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Abstract 

Adoption of social network sites and use of smart phones with number of sensors in 
them has digitized user’s activities in real-time. Smart phone applications such as 
calendar, email, and notes contain lot of user information and provide a view into 
user’s activities, while sensors such as GPS sensor can be used to passively find 
information about the user. In addition to this user and device data, these devices 
have access to the Internet that can be leveraged to build powerful applications. 
 
Personal assistant software (smart agent) can be used as an interface to the digital 
world to make the consumption of this information timely and efficient for the 
user’s specific tasks. Goal of the thesis is to design personal assistant software that 
understands the semantics of the task, is able to decompose the task into multiple 
tasks within the context of the user and plan these tasks for the user. It will be 
designed using semantic web technologies and knowledge databases to understand 
the relations between the tasks. Agent will be integrated with online web-services to 
harvest the data available on-line with the data available on the device and help the 
user to manage his or her tasks. 
 
Two use cases are covered in this thesis document to explore automation 
capabilities and planning capabilities of the agent. Design of the agent using the two 
use cases helped in the design of sub-modules within the agent system, and also 
highlighted the requirements on external data and knowledge sources.   
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1 Introduction  
1.1 Motivation for this Thesis 

1.1.1 Information overload on the web 
Huge amount of information is being generated by online websites and is primarily 
consumed by users browsing the website. Websites have used HTML and XML based 
technologies to render the content on the user’s screen and let the user make 
decisions based on his interpretation of that content.  
 
In order to be discovered by the search engines, web sites include some meta-data 
about the content, enabling discovery of the web site’s pages when a user makes a 
relevant query. This model puts user at the center to identify tools such as search 
engines in order to get to the relevant content for his need, filter from the list of 
available content and then read the content - making the task of consuming this 
information increasingly difficult and leading to scalability limitations on the 
amount of content that can be consumed by users, causing information overload.  
 
Availability of this information coupled with its overload on users has created a 
need for applications that can act as a conduit to interface users to the digital world 
by using the online information for the benefit of its users, with a minimal 
intervention from the users.  
 

1.1.2 Silos of information 
Adoption of proprietary structure for the data by enterprises has led to proliferation 
and creation of silos of information that makes interpretation of this data difficult by 
other applications interested in that data. Even though large amounts of data and 
services are available, need for interpreting proprietary formats of the data makes it 
difficult to easily consume this data and so limits the spread of this information to 
interested parties who can provide richer value added services.  
 
In contrary, adoption of standard specifications to represent this data and 
publishing the content as well as the meta data used to generate the content can 
enable creation of applications that can interpret this data on behalf of the users and 
make the consumption of the content easier as well as timely. 
 



1.1.3 Using multiple applications to get one user task done 
Proliferation of mobile devices and mobile apps running on these devices has led to 
specialized applications with a razor focus on helping user accomplish a very 
specific task, using some of the contextual information available from sensors of 
mobile device, but with almost no interactions with other applications that user may 
be using to accomplish other tasks.  
 
This leaves the burden of breaking the tasks for a user’s intention to complete a task 
solely on the user.  In a way, user needs to manually manage the workflow of the 
system as well as data transformation and data flow by using multiple sets of 
applications to complete one task.  
 
For example, a user trying to make a travel plans need to check for airport codes for 
nearby airports and then check travel sites for tickets between combinations of 
airports to reach the destination.  
 
Another example is - instead of having a separate applications for every day 
information such as train timings, weather conditions, sports scores, news etc., it 
would be greatly useful if an application would take over this task and present the 
information to its user when requested or for any urgent scenarios as alerts to the 
user. 
 

1.1.4 Need for a cleaner and efficient interface to the digital world, that 
wraps the complexity of interaction with digital world from the user 

Complexity of getting a task done has been offloaded to the user as described in 
previous section 1.1.3. This helps the software companies to focus on a specialized 
problem domain while delegating overall management and engineering of the 
workflow to the user. 
   
One of the biggest motivating factors in undertaking this thesis research has been to 
identify data sources and structures of data that can enable uniform definition of 
data and also extend this definition based on any specific needs of an application.  
 
Some of the enabling technologies discussed in next section can be used to change 
this paradigm to a more user centered one with focus on achieving tasks for the user 
at a more holistic level. 
 

1.2 Enabling Technologies  
Semantic Web or Web 3.0 refers to availability of data in machine-readable form, 
along with self-contained information on the type of data that can be used to 
intelligently inspect and process this data. Adoption of linked data technologies such 
as RDF is enabling web to link different aspects of data together and moving 
towards Tim Berners-Lee’s vision of single linked web of data. In addition, this data 
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is also structured in a homogeneous form that can be used to interpret the data and 
build interesting as well as intelligent applications that can discover and process 
this data.  
 
Availability of semantic data and technologies to process this data provides an 
opportunity to build applications that can understand the tasks they are executing 
and plan these tasks by understanding the context around these tasks for the user. 
 
In last few years, wide adoption of social networking sites such as Facebook, Twitter 
and LinkedIn has led to availability of vast amounts of user data that carries almost 
in real time, user activity information as well as their profile information. Data 
which was previously in non-digital form became digital and is now available to 
other applications interested in this data, with user’s permission. 
 
Devices such as smart phones, tablets and sensors in home/office appliances have 
enabled access to user related data that was not available electronically earlier. With 
ever more increasing reliance on these devices we are moving towards an Internet 
of things where devices will be able to query the web and applications can be 
written to leverage this information to provide contextual and intelligent solutions 
to the user. 
 
There has been an expansion in availability of data in machine readable form which 
forms basis of this thesis to build intelligent applications such as smart personal 
assistant software that can leverage this data along with knowledge databases that 
carry common sense knowledge of the world and use this understanding to solve 
interesting problems in an intelligent way. 
 

1.3 Objectives 
Main objective of this thesis is to show feasibility of building a personal assistant 
software (a smart agent) using semantic data sources available on the web, user 
generated content, data from the sensors of user’s mobile devices and providing 
knowledge from knowledge databases as well as from inference technologies of web 
3.0. 
 
To design a smart agent that has contextual information about the user and helps in 
managing and planning tasks, using semantic web technologies and open data 
available on the Internet. Contextual information about the user can be location, 
current time, calendar appointments, relation between tasks, decomposition of 
tasks, past history of tasks, user interests, likes etc. Agent can use data gathered 
about the user as well as environment data to better understand what each of the 
tasks mean and decompose the tasks based on sequence of steps stored in its 
knowledge base and then plan individual tasks.  
 
Planning part of the agent will strive to optimize resources and try to improve 
productivity of the user. It can be used as a time management application as well as 
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a task management application. By combining, related tasks together that can be 
completed at the same time and around the same location, agent will optimize the 
user’s resources to complete these tasks. 
 
A feedback loop from the user will help the agent to make decisions when there are 
multiple paths and agent does not have sufficient information to make those 
decisions.  
 
Assumptions, limitations and constraints in the solution will be highlighted and any 
additional infrastructure necessary as a complement to the system will be identified. 
 

1.4 Organization of the thesis 
Thesis report is organized into six chapters, from introducing the topic to current 
solutions, review of technologies, research methodologies, design and 
implementation of the system to summary of the achievements at the end of the 
thesis report. Each of the chapter summaries is described below.  
 

1.4.1 Chapter 1: Introduction 
This chapter provides introduction to the topic of a smart agents or personal 
assistant software, motivations and drivers for writing this thesis, objectives or 
goals set out at the beginning of the thesis. It also covers organization of the thesis, 
with a brief summary about the contexts of each chapter.  
 

1.4.2 Chapter 2: Current Market trends and solutions 
This chapter covers personal assistant software applications such as SIRI, ReQall, 
and Google Glass that help users interactions with the digital world. It covers high-
level use cases handled by these software applications.  
 

1.4.3 Chapter 3: Research Methodologies 
This chapter covers research methodology to research the topic as well as software 
methodology used to build and test the agent.  
 

1.4.4 Chapter 4: Overview of semantic web technologies 
Chapter 4 of the thesis provides an overview of different technologies that can be 
leveraged to tap into the semantic and non-semantic data sources on the web, as 
well as some of the tools that could be leveraged to wrap these technologies to build 
an agent system. It explores the specifications, ontologies, knowledge databases, and 
online web services that provide access to data or services pertaining to it.  
 
It begins with a overview of semantic web technologies as well as web technologies 
and tools that can be used to build the system, covering specifications such as RDF, 
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RDFS, OWL and SPARQL that are being widely used by the proponents of semantic 
web to represent, share and query the data.  
 
It also covers some of the relevant ontologies to build the agent to manage user’s 
every day tasks. Each of the ontology reviewed in this section represents a domain 
of interest and captures the knowledge of domain in standardized W3C form such as 
RDFS or OWL. Goal of this section is to capture relevant ontologies from domains 
such as social relationships, product definitions, e-commerce, task definitions, and 
knowledge databases with a view to leverage them while designing the agent.  
 
It then provides a brief overview of knowledge databases and type of the knowledge 
that is currently embedded in them. These knowledge databases form the central 
building block in the design of the system, providing flexibility to the system in 
terms of capturing the knowledge and exposing this knowledge to the agent in order 
to make inferences and plans.  
 

1.4.5 Chapter 5: Designing the smart agent 
Chapter on designing the agent begins by identifying high-level requirements of the 
system, dives into more detailed use cases to highlight specific cases of the instances 
these requirements will be utilized. High-level requirements define the scope of the 
system pertaining to this thesis and use cases offer a way a path to utilize certain 
features of the system.  
 
It delves into architectural considerations for building an agent that utilizes online 
data and services. And then the design chapter goes into defining the modules and 
each module’s features, interfaces and interactions with other modules within the 
system.  
 
This chapter uses sequence diagrams and data flow diagrams to show how the 
control and information is passed to implement a use case of ‘Driving to Airport’. 
Sequence diagrams for this use case also highlight decision points within the 
process such as how the agent uses knowledge database to identify whether the task 
can be automated or is a manual task. The design identifies logic embedded within 
the agent that works with the data stored in linked databases and knowledge 
databases. 
 
It provides low-level details on the implementation of the modules, interactions 
between the modules. This chapter includes assumptions on availability of data, 
services, as well as assumptions related to the user during the runtime of the agent.  
 

1.4.6 Chapter 6: Assumptions, Constraints and Limitations of the system and 
ways to address them 

This chapter reviews the assumptions used while building the system, and also 
looks at the limitations of the system. It provides improvements to the system to 
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overcome these limitations as well as to relax some of the assumptions and 
preconditions that are necessary for the current version to work.  
 

1.4.7 Chapter 7: Conclusion and Future work 
This chapter discusses how far the thesis assumptions on semantic data as well as 
knowledge databases proved to be useful in building the agent. It discusses catalysts 
that would enable further spread of the semantic web and related technologies and 
how this spread can fuel building such agents in future.    
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2 Personal Assistant Software in the 
Market 

2.1 Goals of Personal Assistant Software 
Goal of a personal assistant software is to act as an interface into the digital world 
by understanding user requests or commands and then translating into actions or 
recommendations based on agent’s understanding of the world. This understanding 
of the world is modeled in a knowledge base that contains relationships, 
connections and rules between various concepts of the world. These agents, at least 
at present are not expected to replace humans but can be delegated mundane tasks 
that user would otherwise not be interested in doing or efficiently doing these 
mundane tasks by processing large amounts of relevant and real-time information 
on the web. 
 

2.2 Different types of Personal Assistant Software 
There have been multiple approaches to building personal assistant software, based 
on how the user enters the tasks and how the system interprets them. 
 

2.2.1 Voice recognition as input entry medium 
In this category of personal assistant software, focus is relieving the user of entering 
text input and using voice as primary means of user input. Agent then applies voice 
recognition algorithms to this input and records the input. It may then use this input 
to call one of the personal information management applications such as task list or 
calendar to record a new entry. ReQall application covered later in the chapter falls 
into this category of personal assistant software. 
 

2.2.2 Voice recognition based task automation or information retrieval 
In this category of personal assistant software, focus is on capturing the user input 
thru voice, recognizing the input and then executing the tasks if the agent 
understands the task. Software takes this input in natural language, and so makes it 
easier for the user to input what he or she desires to be done.  SIRI and Google Glass 
fall under this category of software.  
 

2.2.3 Planning 
In this category of personal assistant software, focus is on understanding the task, 
sub tasks associated with it and then creating a plan for the user to complete the 
tasks. SIRI for certain supported tasks such as booking a reservation at a restaurant 
using web services such as OpenTable and the agent designed as part of thesis 
belong to this category. 
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2.3 Technology Enablers 

2.3.1 Smart phones – CPU, memory, storage and gesture interface 
Smart phones in the market today offer powerful computing environment in terms 
of CPU, memory, and file storage that can be used to run complex software 
applications.  
 
Touch screen and video gesture interface being offered by these phones enables a 
more user friendly interface that can make the interaction with the smart agent 
easier as well as reduce the friction of using such an interface.  
 

2.3.2 Voice recognition 
Voice recognition software enables hands free use of the applications, lets users to 
query or command the agent thru voice interface. This helps users to have access to 
the agent while performing other tasks and thus enhances value of the agent itself. 
 

2.3.3 Network connectivity 
These smart phones also have ubiquitous connectivity thru WiFi and cell phone 
network, enabling distributed applications that can leverage other APIs exposed on 
the web without a need to store them locally.   
 

2.3.4 Bandwidth 
Availability of network bandwidth enables development of applications such as 
voice recognition software to be implemented on server side while expecting large 
amounts of voice input to be passed over the network in real time in order to 
convert voice into text.   
 

2.3.5 Web services 
Business as well as data services are being exposed on the web as web services that 
are implemented using standardized web protocols such as HTTP and use string 
based data interchange formats such as XML, JSON etc.  

 

2.3.6 Sharing of data thru web services and Linked Data 
Proliferation of web services is helping sharing of data across different applications 
across different networks. Web services can offer data from different data sources 
to provide an integrated standardized view into this data for all their consumers. 
This also helps delegate some of the data and information integration as well as 
business functionality to web services layer, thus simplifying implementation of 
software applications consuming these services.  
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Another source of data is linked data, where organizations are exposing the data 
they collect in semantic web form with specific ontologies that can be used to 
interpret the data as well as to link the data to other related data captured by some 
other organizations, making the information consumption as well as integration 
easier. 
 

2.3.7 Personal Information integrated with information on the web 
Mobile Operating systems host personal information software such as contacts, todo 
list, notes, email, music library, etc., that carry rich personal information relevant to 
the user, and provide context to the user’s activities.  
  

2.3.8 Task and Domain Models for specialized tasks 
Specialized task and domain models such as booking a flight, or finding cheapest 
book online from various e-commerce sites and then providing an interface to book 
an order are helping automate search, discovery and online order operations.  

 

2.3.9 Cloud computing 
Cloud computing has commoditized computer hardware by providing access to 
servers in centralized data centers managed by cloud providers. This is helping 
enterprises to provision servers on demand for the duration they are needed, thus 
enhancing scalability while ensuring that enterprises only pay for the usage. 
Adoption of open standards in cloud computing environment is accelerating 
adoption of these technologies as it simplifies the process of building, deploying and 
maintaining applications. 
 

2.4 CALO 
CALO is an acronym for ‘Cognitive Assistant that Learns and Organizes’, a DARPA 
funded project that was awarded to SRI International with a goal to create cognitive 
software systems, that is, systems that can reason, learn from experience, be told 
what to do, explain what they are doing, reflect on their experience, and respond 
robustly to surprise. The project brought together leading computer scientists and 
researchers in artificial intelligence, machine learning, natural language processing, 
knowledge representation, human-computer interaction, flexible planning, and 
behavioral studies from 22 organizations.1 
 
CALO project was run by SRI international until 2008, and was spun off as SIRI to 
continue work on personal assistant software. Apple acquired SIRI in 2010 and 
integrated it into its mobile operating system iOS. So, parts of CALO framework as 
well as the research done on personal assistant software in this project are being 

                                                        
1 “CALO Website - http://www.ai.sri.com/project/CALO.” 
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used in SIRI as well as some other personal assistant software applications that have 
licensed the technology from SRI international. 
 

2.4.1 Use cases Supported by CALO   
Based on the information obtained from Wikipedia2, CALO had six separate 
applications that together form the framework and provide the features of personal 
assistant software. 

Organizing and Prioritizing Information: As the user works with email, 
appointments, web pages, files, and so forth, CALO uses machine learning 
algorithms to build a query-able model of who works on which projects, what 
role they play, how important they are, how documents and deliverables are 
related to this, etc. 
Preparing Information Artifacts: CALO can help its user put together new 
documents such as PowerPoint presentations, leveraging learning about 
structure and content from previous documents accessed in the past. 
Mediating Human Communications: CALO provides assistance as its user 
interacts with other people, both in electronic forums (e.g. email) and in 
physical meetings. If given access to participate in a meeting, CALO 
automatically generates a meeting transcript, tracks action item assignments, 
detects roles of participants, and so forth. CALO can also put together a 
"PrepPak" for a meeting containing information to read ahead of time or have at 
your fingertips as the meeting progresses. 
Task Management: CALO can automate routine tasks for you (e.g. travel 
authorizations), and can be taught new procedures and task by observing and 
interacting with the user. 
Scheduling and Reasoning in Time: CALO can learn your preferences for 
when you need things done by, and help you manage your busy schedule 
Resource allocation: As part of Task management, CALO can learn to acquire 
new resources (electronic services and real-world people) to help get a job 
done. 

 

2.5 SIRI from Apple  
SIRI is personal assistant software that interfaces with the user thru voice interface, 
recognizes commands and acts on them. It learns to adapt to user’s speech and thus 
improves voice recognition over time. It also tries to converse with the user when it 
does not identify the user request.  
It integrates with calendar, contacts and music library applications on the device 
and also integrates with GPS and camera on the device. It uses location, temporal, 

                                                        
2 “CALO Wiki Page - http://en.wikipedia.org/wiki/CALO.” 
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social and task based contexts, to personalize the agent behavior specifically to the 
user at a given point of time. 3 4 5 

 

2.5.1 User contexts supported by SIRI  

2.5.1.1 Location 
SIRI is aware of the current location, and is able to apply this awareness while 
executing tasks that are dependent on a location. For example, you ask for Italian 
restaurants and it applies location awareness and queries for Italian restaurants in 
the vicinity. This can be overridden by making queries based on explicit location. 
 

