

A Context-Based Approach to Reconciling Data Interpretation

Conflicts in Web Services Composition

Xitong Li

Stuart Madnick

Hongwei Zhu

Working Paper CISL# 2013-03

March 2013

Composite Information Systems Laboratory (CISL)

Sloan School of Management, Room E62-422

Massachusetts Institute of Technology

Cambridge, MA 02142

1

A Context-Based Approach to Reconciling Data Interpretation

Conflicts in Web Services Composition 

Xitong Li

Sloan School of Management, Massachusetts Institute of Technology, USA; email:

xitongli@mit.edu

Stuart Madnick

Sloan School of Management & School of Engineering, Massachusetts Institute of

Technology, USA; email: smadnick@mit.edu

Hongwei Zhu

Manning School of Business, University of Massachusetts Lowell, USA; email:

hongwei_zhu@uml.edu.

Abstract

Web services composition is often hampered by various types of data

misinterpretation problems. In this paper, we present a comprehensive classification

of the data misinterpretation problems. To address them, we develop an approach to

automatic detection and reconciliation of data interpretation conflicts in Web services

composition. The approach uses a lightweight ontology augmented with modifiers,

contexts, and atomic conversions between the contexts, implemented using XPath

functions and external services. The WSDL descriptions of Web services are

annotated to establish correspondences to the ontology and contexts. Given the naive

Business Process Execution Language (BPEL) specification of the desired Web

services composition with possible data interpretation conflicts, the reconciliation

approach can automatically detect the conflicts and produce the corresponding

mediated BPEL by incorporating appropriate conversions into the composition.

Finally, we develop a prototype to validate and evaluate the reconciliation approach.

1. INTRODUCTION

Service-Oriented Computing (SOC) has become an increasingly important computing

paradigm to develop and integrate distributed enterprise IT systems (Papazoglou et

al. 2007). As a technology of choice for SOC, Web services, also simply called services,

are accessible software components that can be invoked via open-standard Internet

protocols (Yu et al. 2008). Web services composition addresses the situation in which

a business need cannot be accomplished by a single pre-existing service, whereas a

composite service consisting of multiple component services working together could

satisfy the need. While the interface of a single (component or composite) service is

described in Web Service Description Language (WSDL) (Christensen et al. 2001),

the workflow logic of a composite service is usually defined in Business Process

Execution Language (BPEL) (Alves et al. 2007), a standard from the Organization for

mailto:xitongli@mit.edu
mailto:smadnick@mit.edu

2

the Advancement of Structured Information Standards (OASIS) for specifying the

process of messages exchanged between Web services.

A successful service composition must ensure semantic interoperability so that

data can be exchanged unambiguously among the involved services. Unfortunately,

semantic interoperability is often hampered by data misinterpretation among

independently-developed services. For example, a gallon in the U.S. (the so-called

U.S. gallon) is approximately 3785 ml, while the “same” gallon in the U.K. (the so-

called Imperial gallon) is 4546 ml, almost a liter more. So when we learn that a

particular car model has a fuel tank capacity of 15 gallons by querying a Web service

(say from the U.K.), and learn about the gas mileage of 30 miles per gallon for the

model by querying another Web service (say from the U.S.), we still need to know

how to interpret the exchanged data (i.e., 15 gallons) between the two services to

compute the distance the car can go with a full tank of gas. Apparently, additional

information is still needed to correctly utilize the exchanged data. The challenge of

data misinterpretation grows when composing multiple services developed by

independent providers that are distributed throughout the world and have disparate

assumptions of data interpretation. The basic Web services standards (e.g., WSDL,

BPEL) generally ignore data semantics, rendering semantic interoperability far from

reality. Several initiatives, e.g., OWL-S (Martin et al. 2007), WSMF/WSMO (Lausen

et al. 2005) and METEOR-S (Patil et al. 2004), have proposed languages and

frameworks to explicitly add semantics into service descriptions. Despite the

foundations provided by these efforts, effective methods still need to be developed for

reconciling data misinterpretation in Web services composition.

In this paper, we first present several real-world examples1 of Web services and

service composition with data misinterpretation problems. Those examples clearly

demonstrate in reality how data misinterpretation affects the use of Web services

and hampers their composition. Then, we develop a comprehensive classification of

the various data misinterpretation problems that we have observed in the practice of

Web services composition. The classification helps identify the scope of the problem

domain. To address the challenging problems, we describe our approach to automatic

detection and reconciliation of data interpretation conflicts in Web services

composition. The approach is inspired by the Context Interchange (COIN) strategy

for semantic interoperability among multiple data sources (Bressan et al. 2000; Goh

et al. 1999) and the preliminary works of applying the strategy (Li et al. 2009a; Li et

al. 2009b; Mrissa et al. 2007) to Web services composition. The approach uses a

lightweight ontology to define a common vocabulary capturing only generic concepts

shared by the involved services. The lightweight ontology also defines multiple

contexts capturing different specializations (which are actually used by the involved

services) of the generic concepts. Atomic conversions reconciling certain aspects of

the differences need to be provided. Further, the WSDL descriptions of the involved

services need to be annotated to establish correspondences between the data

elements of WSDL descriptions and the concepts of the ontology. In this paper, we

assume the service composition is specified using BPEL - in fact, our solution can be

applied with any other composition specification languages. We call the BPEL

composition ignoring data misinterpretation the naive BPEL. With the above

descriptions in place, the reconciliation approach can automatically detect data

interpretation conflicts in the naive BPEL and produce the corresponding mediated

BPEL by incorporating appropriate conversions into the composition. The mediated

BPEL composition, now without any data interpretation conflict, is the output of the

reconciliation approach and can be successfully deployed and executed.

1 Some of them are simplified from real-world Web services.

3

We make three contributions that, to the best of our knowledge, have not

appeared elsewhere:

First, we provide a set of new algorithms to automatically analyze data flows of

service composition processes and reconcile data misinterpretation problems in the

composition processes. The approach can significantly alleviate the reconciliation

efforts and accelerate the development of Web services composition. Although the

approach is demonstrated with BPEL composition only, it is a generalizable approach

and can be easily adapted to analyze the data flow of a process specified in many

other process modeling languages, such as process algebra, UML Activity Diagram

and the Business Process Modeling Notation (BPMN). Thus, the approach can

address semantic reconciliation in a broad context of Business Process Integration

(BPI) (Becker et al. 2003) and workflow management (van der Aalst and Kumar

2003).

Second, we extend the W3C standard SAWSDL so that the extended SAWSDL

can be used to annotate context information in WSDL descriptions. Specifically, we

design two methods for context annotation to alleviate the complexity of handling the

evolving data semantics of Web services. The extension for context annotation

complies with SAWSDL so that the annotation task can be performed using any

existing SAWSDL-aware tools, e.g., Radiant (Verma and Sheth 2007). Thus, this

mechanism facilitates the annotation task and makes our approach practical,

accessible and flexible.

Third, as part of this work, we develop and describe a working prototype – the

Context Mediation Tool (CMT). By using the working prototype in a number of

examples, we demonstrate the feasibility and applicability of our approach.

The reconciliation approach, as qualitatively and quantitatively evaluated in this

paper, has the desirable properties of software development methodology (e.g.,

adaptability, extensibility and scalability) and can significantly alleviate the

reconciliation efforts for Web services composition. Thus, the approach facilitates the

application of SOC to develop Web-based information systems. This paper

contributes to the literature on Service-Oriented Computing (Papazoglou et al. 2007),

Business Process Integration (BPI) (Becker et al. 2003) and workflow management

(van der Aalst and Kumar 2003). The rest of the paper is organized as follows.

Section 2 describes the challenges of data misinterpretation problems when using

and composing Web services. Section 3 and Section 4 present the reconciliation

approach and the prototype. Section 5 presents the results of the validation and

evaluation. Section 6 discusses the related work. Finally, Section 7 concludes the

paper.

2. CHALLENGES OF DATA MISINTERPRETATION PROBLEMS

2.1 Motivating Examples of Web Services

2.1.1. Example 1: A Problematic Web Service. Xignite, Inc., an established U.S. Web

services provider, has published a service named XigniteEdgar which consumes the

stock ticker symbol of a company and returns its total assets. When requested using

“ITWO” for i2 Technology, XigniteEdgar returns the data as shown in Figure 1. The

returned total assets of i2 Technology is associated with the date “05/07/2009”. But

should the users interpret the date as May 7th, 2009 or July 5th, 2009? How should

the total assets of “313776” be interpreted? When invoked with “MSFT” for Microsoft,

XigniteEdgar returns “68853” as Microsoft’s total assets. Is it possible that i2

Technology’s total assets are more than four times of Microsoft? Manual

investigation shows the numeric figure for i2 Technology is in thousands, whereas

that for Microsoft is in millions. If these assumptions of data interpretation were not

explicitly clarified, users may incorrectly use XigniteEdgar, perhaps causing financial

losses.

4

Fig. 1. A problematic Web service with ambiguous data interpretation.

