frequency Spectrum Analysis can reveal the dominant modes of 

oscillation, and help the modeler identify the frequency band that 

captures the behavior of interest. Arango and Moxnes27 

demonstrate the use of Spectral Analysis to identify cyclical behavior in energy markets, as 

can be seen in Figure 1. 

1.1.3 Phase Portraits 

A phase portrait factors out the time component of a model to show how a pair of system 

components vary with respect to one another. The shape of the phase portrait curves can 

show if one variable is driving another, or if they oscillate in-phase or opposed to one 

another. A phase portrait can show if oscillations are being damped or becoming unstable, if 

the oscillations follow a standard pattern, or if the system is exhibiting chaotic behavior. 

Figure 1: Market Price History and 
Spectral Density in Arango and 
Moxnes27, showing two major 

oscillatory modes. 
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Description 

A phase portrait is a set of curves whose x coordinate is 

described by the values of one variable of interest, and the 

y coordinate described by another. A phase portrait may 

show the direction of the flow in this space when the 

system is initialized with a variety of values for each 

parameter. 

Phase plane analysis is frequently used in the Control 

Theory and Complexity Theory traditions. A number of 

texts provide introduction to phase plane analysis. See 

Chapter 2 in Enns and McGuire28, Chapter 2 in Tien29, and 

Tseng30. Most plotting tools can create a phase portrait, 

although some provide more established mechanisms for 

doing so, including Python (PyDSTool31), and Matlab26 

(pplane). 

Application to Reference Mode Identification 

Phase portraits can be useful tools in determining behavioral modes and dynamic causal 

influence. When phase plots show cyclic behavior the modeler can expect to see second 

order structure driving the model. When the motion of stocks is well correlated, she should 

look for a behavior that drives both, and so forth. Guneralp32 demonstrates the use of phase 

portraits to understand the dynamic behavior of a variety of simple system structures, as 

can be seen in Figure 2. 

1.2 Infer Appropriate Aggregation Levels 

System dynamics depends on the ability to aggregate individual actors or elements into 

groups whose behavior can be modeled as a unit. These groups may be based upon age, 

location, or other characteristics that define the group and its expected behavior. Rahn33 

describes how the process of aggregation can make stochastic behavior into analytically 

tractable flows, and takes a good look at this essential component of System Dynamics 

modeling. 

In many cases there will be a natural set of choices for levels of aggregation, or a standard 

for doing so. For instance, students may be aggregated by grade, or into Elementary, Middle, 

or High School. When such a clear-cut distinction is not available, clustering algorithms can 

be used on the dataset to determine groups. 

1.2.1 Machine Learning Clustering Algorithms 

Description  

Clustering algorithms work to identify sets of data-points in which the difference in 

attributes between members of each group is minimized, and the difference between 

groups is maximized. There are a variety of clustering algorithms that produce different 

Figure 2: Phase plane demonstration of 
second order system in Guneralp32. 
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types of clusters. Clustering Algorithms come out of the Artificial Intelligence community, 

and a survey of these algorithms is provided by Xu and Wunsch34. 

Software packages that provide clustering algorithms include Python (Scikit-Learn35), R 

(various packages), Matlab (Statistics Toolbox) 

Application to Data Aggregation 

In situations where intuitive or standardized methods of aggregation are infeasible, the 

modeler may choose to use a machine learning algorithm to identify cohorts based upon 

their shared attributes. Onsel, Onsel, and Yucel36; and Pruyt, Kwakkel, and Hamarat37 

discuss clustering of behavior modes, although direct clustering for aggregation remains to 

be demonstrated in SD literature. 

2 Formulation of Dynamic Hypothesis 
In the second stage of model building, the modeler begins to determine the structure of the 

model in a largely qualitative way. Inferring the overall structure of a model based upon 

data is challenging, although there have been some attempts to do so. Data methods can be 

more helpful in an iterative modeling process where the structure of a new model may be 

based upon previous similar models, and the inference task is to infer which of a set of 

previous models best represents the current data. We omit here causal mapping of the 

system as this is the step in which the modeler begins to add written and mental data to the 

model, and as such is less of a numerical task. We also omit the creative and intuitive task of 

actual hypothesis generation. 