2.5.1.2 Temporal Context 
Temporal context refers to understanding of time, and enables agent to understand 
the dependency with other tasks, which are to be carried out before, at or after a 
certain time.   
 

2.5.1.3 Social Context 
Social context refers to understanding of user’s relationship with his family, 
colleagues and friends. This information can be explicitly entered into SIRI, by 
identifying the person name and relationship during the data entry. This enables 
SIRI to link person names with social relationships. This understanding, even 
though could be a simple map of personal relations can help agent understand the 
requests or commands from the user such as ‘ I want to go to dinner with my wife 
today’. This helps user to use the same natural language with the agent that is used 
to communicate with people.  
 

2.5.1.4 Context between other tasks 
SIRI understands task context within a conversation with the user. For, example if 
the user is flying to New york in the afternoon to reach there in the evening, and 
then asks SIRI to look for nearby restaurants for dinner today, its able to understand 
the location as New York and suggest locations based on that understanding. 
 

                                                        
3 “How SIRI Works - Interview with Tom Gruber, CTO of SIRI :  
Http://www.novaspivack.com/technology/how-hisiri-works-interview-with-tom-
gruber-cto-of-siri.” 
4 “SIRI Patent Information - Http://www.patentlyapple.com/patently-
apple/2012/01/apple-introduces-us-to-siri-the-killer-patent.html.” 
5 “SIRI Demo - Http://vimeo.com/5424527.” 
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2.5.2 Use cases supported by SIRI 
SIRI’s approach to personal assistant is to convert user requests first into text, and 
then convert this text into a task model while using the contextual information. And 
it uses the task model to map input into API queries to the web services. In order for 
SIRI to respond to a query, it needs a task model and this also enables SIRI 
extensibility via new task models. Task models are coded into the software during 
development, and identify actions with set of web services capable of servicing the 
request. It’s a specialized model that understands a specific task and how to execute 
it. Supporting new task entails creation of new task models during software 
development time, and then attaching to sequence of steps to complete that task.   
 
Following are some of the use cases supported by SIRI: 

2.5.2.1 Invoking iOS applications based on user request 
 Call someone from my contacts list  
 Launch an application on my iPhone 
 Send a text message to someone 
 Set up a meeting on my calendar for 9am tomorrow  
 Set an alarm for 5am tomorrow morning 
 Play a specific song in my iTunes library 
 Enter a new note 

 

2.5.2.2 Calling external services to serve user requests 
 Search for text (on search engines – Google, Bing, Wikipedia, etc.) 
 Search for a concept (in Wolfram Alpha) 
 Get directions from my current location to home 
 Tweet a message 
 Post a message or photo to Facebook 
 Check weather today at a location 
 What movies are playing at AMC theater in Cambridge 
 Get the latest score for Red sox game today 
 Book a table for two at a restaurant in Boston 

 



 13 

2.5.3 SIRI System Modules 

 

Figure 2-1: SIRI System Modules6 

 

Inputs 
SIRI takes explicit user inputs thru voice or textual interface. This input is combined 
with contextual information such as location, time, other task context etc., and fed 
into its system to identify the task that needs to be executed. 

 

  

                                                        
6 “SIRI Patent: US20120016678A1 - 
http://www.google.com/patents?id=ISECAgAAEBAJ&printsec=abstract&zoom=4#v
=onepage&q&f=false.” 
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NLP Modules 
NLP modules include text parsers, vocabulary for the agent, language interpreter. 
This module is responsible for converting voice input into text. 

 

Memory 
It maintains short term as well as long term memory to provide intelligent and 
personalized task execution to the user. Short-term memory aids the agent to cache 
answers to related questions and avoid asking the same question multiple times to 
the user, thus optimizing the performance of the agent. It can use this short-term 
memory to store output of tasks to represent new state of the environment as well 
as contextual information of the user. 
While long-term memory is used to store user’s interests, and patterns in answers 
that can help agent to predict some of the choices user may make and thus focus on 
these patterns while querying the services. 

 

Web Service Integration 
SIRI depends on external data and web service providers to gather information on 
specific services available at a location as well as for generic search capabilities.  
Following are the set of web services it uses for different domains of questions 
posed by the user: 

 Restaurant and businesses: OpenTable, Gayot, CitySearch, BooRah, Yelp, 
Yahoo Local, ReserveTravel, Localeze  

 Events & Tickets: Eventful, StubHub, and LiveKick  
 Movies and tickets: MovieTickets, Rotten Tomatoes, and the New York 

Times 
 Factual Questions: Bing Answers, Wolfram Alpha, Evi and Wikipedia 
 Web Search: Bing, Yahoo, and Google, Wikipedia for web search. 
 Maps: Google Maps and Yelp! Search 
 iOS Applications: contacts, calendars, clock, reminders, browser, phone call, 

SMS  
 
Web services provide flexibility as well as modularity to SIRI, as specialized tasks 
can be offloaded to these web services while focusing on the user interface and 
integration with these APIs.  Set of web services used by SIRI is hard coded into the 
task models, and so is known at design time as well as run time. This set of web 
services is updated in order to integrate with any web service supporting the 
existing tasks or new tasks defined by SIRI’s task models. 

 

Dialog Flow Processor 
Dialog flow processor embeds itself within each of the user inputs and 
disambiguation phases while SIRI is trying to map user request to web service calls 
to external applications or internal iOS applications. This module enables the agent 



 15 

to keep the context of the question in mind, and ask the user questions in order to 
gather any incomplete information to complete the task.  

 

Outputs 

 

Figure 2-2: SIRI input and output interfaces 

 
Above Figure 2-2 shows, task models as sequence of steps that involve calls to web 
services to gather information and then having a dialog with the user to complete 
this task. 
 
Once SIRI identifies the task to be performed, output of the task could be in the form 
of information gathered by calling a web service or automating a task such as setting 
up a reminder or creating a new meeting invite. SIRI then maps this output to user 
consumable form. 
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2.5.3.1 Interaction between models within SIRI 

 

Figure 2-3: Interactions between models within SIRI 

 

Above Figure 2-3 shows different models within SIRI that are designed to model the 
specific task domain, dialog flow, task flow, entities for the task and integration with 
web services. 

 

Dialog Flow models shown in the figure 2-3 help the agent to have a conversational 
dialog with the user and collect information regarding the task to be performed. Any 
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ambiguities in user input are handled thru dialog. This helps the agent to collect 
user input in parts, and build on already collected information.  
 
Task Flow models define the workflow for an identified task. These models define 
set of dependencies for the task, preconditions, task decomposition, and the post 
conditions. Specializations of Task model implement specific task such as Dining out 
domain model shown in the figure 2-3. This model enables the agent to plan for the 
task as well as collect all the relevant information for a given sub task at the time it’s 
required. These models explicitly bind with the web services that can be used to 
complete the task. This binding of web service is done at the design time, so the 
agent at execution time knows before hand on set of web services it will be 
interacting with for a particular task. 
 
Each model maintains a data model that contains data required to accomplish the 
task as well as the relationships and constraints between the data elements. This 
data is then used to map to the web services called and the response from the web 
service is fed back into the data model and converted into user-friendly form for 
displaying to the user. 
 
This framework of models enables Apple to plug in any new tasks into the agent by 
defining the specialized model and then binding that to a set of services and then 
using the binding to execute the tasks at runtime. Agent delegates the process of 
understanding the task and executing the task to the specialized modules and the 
web services offered by external data and business service vendors provide the 
hooks into the external world to complete the task. 
 
This framework enables a single user interface of SIRI to be used to accomplish 
multiple tasks, integrate information from multiple sources, automate set of tasks in 
a workflow by defining the domain models specific to the task within SIRI. This is a 
huge paradigm shift from existing mobile app paradigm of ‘There is an App for that’. 
It makes a single application extensible by embedding the knowledge into the 
domain classes within the same user interface and application.  

 

2.5.3.2 Salient Features and limitations of SIRI  
 SIRI focuses on understanding the spoken language of the user and apply 

NLP technologies to disambiguate user’s request based on the context of the 
user and its past knowledge of the user. In a way, it tries to engineer a 
personal assistant by mapping this disambuiguated text into actionable tasks 
that are executed by calling external web services or internal applications 
running on the mobile device.  It simplifies the process of data discovery by 
identifying and integrating various relevant data sources together and 
providing an intuitive interface to request for this information. It replaces 
multiple applications that may be used to individual tasks and automates this 
process by encoding it in its models and integrating thru APIs. 
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 SIRI does not maintain a knowledge database of it’s own and it’s 
understanding comes from the information captured in domain models and 
data models. 

 Web service API based task execution leads to proliferation of APIs. In order 
to support new tasks, entails defining new task models and then mapping 
steps within the task to call web services. This is a design time activity, and 
lack of discovery of these services at execution time leads to proliferation of 
web service APIs with in the agent. 

 

2.6 ReQall7 
Reqall is personal assistant software that runs on smartphones running Apple iOS or 
Google Android operating system. It helps user to recall notes as well as tasks within 
a location and time context. It records user inputs and converts them into 
commands, and monitors current stack of user tasks to proactively suggest actions 
while considering any changes in the environment. It also presents information 
based on the context of the user, as well as filter information to the user based on its 
learned understanding of the priority of that information. 
 
It applies machine learning algorithms on past information of the user – activities, 
locations visited, routes taken, inputs, user selections and uses this information to 
proactively present to the user when it identifies a situation that needs user 
attention. 
 
It can aggregate information from different sources such as emails, calendar, social 
networks, news feeds, etc., apply filters to this data and present a summary of the 
day to the user. In a way, it acts as a gateway to all the relevant information for the 
user. This helps user to avoid going to multiple applications in search of 
information. And it learns relevancy based on user actions and past user responses. 
It records user input, locations, other smart phone applications used, and then uses 
this information to identify patterns to make recommendations to the user.  
 
It understands the activities of the user, and is integrated with user’s personal 
information applications such as address book, calendar, email, and task list and is 
able to co-relate the impact of current activity on other activities listed in these 
other applications. 
 
As per Don Norman, Chief Mentor of Reqall – major advances in technology in terms 
of processing power, memory, network bandwidth, cloud services and advances in 
AI and natural language processing are acting as enablers of building intelligent 
personal assistant software. 
 
Reqall uses web services to various data and service providers such as Google, Yelp, 
Facebook, and Deal sites to find relevant information in a user context. It offloads 

                                                        
7 “Reqall Website - Http://www.reqall.com.” 
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management of data to these third party companies who are domain experts in 
collecting, managing and providing value added services of that data. Reqall by 
integrating these services thru the API is able to manage tasks of the user while 
providing a consistent interface to the user across all these applications.  
 
Use cases Supported by Reqall 

 Record voice and convert to text - Voice command can include what action 
to be taken with the text – for example, remind me to call my doctor today at 
2pm. This will setup a reminder at 2pm, and will ask the user to call the 
doctor at that time. But, this feature can also be used to transcribe ideas into 
text using the voice interface 

 Manage Calendar – It can manage calendar for the user and alert the user of 
any delays to get to a meeting based on your current and meeting locations. 
It can read out upcoming appointments to the user. 

 Manage shopping list 
 Manage task list 
 Reminders – reminders for preset calendar events 
 Location based tasks – it scans thru the task list and presents tasks that can 

be completed while at a location 
 Learns from usage – learns user interests, activities, frequency of activities 

and recommends activities based on location, time and activity context of the 
user. For example, it can automatically tag important emails by learning user 
responses to emails based on the information contained in the email. 
Similarly, it can learn frequency of phone calls to other people and remind 
user if the threshold identified by the agent is reached. 

 
It integrates with following applications running on the smart phone: 

 Reminders 
 Email 
 Calendar, Google Calendar 
 Outlook 
 Evernote 
 Facebook, LinkedIn 
 News Feeds 

 
Salient Features of ReQall 
Reqall focuses on collecting voice input from the user at any point of time and 
location with a goal of helping the user to remember that information at a later time. 
Contrasting with SIRI, focus is more on data recall, information gathering and partly 
on alerting for some well known plans such as driving are failing the deadlines. Its 
not focused on having a conversation with the user or automating certain tasks for 
the user. 
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2.7 Google Glass8 
Google Glass is a wearable computer with a display mounted to the glasses worn by 
the user. It includes a voice interface to the agent application running on the 
computer, and the display is an augmented reality that shows the output of the 
commands.  
 
Based on the queries it supports, it supports controlling on-board devices, invoking 
APIs to social networking sites such as Google and Facebook, as well as invoking 
APIs to search engines, maps, and information sites. It processes text input, and is 
able to convert to commands to the APIs its integrated with.  
 
It handles single command at a time within the location and time context.     
 
Supported Use cases 

 Device Integration 
o Take a picture 
o Record Video 

 Social Networking 
o Start Google Hangout 
o Send message 

 Web services 
o Search for a text or pictures 
o Translate text to a different language 
o Get directions to a location 
o Get weather for a location 
o Get flight details for a flight number 

 
 
Salient Features 
Using augmented reality, Google Glass makes browsing the web easier and available 
at any time in a hands free manner thru voice commands. With an onboard camera 
and video camera, it enables the user to take video and pictures at any time by 
invoking the agent. It also leverages the web services offered by various websites to 
gather information and present to the user, thus simplifying the information 
retrieval process. It does not provide a conversational interface yet, and all the 
commands to the agent are in the form of singular requests, but it can be envisioned 
that contexts of tasks and social contexts will be added to the agent at a later time. 
 
 
  

                                                        
8 “Google Glass Website - Http://www.google.com/glass.” 
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3 Research and Design 
methodology 

 
This chapter covers sequence of steps, tools, and processes used to define the scope 
of the smart agent project, research development tools, research process for looking 
at existing solutions as well as designing and implementing the system. 
 
Various open source frameworks, platforms and tools were used during the 
research, review, design and implementation phases of this project and have been 
covered as part of this thesis in later chapters. 
 

3.1 Research on Sources of Data 
This project was started on the premise that there is sufficient amount of openly 
available data and information on the web that can be utilized to build an agent that 
has access to making intelligent decisions for routine user activities. 
 
So, the first step in the process was to uncover these sources of data that are 
relevant to the use cases of the smart agent.  
 

3.1.1 Semantic Web Ontologies 
Semantic web ontologies formed a major portion of the research to build this agent. 
The goal of this exercise was to find existing ontologies that can be used to map the 
concepts in the agent to an existing concept defined in the ontologies so as to reuse 
this knowledge of the concept. W3C.org site was mostly leveraged to search for 
these ontologies. And as a classic example of semantic web, following the links of 
references of the ontologies used, gave exposure to related ones that could be 
potentially useful in designing the system. 
 
Another goal of this exercise was to maintain consistency in the definitions of 
concepts, and that required examination of ontology definitions and references.  
 
Ontologies, which were mapped to other existing ontologies such as mapping of 
concepts in Cyc to Wordnet as well as UMBEL, help to jump from one definition to 
the other and also to use each of these ontologies in their specialized use cases. 
During the process of researching on ontologies, preference was given to existing 
definitions of ontologies that were mapped to others in order to make the 
applications interoperable between the domains of ontologies. 
 
Adoption of these ontologies by sources of data as well as authors of other 
ontologies is critical for its success. Thus, a more widely adopted ontology with a 
deeper connection and referencing links from other ontologies or data sources 
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provides a self-validation of the definition of its concepts and also extensibility of 
those concepts.   

 

3.1.2 Semantic Web Data Sources 
Semantic web data sources are the sites that expose their data in some kind of 
semantic web technology such as RDF. Availability of data in this form enables 
applications to connect this data to the semantic graph and query for resources. 
Geographic information from geo-names is an example of how definitions of places 
(cities, towns, countries) can be used in a standardized way thru the use of semantic 
data.  
 
Accuracy of the data as well as frequency of updates to the data are also a key 
feature in deciding which sources to use.  
 

3.1.3 Web services 
Web services such as offered by Facebook, Google and Yelp offer a platform 
independent approach to consuming the data provided by these services thru 
simple REST APIs.  
 
Underlying data sources for the web services, frequency of updates to the data, 
whether data used by the web service was available in real time, were some of the 
considerations while analyzing web services. 
 

3.1.4 Identifying and Defining Scope 
Defining scope was an overwhelming exercise as it involved collecting use cases 
where a smart agent would be useful for a person. Initially, list of use cases where a 
smart agent would come in handy as a personal assistant to manage or automate the 
tasks were identified and documented. This turned out to be a wish list for the agent 
and so specific boundaries were defined based on the availability of data sources, 
technologies and concepts that could be validated for these use cases. The initial list 
of use cases was then categorized based on user-agent interactions, and based on 
type of inputs and outputs.  
  

3.1.4.1 Use case Definitions 
Use cases where a smart agent can help the user to accomplish tasks efficiently were 
identified. One use case was chosen to highlight agent’s ability to automate task 
execution, while another use case was chosen to highlight agent’s ability to 
breakdown the task into sub-tasks and plan manual execution of the task.  
 
Goal of this exercise was to enlist cases where an agent can truly make the use of 
mobile device platform, services on the web, its understanding of the tasks and 
other contextual information to execute the tasks efficiently.   
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3.2 Reviewing existing literature 
Existing literature was reviewed in order to better understand the domain of smart 
agents, knowledge databases, semantic web and other technologies necessary for 
implementing a smart agent. This was an important exercise to layout the current 
landscape, get a deeper appreciation of the problem domain, and to look at different 
alternative solutions for building the agent. 
 
One aspect of reviewing the literature was to get a better understanding of the 
problem thru examples of already implemented solutions and their feature set. One 
of the recent attempts to build personal assistant software was a project named 
‘CALO’, an AI project funded by Defense Advanced Research Projects Agency 
(DARPA) to build personal assistant software. Framework developed as part of 
CALO project is being licensed to number of applications such as SIRI, TrapIt, Tempo 
AI. Existing literature was chosen for patents on existing solutions such as SIRI, as 
well as its core framework CALO. This literature review provided insights into scope 
of the problem these applications were attempting to solve and also their 
perspective on the technologies. 
 
