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Abstract

This thesis reflects on the issues and challenges large software product engineering man-
agers face. Software is hard to engineer on a small scale, but at a larger scale, engineering
and management tasks are even more difficult. In the context of software product line evo-
lution, the goal of this work is to look at current managing practice, through the lens of
Systems Thinking as well as my own experience. We develop a System Dynamics model to
operationalize the notions examined here and run a variety of experiments representative of
real situations, from which we learn some lessons and recommend policies that engineering
leaders may use to manage large-scale software development organizations.

During the course of this research, we found that the model developed intuitively matched
experiences in the software industry. Product line engineering and tighter deadlines force
software producers to require more accurate control of the production capability of their
development organization. In the context of many release cycles and multiple simultane-
ously active releases, we present some findings about scheduling of the workload, which the
engineering manager may leverage to make decisions about the allocation of work. The
research presented here from the point of view of the producers of software can help other
stakeholders in the software ecosystem understand the challenges these organizations face
and the reasoning behind choices made by these providers.
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Chapter 1

Introduction

1.1 Motivation

Software development is hard, and many software projects fail : these are two unfortunate

but undeniable truths about the software industry. In the face of these truths, how are

managers of software products and product families supposed to steer their development

efforts as simultaneously codebases grow and deadlines become ever so tighter? The goal in

this thesis is to propose some themes of reflection around these issues, by drawing from the

literature as well as my personal experience.

In today’s fast-moving world, successful software companies need to grow continuously

in revenue, which translate into growth in headcount, market share, product feature set

and product line-up. These also form the basis on which software companies compete.

Companies that remain small typically merely cater to a niche in the larger market : this is

success by one measure, as such niches might indeed be quite large, but this is not the kind

of development effort we are interested in in this thesis. Here we are specifically looking at

what happens in larger efforts, usually multi-year projects employing hundreds or thousands

of engineers. This is the environment the majority of my work experience comes from,

and even though managers know instinctively that there are limits to growth, limits to

how many features one can cram into a single release of the product, that firefighting is

best avoided, that projects easily spiral out of control if the organization promises more

than it can reasonably be expected to deliver, all of these things still frequently do happen.

This work is an opportunity for me to step back from my daily software development work

and reflect on the system issues in the engineering of large-scale software systems, and in

particular product line engineering of such such systems.

There are at least two systems involved here:

• the software system produced by the organization, this we call the product system. It

may be a single system, or a family of related systems.

9
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• the organizational system, that is the organization and its work processes: this is what

creates the products sold to customers.

This last system is the one we are concerned with most in this work, we call it the software

production system or the software delivery system.

Wheelwright & Clark [Wheelwright & Clark 1994] noted that being good at product de-

velopment makes a difference, and indeed that while having senior managers help on one

particular project might rescue a failing effort, what really brings value is when the senior

manager can put in place a system that makes product development repeatable and reliable.

Looking at the levers that make this possible in the particular setting of software product

line development is what interests us in this work.

1.2 Research Objectives

Whereas a project has by definition a finite time span, a successful product line has an

unbounded lifespan and indeed large software product development organizations typically

release their product or product family periodically, hopefully many times if the venture is

successful. Each period can be considered a time-boxed project: this insight is the starting

point for the research topic at the core of this thesis. Of particular interest are the issues and

challenges managers face when the system size increases in number of features, components

or people, when the number of parallel projects increases or when release frequency changes,

as well as the possible managerial choices and their consequences.

The goal here is not to give a catalog of “best practices” in software development, as

there are many such practices and no single one is ’best’, by whatever criterion one cares to

choose. There exists a whole spectrum of practices: from undisciplined to very disciplined,

such as SEI ’s Capability Maturity Model. The intent here is to describe what the issues are

in the management of time-boxed software development, in particular we intend to examine

how engineering managers can detect them and how to manage them in an economically

viable way.

We shall describe the possible alternative steady states of a large software engineering

organization, and try to suggest ways of transitioning from one to the other. Another

contribution of this thesis is to look at what long-term effects can result from short-term

changes in operating procedures of such organizations. The main point of this thesis is

that growing a software product development effort requires stability in change, and that

there exists managerial levers that can be used to construct stable intermediate forms of

the organization, to reuse the words first used by Herbert Simon [Simon 1962]. These

intermediate forms allow the organization to achieve growth successfully.

10 / 163
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Here is a list of questions we would like to examine in this thesis:

1. What are the advantages of releasing a continuous stream of successive revisions of a

software product compared to a big-bang model of product release?

2. How can project managers load-balance between multiple active releases? One example

of a product with several versions in active use would be Microsoft R©1: Windows R© Vista,

Windows R© 7 and Windows R© 8 are some of the current releases this company supports

actively, shipping bugfixes and updates to customers. This is something that they do

today, but their choices are mostly guided by experience and gut feeling.

3. How can project managers load-balance between multiple products in a product family?

The canonical example of such a product family would be Microsoft R© ’s Office R© suite:

products in that family include the Word R© and Excel R© software products.

4. How can managers minimize downtime due to human error ? This is similar to “start

and stop” fluctations in funding (see [Trammell, Madnick & Moulton 2012]), where

the fluctuations are involuntarily caused by the team itself, not by external influences.

5. How to minimize firefighting (as defined in the works of Repenning [Repenning 2001])?

6. What are the cost and benefits of hierarchy and modularization in the continuous

delivery process? The point here is that we know the organization typically has or

evolves to a structure which is very much like the technical structure of the project,

therefore maybe the same principles of hierarchy and modularization can be applied

to how work is organized, so as to give the same benefits. One corollary of this is that

as one does not want architecture spanning cycles [Sturtevant 2013] in the product

architecture, one probably does not want such cycles in team dependencies, as that

would be a sure way to cause rework cycles that span the whole organization. This

also relates to the “synch and stabilize” style of development at Microsoft documented

by Cusumano [Cusumano & Selby 1997].

7. Does distributed development, especially with regards to remote sites, make large-scale

development work more difficult? Under what conditions? How to mitigate the adverse

effects of distributing work across locations?

These questions can be examined from the standpoint of a common framework which has

its roots in Systems Thinking. In short, we believe it would be useful to construct a model

where we introduce some probability of human error,then show that introducing hierarchy

and modularity can help control the dynamics engendered by the rework loops that such

1Windows R©, Office R©, Word R© and Excel R© are registered trademarks of Microsoft R© Corporation in the
United States and other countries.
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errors cause. In other words, dividing the work in modules, sometimes called work packages,

can help ensure stability in the change process (where “change” is really the “ongoing changes

in source code as development proceeds”): each delivery keeps the system under development

in a “ready-to-ship” mode, as any intermediate form is a stable intermediate form.

1.3 Thesis Structure

This thesis work aims at providing a good understanding of the dynamics of large-scale

software development, in particular how that compares to small-scale development, and

what specific issues managers will encounter when growing an organization to tackle ever

larger projects.

Chapter 2 will briefly look at some bests practices for software development. This is

not meant to be a catalog of all possible practices, but rather an introductory glance at

some practices have experienced industry and how they impact software development. The

elements presented in this chapter will be used in later chapters to explain some of the

phenomena observed.

Chapter 3 attempts to frame the differences between single-person software development

and larger efforts. The typical workflow of single-person software development endeavours

is presented, which is useful because it really is the minimal system worth looking at, and

indeed it is the sub-system embedded in team projects. We then show how each of the

practices in single-person development break down as the number of participants increases.

Chapter 4 examines the challenges and issues encountered by large software engineering

organizations, such as distributed development, acquisition and merger of other organiza-

tions, and integration of product line engineering into the organizational system. These

present unique risks and opportunities that leaders must attend to, and we shall demon-

strate those in the later modeling chapter 5.

Chapter 5 uses the System Dynamics methodology to present some models which ac-

count for the dynamics seen in prior chapters. The goal here is to use SD to gain insight into

the system-level issues found in large-scale engineering and to identify the levers managers

that can use to keep control of their product development effort. The goal is not to develop

predictive tools, but rather to gain understanding of the dynamics.

Finally, Chapter 6 identifies some interesting topics of future study, before summarizing

our findings and concluding in Chapter 7.
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Chapter 2

Best Practices for Software

Development

In this section, we will look at some of the practices that both individual software developers

and team projects use. Many of these are not exclusive to software development, but have

roots, or have been independently developed, in other engineering disciplines.

Early work such as [Abdel-Hamid & Madnick 1991] has looked at the dynamics of the

software production system, in fact Abdel-Hamid and Madnick found investigating the poli-

cies, decisions and actions that can cause cost and budget overruns in spite of stable user

requirements to be interesting, and that is in fact what we want to look at. We consider

all exogenous factors to be stable, and observe that even then the dynamics of software

development are such that cost and schedule overruns still do happen. Before attempting

to integrate the various factor which intervene in software development projects, we want to

look at various aspects of the software production system, viewed as a socio-technical system

of growing complexity.

2.1 The Waterfall and other software process models

The academic literature presents a wealth of information about the theory and practice of

software product development; large parts of this literature is interested in modeling the

processes by which an organization produces software products and families of products, but

the very roots are in the theory and practice of project management. Indeed developing

a product from scratch is often considered a one-time project. One of the first software

process models is known as the Waterfall model, by Royce, depicted in Figure 2-1a. Winston

Royce [Royce 1987] did not coin the name Waterfall model, but he did introduce this abstract

model of software development in the 1980s.

13
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(a) Implementation steps to develop a large computer program for
delivery to a customer.

(b) Hopefully, the iterative interaction between the various phases is
confined to successive steps

(c) Unfortunately, for the process illustrated, the design iterations are
never confined to the successive steps

Figure 2-1: the Waterfall model, from [Royce 1987] 14 / 163
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Figure 2-1c shows that Royce had clearly identified that there was an iterative interaction

between steps, which we would qualify as feedback. He had even warned about interaction

between non-consecutive steps. This is in fact the beginnings of the idea of the rework cycle,

detailed in chapter 5.

Early scholars of software project management quickly saw the shortcomings of the pure

Waterfall model, Boehm [Boehm 1986] formalized what happens in software projects in what

became known as the Spiral model (See figure 2-2). In this early research, we can see that

the concept of iterations is crucial to managing projects: in particular, planned iterations

are good to have, as having them merely recognizes that work is iterative, but unplanned

iterations are the cause of many issues that prevent successful completion. The very name

unplanned iteration indicates that this phenomenon is unforeseen rework, and as we will see

in later chapters, such rework can be controlled. In particular, when it is not controlled and

spans many steps of the model, it causes the very schedule problems that plague software

development projects.
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Figure 2-2: Boehm’s spiral model, from [Boehm 1986].

These academic process models represent what happens in the development of a software

product at a very high-level, here we are not concerned with how close these models the reality

of software development, we simply use the theoretical description as a framework for how

software is developed in industry. Specifically, in the next sections of this thesis, we will be

concerned with what happens in the detailed designed, coding, testing and implementation

stages.

2.2 Source Control Usage

Source control is a practice derived from software configuration management. Configuration

management is a discipline that records all existing configurations of a (hardware or software,

or a combination of the two) system, for the purpose of being able to reproduce these

configuration on demand. In the software development industry, configuration management

is specifically used to perform the bookkeeping to record all existing versions of a software

product.

Each ongoing line of development is called a release branch or simply a branch. Alterna-

tives names for the same concept are a mainline or a baseline, all are used interchangeably in
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the present document. On a given branch, one can make several successives changes, called

submissions or promotions, and the branch represents a timeline of these changes. One can

then select to view the state of the files at any given point in time: this gives the ability to

go back into a previous state.

Some such versions are “tagged” or “released” to customers: these are the actual artefacts

that are shipped to customers, perhaps in the form of bits on a DVD or available for down-

load from a website. Source control is usually implemented using source control software,

sometimes called Version Control System, such as CVS, Subversion, or ClearCase.

It provides to the individual developer an infinite undo capability, and to the enterprise

a means to record any and all changes. It will become apparent later in this paper that

automated bookkeeping is a crucial capability to have to work on many code mainlines

simultaneously. [Berczuk 2002] gives details.

Time

Task 1 Task 2

Rele
ase

1

Fix Task 3

Rele
ase

2

Figure 2-3: This shows how source control is used to make successive modifications to source code,
create releases and record the history of changes.

As shown on Figure 2-3, For each coding task (either in initial implementation or in

defect fixing), the software developers “checks out” a copy of the source code (i.e. he gets

a copy from the source control system, this is sometimes called attaching or creating a

view). He then makes changes to some of the source code files, recompiles, runs the software

product to validate his change(s), then runs unit tests, and if good, promotes (or submits

or commits, the terminology varies for each SCM system) to make his change part of the

mainline. At the time of the final build whose bits will be shipped to customers, a member of

release engineering generates a build and that becomes the official build given to customers.

Release engineer can be the developer himself, but on typical large teams, there is dedicated

staff for this function.

In the context of software product line engineering, it is important that the source control

system track changes already merged on each mainline. Managers want to provide an envi-

ronment where the risk of providing incomplete code changes or incorrect merging of code

changes are limited. Some of these advantages can be obtained through tool support, for in-

stance SCM software such as Subversion provide merge tracking so the system remembers
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merges that have already happened, which is very useful when merging repeatedly onto one

particular mainline. The source control system also usually has some way to group changes

to multiple files and to trace back one submission to a group of files: this is critical in finding

groups of related changes that need to be merged atomically onto another mainline.

In my experience, working without source control is like being an acrobat without a safety

net, therefore even for personal use, one must have the discipline to use source control and

to commit small chunks of work. This practice makes it possible to undo mistakes. Similarly

using source control to annotate changes with associated defect informations allows one

to trace defects back to specific changes. This makes it possible to go back in time and

understand the reasons for a particular change, which helps with future maintenance.

2.3 Defect Tracking

Recording a log of all defects and issues found in the product, whether released to customers

or not, is of paramount importance for a software development project. Without such

bookkeeping, issues get forgotten, subsequent maintenance finds source code in such a state

that the maintainer has a hard time figuring out why the design or the implementation ended

up in this state. When a software engineer in a maintenance capacity makes a code change

in response to a defect report, he needs to record information about what he understood

about the fault, how he gained this understanding, what further assumptions he made: this

historical log of everything that concerns a defect may eventually become useful for the next

person working in the same area of the software source code. Experience shows that any

source file modified for the purposes of repair has a greater chance to see more changes in the

future. When this additional work happens, it is called rework. Rework happens frequently,

and therefore it is a wise investment to carefully log changes and their purpose, so that the

next maintainer, which may very well be the same person a few weeks out in the future, can

put things in context again rapidly.

In short, having proper defect tracking provides the context that is not recorded in the

software files and artefacts: this is what maintenance programmers use as inputs to perform

their software change tasks.

In a way, the defect tracking system is the repository of the organization’s memory of

all the defects and associated rework that were ever discovered and performed in successive

revisions of the software product. It functions as an engineer’s log book, as is used in

many other engineering disciplines. It is meant to be a centrally maintained repository of

organizational learning.

In the context of software product line evolution, when one organization maintains several
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mainlines in parallel, defects need to be fixed on each of the active mainlines. As a way to

load-balance the work, managers can select one engineer to do the original corrective change

on one mainline, and have some other engineer merge the same set of changes on a different

mainline. Knowing what files and what changes belong to a particular change set associated

to a specific defect is crucial to limit the scope of what the maintenance engineer needs

to learn in order to work effectively on the merge. It often happens that a set of changes

applies directly onto the other mainline, but it may also sometimes happen that it is not the

case: in such a situation, the second engineer needs to devise a different, but semantically

equivalent, set of changes: knowing what the original changes are helps frame the problem

and its solution, even if the solution needs to be different.

Automated defect tracking also provides for the Quality Assurance function, subsequently

abbreviated to QA, a way to feed their stock of input tasks. QA is the test engineering

function within the enterprise: when a change reaches a build that the QA engineers can

test, This minimizes downtime for QA engineers (they do not have to ask for status to

developers, they do not need to figure out where in the delivery chain the change is), and

decreases per-defect overhead for the whole organization.

2.4 Building and releasing software artefacts

During the coding phase, individual software engineers contribute source code to the product,

but this is usually not in itself sufficient to produce a working product. Organizations

typically designate a build master to produce the official product build that will eventually

be shipped to customers. This operation is usually performed by invoking a compiler that

turns software source code into executable files. This technical operation is called compilation

or build by engineers, it may have to be performed once per supported platform (for C/C++

systems) or just once (for Java-based systems). When the product or product family because

large enough, the build operation increases in duration, and complete system builds by each

engineer becomes impractical. Ensuring linear scalability can be an engineering challenge in

itself: if care is not applied, it is easy to create large systems whose build times are superlinear

in the number of individual elements. Even with a properly scalable build procedure, whole-

system builds require more time than convenient for each engineer to build from scratch every

day. In such a situation, the organization will typically have more than one build master,

maybe a whole team of individual engineers: such a team is called a build lab or a release

engineering team. Another concern is separation of responsibilities: having a separate build

team ensures that the work product of individual development engineers is in fact amenable

to complete system builds.

What software engineers call Breaking the build is the act of rendering the system build

procedure unable to operate, this may happen for a number of reasons, such as invalid syntax
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in sources files, incompatible changes, or omissions of new files.

When one development engineer publishes a change that breaks the build, having a

second party run the build operation and verify buildability puts in place social processes

that incentivizes engineers to fix their own mistakes. The same social processes induce

engineers to exercise care in publishing changes, which improves the stability of the build

process. Indeed [Dikel, Kane & Wilson 2001, p. 92] make the point that If the build breaks,

the software is in an unknown state, and so larger problems may remain hidden, therefore

ensuring these situations occur as rarely as possible is extremely desirable. The absence of

build breaks does not guarantee that the system will work at all, but their presence absolutely

guarantees that other problems are present but cannot be discovered in the system. One

does not want engineers to work blindfolded, therefore build breaks cannot be tolerated.

McConnell argued in 1996 [McConnell 1996] that using daily builds and daily smoke tests

were a good (See next section and also [Sullivan 2001]) way to prevent downstream rework

from preventing others on the team from working. Complete coverage is not the goal, a

set of simplified tests for the core functions ensures that each build has a minimum level of

quality that lets all work continuously.

We should note also that individual engineers usually work with debug builds (as opposed

to release builds, which use different compiler options to produce optimized code), which

produce artefacts that can be used with source-level debuggers. Release builds and debug

builds are not identical, and sometimes bugs only manifest themselves in one of the two: this

happens from time to time and is related to where the compiler places automatic variables,

how memory layout is padded, etc... these all make for bizarre memory-related problems

which are very hard to debug. Debug builds are fundamentally useful for engineers, while

release builds are what customers will really use in production, therefore it is paramount

that some, if not the majority, of the testing happen with release builds, in order to be as

close as possible to realistic customer usage of the product. When product size increases, it

is important to have the ability to mix artefacts from both kinds of build, so engineers can

use the mostly-optimized product with only some components in debug mode.

In conclusion, when product size increases, building and releasing software products

becomes a discipline that requires dedicated staff and policies: Figure 2-4 gives examples of

policies companies may put in place to manage this.
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In one environment for a C++ product I worked on, in an attempt to limit system-wide
breakage, the company had instituted a policy of limiting rebuild impacts on older fielded
releases by not allowing changes in header files in these old mainlines.

Header files are an artefact of the C/C++ languages, where one file, called the header,
contains the declaration for a module, and another file contains the actual implementation:
when one changes the header, callers must be re-compiled to match the possibly changed
definition of functions. This kind of impact analysis is performed by the build system to
ensure a correct build is derived from the source code. It allows for incremental rebuilds, so
that only the parts that may have changed need to be re-compiled.

Disallowing changes to header files thus ensured that the externally visible binary interface
of any modified DLL remained the same, and that newly rebuilt DLLs could be dropped
in in an existing customer installation. By voluntarily limiting change in this fashion, we
minimize deployment costs for the customer. In some ways, this policy was too restrictive,
as it outlawed many valid changes, but I would observe that it was for the most part very
successful in minimizing rework in that specific setting.

In another large mixed C++/Java product release environment, we would know from the
architecture what impacts would a header change in the core components have. In particular,
if we knew that one such change would cause a large rebuild that would take more than a
day, we would voluntarily delay submission in the source control system of these changes to a
Friday, so that the rebuild would take place over the week-end and the build artefacts would
be ready for the next workday. Release engineers would get to know the system intimately
and would schedule builds accordingly, to minimize stalls. For C++ source code, this was
usually the result of badly organized header files, proper re-organization usually cut build-
times significantly: the engineering aspects of this for C++ systems are largely documented
in [Lakos 1996]. Project team who do not engineer this aspect of their production system
usually see build-times worsen and unnecessary rebuilds happen more and more often. As
builds happen more frequently, scalability and performance of the build system can easily
become a bottleneck that limits the ability to generate a new working version of the product.

Figure 2-4: Example of policies regarding building products.
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2.5 Automated Testing

Automated testing is an important part of the work of software developers. This is sometimes

called unit testing in the sense that it tests unitary pieces of the software, however such

testing can apply at any level of the system, and can in fact test some very large units.

Unit testing may be automated or not, but of course it is best to automate as many tests as

possible, which makes it possible for others, such as the release engineering team or continous

integration software, to re-run the suite of tests after each code change.

[Abdel-Hamid & Madnick 1991, p. 71] wrote about the coding phase that “not included

in this activity is unit or module testing, which is commonly considered to be part of the

coding process”, and indeed that is how we will consider this portion of the testing process

in the present work. We should note however that automated testing is vital in isolating the

repercussions of problems in the coding phase: software developers are usually not allowed

to publish their work to the rest of the team until all automated tests pass. Individuals

usually know this from experience and observe a discipline such that errors like these do not

block others; even in single-person development, it is good to have known-good checkpoints

where testing is performed to verify no regressions have been introduced into the code base.

In [McConnell 1997], McConnell calls this the Smoke Test : running the suite of auto-

mated tests blocks is done to detect mistakes as early as possible. A software development

discipline that lets a broken system be released to other constituencies (be they other devel-

opers, testers, or even worse customers) is really no discipline, as it guarantees that every

little mishap will stall all the stakeholders. Running the Smoke Test is a simple and easy way

to force detectable rework to be performed before consequences and cost are too important.

We shall see in later sections how more investment in automated test suites can improve the

flow of deliveries through the code production system.

2.6 Manual Testing

Some tests cannot be easily or cheaply automated, and must then be performed manually

by QA staff. In particular this includes some User Interface tests, or tests that require some

interaction with a physical device (for instance, in CAD software, tests that generate code

for an NC machine), or system tests that necessitate the presence of many moving parts.

The enterprise should strive to automate everything that can be automated, but that will

certainly leave some things which cannot be automated.

Manual testing is an expensive kind of testing, as it requires human labor (and it is

repetitive labor, making it usually not very appealing to quality engineers). Experience

shows that quality engineers will usually come up with inventive ways to automate their

testing. What is left is things that must be truly tested by hand, hopefully those are very

few.
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Manual testing is nevertheless invaluable, because humans interacting with the system

can usually be creative in their interactions, in ways that an automated test harness never

could. QA engineers also usually come up with contrived, but theoretically possible, sce-

narios that exercise the system in unexpected ways, often revealing unintended defects or

limitations. One should also not dismiss the possibility of find problems by accident when

interacting with the system.

While automated testing can rapidly reveal coding errors by uncovering regressions, man-

ual testing usually reveals defects either in design or in coding. Of course, for that kind of

testing to happen, one needs to constantly have a minimum testable product. The minimum

testable product phrase used here is pattern after the MVP or Minimum Viable Product

mentioned in literature, here we use it to describe a testable artefact, regardless of its actual

viability as a commercial product. This highlights the importance of building as often as

necessary, as was explained in Section 2.4. Having a working build which has passed the

automated test suite successfully is a requirement for manual testing: the consequence of not

having both of those two requirements fulfilled would be that the testers either do not have

a testable system, or are wasting their time testing a build which is known to be defective.

It is extremely important that the person doing the manual testing be another individual

than the ones who did the design or the coding: because that third-party does not share any

assumptions or prejudices, he or she will usually be able to pinpoint limitations that neither

the designer nor the coder thought about.