2.1.2. Example 2: A Simple Composition of Two Component Services. Let’s consider a

simple composition scenario with only two services in which a Chinese developer

wants to develop a composite service ConfHotelDeals. Its function is to consume an

international conference code and return the hotel expenses in the city where the

conference is held. With the purpose of exploiting reuse, the developer decides to

implement ConfHotelDeals by composing two existing services: ConfInfo and

HotwireDeals.2 Given a conference code, the operation queryConfInfo of ConfInfo

provides basic information of the conference, including start and end dates and the

city where the conference is held. The operation queryDeals of HotwireDeals returns

the room charges of the deals based on the city name and start/end dates. The

composition process is illustrated in Figure 2. Unfortunately, these services have

different assumptions about data interpretation. ConfHotelDeals is intended to

return the monetary expenses in Chinese yuan (“RMB”) and the hotel expense

includes the value-added taxes. ConfInfo provides the dates in “dd-mm-yyyy”.

HotwireDeals assumes dates are in “mm/dd/yyyy” and returns the hotel deals in US

dollars (“USD”) without value-added taxes. If the data misinterpretation problems

were not properly resolved, conflicts would happen in the composition process (as

noted in Figure 2 by little “explosions”) and the composite service ConfHotelDeals

would not work correctly.

2.1.3. Example 3: Composition Example of Multiple Services. Now let’s consider a

somewhat complicated scenario that a U.K. developer wants to develop a new Web

service, OpeningPriceMarketCap (denoted as CS for Composite Service), to obtain the

opening stock price and market capitalization of a U.S. company on its first trading

day. CS is intended for a U.K. analyst to monitor the U.S. stock market. The

developer decides to implement the service by composing three existing services:

StockIPOWS, OpeningPriceWS and DailyMarketCap, denoted as S1, S2 and S3

respectively. S1 has the operation getDateofIPO that provides the IPO date of a

company traded in the U.S. by using the company’s ticker symbol. The operation

getOpeningPrice of S2 provides the opening stock price of a company on its first

trading day. The operation getDailyMarketCap of S3 provides the daily market

capitalization of a company on a given date.

2 HotwireDeals originates from Hotwire.com, available at

 http://developer.hotwire.com/docs/Hotel_Deals_API.

ITWO Total Assets: “313776” of what?

What is this date “05/07/2009”?

5

Fig. 2. Example 2: simple composition of two component services.

Fig. 3. Example 3: composition of multiple services.

In principle, CS can be accomplished by a composition of S1, S2 and S3.

Specifically, the input tickerSymbol of CS needs to be transferred to both S1 and S2.

The output openingPrice of CS is obtained from the output openingPrice of S2. The

output openingMarketCap of CS can be achieved by feeding the output of S1 to the

input of S3 and delivering the output of S3 to CS. According to this plan, the

developer defines the workflow logic of the composition using a typical BPEL tool,

such as ActiveVOS BPEL Designer.3 The BPEL composition is graphically illustrated

in Figure 3, where BPEL activities (e.g., <receive>, <invoke>) are enclosed in angle

brackets. Since these four services are developed by independent providers, they have

3 http://www.activevos.com/

ConfInfo
Operation: queryConfInfo

HotwireDeals
Operation: queryDeals

Input:

confCode

Output:

roomCharge

ConfHotelDeals
Operation: getConfHotelDeals

Input:

confCode

Output:

hotelExpense

Output:

startDate

endDate

city

Date format: dd-mm-yyyy

Currency: USD

VATIncluded: False

Currency: RMB

VATIncluded: True

Input:

startDate

endDate

city

Date format: mm/dd/yyyy

S1: StockIPO
Operation: getDateofIPO

S3: DailyMarketCap
Operation: getDailyMarketCap

Input:
tickerSymbol

Output:
dailyMarketCap

CS: OpeningPriceMarketCap
Operation: getOpeningPriceMarketCap

Input:
tickerSymbol

Output:
openingPrice

openingMarketCap

Currency: USD

<receive>

<reply>

<invoke>

<invoke>
<assign>

Output:
dateofQuote

tickerSymbol

S2: OpeningPrice
Operation: getOpeningPrice

Input:
tickerSymbol

Output:
openingPrice

<flow>

<invoke>

<assign>

Date format: dd-mm-yyyy

Currency: USD

Scale factor: 1000
Currency: GBP

Scale factor: 1

Input:
dateofQuote

tickerSymbol

Date format: mm/dd/yyyy

6

different assumptions about data interpretation in terms of data format, currency,

and scale factors, as summarized in Table 1.

Table 1. Different Assumptions of Data Interpretation

Service Date format Currency Scale factor

CS - GBP 1

S1 dd-mm-yyyy - -

S2 - USD 1

S3 mm/dd/yyyy USD 1000

Note that usually these assumptions are not explicitly represented in WSDL

descriptions. As a result, existing BPEL tools (e.g., ActiveVOS BPEL Designer)

cannot detect these conflicting assumptions and fail to alert data misinterpretation

problems in the composition because the interpretation conflicts exist at the data

instance level. If not reconciled, the data interpretation conflicts would result in

severe errors and failures during the execution of the composition. This composition

example (i.e., Example 3) will be used as the “walk-through” example in the rest of

the paper.

2.2 Classification of Data Misinterpretation Problems

We classify data misinterpretation problems into representational, conceptual and

temporal categories, as summarized in Table 2. The purpose of the classification is to

help readers understand the problem scope of our solution and meanwhile draw the

boundary of our study. Note that there exist a number of classification frameworks in

the literature (Nagarajan et al., 2006; Sheth et al., 2005; Halevy, 2005). Those

existing classifications tend to cover a broader range of semantic heterogeneity issues,

some of which can be addressed by our approach (e.g., scale factors, currency), while

others are not the focus of this paper, such as structural/schematic differences. The

classification presented here exclusively focuses on data interpretation conflicts that

may occur in Web services.

2.2.1. Representational. Different organizations may use different representations

for a certain concept, which can result in representational misinterpretation

problems. Five subcategories can be further identified at this level: format, encoding,

unit of measure, scale factor, and precision. Format differences occur because there

often exist multiple format standards, such as for representing date, time, geographic

coordinates, and even numbers (e.g., “1,234.56” in USA would be represented as

“1.234,56” in Europe). Encoding differences may be the most frequent cause of

representational misinterpretation, because there are often multiple coding

standards. For example, the frequently used coding standards for countries include

the FIPS 2-character alpha codes, the ISO3166 2-character alpha codes, 3-character

alpha codes, and 3-digit numeric codes. Also, IATA and ICAO are two standards for

airport codes. Data misinterpretation problem can occur in the presence of different

encoding standards (e.g., country code “BG” can stand for Bulgaria or Bangladesh,

depending on whether the standard is ISO or FIPS). Besides the format and

encoding differences, numeric figures are usually represented using different units of

measure, scale factors, and precisions. For example, financial services use different

currencies to report the data to consumers who prefer to use their local currencies.

Scientific services may use different units of measure to record the data (e.g., meter

or feet).

7

Table 2. Classification of Data Misinterpretation Problems

Categories Explanations / Examples

Representational

Format

Different format standards for date, time, geographic

coordinate, etc.

Example: “05/07/2009” vs. “2009-05-07”

Encoding
Different codes for country, airport, ticker symbol, etc.

Example: Male/Female vs. M/F vs. H/D4 vs. 0/1

Unit of measure
Different units of currency, length, weight, etc.

Example: 10 “USD” vs. 10 “EUR”

Scale factor
Different scale factors of numeric figures

Example: 10 “Billion”5 vs. 10 “Million”

Precision
Different precisions of numeric figures

Example: “5.8126” vs. “5.81”

Conceptual
Subtle differences in

conceptual extension

Different interpretations about whether or not a specific

entity should be included

Example: does the reported retail “price” include value-

added taxes or not?

Temporal

Representational

and conceptual data

interpretation may

change over time

Prices listed in Turkey are implicitly in Turkish liras

(TRL) before 2005 but in Turkish New Lira (TRY) after

January 1, 2005.

2.2.2. Conceptual. The same term and representation is often used to refer to

similar but slightly different data concepts. This category of misinterpretation

usually occurs when the extension of the concept has different assumptions of the

interpretation, such as whether or not a specific entity is included by the concept. For

example, a retail price reported by European services usually includes the value-

added taxes, while retail prices reported by US services, especially for purchases to

be done in a store, usually do not include the value-added taxes.6 An even more

challenging problem in this category is referred to as “Corporate Householding”

(Madnick et al. 2003) which refers to misinterpretation of corporate household data.

For example, the answer to “What were the total sales of IBM” varies depending on

whether the sales of majority owned subsidiaries of IBM should be included or not.

The answers can be very different due to different reporting rules adopted in

different countries or for different purposes. Besides the entity aggregation issue, the

conceptual extension of the inter-entity relationship may also have different

interpretations. For instance, in order to answer the question “How much did MIT

purchase from IBM in the last fiscal year?”, we need to clarify whether the

purchasing relationship between MIT and IBM should be interpreted as direct

purchasing (i.e., purchased directly from IBM) or indirect purchasing through other

channels (e.g., third-party brokers, distributors, retailers). In some cases, only the

direct purchasing from IBM to MIT are considered, whereas in other cases indirect

purchasing through other channels also needs to be included (Madnick and Zhu

2006).