Another aspect was to understand the semantic web technologies and knowledge 
databases that were to be used in building the system. Existing literature in terms of 
online documentation, papers, books were reviewed so as to gain a deeper 
understanding of these technologies in order to design the smart agent system using 
these technologies.  
 
In addition, work done on designing systems that used common sense databases 
such as CYC and OpenMind were also reviewed to capture some of the challenges in 
building systems using these databases. 
 

3.3 Reviewing Existing Solutions 
Review of existing solutions such as SIRI, Google Glass, ReQall etc., gave insights into 
features of these applications as well as deeper understanding of use cases 
supported by these systems. Purpose of this exercise was to identify the scope – use 
cases supported by these applications as well as use cases that were beyond the 
scope due to the technology choices made for the implementation of the system. It 
also provided references to data sources that could be potentially useful in our 
implementation of the agent. A better understanding of the technology and design 
choices were helpful in understanding the impact when these applications are 
adopted in the real world.  
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4 Overview of Technologies 
Reviewed and Used 

This chapter contains details on technologies and tools evaluated with a goal of 
designing a smart agent. Semantic web technologies, knowledge databases, Android 
mobile development framework, cloud based APIs were evaluated for this purpose.  

 

4.1 Semantic Web Technologies 

4.1.1 Introduction to Semantic Web 
“To a computer, the Web is a flat, boring world, devoid of meaning. This is a pity, as 
in fact documents on the Web describe real objects and imaginary concepts, and 
give particular relationships between them. For example, a document might 
describe a person. The title document to a house describes a house and also the 
ownership relation with a person. Adding semantics to the Web involves two things: 
allowing documents, which have information in machine-readable forms, and 
allowing links to be created with relationship values. Only when we have this extra 
level of semantics will we be able to use computer power to help us exploit the 
information to a greater extent than our own reading” 
- A quote from Sir Tim Berners-Lee "W3 future directions" keynote, 1st World Wide 
Web Conference Geneva, May 1994 

 

 
Figure 4-1: WWW - hyperlinked web pages 

 
Figure 4-1 shows HTML pages on websites link to other pages using HTML 
hyperlinks, forming web of interlinked pages. In this case, links themselves are plain 
HTML links and do not encapsulate any relation between the pages. So, these links 

http://www.w3.org/Talks/WWW94Tim/
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do provide links to the user to browse the web, but do not integrate the data hosted 
by these sites in any meaningful way.  
 
Web applications running on these websites use reference data generated by third 
party vendors by maintaining a copy of a version of this reference data in their 
databases and consuming it in their applications. This duplication of data results in 
having stale data when the original source of data changes. It has resulted in silos of 
databases hosted online, with their own copies of data in a proprietary format that 
is not easily accessible to others to integrate and use. 
 
Web services overcome this limitation to an extent by defining a service and making 
the definition of this service available to interested users. Users of web service need 
to understand service definition that is generally defined in XML format with 
proprietary attributes defined by the vendor of the service and to carry out 
translations into their own proprietary attributes. This makes it difficult for 
machines to discover web services and readily process the data on the web.  
 
However, standards and protocols have evolved to make the interchange of data 
easier to publish and consume. Standards organizations such as OASIS have defined 
domain specific vocabularies like ebXML to standardize how a domain data model is 
represented and how two systems can be integrated using this model. These 
vocabularies enable consistent data definitions that can be consumed in the 
applications operating on this data. But, it still needs an explicit contract between 
publisher as well as consumer to ensure data is interpreted correctly by the 
applications.  
    

4.1.2 What is Semantic Web? 
According to W3C.org,9 the Semantic Web is about two things. It is about common 
formats for integration and combination of data drawn from diverse sources, while 
the original Web mainly concentrated on the interchange of documents. It is also 
about language for recording how the data relates to real world objects. That allows 
a person, or a machine, to start off in one database, and then move through an 
unending set of databases connected not by wires but by being about the same 
thing.  
 
Data available on the web as well in closed gates of enterprises is characterized by 
silos of databases containing valuable data about specific domain the applications 
generating this data belong to. Some of this data is in structured form such as 
relational databases, which is easy to connect and access but difficult to interpret 
since they are modeled in a proprietary form. Some of this data is represented in a 
proprietary format while some of it is represented based on models published by 
standards organizations.  
 

                                                        
9 “W3C Semantic Web Site - Http://www.w3.org/2001/sw/.” 
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The premise of Semantic Web is to move from silos of databases into a linked 
database, by providing technologies and tools to enable building this linked 
database where representation and meaning of data can be transferred from 
sources of this data to consumers of this data. These technologies enable sharing of 
data as well as making changes to this data. 
 

4.1.3 Who is contributing to Semantic Web? 
Following graph shows number of organizations contributing to the semantic web. 
This data include government data, health care, media, user generated content, 
geographic data and knowledge databases. 
 
Links between sites show sharing of data thru shared representations and links and 
color of the node indicates domain it belongs to. 
 

 
Figure 4-2: Linked Open Data Cloud Diagram10 

 
 

4.2 What is covered in this chapter? 
Technologies used to power semantic web such as RDF, RDFs, OWL and SPARQL are 
covered in this chapter. In addition, some of the vocabularies useful for building the 

                                                        
10 “Linked Open Data Cloud - Http://richard.cyganiak.de/2007/10/lod/lod-
datasets_2011-09-19_colored.png.” 
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agent are covered in detail. Knowledge databases OpenCyc is included in this 
chapter, complementing semantic web technologies.  
 
In addition, this chapter includes sections on cloud based web service APIs that can 
be used to gather environment details such as weather reports, traffic conditions, 
store locations as well as Android platform that can be used for mobile device 
application programming. 
 

4.3 RDF11 12 
Resource Description Framework (RDF) is a language for representing knowledge 
in a distributed world of semantic data. It is a recommendation defined by World 
Wide Web consortium (W3C) and is intended for widespread deployment of linked 
data using RDF as a standardized language.  

 

4.3.1 RDF Graph Model 
RDF is based on the idea that every object has properties that have values and is 
represented by using subject-predicate-object triples. Here, subject identifies object 
of interest, predicate is the property or relation to the object, and object is the value 
of property represented by predicate on the object. 
 
This paradigm of triples of subject, predicate and object is used to compose snippets 
of knowledge. These snippets of knowledge (triples) form basis of linked data graph.  
 

 
Figure 4-3: RDF Graph Model 

 
RDF uses URI (Uniform Resource Identifier) to uniquely identify resources on the 
web. These could be network accessible resources such as URLs for web pages, 
images, or web-services or could be non-network accessible resources such as 
organization name, products on an ecommerce site or abstract relations defined by 
ontology vocabularies. Use of URIs enables uniquely identifying resources as well 
relations on the web, which in turn will lead to sharing of these resources and a 
common understanding of relations. 
 

                                                        
11 “RDF Primer - http://www.w3.org/TR/2004/REC-rdf-primer-20040210/.” 
12 “RDF Tutorial - 
http://www.w3.org/People/Ivan/CorePresentations/SWTutorial/.” 
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4.3.2 RDF Examples 
This section will introduce to RDF features thru few examples. 
 
RDF extends the linking structure of the Web to use URIs to name the relationship 
between things as well as the two ends of the link (this is usually referred to as a 
“triple”). Using this simple model, it allows structured and semi-structured data to 
be mixed, exposed, and shared across different applications. 

 
Example1: Tim Berners-Lee is the founder of World Wide Web foundation 
RDF triple:  

http://dbpedia.org/page/Tim_Berners-Lee dbpprop:founder 
dbpedia:World_Wide_Web_Foundation 

 
In this representation,  

Tim Berners-Lee is subject,  
dbpprop:founder is the relation or predicate and 
dbpedia:World_Wide_Web_Foundation is the object.  

 
Two namespaces are being used in this representation, namely dbpprop and 
dbpedia to correspond to DBpedia properties and DBpedia specifications 
respectively. 
 
This data contains links to definition of the data itself, so it’s self-explanatory. 
This will help in data integration, discovery of data by following the links and other 
relations on these links 

 

 
Figure 4-4: RDF Example 1 

This linking structure forms a directed, labeled graph, where the edges represent 
the named link between two resources that are represented by the graph nodes. 
This graph view is the easiest possible mental model for RDF and is often used in 
easy-to-understand visual explanations. 
 
  

http://dbpedia.org/page/Tim_Berners-Lee
http://dbpedia.org/property/founder
http://dbpedia.org/resource/World_Wide_Web_Foundation
http://dbpedia.org/property/founder
http://dbpedia.org/resource/World_Wide_Web_Foundation
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RDF representation using XML for Example 1 – ‘Time Berners Lee is the founder of 
World Wide Web Foundation’ 
<?xml version="1.0"?> 
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" 
xmlns:dbpprop="http://dbpedia.org/property/"xmlns:dbpedia="http://dbpedia.org/"> 

<rdf:Description rdf:about="http://dbpedia.org/page/Tim_Berners-Lee"> 
<dbpprop:founder>dbpedia:World_Wide_Web_Foundation</dbpprop:founder>  

   </rdf:Description> 
</rdf:RDF> 

 
Example2:  
Tim Berners-Lee is author of book - ‘Weaving the web: The Original Design and 
Ultimate Destiny of the World Wide Web by its inventor’. Harper Collins published 
this book. 

 

 
Figure 4-5: RDF Example 2 

 
 

In this example, we are able to link a book to its publishing company.  
And an application or user once connected to the publisher URL, will be able to 
query for additional details of the publisher. This Publisher URL can be hosted by 
the publisher themselves, and so have updated information on other titles, their 
location etc. 
 
This example shows how data can be traversed from one node to the other by 
following the relations. 
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4.3.3 Features of RDF 
 RDF enables information to be represented in machine-readable form that 

applications can process.  
 Data Reuse thru single copy of data 
 Meaning of the data is always included with the data, making it easy for 

interpretation and processing. 
 Data Aggregation from various sources 
 Different parts of the data can be owned by different entities, but thru an 

integrated graph this data can be explored and processed 
 In Semantic Web, change is not expensive. Since all resources are identified thru 

URI, changes can be made in one place and the values propagated along the 
graph to any one interested in the updated values. 

 Supports the evolution of schemas over time without requiring all the data 
consumers to be changed.  
 

As a general principle, always use URIs to represent entities as well as relations. And 
for representing relations, reuse existing vocabularies as much as possible, 
extending them only in special cases when required relation is not already defined. 
One of the challenges in reusing vocabularies is standardizing process while these 
vocabularies are being built. It is addressed by providing interoperability between 
two similar vocabularies defining same entities. 
 

4.4 RDFS13 
RDF data model defines relationships between resources as properties and values. It 
does not offer any mechanism to define the properties of resources or relationship 
between two properties or between properties and resources.  
 
RDFS is RDF vocabulary description language, which can be used to define 
properties and resources. It defines the type system for RDF models by defining 
resources and properties such as rdfs:Class and rdfs:subClassOf, which are then 
used for defining relationship between resources and properties. 

 

                                                        
13 “RDFS - http://www.w3.org/TR/2000/CR-rdf-schema-20000327/.” 
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Figure 4-6: Classes and Resources as Sets and Elements14 

   
Rounded rectangles are the classes and classes enclosed within a rectangle have a 
subClassOf relation with outer rectangle. Large Dots indicate they are resources, and 
the arrow from resource points to the defining class of the resource. 
   
Core Classes 

1. rdfs:Resource is the top level class in RDFS, and defines all things described 
by RDF expressions. 

2. rdf:Property is a sub-class of rdfs:Resource and represents properties in RDF 
expressions. 

3. rdfs:Class represents type of the resource. There is a rdf:type property link 
from resource to the class defining that resource. 

 
Core Properties 

1. rdf:type property represents membership of the resource to a class and 
specifies type of the resource. 

2. rdfs:subClassOf specifies class inheritance relationship of a subclass. This 
property is transitive, as a sub class will inherit all properties of its parent as 
well all its grand parents. 

3. rdfs:subPropertyOf is an instance of rdfs:Property and indicates that it’s a 
specialized property.  

4. rdfs:seeAlso specifies link to a resource that can provide additional 
information about the resource. 

5. rdfs:isDefinedBy is a subPropertyOf rdfs:seeAlso and generally used to link 
to the schema defining the resource. 

 

                                                        
14 “RDFS Classes and Resources - http://www.w3.org/TR/2000/CR-rdf-schema-
20000327/sets.gif.” 
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Constraints 
RDFS defines constraints for end points of a property using domain and range 
constraints 

1. rdfs:domain identifies instances of classes on which a particular property can 
be applied. It specifies which type of subject nodes can have this property. 

2. rdfs:range identifies instances of classes which can take values for a 
particular property. It specifies which type of object nodes can have this 
property. 

 

4.5 SPARQL 15 16 17 
SPARQL stands for SPARQL Protocol and RDF Query Language, and defines protocol 
to connect to RDF graph data stores. SPARQL queries are executed over one default 
graph and zero or more named graphs that are specified by the URIs in the query. 
 
It helps to 

 Query RDF information and represent the results.  
 Join disparate RDF databases using complex joins. 
 Transform results from one ontology to another ontology. 
 Explore the data and relationships stored in RDF data stores. 

 
This section will cover syntax of SPARQL to query, filter and present the RDF data 
and also other uses of SPARQL such as constructing RDF graph or describing an 
existing one of RDF graph data stores. 
 
SPARQL queries are executed against SPARQL endpoints, which provide an interface 
to one or many RDF datasets. A SPARQL endpoint accepts queries via HTTP and 
provides results in XML, JSON, RDF or HTML formats. 
 
RDF data stores can expose a SPARQL endpoint using HTTP protocol. Any 
applications interested in RDF data can then connect using HTTP and RDF library 
that can work with RDF data and work with SPARQL queries. 
 

4.5.1 Anatomy of a SPARQL Query 
A SPARQL query contains five sections 

1. Prefix declarations – used to abbreviate URIs so that the query looks shorter 
and cleaner 

2. Dataset definition – identify RDF graphs to be queried 
3. Result clause – identify what nodes or information to be retrieved from the 

graph 

                                                        
15 “SPARQL W3C Resources - http://www.w3.org/2009/Talks/0615-qbe/.” 
16 “SPARQL Tutorial - Http://www.slideshare.net/ldodds/sparql-tutorial.” 
17 “SPARQL Cheatsheet - http://www.slideshare.net/LeeFeigenbaum/sparql-cheat-
sheet.” 
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4. Query pattern – conditions to be matched on the subject, predicate and 
objects and related entities.  Identify exactly what kind of nodes are being 
queried in the underlying RDF graph 

5. Query modifiers – ordering, limiting of the results  
 

4.5.2 SPARQL Syntax by example 

4.5.2.1 Selecting triple pattern from RDF graph 
Following is an example to query DBpedia (RDF version of Wikipedia) for querying 
100 distinct object types from DBpedia RDF repository. This is achieved by querying 
for a property rdf:type that captures type information of a resource, and filtering 
only unique 100 of these types in the result. 
 

#prefix declarations 
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> 
 
#dataset definition 
FROM <http://dbpedia.org> 
 
#result clause 
SELECT DISTINCT ?Concept 
 
#query pattern 
WHERE  
{?Instance rdf:type ?Concept}  
 
#query modifiers 
LIMIT 100 

 
PREFIX is used to abbreviate the URIs. For example, RDF URI is abbreviated to rdf 
using PREFIX above. Predicate type declared by RDF can then be referenced by 
using the shortened notation - “rdf:type”. 
  
SELECT command is used to query the RDF data store.  
 
DISTINCT can be used with a node or a literal, and will take out the duplicates and 
return only unique results. 
 
Select query also identifies values that should be returned by the query as results. In 
the above example, ?Concept refers to any nodes that satisfy the criterion in where 
clause to be included in the results. ?Concept is a SPARQL variable and can match 
any node or literal in the RDF dataset. In this query, only objects referenced by the 
predicate rdf:type will be assigned to ?Concept variable. Variables can also be used 
to match the values taken by the variable during execution of the query. 
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FROM identifies RDF graph that is to be queried using publicly accessible HTTP 
interface. In this example, DBpedia’s SPARQL endpoint is being queried. 
 
WHERE clause lists set of conditions using a triple pattern of subject-predicate-
object.  
 Triple pattern used in where clause - {?instance a ?Concept}, is like triples 
used in RDF, but can contain variables whose names start with “?”. 
 
This triple pattern, asks SPARQL query engine to match all nodes connected by 
predicate rdf:type. It names the subject node with variable name “?instance” and 
object node with variable name “?Concept”.  
 
LIMIT keyword tells the SPARQL engine to limit the number of results, in this case to 
100. 
 

4.5.3 SPARQL Query against BestBuy RDF product dataset 
BestBuy is using GoodRelations ontology and has exposed its real time product 
catalog in RDF form using GoodRelations ontology. This lets applications to query 
this RDF dataset using SPARQL. GoodRelations Ontology is covered in section 4.7.1 
in this chapter. 

 
Following example can be used to query BestBuy dataset to get name and price 
information of all products having a name beginning with “Apple” and which are 
priced between $100 and $500.  
 

PREFIX gr: http://purl.org/goodrelations/v1# 
FROM <http://metis.bbyopen.com/sparql> 
SELECT ?name ?price 
WHERE { 

?offering gr:includesObject ?object; 
gr:hasPriceSpecification ?ps . 
?ps gr:hasCurrencyValue ?price . 
?object gr:typeOfGood ?good . 
?good gr:hasMakeAndModel ?make .  
?make gr:name ?name .  
FILTER( ?price > '100.00'^^xsd:float && ?price < '500.00'^^xsd:float 
&& regex(?name, '^Apple', 'i')) 

} ORDER BY DESC(?price) 
LIMIT 100 
 

Offering is the root node for a product, and includes nodes for price specification 
and make and model of the product. These two nodes are separately used in the 
above query to query for products priced between a price range and by the name of 
the product. 

  

http://purl.org/goodrelations/v1
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4.5.4 Types of SPARQL Queries 
In addition to querying for RDF graph from RDF data stores, SPARQL also supports 
Ask, Describe and Construct functions.  
 