2.7 Metrics

Ever since software has become an engineering discipline, people have invented and used all

sorts of metrics about software source code. Humphreys [Humphreys 1989] formalized why

and how to collect data about software, explained how measurements can help understand

and evaluate software code bases. Measurements can be used by management:

• for preventing some classes of errors. Static source code checking can help detect

some classes of errors, especially non-sensical statements in source code which can

only be typographical errors (The canonical example is “if(a=12) then...” instead

of “if(a==12) then...”). Automated detection and classification of errors like these

allows the manager to see how many occurrences exist, and to prioritize compared to

other tasks.

• for decision-making about the readiness of the software for release. For instance, defect

density can be estimated and a threshold for approving release or not selected.

• for budgeting purposes,

• for building confidence in the output of the software production system.
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However, the manager ought to be careful about setting up automated measurements of

attributes of the software products, for Management By Objectives often causes individuals

to optimize to the specific measure, which can adversely affect the actual objective. In

general, as [Humphreys 1989, p. 330] notes, using such data to evaluate people generally

backfires; [Grady & Caswell 1987] makes the same observation, indicating that the data

must be used to evaluate the process, not the people. For instance, we have seen in industry

that if people are asked to review the code and put some markers in the source code files,

and if the only thing measured is the presence of those markers, then markers will abound,

but little code reviewing will take place. In other words, gauging work by exclusively looking

at metrics is a sure way to encounter policy resistance: people will optimize to the metric at

the cost of lesser overall system performance; this is an example of local optimization leading

to global pessimization.

Although the initial intent is to improve the quality of the work product, using source

code metrics to drive the engineering work can also sometimes cause perverse effects. One

example is explained in detail in Figure 2-5, another example would be when people optimize

to the metric: for instance by putting too many or too few statements on a single line to

attain a specific number of lines of code, by adding in dummy comment lines to increase the

amount of commenting in the software source code.

As any software code change is a liability, the engineering manager should be be sure to

make the organization perform work to satisfy metrics goals (an example of non-customer

visible technical feature) at the beginning of a release, rather than at the end. When this

policy is not observed, changes that add no value are made late in the release cycle, increasing

risk. This is one kind of work that can easily be spread over multiple release cycles so as to

minimize risk of de-stabilization. Because such quality-related rework must be spread over

time, it is important to maintain a repeatable suite of unit tests and keep records about the

reasons for each test case, as well as its behavior over time [McConnell 2004, ch. 25].

[Humphreys 1989, ch. 16] and [Grady & Caswell 1987] explain how to establish a software

quality program based on metrics and measures.
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One experience I had was when the company had long-term stability problems in our software:
it would crash after a few hours. This was often because of de-referencing null pointers
in C++ software code, which happens when logic errors in the code lead to the program
execution failing.

In order to increase the Mean Time Between Failures, management decided to make engineers
add non nullity checks on pointers late in the release cycle. This caused a lot of churn in
source code and greatly de-stabilized the product. One of the reasons was that checks were
added in the form of conditional statements instead of assertions: this caused the system
as a whole to be more tolerant of illogical states. Using assertions would have forced an
immediate crash of the product, and thus no immediate improvement of the Mean Time
Between Failures, but it would also have forced the individual engineers to get to the bottom
of each problem, rather than make those problematic situations acceptable. Blind application
of a policy in this case resulted in a system becoming vastly more difficult to understand.

Figure 2-5: Example of policy resistance in the use of software metrics.

2.8 Modularity

Modularity in software systems is both an architecture-level feature and a component-level

feature. [Parnas 2001] gave an early demonstation of the applicability and usefulness of the

concept of modularity to software, but the best characterization of the desirable character-

istics of modules is given by Sturtevant (in [Sturtevant 2013]):

Robust modules have the property of ’homeostasis’ - their internal func-

tioning is not easily disrupted by fluctuations in the external environment.

Other product development disciplines have discovered this in the form of the Design

Structure Matrix. In software development, modularity manifests itself in the way the soft-

ware source code is organized.

• in C/C++ projects, the artefacts produced by the build procedure are usually DLL

(an acronym for Dynamic Link Libraries) files or executable files. As the system

is decomposed into modules, each module ordinarily maps to one such artefact.

• in Java projects, the artefacts produced by the build procedure are usually organized

in JAR(Java ARchive) files or WAR(Web ARchive) files. Each JAR file depends

on a set of other JAR files to build successfully.

Such an organization then allows individual developers to build parts of the system without

having to build the whole product, which is advantageous since it allows to work on parts of

the system locally without having to generate a full system build, which may be infeasible

time-wise.
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Using the Design Structure Matrix, MacCormack has shown [MacCormack 2006] that

a modular structure is desirable for large system (although it is not always present), and

[Akaikine & MacCormack 2010] showed that it helps bring down maintenance costs over the

long term.

One topic related to modularity is that of compatibility at the level of component in-

terfaces: modularity is preserved in software when source compatibility and/or binary com-

patiblity are preserved. Binary compatibility is the ability to change the implementation

details of an interface without changing the interface, such that another component can call

into the component being modified without requiring modification of the call site. Source

compatibility happens when the interface remains valid at compile-time but not at runtime,

this can happen in C++ or Java when a signature changes. Examples of the two are given

in figures 2-6 and 2-7.
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Modularity is sometimes breached in non-obvious ways, for instance in one C/C++ product I
worked on, we had multiple parsers and lexers in different components, those were generated
using compiler-compiler tools such as yacc and lex, which are old Unix tools which generate
non-reentrant code, often functions which have a fixed name.

It turned out that on some platforms the visibility of symbols at runtime depends on the
order of loading of components. Understanding what code was generated and why this was
happening generated a lot of unplanned rework. The solution was to modify the output of
the code generator to ensure unicity of names.

Component A

ParserA

LexerA

intended

Component B

ParserB

LexerB

actual intended

Whole System

More modern languages such as Java provide protection against such accidents, by natively
enclosing components in packages. Other C-based system use process isolation to enforce
the same constraints and isolate faults so that failure in one component does not bring the
whole system down.

Some Java environments such as OSGi go even further and allow multiple versions of the
same component to run within the same system: this kind of capability is very important to
open systems which are meant to have a long life cycle, to host multiple applications inside
the same container system, or to be able to upgrade components while the system is online.

Figure 2-6: Example of binary compatibility issue.
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If source code changes are made that break compatibility, then interfaces between com-

ponents change, possibly without of the client components being updated simultaneously.

In other words, if compatibility is not preserved, then updates to interfaces must be made

simultaneously with updates to all clients of the interface. This is one kind of architecture-

spanning cycle, i.e. a dependency chain that spans more than one component. The best

practice is for engineers to avoid making source code changes that break source or binary

compability intentionnally.

• removing one function without having first migrated all clients of that function will

break the build in the client components (note how this is made even harder when

clients can be customer code not available for migration. Typically the organization

must then establish some Service-Level Agreement like policy). This is true at the

language level, but also true of any interface (either a file format, a network interface,

any SOA service, etc...).

• changing one function to have an incompatible signature (in C, this can be source-

compatible because C does not check argument types, in C++ or Java, the client

component build would break, allowing detection).

• changing one function to have a source-level-compatible but runtime-incompatible vari-

ant (for instance in C, changing one parameter type from “int” to “char”, thereby

generating runtime trunction of argument values). Another example of this is detailed

in the next box.

Some systems enforce compatibility by disallowing the changing of interfaces once pub-

lished: Microsoft COM is one such system, it has a policy of never allowing the mutation of

an interface, enforcing the versioning of the interface instead [Box 1998].
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One anecdote I can recount on the topic of binary compatibility as it applies to modularity
and coupling is the following: We had a large Java system where we changed the signature
of a method in a core component from this version (version 1):

1
2 public class Example {

3
4 public static void fct(String fmtstr ,

5 String arg1 , String arg2) {

6 ...

7 }

8
9 }

to that version (version 2):

1
2 public class Example {

3
4 public static void fct(String ... args) { ... }

5
6 }

As one can see, this change is source-compatible (i.e. one can rebuild other components
that depend on this class without problem, the compiler automatically knows what method
to call). For instance, we had callers such as the following:

1
2 public class Caller {

3
4 public static void m() {

5 Example.fct("%s %s","hello", "world");

6 }

7 }

While callers compiled correctly with version 2, components compiled with version 1 could
not run with a binary core component at version 1 and vice-versa. In this instance, breaking
binary compatibility made it impossible to run different versions of the coupled parts together.

Figure 2-7: Example of source compatibility issue.
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2.9 Defect Discovery

In this section, we describe how defects are discovered in software systems. A defect, some-

times called a bug, is a flaw in the software system that causes it to operate incorrectly.

End-users of the sofware system see failures or faults. These failures may be rooted in

defects or in incorrect operation of the software system. The software development organi-

zation receives from its end-users reports of failures, which it classifies into defects or not.

Engineers and quality assurance personnel may also report failures. The organization also

performs triage according to criticality of the defect: this prioritizes the defects. Once a

defect has been assigned to a software engineer, that person will attempt to understand the

nature of the failure and to locate in the system where the fault lays. Many times, but not

always, the location will be in the source code of the software. Once location and cause are

understood, the software developer will engineer a fix, which is a source code change that

eliminates the cause of the error. This is one form of rework. Once that source code change

is published to the end-users, the original reporter of the failure will re-test and acknowledge

that the change fixed the erratic behavior.

Note that defects may be implementation defects (i.e. problems in the specific expression

of the software source code), or may be design defects (i.e. the software operates according

to specification but the specification is incorrect with regards to the actual requirement), or

even requirement defects (i.e. the requirement is inaccurate or incomplete). Undiscovered

defects can lay dormant in the software for a very long time, for instance in rarely used

code paths (maybe one needs a contrived scenario to trigger the failure). Such undiscovered

defects are part of undiscovered rework, although a fraction of undiscovered rework will in

fact never be discovered and thus never cause actual rework to occur.

As documented by [Pressman 2000], it is widely known in the industry that finding and

correcting defects as early as possible is a good practice to have. [Abdel-Hamid & Madnick

1989, p. 39] highlights that

the longer an error goes undetected, the more extensive

the necessary rework and the greater the cost.

The cost of fixing a defect increases as the issue is discovered later in the project lifecycle:

for implementation defects, discovering defects in the Quality Assurance phase is more costly

than discovering during initial development; for design or architecture defects, the cost of

discovering and fixing after the product has been fielded can be enormous (see Figure 2-8).

In System Dynamics parlance, there is a feedback loop, and delays in discovering rework

downstream can generate enormous waste in terms of work spent on defective work products

and downstream re-work required after upstream corrective action.

Code reviews, also called inspections or walkthroughs, are a well-documented practice
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Figure 2-8: Relative cost of correcting an error, from [Pressman 2000, p. 198]

(See [Yourdon 1989] and [Humphreys 1989, ch. 10]) that improves the quality of software

by detecting defects early. However code reviews can become counter-productive when their

spirit and goals are not assimilated into the organization: for instance, in one organization I

know, the mandate to do code reviews was put down one day, and rapidly developers were

either stamping their review approval without even reading the source code change, or noting

issues but not fixing them (as that would have required another round of work and another

round of code review), or even detecting issues that were not present (for instance detecting

a misuse of a particular class that was in fact not a misuse at all!). This perversion of the

original spirit of the code review process completely made this new process devoid of meaning

and devoid of actual utility: worse, it even caused unnecessary and invalid rework. Ideally,

code reviews should be conducted for each source code change, no matter how seemingly

insignificant; however this would turn out to be prohibitively expensive, if only in terms of

the paid time spent by engineers performing the review. In practice, high-level code reviews

should be conducted to validate designs before implementation, and engineers use their best

judgement to elect to have some changes reviewed and others not, usually as a function of

the complexity of the change, their own familiarity with the portion of the codebase being

modified. Unfortunately, as [Abdel-Hamid & Madnick 1991, p. 71] notes, inspections are

often the first practice to be abandonned when managers start cutting corners.
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2.10 People are not always interchangeable

It is well known that individual productivity for software developers can vary by as much as

an order of magnitude.

Also, Sturtevant found that engineers working on more complex parts of a software design

are less productive than others working in less complex parts [Sturtevant 2013]. This would

tend to indicate that engineers working on the core of the system should not be expected to

be as productive as others working on peripheral components: in other words, the release

pace of the core component will probably be slower than that of the outer components.

As a last note, we should also remark that people are not even interchangeable with

themselves: the productivity of an individual is not constant over time, it tends to vary with

project experience, schedule pressure, fatigue, morale and motivation.
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Chapter 3

Scaling from one-man development to

many-engineers development

Scaling can happen on many dimensions, including code-size, headcount, number of products.

Scaling in size of code usually happen simultaneously with an increase in headcount, as more

people are required to develop and maintain a growing code base, and conversely one would

expect more engineers produce more software code. The number of products is correlated

with the code size, but not necessarily directly proportional : many products may be simply

rearrangements or bundles of features, or different skins on the same package, as can be the

case when several industry vertical products can be derived from a single product simply by

adopting the specific language of that vertical.

Single-person software development is typically nimbler than large projects, as the cost

of mistakes is usually smaller. Although such endeavors can be disciplined, they typically

take many shortcuts, which may very well be acceptable since the expected deliverables

really are not the same. In a one-man project, developer, manager and strategist are all but

the same person; in bigger projects, these roles are distributed among many: this requires

coordination.

As Weinberg points out in [Weinberg 1991, p. 67], what is desired here is an engineering

discipline, not hacker or hero-like behavior. If we look at Weinberg’s classification of thought

patterns in software management:

These thoughts patterns parallel the levels of maturity defined by the Capability Maturity

Model [Paulk, Curtis, Chrissis & Weber 1993]. Single-person projects usually are at Pattern

0, in this terminology.
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Pattern Name Description
0 Oblivious Individuals do whatever is necessary to get the job done.
1 Variable Individuals do what they think is necessary at the time to get the

job done.
2 Routine The organization follows a routine, except in times of difficulty.
3 Steering The organization has selected a process for its good results, and

follows it.
4 Anticipating Processes are established based on past experience
5 Congruent Processes are repeatable, but constantly monitored and improved.

Figure 3-1: Weinberg’s classification, from [Weinberg 1991]

Delivering a single-release product for a very specific purpose is very different than deliv-

ering a large product or a product family. The software code production system consists in

the whole chain from requirements collection to the final mastering of the actual bits of the

software products. It is a complex socio-technical system, one that may be viewed through

the Systems Thinking lens. Single-person development efforts can certainly be looked at

from this perspective as well, but the more complex the system becomes the more important

the holistic analysis becomes.

Some of the problems that software development organizations encounter when increasing

project size are:

• increasing headcount induces a greater need for coordination. This coordination may

be related to attributes of the product being developed by the organization, but it may

also very well be related to communication to all involved parties of what the accepted

work processes are. There is tremendous value for the organization in documented

and standardized work processes. As [Abdel-Hamid & Madnick 1991, p. 51] points

out: Brooks suggests that human communication in a software development project is

the most significant cause of overhead - i.e. slowdowns and obstacles. Another point

is that increasing headcount makes the situation described in Figure 3-9 much more

frequent: instead of one person doing two separate tasks and knowing the impact of one

on the other, now every pair of developers must know about the possible interactions

of changes made by the individuals.

• increasing headcount can have the counter-intuitive effect of decreasing the work output

of the organization in the short term. This is called Brooks’ Law and is described in

section 3.1.1.

• increasing the code-size or the number of components causes build times to make

complete system builds too costly and infeasible for individual engineers. This is

described in section 3.3.3.
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• increasing headcount makes occurrences of human errors more frequent. One engineer’s

change can prevent others from working, and require emergency fixing. In other words,

more workers cause more stalls in the software code production system.

• increasing the number of components increases the number of interfaces, and more

interfaces means more opportunities to break modularity, which in turn can increase

stalls.

• increasing the number of interfaces means that formal protocols must be in place to

evolve these interfaces without breaking the work product. Another way to put this

would be to say that whereas in a single-developer system, only the customer cares

about compatibility at the time the product is fielded, in many-developers efforts, one

must continuously ensure stability in the form of compatibility.

• increasing the number of simultaneously active mainlines, in other words the number of

branches which are kept supported and maintained by the organization for customers

using those in production, yields more opportunities for rework to propagate across

mainlines.

3.1 Human Resource Management

The first aspect that we want to examine is that of management of human resources in the

context of a large organization. This topic has been looked at extensively in the literature, in

particular [Abdel-Hamid & Madnick 1991] calls it the Human Resource Management sector.

3.1.1 Brooks’ Law

Brooks’ Law [Brooks 1975] states that Adding manpower to a late software project makes it

later, and indeed this is an occurrence of the Limits to Growth pattern documented by [Novak

& Levine 2010]. The organization viewed as a system can only accomodate for integrating

so many new people in the software development project, as adding more causes old-timers

to spend more time hand-holding newcomers and fixing defects caused by the same than

producing deliverables.

3.1.2 Hiring

Apart from the problem of adding staff in hopes of getting work done, the organization needs

to deal with the natural attrition of staff: as people leave the company or retire, new hires

must be brought in to ensure the development capacity is continuously replenished. In the

case of an organization producing a long-lived product family, the time horizon for hiring
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can be long, possibly measured in years. For all intents and purposes in this paper, given

that the life cycle of software products examined here spans many years, we shall consider

that the number of people on staff is maintained constant, which is an approximation of

reality but should suffice.

Nevertheless we should note that longer tenure also engenders natural attrition of engi-

neering staff, and therefore management must take this into account and make sure to re-

plenish positions as needed, while accounting for the time people need to acquire experience

with the specifics of the product family and the design of the architecture and components.

[Dikel, Kane & Wilson 2001, p. 92] shows that the release rhythm of the software

development organization can have impact on other functions. For instance, the Human

Resources department may need to coordinate activities such that interviews happen at a

time when the development teams are not overloaded with work (e.g. not at the end of a

release cycle), and such that hiring and bringing new staff in happens at a time when the

team can incorporate new members.

In the present modeling effort, we do not consider this point and instead just assume that

hiring to replace attrition happens smoothly over release cycle. Of course hiring at a bad

time could cause disruption to the software delivery system, we just do not consider those

effects here.

3.1.3 People

One damning sign of one-person or few-persons organizations is that they tend to rely on

heroes to perform extraordinary work to save the day on the engineering side. However, as

teams grow, the company cannot rely on heroes anymore ( [Bosch 2000, p. 316]). To do

so would be encouraging and rewarding fire-figthing. We can observe that the firefighter,

sometimes called a software hero, is a critical resource in the critical chain method of project

management. When the organization uses the critical path method of project management, if

one resource (i.e. one firefighting programmer) is made unavailable (i.e. assigned temporarily

to some other project), then the manager unwillingly has transformed his project into a

critical chain.

This is not to say that one should not recognize that abilities vary from one individual

to the next, merely to say that the growing organization must channel the energies of its top

people in a way that is not counter-productive. Relying on heroes and firefighting is one of

those addiction phenomena Weinberg cites in [Weinberg 1991, p. 154].

36 / 163



Issues in Strategic Management of Large-Scale Software Product Line DevelopmentNivoit

3.1.4 Organization

With regards to organizing work, many software development entities attempt to use var-

ious patterns of organization, including those documented in the Organizational Behavior

literature. Each way of structuring people has its advantages and its drawbacks.

[Pohl, Böckle, & van der Linden 2010] have summarized the various generic forms of

organizations, as they apply to human groups working on the engineering of software product

lines (see Figure 3-4).

Development
Department

Business
Unit

Domain
Engineering
Unit

Hierarchical Domain
Engineering Unit

Figure 3-2: Successive organizational forms as the system grows, after [Bosch 2000]

[Bosch 2000, ch. 14] describes a clear progression in the possible form of organization as

product line size and complexity increases:

• Development Department is the first form, corresponding to a single, possibly quite

large, group devoted to development and engineering,

• Business Unit is when the development sub-organization becomes as important as

other functions within the company,

• Domain Engineering Units are found when some “core” assets (part of the domain)

are developed in reusable fashion, with the explicit goal of providing a shared platform

for application engineering,

• Hierarchical Domain Engineering Unit is when the engineering unit is itself organized

hierarchically in sub-systems. Hierarchy is used to distribute labor and realize the

layered dependency structure of a product line divided into domain and application

components. For very large products, this is the only workable form of organization,

and is shown on Figure 3-3.

These forms are shown in Figure 3-2.
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Figure 3-3: Hierarchical domain engineering unit model, from [Bosch 2000, p. 313]

Using a different viewpoint, [Pohl, Böckle, & van der Linden 2010, ch. 19] describe the

canonical matrix organization of labor used when some staff is used to do technology de-

velopment, but loaned to projects on the short term. The matrix organization in all its

variants exhibits the well-known tension between the immediate need for solution in product

development, and the long-term learning needs of technology development. These are shown

in Figure 3-4.

When applied to hierarchy in software development, this already indicates that the speed

of advancement of the shared parts of the product is slower than that of the application-

specific parts of the product. [Pohl, Böckle, & van der Linden 2010] does not explicitly

describe the hierarchical domain engineering unit model from [Bosch 2000].

These possible forms of organization are described in terms of the structure of the product

line, but the literature usually omits the time dimension, that is to say it does not formalize
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Figure 3-4: Possible matrix organizations for product line engineering, from [Pohl, Böckle,
& van der Linden 2010, ch. 19]

how to organize work in the context of product line evolution, how to manage the various

stages of the lifecycle of both products within the product line and product line itself. [Bosch

2000, p. 308] does mention the risk of erosion of the architecture and components in the

product line if ownership of components is not managed carefully (see Figure 3-5):

The timely and reliable evolution of the shared assets relies on the orga-

nizational culture and the commitment and responsibility felt by the indi-

viduals working with the assets.

Here we should make a note that the academic literature has no canonical terminology

for the various pieces of the product system. Indeed MacCormack, Pohl and Bosch all use

different terms to designate roughly the same things:

− what [MacCormack 2006] calls “core”, [Bosch 2000] calls “shared assets” and [Pohl,

Böckle, & van der Linden 2010] call “domain”. The “core” (or “domain”, sometimes
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also called “platform”) is the central component applications are built on top of, this

is what is reused across products.

− what [MacCormack 2006] calls “periphery”, is called “application” by [Pohl, Böckle,

& van der Linden 2010]. “Periphery” or “application” are the user-actionable part of

the software.

Both [Dikel, Kane & Wilson 2001] and [Allen 1984] also documented the often forgotten

informal aspects of how work gets done within software development organizations: indeed,

while many organizations choose a hierarchical structural decomposition, knowledge is often

transferred in ways that do not conform to the prescribed boundaries and channels of a rigid

hierarchy. Always using formal channels slows communications down, creates coordination

where none is required, and generally slows down the pace of work, as shown in the recent

revival of agile methods, which mainly argue for nimbler and simpler processes which spend

time and resources only when necessary. As noted in Section 2.4, another informal aspect

of people interactions is the social pressure some environments associate with the blame for

breaking the build, a soft way to ingrain the practice of caution when submitting changes to

software source code.

[Bosch 2000, p. 308] notes that the best organization for a given product line depends on

its size, its genesis and its goals. Breaking down into organizational units may be required

to keep coordination needs reasonable: units too small can make it necessary to have as

many communications as the square of the number of workers, which clearly cannot scale.

At the other extreme, very large organizations need to locate ownership for the core compo-

nents of their product separately from ownership and responsibility of product development,

otherwise the integrity of the architecture may be violated, causing the core components to

depreciate in value over time.

The Hierarchical Domain Engineering Unit, as shown in Figure 3-3, usually is a sign of

maturity of both the organization as it moved to hierarchical decomposition as a way to

control and promote reuse, and a sign of maturity of the software assets themselves, as suc-

cessful reuse requires significant effort. This hierarchical decomposition can have arbitrarily

many levels, each of which is associated to a set of assets: the leaves of this tree contain the

non-shared parts which are product-specific, while the intermediary nodes within the tree

represent some level of sharing of assets.
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The organizational structure and the asset structure both evolve, and they do independently.
Experience shows that this causes issues with actual ownership of assets. Ownership is
more sticky than one would like, as knowledge and experience with both the design and the
implementation of the source code component tends to reside in engineer’s minds as mental
models built over time. For this reason, ownership of components stay with the original
developer until someone willingly accepts the burden of maintenance of said components.
Transfers are difficult, they induce an additional unbudgeted burden for the new owner. As
some markets or applications become more attractive, people transfer to other teams to follow
the strategic interests of the company. Components that fall out of favor (maybe because of
changes in technology, for instance), tend to not attract new owners. This presents a dilemma
for the company, as sometimes stable assets are owned by teams which are difficult to staff.
The interests of the company is in stabilizing assets and maximizing the corresponding return
on investment, which is at odds with the human tendency to want to work on the “latest
and greatest” piece of software. Such issues are largely dependent on people and company
culture, therefore it seems that there is no single solution that will fit every company.