2.1 Model Selection 

In some cases there may be disagreement about the general structure of the system, as 

different parties have different mental models of the way the system works. If simple 

versions of these mental models are specific, data methods can be used to determine the 

relative likelihood that each model structure could be responsible for creating the observed 

data. The relative likelihoods of the model without respect to parameters are calculated as 

'Bayes Factors'. 

2.1.1 Markov Chain Monte Carlo 

Markov Chain Monte Carlo (MCMC) can be used to infer the distributions of input 

parameters to a model when the output behavior of the system is known through 

measurement. In model selection, MCMC assumes the choice of model to be the parameter 

of interest. 

Description  

MCMC chooses a random set of parameters from 'prior' input distributions, executes a 

system model (which must have a stochastic component), and then calculates the likelihood 

of the observed data given the run of the model and the chosen input parameters. The 

algorithm uses this probability to decide whether to include the chosen input parameters in 

a posterior distribution. Repeating this process on the order of tens or hundreds of 
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thousands of times, distributions for the input parameters can be summarized using 

histograms or other density estimation methods. 

Markov Chain Monte Carlo was developed to support nuclear engineering; and the primary 

algorithms used in MCMC were developed by Metropolis38, Hastings39, and Geman and 

Geman40. Andrieu, Freitas, Doucet and Jordan41; and Brooks42 give good introductions to use 

of the technique. Software packages that provide MCMC algorithms include 

Python(PyMC43), BUGS44, winBUGS, R(MCMCpack), Vensim. 

Application to Model Selection 

A modeler can use Markov Chain Monte Carlo to help choose between multiple competing 

models. To do so she establishes a categorical variable that can take values corresponding 

to each of the candidate models. In each MCMC run, a value (and thus a model) is selected 

and the likelihood of the data given that model computed. After MCMC convergence, the 

relative likelihood of each model is proportional to the number of times its categorical 

variable value was selected. 

Andrieu, Djuric and Doucet45 expand on their introduction to MCMC with a description of 

how the method can be used to choose between models. 

2.1.2 Bayes Factors 

Bayes Factors serve as a relative likelihood of the validity of two models. While they won't 

tell the modeler that a particular model is correct, they will tell her if one model is a better 

representation of the measured data than another model. 

Description 

The Bayes Factor lets a modeler abstract the model from its parameters by calculating the 

likelihood ratio of the two models under any set of parameters that each model takes as 

valid. This takes the form of an integral of the likelihood over the parameter space. As this is 

often a large multidimensional integral, the modeler can use a sampling technique such as 

Markov Chain Monte Carlo to approximate its value.  

Bayes Factors come from the statistics tradition and were first articulated by Jeffreys46. Kass 

and Raftery47 give an overview of the technique in its modern form. Software packages that 

specifically facilitate the calculation of Bayes Factors include Python (PyMC43), and 

R(BayesFactor). 

Application to Model Selection 

Bayes Factors give weight to the preference one model should receive over another, and 

thus give a measure of confidence in deciding to reject one model in favor of its competitor. 

Alternately, the Bayes Factor may tell the modeler that there is no clear preference for one 

model over the other, and that some form of averaging, or a new model altogether, would be 

the preferred solution. 

Raftery48 demonstrates the use of Bayes Factors for model selection on social research. 

Opportunities exist for demonstrations of this technique in the SD literature. 
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3 Formulation of Simulation Model 
Data methods can be extremely helpful in completing dynamic models whose structures 

have already been identified. The modeler can use these methods to help select equations to 

represent the relationships between system components, identify values for model 

parameters and initial conditions, and prepare exogenous inputs. Here we omit partial 

models and other methods of slicing the model before inference, as they are well 

established within System Dynamics and are not themselves data methods. 