In addition to SELECT queries explained above, SPARQL also supports ASK, 
DESCRIBE and CONSTRUCT queries and these are covered below. 

4.5.4.1 ASK – Ask RDF data store to ask a query and get a Boolean answer 
Following query asks DBpedia RDF data store whether Amazon river is longer than 
Nile river, by getting the length attribute of both the rivers (referenced here by the 
URIs) and then comparing the length and returning result of comparison expression. 
 

PREFIX prop: <http://dbpedia.org/property/> 
ASK 
FROM <http://dbpedia.org> 
{ 
  <http://dbpedia.org/resource/Amazon_River> prop:length ?amazon . 
  <http://dbpedia.org/resource/Nile> prop:length ?nile . 
  FILTER(?amazon > ?nile) . 
}       

 

4.5.4.2 Describe 
Describe clause is used to get description of an RDF node. Information returned is 
not standardized and is dependent on the implementation. Generally class 
information or short RDF graph of the node is returned. 
 

#prefix declarations 
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> 
#dataset definition 
FROM <http://dbpedia.org> 
#result clause 
DESCRIBE ?Concept 
 
#query pattern 
WHERE  
{?Instance rdf:type ?Concept}  

 

4.5.4.3 Construct to create a new graph 
Construct clause is used to construct a new graph based on the query results on an 
existing graph. This is useful when transforming an existing graph structure to a 
new one.  
 
In the example below, an RDF database using FOAF ontology is queried for name, 
home page URL and title. All of these properties are defined in FOAF ontology. 
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Values of these properties on a resource are then used to create a new resource with 
the same values but using vCard ontology. In this query, new graph is created by 
using the values from existing graph and by mapping the properties between vCard 
and FOAF. 
  

PREFIX vCard: <http://www.w3.org/2001/vcard-rdf/3.0#> 
PREFIX foaf: <http://xmlns.com/foaf/0.1/> 
CONSTRUCT {  
  ?X vCard:FN ?name . 
  ?X vCard:URL ?url . 
  ?X vCard:TITLE ?title . 
} 
FROM <http://www.w3.org/People/Berners-Lee/card> 
WHERE {  
  OPTIONAL { ?X foaf:name ?name . FILTER isLiteral(?name) . } 
  OPTIONAL { ?X foaf:homepage ?url . FILTER isURI(?url) . } 
  OPTIONAL { ?X foaf:title ?title . FILTER isLiteral(?title) . } 
} 
         
 

4.5.5 Limitations in current SPARQL 1.1 version, covered in new SPARQL 218 
1. Support for inserting, updating and deleting into RDF data store using 

SPARQL  
2. Support for embedding sub-queries within SPARQL queries 
3. Support for grouping results with aggregate functions such as count, min, 

max, average or sum 
4. Support for negation in queries 
5. Support for projected expressions allow query results to contain constants, 

functions, or any other expression. 
6. Support for federated query to run SPARQL query on multiple endpoints and 

combine the results 
7. Support for discovering SPARQL endpoint service in order to let the users 

discover the service and use it. 
8. Support in SPARQL for OWL and RDF Schema 

 
  

                                                        
18 “Limitations in SPARQL 1.1 - http://www.w3.org/2009/Talks/0615-qbe/.” 
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4.6 Ontologies19 
According to W3C, ontology is a set of precise descriptive statements about some 
part of the world (usually referred to as the domain of interest or the subject 
matter of the ontology). Precise descriptions satisfy several purposes: most notably, 
they prevent misunderstandings in human communication and they ensure that 
software behaves in a uniform, predictable way and works well with other software. 
 
Ontologies capture domain knowledge of a particular domain in an explicit form to 
foster shared understanding and reusing this domain knowledge. This domain 
knowledge of explicit specification of concepts, relations or properties, and 
constraints in precise descriptive form renders itself for machine processing. 
Machines can use captured knowledge from a given ontology to infer new 
knowledge and to validate that captured knowledge is consistent. 
 
There are two W3C recommendations for defining ontologies, namely RDFS and 
OWL. These two recommendations are covered here. 
 
RDFS defines vocabulary for defining classes, hierarchy relations between classes, 
properties and constraints on properties. Ontologies defined using RDFS, so are 
limited by this vocabulary.  
 

4.6.1 Web Ontology Language (OWL) 

According W3C, Web Ontology Language 2 (OWL 2) is a knowledge representation 
language designed to formulate, exchange and reason with knowledge about a 
domain of interest. It is used to represent knowledge about things, groups of things 
and relations between them. 

It provides classes, properties, individuals or instances of classes and data values to 
capture domain knowledge. All this domain knowledge is represented in RDF and 
stored as semantic web document that can be referenced by other related and 
interested documents to extend the knowledge as well as knowledge 
representation.  

4.6.2 OWL 2 Features 20 

4.6.2.1 OWL 2 is a language for expressing ontologies.  
Ontology consists of concepts that describe domain of interest. This is terminology 
knowledge and is particular to the domain.  
 

                                                        
19 “OWL2 Primer - http://www.w3.org/TR/2012/REC-owl2-primer-
20121211/Semantic Web Presentation,”  
20 “W3C OWL2 Specification - http://www.w3.org/TR/owl2-syntax/.” 



 38 

In order to precisely describe a domain of interest, it is helpful to come up with a set 
of central terms – often called vocabulary – and fix their meaning. Besides a concise 
natural language definition, the meaning of a term can be characterized by stating 
how this term is interrelated to the other terms. A terminology, providing a 
vocabulary together with such interrelation information constitutes an essential 
part of a typical OWL 2 document.  
 
Besides this terminological knowledge, ontology also contains assertional 
knowledge that deals with concrete objects of the considered domain rather than 
general notions. 
 

4.6.2.2 OWL 2 is not a programming language, but is declarative. 
OWL uses description logic to describe the knowledge of the domain and is 
declarative. Tools can be built to process this knowledge and infer new knowledge, 
but the ontology language itself is not a programming language. 
 

4.6.2.3 OWL 2 is not a schema language for syntax conformance.  
OWL does not define syntactic constraints on the values of concepts it describes. 
XML schema (XSD) or DTD can be used to define syntactic constraints on the data. 
 

4.6.2.4 OWL 2 is not a database framework.  
DB schema can be compared with OWL terminology knowledge and DB content can 
be compared with assertional knowledge, but the two are quite different. DB 
schema does not have inference capabilities between types, and using closed world 
assumption – an absence of fact in database is considered false while in description 
logic, which uses open world assumption, an absence of a fact merely means fact is 
not known. 
 

4.6.3 Modeling Knowledge 
Axioms 
Ontology modeling using OWL 2 captures explicit knowledge of domain using basic 
constructs such as statement or prepositions. Individual statements form basic part 
of the domain knowledge and are called axioms in OWL2. These statements 
evaluated to Boolean true or false under a given set of conditions. 
 
Some example statements:  

Every man is a mammal 
Every week has seven days 
 

OWL uses axioms as building blocks of knowledge, defining new axioms as 
consequence of existing axioms. OWL reasoning engines such as Apache Jena can be 
used to infer based on consequences.  
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Entities 
All atomic constituents of a statement like = ‘Mary is a female’ are called entities.  
 
Real world object in the statement that can be identified is denoted as individuals, 
category of the object is denoted as a class and the relation is denoted by properties 
in OWL. 
 
There are three types of properties in OWL: 
1. Object properties 

Relationship between two objects is captured by object properties.  
 

2. Data type properties 
Age property of a person is an example of data type property 

 
3. Annotation properties 

Annotation properties annotate ontology itself. For example, linking the 
ontology to a class or author of the ontology to a class is an annotation 
property.  

 

4.6.4 OWL by example 21 
1. subClassOf relation between two classes 

A statement ‘Person is a mammal’ is represented in OWL as: 
Person rdfs:subClassOf Mammal 
 
In OWL, all classes have owl:Class as the root class 
 

2. Relationships between classes 
In OWL, classes can have following relationships 

equivalentClass 
intersectionOf 
unionOf 
complementOf 

 
Defining, Male and Female as two classes, we can use these class 
relationships to capture Male and Female relation in real world 
 

Male a owl:Class. 
Female a owl:Class. 

 
Person can be defined as a union of Male and Female classes. 

Person a owl:Class; 
 Owl:unionOf(Male Female). 

                                                        
21 “OWL2 Primer - http://www.w3.org/TR/2012/REC-owl2-primer-
20121211/Semantic Web Presentation.” 
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In addition, we can make use of complementOf class relation between Male 
and Female classes. 
 Female owl:complementOf Male. 
 
 
A parent can be defined as a subclass of a person 
 Parent rdfs:subClassOf Person. 
 
 Now, we can define Father and Mother classes as Parent class who are 
Male and Female respectively. 
  
 Father a owl:Class; 
  owl:intersectionOf(Male Parent). 
 
 Mother a owl:Class; 
  owl:intersectionOf(Female Parent). 

 
3. Defining properties using constraints 

RDFS domain and range properties can be used to constraint which class can 
be a subject or an object for a given property. 
 
A person has a parent 
 hasParent rdf:type rdf:Property; 
  rdfs:domain Person; 
  rdfs:range Parent. 
 
A person’s father is a male 
 hasFather rdfs:subPropertyOf hasParent; 
  rdfs:domain Person; 
  rdfs:range Male. 
 
A person’s mother is a female 
 hasMother rdfs:subPropertyOf hasParent; 
  rdfs:domain Person; 
  rdfs:range Female. 
 
These examples also show how properties can be related to other properties 
using subPropertyOf relation. 
 

4. Types of Properties 
a. Object Property defines relationships between two classes 

hasParent property defined earlier can be redefined as an object 
property as it relates to two classes. 
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hasParent rdf:type rdf:ObjectProperty; 
  rdfs:domain Person; 
  rdfs:range Parent. 

 
a. Datatype Property defines relationships between instance of a class 

and a literal that can be represented using a datatype 
 
Age of a person is an example of a Datatype property. 
 age a owl:DatatypeProperty; 
  rdfs:domain Person; 
  rdfs.range xsd:integer. 
 

5. Types of Properties 
a. TransitiveProperty 

A property is transitive if P(x,y) and P(y, z) then P(x, z) 
 

relatedTo a owl:TransitiveProperty 
 

b. SymmetricProperty 
A property is symmetric if the property is true in both directions.  
P(x, y) iff P(y, x) 

hasSibling a owl:SymmetricProperty. 
Joe hasSibling Carol; implies  
Carol hasSibling Joe; 

 
c. FunctionalProperty 

P(x, y) and P(x, z) implies x=z 
 hasBirthMother a owl:FunctionalProperty; 
 Joe hasBirthMother Alice; 
 Joe hasBirthMother Alicia; 
 Implies, Alice = Alicia 
 

d. InverseOfProperty 
P1(x, y) iff P2(y, x) 
 
 hasWife owl:inverseOf hasHusband; 
 Joe hasWife Amy; 
 Implies, Amy hasHusband Joe; 
 

6. Property restrictions 
New classes can be defined by placing restrictions on values of the class 
instances. For example, we can create a new class JoesSiblings by filtering all 
Person class objects whose hasBrother points to Joe. 
 
JoesSiblings rdfs:subClassOf Person; 
[ a owl:Restriction; 
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 owl:onProperty brother; 
 owl:hasValue Joe]. 
 

7. Cardinality constraints on property 
New classes can be defined by constraining min, max or exact cardinality on 
the returned objects for a property. 
 
PersonsWithTwoKids rdfs:subClassOf Person; 
 [ a owl:Restriction; 
 owl:cardinality “2”^^xsd:nonNegativeInteger; 
 owl:onProperty hasParent]. 

 

4.7 Evaluating Ontologies for Smart Agent 

4.7.1 GoodRelations 
GoodRelations is a semantic ontology that defines e-commerce domain information 
model that enables e-commerce sites to publish information about their products or 
services in a form that can be discovered by search engines, product or service 
recommendation services or any other applications that understand this ontology. 
It defines four high level entities – BusinessEntity, ProductOrService, Offering and 
Location and number of other support classes to represent an online business, its 
products, specific offerings and locations that are supported in delivering these 
products. Using this ontology, a business can define all the its offerings, features or 
attributes of these offerings, payment options, delivery options, locations where its 
available as well as open times of this location.  
 
Use of linked data enables these sites to use pre-defined ontologies to define 
product categories, payment services, delivery of services and avoid the duplication 
of data. For example, payment options such as credit card payment, check payment, 
cash on delivery, PayPal are defined in this GoodRelations vocabulary and an agent 
querying the web across multiple e-commerce sites will be able to compare 
products readily if the sites use a standardized vocabulary for defining the 
attributes of product offering in an e-commerce context. 
 
Features of GoodRelations Ontology 

 GoodRelations is an industry neutral way of representing an online business, 
supports a site selling products as well as services across different industries 
such as electronics, software, apparel, cars, electronics maintenance services, 
real estate, restaurants etc. This core feature of the ontology helps the 
standardization of tools and processes that can be used to deploy ecommerce 
sites for discovering the products offered by the site and processing related 
information. 

 It supports RDF/XML, RDF-tuple, RDFa, and JSON to expose the ecommerce 
data on the web.  
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 It captures product attributes which can be queried to filter products on the 
site and also enables availability information at a particular store location, at 
a particular time for a given product based on attributes of the store and 
inventory information. 

 It captures relationships between two products such as similar to, 
complementary to, variant of, consumable of, and accessory of, which can be 
used to recommend products to customers based on their choices in the 
shopping cart. 

 GoodRelations ontology builds on classes defined by schema.org, FOAF, 
vCard and OWL.  
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Figure 4-7: GoodRelations UML Diagram22 

Description of High-level classes: 

                                                        
22 “GoodRelations Ontology UML Diagram - 
Http://www.heppnetz.de/ontologies/goodrelations/v1#uml.” 
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BusinessEntity class in this ontology is defined by creating a union of existing 
classes to define Organization (http://schema.org/Organization) and Person 
(http://schema.org/Person). This class represents an individual person or an 
organization that is selling its products or services online, and includes primary 
mailing address of the entity and geo-location information. By reusing Organization 
class of schema.org, it captures and references industry standard organization 
identifiers such as ISIC and DUNS.  
BusinessEntity class also captures the relationships with locations this entity 
operates in as well as Offerings of products or services on the site.   
 
ProductOrService class defines type of product or service that is being sold by the 
business entity. It is the superclass of all products and services offered by the site. 
Some of examples are – Car Rental, Duracell battery, Sony Camera etc.  
 
Offering class represents an offer to sell a certain product or service by the business 
entity to a predetermined set of customers. Offering definition includes constraints 
on business functions offered, location, time, quantity, delivery method and pricing 
type. These constraints define particular constraints this offering is provided to the 
customers.  
 
Location class represents locations where the product or service is available to the 
customers of this business, whereas BusinessEntity refers to legal entity of the 
business. A given business such as a car rental company will have one legal entity 
and multiple locations for renting out cars that are represented using Location class. 
Each instance of this class will correspond to one store and will capture address, 
geo-location as well as open hours of that location during all days of the week. This 
class is equivalent to http://schema.org/Place. This can be useful in case of personal 
assistant software application that is trying to locate availability of products within 
a certain distance from the user’s current location.   
 

4.7.1.1 How does it help spread of Linked Data? 
Standardizing domain information and sharing this domain knowledge across 
different e-commerce sites while reusing the definitions of the products and entities 
across the web will help spread the use of linked data within ecommerce sites.  This 
can also lead to defining a product such as a 300ml Coke in a single location and 
then referencing the product from multiple sites that sell this product. Product 
manufacturers and distributors can collaborate to capture product definitions using 
this ontology within a central repository, resulting in a single linked data repository 
with vast information on the products. An e-commerce site can leverage linked data 
about the products it sells and the e-commerce domain knowledge captured by this 
ontology and contributing to web of linked data by publishing availability of 
instances of its products and services in this format. 

http://schema.org/Organization
http://schema.org/Person
http://schema.org/Place
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4.7.1.2 Example RDF/XML for a CD ‘Feats Don’t fail me now’ on bestbuy.com 

 
Figure 4-8: GoodRelations example RDF data in XML form 

This example shows how a product such as CD can be offered for sale on an 
ecommerce site like bestbuy.com. It identifies pricing information, delivery 
methods, product availability and payment methods that are relevant for e-
commerce. This information when exposed in RDF form becomes machine readable 
and can be accessed by agent software to automatically check availability of 
products in different stores based on geographic location or any other filtering 
criterion. 
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4.7.1.3 Leveraging GoodRelations ontology 
1. An e-commerce site can post all the products, along with product attributes, 

pricing, delivery, discounts information online such that all of this data can 
be discovered and queried thru the semantic web tools. 

2. Search Engines can use this information to refine query results in the search 
results based on the meta-data gathered in this microdata format. Microdata 
is a set of standard tags that are understood by the search engines. 

3. Applications can query for real time information of the retailers or e-tailers 
to find latest information on products, and repeat this across different 
sources of data that follow the same ontology.  

4. Ecommerce sites can use GoodRelations vocabulary to manage their business 
and build a web of linked data for e-commerce. 

 

4.7.1.4 How does use of GoodRelations help in building a smart agent 
GoodRelations schema captures all the necessary details of defining entities in an 
ecommerce transaction. Applications can discover this data and process it for 
specific needs since this data available in linked data RDF form. It also fosters 
sharing common vocabulary in ecommerce domain, thus standardizing toolsets that 
use this ontology. From the smart agent’s perspective, adoption of GoodRelations 
ontology that standardizes ontology used for ecommerce will enable automation of 
online e-commerce related tasks. 
 
Adoption of GoodRelations ontology for representing products as well as on e-
commerce sites to sell these products is a challenge. This adoption has been 
accelerated by providing plugins into databases of popular e-commerce platforms 
that can expose the product data captured in relational database into RDF form, and 
then exposing subset of this RDF data as microdata tags to search engines, enabling 
search engines to query on the product attributes of ecommerce site. 
 