2.2.3. Temporal. Most of the above-mentioned possibilities of data interpretation

may change over time (Zhu and Madnick 2009). For example, a Turkish auction

service may have listed prices in millions of Turkish liras (TRL),7 but after the

Turkish New Lira (TRY) was introduced on January 1, 2005, it may start to list

prices in unit of Turkish New Lira. Also, an accounting service may or may not

4 In France.

5 Of course, these categories can be nested – for example, there can be different meanings of scale factor,

such as “Billion” means one thousand million in USA but it used to mean one million million in the UK.

6 Usually called “sales taxes” in the USA

7 About one million TRL equaled one US dollar.

8

aggregate the earnings of Merrill Lynch into that of Bank of America which acquired

the former in September 2008. Considering the highly dynamic and distributed

environment of Web services, these data misinterpretation problems resulting from

the temporal evolvement would become very challenging. Due to length limit, we will

not address the temporal issues in this paper, but our approach can be extended to

resolve them.

2.3 Deficiency of Existing Approaches

To address the abovementioned problems, we must identify the data interpretation

conflicts that may occur in naive BPEL composition and rewrite it to reconcile the

identified conflicts. The existing approaches usually perform the identification and

reconciliation of interpretation conflicts in a manual way. As depicted in the upper

half of Figure 4, after the naive BPEL is produced, a manual inspection of potential

conflicts is conducted. Once an interpretation conflict is detected, the naive BPEL is

modified by inserting an ad-hoc conversion to transform the output of the upstream

service to the needed input of the downstream one. These steps (as indicated as

“Identify conflicts” and “Rewrite”) are continued iteratively until a valid BPEL is

produced. The ad-hoc, “brute-force” approaches tend to produce “spaghetti” code that

is difficult to debug and maintain. In summary, the brute-force approaches suffer

from the following deficiencies: 1) It is error-prone to manually inspect the naive

BPEL, especially when the composition involves a large number of data elements as

well as Web services and has complicated workflow logic. Also, it is error-prone to

manually define customized conversion code and insert it to the composition; 2) It is

difficult to reuse the conversion code, as it usually defined and inserted in the

composition in an ad-hoc way; and 3) Every time an involved service is changed (or

removed) or a new service is added, the Identifying conflicts and Rewrite steps need

to be manually performed again and new custom conversions may need to be inserted

in the composition. As a result, the brute-force approaches potentially make the

number of custom conversions very large and difficult to maintain over time.

Fig. 4. Comparison of existing approach and our proposed approach.

The situation could become even worse when the number of services involved in

the composition is large and the involved services are highly dynamic. For example,

the recent SOA implementation of a Texas health and human resource system

consists of over a hundred Web services and more than 20 composite services.8

According to a recent Application Integration Survey, data integration accounts for

about 40% of software development costs.9 Another survey conducted in 2002 reveals

8 Source from the email communication between the authors and SourcePulse.com, a software services

firm.

9 http://www.slideshare.net/mlbrodie/powerlimits-of-relational-technology

9

that approximately 70% of the integration costs were spent on identifying

interpretation differences and developing custom code to reconcile these differences

(Seligman et al. 2002). Therefore, it is important to develop a systematic and

disciplined approach to addressing the various data misinterpretation problems for

Web services composition.

We have developed an improved approach to rectify these deficiencies. Our

approach automates the “Identify conflicts” and “Rewrite” steps as an intelligent

mediation step (see the lower half of Figure 4). By using the proposed approach,

developers do not need to read the naive BPEL to identify the conflicts or to decide

where the conversions need to be inserted. We provide a tool that fully automates the

mediation step and produces the valid BPEL.

Note that our approach requires the services in the composition be annotated to

explicitly capture the assumptions that affect the interpretations of data. Although

semantic annotation is a new step, it allows for the separation of declarative

semantic descriptions from the programming code. It also enables automatic

identification and reconciliation of semantic conflicts. As we will show in Section

5.2.2, this separation offers tremendous benefits to our approach.

3. CONTEXT-BASED APPROACH

In this section, we describe our context-based approach to reconciling data

interpretation conflicts in Web services composition. The approach consists of

methods for representing semantic assumptions and mediation algorithms for

identifying conflicts and rewriting the BPEL to reconcile the identified conflicts. The

lightweight ontology (Zhu and Madnick 2007) is used to facilitate semantic

annotation.

3.1 Representation of Ontology and Contexts

3.1.1. Lightweight Ontology. Ontology is a collection of concepts and the

relationships between these concepts. Ontologies are often used for Web query

processing (Storey et al. 2008), Web services composition (Mrissa et al. 2007), and

data reliability assessment (Krishnan et al. 2005). In practice, there are various

types of ontologies ranging from lightweight, rather informal, to heavyweight, more

formal ones (Wache et al. 2001). Lightweight ontologies are simple and easy to create

and maintain since they only include the high-level concepts. On the other hand, they

do not directly provide all the depth and details of a typical formal ontology. In

contrast, formal ontologies are often relatively complex and difficult to create (Zhu

and Madnick 2007).

To combine the strengths and avoid weaknesses of these ontology approaches, we

adopt an augmented lightweight ontology approach that allows us to automatically

derive a fully specified ontology from concisely described high-level concepts and

contexts. By “lightweight”, we mean the ontology only requires generic concepts used

by the involved services and the hierarchical relationships between the concepts. The

different assumptions of the services for interpreting the generic concepts are

represented as contexts using the vocabulary and structure offered by the ontology.

Figure 5 presents a graphical representation of the lightweight ontology for

Example 3 (see Section 2.1.3). Concepts are depicted by round rectangles and basic is

the special concept from which all other concepts inherit. Like traditional ontologies,

the lightweight ontology has two relationships: is_a and attribute. For instance,

concept openingPrice is a type of stockMoneyValue. An attribute is a binary

relationship between a pair of concepts. For example, attribute dateOf indicates that

the date concept is the “date of” attribute of concept stockMoneyValue. In practice, it

is frequently straightforward to identify generic concepts among multiple

independent services. For example, S3 has an output dailyMarketCap and CS has an

10

output openingMarketCap. Both of them correspond to a generic concept

marketCapital. However, S3 provides the data instances of dailyMarketCap using

currency “USD” and scale factor “1000”, while CS interprets and furnishes the data

instances of openingMarketCap using currency “GBP” and scale factor “1”. To

accommodate the different data interpretations, the construct modifier is introduced

to allow multiple variations (i.e., specializations) to be associated with different

services. In other words, modifier is used to capture additional information that

affects the interpretations of the generic concepts. A generic concept can have

multiple modifiers, each of which indicates an orthogonal dimension of the variations.

Also, a modifier can be inherited by a sub-concept from its ancestor concepts.

Fig. 5. Lightweight ontology shared by involved services of the composition.

Modifiers are depicted by dashed arrows in Figure 5. For example, concept

stockMoneyValue has two modifiers, currency and scaleFactor, which indicates that

its data instances need to be interpreted according to two dimensions: money

currency and scale factor, respectively. Also, concept date has modifier dateFormat

that indicates its data instances can be interpreted by different date formats. The

actual interpretation of a generic concept depends on modifier values. For instance,

CS interprets concept openingMarketCap using currency “GBP”. Thus, the value of

modifier currency is “GBP” in case of CS. According to Table 1, the modifier value of

currency is “USD” in case of S2 and S3. That means that different services may be

associated with different values assigned to the modifiers. In our work, the different

value assignments to a collection of modifiers are referred to as different contexts,

and in a certain context each modifier is assigned by a specific modifier value.

Specifically, a context is conceptually a set of assignments of all the modifiers of the

ontology and can be described by a set of <modifier, value> pairs. Further, each

service involved in the composition may be associated with a context which

corresponds to its assumption of data interpretation. For example, the different

assumptions in Table 1 are described using four contexts associated with the four

services involved in the composition, as shown in Table 3. As a result, interpretation

differences among these services can be treated as context differences.

Table 3. Context Definition of Involved Services in the Composition

Service Context

CS ctxt0 = [<dateFormat, NULL>, <currency, GBP>, <scaleFactor, 1>]

S1 ctxt1 = [<dateFormat, dd-mm-yyyy>, <currency, NULL>, <scaleFactor, NULL>]

S2 ctxt2 = [<dateFormat, NULL>, <currency, USD>, <scaleFactor, 1>]

S3 ctxt3 = [<dateFormat, mm/dd/yyyy>, <currency, USD>, <scaleFactor, 1000>]

3.1.2. Semantic and Context Annotation. Web services are usually described using the

WSDL specification at a syntactic level, rather than a semantic level. To facilitate

basic

date stockSymbolstockMoneyValue valueOf

is_a

attribute

modifier

dateOf

scaleFactorcurrency

dateFormat

openingPrice marketCapital

11

semantic interoperability, semantic annotation is widely used to establish

correspondences between the data elements of WSDL descriptions and the concepts

of an ontological model (Patil et al. 2004; Sivashanmugam et al. 2003). The

annotations are recommended to be done using the W3C standard, Semantic

Annotation for WSDL and XML Schema (SAWSDL) (Farrell and Lausen 2007).