3.1 Identify Equations to Represent Relationships Between Variables 

When a stock and flow structure has been constructed, the next step is to implement the 

equations that govern each relationship. In some situations the modeler can work from first 

principles, or infer scaling laws and nonlinearities from intuition. In other situations, she 

may have little understanding of how variables relate to one another and must infer the 

nature of the relationship from data. 

3.1.1 Structural Equation Modeling 

Structural Equation Modeling (SEM) attempts to infer relationships between a latent or 

unobserved variable and a number of observed variables. These latent variables may be 

estimators for a 'soft' quantity (such as 'morale') which itself may be further used in the 

model. 

Description  

SEM tries to fit the covariance matrix of a predictive model to the covariance of the 

observed parameters. Wright49 provided the seminal paper on Structural Equation 

Modeling. Ullman50 gives a tutorial of the basics of SEM, using a substance abuse model as a 

motivating example. A number of books give more detailed introductions, consider Kline51, 

or Bollen52. 

SEM is well represented in the psychology and econometrics traditions. Several statistical 

suites have developed packages for structural equation modeling, including R(SEM, 

OpenMX), and SPSS(Amos). 

Application to Equation Identification 

SEM is applied to System Dynamics modeling as a method for including 'soft' variables into 

feedback models, identifying the relationship between the unobservable variable and 

additional observable characteristics. 

Medina-Borja and Pasupathy53 demonstrate the use of SEM in the context of a customer 

satisfaction and branch expansion model for a bank. Roy and Mohapatra54 use SEM in a 

model of research and development laboratories. 

3.2 Identify Influential Parameters 

In parameterizing the model, it’s likely that some parameters will have a strong influence on 

the outcome of the model, and others less so. If a modeler can identify these, she can 

prioritize the effort given to measuring each parameter value. 
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3.2.1 Sensitivity Analysis 

Sensitivity analysis (also called Experimental Uncertainty Analysis or Propagation of Error) 

is a method for determining the impact of small changes of a system input parameter upon 

the computed output of the system. 

Description 

Sensitivity analysis uses numerical means such as Monte Carlo Analysis (see Section 4.2.1) 

to propagate errors or uncertainties in model parameters through to the model output. It is 

often performed one parameter at a time, and the relative magnitude of change between the 

input and output compared with that of other parameters. It can also be performed for 

multiple parameters simultaneously to determine the nonlinear interactions between 

parameters on the output. 

Helton, Johnson, Sallaberry and Storlie55 give an overview of sampling-based methods for 

sensitivity analsysis in which they step through the various stages of the process: defining 

input distributions, designing samples of those distributions and executing the model, and 

reviewing the outcome; with a motivating example from industrial engineering. 

Basic sensitivity analysis can be performed by any software capable of performing Monte 

Carlo Analysis, although a few packages have been developed to implement more advanced 

Sensitivity Analysis algorithms: Python(SALib56),  R(Sensitivity), Matlab(Control System 

Toolbox).  

Application to Influential Parameter Identification 

When sensitivity analyses are used in the model-building stage, the modeler is interested in 

finding the parameters with the greatest need for precision - these being the parameters for 

which a small error can lead the model to different conclusions. For each parameter, the 

modeler can calculate how tight the error bounds must be such that its relative contribution 

to the model uncertainty matches that of the other parameters. 

Sharp57 discusses methods of sensitivity analysis specifically in the System Dynamics 

setting. Powell, Fair, LeClaire and Moore58 use sensitivity analysis to identify crucial 

parameters in an infectious disease model, and Hekimoglu and Barlas59 apply the method to 

several business management problems. 

3.2.2 Statistical Screening 

Statistical Screening is a method of performing sensitivity analysis in system models that 

are computationally expensive, and it is infeasible to take a large number of samples. 