GoodRelations ontology defines sameAs property with other ontologies such as 
schema.org to identify properties in its ontology that are similar to other ontologies. 
This enables properties defined across ontologies to be interpreted consistently for 
semantic web tools that are traversing the linked data graph. 
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4.7.2 DBpedia 23 24 
DBpedia organizes content from Wikipedia in structured RDF form representing the 
data in RDF classes and properties.  Wikipedia consists of articles that contain both 
structured data in the form of info-box fields, page links to other articles, 
categorization, images, geo-coordinates, as well as unstructured data in natural 
language text. DBpedia uses data extraction tools to retrieve structured data from 
Wikipedia and store in semantic RDF form. This extracted information uses a 
consistent DBpedia ontology to represent information about persons, places, music 
albums, films, video fames, organizations, biological species, and diseases. DBpedia 
uses an ontology that defines the hierarchy of classes for the information captured 
in Wikipedia along with predicates to define characteristics of the class.  
 
DBpedia uses an automatic extraction engine that reads Wikipedia, resolves 
ambiguities in mapping different names of info-box properties to the same class and 
property in DBpedia and stores the data in RDF form. 
 
DBpedia provides RDF links to other RDF datasets such as Wordnet, Cyc, UMBEL, 
Schema.org and Freebase.com. This cross-referencing enables reuse of information 
across these different datasets along with semantic meaning associated thru the 
ontologies being used. 
 
DBpedia can be used to query this structured knowledge derived from world’s 
largest online encyclopedia - Wikipedia, to build systems that can make logical 
queries on this data while understanding the ontology used by DBpedia. For 
example, applications can query DBpedia for places such as airports based on 
location attributes as well as the category of the place, and get a list of airports 
around the location.  
 
DBpedia is a knowledge base that spans multiple domains of knowledge, is 
maintained by community of contributors and is available freely on the web.  
 
Use of DBPedia for Smart Agent: 
Structured knowledge stored in DBpedia along with SPARQL endpoints that make 
access to this data using logical queries, make it a good candidate for use with smart 
agent.  
 
 
 
 
 

                                                        
23 “DBPedia Knowledge Base - http://www.wiwiss.fu-
berlin.de/en/institute/pwo/bizer/research/publications/Mendes-Jakob-Bizer-
DBpedia-LREC2012.pdf.” 
24 “DBPedia Usecases - http://wiki.dbpedia.org/UseCases.” 
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4.7.3 Wordnet 25 26 27 
Wordnet is a lexical database of nouns, verbs, adjectives and adverbs in English 
language that are organized based on the lexical and semantic relationship of a 
given word with other words in the database, and forming a semantic graph that 
links entities, events and properties that are represented by these words. Related 
words in database are in close proximity in contrast to traditional dictionaries 
where proximity is based on the starting letter of the word.  
 
It includes two kinds of relationships between words – lexical and conceptual. 
Lexical relations are based on word usage while conceptual relationships are based 
on the concepts a word represents.  
 

4.7.3.1 Lexical Relationships: 
Synonyms: 
Wordnet captures synonyms for a given word in synsets that contain a set of words, 
which can be used to replace the word without altering the meaning of the sentence 
in a given context.  
 
Antonyms: 
Antonym is a lexical relation between word forms and not a semantic relation 
between word meanings. For example, words such as rise/fall are antonyms, but 
rise/descend are not antonyms, even though fall and descend are synonyms. This 
relationship between set of words is captured in Wordnet. 
 

4.7.3.2 Conceptual Relationships: 
Hyponymy/Hypernymy: 
These semantic relationships capture hierarchy of concepts similar to inheritance 
hierarchy in object-oriented systems. A hyponym of a word inherits all the 
properties of its generic concept hypernym and is generally called isA relation. It 
also adds new set of features that distinguish it from its hyponyms and hypernyms.  
 
Meronymy/Holonymy: 
These semantic relationships represent part-whole relationship between words. For 
example, hand is a part of body is captured thru this relationship. 
 

                                                        
25 “Wordnet: Design, Content and Limitations by Christian Fellbaum - 
http://dydan.rutgers.edu/Workshops/Semantics/slides/fellbaum.pdf.” 
26 “Introduction to Wordnet - an Online Lexical Database - 
Http://wordnetcode.princeton.edu/5papers.pdf.” 
27 “Wordnet Reference Manual - 
http://wordnet.princeton.edu/man/wngloss.7WN.html.” 
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Figure 4-9: Wordnet hyponym, antonym and meronym relationship example 

Figure 4-9 shows an example of hyponym, antonym and meronym relationships in 
Wordnet. ‘Brother’ is a ‘Relative’, who in turn is a ‘Person’ in this hierarchical tree 
capturing hyponym/hypernym relationships between words. On the other hand, 
‘brother’ is an antonym of ‘sister’, and is captured by the antonymy link between the 
two words.  Relationship between ‘arm’ and ‘body’ is a part-whole relationship that 
is captured by the meronym link represented as an arc.  
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Figure 4-10: Wordnet synsets and antonyms example 

 
This example shows synsets for two adjective words wet and dry, which are also 
linked with each other in an antonym relationship.  
 
These relationships can be useful to parse the input text from the user and identify 
synonyms for the word in order to gather related information from other data 
sources. 
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4.7.3.3 Wordnet Ontology and RDF Data 
 

 
Figure 4-11: RDF representation of words in Wordnet 

 
Wordnet OWL ontology captures lexical and semantic relationships captured in 
Wordnet. Wordnet database is also available in RDF form, making it easy to query it 
using RDF and OWL tools. 
 
OpenCyc contains links to words in Wordnet. So, using Wordnet while parsing and 
identifying the word in synset links to the concept defined in OpenCyc. For a given 
text input, Wordnet to OpenCyc RDF links enable the agent to identify the concept in 
OpenCyc and gather more information about the concept. 
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4.8 Knowledge Databases 
 

 
Figure 4-12: ABox and TBox Systems28 

 
Knowledge based systems have two components associated with knowledge and are 
categorized into ABox systems or TBox systems based on whether they capture 
knowledge related to instances of real world objects or just contain domain 
knowledge which is also called ontology. 
 
TBox refers to terminological knowledge, contains taxonomy or ontology 
information about the concepts and relationships between concepts in that domain. 
In the above diagram, a TBox view will have an understanding of EngineType and 
Truck and relationships between them, but no knowledge of any occurrence of 
those concepts in the real world.  These systems capture the domain knowledge and 
can be considered as reference ontology that can be used to populate the instance 
data in order to build a knowledge data with the assertions from the real world 
instances pertaining to this ontology.  
 
Another type of knowledge system refers to ABox, where A refers to assertions. It 
uses TBox definitions as the basis to populate instance specific assertions, and 
relationships between instances. TBox enable building the structure of knowledge 
while ABox uses this structure to capture the knowledge about real world objects 
such as persons, organizations, places, events etc. 
 
UMBEL is an example of reference ontology that is derived from Cyc ontology, 

                                                        
28 “Knowledge Databases - Http://www.mkbergman.com/913/metamodeling-in-
domain-ontologies/.” 
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containing more focused concepts and focuses primarily on ontology development 
and not on knowledge capture of instances. While, Cyc is an ABox as well as the 
TBox system, as it captures both the type information in its knowledge building 
process and then populates that with instance specific information. 
 

4.8.1 OpenCyc  
Cyc's concepts are organized into one big "ontology". An ontology is like a taxonomy, 
but with much richer interconnections between terms. It contains both implicit as 
well as explicit knowledge of the domain.  
 
OpenCyc is open source version of Cyc, a knowledge database and an inference 
engine. The knowledge database was created by manually encoding the knowledge 
about the world using a knowledge representation language called CycL. Core of the 
idea is to encode everyday knowledge in a structured language within logical 
expressions that can be used for reasoning. A knowledge base can be used to encode 
knowledge about various concepts and their inter-relationships, in terms of facts, 
and rules expressed in a knowledge representation language. 
 
A knowledge base such as Cyc adds background knowledge about the concepts with 
in a domain that has been digitized thru careful codification of interaction as well as 
the real world concepts by the engineers who understand the Cyc architecture and 
language. It includes 500 thousand terms, 17 thousand relationships between these 
concepts, and seven million assertions regarding these terms. In addition to the 
explicitly entered assertions, inference engine enables creation of new assertions 
thru the relationship between existing terms, relationships and assertions.  
 
Inference engine enables applications to be built without hard coding rules, and to 
generate new assertions based on the already existing knowledge and the facts 
known at the time to the application.  
 
We can use smart agent as an interface for human computer collaboration, while 
leveraging knowledge stored in knowledge databases. These knowledge databases 
store knowledge in machine understandable form. Computers with high 
computational power and memory are better equipped with processing this 
knowledge in a given context. Humans are good at reasoning with incomplete 
information. Smart agent connects strengths of humans and machines using some of 
the available technologies that enable a real time availability of the information. 
  

4.8.1.1 Why use logic to represent knowledge? 29 
Cyc uses CycL language to represent knowledge. A logic based reasoning such as 
CycL makes it possible to express the knowledge using logical expressions precisely 
without any ambiguity that is generally associated with natural language. In 

                                                        
29 “Why Use Logic? - Presentation at Http://www.cyc.org.” 
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addition, this embedded knowledge is use neutral and can be queried across 
multiple uses for reasoning using reasoning engines that can infer from the captured 
knowledge. 
 
In CycL, the meanings of statements and inferential connections between 
statements are encoded in a way that is accessible to a machine.  At the present time 
Natural Languages are virtually meaningless to machines.  For example, a sentence 
such as “all animals have spinal cords.  All dogs are animals.  My pet is a dog.”  From 
these sentences, a person can infer that my pet has a spinal cord, but a machine 
cannot, at least not until a machine can understand English sentences.  A knowledge 
engineer can encode these assertions in Cyc so that inferences can be made about 
the dog when needed. 
 

4.8.1.2 What kind of knowledge is encoded in OpenCyc 

 
Figure 4-13: OpenCyc Knowledge database 

 
This diagram shows Cyc Knowledge base consisting of a massive taxonomy of 
concepts and relationships between concepts. It represents the knowledge arranged 
by degree of generality with the top level representing abastract general concepts 
and real world facts at the bottom. 
 
At the top level called upper ontology, “Thing” is Cyc’s most general concept.  
Everything in CYC is an instance of a “Thing.” Top level represents very abstract 
concepts - For example, it contains the assertions to the effect that every event is a 
temporal thing, every temporal thing is an individual, and every individual is a thing. 
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Below the upper ontology, Cyc contains a layer of knowledge called Core theories. 
These theories contain facts about space, time and causality and are useful for 
reasoning about the facts defined in lower layers. 
 
Domain specific theories contain more specific theories than the core theories. They 
capture knowledge about specific domains such as finance, chemistry, weather, 
organization etc., which are useful in understanding the domain. 
 
Final layer is the Domain specific facts and data layer, which contains real world 
facts and use instances of knowledge domain objects defined in layers above.  
 

4.8.1.3 Reasons for choosing OpenCyc 
Following are the reasons behind choosing OpenCyc as knowledge database to 
complement with semantic version of Wikipedia (DBpedia)30 
 

Venerable and solid — through an estimated 1000 person years of 
engineering and effort over more than 20 years, the Cyc structure has been 
tested and refined through many projects and applications 
Community — there is a large community of Cyc users and supporters from 
academic, government, commercial and non-profit realms 
Comprehensive — no existing system has the scope, breadth and coverage 
of human concepts to match that of Cyc (however, Wikipedia now exceeds 
Cyc as a source of reference information on instances and individuals) 
Common sense — Cyc has set out to capture the common sense at the heart 
of human reasoning. This objective means codifying generally unstated logic 
and rules-of-thumb that leads to a solid basis for its reasoning and 
conceptual relationships 
Power and inference — Cyc has about a thousand microtheories governing 
its inference domains, giving it a contextual scope and power unmatched by 
other systems 
Broad functionality — its knowledge base capabilities can be deeply 
leveraged in such areas as entity extraction, machine translation, natural 
language processing, risk analysis or one of the other dozens of specialty 
modules 
Free and open — OpenCyc is a free and open source version that has been 
downloaded more than 100,000 times 
Upgrade path — OpenCyc has an upgrade path to the more capable 
ResearchCyc, full Cyc and the services of Cycorp. 
 

                                                        
30 “UMBEL for Ontology Development - 
Http://fgiasson.com/blog/index.php/2008/08/29/umbel-as-a-coherent-
framework-to-support-ontology-development/.” 
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4.8.1.4 Components of Cyc 

4.8.1.4.1 Concepts  
Cyc uses CycL to capture knowledge in its knowledge base. It stores ontology as well 
as assertional knowledge and so belongs to ABox knowledge systems. 
It uses Collections class to capture type information and Individual class for instance 
specific information. It supports identifying these Collections and Individual classes 
using a unique names.  
 
Cyc uses CycL sentences are used to capture assertional knowledge using predicate 
functions or logical terms on arguments. Logical terms in these CycL sentence can be 
- and, or, not, forall, implies, thereExists etc.  
 
CycL sentences can be used to capture knowledge in terms of predicate logic, as 
shown in examples below. All the terms in CycL begin with #$. 
 
Example1: Earth is a Planet 
(#$isa #$Earth #$Planet) 
 #$isa – predicate function that checks if the first argument is a type of second 
argument. In this case it will return true if Earth is a type of Planet. 
 #$Planet – Planet type defined by Cyc 
  
  
Example2: Earth orbits around the sun 
(#$orbits #$Earth #$Sun) 
 #$orbits – predicate which checks if the first argument orbits around the 
second argument. 
 
 
Example 3: There is at least one planet that orbits around the sun 
 (#$thereExists ?PLANET  
 (#$and 

 (#$is ?PLANET #$Planet) 
 (#$orbits ?PLANET #$Sun))) 

This CycL sentence states that there is at least one instance of something named 
PLANET, which is an instance of Planet type and that orbits around the Sun. 
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4.8.1.4.2 Microtheories 
 

 
Figure 4-14: Microtheory in Cyc 

 
The Cyc Knowledge Base (KB) can be thought of as a vast sea of assertions. A 
microtheory in Cyc is a set of assertions from this sea of assertions, grouped 
together based on shared topics, assumptions, sources or other features. 
 
Each microtheory holds set of consistent assertions related to the scope of the topic 
that microtheory addresses. So, each microtheory will hold assertions at granularity 
intended to serve its purpose for the user of microtheory. An assertion is visible in 
all and only the microtheories that inherit from the microtheory in which it is 
placed.   
 
Collecting assertions by grouping them in these microtheories enables 
modularization of knowledge topics, improving efficiencies in managing this 
assertion knowledge as well as in search and inference process. Microtheories make 
knowledge base building more efficient.   
 
Microtheories provide a context of the topic, time, assumptions within which 
assertions can be captured and new ones inferred. This enables inconsistent 
assertions to be placed in different microtheories based on assumptions and 
timelines of their specific microtheory. 
 

4.8.1.4.3 Events 
Events in Cyc are represented as individuals that belong to a collection called 
#$Event. Examples of Events in Cyc include reading, transportation, negotiating, 
buying, planning, campaigning etc. These events occur over time and have temporal 
context.   
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Components of Events: 
Events can have performers or actors, and there can be devices that performers use 
during the events.   
 
Events can occur at places, and those places are somehow involved in the events.  
Events take place at time, and times of events are also somehow involved in events.  
 
Each of these events can have sub-events and can be modified as our understanding 
of the events change. Events are organized in a hierarchical fashion deriving from 
generic ones such as TransportationEvent into specialized events such as 
LandTransportationEvent or AirTransportationEvent. 
 
Roles connect Events to its Components: 
Components involved in events are related to the events using Roles predicates. 
Role predicates can capture the constraints on type of roles that can participate in 
an event.  In addition, these predicates can themselves be part of a hierarchy thus 
inheriting high-level knowledge already captured about the type.  
 

4.9 Online Web Services 
Some of the enterprises are exposing APIs to their proprietary databases and 
business logic in order to spread the information to other developers who can build 
more value added applications by including their data as part of their applications 
and reusing the data already collected by the vendors of this API. These web 
services generally need developers to sign up with the vendor and get an 
Application key to identify their application while making the calls to these APIs. In 
cases where application developer needs access to user data that is not openly 
available to anyone other than the user, vendors provide authentication protocols 
such as OAuth that enable the users to grant permission to application developer to 
gain access to user data, with an understanding that it will not be compromised by 
the application developer and will be used for providing value added services to the 
user.  
 
These web services are valuable sources of information and can be embedded with 
in personal assistant software to make use of relevant data in order to manage and 
plan the user tasks. 

4.9.1 Yelp: Local Business Database API 31 
Yelp is an online web site that captures business directory information along side 
user generated review content about these businesses. They maintain a list of 
categories of businesses for various urban locations within US as well as in Europe. 
It hosts a community of users reviewing the services offered by businesses to help 
other users while choosing businesses. 

                                                        
31 “Yelp Web services Documentation - 
Http://www.yelp.com/developers/documentation.” 
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Yelp provides a web services REST API to this information that can be used to 
search for specific categories of places based on location, some search terms, user 
ratings or timings of operation.  
 
Yelp API supports searching for business based on the name, category of the 
services provided by the business or any keyword related to business and then 
providing a location name or location co-ordinates. In response, Yelp API will return 
all the businesses that match the search criteria of business name or category of 
service as well as associated businesses in the location that are similar to the one 
searched by name or by category. So, searching for a specific Indian restaurant in 
Boston will also return related Indian and Asian restaurants around the area as they 
serve the same product category.  
 
This type of an API can thus be useful to help the agent find relevant businesses 
within the context of task and location that can be further filtered based on user 
preferences and past history. 

4.9.2 National Weather Service web service to weather information 
National Weather service has an open API to developers interested in getting 
weather information. This information is provided as part of open data initiative by 
US government at opendata.gov and is available as a SOAP web service that provides 
weather information in XML form.  
 
Web service API supports querying for weather conditions at a specific location for 
a given day or range of days. And also provides weather conditions for a locations 
enclosed in a grid. This can be useful when user is interested in weather conditions 
along a travel path. 
 
Weather information is also available thru web sites such as weather.com, who gain 
this data from NWS and expose it as their own web service. This information is 
useful while planning for activities such as walking to a place or driving to a place 
that are impacted by the weather at the place. 
 