SAWSDL allows any language for expressing an ontological model and enables

developers to annotate the syntactic WSDL descriptions with pointers to the concepts

(identified via URIs) of the ontological model (Kopecký et al. 2007; Verma and Sheth

2007). Thus, SAWSDL is an appropriate industrial standard for us to establish the

correspondence between the syntactic WSDL descriptions and the lightweight

ontology.

SAWSDL provides an attribute modelReference for specifying the correspondence

between WSDL components (e.g., data/element types, input and output messages)

and the concepts of an ontology. However, SAWSDL per se does not provide any

mechanism for context annotation that is required for resolving data

misinterpretation problems in service composition. Thus, we extend SAWSDL with

two annotation methods that use the modelReference attribute: (1) Global context

annotation: we allow the <wsdl:definitions> element of the WSDL specification to

have the modelReference attribute and use its value to indicate that all data

elements of a WSDL description subscribe to a certain context identified via the URI

value; (2) Local context annotation: for any data element, in addition to the URI

value indicating the corresponding ontological concept, we allow the modelReference

attribute to have an additional URI value to indicate the context of the data element.

Global context annotation affects the entire WSDL description and allows the

developers to succinctly declare the context for all elements of the WSDL description.

Local context annotation provides a mechanism for certain elements to have their

contexts different from the globally declared context. In case a small number of

elements in a WSDL description have contexts different from that of the other

elements, this overriding capability can be useful to simplify the annotation task.

<wsdl:definitions targetNamespace="http://openingPriceMarketCap.coin.mit” …

 xmlns:stkCoin="http://coin.mit.edu/ontologies/stockOntology#”

 xmlns:sawsdl="http://www.w3.org/ns/sawsdl”

 sawsdl:modelReference="stkCoin#ctxt3" >

 <wsdl:types>

<schema xmlns="http://www.w3.org/2001/XMLSchema" elementFormDefault="qualified"

 targetNamespace="http://openingPriceMarketCap.coin.mit">

 <element name="tickerQuoteDate">

 <complexType>

 <sequence>

 <element name="tickerSymbol" type="xsd:string"

 sawsdl:modelReference="stkCoin#stockSymbol" />

 <element name="dateofQuote" type="xsd:string"

 sawsdl:modelReference="stkCoin#date stkCoin#ctxt3" />

 </sequence>

 </complexType>

</element>

<element name="dailyMarketCap" type="xsd:double"

 sawsdl:modelReference="stkCoin#marketCapital stkCoin#ctxt3" />

 </schema>

 </wsdl:types>

Fig. 6. Excerpt of annotated WSDL description of S3 using global and local context

annotations

Figure 6 shows the annotated part of S3’s WSDL description in which the

annotations are highlighted in bold. Each leaf data element of S3 has the

modelReference attribute to point to its corresponding concept in the ontology. For

global context

concept local context

12

example, the elements tickerSymbol and dateofQuote correspond to the concepts

stockSymbol and date, respectively. Since S3 use context ctxt3 (see Table 3), the

modelReference attribute of the element <wsdl:definitions> has the value

“stkCoin#ctxt3” which is the URI of context ctxt3 defined in the ontology. The

modelReference attribute of a data element can have one value, or two values

separated by a whitespace.10 In case of only one value, it is the URI of the concept to

which the data element corresponds. In case of two values, the former value is the

URI of the concept and the latter is the URI of the context in which the data element

is interpreted. It is worth noting that both global and local context annotations

comply with the SAWSDL standard. Both the global and local context annotations

are used in Figure 6. Although the local annotation does not actually override the

global context, we include it for illustration purposes.

If business needs were to change over time and we later needed to shift the date

format of S3 from “mm/dd/yyyy” to “dd-mm-yyyy”, the only thing we need to do is to

update the context of the dateofQuote element of S3 to context ctxt1 (see Table 3) by

means of the local context annotation. Then, our approach can automatically

determine and reconcile possible interpretation differences resulting from the date

format change. As a result, the global and local context annotations promote the

flexibility of our solution to handle the evolving semantics of services.

3.1.3. Conversions between Different Contexts. Context differences, once detected,

need to be reconciled using conversion programs to convert the exchanged data from

the source value vs to the target value vt. In our work, a conversion is defined for

each modifier between two different modifier values. Below is a general

representation of the conversions, where C is the generic concept having a modifier m,

mvs and mvt are two different values of m in the source context ctxt_s and the target

context ctxt_t, respectively. In fact, mvs, mvt can be derived by querying the context

definition according to ctxt_s, ctxt_t (see Table 3).

cvt(C, m, ctxt_s, ctxt_t, mvs, mvt, vs, vt)

The conversions defined for individual modifiers are called atomic conversions. At

least one atomic conversion is specified for each modifier to reconcile the difference

indicated by different modifier values. Since there exist three modifiers in the

example ontology (see Figure 5 and Table 3), we specify three atomic conversions:

cvtdateFormat, cvtcurrency and cvtscaleFactor.

Our solution is agnostic about the actual implementation of the atomic

conversions. In practice, depending on its complexity, an atomic conversion can be

implemented using an XPath function11 or an external (e.g., third-party) service. For

example, the atomic conversion cvtdateFormat for converting the date format from “dd-

mm-yyyy” to “mm/dd/yyyy” can be implemented using the following XPath function:

 cvtdateFormat: Vt = concat(substring-before(substring-after(Vs,“-"),“-"),“/",

 substring-before(Vs,“-"),“/",substring-after(substring-after(Vs,“-"),“-"))

Also, the atomic conversion cvtscaleFactor, which converts a number value from the

scale factor mvs to mvt, can be implemented using the following XPath function:12

 cvtscaleFactor: Vt = Vs * mvs div mvt

10 SAWSDL allows the modelReference attribute to have multiple values separated by whitespaces.

11 The BPEL specification and most BPEL engines (e.g., ActiveBPEL) support XPath 1.0.

12 Note that this is a general purpose conversion function that works for any values of mvs and mvt.

13

In complex cases, the conversions may have to be implemented by invoking

external (e.g., third-party) services, such as by using Web wrapper services (Madnick

et al. 2000). For example, it is needed to invoke an external currency exchange

service CurrencyConverter13 (denoted as S4 for short) which consumes the source and

target currencies mvs, mvt and a money value vs and converts to another money

value vt. Thus, S4 can be used to implement the atomic conversion cvtcurrency.

It is worth noting that cvtscaleFactor and cvtcurrency are defined as parameterized

conversions: the source and target modifier values mvs, mvt are used as parameters

of the conversions. A parameterized conversion can be applied to handle any pair of

different modifier values mvs and mvt (i.e., a dimension of the context differences)

and thus is not limited to a specific one. For example, cvtcurrency can be used to convert

money value between any pair of currencies. Using parameterized conversions can

largely reduce the number of predefined atomic conversions and significantly

enhance the scalability of our reconciliation solution.

3.2 Reconciliation Algorithms

In Web services composition, context conflicts can occur when a piece of data from the

source service in one context is transferred to, and consumed by, the target service in

another context. Figure 7 shows the typical scenario where a context conflict occurs

in the composition. In Figure 7, there exists a data transfer where the data data_s

from service WS_s is transferred to service WS_t and consumed as data data_t. Using

context annotation, both data_s and data_t are instances of concept C which has a

modifier m. Also, WS_s and WS_t are annotated with two different contexts ctxt_s,

ctxt_t, respectively. As a result, according to the context definition of the ontology,

data_s and data_t are interpreted differently by WS_s and WS_t if the modifier value

of m in ctxt_s (i.e., mvs) is different from the value mvt of m in ctxt_t. In such a case,

a context conflict occurs within the data transfer. In the following sections, we

present three successive algorithms that automate the identification and

reconciliation of context conflicts in the composition process. Example 3 will be used

to demonstrate the algorithms.

Fig. 7. Scenario of context conflict in Web services composition.

3.2.1. Identifying Data Transfers. Recall that the BPEL composition that ignores

context conflicts is called the naive BPEL. Since context conflicts occur within data

transfers, it is needed to analyze the data flow of the naive BPEL and identify all the

data transfers. Each data transfer can be represented using the following form,

where ws_s and ws_t are the source and target services, data_s and data_t are the

13 CurrencyConverter originates from http://www.ac-markets.com/forex-resources/currency-converter.aspx

External services for conversions may also need to be annotated with concepts and contexts.

WS_s

data_s

C

basic

m

ctxt_s = {…, <m, mvs>,…} {…, <m, mvt>,…} = ctxt_t WS_t

data_t

≠

14

data elements involved in the data transfer, and type indicates if the data transfer is

explicit or implicit.

dataTrans(type, data_s, ws_s, data_t, ws_t)

Each explicit data transfer involves two variables and can be easily identified

according to the <assign> activity which is used to copy the data from the source

variable to the target variable. As shown in Figure 3, there are two <assign>

activities in the composition process of Example 3: they are to transfer the data

dailyMarketCap and openingPrice, respectively. Thus, two explicit data transfers are

identified.