Figure 3-5: Issues with code ownership.

Regardless of the actual organization selected, we should note that as the product line

becomes more successful, changes become more difficult to incorporate in later revisions of

the product line, as care must be exercised to preserve existing function and value. The way

this manifests itself is that as the product line and the company grow, more intermediary

functions are set up between the product developers and the end customers. Indeed in a

small company, the developers might be directly in touch with customers, they might be

able to deliver features or bug fixes to the field very rapidly. This approach does not scale,

as individuals usually cannot exercise the level of care required to field stable products to

customers. In a larger organization, many layers exist and must be crossed for the work

product of engineering to be made available to customers. As an example, only a few

stakeholders are depicted on Figure 3-6, that set could include:

− the Core development team

− the associated Quality Assurance team

− the Periphery development team (for simplicity, we assume here that there is only one,

there could be many).

− the associated Quality Assurance team

− the system Quality Assurance team, which performs complete system testing.

− the customer, here assumed to all want the same work product, but in a real product

line setting, there would be many products, and many associated sets of customers

(each with their own expectations of feature content and schedule).

In effect, starting with the engineers, each successive function fields its work product

to an ever-larger set of interested stakeholders, ending with the customer. This is required
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to ensure quality of the work (this is for things flowing from the inside out), and to ensure

isolation from frivolous or duplicated requests (this is for inquiries flowing from the outside in)

and to protect the integrity of the product line vis-á-vis the vision selected by the company.

Customers

Software
Company

(a) Simplest model

Customers

Customer Support

QA

Periphery

Core

(b) Many successive constituencies model

Figure 3-6: Possible organizations

One important consequence of this is that creating a new version of the product line

(i.e. generating a new released mainline) is subject to multiple hand-offs between each of

the layers illustrated in Figure 3-6. The successive layers displaed on Figure 3-6a are merely

an example, as some organization may elect to include their salesforce as one stakeholder, or

add more layers, for instance by having multiple levels of support: Level 1 to perform fault

triage and Level 2 to get access to more technically savvy personnel.

Each hand-off presents a danger if rework is discovered after the hand-off: when this

happens, the work product is in a sense returned to its originating place in the organization

and must be analyzed, possibly modified, re-tested and re-delivered once again. When defects

cross the boundary between two layers, then the organization has created an opportunity

for a rework cycle with a built-in delay to happen, and as we shall see in chapter 5, these

are the events that can expand the product delivery schedule very significantly.

3.2 Standardization of processes

As the number of people involved in the development of a product family increases, the

enterprise must standardize processes. [Humphreys 1989, p. 393] noted this in the general

context of large software systems. This is required to minimize setup time for engineers
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and for testers, it is necessary to build confidence that the work product of those knowledge

workers is a quality product and will function as specified on the target customer system. One

key to minimizing the cost of rework is to provide for an environment that makes problems

reproductible on any system: the most difficult bug to correct is the one that the engineers

cannot reproduce, this is sometimes called an heisenbug, defined as a bug that disappears

when observed [Gray 1985]. For large classes of faults, reproductibility of failure requires

standardization of the system, not only the product system as used by the customer, but

also the software delivery system as used by engineers to create the product system. Note

that standardization does not guarantee that bugs will be reproducible, in particular timing-

dependent faults can be tremendously difficult to reproduce, but absence of standardization

does guarantee that reproduction will be difficult.

The organization can reap great benefits from having standardized defect reporting pro-

cedures, standardized defect tracking and a unified build process: these decrease the turn

around time of the corresponding tasks, as individuals do not need to explain anew the same

process to report defects, the same location where to find information about defects, and the

same procedure to derive one particular version of the software artefacts that constitute the

system. As shown in Figure 3-7, setup time for all these tasks is critical, and in the absence of

standardization, individuals will spend time extracting useful and useable information from

their counterparties. Similarly, artefacts must be tagged appropriately in source control to

facilitate software archaeology tasks (these are what software engineers do when they comb

through revision control history to determine what has changed, this is how they pinpoint a

specific change that caused one particular mode of failure).

As mentioned in Section 3.4.1, another task related to standardization is triage of bugs:

this task is performed by engineers to indicate severity of incoming failures and defects,

remove any duplicates, steer towards the correct group for actual fixing or documentation, or

select which mainline or mainlines the defects will be fixed on. Typically, the organization will

strive to fix the least possible amount of problems on its oldest mainlines, as it incentivizes

customers to upgrade to newer fielded versions of the product, and decreases risk on fielded

mainlines.

Section 2.7 hinted that software quality measures could be monitored, but metrics are

notoriously hard to port between projects or companies: in the context of large-scale software

engineering of product lines, it seems that these should be easier to establish, as successive

release cycles are comparable. The organization can accumulate historical measures and

compare current measures to past in a more reliable way.

3.2.1 Builds

As noted in Section 2.2, building the product occurs at many levels within the organization:

individual engineers build it to be able to develop new features or fix defects, release engineers
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One product line I worked on did not have standardized build processes, getting a new hire
started and able create debug builds would take about a week of work to set things up just
right (and each individual would have to re-discover these things for himself!). Another
product line had a very standardized environment, and one could get a build environment
started in minutes. I believe that the value of making this obvious and rapid cannot be
understated. A side-effect of these two modes was that in one environment, engineers used
few build workspaces and mixed changes, and had to tell the source control system specifically
what had changed (thereby leaving room for error), whereas in the standardized environment,
engineers would create many build workspaces, one for each individual change and let the
source control system figure out what had changed, which left much less opportunities for
mistakes.

Figure 3-7: Example of problems when builds are not standardized.

produces official builds shipped to customers, and possibly in a hierarchical organization,

release engineers will also be organized around each shared asset and each product, each of

which will see an official internal build set up. Each level has its own rhythm: some build

weekly, others daily, others yet multiple times per day. [Dikel, Kane & Wilson 2001, p. 92]

says one could allow for breakage and use CM1 to keep on working. This trades release

engineering work for work on the developer’s part to keep their own environment stable

enough to be able to work. Following industry practice, we argue here that a no broken

windows policy and a single Best-So-Far CM view is better as it fixes broken builds as early

as possible, when a minimal number of developers are involved. When this policy is not

respected, breakage occurs constantly and masks other issues, engineers have to perform

extra setup to get a working version of the system, time is wasted by all and multiple

occurrences compound to bring the software production system to a complete stop.

Some organizations go so far as to associate some social stigma to breaking the build, as

a way to incentivize individuals to be specially careful not to break other’s builds. This has

shown to be working well in many organizations, but does not work 100% of the time, for

the occasional human error occurs, as unpredictible bizarre system-wide interactions do. In

summary, as McConnell notes [McConnell 1997, p. 206]:

The project team brings the software to a known good

state and then keeps it there. The software is sim-

ply not allowed to deteriorate to the point where time-

consuming quality problems can occur.

1abbreviation for Configuration Management.
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3.2.2 Source Control

In single-person development, one can work with a single mainline, possibly with no branch-

ing at all, as shown on Figure 3-8, which depicts the timeline of events.

Time

Task 1

1

Task 2

B
re

ak
ag

e

2 3

no work can be accomplished here

Fix

4

Task 3

Figure 3-8: This shows how source control is used with a single mainline by a single developer.

Tasks are performed in sequence:

− The developer checks out the source code, and performs the work for task 1. When

this work is completed, the code changes are submitted to the source control system

at time 1 .

− The developer checks out again the newest revision of the source code files, and per-

forms the work for task 2, submitting changes at time 2 . At this time, some breakage

occurs: this could be caused by a syntax error in the source code file, a change in run-

time behavior that is seen as a unit test failure, an incompatibility with some other

change, etc...

− At time 3 , the engineer starts developing a fix for the problem he caused, which he

submits at time 4 .

− After 4 , new work can be started, here shown as Task 3.

This simplified example shows that even in single-person development, one needs to be

careful to checkin small chunks of changes, as checking in one large change makes it more

difficult later to pinpoint a single atom of change that caused a problem. Similarly, having a

suite of unit tests and running them assiduously may sound like a lot of unnecessary work,

but it in fact is a manual smoke test that can help detect regressions early. Figure 3-9 shows

what happens when a single developer needs to work on two tasks in parallel, note how

that is exactly the same as what happens when two developers are working on the same
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branch concurrently: one person submitting a change that breaks the build paralyzes the

other person trying to get work done. This situation is avoided by either dividing labor such

that no two people work on the same portion of the system at the same time, or by using

branching to isolate workers from each other.

Time
Task 1

Brea
kage

1

Fix 1

2

no work can be

accomplished by

#2 here

Task 2

3 4

Figure 3-9: This shows how source control is used to perform two separate tasks on a single
branch

Figure 3-9 shows what happens when breakage occurs:

− 1 is the break the build event,

− 2 is the period of time the second developer can neither synchronize (because doing

so would break his build, preventing him from working) nor promote (since he needs

to synchronize first),

− 3 is the first moment when the second developer can synchronize to pick up valid

changes that will not break his build

− 4 is the moment when the second developer can actually submit his set of changes.

Note how long he has been blocked from doing this.

In many-engineers development, the situation highlighed in Figure 3-9 is magnified, and

therefore each developer must be able to create a private workspace to experiment with

changes without interfering with the work of others, yet each must also have the ability to

publish changes to others when the change has reached sufficient maturity. The head or

Best So Far version of the mainline represents the accumulation of changes whose sum is

the current state of the software system, from which release engineering staff can produce a

master build that will eventually be shipped to customers.
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Head

Task 2

Task 1

Each delivery to the main-
line is an opportunity to
break the daily build

(a) Small company, single branch

Head

Task 4

Task 3

Task 2

Task 1

Team 1 branch

Team 2 branch

(b) Large company, single branch with hierarchical isolation

Figure 3-10: Scaling from single-team development to multiple-teams development process.

Deciding how many mainlines to have and support is a managerial choice, where the

decision makers must balance the needs of customers to have many such active mainlines

with the costs for the enterprise, which decrease with the number of mainlines. This decision

is called the branching discipline of the company. As the number of engineers, teams or

customers grows, there will be a tendency to create new mainlines indiscriminately, this

tendency must be managed in accordance with company objectives. [Berczuk 2002] formalizes

the various possible policies and branching disciplines, in the form of patterns. Similarly, as

the company grows, there will be forces inside the company that will attempt to either create

shadow mainlines, or even parallel repositories: yielding to these forces can spend enormous

administrative resources just to manage those mainlines. Such fragmentation can be the

result of acquisitions or, as highlighed in [Bosch 2000, p. 287], the result of internal infighting

following divergence of strategic needs of various products: indeed some teams may leave the

product line officially, or practically, doing so by forking the software architecture, moving

to private branches within the source control repository, or even establishing a completely

separate source control repository and developing completely outside of the official software
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production system.

Therefore one can see that using a single source control system is a powerful unifying

force within the software development organization. It avoids the local creation of new

variants to fit one team’s immediate product needs, as that phenomenon makes it harder

to converge later, and makes products within the product family incompatible one with the

other. The flip side of this is that experience seems to show that software organizations

tend to need to experiment on the side, and when forbidden to do so, will find ways to do

it anyway: so it often happens that the master source control repository is peppered with

half-finished prototypes, which do not contribute to the product line, which may not even

be visible to customers, but are still part of the software production system, with associated

administrative costs in building, computing metrics, etc..

3.3 Physical structure of large software systems

While small software products can live without proper structure when there are only a few

software artefacts which participate in the building of the end product, as product size

increases, the architecture must get realized in a physical structure such that:

− it be possible to rebuild portions of the system without having to rebuild the whole

system,

− it be possible to rebuild incrementally the system. Builds from scratch can take hours,

if not days, and quickly make it unfeasible to rebuild the system,

− parts can be swapped in and out of a pre-built image of the system. This helps with

debugging since it can be performed in a live installation, and not just in a debug setup

on a developer machine.

In this section, we will explore a few of the ways that architecting can help when project

scale increases.

3.3.1 Modularity as the support for structure

Modularity, as explained in section 2.8, is the decomposition of the system into subsystems

and components-within-subsystems such that these parts can be worked on, modified, and

substituted independently. [Lakos 1996] and [Parnas 2001] before him have explained the

great benefits that architecting in decoupled modules brings. In software, structure is the

abstract division of the system into modules, it is realized physically in the physical layout of

modules in the source control repository. The developer typically checks out one or several

modules onto his machine in a workspace, builds them and then assembles a complete system

from his private build and modules from the official release engineering build: it is very rare

for the individual to check out and build the entire system. Modularity and decoupling are
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the principles that allow the developer to work with a partial private build layered on top of

a pre-built image of the system.

3.3.2 Conway’s Law

McCormack & al. have demonstrated that products tend to mirror the architectures of

the organizations in which they are developed [MacCormack, Baldwin, & Rusnak 20121],

therefore a hierarchically decomposed system architecture will tend to be produced by an

organization which is layed out in similar fashion. This is merely a reformulation of Conway’s

law [Conway 1968], which Conway phrased as Systems Image Their Design Groups. Not only

is this a fact observed in the wild, McCormack argues that this is a desirable property. We

carry this argument further and want to demonstrate that this division of labor in fact

presents enormous leverage for managers.

One hypothesis of the present work is that having a hierarchically contained checkin

process improves quality: it improves the availability of “good” builds, and it allows QA to

find errors faster, thereby leaving less undiscovered errors in the product. The underlying

assumption is that a rhythmic pattern of delivery is desirable. In other words, stability is

better, the rhythm of the production system aims at avoiding stalls due to human error,

yielding a predictably good output.

Cusumano and Selby have documented how Microsoft does this in [Cusumano & Selby

1997]: using small teams with frequent synchronizations. This synch-and-stabilize approach

allows to isolate developer teams from each other, giving each a stable environment to work

in. The module structure of a system can be engineered or architected in, but even systems

that were not engineered according to modularization principles manifest such a structure

[MacCormack 2006], or can be modified a posteriori to have such a structure [Akaikine &

MacCormack 2010].

3.3.3 Build Times

As soon as the product codebase becomes large, it become impractical for individual engi-

neers to have to rebuild the whole system (even components they do not care about when

working on one particular issue). The location on disk where engineers can perform pri-

vate builds is called a workspace, or alternatively a check out directory, a working copy or a

view. Requiring a full rebuild when setting up a workspace increases the basic overhead for

software engineers. Setting up should essentially be free.

Compile and link-edit times will increase super-linearly if not engineered carefully: [Lakos

1996, p. 87] gives details for large C++ systems, large Java programs such as NetBeans

or Eclipse use the same practices to decompose into smaller chunks and build very large

systems. Field deployment costs similarly increase in monolithic systems: this alone is
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a strong incentive to modularize. Although this is scarcely documented in the academic

literature, very large scale software production systems have resorted to some caching scheme

to avoid re-compiling the same exact revision of software artefacts many times over, to avoid

being limited by compile times or relink times. This matches our experience in industry,

where release engineering produces one company-wide official build daily, each team in turn

does so, and individuals build their own partial build layered on top of the previous two: this

significantly decreases the time to get a working build with the latest assemblage of software

source code, and allows engineers to set up within minutes, even with full system build times

in the hours. Examples of such build optimization schemes are the distcc, ccache or Vesta

systems.

As system build times soar, setup time for the engineer working on a defect increases,

which diminishes the overall capacity for propagating fixes: fixing one defect typically takes

a lot of debugging, researching, understanding, but merging a known fix onto other branches

does not have this overhead, and the time for this operation is purely proportional to setup

time and testing time. In other words, after fixing the defect on one release, when the correc-

tive change is identical on other releases, there is a fixed cost of testing and administrative

overhead just to submit the change on each release where one touches the code.
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3.4 Product Lines

One major challenge brought about by the scale of the engineering endeavour is that effort

grows in a fashion that is worse than linear in the size of the software product. In an attempt

to manage this scaling issue, software development companies resort to using Product Line

Engineering. This is a discipline of systematic engineering of the members of the product

line.

When one considers the context of product line evolution, a software vendor typically

produces a product family or product line (sometimes consisting of a single product), which

evolves over time. In such a setup, the organization selects a release pace (once per year,

twice per year, or as frequently as multiple times a day in certain organizations), thereby

time-boxing each release.

Product line engineering presents several differences when compared to engineering within

a single project:

− Projects are often one-of-a-kind, or use state-of-the-art technology. Long-term product

line engineering develops many products similar if not in features, usually in the use of

technology: instead of a one-time use, it is repeated use over a long period of time, and

therefore sees learning effects. The economic benefits come from the repeated reuse of

a set of components.

− The above makes projects risky, whereas long-term product line engineering can hedge

risk by discarding untried or unsuccessful technologies.

− Technology development happens in the background, possibly outside the organization,

and the development organization uses technologies it has tried and approved.

− Short-term effects have long-term consequences, therefore effects may not be visible

within the relatively shorted time horizon of a single project, whereas long-term prod-

uct line engineering will inevitably incur the long-term effects. Using product line

engineering has initial costs that are recovered over the long term by low-cost reuse of

the components selected to be part of the product line architecture.

− Long-term consequences may be either beneficial or detrimental to the success of the

engineering effort, when the effects of feedback seem bad in the short-term but turn

out to be good in the long-term, this is called the worse before better effect. This effect

that is often seen may cause the cancellation of a project, whereas in managing over

the long term it should be expected and accepted.

− Short-lived projects can assume that there is no turnover, as the manager can always try

to convince a worker to “stay till the end of this project”, but for long-lived development

efforts, turnover will happen and must be accounted for.

These make product line engineering management substantially different than project

management.
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3.4.1 Planning and Execution of Product Line Engineering

The organization essentially runs the simplified process detailed in Figure 3-11: all states

are executed concurrently and repeatedly, but each new release goes through the states

described in the figure, with some tight iterations due to bug-fixing, termed firefighting in

cases of emergencies, that is those cases where a defect is found in the field while customers

are using the system in a production capacity, and therefore require immediate attention.

For instance, Release 12 could be in the Design stage, while Release 11 would be in the

Build stage, and Release would be in the Beta testing stage (also called Certification), and

Releases 9, 8, ... would have been deployed in the Field with customers. In the rest of this

document, we shall call our releases N − k, ...N − 1, N,N + 1. Release N is the active one,

in other words it is the release currently under development.

Release/Product
Management

Release N+1
Design

Release N Build

Release N-1
Certifica-
tion/Beta

Release
N-2 Field

Repair

firefighting

Project monitoring feedback

Iteration

Iteration

Iteration

Figure 3-11: The phases of development for long-term release-based product evolution.

In Figure 3-11, we may note that each of those phases executes concurrently, and any

one release goes through the phases in order. The red arrow indicates a feedback loop for
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organizational learning. A more complete process might include:

− market research, which focuses both purchasing agents and end-users. The word “cus-

tomer” here is ambiguous as it can be used to mean either.

− more extensive planning and scheduling sectors.

− an expanded quality assurance sector [Abdel-Hamid & Madnick 1991, p. 70], including

the multi-level support function which acts as a filter to triage problems reported by

customers. This operation is about classifying faults and prioritizing them, detecting

which faults are in fact defects and which are duplicates, explaining misuses to end-

users, detecting design problems that require additional rework.

− a fielding and deployment process, which may require staff to visit customer locations to

help them configure and upgrade systems, as well as help IT departments migrate away

from legacy systems. Such roll-outs may become large projects onto themselves, and

require much testing by customers to ensure continued availability of mission-critical

systems.

These processes, as well as feedback loops they contribute to, are beyond the scope of this

thesis: more extensive modeling work should be a very interesting and fruitful topic of future

study.

3.4.2 Definition of Feature Graph

In software product line engineering, the product architecture is logically decomposed into

features, each of which represent a logical unit of functionality for the user. Each prod-

uct within the product line architecture expresses which features it includes: this is the

mechanism that allows reuse of features by members of the product family, and therefore

features are often arranged in a product-feature matrix. However, such a matrix is not suf-

ficient to express that in addition a feature can depend on other features: as a consequence,

features are also arranged as a feature graph, sometimes called a dependency graph, as in

Figure 3-12b.
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Engineering
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Engineering

A Engineering

B Engineering

App
Engineering

X Engineering
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Z Engineering

(a) Sample organizational hierarchy, with two
sub-levels within the core, and three products.

Core

Whole Product Line

Core
Component A

Core
Component B

App X

App Y

App Z

(b) Sample component dependency graph for a
product line engineered in the organization from 3-12a.

Figure 3-12: This shows how components are stored in the repository on the left, and dependencies
between components on the right. Architecture diagrams produced by the developers often look
like block diagrams, and indeed such diagrams do show dependency information.

If we refer back to Conway’s Law (Section 3.3.2), experience has shown us that the

organization which produces a product line architecture like Figure 3-12b is itself organized

as in Figure 3-12a, with the correspondance between the two hierarchies shown by dashed

arrows from the left figure into the right figure. This is important because the dependency

links that represent edges of the feature graph become interfaces between components of the

software production system. In other words, the teams that produce each of the components

have interfaces to their clients: there are contracts between those organizational units, those

contracts relate to the schedule of promised deliveries, as well as to the stability of the

deliverables in the light of evolution over many release cycles.
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3.4.3 Variability Management

Product line engineering is largely about what the organization needs to do to manage

variability, which is the variation of artefacts depending on the context in which they are

reused. [Pohl, Böckle, & van der Linden 2010] explains the difference between variability in

space and variability in time:

− Variability in space is the existence of an artefact in different shapes at the same time.

as defined in [Pohl, Böckle, & van der Linden 2010, p. 66]. This is about the shape of

the product family: what product exists, which variants are available to customers, or

exist entirely within the design space of the software engineers. Note that space can

often mean memory usage of a software product; this is particularly in the embedded

products space which favor build-time variability as opposed to run-time variability,

since we do not know these well, we will not not expand on them any further here.

− Variability in time is the existence of different versions of an artefact that are valid at

different times. as defined in [Pohl, Böckle, & van der Linden 2010, p. 65]. This is the

variability we intend to look at in this thesis.

3.4.4 Use of variability to create products within the Product Line

Once a software architecture is in place for the product line, when the company decides to

create a new product, it needs to instanciate the product line architecture into a product

architecture. This phase of Product Line Engineering is about deciding how the new product

will be built, what components will be reused (or instanciated), how (that is, how will

variability be bound in this specific product, such that the component presents the required

features with the specified functional or technical attributes).

Once variability has been designed into components, it is up to the product manager

of each product member of the product family to decide how to bind the variability to the

specifics of his particular product. The time when variability is bound is also important to

the architecture of the software production system:

− it can be bound at build time. During the builds performed by release engineers,

the instantiation of the reused components includes the information necessary to bind

variability. For instance, some configuration can be specified through compile-time

constants, which can for instance change the static size of structures or enable/disable

large portions of the code. This is crucial because this makes it difficult to include

multiple instanciations of the same component within the same build, which in turn

forces release engineering to generate one build per product. This can increase admin-

istrative overhead and increase the number of variants of the code that exist in various

members of the product family. When this is used, there will be a tendency for users of

55 / 163



Issues in Strategic Management of Large-Scale Software Product Line DevelopmentNivoit

a component to clone the component locally when new features or alterations required

by the product family member are not performed in speedy fashion by the provider of

the component.

− it can be bound at run time. This mode of operation gives the greatest benefits, as

a single build produces one software artefact that can be reused in multiple products

simultaneously. The advantage of this mode of operation is that it significantly de-

creases the number of active branches in which one component exists. This kind of

variability may be more difficult to achieve, but it can help make the administrative

overhead in release engineering a fixed cost as the number of reuses grows.

Another point is that software development organizations almost always face a tension

between being a product organization and being a service organization, and even product

organizations often possess elements of service organizations in the way they function. For

instance, because of the financial leverage of customers, the company can elect to support

maintenance branches for as long as sufficient funding is present or as long as a customer

requires it (contractually or through their financial leverage). An example of this is the long

life of the Windows R© XP product from Microsoft R©.

This intrinsic tension tends to induce the organization to attempt to produce more vari-

ability points, more variants and more custom builds of products. It is up to the college of

product managers and to the product line architect to balance those strategic needs with

the long-term well-being of both the product line architecture and the organization.