Description 

Screening looks at the correlation between variables and output values, instead of looking 

at the standard deviation of a number of samples when input values are varied. Welch et 

al60 write an influential paper describing the process of statistical screening. 
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Application to Influential Parameter Identification 

Statistical screening is important to the field of System Dynamics for its ability to identify 

and prioritize data collection and parameter estimation tasks. Ford and Flynn61 

demonstrate the use of statistical screening to identify influential parameters in SD models, 

with examples of sales vs. company growth, and the World3 model. Taylor, Ford, and Ford62 

demonstrate screening for application to a diffusion model and a rework model. 

3.3 Summarize Measureable Parameters 

In the ideal case, parameters of the model correspond to unique, observable characteristics 

of the real system. The task of preparing measurements of this characteristic for inclusion in 

System Dynamics models involves summarizing disaggregate sample data into single values 

or distributions that represent the true distribution of the concept in the system. Graham63 

gives an overview of this process, along with some traditional techniques for doing so. 

3.3.1 Bootstrap Resampling 

Resampling with bootstrap allows the modeler to estimate 

the error in the parameters of a probability distribution, 

based upon a finite number of observations of that 

distribution. (Note that statistical bootstrapping is distinct 

from bootstrap aggregating in machine learning.) 

Description 

Bootstrapping works by taking a subset of the sample data, 

and computing the parameter of interest (mean, median, 

etc.) for that subset. Repeating this process a large number 

of times can give confidence bounds for the likely values of 

the parameter in the sample data set, which are 

comparable to the bounds on the true population. 

The bootstrap method comes from the statistics tradition, 

and was first introduced by Efron64; Henderson65, and 

Diaconis and Efron66 provide tutorials and perspective on 

the method and its variants. A variety of software packages facilitate statistical 

bootstrapping, including Python (Scikit-Bootstrap67), R (Boot68), and Matlab (Statistics 

Toolbox). 

Application to Parameter Summarization 

Bootstrapping can be used to infer distributions for model input parameters such that those 

distributions can be properly used in subsequent Monte Carlo model testing. Dogan69 

describes this process specifically for the System Dynamics model parameter estimation 

setting, and demonstrate its use with examples from The Beer Game and quality erosion in 

the service industry, as seen in Figure 3. 

Figure 3: Dogan's69 use of Bootstrap Methods to 
summarize parameters in a model of the Beer 

Game 
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3.3.2 Markov Chain Monte Carlo 

For a description of Markov Chain Monte Carlo, please see section 2.1.1. 

Application to Parameter Summarization 

Markov Chain Monte Carlo can be used to estimate hyperparameters (such as mean and 

standard deviation) for a distribution representing a SD model parameter. In such a case, 

MCMC considers the data to be the product of a statistical model that takes the 

hyperparameters to specify an analytical distribution, and calculates the likelihood of the 

observed data. The MCMC algorithm then can be used to generate confidence intervals for 

the hyperparameters, which can be used as input to the simulation model. 

3.4 Infer Unmeasureable Parameters 

There are many cases in which parameter values cannot be directly measured, but based 

upon the model and its inputs and outputs, the modeler may be able to infer what the 

parameter values would need to be for the system model and the data to make sense 

together. She can perform this inference on either partial or full models, depending on the 

data that is available, using a variety of numerical techniques to yield either single values or 

distributions. 

3.4.1 Regression 

The concept of regression includes a variety of methods (Ordinary Least Squares, 

Orthogonal Distance, Ridge, etc.) for identifying the single best set of parameter values for a 

model, where 'best' is defined by some objective function, such as having the minimum 

square error between model predictions and system measurements. 

Description 

Most regression methods perform an optimization (see section 5.1.1) over the parameter 

space to minimize the difference between a prediction and system measurements. When 

applied to time-series data, regression is most effective for non-oscillatory behavior modes. 

A variety of resources for learning regression methods exist; consider Ryan70 or Vinod71. 

The vast majority of statistical packages and System Dynamics modeling software give some 

form of regression capability: Python (Scipy, Statsmodels72, Scikit-Learn), R(native), Matlab 

(Statistics Toolbox), Vensim, AnyLogic (Model Calibration), etc. 