Each implicit data transfer involves one variable shared by two activities

interacting with participant services having potentially different contexts. The BPEL

specification provides four types of interaction activities: <receive>, <reply>,

<invoke>, and <onMessage> contained in <pick>. For an output variable, its source

interaction activity may be <receive>, <onMessage> or <invoke>. For an input

variable, its target interaction may be <reply> or <invoke>. By examining each

variable in the composition, all implicit data transfers in the BPEL composition can

be identified.

Algorithm 1. Identifying Explicit and Implicit Data Transfers

Input: BPEL process proc.

Output: The set of explicit data transfers EDT = {edt},

 the set of implicit data transfers IDT = {idt}.

1. set EDT = , IDT = ;
2. for each <assign> activity asn in proc

3. var_s  getSourceVariable(asn), var_t  getTargetVariable(asn)

4. act_s  getSourceInteractionActivity(proc, asn),

5. act_t  getTargetInteractionActivity(proc, asn)

6. edt  getDataTransfer(var_s, var_t, act_s, act_t)

7. EDT  EDT  {edt}

8. for each variable var in proc

9. Lvar  getInteractionActivitySeries(proc, var)

10. for each source activity act_s1 in Lvar

11. act_s2  getNextSourceActivity(Lvar, act_s1),

12. Tvar  getTargetActivitySeries(Lvar, act_s1, act_s2)

13. for each target activity act_t in Tvar

14. idt  getDataTransfer(var, act_s1, act_t)

15. IDT  IDT  {idt}

16. return EDT, IDT;

Table 4. Data Transfers in the Composition Process of Example 3

dt1 dataTrans (implicit, tickerSymbol, CS, tickerSymbol, S1)

dt2 dataTrans (implicit, tickerSymbol, CS, tickerSymbol, S2)

dt3 dataTrans (implicit, tickerQuoteDate, S1, tickerQuoteDate, S3)

dt4 dataTrans (explicit, openingPrice, S2, openingPrice, CS)

dt5 dataTrans (explicit, marketCap, S3, openingMarketCap, CS)

Algorithm 1 is developed to identify explicit and implicit data transfers. Using

Algorithm 1, three implicit and two explicit data transfers are identified in the

composition process of Example 3, as shown in Table 4. Instead of explicitly using the

<assign> activity, the output of S1 is directly transferred and consumed as the input

of S3 through variable tickerQuoteDate. An implicit data transfer is thus identified,

15

where the source and target interaction activities are the invocation of S1, S3,

respectively. In Figure 3, the composition process involves <receive>, <reply> and

<invoke>; it does not involve <onMessage>.

3.2.2. Detecting Context Conflicts. When a data transfer is identified, the annotated

WSDL descriptions of its source and target services (denoted as ws_s and ws_t,

respectively) can be derived through <partnerLinkType> of the BPEL composition.

According to the context annotation, the concept C corresponding to the transferred

data is obtained. Also, if the source data data_s and the target data data_t are

annotated with contexts, their contexts are denoted as ctxt_s, ctxt_t, respectively. In

order to determine possible context conflicts, all modifiers of concept C need to be

examined. When a certain modifier m has different values mvs, mvt in ctxt_s and

ctxt_t, respectively, a context conflict is thus determined. The scenario of determining

context conflicts is illustrated earlier in Figure 7. For example, dt3 (see Table 4) is an

implicit data transfer involving variable tickerQuoteDate which contains two data

elements dateofQuote and tickerSymbol. In the WSDL descriptions of S1 and S3,

dateofQuote is annotated to concept date of the ontology. Concept date has a modifier

dateFormat with different values in the contexts of S1 and S3: “dd-mm-yyyy” for S1

and “mm/dd/yyyy” for S3 (see Table 3). As a result, a context conflict occurs when

dateofQuote is transferred through data transfer dt3 from S1 to S3. There is no

conflict for tickerSymbol because it has no modifier.

Each context conflict can be represented using the following form:

ctxtConflict(dt, C, ctxt_s, ctxt_t, [(mi, mvsi, mvti)]i={1,…,n})

where dt is the data transfer in which the context conflict occurs. [(mi, mvsi,

mvti)]i={1,…,n} depicts the array of n modifiers with different values in ctxt_s and ctxt_t.

Algorithm 2 is developed to automate the procedure of conflict determination. As

shown in Table 5, three context conflicts in the naive BPEL composition are

determined.

Algorithm 2. Detecting Context Conflicts

Input: BPEL process proc, the set of data transfers DT = {dt},

 the set of annotated WSDL description WS = {ws}, Ontology onto;

Output: The set of context conflicts CC = {cc};

1. set CC = 

2. for each data transfer dt in DT

3. ws_s  getSourceService(dt, proc, WS), ws_t  getTargetService(dt, proc, WS)

4. data_s  getSourceDataElement(ws_s, dt), data_t  getTargetDataElement(ws_t, dt)

5. c  getConcept(ws_s, data_s)

6. ctxt_s  getContext(ws_s, data_s), ctxt_t  getContext(ws_t, data_t)

7. for each modifier m of c in onto

8. mvs  getModifierValue(c, m, ctxt_s), mvt  getModifierValue(c, m, ctxt_t)

9. if mvs mvt

10. then cc  getContextConflict(C, m, ctxt_s, ctxt_t, mvs, mvt)

11. CC  CC  {cc}

12. return CC;

Table 5. Context Conflicts in the Composition Process of Example 3

cc1 ctxtConflict (dt3, date, ctxt1, ctxt3, [(dateFormat, “dd-mm-yyyy”, “mm/dd/yyyy”)])

cc2 ctxtConflict (dt4, openingPrice, ctxt2, ctxt0, [(currency, “USD”, “GBP”)])

cc3
ctxtConflict (dt5, marketCap, ctxt3, ctxt0, [(scaleFactor, “1000”, “1”);

 (currency, “USD”, “GBP”)])

16

3.2.3. Incorporating Conversions. Once a context conflict is determined within a data

transfer, it is needed to assemble an appropriate conversion to reconcile the conflict.

The appropriate conversion is either a predefined atomic conversion or a composite

one assembled using several atomic conversions. For reconciliation, the identified

conversion is incorporated into the data transfer to convert the data in the source

context to the target context.

When the determined context conflict occurs in an implicit data transfer, the data

transfer needs to be made explicit in order to incorporate the conversion. Suppose var

is the variable involved in the implicit data transfer. To make the data transfer

explicit, it is needed to create a new variable named var_t which has the same

element type as var, and to insert an <assign> activity into the data transfer for

copying var to var_t. As shown in Table 5, data transfer dt3 is an implicit data

transfer where a context conflict of date format occurs. To make dt3 explicit, a new

variable tickerQuoteDate_t is declared using the same element type as variable

tickerQuoteDate. Since tickerQuoteDate has two data elements dateofQuote and

tickerSymbol, the <assign> activity inserted into dt3 has two <copy> activities for

copying dateofQuote and tickerSymbol of tickerQuoteDate to that of tickerQuoteDate_t.

Then, the input variable of the invocation of S3 is changed from variable

tickerQuoteDate to variable tickerQuoteDate_t. After this step, all data transfers with

context conflicts are made explicit.

When a context conflict involves only one modifier, it can be reconciled using a

predefined atomic conversion. For example, the context conflict cc1, as shown in

Table 5, involves modifier dateFormat of concept date. It is thus easy to identify the

atomic conversion cvtdateFormat that can reconcile cc1. The conversion cvtdateFormat is

applied through substituting the input vs of the XPath function as data element

dateofQuote. Also, the context conflict cc2 involves modifier currency of concept

openingPrice, which can be reconciled using the atomic conversion cvtcurrency. As

discussed in Section 3.1.3, cvtcurrency is implemented by the external currency

converter service S4 rather than using XPath function. Thus, an <invoke> activity is

inserted in the data transfer dt4 of cc2 in order to convert openingPrice in “USD”

from S2 to the equivalent price in “GBP”, an output data of CS. Necessary <assign>

activities are also inserted to explicitly transfer the exchanged data.