3.4.5 Scheduling within the Product Line

The Product Line Engineering literature is concerned with a static view that defines what

the product line architecture looks like and how can member of the product line be created.

In the present thesis, what concerns us is the dynamic behavior of the product line and the

organization that maintains it over time. In particular, the organization usually produces

many successive releases of the product family, or more precisely of the member of the

product family (the product family is a theoretical concept, which customers never actually

see: they only sees the realization of the family concept into specific members of the family).
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Project 1 Project 2 Project 3

(a) Multiple successives projects on a single branch.

Project 1

Project 2

Project 3

(b) Multiple concurrent projects,
with simultaneous stages highlighted
in one time-slice.

Figure 3-13: Difference between sequential and concurrent projects

As depicted in Figure 3-13, each ongoing release branch (sometimes called a mainline

or a baseline: simple or small projects usually have one of those designed head or trunk or

Best-So-Far, complex projects usually have several) goes through the same phases of:

− Requirement

− Design

− Implementation (sometimes called coding in the software development sphere)

− Test and stabilization, sometimes called QA (Quality Assurance), QE (Quality Engi-

neering), or more simply test or beta.

− Maintenance, or in-the-field phase, which ends when that release is discontinued or

EOL’ed (EOL is short for End Of Life, a common acronym in the software industry to

mean the retiring of a product).

Release branches are labeled, usually numbered in sequence, as experience shows that using

any other kind of label makes it difficult to explain to salespeople and customers alike which

release is the “latest” or the “best” to have. Release branches are sometimes arranged in what

is called the release train model: each branch is a train, scheduled to start at a particular

time, and to arrive (i.e. finish) at a specific time. We will assume that at any point in time

there is only one release undergoing development work, others are either in the planning

phases (future releases), or in test and maintenance phases (past releases). Releases enter

and leave phases in staggered fashion: when release N is shipped, N+1 is moving into beta-

test stage, and N-1...N-k all slide down in focus level. Next, when release N leaves beta-test

stage and enters general release stage (i.e. a Golden Master is generated, to employ industry

jargon, and shipped to customers for deployment), development teams stop active work on

release N and move on to working on release N+1.
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Managers tend to view successive releases as sequential projects, as displayed in Figure 3-

13a, whereas engineers in the trenches working on those releases think of them differently:

they tend to view those release trains as concurrent, as shown on Figure 3-13b. As will

be explained in later sections, not only are those releases happening concurrently, they also

compete for the same resources.

Time

Older branches Launch date for N-1

Launch date for N

Launch date for N+1

Launch date for N+2

Branch N+2

Branch N+1

Branch N Maintenance

1 branch in maintenance,
1 in active QA,
1 in active development

Figure 3-14: Multiple mainlines active at the same time, similar to Repenning Model-Year example.

Note that selecting how many mainlines to keep active is a matter of policy decided by

management. It is a powerful lever since having too many mainlines active can easily swamp

the development teams, which then have to do firefighting on old mainlines. Typically, the

number of mainlines kept active depends on many the organization can handle in terms of

resources, but it can also depend on the funding that customers can provide to keep their

own private mainline active (This is sometimes the case with automotive and aerospace

customers, which tend to do their own product development with programs that last several

years, and changing/upgrading software midstream is difficult or risky for them). Another

point is that different customers put pressure on different branches, each on their own, pulling

the R&D organization in different directions, and therefore the organization needs to balance

the needs and wants of customers with its own strategic and tactical goals.

Some organizations will have a policy of employing separate staff for maintenance work
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on old mainlines, but usually it is difficult to compartimentalize work completely, and the

maintenance staff will need to consult with the original developers, which has non-linear

effects on the time to resolution of defects on the concerned mainline, but also induces more

interruptions, more meetings and more demands on current mainline developers.

Another point to consider is that others have demonstrated that complexity has a cost

[Sturtevant 2013], and structure has an impact on development ( [Sturtevant 2013]) as well as

on maintenance costs [Akaikine & MacCormack 2010]. These works prove that architecting

the product such that its structure respects the principle of hierarchy and modularity brings

tremendous value.

It is important that other stakeholders do not unintentionnally create or maintain activity

on old mainlines, when creating new products or designing solutions for customers. Mainlines

are like regularly-scheduled trains, and stakeholders must pick in advance which one they

are going to get on. This is especially true when the company has a professional services

arm, as it is then subject to the intrinsic tension between products and services. Here we

are talking about companies that are product companies, but may perform services (or have

a partner perform services) accompanying the product purchased by the customer. For the

product side of the business to remain the focus of the company, one should be careful not

to let services cause additional work to the product side. Similarly, within the development

organization, it is paramount that no part of the organization duplicates the components

owned by another (this is documented as the Cloning pattern in [Dikel, Kane & Wilson

2001]).

A point solution is a solution that fixes an immediate issue without regard for the longer

term; in the present context, such solutions, including the Cloning one mentioned above,

are tactical resolution of urgent customer issues without regard for the policies that drive

product line development and strategy.

Point solutions are a perfectly fine use of the product line, but the organization must

be careful to only use point solutions appropriately and to discriminate features that really

belong in the product line, which may require post-poning delivery (hence the tension with

the customer-focused services branch of the company).

3.4.6 Stability of Product Line artefacts

One example of additional cost due to scale of the system is what happens when an engi-

neer needs to change some component-level API. An API is an Application Programming

Interface, it is the programmatic interface that one component presents to its callers. It is

an interface in the systems architecture sense. Software interfaces are a much more gen-

eral concept than programming interfaces, for instance fileformats and wire protocols are
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in fact “interfaces” in this sense, though not in the programming language sense. Even at

the programming language level, “interfaces” do not need to be language interfaces: in fact

(and this is very confusing to many), for example in Java, component interfaces should often

explicitly not be Java interfaces, but final classes! (See [Tulach 2012]). Here is what happens

when an API must be modified:

− In single-person development, the engineer can change the definition of the API and

all its occurrences in a single delivery in the source control system. There is a single

point in time where the API ceases to exist. This is shown in Figure 3-15a below.

− In large-scale development, one needs to introduce a migration path and a window of

time for callers to perform this migration in their own source code: this means adding

the new API without removing the old one, deprecating the old one, then advertising

to all callers that they need to migrate and start using the new API. After a migration

period, the engineer may finally remove the old method. This may seem like more work

overall than in single-person development, but this ensures stability of the system to its

dependents and allows to change moving parts in flight. This is shown in Figure 3-15b

below.

− Sometimes the old API and the new one cannot co-exist at the same time. An example

is given in Figure 2-7; in that particular instance, a reversal of the change which caused

the issue had to be made visible to all developers at the same time. The system should

strive to make it possible to preserve old APIs while new ones are introduced, this is

sometimes done by isolating the two APIs from one another in some sort of container

such that only one is visible to callers at any time, and callers have to explicitly opt

in to migrate to the new API.

This is typically the case for programmatic interfaces, but also happens for interfaces in

the more general sense of the word: file formats and wire protocols also fall in the category

of interfaces that must be evolved in a backwards-compatible way.
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(a) In single-person development, APIs can change at will.
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(b) In large-scale development, one needs
to introduce a migration window.

Figure 3-15: API changing over time

Further, if the boundary of the whole-product system extend outside the enterprise (for

instance, if the enterprise publishes APIs and partners or customers build additional appli-

cations or extensions layered on top of the system delivered by the enterprise), then one

must take special care to enforce those migration windows to give time to partners to mi-

grate. This means that the migration windows typically have to span more than one release

cycle, as one does not want customers do discover their application is broken after installing

an upgrade provided by the software provider. Assuring backwards compatibility, even tem-

porarily, builds trust in the customer base, it advertises to customers that the producer cares

about preserving their investment in the product system, one effect that is much desired for

the long-term viability of the software product.

One experience I had with having multiple active branches of the same product family is very

telling: we had a new capability to implement that was estimated to be such a large change

that the team collectively thought it could not be done in the timeframe of a single release.

We then implement the new capability the simplest way possible in release N with a master

switch to disable it, and then went back and implemented it a second time differently in

release N+1. This tactical solution allowed to roll out the capability in a released product on

the market as early as possible, while the strategic implementation on release N+1 learned

from the initial implementation and was able to bring important benefits such as performance

and scalability that were much more complex and time-consuming to engineer than the simple

solution.

This goes to show that managerial choices can appear to increase the workload on the
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production system, but sometimes doing more work is beneficial in terms of breathing room,

time-to-market, or simply expect to have to learn as you go what works and what does not.

As Frederick Brooks highlighted in [Brooks 1975],

Plan to throw one away; you will, anyhow.

Another lesson from this example is that when the expected size of a new capability

does not fit in one release’s timespan, adding some of the components to release N, even

if not active or de-activable by a master switch (generally one not advertised to customers)

is a worthwhile mitigation measure. It allows other stakeholders within the code production

system to start working with the new capability even if it is not yet fully active. This strategy

also prevents developers from accumulating massive code changes and delivering them all

at once at the start of one release. One such large delivery acts as a step function on the

system, usually an event with bad consequences in a non-linear system with feedback loops.

This is an important lever to allow others to start their work when the new feature requires

changes in many components.
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Chapter 4

Challenges of large-scale software

engineering

In this chapter, we want to examine a set of issues unknown to small-scale software engi-

neering organizations:

• Section 4.1 examines what additional issues occur when a software development effort

grows to span multiple sites. Here we want to find out if and how the inevitable latencies

influence system behavior.

• Section 4.2 compares two different modes of growth: the first one is natural growth

occurring by growing headcount, the second one is external growth, or growth by

acquisition of other entities. We want to show here that these modes are different and

induce different dynamics in the system of the enterprise.

• Section 4.3 looks at the specificities of products that incorporate content from third

party vendors, which is the case of most software product of any significant size. This

aspect is significant because third-party components typically have a separate life cycle,

and dependencies that cross the boundary of the organizational system to reach outside

create feedback loops with a long delay, which therefore require special attention.

• Section 4.4 looks at software product lines and what benefits and drawbacks these

brings to large scale software development. A software product line is defined by the

Software Engineering Institute [SEI 2013] as

a set of software-intensive systems that share a common, managed set

of features satisfying the specific needs of a particular market segment or

mission and that are developed from a common set of core assets in a

prescribed way.
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Recognizing and managing these assets is valuable to the engineering manager, in the

present work, we want to examine how managers can indeed use this knowledge to their

advantage. It is important to highlight here that managing a portfolio of applications,

while a perfectly valid way to scale the number of software applications produced by the

organization, is not a focus of the present work. In addition, we restrict ourselves to pure

software systems, such as Microsoft R© Office R©, the ones we are most familiar with, as systems

termed as software-intensive can often include non-software parts which bring additional

complexity.

4.1 Scaling from single-site development to multi-site

development

There exists a point in time where any development organization will outgrow the original

building, city and eventually country it started in. This is a consequence of globalization,

and leads large companies to conduct Global Product Development [Stark 2000]. This is

unfortunate, as highlighed by [Allen 1984, ch. 8], but necessary after a certain size has been

achieved, if only because the locally-available prospective employee pool has been exhausted.

Often this happens because of acquisition of other organizations that could be located so far

as to make relocation impractical. In addition, in the internet age, more and more employees

also have been accustomed to working remotely and expect the ability to do so as a condition

of working for an employer.

4.1.1 Latency caused by distributed work

The issue here is that working in a geographically dispersed fashion, whether alone (maybe

from a home office) or in group (maybe from a office remote from the enterprise’s headquar-

ters), adds delays into the software delivery system of the company. Developers synchronizing

their workspaces from remote locations are bound by the capacity of their internet connec-

tions. Whether one uses VCS, Centralized Version Control System, or DVCS, Decentralized

Version Control System, there is the associated cost of transferring over the wire not only

the actual source code changes as deltas, but also the version history of the files. Figure 4-1

shows a diagram of hierarchical delivery system and pinpoints in red the communication

channels with latency between sites.
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Figure 4-1: Example in the context of Figure 3-12b.

Similarly, as the daily master system build produced by release engineering at the main

site needs to be propagated to remote sites, some latency is incurred on those sites: they

have an opportunity to opt out of the propagation of a broken build, but if they do get

one, co-located engineers will not be able to work that day. One way to avoid this effect is

to propagate build with lesser frequency, but that needs to be balanced by the need to do

system integration as early and as often as possible, otherwise rework can be discovered with

a long delay, increasing the duration of negative effects of rework.

4.1.2 The value of co-location

[Allen 1984] demonstrated the value of co-location of knowledge workers, showing that com-

munication decays significantly with distance. Unfortunately in today’s world, geographical

dispersion is a necessity, as companies are formed or evolve to span multiple locations. Such

dispersion does bring some benefits, such as the ability to have on-call personnel around

the clock, or the capability to test large software systems in realistic deployment scenarios

where multiple nodes are distributed in multiple countries and timezones. In the context of

a daily master system build, it is convenient to delegate smoke testing to elements in the

organization who are located many timezones away and whose workday spans the nighttime

of the development team: this makes results available at the beginning of the next workday.
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4.1.3 Organizing around multiple locations

When the teams at each location are independent of each other, the resulting work product

is not really considered a system, but merely a collection of products bundled together.

The next stage in the evolution of the company is to manage the work products of remote

locations almost like third-party vendor-provided products: this is possible, and indeed upon

acquisitions and mergers, that is typically how work is initially organized. However, such

an organization does not allow for much integration between products, and delay system

testing as the operation of assembling the products together is done after release engineering

on each site has produced its master build. It is much better to have the ability to produce

a master build of the complete collection of systems in one location, but require more and

more frequent coordination to be able to produce a periodic build (a daily build is best, some

organizations choose a different period to operate on).

[Bosch 2000] makes the point that

geographical distribution of the teams developing the products in the prod-

uct line may cause a company to select the domain engineering unit model

because it focuses the communication between the domain engineering unit

and each product engineering unit, rather than the n-to-n communication

required when using the business unit model

and this can be generalized to the hierarchical domain engineering unit : the leaders should

be careful to distribute work among sites so as to not create cycles that span channels of

communication with latency. In other words, one does not want to locate work on core

component in a remote location other than the location of the central repository and master

build. To do so would risk that regressions in core components would be detected late

and repair would also incur delays: this is a typically feedback loop with a delay, we could

characterize it as a rework cycle with a delay caused not only by the intrinsic time to

discover defects in the work product, but also an additional delay built into the software

delivery system.
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4.2 Organic growth vs external growth

4.2.1 Organic growth

Organic growth is achieved when the organization grows naturally, that is, it increases head-

count at a pace such that new hires can be absorbed into the system without disturbing

it too much. As communication needs to grow quadratically with the number of players if

everyone communicates with everyone else, organization typically use some partitioning to

diminish those undesirable effects and decrease the amount of required coordination. The

partitioning used by the overwhelming majority of organization is hierarchical. Even in the

presence of such hierarchies, knowledge workers intrinsically know each new hire will endure

some incompressible assimilation time, which may very well vary from one individual to the

other.

4.2.2 External growth

Many large commercial enterprises grow by acquiring other companies. The case of a software

product company acquiring another is specially interesting in two regards: in regards to the

acquisition and what leads to it, and also in regards to the merger part of the process. In

this work, the more interesting point is what happens when merging has been decided and

actually happens. The organization is growing and absorbing a nimbler entity: this is quite

different from natural growth, and represents a sudden step in size of the organization. The

respective sizes of the two parties involved in an acquisition event followed by a merger has

an impact on how events unfold in the aftermath of the legal merger. The legal counsels of

the two parties draft a merger agreement which maps out a schedule for the legally-defined

merger event to happen; usually this formal date dates the formation of the new entity,

but much work remains to be done within the entity for true and complete integration to

be finalized. The larger the organizations, the more steps to be taken to fully realize the

acquisition and/or merger operation.

4.2.2.1 Acquisitions

The enterprise may elect to acquire other companies:

• to acquire market share in new markets. This may be done to acquire a new application

to add to the portfolio, maybe to enter a new adjacent market. This could also be

done to acquire a brand name, or to increase presence in some geographical market.

• to increase market share in a market it already is present in. In this case, the enter-

prise may own several competiting products in its portfolio. Detailing how to manage

customer expectations in such a configuration is outside the scope of the present paper,
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that deals with contractual issues and marketing issues which are too broad for this

discussion.

• to acquire a patent thicket, as a defensive move against other patent holders.

• to acquire personel, as a way to hire lots of individuals simultaneously.

• to acquire control of elements of its supply chain. In the software industry, this could

be to take over ownership of a third-party vendor to get control of a specific software

component considered strategic, or to get control of a professional services company

that would aid in deployment of software products.

• to invest capital, but this particular strategic goal is not our focus here, hence we shall

not mention it further.

Acquisitions seem to be difficult to perform successfully: the acquirer needs to ascertain

the representations and warranties presented by the target, be sure of the validity of Intel-

lectual Property claims (that is, it should authenticate the pedigree of software source code,

judge desireability of any patents), perform its due diligence, as well as be able to retain key

personnel (Given the well-known differences in individual productivity in software develop-

ment, it is only natural that one wants to retain top performers). In addition, acquisitions

are sometimes subject to regulatory approval, more so as the size of the entities warrants the

attention of governments and their agencies. International acquisitions may even be subject

to approval from multiple foreign authorities, which could be governments or others, such as

the European Union.

In my professional life, I happen to have been part of a Merger and Acquisition of a small
(then about 200 engineers) company by a much larger one (2000+ engineers at the time).

• The smaller company was very nimble, had a very flat organization, and engineers
were segregated in a few groups, but each individual could check changes into
source control daily. This very much relied on engineers exercising extra caution
when pushing a change, to be sure to not break the daily build. This approach
worked but did not scale.

• The larger company was using a hierarchical organization, and engineers could not
check changes directly into the mainline, the organization was divided in groups,
each further divided into teams. The company was using a multi-level delivery
system, so changes made by individual engineers would be visible to their team
daily, then submitted one more level up weekly. This approach was slower but
scaled much better.

Figure 4-2: Example of an acquisition situation.
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4.2.2.2 Mergers

In the “M&A”, people often forget that the Merger part is often the most difficult. Imposing

policies from the acquirer onto the target company (although sometimes, surprisingly, it can

also be the other way around!). Mergers are often accompanied by a notice that there are

great synergies between the two entities and that the new joint entity will somehow be more

than the sum of its parts. However, there can be many strategic reasons for management to

decide not to integrate the two entities:

• the target markets of the two companies are different, or represent different segments,

and keeping two separate companies (maybe two separate brands, to avoid diluting the

higher-value brand) can be very meaningful.

• the operating procedures are so very different than integration is deemed impossible

• there could be contractual or legal issues preventing integration (we are not talking

of regulatory approval of the acquisition here, this is supposed to have been obtained.

Instead, we are mentionning the fact that one entity could be operating under the

control of some regulatory authority, while the other one cannot).

• the acquiring company manages a portfolio of companies, and the acquisition target

becomes one of several in the portfolio. Even when acquiring multiple companies in the

same product space, the acquirer can very well have a strategy to own multiple products

marketed to different segments. We will not be detailing the strategic management of

marketing in this thesis.

For an operations standpoint, each company operates initially in isolation, and a merger

between two such entities is going to cause disruption to operations of both of them. Even

if one company’s operating procedures are chosen to be the gold standard for the new entity

(we are not even going to talk about the case where additional transformation is layered on

top of an already demanding and difficult transition), the entity that gets modified to fit

the other sees a complete rethinking of the way it operates. For the software development

operation, this can mean a new source-control system (possibly with loss of data from their

old system), a new build system (possibly with changes in naming conventions, updates to

copyright notices visible in the end-product), a new defect tracking system (possibly with loss

of historical data from pre-acquisition defect history). Even for the entity whose procedures

are left untouched, absorbing an acquired entity is very different from organic growth: the

merger is an externally-imposed stress on the system. This can cause fluctuations on the

operations that disrupt normal operations.

The software development organization is a very large system, which can be seen as a

system of systems: external growth is one way more subsystems can be integrated in the
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overall system. Sometimes it is desirable to keep the new (i.e. the acquired/merged) system

separate from the master system: for instance to protect one from changes in the other (this

can be meaningful if the two systems are in fact really separate, it is a management choice

whether to merge the two to benefit from synergies). Typically in acquisitions, the acquired

system has independently development many similar components (such as an OS portability

layer), and while if that system had been developed on top or in conjunction with the main

system, such duplication would not exist, de-duplicating such components may not yield

any measurable value (and indeed performing de-duplication can very well require changes

in both systems as assumptions and incompatibilities are uncovered).

Integration is one possible choice but it is by no means the only choice. An organization’s

leaders may very well decide to leave the new acquisition separate from the rest of the

organization. There are many valid strategic reasons for doing so:

• marketing reasons, if the two entities cater to different customer segments.

• avoiding to overload of the two entities: maybe one is going through some significant

change, and to avoid making it go through too many changes at once, managers may

want to defer merging until a more appropriate time.

• business reasons may dictate the acquisition but not the integration. For instance, one

may want to eliminate a competitor from the market by acquiring it, and then EOL

its product line, eventually forcing customers off their legacy systems and onto a new

system provided by the acquirer. This is one way to acquire a competitor’s installed

base. If the two systems produced by the two entity have similar features, it may

be possible to migrate legacy data from one to the other. Progressively withdrawing

support and maintenance is a way to incentivize customers to migrate.

Merging an external entity acts as a step function on the system, we know how such

change in inputs can drive the behavior of non-linear systems. Integration concerns all

functions of the enterprise, indeed the company will need to harmonize on all aspects:

• HR systems,

• ordering systems,

• marketing, if it is to send clear messages to customers.

• research and development capabilities. These include processes described in section

3.2.

In the context of the software enterprise, it is this last aspect which most concerns us. One

special case of this is the acquisition of a partner company, in particular one that develops
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products on top of the product platform of the company: in this case, merging software

production systems is easier. In less favourable circumstances, the acquired company may

need to rewrite or port its software application to the product platform of the acquiring

company.

This concludes our chapter on challenges of external growth. In the modeling sections

of chapter 5, we consider all other choices to have been made beforehand, and look at the

crucial point in time when two products lines are merged, with management implications for

such an event.
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4.3 Integrating third parties

Many large software development projects are at some point compelled to reuse third-party

components, often called COTS, for Commercial Off-the-Shelf, components. In this chapter,

we will examine the reasons for this to happen, the pain points that the product line endures

because of this, and the levers managers can use to make the best of third-party components.

4.3.1 Why use third-party components?

The need to use external components can happen for any of several reasons:

• developing one particular component, even though technically feasible, does not make

economical sense.

• the component in question is a commodity and there is no point in spending precious

resources in developing something that is otherwise available.

• the component in question is a standardized one, and customers expect the system to

use that component and none other. In this case, the choice of component is imposed

externally. A example of this is the J2EE platform, which includes a very large set of

specifications for various components: J2EE users expect the web servers they program

for to explicitly respect the Application Programming Interfaces for those components.

Although there is nothing that prevents one to write a new web server program that

does not implement the servlet API, no one would think of doing this nowadays, as no

one would use it: compatibility is of supreme importance.

• the component in question resides outside of the sphere of competence of the orga-

nization. For instance, there would ordinarily be little point in a software company

developing a proprietary database system from scratch, as there exist perfectly good

ones which already dominate the market.

• the product system needs to interface to other systems. As soon as the system becomes

part of a larger ecosystem, it will require some kind of interface to other systems. These

interfaces can manifest themselves in many ways:

– in the spirit of Electronic Data Interchange, the interface could be done through

the interchange of files. The format of those files becomes the de facto interface

– when the other system is a legacy system, or some kind of Relational DataBase

Management System (RDBMS, for short), these usually provide client-side APIs

that other systems can call to interface to the other system
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– some have socket-level interface, i.e. some wire protocol (which could be a TCP

level protocol, for instance, or a HTTP request based protocol, as is fashionable

in the world of REST services and SOA) that one can write a client for.

This is often called a make/buy decision, it can happen for many reasons:

• it could be to benefit from commodity software products. Avoiding to spend the time

and effort to re-develop some component that is widely available is a potent influence,

as actually re-developing such components could be largely a waste of money. Note

that there may very well be very good reasons to choose the re-development path

anyway, such as creating a new implementation unencumbered with licensing issues,

or making the new implementation integral to the software system developed by the

company in order to gain access to features otherwise unavailable.