4.9.3 Google Web services32 
Google provides web services to manage user personal information such as emails, 
calendar, task list, contacts etc., on Google apps. These web services can this be used 
to get access to user data and also to user friends’ data who have shared these apps 
with the user. These web services can help the agent in managing collaboration 
between these people.  
 

                                                        
32 “Google Webservices Documentation - 
Https://developers.google.com/maps/documentation/webservices/.” 
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4.9.3.1 List of Google web services for personal information: 
 Google Calendar: Google Calendar API lets applications to access user’s 

calendar to create new events, edit or delete existing ones and to search for 
events. This API can also be used to access any user’s public calendar or 
access a user’s private calendar with authorization. This API will help agent 
to gain access to user as well as his network’s calendar. 
 

 Google Task list: Google Tasks API lets applications to access user’s tasks to 
create new tasks, edit or delete existing ones and search for tasks. It also 
provides access to work with task lists, reorder a task in a task list. This API 
will help the agent gain access to tasks and task list of the user. 
 

 Google Contacts: Google Contacts API lets applications to access user’s 
contact list to create new contacts, edit or delete existing ones and to search 
for contacts. It also lets users to manage contact groups, by assigning 
contacts to contact groups.  

 

4.9.3.2 Google Maps and Directions API 
Google Directions API calculates directions between two locations with an optional 
departure time from the origin to destination and considers traffic conditions in its 
calculations. This API supports driving, walking, bicycling and for some locations 
also supports public transit mode of transport.  This API responds with the 
directions along with the duration of the travel. 
 

4.9.3.3 Google Search Engine 
In addition to the personal information management APIs, Google also provides 
access to Google Search engine thru REST API. This API can be used to query any 
search query from the user to the agent.  

4.10 Mobile Devices 
Mobile devices with a host of personal applications such as calendar, task lists, 
emails, address book provide rich information about the user and his activities. The 
location data coming from GPS sensors on mobile device provides location 
information of the user, which can be used as contextual information by the agent. 
 
Choice between Android versus other mobile operating systems 
Building a smart agent involves integrating with applications running on the device, 
as well as with semantic data sources on the web. This involves use of multiple APIs 
for NLP, semantic databases, external API integration that would be part of the 
agent running on the mobile device. Availability of these libraries on Android 
platform as well as easy portability of open source libraries into the Android 
platform makes Android a preferred mobile operating system compared to Apple’s 
iOS or Microsoft’s Windows 8 which do not have same kind of support.  
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Android mobile OS 33 
Android is an open source operating system managed by Google and built for mobile 
devices such as smart phones and tablet computers. Android enables device 
manufacturers to fast track mobile device development by reusing the android 
operating system, and its ecosystem of application framework, tools, developer 
community and market place. 
 
Android is built for user interfaces based on direct manipulation - device interfaces 
where user’s touch inputs simulate real world action are used as inputs. For 
example, user actions such as touch screen swiping, pinching, and tapping are used 
as application inputs from the user. It’s designed to provide an immediate feedback 
to the user using vibration or audio capabilities of the device. Android devices and 
operating system also support sensors such as gyroscopes, accelerometers, 
proximity sensors, light sensors, weather related sensors that are used to customize 
output on the screen as well as input to the application to respond appropriately to 
the user context.  
 
Android includes application framework that provides a standardized application 
framework in Java programming language that application developers can use to 
build applications supporting multiple devices that run android operating system.   
 
Application development environment 
Android application development is done using Java, which has a large community 
of developers. Android comes with plugins for open source Eclipse IDE which is 
widely adopted as integrated development environment by number of Java 
developers. Thus, android taps into existing set of developer resources as well as 
skills and leverages these skills to build specialized mobile applications on its 
platform.  
 
In order to make testing and debugging easier for developers, android platform 
includes emulators for multiple android devices that can be used to emulate the 
hardware within the development environment. This enables developers to test 
their application faster and get an immediate feedback without waiting for running 
the application to run on the device itself. In addition, emulator supports multiple 
devices as well as multiple versions of the android platform. All the combinations of 
android version and devices can be tested on the emulator first before testing on the 
device itself. 
 
  

                                                        
33 “Android OS - http://en.wikipedia.org/wiki/Android_(operating_system).” 
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Android System Architecture 

 
Figure 4-15: Android System Architecture34 

 

Linux Kernel: 
Android is based on open source Linux operating system kernel version 2.6 at the 
core, is written in C and drives the device hardware. It provides core operating 
system services such as file management, memory management, process 
management, power management etc., with hooks to add device specific hardware 
drivers. Hardware device manufacturers can take advantage of this open source 
operating system by building their hardware specific drivers and supplementing 
android operating system. Even though it’s based on Linux operating system kernel, 
some of the libraries that are available on Linux are not available on Android, 
making it difficult to port some of the existing Linux applications directly into 
Android, since underlying dependent libraries are not yet ported.  
 
Android Libraries:  
Android libraries layer consists of libraries such as graphics rendering engine, 
media framework to encode/decode file types, secure sockets layer, SQLite database 
etc., all optimized for the native hardware of the device.  
 

                                                        
34 “Android System Architecture Diagram - 
Http://developer.android.com/images/system-architecture.jpg.” 
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Android Runtime: 
Android applications are programmed in Java language, compiled to Java bytecode 
and then converted to an optimized bytecode called Dalvik bytecode. Dalvik 
bytecode is an optimized bytecode for android OS. It is primarily designed to make 
the application code compact in order to conserve space and runtime CPU time on 
power constrained mobile devices. Dalvik runtime uses direct register addressing 
for accessing variable values compared to using stack to store and retrieve variable 
values in Java and other stack based systems. This enables Dalvik runtime to execute 
bytecode faster, within the constraints of mobile device. 
  
Application Framework: 
Application framework provides classes and design patterns to build applications 
for android. It is written in Java and provides abstraction to underlying layers of the 
operating system. 
 
 
Applications: 
Application layer consists of applications built using the Android application 
framework, and deployed on the device. These can be applications bundled with 
Android, device manufacturer applications or third party applications deployed by 
the user of the device. 
 

Relevance to the Personal Assistant software: 
Personal assistant software needs access to the user in order to be used for routine 
tasks. Designing it as a mobile application achieves this purpose, while giving 
application access to all the personal information available on the device thru the 
APIs.  
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5 Designing Smart Agent  
5.1 Semantic Web as a building block 
Semantic web is envisioned as a single logical web of meaning that is interconnected 
between various sites and has self-defined meta-data so that any one willing to use 
this data can interpret it and extend it. It makes the data machine-readable and 
using semantic web’s inference technologies, tools can be built to process this data 
and build applications that can interpret the data.  
 

 
Figure 5-1: Integrating agent with the web of linked data 35 

 
Conceptually, smart planning agent is designed to work with existing web of linked 
data, leveraging the ontologies as well as the data that is being collected in these 
web sites using linked data technologies such as RDF and OWL. It reuses the 
ontologies defined by sites such as OpenCyc, GoodRelations, Wordnet, DBpedia etc., 
and in doing so can retrieve vast number of facts related to day to day activities 
collected by OpenCyc and process them using their interconnected links to other 
ontologies such as Wordnet, DBpedia etc.  
 
Use of semantic data brings out best practices in managing data and enables data 
reuse by having a single reference to data entities and creates a single unified data 
that can be extended by application providers by defining new ontologies using the 
base ontology of the data and adding new attributes on it. 
 
A reasoning engine uses the information obtained thru linked data, applying the 
contextual information of the user that is available on the mobile device and make 
inferences as well as plans for the user. 
                                                        
35 “Linked Open Data Cloud - Http://richard.cyganiak.de/2007/10/lod/lod-
datasets_2011-09-19_colored.png.” 
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Agent stores inputs as well as outputs from these interactions in a local RDF 
database that can be used in later interactions as a historical data about the user 
profile. In addition, this local data store can extend ontologies defined on the web by 
adding attributes and relations more relevant to the agent context. This enables a 
single set of semantic technologies to be used to query knowledge databases on the 
web as well as historical data and facts collected in the local database. 
 

5.2 Designing Smart Agent 

5.2.1 Requirement Analysis 
i. Interpreting user input – usability of the agent is one of the high priority 

requirements for a smart agent application. It needs to be more helpful to the 
user and ask for fewer inputs. In addition, it needs to support input in regular 
English language.  

1. Supporting voice recognition: Ideally, a smart agent needs to support 
voice interface in order to make the agent useful while the user is 
unable to type the request on the device. But, this requirement was 
purposely out of scope in order to focus more on the other aspects of 
building such an application while assuming that agent can later 
integrate with a voice recognition technology which can convert 
spoken text into textual commands for the agent to process. 

2. User input should be processed to identify the task to be performed. 
Define templates for the supported tasks. These templates should help 
the user to type required information for the task so that agent can 
identify the task and related parameters. 
 

ii. Understanding the task at hand – Traditional task list applications treat 
the tasks as strings and do not associate any semantics to the task. The smart 
agent should exhibit an understanding of the task entered thru the system. 
This is a critical requirement as it enables the agent to use this 
understanding of the task to plan for the task.   
 

iii. Contextual awareness – Identifying the context of the user for any given 
task enables the agent to better serve the user’s intended goal and possibly 
asks fewer questions to plan for the task. There are multiple contexts 
associated with an agent 

1. Location Context: This context provides current location as the input 
and lets agent reduce the search path for a given task. This location 
context refers to low level geo coordinates offered by GPS sensors in 
mobile devices as well as mapping these co-ordinates to higher level 
entities such as home, office, airport, mall etc. Location context 
information coupled with understanding of the task helps the agent to 
identify type of tasks that can be or cannot be accomplished at this 
location. 
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2. Time Context: Time context for an agent includes an understanding 

of common time terminologies such as morning, afternoon, evening, 
today, yesterday, tomorrow etc., and using current time or time of the 
task to filter tasks relevant in this context. 
 

3. Activity Context:  An activity context refers to the understanding of 
an ongoing activity or a planned activity and identifying attributes of 
the task that need to be managed. For example, if you are executing a 
task of driving to the airport to catch a flight, then an understanding of 
catching the flight on time is important. At the same time, generating 
alerts to the user if the flight is delayed is very useful and utilizes 
activity contexts.  
 

4. Social Context: This refers to understanding of social interactions 
between the user and other people in his network. With this 
contextual information, agent will be able to service requests based on 
a specific relation mentioned in the task and will be able to use 
information on people accompanying the user in an activity to suggest 
sub-tasks for a task or an activity.  
 

iv. Understanding external environment context: Agent needs to plan for 
tasks that interact with the external world. So, any changes in external world 
such as weather conditions, traffic conditions, delays in other people 
schedules should be coordinated and provided as input to the agent for 
planning the execution of tasks. 
 

v. Task decomposition: Agent should capture task models that include 
specifying a given task by decomposed steps that contain sib-tasks, which in 
itself can be planned by the agent. In this task model, agent should be able to 
specify ordering of the subtasks, any dependencies between the sub-tasks, 
pre-conditions as well as post conditions of completing the sub-tasks.  It 
needs to provide preset task decompositions for supported tasks and let the 
user customize some aspects of these sub-tasks. Part of this task 
decomposition is driven by the extent of understanding of the task within the 
agent’s knowledgebase, so extensibility of the knowledge base will drive 
adaptability of the agent to new tasks. Agent should provide a framework to 
capture sub-tasks for a given task by getting input from the user.  
 

vi. Planning tasks: Agent should be ask questions to the user in order to 
disambiguate any input related to the tasks and to identify specific task in its 
repository and also to identify the subtasks. Once its done with this process, 
it should analyze sub-tasks involved in the process, sequence of these tasks, 
any dependencies, pre-conditions and post conditions and create a plan for 
executing these tasks either manual thru the user or some other person or 
automatically thru the agent. 
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vii. Automating task execution: Agent should be able to identify the tasks or 

subtasks that can be accomplished by the agent itself by automatically 
invoking modules within the agent capable of completing the task or sub-
task. These automated tasks could be for gathering information from variety 
of data sources the agent is capable of connecting to, or to invoke APIs to 
book an order for an item at online e-commerce store.  
 

viii. Delegating tasks: Each task will be either a manual task or an automated 
one. Agent should be able to identify the type of the task and execute 
automated tasks with the information entered by the user and using 
contextual information of the user within in the agent. Agent should be able 
to identify number of actors for manual tasks and should try to identify if the 
user or the agent can be the default executioner of the task. If it’s a manual 
task, agent should identify if the user generally completes it or delegates to 
others and use this information to assign a default delegate. 

 
ix. Record User Interactions: Agent should record user task entries, location, 

time, and user selections from list of choices, in a database. This information 
can be used to train the agent to identify paths that user is more likely going 
to take based on the past historical data.  
 

5.3 General Architectural and Design Principles 36 

5.3.1 Modularity 
A system with modular architecture can be decomposed into well-defined 
subsystems. A modular subsystem with well-defined interfaces explicitly specifies 
expected inputs and outputs of the system and wraps all the complexity associated 
with implementation internally and hides it from the subsystems interfacing to it. 
This also reduces coupling between the subsystems. 

A modular architecture leads to higher reuse of existing components, adaptability to 
change, shorter time to market, scalability of product design and reliable testing 
cycles. 

5.3.2 Extensibility 
System should designed such that new features can be added to the system as well 
as existing features can be modified without a major overhaul to the architecture 
and ideally by few simple changes. Modular architecture and loose coupling 
between sub-systems plays a major role in ensuring an extensible system. 

                                                        
36 “ESD.34 System Architecture Course at MIT – Principles of Architecture 
Assignment.” 
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5.3.3 Complexity  
A good architecture takes into consideration performance and quality attributes of 
the system and also considers all the -ilities such as extensibility, modularity, 
scalability, availability etc., expected of the system. Complexity of the system is thus 
driven by the essential functionality that need to be implemented to satisfy essential 
user needs and by these performance and quality attributes that need to be 
supported by the system. A good architecture will be able to deliver on all these 
promises by choosing concepts with low essential complexity and by using 
abstraction, decomposition, hierarchy and recursion to keep the actual complexity 
to the essential complexity. 

5.3.4 Falling back to the user in case of ambiguity or unknowns 
System should be architected such that in case system is subjected unsupported 
cases then it should respond gracefully, and in case of personal assistant, should fall 
back on user for clarifications or choose from available choices. This introduces 
human component back into the system, reducing complexity that would be 
otherwise required for the system. 

5.3.5 Adopting Open Standards and Data Reuse  
A system design that promotes adoption of mature open standards enables quick 
development and deployment as it leads to sharing of the technology, tools as well 
as other resources developed by the community.   
Adoption of semantic web technologies, tools, and ontologies relevant to the smart 
agent makes the implementation of the agent easier thru reuse. 

5.3.6 Integrating with external data sources and Services 
An architecture that offloads functionality to external components such as web 
services or external data sources simplifies the design of the system itself at the 
same time leveraging the expertise of the external systems. It also introduces 
dependencies on these external systems and fallback mechanisms should be added 
in order to use alternative paths when one of the dependent paths is not available. 

5.3.7 Early Detection 
Instead of building the whole system at once, iterative development approach 
insists on breaking up the release artifacts into manageable elements such that each 
phase results in delivery useable and higher priority features to the stakeholders. 
Design, development and testing cycles are executed for each phase and any issues 
with implementation are found during these cycles. User feedback is also 
ascertained to ensure that features are being implemented as per the user needs 
and intended goals of the system. This feedback provides any correction in the 
implementation or re-prioritization of the goals of the system. 
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5.4 Abstract Models in the agent 

5.4.1 Task templates 
 

 
Figure 5-2: Sample Tasks using Task Template 

 
Input to agent is driven by a set of templates that detect the pattern in the input text 
and ask the user to enter specific fields. Template is driven by data organized in a 
tree structure shown in Figure 5-2 above. It begins with a verb for the activity, and 
then based on the selected verb, subsequent parameters are presented to the user 
for entry.  
 
Following is a set of sample verbs supported by the agent: 

1. Get is an information gathering activity that can be executed by the agent by 
using web services or linked data sources. Agent then asks for specific 
information needed by the user, and asks the user to select from a dropdown 
list which has items such as ‘weather, ‘restaurant list’, ‘restaurant list – 
Indian’ etc. 
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2. Reserve is a verb used to identify online reservation tasks that can be 
automatically executed by the agent. For example, reserving a specific 
restaurant for a group of people using web services such as OpenTable to 
book restaurants. 

3. Buy is a verb that can be used to capture general day-to-day buying activities 
related to buying groceries, books, electronics etc., that involve shopping at a 
retailer store. 

4. Drive is a verb that can be used with tasks related to driving to particular 
locations. Agent will follow up with questions on vehicle, location to drive to 
and when the user wants to start the driving activity.  

 
Input System, uses the first word entered by the user to detect the pattern, and 
dynamically updates the UI to capture rest of the input parameters for the task. 
 
Hierarchy of nodes in the task template is used to follow a naming convention to 
capture attributes of the task, as well as to capture input and output parameters of 
the task. For example, ‘Reserve restaurant’ task is identified by the name 
Reserve.Restaurant and has input parameters Name of the restaurant, location of 
the restaurant, date and time of reservation and number of people going to 
restaurant. Web service manager module will use the task template name to capture 
integration details of the task with the web services that offer capability to complete 
this task. 
 

5.4.2 Web Service Integration 
Agent uses web services to query for information as well as to execute actions by 
calling the external web services offered by third parties thru the web service 
manager module. There are two types of web services agent integrates with – 
informational web services, which are used to gather information given a set of 
input parameters, and another set of web services to execute actions on behalf of 
the user.  
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Figure 5-3: Web Services Manager 

Figure 5-3 shows sub-systems involved in integrating agent with web services and 
forms Web services Manager module. 

 
Web Services controller is the central component that orchestrates web service 
integration within the agent. It takes inputs from Input Parameters Model as well as 
from Context Model and then uses Web service mapping module to identify which 
web service to call, and also what parameters to be passed. It will then call web 
service adapter with the input parameters, and parse the response. 