Algorithm 3. Incorporating Conversions

Input: BPEL process proc, the set of annotated WSDL description WS = {ws},

 the set of context conflicts CC = {cc},

 the set of predefined atomic conversions CVT = {cvt};

Output: Mediated BPEL process mediatedProc;

1. mediatedProc = proc

2. for each context conflict cc in CC

3. dt  getDataTransfer(cc)

4. if isImplicit(dt) == ‘TRUE’

5. then var  getVariable(dt), var_t  declareNewVariable(var),

6. insertAssign(mediatedProc, dt, var, var_t)

7. AMV = [(mi, mvsi, mvti)]  getArrayOfModifierValues(cc)

8. if |AMV| == “1”

9. then cvt  getAtomicConversion(cc, m, CVT)

10. insertConversion(mediatedProc, cvt)

11. else

12. for each (mi, mvsi, mvti) in AMV

13. cvti  getAtomicConversion(cc, mi, CVT), insertConversion(mediatedProc, cvti)

14. return mediatedProc;

When a certain context conflict involves two or more modifiers, no predefined

atomic conversion can reconcile the context conflict, as each atomic conversion is

17

defined with only one modifier. In this case, the context conflict can still be reconciled

using the composition of multiple atomic conversions, each of which is defined with

one of the modifiers involved in the context conflict. For example, the context conflict

cc3 involves two modifiers scaleFactor and currency of concept marketCapital. Among

the predefined atomic conversions, modifier scaleFactor and currency correspond to

cvtscaleFactor, cvtcurrency, respectively. Therefore, cc3 can be reconciled using the

composition of the two atomic conversions, successively applying cvtscaleFactor and

cvtcurrency. Specifically, the output data dailyMarketCap from S3 is first converted by

cvtscaleFactor from the scale factor “1000” to “1”, and then converted by cvtcurrency from

the currency “USD” to the equivalent amount in “GBP”. After the two-step composite

conversion consisting of cvtscaleFactor and cvtcurrency, the exchanged data is converted

and transferred to the output data openingMarketCap of CS. Algorithm 3 is

developed to automate the procedure of assembling conversions and generating the

mediated BPEL to reconcile the determined context conflicts.

4. PROTOTYPE IMPLEMENTATION

We implemented a proof-of-concept prototype, named Context Mediation Tool (CMT),

as a JAVA application, to demonstrate the reconciliation approach. The lightweight

ontology with structured contexts is defined using the COIN Model Application

Editor14 which is a Web-based tool for creating and editing COIN-style ontology and

contexts in RDF/OWL. Atomic conversions between the contexts are defined in a

specification file. The WSDL descriptions of the composite and component services

(e.g., CS and S1 ~ S3 of Example 3) are annotated using our context annotation

method. To facilitate the annotation task, we extended an open-source Eclipse plug-

in for semantic annotation (i.e., Radiant15) and developed the context annotation tool

Radiant4Context. We assume naive BPEL composition processes with possible data

misinterpretation problems are defined using any typical BPEL tool.

Fig. 8. Snapshot of CMT at Stage Context Conflicts.

14 http://interchange.mit.edu/appEditor/TextInterface.aspx?location=MIT

15 http://lsdis.cs.uga.edu/projects/meteor-s/downloads/index.php?page=1

18

CMT is used to create a mediation project and consume all the above documents.

The reasoning engine implemented within CMT can automatically perform the

reconciliation algorithms described in Section 3.2. Take Example 3 for instance. CMT

first performs Algorithm 1 to identify the three implicit and two explicit data

transfers in the naive BPEL composition process. Then, CMT continues to use

Algorithm 2 to determine the three context conflicts. Finally, CMT uses Algorithm 3

to select three atomic conversions cvtdateFormat, cvtscaleFactor and cvtcurrency from

predefined conversion library 16 and incorporates them into corresponding data

transfers to reconcile the conflicts.

CMT has three working areas for the mediation tasks, as shown in Figure 8. The

first working area requires the user to import the involved documents of the

composition into the mediation project. To monitor the results of different mediation

steps, the second working area, Mediation Stage, allows the user to choose one of the

four consecutive stages, including Naive BPEL Process, Data Transfers, Context

Conflicts, and Mediated BPEL Process. These stages provide the intermediate and

final results that the approach produces while addressing context differences among

services involved in the composition. Eventually, CMT produces the mediated BPEL

composition process. Note that CMT can perform all the mediation steps in an

automatic and consecutive way.

Figure 8 shows the snapshot of CMT at the stage Context Conflicts where the

three context conflicts in the composition process of Example 3 and corresponding

atomic conversions required for the reconciliation are identified. At the stage

Mediated BPEL Process, CMT produces the mediated BPEL composition process

with incorporated conversions. Figure 9 shows the snapshot of CMT in which the

XPath function for the conversion cvtdateFormat is embedded in the mediated BPEL

composition process.

Fig. 9. Snapshot of CMT at Stage Mediated BPEL Process.

16 We recommend that libraries of such atom conversions be established that can be reused for future

compositions.

cvtdateFormat

19

5. VALIDATION AND EVALUATION

5.1 Validation

We validated the solution approach by applying it to several composition processes

that involve various interpretation conflicts. Here we show the results of applying the

approach to Example 3 (see Section 2.1.3) and Example 2 (see Section 2.1.2). For

Example 3, Figure 10 shows the snapshot of the naive BPEL composition process

defined using ActiveVOS BPEL Designer. Note that we have used a schematic

notation in Figure 3 to illustrate the naïve BPEL composition process. Since the

interpretation conflicts exist at the data instance level, ActiveVOS BPEL Designer

cannot detect the conflicts of data interpretation and fails to alert any error. But

severe errors and failures will occur when one attempts to executes the naive BPEL

composition.

Fig. 10. Naive BPEL composition process with context conflicts.

The prototype CMT can automatically produce the mediated BPEL composition

consecutively. After the mediated BPEL composition is produced, we import it into

ActiveVOS BPEL Designer for validation purpose. Figure 11 shows the snapshot of

the mediated BPEL process with the incorporated conversions. As we can see, CMT

inserts a <assign> activity into the composition process between the invocations of S1

and S3 in order to reconcile the conflict of date format (i.e., cc1 in Table 5). In fact,

CMT embeds the XPath conversion function cvtdateFormat in the <copy> element of the

<assign> activity and uses it to convert the date format from “dd-mm-yyyy” to

“mm/dd/yyyy”. To reconcile the conflict of currency (i.e., cc2 in Table 5), CMT inserts

the invocation of the external currency converter service S4. By invoking S4, the

output openingPrice in “USD” from S2 is converted to the equivalent price in “GBP”

as the output of CS. Finally, CMT inserts a <assign> activity and a <invoke> activity

consecutively in the composition process to reconcile the conflicts of scale factor and

currency (i.e., cc3 in Table 5). The XPath conversion function cvtscaleFactor is embedded

by CMT in the <copy> element of the <assign> activity and used to reconcile the

20

conflict of scale factor. S4 is used to reconcile the conflict of currency (see cc2 and cc3

in Figure 11).

In order to validate the correctness of the mediated BPEL composition process,

we provide a number of testing data values for the input of CS and the output of the

services (i.e., S1 ~ S3 and S4). We utilize the simulation feature of ActiveVOS BPEL

Designer to simulate the execution of the mediated BPEL process. The execution

results indicated that: a) the mediated BPEL process properly completed without any

deadlocks or errors; b) all the context conflicts were successfully reconciled – different

date formats, scale factors and currencies were correctly converted between the

involved services; and c) CS produced the expected output: openingPrice and

openingMarketCap.

Fig. 11. Mediated BPEL composition process with incorporated conversions.

For Example 2 (see Figure 2), three context conflicts are determined using CMT:

the date format difference, the currency difference, and the VAT difference –

HotwireDeals provides the room charge not including value-added taxes, while

ConfHotelDeals is expected to provide the hotel expense including the taxes. Similar

to Example 3, the date format difference and the currency difference can be resolved

by cvtdateFormat and cvtcurrency, respectively. Differently, the VAT difference needs to be

resolved by using a new conversion cvtVAT which is implemented as an external

service TaxesCalculator. TaxesCalculator’s operation getVATAdded consumes a

money value without value-added taxes and returns the money value with value-

added taxes. In a similar way, CMT produces the mediated composition for

ConfHotelDeals with all determined context conflicts reconciled. Figure 12 illustrates

the mediated composition process with all necessary conversions (indicated in bolded

red boxes) inserted.

21

Fig. 12. Mediated composition with conceptual VAT difference reconciled.

5.2 Evaluation

The reconciliation approach is evaluated both qualitatively and quantitatively. The

evaluation results are presented in the following two subsections.

5.2.1. Qualitative Evaluation. The qualitative evaluation of the reconciliation

approach is conducted by checking whether it can handle more general and

complicated composition situations. Specifically, we try to answer the following two

questions: (1) What types of data misinterpretation problems can the approach

address? and (2) What types of Web services composition can the approach support?

The method of qualitative evaluation used in this paper is similar to the method of

key feature comparison, which is a credible method for evaluating software

engineering-based approaches (VIDE 2009) and recently used by (Abeywickrama and

Ramakrishnan 2012) as well17.

For the first question, we find that the use of modifiers in a lightweight ontology

is a quite versatile modeling technique. It allows for the representation of each type

of interpretation conflicts discussed in Section 2.2. For example, to address the

difference of date format or currency (a kind of unit of measure) at the

representational level, we use the modifier of date format or currency and

corresponding conversions (i.e., cvtdateFormat, cvtcurrency) and demonstrate the feasibility

through Example 3. In Example 2 we use the modifier of value-added taxes and the

conversion cvtVAT to deal with the difference of value-added taxes, a kind of

conceptual-level data misinterpretation problems. Other conceptual-level problems

like those of “Corporate Householding” (Madnick et al. 2003) and temporal-level

problems (Zhu and Madnick 2009) can also be modeled using appropriate modifiers

and addressed in a similar way. With the ontology/context modeling and semantic

annotation in place, all the possible data misinterpretation problems in Table 2 that

may occur in Web services composition can be addressed by the approach.