• free alternatives may be available as open-source or public domain software.

• buying from a partner or vendor.

Any of these may require versioning, if only to support evolution on the other side of

the fence. Therefore the system product manager must include the management of those

third-party components as part of his whole-product system.

4.3.2 Selection of third-party components

Many factors participate in the selection of third-party components:

• Vendor presence and prestige. For instance, any product that has a RDBMS inter-

face must support Oracle products if the target market is enterprise customers, other

vendors may be supported depending on the balance between cost of development and

interest from customers.

• Intellectual Property concerns can have a very large impact on the decision. Certifi-

cation of origin as well as licensing terms count. Open-source software may appear to

be “free”, but have licensing terms adverse to the actual policies of the company. For

instance, some companies avoid at all costs software licensed under the terms of the

GNU General Public Library, for fear of contamination. Other popular open-source

licenses are better received by the commercial software development community. Le-

gal department often shy away from allowing usage of open-source software for fear of

future litigation, especially with regards to authenticating the authors and confirming

their actual rights to give away their chosen licensing terms. Similarly, indemnification

concerns can put a brake on the reuse of widely available software.
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• a balancing factor is the need for the company to avoid spending resources developing

a clean-room implementation of a software component that is already commoditized.

• the actual mode of distribution of software is important, software that is shipped to

customers sees different effects of the above factors than software published over the

world-wide web.

• if the component is integral to the product architecture, in-house re-development may

be warranted. If it is peripheral, it may be possible to adapt the product architecture

to isolate the component such that changes only have local impact. This is in effect

de-coupling, maybe by creating an interface to the third-party component.

Once a component has been selected for inclusion within a product, there can still be

conflicting requirements for two products within the product line: two may need different

and incompatible versions. The best position to be in would be to certify a single version,

but in some cases one must support several and needs to adjust the software architecture to

isolate one from the other.

4.3.3 Third parties as partners

Let us note that usage of third-party components within the product system is one possible

direction: the company reuses a third-party component. But there is another direction: some

third-party develops components which are destined to fill a void in the company’s product

suite. This is part of the larger theme of product platforms, and how some companies have

been extremely successful by creating software platforms where many partners can thrive

and increase the utility of the platform. Having the ability to create positive network effects

has been well documented in the literature.

4.3.4 Third-party component evolution

We may observe that when procuring a component from a third-party vendor, the software

system becomes itself a customer of that vendor, and new released versions are fielded to

the organization (i.e. in the opposite direction of fielding the organization’s product to its

customers). This makes the organization susceptible to de-stabilization and vulnerable to

changes in the third-party component:

• new defects can occur in the component, in which case integrating a new version causes

rework in the organization: maybe in the form of a backing-out of the new version of

the external component, or in compensatory action within the organization

• old but until-now innocuous defects can become visible with the new version of the

component. This typically happens when the component tightens or otherwise makes
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apparent its requirements for being hosted within a product. An example is given in

Figure 4-3.

We should note that the release schedule (if there is even one: some products, notably

open-source ones, do not even have a fixed release schedule, and produce releases when

defect fixing mandates it) of the third-party components usually is different than the one the

software development organization uses. The organization must pick which release train of

the third-party component to build on, and synchronize the import of that released version

of the component into its own schedule. [Berczuk 2002, ch. 10] gives details on how this is

implemented in Source Control, the reasons for this synchronizing to happen are typically:

− in order to get critical fixes, it may be required to upgrade while in flight. That is,

the upgrade might have to happen even though it was not scheduled. This happens

typically for security-related bugs.

− in order to upgrade the component to get access to new features, it may be necessary to

wait until the next available release train starts. It may not be the next departing train,

but the next one with feature content such that the tasks that need accomplishing to

operate the upgrade can be included in the plan.

The engineering manager must balanced those aspects to pick the best time to import a new

released version of a third-party component. In case the organization itself finds a critical

defect in the third-party component, there will be pressure to develop a fix locally: this

tendency must be balanced against the long-term needs of the organization. In particular,

one must be careful to not end up with a locally modified version of the component that

the organization needs to maintain for itself, as this would go against the very benefit of

employing the third-party component in the first place. Another aspect of this issue is that

the whole componet must be recorded locally in source control within the organization,

its build must be automated and should at all costs avoid automated download of further

dependencies, as builds must be idempotent.

Another point of interest is that third-party components are often systems onto them-

selves and thus may include directly or depend on other third-party components, and there-

fore it may be important to perform all upgrades at the same time, as the company does not

want to spend resources on testing combinations of components that have not been tested

and approved independently. This goes to the same point as previously: the organization

should be careful to not have to perform quality assurance functions in place of the provider

of the component. In conclusion, this goes to the same point as previously: third-party

components must be carefully selected based on quality criteria such that the long-term

benefits outweigh any resource spending within the company on the use and integration of

the components.
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Sometimes the organization will select a third-party component and then be forced to

take over maintenance of the software itself. This happens when the third-party vendor loses

interest in, or deprecates the component, or simply goes out of business. In all these cases,

the organization ought to be careful to select only components it can get in source form

(white-box components, as opposed to black-box components): even though one may elect to

integrate the component into the product build system as binary components, it is crucial

to preserve the ability to fix the software, or port it to a new environment (See Figure 4-4).

Third-party components often unintentionally breach modularity and induce bizarre interac-
tions in large systems. In one system I worked on, upgrading the Java Development Kit used
induced an interaction with our software: prior versions of the JDK were compiled on the
target platform with an earlier version of the C/C++ compiler and linked with the corre-
sponding version of the C runtime library, when we upgraded it, we found out that loading
the Java Virtual Machine into our process changed the TTY mode of the standard input!
We had been immune to that interaction as long as we were not building our product with
the same C runtime (it was in fact loading two copies of the C runtime shared library into
the running process). This is another example of why systems engineer want to enforce
component isolation to ensure that components can indeed function independently.

Figure 4-3: Third-party components and modularity.

One third-party component I worked with presents an interesting case. This component was
a portability layer on several platforms. The vendor went out of business in the 1990s, yet
the company that had incorporated it into its own product line outlived the vendor. Almost
twenty years after the vendor going out of business, the company had to start supporting
64 bit operating systems, as a result, it was compelled to either get rid of the system, or
perform itself the work to port this component to 64 bit environments. The latter strategy
was selected by management, and was conducted successfully. This was possible because the
company had had the foresight to acquire a source code license to this third-party component,
a risk-mitigation strategy which turned out to be crucially important years after the initial
choice and sourcing of this component. As a result, the software system in question is still
available commercial on platforms the original designers of the components never thought
of.

Figure 4-4: Example of risk with third-party component.
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4.4 Software Product Lines

Large software development companies typically sell multiple products grouped in families;

if those families are entirely independent within the organization, then we would consider

them to be separate. Products are also going through multiple releases, their development is

ongoing, possibly going on indefinitely; new members join the product family, some member

leave it, while others are developed continuously. This is exemplified by Figure 4-5, where

Product 1 starts at release N-2 and stops at release N+2, while Product 2 sees ongoing

development into the future, and Product P starts at release N. Product 1, 2... P form the

product family, these could, for example, be Microsoft R©’s Word R© , Excel R© and Powerpoint R©.

In the time dimension, releases N-1, N, N+1 could be the Office 2003, Office 2007 and Office

2010 versions released by Microsoft R©.
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Figure 4-5: Software Engineering along three dimensions.

Products or families of products that are developed jointly (i.e. sharing source level

components, merely sharing processes and scheduling, or all of those plus some level of

coupling) form a software product line. The benefits of product line engineering have been
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documented in the literature [Bosch 2000, p. 288]. Products within a product line are

developed simultaneously, in lockstep, or otherwise share scheduling constraints.

Software product lines contribute one additional layer of complexity in the management

of large software development efforts. Large software companies typically maintain multiple

active branches, sometimes these branches are very long-lived due to regulatory constraints.

How to manage a portfolio of applications is outside the scope of the present thesis work,

instead we assume that the applications in the portfolio have been selected and that it is

fixed. Product and feature selection are here assumed to have already taken place, as those

topics are outside the scope of the present work. In other words, we shall not examine

any front-end processes (i.e. product selection, market segmentation) and we shall ignore

the fuzzy front-end, instead we only deal with already decided New Product Developments,

which we assume to be known and stable.

For one particular set of products and features, we also assume that the product line

we are talking about it already successful enough to sustain itself over multiple successive

generations of development work. In particular, we do not talk about initial product or

product line introduction (although we will consider introduction of a new product within

the context of an existing product line), as this presents additional modeling challenges

(for instance, initially no worker on the project has experience with the product, since the

product does not exist yet), these are examined extensively in [Bosch 2000, p. 166 and p. 316].

Similarly, in this context, we assume that requirements do not change (i.e. that requirements

were completely elicited and are perfectly known: this is an idealized situation, as in reality

requirements always change), and changes that will occur will be handled as engineering

change orders and scheduled for fixing just like any other defect. This is true both of

requirements coming from customers’ use cases and of requirements coming from variability

changes required by the product engineering teams. The ideal requirements hypothesis is

an approximation of reality, as it sees the software organization as a closed system as noted

in [Weinberg 1991, p. 159].

To quote Rechtin [Rechtin 1990],

You can’t avoid redesign, it’s a natural part of design.

When the same team is tasked both with developing the “currently active” branch and

with maintaining older product lines (maybe for good cause: it happens often that it is

the same engineers that have the knowledge of product architecture and/or details of the

implementation), then those multiple branches compete for the same resources, namely the

set of capable software engineers. This is related to the firefighting issues documented by

Repenning [Repenning 2001].
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Note that in this work, we call current or currently active or active the one branch which is

undergoing active feature development: this is the highest-numbered branch and is where all

feature development happens. This is a simplification of reality, because sometimes feature

development may be requested by customers on other branches, but typically in industry it

is minor work, and is handled much like a defect.

In other words, this is an example of the Robbing Peter to Pay Paul archetype docu-

mented by [Novak & Levine 2010]:

• one release may be given more attention at the expense of another. For instance, if

the fielded releases exhibit a highly problematic fault and must be fixed immediately,

the manager may elect to divert one engineer from working on the current release to

work on discovering the nature of the defect and proposing a correction.

• one product may be given more attention at the expense of another. For instance, the

Product 1 engineering team might discover an intolerable defect in a shared component,

requiring diversion of an engineer to work on said defect, stealing that person away

from the work he was scheduled to accomplish in the current release.

The devastating effects of the various active mainlines competing for shared resources, in

this case the time of engineering staff, will be demonstrated in Chapter 5. This is a well-

known problem in the Critical Path Method of project management: if every step uses its

own safety buffer, then projected completion takes much longer. The proper way is to have

a per-project safety factor and to monitor use of the safety. In other words, a holistic view

gives much better results. However we should note that CPM applied to several projects

competing for shared resources is not exactly equivalent to what happens in product line

engineering, which sees additional effects of propagation of rework across active mainlines.

[Pohl, Böckle, & van der Linden 2010] say that

Whenever an artefact from the platform is changed, e.g. for the purpose

of error correction, the changes can be propagated to all products in which

the artefact is being used. This may be exploited to reduce maintenance

effort.

This is true but misses the point that fixes may need adaptation on multiple branches (i.e.

may not be identical across all branches). Our model of the system will thus have to account

for this additional cost of propagation, due to administrative overhead of merging a change

on a branch and to the added difficulty of having to adapt changes to each such branch.

As noted in [Pohl, Böckle, & van der Linden 2010, p. 18] :
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The stability of the domain is also an important factor for the successful

introduction of software product line engineering. If everything changes

every half-year in an unpredictable way, the investment costs never pay off.

This situation is similar to not understanding the domain well: variability

is added that is not needed and the variability that is actually required is

not available.

Without loss of generality, we can consider that re-architecting processes (such as split-

ting a component in two, adding or removing dependencies, retrofitting commonalities) are

activities that are conducted only at the beginning of a release cycle. Doing otherwise adds

unnecessary complications: for instance, adding a dependency after a released product has

been shipped to customers necessitates additional support in the delivery system to be able

to ship such components to customers. A very sophisticated delivery system would be able

to support this. However re-architecting and refactoring add no value for customers, these

are non-functional features that customers usually do not care about (unless they cause some

issue visible to customers, such as system instability or lack of scalability): the enterprise

can schedule these changes as it pleases and usually as is convenient with regards to feasi-

bility. This happens when product engineering units need to extend some core component

rapidly to meet schedule, and the product-specific extensions, if found profitable to other

units, are refactored into the core component in the next release of that component [Bosch

2000, p. 312].

The option to push back features, or schedule them for later, simply is not available in

projects, but is possible in product line engineering. In fact, some value to some subset of

customers is realized even if not all initially scheduled features actually make it into a given

release. Scheduling features for future development and delivery also has advantages to the

organization other than workload smoothing and planning: for example, it may present value

in terms of time to market, so that the organization gets one iteration of the product to the

market as soon as possible in order to capture market share, and it may as well as present

value as a marketing device in terms of planning the roll-out of features to the marketplace.

Another selling point for customers is that the product line typically provides for ascendent

compatibility between successive releases of the product family, therefore even if one feature

is not present in the current release, the company can provide a roadmap to customers to

entice them into purchasing the current release, in hopes of future benefits from features

planned in later releases.

If several re-scheduling initiatives are ongoing simultaneously, they can be ordered and

scheduled for delivery on staggered releases: these are then handled as an additional stock

of work-to-do, with no visible added-value feature content for customers.

80 / 163



Issues in Strategic Management of Large-Scale Software Product Line DevelopmentNivoit

In my experience, the best way to track architecting tasks, which present no user-visible

benefit, is to create a defect in the defect tracking system. This is not made visible to

customers, as it has no value to them, but is handled inside the company like any other

defect. The main issue with not recognizing refactoring and re-architecting tasks formally in

the task allocation system of the company is that doing so ensures that these tasks remain

hidden from the execution system, which means it is just another form of undiscovered rework.

That rework may be known to a few individuals, but short of having visibility in the formal

development system, it will never get allocated any resources. This is sometimes known as

technical debt, which is rework discovered but deferred.

Such a policy means for instance that fixing the defect can be deferred until a convenient

time (with regards to the multi-release scheduling mentioned above), and it can be prioritized

against other issues.

One of the hypotheses in the present paper is that having multiple active mainlines is

costly for the enterprise. Usually there is a fixed cost per active mainline, related to the

administrative overhead of keeping the branch data in source control, staffing the build op-

erations for the branch, tracking propagation of changes across branches (forward to correct

defects in latest versions of the product, backwards to give out critical fixes to customers

using older branches in production). We desire to show that minimizing the number of active

mainlines increases throughput of the software delivery system, or conversely that having

too many active mainlines decreases the throughput of the system. This notion is easily

entertained intuitively as more mainlines cause more opportunities for firefighting across

mainlines.

With regards to organization, one should note that having rhythm in the software pro-

duction process makes deadline clear to everyone at every level in every function: there is

no need to communicate specifically about milestones and deadlines when everyone knows

about them. Rhythm allows individuals to internalize what the expectations are with respect

to schedule, it also gives direction to each individual as to what is the right thing to do at

what time: for instance, individual engineers know instinctively that making large impacting

changes around the end of a release cycle is not a good thing, since there will not be enough

time to properly test the new version of the product with those changes. Refactoring tasks

and other architectural changes are thus only performed at the beginning of a cycle so that

the QA team have time to perform adequate testing and build the proper level of confidence

in the product. Similarly, other functions in the organizations all align on the same schedule:

financing, budgeting, hiring, marketing, etc... all know the tempo and perform in accordance

with the deadline [Dikel, Kane & Wilson 2001, p. 237]. In this fashion, rhythm is a very
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powerful tool leaders can leverage to make coordination implicit, to make schedule part of

the culture of the organization.

My industry experience has been with an evolutionary delivery of several software systems in

a common source control system, using the feature superset approach [Bosch 2000, p. 333].

Having a single repository makes it possible and even necessary to synchronize the release

schedules of all the software product lines involved; since those systems are often used

together as part of a large IT system, it is important that all integration issues be resolved

as early as possible.

Development gets further complicated by issues not otherwise detailed in this document.

For instance, upwards and sometimes also backwards compatibility of file formats and wire

protocols adds another layer of testing to perform before release : if you have systems A and

B released together, the current release of A must work not only with the current release

of B, which was developed simultaneously, it also must function properly with prior releases

of B, so the amount of testing is roughly quadratic in the number of systems mainlines you

integrate together. This slows down the quality assurance work tremendously, as the quantity

of work increases quickly. Usually this means that the testing effort is scaled back, manual

cursory smoke testing is performed, but not all possible combinations are tested. Preserving

compatibility in all possible cases requires an enormous amount of care, and proposed changes

that risk it are usually peer-reviewed closely before approval. This is particularly true of the

core of those systems, which therefore tend to have a slower evolution rate than the peripheral

parts.

There are essentially two ways to manage product lines:

• either maintain the shared assets in a single repository, and instanciate those (i.e. copy)

them over to each product repository, then build those independently of each other.

One must then assemble the system and perform integration testing. Note that in this

case, shared assets may be compiled and configured independently, with the possibly

that two systems use two different versions of a shared asset.

• or maintain all assets together in a single repository, have release engineering perform a

single master build of the system or systems, then select for each system the subset of

all artefacts that compose it. This guarantees that shared assets are strictly identical,

as there is only a single canonical version of those.

The first possibility builds cloning/branching of shared assets by product engineering teams,

which gives them opportunity to make local adaptations, which make complete system builds

difficult, or sometimes even impossible.

A company using the second possibility displays maturity because variability is necessarily

bound at run-time to enable this level of sharing of assets. This is called the feature superset
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approach [Bosch 2000, p. 333] to product derivation. This promotes a software product

system that always is in a useable state, and it forces engineer to resolve immediately any

conflicts as no two components can require two different versions of the same shared asset:

since there is in fact a canonical version, that is what every product engineering team must

use.

Finally, we should observe that organizing is about dividing labor, by predicting how much

labor there will be and what a good way to divide it is; we shall examine later in chapter

5 how work items actually flow within the structure established by the organization, that is

the dynamic, rather than static, view of how work gets accomplished.
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Chapter 5

System Dynamics Modeling

Lehman noted in [Lehman 1998, p. 42],

The software process constitutes a multilevel, multiloop feedback system

and must be treated as such if major progress in its planning, control, and

improvement is to be achieved.

This observation hints that System Dynamics modeling could prove useful as a way for us

to formalize our understanding, however approximate, of what is happening in the software

production system. This is precisely what we intend to do in this chapter, starting with a

short introduction to System Dynamics.

5.1 Introduction to System Dynamics

System Dynamics is a field of study founded in 1950s at the Massachusetts Institute of

Technology by Professor Jay W. Forrester, with the objective of providing tools and methods

to better understand the dynamics of complex systems. Forrester was able to explain trends

in managerial situations in industry by applying concepts from mathematics and engineering

(related to control theory) to those situations. He demonstrated that the structure of systems

is sufficient to explain non-linearities which are non intuitive and difficult for humans to

grasp.

System Dynamics uses the concepts of stocks, flows and feedback loops to model systems

as directed graphs:

− a stock is a variable of the system, such as a number of people, or a number of tasks.

Stocks describe the state of the system: they can accumulate, or increase in value; they

can also deplete, or decrease in value.

− a flow is a rate at which a stock changes, similar to a speed measurement.
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− a causal loop describe a link between elements. The relationship between two elements

is a loop when each element (stocks or flows) has a causal effect on the other; the effect

can be positive or negative. These represent the structure of the system: the philosophy

of System Dynamics is that these influence how the system behaves dynamically.

One example familiar to product development engineers would be a simple model of

development work with:

− a stock of tasks to be performed

− a flow of incoming tasks per week, coming from the customers. This rate could be

steady (one per week constantly, for instance), or varying (for example, every ten

weeks, an increase of a hundred tasks that tenth week). This flow contributes to the

accumulation of tasks in the work backlog of the developer.

− a flow of outgoing tasks per week, modeling the fact that the worker performs some

tasks, thereby depleting the number of tasks remaining.

The interested reader can learn more about System Dynamics modeling from the litera-

ture, in particular [Sterman 2000].

5.2 Applicability of System Dynamics to Project Development

Early work in this field, such as [Abdel-Hamid & Madnick 1991], recognized the usefulness

of systems thinking and system dynamics modeling to help with this understanding. [Acuña,

Juristo, Moreno & Mon 2005] surveys software process modeling, citing the integrative model

from [Abdel-Hamid & Madnick 1991] for its pioneering work.

The System Dynamics view of the world is that, although many workers and managers

blame external factors for the failure to complete their projects, many performance problems

come from the fundamental dynamics of projects, and thus understanding these can help

project leaders manage those profitably. Understanding the dynamics and what lever to

employ to counter undesirable dynamics is therefore very valuable to managers, or put

another way: the goal is not Taylorism but comprehension as a way to help avoid policy

resistance.

Note that as Novak and Levine write in [Novak & Levine 2010], a system dynamics

simulation can provide useful qualitative conclusions about the general behavior of the causal

loop structure: in other words, SD models are not meant to provide precise quantitative

evaluations of behavior, but rather give an idea of what the general trends are in a system.

Here we assume that people are interchangeable, which they are not, as seen in Section 2.10:

we do not deal with the additional texture that different persons behave differently, have

various capabilities, varying levels of ability, various levels of experience on the project.
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We consider here that these difference will be averaged over the long running time of the

simulation.
E
f
f
o
r
t

Figure 5-1: Internal rhythm of a release, from [Dikel, Kane & Wilson 2001, p. 75], only considering
feature development.

The software development literature makes it clear that development projects have an

internal rhythm: in particular, [Dikel, Kane & Wilson 2001, p. 75] shows the Figure 5-1

reproduced here, where the effort expanded by the workers and the cumulative expanded by

the organization varies in relationship to the schedule. This view is representative of reality

of projects, we shall see in later sections that in the case of parallel engineering of multiple

releases of the same product family, the rhythm happens simultaneously on multiple releases.

Here we are careful to consider models as an approximation of reality, yet we contend

that such an approximation can yield insights which are important to the manager. All the

dynamics that can be found in actual project performance can be explained by accumulation

processes and feedback processes, therefore the next few sections will look at those, with a

slant towards large-scale software engineering.

5.3 The Rework Cycle

The Rework Cycle is a well-known archetypical feedback loop in System Dynamics. Figure 5-

2 shows a causal loop diagram of this phenomenon.
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Figure 5-2: Rework as a causal loop diagram, from [Lyneis, Cooper and Elsa 2001].

The stock of Work To Do accumulates tasks which need to be performed: this is initially

set to represent the tasks that the manager has decided will need to be performed to achieve

his goals, which could be for instance to implement a given set of features, or to add some

improvements into his product. Work To Do is depleted by the collective action of engineers

accomplishing tasks. When performing tasks, engineers accomplish some fraction of them

perfectly, such that the work product of those is correct and will never need to be revisited.

But they also accomplish a fraction of them incorrectly, which could be:

− because they did not perform the task in the right way, made some mistake,

− or because they perform the task exactly as they should have, but they performed the

wrong task: this could have been caused by incomplete or unclear requirements.

Regardless of the reason, in this case, the work product is defective and necessitates subse-

quent rework. In light of this, while there is initially a stock of Work To Do, the output of

this system is really two stocks: Work Really Done and Undiscovered Rework, which feeds

backs to Work To Do as it is discovered. This discovery of rework lags as engineers work

to develop the product, but others discover issues with a lag. This feedback loop models

one core issue many projects have where the work product of some task is not known to

be defective until much later. In Figure 5-2, the rate of doing work is clearly related to

the productivity of the workers performing the work, while quality is related to the rela-

tive proportions of Work Really Done (called Work Done in the rest of this document) and

Undiscovered Rework in the number of tasks processed by the workers.
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Figure 5-3: Rework loop modeled in Vensim [Lyneis 2012].

In System Dynamics modeling, it is typical to separate, as on Figure 5-3, the notion of

Work Perceived Done from that of Work Really Done: Work Perceived Done, also called

Work Believed to Be Done, is what many engineers and managers base their schedule es-

timates on, while accumulation of Work Really Done (denoted Work Done in the figures

presented here) and depletion of Work To Do are the two quantities which really matter for

project management.