Application to Model Parameter Inference 

Multiple regression is a common method for inferring values for unknown parameters in 

System Dynamics models. Higuchi73 discusses parameter estimation using regression with 

an inventory model demonstration. Mayerthaler, Haller, and Emberger74 use regression to 

parameterize a land use and transportation model.
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3.4.2 Markov Chain Monte Carlo 

For a description of MCMC, see Section 2.1.1. 

Application to Model Parameter Inference 

MCMC can be used to estimate a distribution for unknown 

model parameter values if the output of the simulation 

model is specified to represent the parameters of a 

statistical distribution. In this case, parameters can be 

sampled by the MCMC algorithm and the likelihood of data 

given the sample parameters computed. The MCMC 

algorithm traverses the parameter space, sampling from a 

distribution representing the likelihood that each 

parameter takes on a certain value. Osgood75 describes the use of Markov Chain Monte 

Carlo for SD model parameterization. 

3.4.3 Kalman Filtering 

Kalman filtering gives an efficient method for calculating the unknown state of a system 

given a set of noisy measurements. 

Description 

At each time-step, a Kalman Filter uses a System Dynamics model to predict the current 

state of the system based upon its estimate of the previous state. It then combines its 

prediction with a measurement of the state (or components of the state) based upon its 

relative confidence in each. 

Kalman filters were developed in support of the Apollo program, and come from an 

Aerospace and Control Theory background. Kalman's original paper76 lays out the basics of 

his filter, and Du Plessis77 gives a very readable introduction in 'The Poor Man's Explanation 

of Kalman Filtering', only a few years later. Awasthi and Raj78 give a modern survey of the 

filter's modern variants. 

Kalman filters are available within a number of numeric tools, including Python 

(Pykalman79), Matlab(Simulink, DSP Toolbox), R(several, compared by Tussel80), Vensim 

and others. 

Application to Model Parameter Inference 

In a parameter estimation setting, parameters can be considered as unchanging states for 

the Kalman Filter to infer. Examples of Kalman Filters applied to System Dynamics include 

Ryzhenkov's parameterization of an economic long wave model81, and Shiryaev, Golovin 

and Smolin's model of a one-commodity firm82.

Figure 4: Inference of Distributions with 
MCMC in Andrieu, Freitas, and Doucet41. 
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3.5 Surrogate a Function 

In some cases, two variables exhibit a well-defined relationship, but the form of that 

relationship is not well described by any simple functions. If these parts of the system are 

not the subjects of interest, the modeler may choose to surrogate the relationship with 

some form of piecewise model, or machine learning predictor. 

3.5.1 Table Functions or Lookup Tables 

Table functions give the modeler the ability to approximate a nonlinear relationship 

between one or more independent variables and an output variable. 

Description 

When an analytic representation of the relationship is complex or unavailable, the modeler 

constructs a table function using a set of points from that function, and these are 

interpolated between to find output values. 

Lookup tables have been in use long before the advent of computers, and had previously 

been compiled to make trigonometric or logarithmic calculations simpler. Many software 

packages provide the basic data storage and interpolation function necessary to implement 

a lookup table, including Python(Scipy, Pandas83), R(Stats), matlab(native), Vensim, 

Anylogic. 

Application to Surrogating Functions 

When a relationship between variables is unknown or complex, a lookup table provides an 

intuitive way to include information about the relationship in a model. Franco84 presents a 

thorough introduction to table functions as they have historically been used in SD modeling. 

3.5.2 Neural Networks 

Neural Networks have the ability to encode multidimensional nonlinear relationships based 

directly upon training data, and to approximate a response to novel input that is consistent 

with the nonlinear relationships it encodes. 

Description 

Neural networks use training data to establish the relative weights of a set of links between 

neural nodes, these links encoding the relationships present in training data. Test data 

forms the inputs to these models, and their interaction with the established links provides 

the output. 