Since BPEL becomes the OASIS standard for defining Web services composition

in practice, the approach presented in this paper focuses on addressing BPEL-based

composition processes. BPEL specification provides four types of interaction activities

(i.e., <receive>, <reply>, <invoke> and <onMessage> within <pick>) to define

interaction patterns between the composition process and participant services. Also,

BPEL provides several basic workflow constructs (e.g., sequence, parallel, choice and

iteration) to define the composition processes. In our work all these interaction

activities and workflow constructs have been taken into consideration when we

developed Algorithm 1. In other words, Algorithm 1 can be used to automatically

inspect any composition process defined using BPEL and identify data transfers

within the process. For example, we demonstrate the capability of the approach to

address Example 3 which involves three of the four types of interaction activities (i.e.,

17 Note that the key feature comparison of our work with the prior approaches is presented in Section 6.

ConfInfo
Operation: queryConfInfo

HotwireDeals
Operation: queryDeals

Input:

confCode

Output:

roomCharge

ConfHotelDeals
Operation: getConfHotelDeals

Input:

confCode

Output:

hotelExpense

Output:

startDate

endDate

city

“dd-mm-yyyy”

Input:

startDate

endDate

city

“mm/dd/yyyy”

Xpath

Conversion

CurrencyConverter
Operation: convertCurrency

Input:

srcCurrency=

tgtCurrency=

srcAmount

Output:

tgtAmount
TaxesCalculator

Operation: getVATAdded

Input:

valWithoutVAT

city

Output:

valWithVAT

“USD”

“RMB”

22

<receive>, <reply>, <invoke>) and the sequential and parallel workflow constructs.

<onMessage> is similar to <receive>, as both handle the message arrival. Thus,

Algorithm 1 analyzes <onMessage> in a similar way as it does for <receive>. Since

control-flow conditions of choice and iteration are irrelevant to the identification of

data transfers, Algorithm 1 will examine each workflow branch defined by the

construct of choice or iteration in a similar way as it does for the sequence or parallel

workflows. After the data transfers in the composition process are identified using

Algorithm 1, Algorithm 2 and Algorithm 3 are used to determine and reconcile

possible data interpretation conflicts. Therefore, the approach can support any Web

services composition defined using the BPEL and WSDL standards.

5.2.2. Quantitative Evaluation. A quantitative evaluation of the proposed approach is

carried out with the focus on assessing human efforts needed for reconciling data

interpretation conflicts. Although a direct measurement of human efforts can be

obtained through empirical experiments, it is often difficult to set up such

appropriate experiments to reliably and objectively measure the evaluation metrics.

Instead, we will consider the complexity of how mediation is accomplished in the

brute-force approach compared with our approach.

Let us suppose an extreme case where there are N services (including the

composite service) that have different data interpretations and interact with each

other in the composition. In such a case, there are N*(N-1)/2 service-to-service

interactions in the composition. Thus, the brute-force approach (see the discussion in

Section 2.3) has to examine each of the service-to-service interactions to ensure the

interoperability between every two interacting services. Each service-to-service

interaction involves an XML message probably with multiple data elements. Suppose

on average there are K data elements in the XML message between any two services

and D dimensions of data interpretation conflicts (e.g., currency and scale factor)

associated with each data element, then in total the brute-force approach has to

examine K*D*N*(N-1)/2 possible places where data interpretation conflicts might

occur. Wherever a data interpretation conflict is detected, the brute-force approach

has to construct a conversion and insert it to the appropriate place in the

composition. As the number of services N and the number of data elements in XML

messages K increase, the amount of manual work of inspecting and rewriting BPEL

increases quickly. Maintaining manually created BPEL over time is also labor-

intensive and error-prone.

In contrast, our reconciliation approach requires manual creation of a lightweight

ontology, annotation of each service, and provision of atomic conversions, each of

which concerns only one data interpretation dimension. Although this may appear to

be undesirable beforehand, it actually reduces the amount of pairwise manual

inspection and conversion construction using annotation for individual services. More

importantly, our approach can automatically examine the XML message between

each service-to-service interaction, identify context conflicts, and build and insert

appropriate conversions in the composition. Thus, the key advantage of our

reconciliation approach lies in the automatic generation of mediated BPEL which

otherwise would require significant amount of manual work as in the brute-force

approach.

Let us use a specific example to demonstrate the advantage of our approach.

Assume that the developer of Example 3 later wanted to serve diverse users that

require any combination of 10 different currencies and 4 scale factors (i.e., 1, 1K, 1M,

1B). The component services, e.g., S3, may also change their currencies and scale

factors. In such a case, both the output dailyMarketCap of S3 and the output

openingMarketCap of CS may use 40 (=10×4) different data interpretations. To

convert the output dailyMarketCap of S3 to the output openingMarketCap of CS, it

would be most likely for the developers to manually specify 1560 (=39×40) custom

23

conversions if they used the brute-force approach. An even worse case would arise if

currencies and scale factors of CS, S2 and S3 changed over time independently.

Comparatively, our approach only requires two parameterized conversions (i.e.,

cvtscaleFactor and cvtcurrency). More importantly, as long as no additional dimension of

data interpretation difference is introduced, there is no need to define new

conversions even if the involved services were to be added (or removed) in the

composition, or the workflow logic of the composition process were to be changed. In

practice such situations frequently happen because the implementations of Web

services and service composition often evolve in the fast-changing global business

environment.

There are two points to note regarding the examples in this paper. First, for

reasons of brevity and simplicity, the examples in the paper only include a few web

services. There are large complex applications built using hundreds of web services,

they would not be so easy for a human to examine the naive BPEL and resolve all the

conflicts – and do that error-free. Second, the scalability issue not only exists at

initial development of the composite application but over its entire life cycle. If a

change is needed to the application or happens to the specifications of one or more of

the web services, then the entire resolution process must be reviewed and

appropriate changes made by the human. With our approach, most of this is

automated, only the context specifications (and occasionally the ontology) have to be

updated.

6. RELATED WORK AND COMPARISON

The basic Web services standards (e.g., WSDL, BPEL) generally ignore data

semantics, rendering semantic composition and interoperability far from reality. A

research area, referred to as Semantic Web Services (SWSs), has emerged to apply

Semantic Web technologies to Web services (Burstein et al. 2005; McIlraith et al.

2001; Sycara et al. 2003). OWL-S (Martin et al. 2007), WSMF/WSMO (Fensel and

Bussler 2002; Lausen et al. 2005) and METEOR-S (Patil et al. 2004; Sivashanmugam

et al. 2003) are three major initiatives that have developed languages and

frameworks to explicitly add semantics into the Web services descriptions. Despite

the ontological foundations provided by these efforts, it is still necessary to develop

effective approaches to semantic composition.

Data misinterpretation among Web services can be considered as a semantic

heterogeneity problem. However, the literature provides only a few approaches to

handle the challenging problem in Web services composition. The initial work in

(Spencer and Liu 2004) proposes to use data transformation rules to convert the data

exchanged between services. This work requires a common ontology described in

OWL (particularly in description logic) and the correspondences between the ontology

and WSDL descriptions defined using OWL-S. Rather than using OWL-S, the

approach in (Nagarajan et al. 2006; Nagarajan et al. 2007) proposes to perform

semantic annotation by using WSDL-S which is the ancestor of SAWSDL and more

consistent with existing industrial standards and practices. The approach focuses on

addressing schematic differences of the exchanged messages by using schematic

conversations (e.g., XSLT). The work in (Gagne et al. 2006; Sabbouh et al. 2008)

proposes a set of mapping relations to establish direct correspondences between the

messages of two WSDL-based services. Then, the common ontology can be

constructed based on these correspondences and data-level differences are resolved

by predefined conversions. Generally, those approaches require each participant

services to be annotated and mapped to a common ontology serving as the global

schema. However, it is more costly to construct and maintain this type of global

schema than the lightweight ontology used in our approach, which only needs a small

set of generic concepts. More importantly, the mappings or transformation rules

24

required by those approaches are created manually to perform direct conversions

between the exchanged messages. In contrast, the actual conversions in our approach

can be automatically composed using a small number of atomic, parameterized

conversions. Furthermore, those approaches only focus on dealing with a pair of

participant services, rather than a composition consisting of multiple services.

To the best of our knowledge, the work in (Mrissa et al. 2006a; b; Mrissa et al.

2007), which also draws on the original COIN strategy, is most related to this paper.