Undiscovered defects are typically a dramatically bad thing to have. The reader should

compare Figure 5-4 and Figure 5-5 to see how having a Fraction Correct and Complete less

than 1 impacts the rate of depletion of the Work To Do stock. Fraction Correct and Complete

is the proportion of work performed that goes into the stock of Undiscovered Rework : a FCC

of 1 means all work is correct and complete, a FCC less than 1 means that some work is

directly correct and complete, but some fraction is initially incorrect or incomplete, and thus
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becomes Undiscovered Rework.

Figure 5-4: Perfect Fraction Correct and Complete

Figure 5-5: Fraction Correct and Complete of 0.8

Engineering leaders should recognize that errors will happen and thus rework will happen,

and that cannot be avoided. Nevertheless, leaders can and should put in place policies that

decrease errors and keep undiscovered rework manageable (even though undiscovered rework

is a quantity unknown and impossible to measure, factors that affect it are known). System

Dynamics modelers are always careful to distinguish between “actual” and “perceived” value

of variables. Work accomplished is a typical example, it is divided between work actually
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done (i.e. that will not require rework) and work that seems done but needs revising (i.e.

undiscovered rework).

5.4 The Rework Cycle in Software Development

In software development, one way the rework cycle manifests itself is the situation where one

software engineer creates some new source code, writes and runs unit tests for it and then

makes it available for testing to each of the successive consistuencies shown in Figure 3-6,

and the person doing the testing (either in-house quality assurance engineering, or possibly

in-the-field customer usage) discovers a defect.

Because the feedback loop to discover the defect and start the corrective work can be

long, the project as a whole builds on top of defective work products, generating unnecessary

and incorrect work, requiring even more rework to finally get an acceptable revision of the

work product. Such a feedback loop explains why the cost of fixing defect rises with the

moment of defect discovery, as seen in Figure 2-8.

[Rahmandad & Hu 2010] documented many of the possible formulations of the rework

phenomenon. In the present work, we shall use the simplest formulation rework cycle, as we

should expect the qualitative results to be similar enough for our purposes, leaving use of

other formulations as a topic of future study. Figure 5-5 shows an example of how rework

affects completion of work.

There are two kinds of defects:

• defective work products, whose defects can go undetected for some time. This may be

because under some circumstances, the work product functions properly and does not

appear defective, some special circumstance is required to make the defect apparent.

• defective work products that immediately stall the software delivery system. For in-

stance, any error that breaks the build (i.e. that is detected by the compiler), or any

error that causes visible regression in the unit test suite replay. These can (and indeed

must, as they prevent others from carrying on their work!) be corrected as soon as

possible. In effect, rework of this kind admits no delay in being fixed (as opposed to

“normal” rework, cf [Abdel-Hamid & Madnick 1991, p. 75]).

In addition, once a defect has been detected, and rework initiated to correct it, submission

of software source code changes to fix the defect is itself work that is susceptible to being

defective in some fashion. This is called the Fixes that fail pattern, shown on Figure 5-

6: the fix itself possibly has some unintended consequences that constitute feedback in the

system, and contribute to more work to do in the future. An example of this is depicted on

Figure 3-8 in Section 3.2.2.
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Figure 5-6: Fixes that fail a.k.a the rework loop, archetype from [Novak & Levine 2010]

Ideally, all work products are initially defect-free and there would be no rework ever

required, this corresponds to a Fraction Correct and Complete of 1 in the SD model on

Figure 5-3. In reality, that is hardly ever the case, and downstream tasks usually discover

some number of defects, causing rework.

[Reichelt & Lyneis 1999] make the point that

A rework cycle and its associated productivity and quality effects form a

building block. Building blocks can be used to represent an entire project,

or replicated to represent different phases of a project, in which case mul-

tiple rework cycles in parallel and series might be included. At its most

aggregate level, such building blocks might represent design, build and test.

Alternatively, building blocks might separately represent different stages

(e.g., conceptual vs. detail) and or design functions (structural, electrical,

power, etc...). Similarly for build. In software, building blocks might rep-

resent specifications, detailed design, code and unit test, integration, and

test.

Following this, we may want to think how this notion of building block can be applied to

the Rework cycle:

• to represent phases of a project, which we will call stages in Section 5.5,

• to represent design functions in a project, as will be seen in Section 5.9.

This concludes this short introduction to the rework cycle, we will devote the next sections

to using the rework cycle in various ways to represent what happens in software product line

engineering.
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5.5 The Rework Cycle in presence of multiple stages

In this section, we want to examine the effect of rework when the work processes are divided

into multiple stages within a single release timeframe. This is typically the case as design

work is separated from implementation work, which in turn is separated from Quality As-

surance work, which may itself present multiple stages. This is depicted on the following

Figure 5-7.

This phenomenon is worsened when delays are added. For instance, if the quality as-

surance steps can only be performed with a delay: this may be because the daily build is

broken, or because there is not a minimum testable product yet, as defined in Section 2.6.

For physical products, going from concept to physical realization, there are often multiple

successive stages, each with feedback to one or more of the previous stages. These stages

are often characterized as “engineering” vs “manufacturing”: this does not apply literally to

software product as there is in fact no physical realization. However even for pure software

products, there are two stages that occur after the “coding” stage that could be considered

as “manufacturing”:

• the build phase, in particular if the system is so large that building (i.e. compiling,

linking, etc...) takes non-negligible time. In my experience, systems whose size range

in the million to tens-of-millions of lines of code usually take non-trivial time to compile

and link.

• the test phase, where QA engineers install the product like a customer would and run

manual scenarios to validate feature content. There could even be multiple stages of

testing (unit testing, system testing, then reliability testing, then scalability testing,

then other kinds of PCS, which is Performance, Capacity & Scalability, testing).

One example of modeling multiple successive stages is shown on Figure 5-7: the blue

arrows represent the links between stages, the forward arrow models the fact that one stage

pushes work onto the next, and the backward arrow represents the fact that some issues are

discovered in the second stage but can only be fixed in the first, and so are pushed back to

the initial stage for rework.
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Figure 5-7: Example with two stages, adapted from ESD.36, courtesy of Professor James Lyneis [Lyneis 2012]
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5.6 The Rework Cycle in presence of multiple branches

The software product development organization will typically have multiple branches (Note

that we use the two terms branch and mainline interchangeably). Unlike a project, what we

have here are N releases operating in parallel all the time, and periodically a new mainline

is created, and an old mainline is discontinued. Choosing exactly how many active branches

are allowed is a management choice; Weinberg states that large organizations usually con-

verge to having two releases per year [Weinberg 1991]. In this research, we use a bi-annual

rhythm as an example, but expect that readers would adapt the model to their own circum-

stances. Many other rhythms are possible, or even desirable, and the choice of rhythm may

be externally imposed, such as a yearly Christmas release schedule in some industries (such

as the consumer game/entertainment industry).

Figure 5-8: Repenning’s model-years, from [Repenning 2001].

The effects of sharing engineering resources between multiple active branches have been

extensively studied by Repenning [Repenning 2001], who calls them “model years”, using

terminology from the automotive industry. Repenning’s work studied a simpler version

with exactly two stages called Concept Development and Product Design and Testing, and

considered that once the Testing stage is finished the work on that specific model-year

is completely done. The situation we want to study here is different, with three stages,

including an additional stage that feeds work into the system perpetually, as explained later

in Section 5.7.

This situation is not simply multiple rework cycles happening independently on multiples

branches, as it is in fact the very same set of engineers working on all of them, switching

from one to the other as emergencies or scheduling dictate. This relates to the Critical Path

method of project management, invented in the 1950s, which models the project as a graph.

The CP graph is a set of related activities, where each node has edges to the nodes it depends

on; this dependency graph can then be used to compute the longest path of activities in the
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project, which is the Critical Path. This method works well when the resources are infinite;

in realistic projects, resources are finite and shared, consequently the Critical Chain method

was created by [Goldratt 1997] to account for those conditions. However resources in the

Critical Chain method are typically machinery or inventory, whereas in the present thesis

the most valuable resource of the project manager is the staff workers.

Branches that have been released to customers switch to maintenance mode: this means

that no additional feature work is ever performed on those branches, and all new capabilities

are developed on the in-development (also known as current) branch. New capabilities

are only considered for the current and future branches, management typically limiting the

amount of work going into the current branch, and prioritizes new capabilities to spread

their development over multiple future branches.

In addition, discovery of rework on one branch typically induces rework on other branches:

• if a defect is discovered on one of the newer branches, the manager must decide whether

to add to the task queue of earlier branches the tasks that would need to be carried

out to fix the defect there. This process is called backporting.

– Sometimes the defect will be too costly to backport, and no change will be made

to earlier releases. This happens when deployment costs are too high, or too few

customers are impacted by the change (as could happen if in fact no customer

using those released products ever encountered the defect).

– Sometimes backporting is simply a matter of copying (this process is called merg-

ing or importing) the changes to the older branch, so the rework task is not nearly

as costly as those on the original branch the defect was discovered on. But even

in such a favorable case there is still testing, distributing and deploying costs that

need to be considered.

– In the worst case, backporting is not possible: this happens when the codebase

has evolved significantly between branches, and then it is not just a matter of

copying the fix: one needs to engineer a new and different fix.

• if a defect is discovered on an older branch, then it will typically need to be ported

forward to all later branches. There are exceptions to this situation, for instance when

the defect is in an area of the codebase that has been deprecated or removed.

96 / 163



Issues in Strategic Management of Large-Scale Software Product Line DevelopmentNivoit

Work To Do N Work Done N

Rework N

Work To
Do N+1

Work
Done N+1

Rework N+1
Ba

ck
po

rt
of

fix
es

F
orw

ard
p
ort

of
w

o
rk

Figure 5-9: Example with two parallel branches, named N and N+1, each feeding rework
into the other. Note that cross-branch rework is subject to some damping factor, as work is
less demanding the second time it is performed.

In summary and as shown on Figure 5-9, while there is rework discovery happening

locally within each branch, this system appears to be working under a grander rework cycle

across all active releases. This leads us to classify defects in several classes:

• defects that should have been caught when the associated capability was first intro-

duced in the software product line. Issues of this kind really are defects according to the

original requirement (i.e. the work product does not match the original specification).

• defects due to implicit or new requirements that could not possibly have been engi-

neered for, or even known, at the time the associated capability was first introduced.

Issues of this kind are retrospective requirements (for instance, for a web product to

support a future version of a web browser that has not even been released at the time

of specification), typically they concern maintenance tasks related to keeping the prod-

uct up-to-date with regards to changes in the product environment (browser changes,

compiler changes, operating system upgrades, new standards). Weinberg says that in

software, conformance to requirements is not enough to define quality, because require-

ments cannot be as certain as in a manufacturing operation in [Weinberg 1991, p. 31],

and indeed requirements are not fully known or understood at the outset, and so they
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do change or are refined over time. These changed requirements usually appear on a

new branch as a new requirement, even though they really are about fitting existing

code to changes in system interfaces.

This is an occurrence of the accidental adversaries archetype documented in the archetype

catalog of [Novak & Levine 2010, p. 13] , where two parties destroy their relationship through

escalating retaliations for perceived injuries. In this archetype, A and B execute concurrently,

but the actions each takes towards their own goal undermines the progress of the whole

system. In the context of software mainlines competing for staff, each mainline optimizing

locally does so at the cost of lesser progress for the system as a whole: one mainline retaining

staff instead of sharing it, or taking shortcuts in the work performed, hurt the overall system.

Repenning only considered the case where at most two branches are active at the same

time: one in the Product Design and Testing phase (this is model-year S) and another in

the Concept Development phase (this is model-year S + 1) in Figure 5-8.

Each time a new timed-boxed release is started, a new branch is set up. This new mainline

already has some stock of work allocated to it, which contains:

• new feature development tasks,

• deferred development tasks for the previous mainline (or mainlines). This practice

is documented and named as the DROP PASS pattern in [Dikel, Kane & Wilson

2001, p. 91], it allows the organization to maintain a beat by moving less critical features

to later release cycles. Requirement changes have a similar effect, these are integrated

into the delivery system by changing the specification and pushing the work to the

next release. As noted in [Lyneis, Cooper and Elsa 2001], mid-project design changes

obsolete work already done, whether it had been performed correctly or not. In this

context, [Dikel, Kane & Wilson 2001, p. 83] noted that If it becomes difficult to maintain

the rhythm while implementing the key feature, it is most likely a warning sign that

the risk and complexity of the feature is greater than anticipated, and that replanning

is necessary.

• deferred defect fixes from previous mainlines (that is, defects that are known on pre-

vious releases but that the organization elected not to fix there),

• undiscovered rework from previous development work (note that when some rework is

discovered on one mainline, it is then known on all subsequent mainlines, and possibly

on previous ones as well).

With regards to defect discovery, technical managers have many choices to make: they need

to decide what mainlines must be modified to incorporate the fix for a defect, which is usually

decided on the basis of severity and customer exposure. For instance, it is no use fixing a
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bug that customers cannot see on an old release, for instance; conversely if the bug affects

many customers, that can warrant an emergency merge of the fix on many parallel branches.

What we want to demonstrate here is that to counter the effects of firefighting, the

manager will have to limit the number of currently active branches. The more branches

are active, the more opportunities for firefighting to be necessary. Similarly, nominating

different people for different branches may have some benefit (although intuitively, having

different people doing the same work on different branches is duplication of work, and also

nominating some people to do only maintenance work is usually bad for morale).

[Abdel-Hamid & Madnick 1989, p. 39] indicated that Nay [Nay 1965] and Kelly [Kelly

1970] have produced system dynamics studies of project management applied to multi-

project environments. The present thesis builds on that work in the context of product

lines.
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5.7 The Rework Cycle in presence of multiple stages

on multiple active branches

Releases, like projects, are time-boxed, and each release looks conceptually as in Figure 5-

10a. However, as the organization fields a new release of its product family to its customers

periodically, multiple releases cycles occur in staggered fashion, and are in fact happen-

ing simultaneously (in the time-slice highlighted in red), as shown on Figure 5-10b. This

figure depicts four parallel releases, the first three are fielded and used in production by cus-

tomers(highlighted in yellow in the figure), one is in beta stage, and the last and current one

is in full-fledged development mode. Notice how all past releases accumulate in the fielded

stage. This explains why looking at multiple active branches, each in a given stage of the

development lifecycle, is one way to model the development of the product.

dev beta field

(a) Multiple stages on a sin-
gle branch, as in Section 5.5

dev beta field

dev beta field

dev beta field

dev beta field

dev beta field Release N+1

Release N

Release N-1

Release N-2

Release N-3

P3

P2

P1

(b) Multiple stages on multiple parallel branches, with simultaneous stages highlighted in
one time-slice. Highlighted in yellow are all the fielded releases, which can be aggregated
together.

Figure 5-10: Difference between single-mainline and multiple mainlines.

Also one can readily see depicted in Figure 5-10b the phenomenon of cross-release rework

propagation discussed in 5.6 and shown on Figure 5-9. This phenomenon is one particular
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instance of the accidental adversaries archetype (See Section 5.6 and the mapping between

the two on Figure 5-11), which accounts for the fact that firefighting on one branch takes a

person away from work on another branch, and work on one branch causes additional work

to be required on the other. This cross-release phenomenon happens in both directions:

− Work on stage P3 (i.e. the dev stage of release N+1, to use the notation from Figure 5-

10b, will eventually get transferred to stage P2, when release N+1 becomes the beta

release on the release date.

− Work on stage P2 causes rework, as any defect fix must be integrated in the future

releases, which at that moment in time are represented by the current release.

− Work on stage P1 causes rework on P2 and P3 by the same mechanism: bugfixes from

incidents reported by the field must be propagated, in other words the organization

cannot lose work performed on P1, so it must take some action to propagate that fix

(or an equivalent one) to the current stage so that it is included in all future releases.

Node# Description in Section 5.6 Description in Figure 5-10b
1 A’s activity toward B Forward port of bugfix on the earlier

stage to the later stage
2 A’s activity toward A Bugfix to increase quality of one stage
3 B’s activity toward B Bugfix to increase quality of one stage
4 A’s success Quality of one stage
5 B’s success Quality of one stage
6 B’s activity toward A Backport of fix from later stage

Figure 5-11: Mapping cross-release rework onto accidental adversaries from Section 5.6

5.8 Multi-Release System Dynamics Model

In this section, we describe a System Dynamics model developed in Vensim R© to understand

the dynamics of product line development in the presence of multiple released versions of

the product family . Large software systems can be developed in two ways:

− either as a collection of subsystems, each built and released independently, then as-

sembled into the larger product system,

− or as one big system where all the components are built and released together.

The first approach, while valid, tends to lead to a combinatorial explosion in the number

of combinations of versions of components that need to be tested during system integra-

tion testing. That approach could be modeled using System Dynamics as well, but that

is not what we want to examine here: we will be looking at a system developed using the
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second approach described. This approach is used in industry, and lends itself well to the

development of large systems, as system integration tested continually.

We start with a description of the model, followed by an explaination of how it describes

multiple stages of the software development lifecycle, as well as multiple active mainlines

running in parallel. This approach should describe the reality of software development in

large software product organizations more closely than the usual static view of a single

product development does.

5.8.1 Description of the model

The model presented here is meant to demonstrate the trends that appear in a software

product line engineering environment, we know from [Abdel-Hamid & Madnick 1991, p. 177]

that portability of results in such models is especially poor, so one would need to re-calibrate

model for one’s own project. Similarly, [Reichelt & Lyneis 1999] argues that there is no

learning across projects: product line engineering presents the best opportunity because

there is a guaranteed succession of projects with strong similarity and commonality, where

learnings are always applicable to forward releases. In other words, while portability across

organizations may lack, portability is present in the case of successive releases within a single

enterprise: this where the leverage is present for managers to use. One can collect historical

data and then compare with current projects reliably, whereas comparing across companies

is an apples-to-orange comparison.

Variable Meaning Value
Release duration length of one cycle 26 weeks
Simulation duration 10 release periods 260 weeks
nbTasks number of tasks at release start 1000
FCC Fraction Correct and Complete 68%
Productivity P1 Productivity of workers in stage P1 0.8
Productivity P2 Productivity of workers in stage P2 0.9
Productivity P3 Productivity of workers in stage P3 1.0
Delay in Discovering Rework - 15
Minimum Time to finish a task - 1
Switch for Forward Propagation boolean to enable propagation of rework

across releases
1

Switch for pulse on Release # 5 boolean to simulate additional 50% workload
on release #5

0

Figure 5-12: Variables and values used in the System Dynamics model from Sections 5.8.1.1
to 5.8.1.7.

We have developed a simplified System Dynamics model of this phenomenon, Figure 5-

10 shows the basic states, Section 5.8.1.1 shows the details of the model. The model has
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three stages, as seen highlighted in Figure 5-10b, named P1, P2 and P3. Those names were

chosen for notational convenience in Vensim, P1 is the earliest stage in the timeline, P2

comes next and P3, as the current stage, comes last:

• the current stage (also called P3 in Section 5.8.1.3), which models the current model-

year in Repenning’s terminology. This represents the active under-development main-

line. When the release date is reached, all remaining Work To Do is transferred to the

beta stage.

• the beta stage (also called P2, shown on Figure 5-13b), which model the mainline

currently undergoing Quality Assurance testing and/or preliminary customer testing

(hence the name). When the release date is reached, all remaining Work To Do is

transferred to the fielded stage.

• the fielded stage (also called P1, shown on Figure 5-13a), which models in aggregate all

past-but-still-active mainlines (this represents the stages highlighted in yellow in the

Figure 5-10b). These are mainlines that have not been discontinued yet, as customers

are still using them in production and require continued maintenance. These see an

influx of workload coming from defect reports from the field.
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(a) The fielded stage (P1, see Section 5.8.1.1)

(b) The beta stage (P2, see Section 5.8.1.2)

Figure 5-13: Rework cycles in the first two stages (see complete model in Section 5.8.1.1)
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Note that this assumes that all products in the product family are released simultaneously.

This is one possible managerial choice, which simplifies system integration testing as it is

done continuously up until release time. Another choice is to release each product on its own

schedule, and then test its integration with other pieces of the overall system: that choice

increases the amount of testing required, we will not be looking at how this can be managed

here.

In this model, we have assumed that for each release there is the same number of tasks

related to new feature content. The model was calibrated with the sample values shown in

Figure 5-12, after our own experience; we expect the reader to adapt the values selected to

his own circumstances. In other words, the assumption is that the enterprise knows how

to estimate and then limit the amount of tasks to match the capacity of its own software

production system, having learned from experience how much can go into any single release.

This is an approximation, as it is widely known that project size estimation is very difficult,

and sometimes pointless as the real number of tasks to be done changes during the execution

of the project. Another simplification is that we model work transfer between stages to

happen exactly at the release date: in reality, in the weeks prior to the actual deadline date,

the engineering managers distinguish between:

− tasks related to the initial feature set for the current release: these can be pushed to

the next release if not done in time,

− tasks related to rework, which ones want to see finished before releasing.

In other words, in reality, managers can and do make adjustments in flight to the stock of

Work To Do P3.

As depicted on Figure 5-9, there is propagation of work-to-do across mainlines:

• backwards propagation, which occurs when current engineering discovers and fixes

defects on the current release, and management elects to make the corresponding

change on earlier releases.

• forward propagation, which occurs when a defect is found in the field on one of the

fielded releases, and the corresponding fix must be propagated to all subsequent re-

leases. It may happen in this case that the fix on a later release is different, because

the area of the code has changed or been otherwise rewritten or replaced.

The tasks generated by rework on older releases almost always correspond to new tasks on

newer releases, save for the odd case where the component in need of rework has been depre-

cated, removed, or rewritten (i.e. in this case, there is no point in merging the changes onto

newer releases). The tasks generated by rework on newer releases do not always contribute

new work-to-do on older releases: that is the case when the component involved did not

exist yet, or the defect is not important enough to warrant fixing on older releases.
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There is an overall rhythm dictated by the Release Counter variable, and when the current

release reaches its end date, remaining work to do is pushed down to the beta stage, beta work

left is pushed down to the fielded stage, and a new set of work-to-do tasks appears for the

new release cycle. Each stage also computes Cumulative Effort Expanded and Cumulative

Work Done, which are used for monitoring.

The following subsections show the causal loop diagrams used in our System Dynamics

model. The Vensim model is divided in views to afford us modularity which helps keep the

model comprehensible. Each view is presented in turn, with annotations to help the reader

understand the model.

• Section 5.8.1.1 shows the fielded stage (P1), where the Work To Do P1 stock is con-

nected to Work To Do P2 on stage P2, and sees a transfer of work at the release

anniversary date. Similarly, Undiscovered Rework P1 is connected to Undiscovered

Rework P2 on stage P2, and sees a transfer of stock at the anniversary date: this

models the fact that the beta release becomes fielded on that date, and therefore all

undiscovered issues in that release move with it into the fielded status.

• Section 5.8.1.2 shows the beta stage (P2), where the Work To Do P2 stock is connected

to Work To Do P3 on stage P3, and sees a transfer of work at the release anniversary

date. Similarly, Undiscovered Rework P2 is connected to Undiscovered Rework P3 on

stage P3, and sees a transfer of stock at the anniversary date: this models the fact that

the current release becomes beta on that date, and all its issues, known or unknown,

are moved into beta status.

• Section 5.8.1.3 shows the current stage (P3), where the Work To Do P3 stock sees a

flow of tasks at each release anniversary date: the value of this stock is transfered to

Work To Do P2 and simultaneously fed a new set of tasks, marking the start of a new

development period. As on previous stages, Undiscovered Rework P3 is transfered into

Undiscovered Rework P2 at the end of period.

• Section 5.8.1.4 shows the Productivity, we set different productivities for the three

different stages.

• Section 5.8.1.5 shows the Staff Allocation Policies, which we will experiment with in

Section 5.8.4. These policies are based on the notion of staff pressure (which we also call

more simply pressure), which is the ratio on any stage of the staff currently allocated

to the staff estimated to be required to finish the Work To Do within the release cycle.

A stage which has a larger backlog of tasks exhibits a greater pressure than a stage

with a smaller backlog: this is designed to simulate the pressure the manager feels

to allocate staff to that one stage. In Section 5.8.4, we experiment with a variety of

policies detailed further in that section.
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• Section 5.8.1.6 shows the Fraction Correct and Complete variables, one for each stage.

Each has a nominal value, and then is influenced by the work performed so far in one

release cycle: this models the fact that as defects are generated in some portion of the

work done, later tasks are more prone to generating new errors on already incorrect

work.