 
Context Model contains contextual information about the user such as user’s 
current location, current time, calendar appointments, other tasks currently in 
progress, past history of tasks, user interests, and likes. This model provides input 
to the web services module, parameters that are not explicitly entered by the user, 
but are relevant for the web service. 

 
Input Parameters model is a generic model that stores all the information 
collected by the agent from the user. In cases of use cases such as ‘Get weather 
report for a location’ – this would include location name, date and time of the report. 
 
Output Parameters model captures expected responses from the web services, 
format of this output. For example, weather service will respond with weather 
conditions for a location such as temperature, humidity, wind, sunrise/sunset 
timings, etc.  

 
Web Service Adapters handle connectivity to specific web services, passing input 
parameters in the desired form and transforming the output from the web service in 
the desired form for the agent. In addition, it will also translate any data elements 
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between the two sides so that each side understands the other. Some examples of 
these adapters include Google Calendar adapter, Google Contacts web service 
adapter, Weather.com web service adapter, OpenTable web service adapter etc. 

 
Web Service Mapping module, will map a task to a web service and the input 
parameters to specific parameters accepted by that web service. This module, in 
conjunction with specific web service adapters enables invocation of external web 
services from the agent. In can be conceived that, support for new web service can 
be enabled by adding a new adapter to the web service and then adding a new 
mapping information regarding the service and its input/output parameters.  
 

 
Figure 5-4: Web Service Mapping Example 

 
Figure 5-4 shows how web service mappings are arranged for each of the supported 
tasks. It contains mapping of generic parameters such as location, date and time 
captured in the task template model to specific parameters expected by the web 
service that needs to be invoked by the agent. It also contains details about web 
service adapter that needs to be called along with parameters that need to be passed 
for input as well as parameters that are expected as output.   
 
These mappings enable the agent to bind generic data gathered in the UI to specifics 
of the web service on the input side, and transform the response from the web 
service to display output to the user.  
 

5.4.3 Task Model 
Task Model is used to capture information related to the task such as task name, 
actor, start time, end time, duration of task, urgency, importance, dependencies with 
other tasks, sub-tasks, and status of the task. 
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Figure 5-5: Task Model 

 
 
Task Model is used to capture details of the task, its sub tasks, dependencies 
with other tasks, status of the task. It also includes information on 
importance and urgency of the task used to prioritize the task during 
planning stage. Actor and Delegatability fields enable the agent to identify 
who this task can be assigned to. It also includes references to Wordnet and 
OpenCyc to gather additional information on the task. Knowledge databases 
provide useful information on sub-tasks associated with the task that are 
then form part of this task model. 
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5.5 Modules within the system 
 

 
Figure 5-6: Modules within Smart Agent system 

 
This section describes modules or sub-systems within the smart agent. 
 
Smart agent consists of five layers of sub-systems, with each layer interfacing with a 
specific set of technologies and providing a high level functionality to the agent. 
Input Processing, Web Service Manager, Semantic Websearch, Knowledge Search 
and Device integration are the five layers and the modules shown in green are the 
facades to connect to external entities shown in blocks without any color. Agent 
modules such as Dialog Manger, Task Definitions models, Context Manager and 
Planning agent use facades to each of these layers to connect to individual external 
entities for data.  
 
Following section describes each of these five layers in detail and then describes the 
agent modules that interact with these five layers to provide agent functionality. 
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5.5.1 Five Layers for connecting to external systems  
 

1. Input Processing Layer 
 

 

Figure 5-7: Input Processing Layer 

 
This layer deals with parsing all the text entered thru the GUI using NLP 
libraries. It uses task templates defined in the previous section to gather task 
information from the user. These templates are designed to ask users to select 
an activity and then gather relevant information for the activity. Relevant 
information needed for the activity is coded into the templates. This enables the 
agent to ensure required parameters for the activity are gathers by the agent.  
 
Natural Language processing toolkits like OpenNLP that understand English 
grammar are used to parse text into parts of speech for the text entered by the 
user. This parsed information will be tagged with parts of speech information 
that is used to map entered text to task that can be planned by the agent. In 
addition Wordnet is being used to find synonyms for words that don’t have 
direct mapping in agent dictionary.  
 

2. Web Services Integration layer 
 

 

Figure 5-8: Web Services Manager Layer 

This layer integrates with web services to support user queries to specialized 
data or service providers. These services wrap the business services to query 
weather at a location, search for a business on Yelp, or issue a search query to a 
search engine thru the web service APIs provided by companies such as 
weather.com, Google, Yelp and Facebook. This module deals with all the low 
level details of connecting agent into information sources. 

This layer gives access to external environment conditions of the user that are 
needed while planning tasks. Some of these environmental factors include 
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weather conditions in the locations related to the task at hand, traffic conditions 
if a task includes driving to a location etc.  

 
 

3. Knowledge Database Search layer 
 

 
Figure 5-9: Knowledge Search Layer 

 
This layer interacts with knowledge database OpenCyc to query and update the 
knowledge concepts and assertions within this knowledge database. It also 
searches for concepts in DBpedia. 

Knowledge Databases such as OpenCyc and OpenMind store vast amounts of 
common sense data and are available thru API in RDF form. This information is 
used to understand the task and dependencies it may have on the environment 
to be executed.   
 
Each agent will have access to a dedicated copy of OpenCyc instance to store 
user specific information.  
 

 
 
4. Semantic Web Interface Layer 

 

 

Figure 5-10: Semantic Web Interface Layer 

Semantic web interface layer connects agent to external RDF data sources such 
as GeoNames, GoodRelations as well as RDF based knowledge bases OpenCyc 
and DBpedia.  
 
GoodRelations ontology is used to query ecommerce sites for specific products 
and product availability, enables linking the concept of a product in a knowledge 
database with real time availability and pricing information on the ecommerce 
sites.  
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Consistent use of semantic web technologies across different components used 
by the agent enables the agent to easily interpret any new data that is exposed 
using these technologies. User profile ontologies like FOAF and FB open graph 
are being evaluated to represent user and user’s social network connections. 
 
Wordnet already links into concepts defined in OpenCyc. This enables agent to 
parse the task parameters and then link task into Wordnet and then into 
OpenCyc concepts using the pre-defined links between Wordnet and OpenCyc. 
 

Following set of ontologies are currently used by the agent:  
 OpenCyc 
 DBpedia 
 Wordnet 
 GoodRelations 
 GeoNames 
 FOAF 

 

5. Device Integration Layer 
 

 
Figure 5-11: Device Integration Layer 

 
This layer interacts with the device operating system as well as personal 
information management applications thru the APIs exposed by the platform. 
Mobile apps such as calendar, reminders and notes are used to gather user’s 
specific environment information along with location data from the GPS sensors.  

This layer exposes internal environment of the user and is accessed thru sensors 
and applications on the mobile device. This enables agent to read user’s current 
location from the GPS sensors, access user’s scheduled meetings from the 
calendar, and access user’s contacts thru address book.  
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5.5.2 Agent modules orchestrating interactions with five integration layers 

 
Figure 5-12: Agent modules interacting with 5 integration layers 

Apache JENA framework is used to interface with RDF data stores, for SPARQL 
queries. It also includes an inference engine that can draw inferences on semantic 
data using OWL ontologies. It also includes an RDF data store along with the 
framework that can be used to store task related data gathered from the user in RDF 
form. 
 
1. Smart Agent Controller orchestrates interactions between the user and other 

modules within the agent. It operates as a central module making decisions on 
which modules to be called during the user data gathering process, integrating 
with five layers of the agent, invoking relevant task models, getting the right 
contextual information from the context manager and using the planning engine 
to plan the task for the user. 
 

2. Dialog Manager – will present user with multiple choices where agent is not 
able to make a decision on any specific path to be taken for a plan. For example, 
if the user has a task for going to airport and there are multiple airports around 
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the user’s current location, then agent will present the user available choices and 
record the selection.  
 

3. Context Manager 
a. Time Management module will try to optimize tasks by grouping related 

tasks together and by finding optimum time for executing tasks 
b. Location Management module uses location of the user to optimize and 

group any other activities of interest at the same or nearby location, thus 
optimizing the planning paths by location. 

 
4. Task Models - will decompose a given task into multiple steps of sufficient 

granularity. It uses dialog manager to gather input on any tasks that agent is 
unable to decompose into multiple steps and needs user intervention. This 
module will add new knowledge of task decomposition into the knowledge 
database and will extend the knowledge repository. These models connect the 
task definitions with the services available at the five layers described above in 
order to execute the actions of a sub-task. 
 

5. Planning Engine is the core part of the agent that interfaces with other modules 
described here to collect the information related to a given task user wants to 
execute. It applies the rules on the information collected within the supported 
domains and builds a graph of possible scenarios. If the number of paths to 
choose from is greater than one, it will use the dialog manager to ask the user to 
select a particular path.  

Inference and Planning is implemented using Apache Jena components. These 
components enable the agent to work with semantic web technologies and 
support defining inference thru a customizable rules interface. This component 
will begin with the understanding of domains related to initial use cases defined 
in the design chapter of the thesis. For example, it will have information on how 
to execute some of the automated tasks thru API calls to external service 
providers such as weather.com or Google. 

 

5.6 Use cases 
Agent will be a smartphone application that has access to GPS sensors, calendar 
application, and has a user interface for the user to interact with. GUI will be used to 
explicitly enter tasks of the user – that are to be achieved immediately or later by 
the user or the agent. GUI provides templates for the task entry and along with NLP 
tools will help the agent understand specific task that is entered in its goal to plan 
the task for the user.  

5.6.1 Use case 1: Agent is requested to get weather report for my parent’s 
hometown 

This use case is to highlight tasks that can be automated thru the agent and also how 
it integrates with internal as well as external RDF data stores. In a way, agent can 
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gather information online using the data sources it’s integrated with and service the 
request. 
 

a. User chooses “Get” activity from the UI template. Get activity relates to 
information gathering tasks that agent can automatically perform for the 
user. UI will then load list of items it supports - for example ‘weather report’, 
‘restaurant list’, ‘stock quotes’ etc. 

b. User will select ‘weather report’ from the list of available services for the 
agent. 

c. Agent will then ask the user to enter location. Current location is the default 
location.  

a. This is a text field, and in this case use enters ‘parent’s hometown’ as 
input text. 

b. Input processing system will parse the text, and identify parent as a 
relationship in Wordnet and then use contacts interface to fetch 
parent->hometown information. If that is not found, Wordnet 
provides father and mother as alternatives. Input system will then use 
father->hometown or mother->hometown to gather hometown 
information. 

d. Agent will then ask the user to enter date and time for which weather report 
is being requested. Default is today. 

e. Input module that takes these inputs from the user passes user entries for 
further processing.  

f. Agent uses webservice manager to execute this task, as task template 
identifies it as a task supported by webservice manager based on the user 
selection. Web service manager identifies web service adapter to be called, 
required input parameters, and calls the adapter, which in turn invokes the 
web service.  

g. Agent displays the weather report in the UI. By default, the weather report 
returns current weather conditions, and high/low temperatures for today as 
shown below. Adapter can define output transformations to transform the 
data obtained from the web service into different formats.  
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Figure 5-13: Sample report for weather request 

5.7 Sequence Diagram & Data Flow during execution of task 
This section covers sequence diagrams and data flow diagrams for use case 1 – ‘get 
weather report for my parent’s location’, which is an automated use case where 
smart agent is accomplish the task with out any user interventions after the user 
input. This use case is divided into tow parts – first part deals with getting user 
input for the task and the second part deals with executing the task. 
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5.7.1 Task Input  

 

Figure 5-14: Sequence diagram of input system for use case-1 

  
Sequence diagram in Figure 5-14 depicts interactions between different modules 
within smart agent for this use case during the task input process. It involves Dialog 
Manager, Input Processor, Task Models, Context Manager and User contacts 
modules within the agent system. 
 

1. User begins with asking the agent to create a new task 
2. Agent presents supported task list such as ‘Get’, ‘Reserve’, ‘Buy’ and ‘Drive’ 
3. User chooses ‘Get’ as the task. This triggers input system to create a new task 

model instance which supports ‘Get’ type of tasks 
4. Task Model then gets context information regarding the user from the 

context manager. This information will include user’s current location, and 
current activity. 

5. Dialog Manager, based on the selected task model asks user to select the 
service from the list of supported web services.  

6. User selects ‘Weather report’.  



 84 

7. Task Model for weather report is selected by the Input processing system 
and this will in turn drive the input parameters that are needed to be 
collected from the user. This task needs user to enter location as well as date 
and time of the weather report. 

8. User enters location as ‘parent’s hometown’ as input text.  
9. Input processor parses this text, and identifies parent as a relation and 

hometown as type of address. It then queries User’s contacts to get the name 
of the location for the contact person who is the parent of the user, and finds 
the hometown. For this step, its assumed that user has populated his contact 
database with his parent’s contact information, including the hometown. 

10. User then chooses default value of today as the date and time input for the 
task.  

11. Agent now has an instance of instance of a task model of type that supports 
‘Get Weather report’ and has input parameters - location and date/time 
populated. 

 

5.7.2 Task Execution 
 

 
 

Figure 5-15: Sequence diagram for task execution in usecase-1 

 
Sequence diagram in the figure above depicts sequence of steps involved in using 
the input parameters captured in the input step to invoke the web service, to 
automatically execute tasks on behalf of the user.  
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Web service manager uses Web service mapping module to identify specific web 
service adapter that needs to be invoked to execute this task. This mapping module 
also contains details on mapping input parameters collected in the task model to 
inputs required by the specific web service adapter. Web service manager calls the 
web service mapping module and then calls specific instance of web service adapter 
that supports this task – in this case its Weather Web service adapter, and passes 
required input parameters. Details on how to connect and invoke the web service 
are part of the adapter. Output from the adapter is then transformed and then sent 
to the user. Agent then displays the output to the user. 
 

5.7.3 Use case 2:  Planning the task – Drive to Airport 
1. User chooses the task as Driving 
2. Agent asks the user to enter destination location. User enters Airport as the 

location.  
3. Agent parses the input and identifies Airport as an entity. From the task 

model it also knows that driving is the activity for the task that needs a 
person as an actor. By default, it chooses user as the actor. 

 

 

Figure 5-16: Task Entry screen for 'Driving to Airport' 

4. Agent uses DriveDomainModel to drive the user inputs for this task. It also 
identifies User needs to drive a vehicle to get to the airport. It asks the user to 
select from a possible list of vehicles it has stored in its database that he will 
be driving. It also, searches for nearby airports and presents the list of 
airports to select from. This list of inputs is predefined while creating the 
task template.  



 86 

 

Figure 5-17: Task Entry screen to enter time and choose airport 

 
5. User chooses the airport and the vehicle to drive. At this point, task is well 

defined. Agent runs its planning algorithm and identifies set of tasks to reach 
the airport by 4pm. 

 
Figure 5-18: Agent's plan for the task - 'Driving to Airport' 

During the planning process, agent is able to identify in order to drive to 
the airport in the car   

- user needs to be near the car and user needs to pick up the car at 
3pm in order to reach airport at 4pm 
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5.8 Sequence Diagrams for use case 2: Drive to airport 
 

  
Figure 5-19: Sequence diagram for input system in usecase-2 

 
This section covers sequence of steps executed by the agent in order to parse, map 
and plan a task that is to be carried out manually. 

5.8.1 Parsing the input 
User selects ‘Driving’ as the task template and enters Airport as the location. Agent 
parses the location and identifies Airport as noun.  
 
Input system then queries Wordnet to identify the relevant word in Wordnet to 
concept in OpenCyc. Conceptually, this is the step when the text input is being 
mapped to semantic world. This stage has challenges related to ambiguity in input, 
but for the sake of simplicity as well as since NLP is not the core to this thesis, its 
assumed that agent will be able to map the input text to words in Wordnet. 
 
In order to make this translation, word sense within Wordnet needs to be 
constrained to transportation domain. Task Model that is used to handle drive task – 
DriveDomainModel is setup to use following SPARQL query to identify the Wordnet 
ID corresponding to word ‘drive’. It can then be used to link to OpenCyc concept on 
driving. 
 
SPARQL Queries used for identifying Wordnet words corresponding to drive: 
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PREFIX id:   <http://wordnet.rkbexplorer.com/id/> 
PREFIX rdf:  <http://www.w3.org/1999/02/22-rdf-syntax-ns#> 
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#> 
PREFIX akt:  <http://www.aktors.org/ontology/portal#> 
PREFIX owl:  <http://www.w3.org/2002/07/owl#> 
PREFIX akt:  <http://www.aktors.org/ontology/portal#> 
PREFIX akts: <http://www.aktors.org/ontology/support#> 
PREFIX wn:   <http://www.w3.org/2006/03/wn/wn20/schema/>  
 
SELECT * WHERE {  
  ?s rdfs:label "drive" . 
  ?s   wn:hyponymOf ?o  . 
  ?o rdfs:label "transportation" . 
} LIMIT 1000 

 
 
 SPARQL query to identify word within wordnet corresponding to airport. 

PREFIX id:   <http://wordnet.rkbexplorer.com/id/> 
PREFIX rdf:  <http://www.w3.org/1999/02/22-rdf-syntax-ns#> 
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#> 
PREFIX akt:  <http://www.aktors.org/ontology/portal#> 
PREFIX owl:  <http://www.w3.org/2002/07/owl#> 
PREFIX akt:  <http://www.aktors.org/ontology/portal#> 
PREFIX akts: <http://www.aktors.org/ontology/support#> 
PREFIX wn:   <http://www.w3.org/2006/03/wn/wn20/schema/>  
 
 
SELECT * WHERE {  
  ?s rdfs:label "airport" . 
  ?s wn:hyponymOf ?o  . 
  ?o rdfs:label ?so . 
} LIMIT 1000 

 
 This returns with the ID of the word ‘airport’ that can be referenced from 
OpenCyc. 
 

5.8.2 Identify the task domain model 
Task domain models are linked to microtheories within OpenCyc, which captures 
domain knowledge relevant for a domain. This domain knowledge helps the agent to 
identify pre-conditions and sub-tasks necessary for planning a task.  
 