Neural networks are a product of the Machine Learning community. McCulloch and Pitts85 

developed the first concepts of Neural Networks well before they were implemented on 

computer. Holena, Linke, Rodemerck, and Bajer86 use neural networks directly for 

surrogating functions based upon data. Software capable of encoding neural networks 

includes, Matlab(NN Toolbox), Python(NeuroLab87, PyBrain88), and a number of standalone 

packages. 
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Application to Surrogating Functions 

System Dynamicists can use neural networks in place of table functions, especially in 

situations with complex, multidimensional relationships that must be estimated from data. 

Alborzi89 demonstrates the use of a neural network to approximate a function, using the 

example of gravitational attraction between two bodies. 

4 Testing 
After the model is built, the next task is to build confidence in the model's ability to 

represent the real system. Here the modeler can use data for its ability to disprove the 

model, show where its weaknesses are, and determine how she can improve it. In each case 

the modeler is looking at the model's ability to predict the data in a given set of conditions, 

and to test the model's robustness to different types of errors. Forrester and Senge90 give a 

definitive guide to System Dynamics model testing. Barlas91 elaborates with a procedure for 

conducting various forms of model testing. 

In this section we omit qualitative tests, such as tests for boundary adequacy, and 

dimensional consistency; numerical tests with little reliance on data (beyond model 

calibration): test of conservation laws, extreme conditions, loop knockout, and surprise 

behavior tests. These omissions help us focus on the tests with strong data reliance. 

4.1 Compare Point Predictions with Numerical Data 

The most logical quantitative test of a predictive model is its ability to make predictions. 

When a model is calibrated with best-fit parameter values, it is only able to make point 

predictions, which are unlikely to follow the true behavior of the system exactly. A modeler 

can look at the difference between the model prediction and the observed behavior in both 

the time and frequency domain for various parts of the model and various sections of the 

data.  

4.1.1 Summary Statistics 

Summary statistics aggregate the difference between a model point prediction and the 

observed value, according to some weighting function. These can be decomposed into 

components due to bias, variance, and covariance. 

Description  

Summary statistics include variants on Mean Square Error, the Coefficient of Determination, 

Theil's U statistics, and others. Sterman92 describes the appropriate use of summary statistics 

for System Dynamics models. Oliva93 shows how these metrics are calculated using Vensim.  

The majority of statistical packages are capable of calculating basic summary statistics: 

Python(Scikit-Learn, Statsmodels), R(Metrics), Vensim. 

Application to Point Prediction Assessment 

Summary statistics are used to estimate the goodness of fit of a model to historical data. 

System Dynamics models are often interested not in the magnitude of the total error, but in 
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the way that error is composed. By using a variety of summary statistics a modeler can 

determine if the error in her models is relevant to the purpose of the model. As an example, 

Stephan94 uses summary statistics to build confidence in models of software development.  

4.1.2 Cross Validation 

Cross validation (or out-of-sample testing) works to improve confidence that the model 

represents the underlying behavior of the system, and that correspondence between the 

model and the observed data is not merely a result of over-fitting the model to the data. 

Description 

Cross validation works by breaking a dataset into 'training' and 'testing' components. The 

training set is used to parameterize the model, and the testing set is used to measure the 

ability of the model to make predictions. If possible, a modeler may choose to partition the 

data in a variety of ways and repeat the analysis.  

When the system is time-dependent (as is usually the case with feedback models) and data 

is not significantly in excess of the relevant period of the system, there is a limited range of 

ways that the data can be meaningfully partitioned. 

Cross validation comes from the statistics tradition. Picard and Cook95 give a good overview 

of the use of cross validation to combat over-fitting in regression models. Software that 

facilitates cross validation includes Python (Scikit-Learn), R (A variety of packages 

summarized by Starkweather96), Matlab(Statistics Toolbox) and others. 

Application to Prediction Assessment 

Cross validation in system dynamics can be challenging, as the complex time-dependent 

nature of the systems in question increases the difficulty of partitioning data into 

independent subsets. Randers97 demonstrates out-of-sample testing in the qualitative 

comparison of predicted and measured wood pulp inventory and price. 