• Section 5.8.1.7 shows the inputs and outputs, including the harness used to generate

the workload in the various experiments in sections 5.8.4 and later.
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5.8.1.1 View 1 : Fielded Releases Stage (P1)

Release Events

Plot of Release Events



5.8.1.2 View 2 : Beta Release Stage (P2)



5.8.1.3 View 3 : Current Release Stage (P3)



5.8.1.4 View 4 : Productivity

This view shows how Productivity is computed for each of the stages, we have one

master constant that feeds into one for each stage, with a multiplicative scaling

factor to account for the differences in the nature of the work on each stage.



5.8.1.5 View 5 : Staff Allocation Policies

Test module for allocation policies

The five policies tested are explained in Section 5.8.4. Staff level for each of the three stages



5.8.1.6 View 6 : FCC

Constants Effects of Work Intensity on FCC



5.8.1.7 View 7 : Summary

Output variables

Input variables
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5.8.2 Running the model base case

In this section, we run the model with initial values for all parameters, the goal being to

demonstrate its features and how it relates to the three-stage description given of multi-

release software engineering. The first experiment is to run the three stages decoupled

(depicted in red), and then coupled via the cross-stage rework propagation described in

Section 5.7 (in blue).

In Figure 5-14b, when propagation is not active, there is no work to do, as expected.

Work on this stage only comes from rework propagated from P1 and from work transferred

at the release date from P3.
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Spike caused by propagation

from later stages

(a) Work To Do on stage 1 (fielded releases)

Spike caused by propagation

from stage P3

(b) Work To Do on stage 2 (beta release)

Effect of propagation visible here

(c) Work To Do on stage 3 (current release) (d) Rework Generation on stage 3

Figure 5-14: Activating forward propagation shows how rework coming from fielded releases increases workload on later releases.
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Examining Figure 5-14c further, we can see that steady state is attained after one full

release cycle of 26 weeks has passed. We use the term steady state as it is used in thermo-

dynamics or engineering to mean that the system has achieved a predictable state. After a

start-up transition on our plots, we see that each release cycle repeats the same pattern; also

it is the state we expect the system to return to after being subjected to a change in inputs.

All experiments in this work will be run with a release cycle duration of exactly 26

weeks (except where mentioned otherwise), we assume that management has mandated the

organization to produce one new release every 6 months.

Considering the effects of propagating rework between releases causes:

− rework to happen in spikes at the start of the release schedule on fielded releases, on

Figure 5-14a. The rework spikes in stage P1 comes from later stages, it adds to the

constant inflow of rework coming from issues reported in the field,

− rework on stage P2, seen on Figure 5-14b, comes mostly from rework propagated from

stage P1, with periodic spikes coming from work transfer from P3 at the start of the

release schedule (since a current release becomes a beta one at that specific moment).

− rework on stage P3, seen on Figure 5-14c, increases significantly because of tasks

propagated from stages P1 and P2.

We can see that a model which does not consider propagation of rework from other releases

clearly underestimates the amount of work to do at any point in time: Figure 5-14d shows

that there is consistenly more rework generated on stage P3 when changes are propagated

from earlier stages.

In Figure 5-14 we show the Work To Do in each of the three stages for two runs of the

model, one (forward = 0) does not consider forward propagation of bugs from maintenance

of fielded releases, while the other (forward = 1) does. The sawtooth profile seen on

Figure 5-14c is explained by the fact that the tasks are assigned to the software production

system at the exact anniversary date of the release cycle: the first release cycle sees work

in the first stages, but not in the current stage (also called P3), then cyclically, every 26

weeks, the product management function makes current become the beta release and creates

a queue of work to do for the new current stage. Work is then consumed over the duration

of one cycle, only to see new work come in from product management at the beginning of

the next cycle. We can note that on Figure 5-14c, Work To Do P3 drops to zero about

half-way through the release cycle. This indicates that the system operates well below its

capacity, and corresponds to the reality that management allocates some slack directly into

the scheduling (i.e. it artificially inflates the stock of Work To Do) to account for the

inevitable extra work that the organization has experienced.
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Work To Do P1 in Figure 5-14a models that the organization is treating the incoming

tasks coming from defects reported by the field deployments of the product. After a few

release cycles, the system has reached a steady state, with work coming constantly from the

field on P1, and work coming at the beginning of each cycle. In the four figures, we depict

in red the case when the three stages are independent, save for work transfer at the end of

the release cycle, and in blue the case when rework from P1 propagates to P2 and then P3.

Figure 5-14c clearly shows that more Work To Do remains, thus less work is accomplished

on P3 when propagation is active in the model: this represents the fact that staff who would

be processing P3 tasks is in fact busy working on P1 and P2, for some portion of the time.

This matches our industry experience, where less-than-ideal upfront work always ends in

maintenance problems. In addition, when such problems are severe enough, they prevent

production use by customers, and therefore warrant immediate attention, another example

of firefighting.

(a) Work Done on stage P3

1

2

3

(b) Detailed view for
one cycle

Figure 5-15: Work Done P3.

Figure 5-15a displays the behavior of actual Work Done P3 over time. Figure 5-15b

shows the detail of one release cycle, allowing us to look at it more closely:

− 1 is the first phase in the release cycle: work is accomplished at the work rate the

organization can sustain, it then reaches a limit because there is no more new Work

To Do.
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− 2 shows the start of the second phase: the organization is performing the rework to

fix defects in the work product of the first phase.

− 3 is the end-of-release time, where work for this cycle stops and is transferred to

stage P2 (i.e. the beta stage). At this time, a new cycle starts anew.

In this model, we ignore the effects of hiring (see Section 3.1.2), and consider the enterprise

keeps its staff of engineers on payroll no matter what, so payroll is a sunk cost: we only

care about maximizing the return on that investment such that engineer be paid to perform

actual work and if possible correct work from the first time, rather than rework caused by

upstream errors. We say nothing of cost estimation, we only want to model completion of

the project, without regards to actual deadlines: we just want to be able to demonstrate

managerial levers that make the project feasible at all and detect conditions that cause

unfeasibility, all other things being equal.

This concludes our description of our multi-release System Dynamics of software product

line engineering. In the next sections, we will use this model to run various simulations and

try to understand the dynamics at play in this kind of software product engineering.

5.8.3 Varying Fraction Correct and Complete

In this section, we want to show how desirable it is to have the highest possible Fraction Cor-

rect and Complete. [Cooper 1993] found that number to range from 34% for DOD projects to

68% for US commercial software projects: to relate more specifically to commercial software

development, we shall use a range of values around 68%. This FCC is an abstract construct

of the model and cannot be set or known directly. However, intuitively one understands

that putting more effort into earlier stages of the Software Development Life Cycle yields

better work products and thus less opportunity for errors and errors-on-errors to occur. If

a company were to do a post-mortem to estimate FCC, it could possibly apply that value

to other projects (assuming all else to be equal: same staff, same kind of project, etc...), or

later iterations of the same release cycle. In fact, software product line engineering presents

a unique opportunity for this, as successive release cycles have much more in common than

development projects might.

Note in Figure 5-16 how the steady state is achieved much earlier and much more

favourably when there is no propagation of rework across releases. The Fraction Correct

and Complete drops at the beginning of each release cycle; in Figure 5-16b, the effect is even

more dramatic due to cross-release rework. Note that in this experiment, FCC drops to

values between 4% and 11%, which is probably not realistic. We do not take those numbers

at face value, and are more interesting in the decrease in FCC than in actual numbers. This

effect can be explained by the amount of work transferred between stages at the release
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date: as FCC gets lower, the amount of undiscovered rework transferred gets bigger, and

that increases the amount of work that will be transferred back to P3. The cross-release

propagation indeed increases the amount of work to do: even though large amounts of work

get purged at the end of every cycle, much work comes back to the current release in the

form of propagated rework.
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F
C
C

(a) FCC on stage 3 without propagation

F
C
C

(b) FCC on stage 3 with propagation

Figure 5-16: Activating forward propagation shows how FCC behaves.
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(a) Work Done on stage 3 without propagation

(b) Work Done on stage 3 with propagation

Figure 5-17: Activating forward propagation shows how Work Done P3 behaves
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In Figure 5-17, the propagation of rework from earlier stages has an adverse effect on

the Work Done in the current stage, even when using separate staff to perform the work

on the various stages. Industry experiences have shown us that when maintenance staff

is separate from development staff, managers consider that maintenance work has little

impact on current development work, this experiment would tend to show the opposite is

true: maintenance does have a non-negligible impact! This surprising finding tells us that

the manager should want to limit the amount of such rework, for instance by limiting the

number of active past mainlines.

The lesson here for the manager is that working on multiple stages in parallel causes non-

linear effects: even if the work product has good quality, the quality issues are transferred

between stages but come back and influence the ability of the organization to produce quality

work products. The moral is to do it right the first time, otherwise you will have to fix it,

and possibly fix it multiple times in all currently active mainlines.

5.8.4 Staff Allocation Policy

In this section, we would like to test the effects of using various policies to allocate staff

between the three stages.

The policies are the following:

− Policy 0 allocates a fixed staff to each stage. This ignores stage pressure, and each

stage operates independently: they do not share staff.

− Policy 1 is designed to respond to pressure in the same amount on every stage, so a

stage with higher pressure will get priority. This is designed to simulate an imme-

diate firefighting policy that a manager could have: as emergencies come up, staff is

immediately allocated to the corresponding stage.

− Policy 2 gives priority to stage P1, then gives equal priority to stages P2 and P3. This

simulates the policy of always fighting emergencies coming from the field, but provide

equally for other stages.

− Policy 3 gives priority to stage P1 then stage P2, and stage P3 is treated last, with

any left over staff that previous stages have not used up.

− Policy 4 gives priority to stage P3, then gives equal priority to stages P1 and P2.

Policy 0 simulates a single stock of staff, while the other policies use three separate stocks,

one for each stage. we ran the simulation for each of the allocation policies, and it yielded

the following plots for Work Done:
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(a) Work Done on stage P1 (the green line is the same as the red one,
thus is invisible)

(b) Work Done on stage P2

(c) Work Done on stage P3 (d) Work To Do on stage P3. Notice that policy 3 prevents work from
advancing on stage P3.

Figure 5-18: Behavior of Work Done under various staff allocation policies
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One thing of notice here is that for policies 2 and 3, which give priority to P1, if there is

enough work to do on stage P1 the pressure on P1 will increase, and if it becomes greater

than the pressure on other stages, it will consume all available staff and leave nothing for

the other ongoing release trains. For instance, note how Work To Do P3 remains constant

on Figure 5-18d: this means that no work gets done on stage P3, it has been starved

by the earlier stages. In a more realistic setting, management might decide to suspend

work on the other release cycles, stop all development work until the amount of work on

fielded releases comes back to acceptable levels: this is the essence of firefighting. The lesson

here for engineering managers is that one needs to provide some level of isolation between

parallel releases, otherwise emergencies on one of them can consume all the resources of the

organization, which will block current development work.

On Figure 5-18d and Figure 5-18c, note how policies 0 and 4 are marginally different,

with the effects of sharing staff (policy 4) being visible: even though the organization has

selected to give P3 (the current release cycle) priority, it accomplishes less work overall

when the resources are shared with other parallel release cycles. This has management

implications, for there is a tension between maintaining separate staff for maintenance and

development, and sharing it throughout. On the one hand, staffing a separate team for

maintenance may be difficult to do, as individuals might not enjoy maintenance work, or

may not have acquired the knowledge necessary to accomplish their work effectively. On

the other hand, sharing staff runs the risk of seeing the development capability erode as

maintenance workload fluctuates.

5.8.5 System Behavior under one-time workload increase

In this subsection, we want to examine what happens to the software production system if

at some point in time, the engineering managers decide to increase the workload on a given

release cycle. To perform this experiment, we added a pulse during release #5. Note that

the fifth release cycle was selected for experimentation such that the system has reached a

steady state before changing inputs. The now familiar sawtooth shape indicates burst of

incoming work at release start; the increase of work at week 130 is clearly visible:
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(a) Work To Do on stage 3

(b) Work Done on stage 3

Figure 5-19: Shows (for various values of FCC ) how Work Done P3 behaves when propa-
gation is active and the workload on release #5 is increased
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Figure 5-19a presents the change in input for this experiment, while Figure 5-19b shows

what changed in the output as a result of the change in input, plotted for several values of

Fraction Correct and Complete.

Return to steady state

Figure 5-20: Work To Do on stage 3

If we compare Figure 5-19b and Figure 5-17b, also shown on the same plot on Figure 5-

20 (for FCC=0.9 and 15 cycles), we can see that even such a short-term change can have

long-lasting effects: a large burst in work performed immediately in the release cycle seeing

the change in workload, followed by an effect on subsequent release cycles, taking more than

thirteen cycles to return to the steady state! The system may be operating under capacity

and thus can give a lot of immediate results to try and catch up with the increased load,

but the adverse effects on the output capability of the system are visible for a long time.

In other words, if the manager tries to squeeze too much work into a time-boxed release,

the amount of post-release work this change generates on beta and then fielded stages , and

consequently on the current stage, exerts the software production system for a long time.

The lesson here is that management should think careful about attempting to force feed

too much work into the system: even a healthy production system may take a long period

to recover from the effects of such a decision.
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5.8.6 System Behavior under workload decrease

In this subsection, we experiment with a drop in workload during release #5. The decrease

of work at week 130 is clearly visible on Figure 5-21a. The experiment was run for values of

FCC in {0.6, 0.7, 0.8, 0.9}, and Figure 5-21c shows the difference for FCC=0.9 between the

normal workload and the decreased workload at release #5.

Figure 5-21a presents the change in input for this experiment: the drop in workload is

visible for release #5. Figure 5-21b shows the corresponding change in output, with a drop

in work performed at the same time. Figure 5-21c plots our baseline case (in blue) together

with the case at hand (in red), the gap in work accomplished is visible, but we can also see

that after a couple of release cycles, the Work Done P3 quickly gets back to its usual level,

faster than the system recovered from an increase in workload in Section 5.8.5. This prompts

us to run the next experiment combining decrease and increase in workload, as the manager

might like to know if he can trade a workload decrease at some time for an increase at some

other time.
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(a) Work To Do on stage 3

Drop in work really
performed

(b) Work Done on stage 3

gap

(c) Comparison of normal workload with temporary decrease at
release #5, at FCC=0.9

Figure 5-21: Shows how Work Done P3 behaves when propagation is active and the workload
on release #5 is zero.
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5.8.7 System Behavior under workload variation

In this subsection, we try to combine the effects of previous experiments 5.8.6 and 5.8.5

on varying the workload. Here we simulate two changes in workload: one at release 5 and

another at release 10, and the length of the simulation is set at 15 years to visualize long-term

effects, if any.

Figure 5-22: Shows how the input Work To Do is varied in the two experiments.

We run two scenarios:

− The scenario depicted in red is a drop to zero in workload on release #5, followed

by a doubling in workload on release #10. This is similar to the scenario tested by

[Rahmandad & Weiss 2009], and replicates his results, which he explains as activating

virtuous cycles that build up organizational resilience which allows the organization

to survive the large shock of a sudden increase in workload.

− The scenario depicted in blue is the reverse: a doubling at release #5, followed by a

drop at release #10.

These might appear to be extreme cases, but we use them for their probative value, not as

a representation of reality.

The plots presented show the output results of the experiments, for Work Done P2 and

Work Done P3, as both stages present a variation in output.
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(a) Work Done on stage P2

(b) Work Done on stage P3

Figure 5-23: Shows how Work Done behaves when propagation is active and we vary the
workload on releases #5 and #10.
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On Figure 5-23a, we can see that the variations are minor: this is because the development

system is under capacity (by design, as indicated on page 105).

The non-linearity can be seen on Figure 5-23b, which shows that a drop followed by a

spike causes the system to perform less work overall than the reverse. We could hypothesize

that a sudden increase causes workers to work more intensely in the short term to get the

work done, and that is accompanied by an increase in undiscovered rework and in the effort

cumulatively expanded to accomplish all the tasks assigned. The sudden decrease scenario,

on the other hand, allows the staff to catch up on Work To Do remaining in all stages of

the system, which is beneficial only if there are pending tasks.

The managerial lever that this uncovers is that dropping the workload temporarily ahead

of a planned increase seems more favourable to the intensity and quantity of work individuals

will have to provide, we might say that it should tire the troops less. However, this is counter-

intuitive: one might think that under a decreased workload, workers could get lazy and have

a hard time getting their productivity up when workload increases again.

Figure 5-24: Shows how Cumulative Work Done P3 behaves in the two scenarios.

Comparing the peak at release #5 on the blue plot in Figure 5-23b with the peak at

release #10 on the red plot, we can see that increasing-then-decreasing puts more strain on
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the production system than decreasing-then-increasing. This can also be seen on Figure 5-

24, where increasing first clearly shows more resources spent for the same end result. The

long-term effects are similar, as by release #15 both plots are the same. However the lesson

for the engineering manager is that increasing-then-decreasing drains more resources, and is

more work on the whole for the organization. In summary, managers should avoid sudden

bursts in workload if they can, and if not, to preserve the troops, they should want to give

them rest before to inflicting a burst in workload.

5.8.8 System Behavior under constant workload increase

In this experiment, after letting the system reach its steady state at release #5, we subject

it to a sequence of successive pulses, each increasing the workload at the start of a release

cycle by 50% with a constant number of staff. The simulation runs for 20 years1, that is 40

release cycles, to visualize long-term effects, as the case may be. We can see how the Work

To Do trend increases linearly, while the Work Done reaches the maximum capacity (see

Figure 5-25c) and so does Rework Generation.

Figure 5-25a shows the pulse train used as additional input in this experiment; Sec-

tion 5.8.1.7 shows the machinery used in Vensim to simulate this input. Figure 5-25b shows

the corresponding output of Work To Do on all three stages, while Figure 5-25c shows

the corresponding change in Work Done: we can see that Work To Do increases linearly

without bounds, while Work Done reaches its maximum capacity at year 12. In the zone

highlighted by 1 and 2 , this system is capacity constrained, it works as much as it

can but cannot produce more work than its maximal output capacity, and goes into a mode

of infinite defects, which is what McConnell documented in [McConnell 1997, p. 204]: the

system dynamics generate more defects than can be fixed, and staff only has capacity to

work on the errors on errors, not on new Work To Do.

1admittedly a long time, but one can adjust for more specific circumstances.
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Figure 5-25: Rework
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While purely synthetic, this simple experiment highlights the fact that the system has a

fixed capacity and that managers ought to realize this when planning ahead for the number

of tasks they intend to subject the system to.

5.8.9 System Behavior under workload increase late in the release

cycle

In this section, we experiment with the model and see what happens if we add a supple-

mentary workload half-way through release #5. The intent is to simulate what happens if

management commits to adding extra feature content while in flight.

Figure 5-26a shows the input changed for this simulation: we compare two bursts of

extra work, one at release time (as in Section 5.8.5) in red, and another in the middle of a

release cycle, shown in blue. Cumulative Work Done P3 is shown on Figure 5-26b, the green

arrow pinpoint a mere blimp in the quantity of work accomplished. Figure 5-26d shows that

there is a small change in work performed (see 1 ), but the overall output is identical: the

intuitive interpretation of the phenomenon shown here would be that adding work late in

a release cycle makes no significant difference . One caveat we must add here is that this

assumes that the work added late is independent of earlier work in the release and that there

is no scheduling dependency between the two sets of tasks: an improved model could tackle

this issue.

The management lesson here is that one may be able to add work late in a release cycle

if there is spare capacity, which is difficult to estimate, and if the new set of features is

independent of work done within this release.
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(b) Cumulative Work Done P3
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Figure 5-26: What happens when work is added mid-release.
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5.8.10 System Behavior under simultaneous staff and workload

increase

In the previous experiments of Section 5.8.5 and Section 5.8.8, we changed the workload

while maintaining constant levels of staffing; If we now modify the previous experiment to

also increase the staff in the same proportion as the workload, we get the plots of Figure 5-27.

In red are the plots for the experiment run with only a workload increase. In blue are the

plots for the experiment run with both workload and staff increasing in the same proportion.

Figure 5-27a shows the additional bursts of workload that we subject the system to.

Figure 5-27b shows the corresponding change in work done, which clearly shows the system

accomplishing more and more work as both tasks and staff are added. 1 , 3 and 5

indicate the saturation of a system with too little staff. Figure 5-27c shows that the system

(in blue) breaks out of the limitations imposed by a fixed staff (in red): in particular, 2

and 4 indicate that the output continues to grow as the system grows.

This experiment is at best an approximation since it does not account for individuals

having to get experience on the particulars of the engineering of the specific product line.

The rework generation exhibits much better (but still non-linear) behavior and the system

as a whole responds better to the change in input. The lesson here is that the system can

accomplish more with more people, but our model displays its limitation, in that it does

not account for acquisition of experience by new hires. The manager should know that past

some level of workload, increases in staffing are the only way to generate more output, but

he should be aware of Brook’s Law as in Section 3.1.1.
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1 2

(a) Work To Do P3

3

4

(b) Work Done P3

5

(c) Rework Generation P3

Figure 5-27: Behavior as staff and workload both increase linearly.
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A variant of the previous experiment consists in stepping up both workload and staff

simultaneously: this simulates a merger between identically-sized two companies, or more

precisely a merger between two product lines (which may happen for business reasons much

later than the actual merger of companies, as seen in Section 4.2.2.2). We suppose the two

companies go much further than a simple merger in the legal sense of the term: we suppose

that they have decided to merge their separate operations into a single bigger operation. My

industry experience is that merger Research & Development operations requires a lot of up-

front preparation: the processes and build systems must be unified (which requires porting

one of the two systems to the build system of the other), and then source control and defect

tracking systems must be unified (source control history must be imported, simultaneously

operation in two SCM systems maybe be temporarily necessary, etc...) to complete integra-

tion. We assume here that this work has all been performed done, and that release 5 is the

time of the “big switch” to unify the whole software production system.

Consequently, here we propose an experiment where we double the workload and the

staff at release 5.

Figure 5-28a on page 141 shows the variation in workload: our baseline case is plotted

in blue, while the merger case is plotted in red. The graph on Figure 5-28b shows the non-

linearities: we observe that the Work Done on the merged system is more than simply the

sum of the two Work Done quantities on two same-size systems. Another observation is

that reaching actual capacity of an entity of equivalent size is not immediate, the system

in fact takes a long time to adapt and converge. Figure 5-28c shows the convergence in

terms of rework generation: the system transiently generates more rework than it finally

will in its new steady state. The effects one stages P2 (shown on Figure 5-28d and P1)

are not visible with this model, which is not detailed enough to display any insight on that

aspect (especially considering the other system probably has its own P1/P2 stages that are

maintained independently).

The point we want to make here is that, even under the best conditions, there is evidence

of non-linearity in the merging of two software product development entities: the lesson for

leaders is that one should not attempt such merges of development organizations lightly, as

these represent a shock to the two pre-merger systems. Only when synergies are expected on

the long-term should one attempt merging operations. When there is no strategic incentive

to merge, it may be better to keep things separate.

Another aspect to look at is the nature of the product one attempt to merge into the

existing product family:

− if the product is situated in the periphery, then issues will be limited to the interface

between that product and the rest of the software system. This is most favourable case

(the one we could argue the previous experiment modeled).
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− if the product is situated in the core of the system, then we believe this experiment

is not sufficient to reflect the reality of a merge. Complete integration requires a lot

of care and might need to be performed much more gradually than the sudden event

modeled here.
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(c) Rework Generation P3 (d) Work Done P2

Figure 5-28: Effect of same-size merger on software production system.
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5.9 The Rework Cycle in the hierarchical delivery system

In a setting like that of Figure 3-12b, the software production system is a hierarchical delivery

system. Each of the three stages in Section 5.8 in fact runs several nested rework cycles (as

opposed to a single rework cycle in the model of Section 5.8). This is what we want to

examine more closely in this section.

In this section, we take the stance that those building blocks mentionned in Section 5.4

can also represent both the stages of release cycles running in parallel, and within the cur-

rent stage they can represent the various components and their associated organizational

units, each with their own milestones and schedules. In the context of this thesis, different

engineering disciplines, such as structural, electrical or power disciplines, in projects with

a physical realization correspond to multiple organizational units all executing the software

engineering discipline, but applied to a different component within the architectual design

of the software system being produced.