OpenCyc concepts contain mappings for Wordnet words. So, Wordnet URI can be 
used to identify the corresponding concept in OpenCyc. In this case the mapped 
concept in OpenCyc is TransportInvolvingADriver. 
 
At this stage, agent uses the information from input system and context manager to 
identify the task model that will be able to handle the input task of the user. 
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A task model is intended to capture task information, query the knowledge database 
for sub-tasks, pre-conditions, and post-conditions as well as to keep a mapping of 
how to execute the automated tasks or map manual tasks to relevant concepts in 
knowledge base.  
 
In this use case, a DriveDomainModel object will be activated. This domain model is 
integrated with web services linked to finding weather and traffic information that 
is relevant in planning the driving activity. 
 

5.8.3 Create a new task object  
Explicit information gathered from the user as well as deduced information is used 
to create a task object which captures all relevant references to other objects for the 
agent.  
 
This task object contains following details: 

o Name of the task 
o Importance of the task 
o Urgency of the task 
o Due date 
o Delegatability (inferred by the agent) 
o Who will perform the task 
o When will this task be performed 
o Where will this task be performed 
o Subtasks for this task 

 

5.8.4 Collecting additional information from the user 
DriveDomainModel that models driving activity, includes parameters needed for 
driving activity and uses that information to gather input from the user thru the UI. 
It uses DialogManager to ask user to enter this missing information from the UI.  
 
DriveDomainModel then iterates thru next piece of missing information, and 
identifies that specific airport is not entered by the user. It then uses web services to 
identify airports near the current geo-location, and presents this list of airports to 
the user. This web service is presented with current location of the user, and the 
approximate radius to search for airports. 
 
Results from the web service call are then presented to the user in a dropdown list 
and will contain following airports, assuming user is currently around Boston, MA: 

o Logan International (BOS) 
o Manchester Regional Airport (MHT) 
o Worcester Regional Airport (ORH) 

By the end of this stage of input processing, agent has collected required 
information in order to plan the drive activity for the user.  
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Next stage of steps within the agent is related to getting sub-tasks associated with 
the activity and then planning the task. 
 

5.8.5 Get sub-tasks for the activity from knowledge base 
OpenCyc knowledge base enables use of existing knowledge in structured form that 
can be used to create a framework of task domain models that can rely on this pre-
existing information to drive the task planning activity of the agent. 
 
DriveDomainModel contains mapping to knowledge base entry 
TransportInvolvingADriver, which contains pre-conditions, parameters, actors, and 
sub-events related to executing this activity. 
 
TransportInvolvingADriver 
This concept in Cyc is mapped with synset-drive-verb-1 in Wordnet, and is 
identified as the relevant concept to be used for planning the task. 
 
This concept identifies a driver as a required actor to accomplish driving activity. In 
turn, driverActor is a type of actor defined within Cyc to be a person. This enables 
Cyc to infer that we need a person to complete this activity and so this task can’t be 
automated.  
 
Pre-conditions: 
- TransportInvolvingADriver needs a TransportationDevice. Cyc database will be 

populated with the user’s vehicles as an instance of TransportationDevice type. 
User will choose one of these vehicles for driving in this activity. 

- Driver needs to be at the location of the car in order to start driving 
- This activity is a Situation-Localized type, which means that it can only be 

started from a specific location. 

 
Parameters for this activity: 
- TransportInvolvingADriver is a TemporalThing that has a  

 Starting time is the time when the driving activity will be started 
 Duration for the activity 

- TransportInvolvingADriver is a TransLocation, which has a fromLocation and 
toLocation.  

 fromLocation is the starting point from where driver will begin 
driving in this activity 

 toLocation is the destination for this activity. In this use case, it will be 
the airport user has chosen as destination. 

 
Sub-Events to decompose the task into steps for the agent 
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Cyc knowledge base is augmented with sub-events information that captures 
sequence of steps needed to plan and complete this activity. 
- Go to the vehicle: user needs to be at the location of the vehicle. This sub-event 

will involve asking the user from going from his current location to location of 
the car 

- Start driving vehicle from starting point to destination. Assuming user is 
driving the vehicle, directions will be provided to the user 

- Park the car. Agent can identify the parking locations near the airport and help 
user to park the car. 

 

5.8.6 Planning the activity 
In order to plan for the driving activity, agent needs to process pre-conditions to 
begin this activity. Goal of this activity is to reach destination at say 4pm. Agent will 
work backwards using backward chaining planning algorithms to recommend 
actions to the user at specific times. 
 
Activity plan for the user will look like: 

 Begin activity (2:40pm)  
 Walk to the vehicle (duration = 10mins) 
 Driving from current location to airport (duration = 60mins)  
 Parking at airport (duration 10mins) 
 Goal: In airport at 4pm  

Agent will remind the user to begin this activity at 2:40pm, in order to reach the 
goal of being at the airport by 4pm.  
 

5.8.7 Monitoring the plan 
Agent will be periodically checking for any changes in conditions such as weather or 
traffic conditions that can impact the plan, to ensure that plan remains feasible with 
the changes in conditions that can be sensed by the agent thru the use of web 
services that expose this information in real time. 
 

5.8.8 Plan for the activities at the airport 
Agent plans for ‘Drive to Airport’ as a driving activity and then at airport activity. 
Agent can use this activity as a sub-event in driving activity, and plan out the 
activities to be accomplished at the airport. This will enable the agent to recursively 
plan for the activities.  
 

5.8.9 Summary of this use case 
This use case demonstrates how different data sources such as Wordnet, OpenCyc, 
and web services that expose information via APIs in real time can be leveraged to 
parse, interpret and plan simple tasks for the user. It shows, specifically on how 
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some of the information such as actors, sub-events, and pre-conditions from 
OpenCyc can be mapped in domain models of the agent. In essence, integration of 
data across different sources as well as understanding of this data thru the use of 
semantic data mappings enables a reuse of these data sources as well as knowledge 
databases in building tools such as this agent, that can exhibit an understanding of 
the tasks they are planning. 
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6 Assumptions, Constraints and 
Limitations of the system and 
ways to address them 

 
This chapter highlights limitations of the architecture and design of the smart agent, 
and how these limitations impose constraints in terms features provided to the user 
 

6.1 Personal assistant can be built for specific domains, but integrating this 
with the knowledge of the domain is the challenge. 

Knowledge database such as Cyc carries knowledge across multiple domains while 
the agent is built for particular task domains such as travel, shopping, entertainment 
etc. This requires partitions within the knowledge base in order to focus on relevant 
aspects of the knowledge that should be used and interpreted by the agent. 
Microtheories in Cyc encapsulate this partition by separating different domain 
knowledge into different buckets of microtheories. Even then, depth of knowledge 
may be different for different concepts and coupled with level of information 
needed for the agent, it becomes necessary to review the assertions and 
relationships contained in the knowledge base when implementing support for a 
new activity in the agent. 
 

6.2 Voice interface for the agent 
Personal assistant software should have simple interface, ideally with a speech 
dialog between the agent and the user. This is a natural interface for the user and 
does not involve typing commands in the agent’s user interface.  In addition, this 
speech interface should be able to interpret regular language speech without any 
need for using specific tailored commands. Task templates described in this agent 
are a limitation on usability of the agent.  
 
Voice interface was not considered for this agent in order to keep the focus on data 
sources and in combining the data sources to solve the problem of task planning. A 
voice interface can be added to the agent system, by integrating voice recognition 
software into the input system, providing user to either use text input via user 
interface or thru the voice interface.  
 
Voice recognition software can then be driven to provide a dialog interface with the 
user whenever a follow up information is needed from the user. This part is already 
designed into the dialog manager sub-system.  
 
Voice interface will make the system usable and coupled with mobile device’s touch 
interface enables a more intuitive and easier user interface enabling the user to 
involve agent in planning for more routine tasks. 
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6.3 User interactions with the agent 
Agent is intended to help the user in managing his day-to-day tasks and make access 
to information faster. At the same time, agent needs input from the user when 
multiple choices are available and also needs to remind the user when specific 
deadlines are approaching. There is a need for a usability testing on what is the right 
level of interaction with the user, to keep the user engaged in using the tool and 
drawing value from it, without being too distracted from other activities.  
 
Another open question is, what questions to ask the user while he starts venturing 
into action. Do we ask the user all the required questions to be able to complete the 
tasks? Or wait till we reach that sub task related to this task? These user interactions 
need to be fine-tuned and the agent should not ask for user’s attention when he or 
she is not expecting one. 
 

6.4 Stronger NLP to capture user input unambiguously 
On the input side, user input via voice or text needs to be improved by using NLP 
algorithms that are trained on user tasks related data, and improve based on the 
user input to follow up user responses. This will help the agent to perform user 
activities, without a need for user to speak the language of the agent.  
 

6.5 Performance of semantic web endpoints 
Semantic endpoints such as DBpedia, GeoNames, FreeBase, OpenCyc that provide 
semantic data are less than reliable at this time in terms of availability, and also in 
terms of performance when the sites are available. This unreliability makes the 
system fail, especially in scenarios where these systems provide unique data that is 
necessary for keeping the agent operational.  
 
One of the approaches of interacting with slow performing semantic endpoints is to 
cache some of the data, so that it’s already available. And another alternative is to 
make these calls asynchronous and not be in the direct path of interactions with the 
user.  
 
However, its expected that in the long run these semantic end points will become 
much better - performance as well as reliability wise.  
 

6.6 Data accuracy and completeness 
Semantic web endpoints provide data in RDF form to consumers, but this set of data 
may not be accurate at the time or may not be complete in terms of coverage. This 
leads to unreliability due to data quality. There needs to be a Quality of Service 
contracts on how the data provided by these endpoints is tested before hosting 
online. Unfortunately, these rules and policies will result in friction in exposing data 
online. But, will result in more resilient applications that use this data. 
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6.7 Proliferation of web services 
Task models use web service managers to interact with third party web services to 
retrieve information from the web. An increase in supported use cases can result in 
proliferation of web services, with ever increasing integration points. 
 
This can be addressed by having plugin architecture for integrating task models 
with web services. In this model, the plugin architecture will define a standardized 
interface for web service and its input and output parameters. And will expose an 
API that can be plugged into any task model that can generate this standardized 
input. Plugin provider will then extract the information from standardized form and 
translate into the form needed for this web service. This introduces an extra layer 
that can be used to outsource the integration of agent task models with web 
services, to third party vendors.  
 

6.8 Task Models 
Agent needs task domain models to understand a task, and integrate with different 
data sources that can be consumed to accomplish the task. These task models need 
to be implemented one at a time, and hierarchy of concepts within Cyc can help the 
agent plan the activity such as ‘drive to theater’ using the same framework that is 
used for ‘drive to airport’, even though subsequent activities after reaching the 
destination are different in both cases.  
 
New task models for example, shopping related activities can be added by 
identifying related verbs in Wordnet, their corresponding concept in Cyc, pre-
conditions, actors and sub-tasks within Cyc. And then using this information within 
the agent’s domain model framework to integrate with real time data sources and 
planning the task.  
 
In order to truly make this framework easily extensible, framework needs to be 
used in multiple use cases exposing to different user scenarios, contexts as well as 
data sources to be integrated with.   
 

6.9 Planning  
Tasks are modeled in Task domain models, and are mapped in Cyc for their 
decomposed sub-tasks. One of the challenges for the agent is to understand on how 
deep it needs to go in order to plan this task. Part of this information is hard coded 
by customizing the knowledge base for the supported tasks. But, in general giving 
the agent a notion of planning at an appropriate level for the user will enable the 
agent to remain useful to the user without being too detail oriented.  
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6.10 Sharing task decomposition with other users 
Knowledge database provide flexibility in the design of the system, and let the agent 
be customized based on the user’s planning approach to specific tasks. Sharing this 
knowledge across users can let the best practices be spread to different users, and 
thus helping formation of community of users sharing their individual knowledge 
about task planning with others, replicating productive behavior. 
 

6.11 Ability to add new facts and task decomposition to database 
In the current design, task domain models use knowledge bases to drive the task 
planning. But, there is no explicit interface to modify the knowledge base. One of the 
key features will be to enable the user to add content to knowledge database that 
can in turn influence how the activities are planned. This will in turn make the agent 
learn from the user, and become a personalized assistant thru the use of knowledge 
base. 
 

6.12 Learning from user input and actions 
In addition to getting user input for updating the knowledge base, user selections 
and patterns in tasks can be used by the agent to learn user preferences, affinities 
based on location and time. This information can then be used to improve the user 
experience by reducing input selections based on the prior selections of this specific 
user in similar use contexts. 
 

6.13 Personal information on the mobile phone 
User information is spread across different applications such as address book, 
emails, call records, calendar etc., on the mobile device. This information needs to be 
consolidated and provided in a single ontology that can enable applications to 
access this information in more meaningful ways, with a better understanding of the 
data they hold.  

 

6.14 Integrating with social networks, and delegating tasks to other users in 
the network 

Many users use social networks such as Facebook, to capture their routine activities 
and so turn out to be a digital diary of the person. In addition, these social networks 
also capture personal connections of the users with his friends and family, who are 
generally involved in helping him with the tasks.  
 
Integrating the agent with social networks will enable delegation of tasks to people 
in the network, and can also help the agent system to be a part of social network 
with visibility into other connected user’s tasks and planning information.  
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7 Conclusion and Future work 
7.1 Personal Assistants are the future 
Personal assistant software improves user productivity by managing routine tasks 
of the user and by providing information from online sources to the user. As 
discussed earlier, technologies such as web services, sharing of data, linked data, 
shared ontologies, knowledge databases, and mobile devices are proving to be 
enablers for tools such as personal assistant software.  
 
Building an agent that can replace a human assistant has been a holy grail for 
software industry, especially in the field of artificial intelligence. Difficulties 
associated with capturing human intelligence in models that can be used to drive 
the agent have been one of the primary bottlenecks in building such agents. With the 
availability of data in semantic form, where the data carries itself the meaning and 
data sources are interlinked with each other, provides an opportunity to first 
capture human knowledge in this form and then apply reasoning engines that can 
interpret these models to make inferences for simple tasks.  
 
This thesis work included conducting research on semantic web technologies, data 
sources that are available in semantic web form as well as web services, knowledge 
databases with a view to model simple day-to-day tasks of users using these 
technologies and to design personal assistant software that can leverage these 
technologies.  
 

7.2 Supporting Tasks 
As part of the thesis, two simple use cases were considered to demonstrate the 
viability of the solution to manage tasks that can be automated by the agent or 
planned by the agent for manual execution. Further research needs to be done to 
identify user tasks that can be managed by the agent. In the current design, task 
templates and models need to be created in order to support a task for the user. This 
can be improved by having a dynamic creation of these models based on the 
knowledge about the tasks in the knowledge databases. But, this will need a 
common ontology to be used by the web services, data source providers, knowledge 
databases and the agents in order to identify task attributes, its input and output 
parameters at all levels and using this common understanding to make the 
integration with the agent seamless.  
 
In the absence of this commonly adopted ontologies, we are left with implementing 
mapping schemes at various levels to support tasks. This involves identifying the 
task and then integrating with the web services that can support the task. This has 
been a successful strategy with the existing personal assistant software such as SIRI, 
but can lead to proliferation of web services at the agent level. 
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7.3 Evolution of semantic web ecosystem 
Current set of semantic web data sources have issues ranging from performance of 
the SPARQL endpoints, availability of these end points and quality of the data. This 
needs to be addressed by improving the database engines used to host semantic 
data. In addition, having more mature, fault tolerant systems to enable high 
availability systems that can be used reliably in mission critical applications.  
 
Semantic web also suffers from a presence of large variety of ontologies and a few 
commonly used ones. Proliferation of ontologies is creating interoperability issues 
between similar data sources using different ontologies. It remains to be seen how 
the industry tackles this issue. One of the approaches would be to have standards 
organizations drive building frequently used ontologies and let everyone adopt the 
standard ontologies. Another approach is to create bridges between widely used 
and related ontologies so users of either ontology can avail of the features in the 
other one.  
 
Another issue associated with slow pace of adoption of semantic web technologies is 
the lack of reliable tools that can be used to design and implement solutions using 
this data as well as to manage this data.  
 
True power of semantic web will be utilized when these concerns are addressed and 
enterprises as well as people expose data in this format.  
 

7.4 Building the agent 
As part of future work, agent will be built based on the design elements in this thesis 
in order to prove the validity of the design and as part of this process improvements 
to this design and architecture will be made. A simple and intuitive user interface 
needs to be built and tested to make the interactions with the agent simple and 
productive.  
 

7.5 Knowledge Databases 
Knowledge databases such as OpenCyc do not provide a reliable SPARQL endpoint 
for consuming its data in RDF form. The RDF interface is only provided on the 
central servers managed by Cyc and is not provided in the open source version. This 
creates an unnecessary dependency on central servers managed by Cyc to 
implement this solution. Alternative strategies should be explored to correct this 
issue. 
 
Sub-Tasks captured in Cyc are used in the design of the agent. This information for 
most part is not currently part of the knowledge base and needs to be added into the 
knowledge base. This information needs to be reviewed for any new task that is 
supported by the agent.  
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In order to scale the agent to support new tasks easily, task decomposition within 
Cyc needs to be enhanced by using tools that can identify related task and sub-task 
dependency relationship and populating the sub-tasks so as to meet the agent 
requirements for planning these tasks. 
 

7.6 Planning Algorithms 
Agent should be able to model complex task dependencies and use these models to 
recommend optimized plans for the user. It needs to be tested for finding optimum 
paths when a task has multiple sub-tasks and each sub-task can have its own sub-
tasks. In such a case there can be multiple solutions to paths, and the agent should 
be able to consider user preferences, other active tasks, priorities in order to 
recommend a particular plan.  
 
Agent can prove to be a useful companion for the user if it can take these 
considerations into account while suggesting plans to the user.  
 

7.7 Reasoning 
This design of the agent relies on logic incorporated within the task models of the 
agent along with ontology descriptions of the concepts in semantic data sources as 
well as in OpenCyc to make inferences. This can be improved by defining the rules 
needed by the agent as assertions and rules in OpenCyc and using OpenCyc 
inference engine as part of the agent to drive the logic in the agent.    
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