4.1.3 Family Member Tests 

Family Member Tests are a special form of cross-validation or out-of-sample testing, in 

which the modeler uses the model structure to predict the behavior of a structurally parallel 

but physically separate system. As with Cross Validation, Family Member Tests work to 

verify that the model fit is due to the structure of the system model, and not to a lucky guess 

of parameters. 

Description 

If appropriate family member systems are available, a modeler may choose to reoptimize 

the model based upon data from the family-member system in order to support the fidelity 

of the model structure and equations; or use the original parameter values to support the 

full data and modeling process. The modeler can then apply either point-wise or statistical 

measures to evaluate the model's predictive ability. 

Family Member Tests are described by Forrester and Senge90, and well elaborated by 

Sterman5(21.4.9). 
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Application to Prediction Assessment 

System dynamics is principally concerned with identifying the structure of a system, and 

structural similarities between systems. These similarities allow a model developed in the 

context of one system to be applied to another, structurally similar system with few 

changes. Teekasap98 tests a model of the economy of Thailand by evaluating its ability to fit 

data for the structurally similar Malaysian economy. 

4.1.4 Frequency Spectrum Analysis 

For a description of the method, see section 1.1.2 

Application to Point Prediction Assessment 

In systems with oscillation and noise, small changes in system parameters can lead to large 

deviation between model prediction and system observation after only a few periods. 

Spectral analysis, however, can reveal similarity between the strength of oscillatory modes 

excited in the model and the real system. 

Eberlein and Wang99 demonstrate the use of spectral analysis to evaluate the ability of a 

model to replicate behavior modes by comparing power spectral density of the predicted 

and observed behavior in the frequency domain region of interest. 

4.2 Compare Statistical Predictions with Numerical Data 

If models are calibrated with distributions of parameter values, the modeler can develop 

statistical predictions of output values. In this case, she can calculate the likelihood of the 

observed data given the assumption that the model is correct. The modeler uses statistical 

and graphical measures to determine how well the model fits the data.  

4.2.1 Monte Carlo Analysis 

Monte Carlo Analysis is helpful when the parameters of a model are given as statistical 

distributions, and we want to find statistical prediction (as opposed to a point prediction) of 

the output behavior of the system. 

Description 

Monte Carlo Analysis draws a set of parameters from a distribution of possible values, and 

uses those parameters to execute a dynamic model. The output is recorded and the process 

repeated on the order of tens of thousands of times. The collected output values are 

summarized using a histogram or other density estimation method to generate an expected 

distribution of the behavior of the system given each input distribution. 

Monte Carlo Analysis was developed to aid in nuclear energy calculations by Metropolis, 

Rosenbluth, and Teller38, and expanded and explained by Metropolis and Ulam100. There are 

a variety of articles and books detailing Monte Carlo and its derivatives.  

Most statistical packages are capable of performing Monte Carlo Analysis, and the basic 

techniques are not difficult to implement. 
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Application to Statistical Prediction Assessment 

Monte Carlo Analysis gives the modeler the ability to propagate uncertainty in parameter 

estimates through to the model output. Well executed, the method can produce calibrated 

statistical forecasts of system behavior. Hagenson101 discusses the use of Monte Carlo 

techniques to study capacity for airfield repair. Santos et al102 apply the method to 

simulation of pulp prices. Moxnes103 applies Monte Carlo Analysis to discuss decision 

making with regard to greenhouse gasses, and Phillips104 discusses the use of Monte Carlo 

to ensure the robustness of model conclusions. 

5 Policy Design and Evaluation 
When a modeler is confident that her model sufficiently represents the system, and 

replicates its problem behavior, she begins to craft interventions to improve performance. 

This requires her to identify places in the system where she is able take action, and 

determine what type of action will have the desired effect. 

From this section we omit the qualitative tasks of brainstorming model structural changes, 

and the tasks that require no new data techniques: testing for policy compatibility, 

robustness to model uncertainty, etc. 

5.1 Explore Parameter Change Policies 

When leverage points have been identified, a modeler can use some form of optimization to 

discover new values to drive parameters towards, respecting the costs of doing so. 