As shown on Figure 5-29, the various components of the organization each have their

own rework cycles (highlighted in red), each contributing feature content (rather than Work

To Do) to the master rework cycle that represents the best-so-far version of the current

release. When there is a dependency between an application team and the core team, that

dependency is represented by the fact that the application team is waiting for the other

team to delivery a minimum product in the best-so-far view of the current stage. Once this

minimum delivery is published, the application team begins development and testing and

finds issues that are reported to the core team: such is formed another cross-team rework

cycle that spans the organization. Because this rework cycle spans the organization in a way

that adds delays to the reporting of issues and their fixing, this subsystem will exhibit non-

linear response when rework does happen. This is further worsened when work is distributed

geographically, as shown on Figure 4-1. To reuse Sturtevant’s wording [Sturtevant 2013], this

is an architecture spanning cycle.
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Figure 5-29: Example with one level of hierarchy and three rework cycles highlighted in red:

1 is the master repository, 2 is the “core” software production system, and 3 is the

“application” software production system.

In a hierarchical delivery system, the timings of lifecycle of a component depends on

that of the core components it depends on. In effect, a core component publishes a known-

good or Best So Far version to its clients: this is very similar to fielding a release. What

happens at the company level is that it fields a released product at the end of each period,

customers then use this released version and file requests for enhancements that go into

the next release cycle, as well as defect reports that they hope will be fixed in the current

version. The core/periphery metaphor in effect reproduces the same schema at a lower level,

inside the development organization: here the customer is the peripheral component, the

provider is the core component, and fielding a new version is accomplished by publishing the

new version to the rest of the organization. This change control policy enables concurrent

engineering, at least for features that have no cross-component dependency.

[Abdel-Hamid & Madnick 1991, p. 79] and the literature considers losses due to faulty

process referring basically to communication and motivation. This aggregate view is a sim-

plification as loss of productivity also occurs when someone’s mistake prevents others from

working, or makes it more costly for them to re-setup to be able to work again.
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In a hierarchical delivery system, we want to highlight that new personnel2 has a higher

propensity to make mistakes that cause rework and stalls. That reason and the fact that

some core components are more complex [Sturtevant 2013] imply that people as units of

staff are not all equivalent, and therefore a realistic model would have to account for this.

This also implies that managers probably want their best developers to work on the core,

and working on the more complex parts of the system is something one can do after a long

period of training. Sturtevant’s results show that there is increased difficulty in working on

the core: these shine in the view of a hierarchical delivery model, as the core needs to have

a slower and more cautious delivery cycle so as to guarantee the quality of its work product,

and the stability of the overall software production system.

In conclusion, development in the periphery is development on top of a moving platform,

therefore it is a requirement that the platform provide some promises of stability, so that

product engineers operating in the periphery can perform their work without fear of disrup-

tion caused by platform changes. By using hierarchical decomposition in the change process

of the various components and subsystems of the whole product system, one can manage

tight iterations of rework at the level of each component so as to isolate other parts of the

system from such rework iterations. This provides better scalability when many engineers

work concurrently on various parts of the system.

2The model presented in previous sections does not account for hiring and firing of personnel.
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5.10 Discussion of Results

Looking at completion time of each stage (i.e. when the stock of tasks drop to zero, account-

ing for the fact that defect discovery can occur long after the product has been fielded),

and resources expended in each of the experiments we ran in this research project, we can

summarize the key lessons learned:

5.10.1 Summary of lessons learned

• As observed in Section 5.8.3, in the situation of Software Product Line engineering

with multiple active releases, the effects of rework propagated from fielded releases

cannot be ignored. Project managers know that investing in front-end design activities

produces a higher-quality work product; software product line managers should know

that the effect is similar, but the consequences are dramatically worse when work is

not done right the first time. The engineering manager should therefore invest in both

design and validation activities on the current releases to decrease as much as possible

the undiscovered rework that escapes to beta and fielded releases.

• As was shown in the experiments with staff allocation policies in Section 5.8.4, giving

priority to maintenance work for fielded releases can result in firefighting that con-

sumes all the resources of the development group. The engineering manager should

exercise policies that avoids firefighting: this can be done by limiting the staff doing

maintenance work, and more preventatively by investing in front-end activities to limit

the undiscovered defects and rework that escape in the field.

• Section 5.8.5 showed that sudden variations in workload increases can have long-term

effects. It seems that there are two aspects to this. First, the successful software

development company wants to grow: the lesson here is that growth should be gradual

rather than sudden. Second, the engineering manager faces pressure from customers

to always include their favorite feature in the current release: the lesson from that

standpoint is to spread development work over many release cycles. Prioritization

and scheduling are the tools the manager can use to maintain a manageable scope of

features in each release.

• The experiments in Section 5.8.6 and Section 5.8.7 seem to show that a temporary

decrease in workload lets the organization recover from previous shocks. [Rahmandad

& Weiss 2009] explained this by saying that such periods of lesser workload must be

virtuous cycles that build up the organizational resilience and the capabilities needed

to support a later increased workload. A more sceptical view of the experiment would

argue that there is a risk that laziness and complacency would set in and that a future

increase workload would become even more difficult to support.
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• In Section 5.8.10, we ran one experiment that show saturation of the production system

when it is under-staffed. The lesson is that the manager should grow his staff as the

size of the product family increases, the difficulty, of course, is to know when to hire.

The SD model we used in this work does not account for hiring and firing, nor does

it account for “learning curve” effects: these two phenomena happen in long-lived

enterprises, therefore an integrative model including those aspects would surely be

more representative of real situations. In the same Section 5.8.10, we simulated crudely

what happens during a merger of two equal-sized software development organizations.

This synthetic experiment may not represent a real situation, but yielded the lesson

that even under the most favorable conditions, the system behavior is non-linear. A

more interesting model would integrate the notions exposed in Section 5.9 and the

specifics of a merger: for instance, observing differences in system behavior when the

merger target is a smaller entity engineering products either in the core or in the

periphery would be of interest. The intuition is that acquiring and merging a new

product member in the periphery is easier and inherently less risky: the product line

development manager would surely like to know ahead of time what to plan for in such

a situation.

• It might be obvious in retrospect, but the workload created by fielded releases of a

software product system can require significant maintenance expenditures from the

company. The modeling presented here collapsed all fielded releases into one stage,

but we can posit that the workload for that one stage is proportional to the number

of releases active in the field. Since the maintenance workload is correlated with the

number of active releases, it seems that keeping that number low is very desirable.

Having too many active releases is one way the staff can spend a lot of time task-

switching and otherwise performing work that is subject to overhead. Figure 5-18a

illustrates that if the quantity of work generated by fielded releases rises and the staff

allocation policy favors fielded releases systematically, then there will be a point when

the organization as a whole does nothing but firefighting on old releases. Therefore,

to remain lean, the organization should want to limit the number of active releases, as

this will avoid dispersion of staff and will curtail propagation of rework across releases.

This policy should also limit firefighting. The ultimate version of this is to have a single

active release, which is what companies, like Amazon R© or Google R©, have with their

continuously-released hosted applications: instead of having the extreme one-version-

of-the-product-per customer syndrome, these have one-version-for-all-customers.

5.10.2 Discussion of lessons learned

In light of the key lessons learned listed in the previous section, some points can be further

discussed as they relate to the problems mentioned before:
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• Following [Wheelwright & Clark 1994, p. 152], one must ask the question “is the

development system overloaded?” and discover the actual capacity of the software

production system. This can be inferred approximately from the analysis of historical

data relating code size, number of defects and time to completion. We have seen that

overloading the system causes long-term negative consequences. It follows that any

growth must be incremental and tightly monitored. Another conclusion is that the

product line engineering managers should assign a workload below the actual capacity

of the production system at their disposal, to account for the time and resources

expanded on work caused by previous active mainlines. Even if the real workload

generated by parallel mainlines is not predictible, the manager can and should keep a

reserve in resource expenditures to manage that workload when it happens.

• The negative consequences of overloading the software production system above its

intrinsic capacity are devastatingly more important than the positive consequences of

decreasing its workload. Managers should strive to prevent exceedingly bad outcomes

by fitting the workload to the system.

• Software product lines in the context of periodic release cycle present a unique opportu-

nity for organizational learning, as the software production system becomes optimized

for the production of its particular software products. This includes deploying and

adapting its resources to sustain its throughput; in other words, this is about:

− knowing to spend time and resources at the front-end of development, by invest-

ing in careful design and implementation, as this increases quality and therefore

decreases future rework,

− knowing how many parallel active mainlines to have,

− knowing how to best use its people,

− knowing to avoid increasing the workload even “temporarily” as effects last longer

than expected

− knowing how to spread the workload over many successive release cycles.

Because the time horizon is much longer than that of a single project, and instead of

being victim to the pernicious effects of cross-mainlines rework, the manager can and

should take advantage of the situation to achieve repeatability and predictability of

outcomes of the software production system.

• When a low quality product is released to the field and numerous defects come back to

the software development organization, it is clear that a really poor level of quality can

hurt the development of new features, to the point of stopping it entirely. Devoting

some resources to maintenance is necessary to make sure the products are useable

in the field, this is indispensable to keep customers happy. A second point is that
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lowering temporarily the workload of the development team allows the organization to

eliminate some of its backlog of defects, affecting positively the quality of the products.

Nevertheless, managers cannot put staff on maintenance-only tasks for too long. This

leads us to posit that engineering managers should try to conjugate acceptable levels of

initial quality (to keep the maintenance workload at a low enough level) with periods

of lesser development activity.

Another way to put it would be to say that the development organization has a finite

capacity that cannot reasonably exceeded sustainably for too long, and alternating

between feature-loaded release cycles and maintenance-only release cycles would seem

to be a good way for the organization to breathe (just like individuals, it needs periodic

vacation!). One possible policy could be for the organization to have a rotational

program where some teams are in feature-development mode, while others are in defect-

fixing mode. Rotating staff is difficult in the model presented here, because all staff

is seen in aggregate: this aspect of modeling is too coarse, we would need a finer

notion of staff associated to a particular stock of work (perhaps one related to work

in one particular component, to match the details of hiearchical domain engineering

organizations).

• Labor can be divided along many dimensions:

– time-staff division: the engineering manager may decide whether to use ded-

icated staff for maintenance of fielded releases, to counter the effects of sharing

staff across many active mainlines.

– time-space division: another possibility is to split the work among locations, as

seen in Section 4.1.3, and let a remote entity work on the maintenance of fielded

releases, or maybe some subset of those.

– space-product division: distributing software development work across loca-

tions the work on various parts of the product line, for instance dedicating a team

on a remote site to work on a product which is a leaf in the dependency graph of

the software product line architecture.

– time-product division: schedule work on components such that there be only

one moving part in a given release cycle, for instance, select component A to

have feature content in the current release cycle, but let component B not have

any. Instead of putting pressure on all parts of the software production system

simultaneously, this rotates the pressure period around. It can also be used to

build capability within each development group: the breathing period can be

used to catch up on late defect fixes, to invest in design work for the next set of

features, to invest in code refactorings that increase the value of shared assets, to

bring new personnel on board, or to bring remote-location personnel on location
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temporarily to build capability (for instance to delegate future maintenance work

to that remotely-located staff). Note also that in the presence of shared assets,

there is often a natural order of work: the work on the shared assets must be

performed first, before a product engineering team can use the corresponding

work products. This means that the product engineering team needs to wait

for some feature to become available. In this division scheme, the engineering

manager must be careful not to create long-delay cycles of rework that cross

geographical boundaries, as that builds fixed minimum delays into the software

production system feedback loops.

Staff and Space are necessarily strongly coupled, and while a practice often seen

in industry is to assign product ownership with a specific group regardless (a staff-

product division of labor), engineering leaders can use the other options for dividing

work so as to maximize usage of resources and to build the capabilities their organiza-

tion needs to continue producing larger software systems.
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Chapter 6

Topics of future study

As any time-boxed project, this thesis could only ever hope to include a limited amount of

material, but over the course of the work, a few potentially interesting avenues of research

were elicited: this is what this chapter provides.

6.1 Proposed Extensions to the Model

Like many models of complex systems, the model presented here is at best an approximation

of reality. Yet it would be interesting to provide means for an enterprise to calibrate the

models with historical data to compare past trends they have noticed and decide whether the

model fits their reality or not. Then the model could be used not to predict outcomes, but

to help understand these trends, determine project feasibility and pinpoint the unfeasible

paths through generation and analysis of what-if scenarios. Such a model can be calibrated

to reflect the particulars of one organization, and could be used in this setting to understand

trends as well as effects of policies selected by the managers. Unfortunately, we have not

been able to do this within the course of this research.

We propose here a set of possible extensions of the present work:

• In software product lines, the management of a portfolio of applications is another

topic that includes the addition and removal of applications in the portfolio, or more

generally of components available to build applications. This portfolio management

aspect was not covered in the present thesis, but would be an interesting avenue of

research. This can have effects on both the capability and capacity to produce the

software products. An interesting issue is using development capacity to make port-

folio management decisions: for instance, which applications to discontinue, which

features to postpone (for instance to invest for future benefits in shared assets at an

immediate cost in time-to-market for one particular product, as highlighted by [Bosch
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2000, p. 321]), etc. . . to keep the software production system operating within capacity,

and if possible near capacity, in order to maximize the best use of staff.

• One may want to link this to studies to compute defect densities with good confidence,

thereby being able to put a dollar value on the maintenance cost . Managers would

like to see Net Present Value calculations in place to be able to decide affordability of

some system changes. For instance, is incorporating an acquired entity into the system

feasible? What would be the cost?

• Similarly, refactoring can be viewed as a non-functional feature of a given mainline. Ev-

erybody on the engineering staff usually agrees that some of these refactorings should

be performed (See the concept of Technical Debt by McCormack, also cited by Sturte-

vant [Sturtevant 2013]), yet these rarely get the visibility and priority required and

therefore do not get done, leading to further erosion of the product architecture. Ide-

ally one would like to be able to see the effects on the system of adding a step to the

input stock of such work. This can help the engineer leader in making decisions to

prioritize and schedule Technical Debt-related tasks: in particular, this kind of work

touches existing function, so must be regression-free, while new feature development

work should not impact the existing software system. In other words, scheduling refac-

toring work may be considered more costly than new feature development work: we

might like to see historical data collected on this aspect, so that this can be factored

into the system modeling.

• Wheelwright & Clark [Wheelwright & Clark 1994, p. 147] noted that digging into

the issues of portfolio management and capacity matching requires extensive informa-

tion about resources and resources availability. Similarly [Wheelwright & Clark 1994,

p. 157], rigorous, systematic, and objective analysis of development proposals must be

used to do portfolio management. A model such as that presented here can help use

analytical thought to do selection of products-to-develop, rather than let gut-feeling

or politics doing the choosing. Further study is also needed in designing methods to

determine capacity of the development organization. One common industry practice is

to pad schedule with “management reserve” to account for the firefighting and rework

phenomenon, but one wishes analytical way of determining capacity were available.

As it is now, the manager can know whether the production system is operating under

capacity or over capacity, but sizing capacity is not a scientific process.

• This study only looked at Variability in time of a product whose space is fixed, further

studies should look at what happens when Variability in space is added. In particular,

the ability to run what-if scenarios for re-architecture should help managers see the

benefits, if any, of rearchitecture.
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• For the present paper, we simplified the modeling in Vensim R©, such that no stochastic

modeling was in fact used. A more advanced model would describe failures, rework

discovery, stalls in a stochastic fashion. This could be calibrated from historical data

to match as closely as possible an organization (the larger the organizations, the more

accurate its observations in aggregate on the propensity of engineers to make errors

that cause failures, rework or stalls). In particular, the model considers fielded releases

in aggregate, and one might want to investigate improving the model to better fit

reality by having distinct Rework cycles for each fielded release, each with a workload

generator that fits historical trends.

• An interesting extension of the model presented here would account for the probabilistic

distribution of errors and of their importance. Since the software engineering stage

feeds into the quality assurance stage, and the engineers working in the first stage

sometimes make mistakes (of the kind introduced in Chapter 2) that make it impossible

for anyone in the second stage to perform any work: this is a situation managers want

to avoid at all costs, as employment of quality assurance staff is a sunk cost. The idea

here is that occurrences and lengths of stalls would be modeled in a more accurate

fashion. One would then use Monte Carlo simulation to run many trials and build

confidence in results. In industry, it is important that the manager organize work in

such a way that there is always a testable product for the quality assurance stage,

so that QA staff can at least avoid being barred from working, and try to produce

useful output (perhaps testing some other part of the system), therefore one would

like to pinpoint the policy changes that improve this situation. For instance, we could

conjecture that inserting a delay would improve the situation by isolating work in the

two stages.

We may note here that in industry, companies often keep a last-known-good build

on hand, so that testers and other stakeholders can use that if the daily build is

broken. This can be used in the short-term to keep the testing stage busy, but as

noted in Section 2.4, the organization cannot let the daily build remain broken too

long, otherwise there is a danger that testers will perform irrelevant work. The model

would have to account for that in its delays.

• Another extension of the model presented here would not rely on a single aggregate

view of fielded releases, and instead of using aggregated model of those, a more detailed

version of the model would account for the exactly number of active releases, and the

expected defect density on each of them to represent the realities of one company’s

software production system more closely. In particular, this would give a much more

precise idea of the trends as the number of active releases increases, and their timing

differs. When supporting real customers, the organization will ship out incremental

fixes, sometimes called service packs or hotfixes or patches or engineering builds. The
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timing of those may not be on a fixed schedule, it may be modified at the customer’s

request. Another aspect is that delays in discovering rework may vary for this stage:

as the software producers need to exercise more care when shipping incremental fixes

for customers to use immediately in a production environment, they will intensify their

testing to avoid causing regressions for customers. This is another level of modeling

that could be done within the framework which was proposed here.

• One limitation of the model demonstrated here is that the assumption that schedule

pressure functions exactly the same way in the framework of successive product line

releases as it does in a single time-boxed project. This does not model reality perfectly:

although there is some pressure towards the end of a release cycle to get as many as the

planned features into the releasable product, the organization has a lot more freedom

than finite-time projects do, the option of postponing completion of work into the next

release cycle is present. Another way to think about this problem is that the schedule is

on the many-releases master planning level, not on the level of planning each individual

release cycle. In particular for technical features, which are not visible to end-users,

but are visible to other product engineering units within the organization, the pressure

comes from those units having to attain their own schedule objectives, which may be

several release cycles away. This is part of a larger modeling effort that would account

for the planning process as well as the long-term product and portfolio management

process.

• An interesting aspect warranting further experimentation and analysis would be to

simulate what happens when upgrading a third-party component: this event can be

modeled as the addition of supplementary undiscovered rework. Let us assume that no

extra work needs to be performed to integrate this new version of the same component:

that is, we assume that the API of the component is stable: this would happen for

instance when the newly released version from the third-party vendor is merely a bugfix

release. One way to interpret this in our model is to suppose this corresponds to the

mere addition of some quantity of undiscovered rework in the release cycle:

– undiscovered rework in the third-party component, that is latent defects in the

changed portions of that piece of software

– as well as undiscovered rework in the organization’s own software, as it could

have previously and unknowningly relied on a bug in the previous version of the

component, or have some code that used to function but is not allowed anymore

in the new version. This happens typically when the third-party component tries

to enforce tighter conditions on its inputs.

In summary, upgrading third-party components causes perturbations in the system,

and those would be an interesting topic for further research.
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6.2 The push for continuous delivery

In the internet age, the delivery model of software applications has changed from local

installation by the end user on their computer to instant delivery over the web. In effect, the

web browser has become a platform that can replace the end-user operating system platform:

developers can write their software using any combination of web technologies. The success

of such technologies is due in part to their ease of deployment: in fact, the end-user does

not participate in the deployment phase at all: web applications can be engineered so that

upgrades to new versions can be done apparently on the fly while the system is online,

without end-users noticing. For instance, large web sites switch to a newer version of their

software without apparent downtime. This requires the operational capability to deploy to a

fraction of users before gradually deploying to all users. This is usually done by partitioning

users by geographical region or by partitioning servers in slabs, then doing multiple successive

deployments, possibly stopping and reverting if a problem is uncovered. Even if a company

has such a capability, the software applications must be engineered to support this mode of

deployment: strict upwards compatibility must be observed at all times.

Customers of large software systems now expect web front-ends for these systems, if only

to perform some simplified functions without requiring an explicit deployment phase. In the

enterprise software world, this decreases Total Cost of Ownership by eliminating the need for

enterprise-wide deployment, which used to be performed by the IT department. The second

phenomenon is the emergence of hosted/cloud-based software.

In light of this, end-users and customers want reduced Total Cost of Ownership and may

be willing to use a hosted service, thereby outsourcing the IT functions of production oper-

ations of the system to the hosting company, which may or may not be part of the company

producing the software, and in parallel, producers of software want reduced maintenance

costs, which they can obtain by reducing drastically the number of variants of their product

in use at any time. It maybe even be possible to reduce it to a single variant, as opposed to

many maintenance-only branches in the old world of big-bang shrink-wrap delivery.

This presents tremendous opportunity for software producers, as it can reduce their

cost of ownership and maintenance of their software product line, while at the same time

allowing them to lock their customers in by hosting their data. This simplifies maintenance

by reducing the number of active branches in production, and simplifies online operations,

as the data is really on-site with the producer, simplifying debugging, as there is no need to

exchange data between the person who found a defect and the actual engineer assigned to

debugging it: the engineer can directly request a copy of the data from the hosting operations

staff. This also presents great risk, as moving from the old model to this new continuous

model of delivery is a change in pace of delivery, towards a new pace that the delivery system

has never been tested with. In particular, continuous delivery requires the ability to upgrade
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parts of the running system, progressively to full deployment, and to roll-back instantly a

new version of the software: if the organization does not develop this capability, it is far too

easy to make the product unusable and effectively be unable to provide the service while

engineers are struggling to debug the issue live.

In a continous delivery environment, the system must always be working and functional,

which is a characteristic systems described in this thesis do have. Build breaks cannot be

tolerated, neither can regressions in tests. In fact, one may observe that continuous delivery

systems have requirements in terms of availability that are quite close to those of a very large

code production system where no single engineer can reasonably build the whole system, and

thus there are constraints of availability much like those detailed in chapter 3. This shift in

speed of delivery represents an increase in clockspeed of the industry, as defined by [Fine

1999], but also will highlight the tension between the “agile” style of development and the

size of features visible to end-users: some features will be too large to fit in an “agile”

sprint, requiring further chunking and planning of work. Significant modeling effort would

be required to represent these changes in constraints, that would indeed be an interesting

topic of study related to current developments in the software industry.
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Chapter 7

Conclusion

In this thesis work, we followed the approach recommended by Wheelwright & Clark [Wheel-

wright & Clark 1994, p. 157] when they noted that management exercises its greatest lever-

age by working on patterns and their causes, attempting to gain insight into the long-term

software development discipline for product lines. We have shown possible ways for soft-

ware development managers to partition work such that the throughput of the development

organization is maximized. The model presented is necessarily approximative, but it was

developed for the explanatory value behind our theory, knowing fully the limits of the model.

Hierarchy and modularity are the two basic ways of partitionning that engineering disciplines

use, and indeed the same principles can be adapted to division of labor, and we have shown

that these provide the same effects of stability in how project work unfolds. In other words,

one outcome of this research is that designing the software production system is coupled

with the actual architecture of the product line, each influences the other. This is one thing

engineering managers should be aware of.

In addition, we have seen that the basic intuition that firefighting has devastating effects

is correct, and that therefore organizations should minimize it using Repenning’s recom-

mandations. Another recommandation we can add here is that limiting the number of

simultaneously active branches of development is a powerful tool to counteract firefighting.

[Wheelwright & Clark 1994] remarks that

Effective senior managers recognize that their most important contribu-

tion is their cumulative impact, rather than their influence on any single

project. They act on the development process as a whole.

In many ways, the issues that software development organizations face in product devel-

opment really are centered around the chaotic situation individuals are in in the absence of
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clear direction and management. By imposing process and structure on the way people di-

vide and perform labor, there is tremendous opportunity for the leaders to increase the ratio

of useful work to unnecessary work: using an information theoretic metaphor, one could say

the manager wants to reduce the entropy of the organization.

We hope that this thesis has presented some insights of interest to the practitionner, and

thus should help make good cultural practices transferable [Weinberg 1991, p. 294].
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