5.1.1 Optimization 

The term 'Optimization' covers a range of methods for choosing a set of input conditions 

that maximize or minimize a desired output state of a model. 

Description 

Many types of optimization exist, each with a variety of algorithmic implementations: slope 

following algorithms, edge condition assessment, stochastic methods, genetic algorithms 

and others. The best optimization for a specific problem depends largely on the topography 

of the reward function in parameter space. For a brief overview of optimization methods in 

the context of supply chain analysis, see Christou (Ch 2)105. For a more detailed, modern 

introduction, see Chong and Zak106. 

Optimization is well established in Engineering and Applied Mathematics. Most 

computational environments include some form of optimization, several include 

Python(Scipy, DEAP107), Matlab(Optimization Toolbox), R(native, GA), Vensim, and 

Anylogic. 

Application to Policy Change Identification 

The choice of a policy intervention in System Dynamics balances a number of factors, 

including performance, viability, and robustness. Optimization can be used to tailor 

strategies for peak performance subject to realistic constraints. Coyle108 begins a 
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conversation about optimization methods for policy design in System Dynamics that is 

continued by Macedo109. Graham and Ariza110 demonstrate the use of policy optimization in 

the context of market placement strategy. 

5.2 Adapt Policy in Light of New Information 

Frequently, the optimal intervention strategy is not to change a parameter or system 

structure once, but to respond dynamically to the state of the system continuously or in 

regular intervals. In these cases the modeler can draw from control theory and sequential 

decision theoretic approaches to plan her interventions. 

Hamarat, Pruyt and Loonen111 discuss the need and potential for adaptive, robust policy 

making based upon System Dynamics models. 

5.2.1 Q Learning 

Q Learning (or Reinforcement Learning, Approximate Dynamic Programming) is a method 

of sequential decision making which optimizes the balance of payoff in the immediate and 

future time, taking advantage of new information about state and uncertainties that 

becomes available as time progresses. 

Description 

Q-Learning solves a dynamic programming problem that 

computes the expected future payoff for a variety of possible 

future states, and suggests the optimal decision at each time-

step based upon the assumption that optimal decisions will 

also be made in future states. 

Q-Learning comes from the Machine Learning and Decision 

Theory traditions. It was first articulated by Watkins in his 

PhD thesis112, and later elaborated in Machine Learning113. 

Cybenko, Gray and Moizumi114 give a tutorial and overview 

of the method. Several packages implement q-learning 

algorithms: Python(Reinforcement Learning Toolkit115), 

R(qLearn); a variety of other unpolished code examples are available. 

Application to Policy Adaptation 

Q-learning adds to System Dynamics modeling a programmatic method for structuring 

adaptive policies capable of dealing with uncertainty. Rahmandad and Fallah-Fini116 

introduce the use of Q-learning and system dynamics models for adaptive policy 

development. 

6 Conclusion 
In conducting this survey, we have identified a number of data techniques with potential to 

support System Dynamics that do not seem to be in common use.  In Problem 

Conceptualization: Frequency analysis for time horizon and resolution determination. In 

Figure 5: Learning and State Aggregation 
Process in Rahmandad and Fallah-Fini116. 
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Model Formulation: Frequency domain regression, Indirect Inference and System 

Identification, model-based interpolation and filtering for exogenous inputs, Sequential 

Monte Carlo. In Model Testing: Brier Score, Reliability and Sharpness Diagrams. For Policy 

Development and Verification: Model-Predictive Control, virtual control groups, dynamic 

models for real-time system inference and monitoring. 

The breadth of techniques for data inclusion in System Dynamics models, and the diversity 

of applications in which they can be useful mean that any survey of this type will be 

incomplete; and the rapid pace of new development means that there will soon be 

techniques to add to this list. Readers should continue to monitor developments in data 

mining, machine learning, and computer science to see how lessons from these fields can be 

brought to bear on dynamic models of complex systems.  
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