However, our solution is significantly distinct from their work in multiple aspects. (1)

Their work ignores considering the composite service whose context may be different

from any component service, while our solution can address both composite and

component services. (2) They embed context definition in WSDL descriptions using a

non-standard extension. As a result, their approach suffers from the proliferation of

redundant context descriptions when multiple services share the same context. In

contrast, we avoid this problem by separating ontology and context definitions from

the annotated WSDL descriptions. (3) Only context conflicts between the <invoke>

activities in the BPEL composition are considered in their work, while context

conflicts between all interaction activities (e.g., <receive>, <reply>, <invoke> and

<onMessage>) can be handled using our solution. (4) Since in their work each context

conflict needs to be reconciled using the a priori specification of an external service,

they miss the opportunity to reuse predefined atomic conversions and the capability

of conversion composition. In our work we define a parameterized atomic conversion

for each modifier and use reasoning algorithms to automatically generate composite

conversions consisting of atomic conversions to handle complex context differences.

Thus, the number of predefined conversions is largely reduced.

In addition to the literature on Web services, it is worth noting some interesting

works (Sun et al. 2006; Tan et al. 2009; Hamid et al. 2010) from the domain of

process/workflow management. Sun et al. (2006) develop a data-flow specification for

detecting data-flow anomalies within a process/workflow, including missing data,

redundant data and potential data conflicts. With a different focus from our work,

their work provides no automatic approach that can be used to produce the data-flow

specification. Also, semantic heterogeneity of the data exchanged is not considered in

their work. We believe that Algorithm 1 can be adapted to construct data-flow

specification, so that potential data-flow anomalies can be also addressed. Both Tan

et al. (2009) and Hamid et al. (2010) focus on developing mediator services that could

address the workflow inconsistencies between services involved in the composition.

Our work complements those studies in that we focus on resolving data

misinterpretation conflicts in the composition.

7. CONCLUSIONS

Differences of data interpretation widely exist among Web services and severely

hamper their composition and interoperability. To this end, we adopt the context

perspective to deal with the data misinterpretation problems. We describe the

lightweight ontology with structured contexts to define a small set of generic concepts

among the services involved in the composition. The multiple specializations of the

generic concepts, which are actually used by different services, are structured into

different contexts so that the differences can be treated as context differences. We

introduce a flexible, standard-compliant mechanism of semantic annotation to relate

the syntactic WSDL descriptions to the ontology. Given the naive BPEL composition

ignoring semantic differences, the reconciliation approach can automatically

determine context conflicts and produce the mediated BPEL that incorporates

necessary conversions. The incorporated conversions can be predefined atomic

conversions or composite conversions that are dynamically constructed using the

atomic ones. The context-based reconciliation approach has desirable properties of

25

adaptability, extensibility and scalability. In the long run, it can significantly

alleviate the reconciliation efforts for Web services composition.

Our approach has two limitations. First, the lightweight ontology enriched with

modifiers and contexts needs to be defined manually. Although the ontology has a

small number of generic concepts compared to other heavyweight ontologies, efforts

are required to define the ontology. Second, our approach requires the participant

services be annotated with respect to the ontology. Although it is a nontrivial task,

the semantic annotation allows for separation of declarative semantic descriptions

from the programming code (e.g., JAVA and ASP.NET) and provides the prerequisite

through which our approach can automatically detect and reconcile the data

misinterpretation conflicts. To alleviate the cost of the annotation task, we have

extended an open-source Eclipse plug-in (i.e., Radiant) and developed a context

annotation tool. Thus, developers can easily use our context annotation tool to add

context information.

Fortunately, there has been a growing trend (Savas et al. 2009) that authors of

data services are encouraged to provide certain metadata definition and semantic

annotation. Also, researchers have begun to develop various solutions (Uren et al.

2006; Mrissa et al. 2007; Di Lorenzo et al. 2009), albeit with limited scope, to produce

context information for interpreting the data provided by Web services. Therefore, we

expect over time such context information will become increasingly available in the

published Web services so that our proposed approach can be used more easily and

smoothly.

Future work is needed to address the limitations of our approach. Specifically, we

plan to develop techniques to automate the construction of the lightweight ontology

for Web services. Also, we intend to integrate existing annotation methods (Uren et

al. 2006) with our approach to facilitate semantic annotation. Additionally, we plan

to adapt several existing service discovery techniques and integrate them with our

approach so that the necessary external mediation services could be more easily

discovered and used by the tool CMT.

Despite the identified future work, our approach, even in its current form, can

substantially reduce the effort and possible errors of manual Web services

composition. We expect our approach and the prototype can be applied in the practice

of SOC and the development of Web-based information systems.

REFERENCES

Abeywickrama, D., Ramakrishnan, S. Context-aware services engineering: models, transformation and

verification. ACM Transactions on Internet Technology 2012; 11(3), No. 10.

Alves, A, Arkin, A, Askary, S, Barreto, C, Bloch, B, Curbera, F, Ford, M, Goland, Y, Guizar, A, and Kartha,

N. Web services business process execution language version 2.0. OASIS Standard 2007; 11.

Becker, J, Dreiling, A, Holten, R, and Ribbert, M. Specifying information systems for business process

integration–A management perspective. Information Systems and E-Business Management

2003; 1(3): 231-263.

Bressan, S, Goh, C, Levina, N, Madnick, S, Shah, A, and Siegel, M. Context Knowledge Representation

and Reasoning in the Context Interchange System. Applied Intelligence 2000; 13(2): 165-180.

Burstein, M, Bussler, C, Finin, T, Huhns, MN, Paolucci, M, Sheth, AP, Williams, S, and Zaremba, M. A

semantic Web services architecture. Internet Computing, IEEE 2005; 9(5): 72-81.

Christensen, E, Curbera, F, Meredith, G, and Weerawarana, S. Web services description language (WSDL)

1.1, W3C Recommendation, 2001.

Di Lorenzo, G., Hacid, H., Paik, H. and Benatallah, B. Data integration in mashups. ACM SIGMOD

Record, 38 (1), 2009. 59-66.

Farrell, J, and Lausen, H. Semantic Annotations for WSDL and XML Schema. W3C Recommendation,

Available at http://www.w3.org/TR/2007/REC-sawsdl-20070828/2007.

Fensel, D, and Bussler, C. The Web Service Modeling Framework WSMF. Electronic Commerce Research

and Applications 2002; 1(2): 113-137.

Gagne, D, Sabbouh, M, Bennett, S, and Powers, S. Using Data Semantics to Enable Automatic

Composition of Web Services, Services Computing, 2006. SCC '06. IEEE International

Conference on, 2006; pp. 438-444.

26

Gannon, T, Madnick, S, Moulton, A, Siegel, M, Sabbouh, M, and Zhu, H. Framework for the Analysis of

the Adaptability, Extensibility, and Scalability of Semantic Information Integration and the

Context Mediation Approach, System Sciences, 2009. HICSS '09. 42nd Hawaii International

Conference on, Hawaii, 2009; pp. 1-11.

Goh, CH, Bressan, S, Madnick, S, and Siegel, M. Context interchange: new features and formalisms for the

intelligent integration of information. ACM Transactions on Information Systems (TOIS) 1999;

17(3): 270-293.

Halevy, A. Why Your Data Won't Mix. Queue 2005; 3(8): 50-58.

Motahari Nezhad, H., Xu, G., and Benatallah, B. Protocol-aware matching of web service interfaces for

adapter development. Proceedings of the 19th international conference on World Wide Web

(WWW 2010): pp. 731-740.

Kopecký, J, Vitvar, T, Bournez, C, and Farrell, J. SAWSDL: Semantic Annotations for WSDL and XML

Schema. IEEE INTERNET COMPUTING 2007; 11(6): 60-67.

Krishnan, R, Peters, J, Padman, R, and Kaplan, D. On data reliability assessment in accounting

information systems. Information Systems Research 2005; 16(3): 307.

Lausen, H, Polleres, A, and Roman, D. Web Service Modeling Ontology (WSMO). W3C Member

Submission 2005; 3.

Li, X, Madnick, S, Zhu, H, and Fan, Y. An Approach to Composing Web Services with Context

Heterogeneity, Prof. of the 7th Intl. Conf. on Web Services (ICWS 2009), Los Angeles, CA, USA,

2009a; pp. 695-702.

Li, X, Madnick, S, Zhu, H, and Fan, YS. Reconciling semantic heterogeneity in Web services composition,

Proceedings of the 30th International Conference on Information Systems (ICIS 2009), Phoenix,

AZ, USA, 2009b.

Madnick, S, Firat, A, and Siegel, M. The Caméléon Web Wrapper Engine, Proceedings of the VLDB

Workshop on Technologies for E-Services, Cairo, Egypt, 2000; pp. 269–283.

Madnick, S, Wang, R, and Xian, X. The design and implementation of a corporate householding knowledge

processor to improve data quality. Journal of management information systems 2003; 20(3): 41-

70.

Madnick, S, and Zhu, H. Improving data quality through effective use of data semantics. Data &

Knowledge Engineering 2006; 59(2): 460-475.

Martin, D, Burstein, M, McDermott, D, McIlraith, S, Paolucci, M, Sycara, K, McGuinness, D, Sirin, E, and

Srinivasan, N. Bringing Semantics to Web Services with OWL-S. World Wide Web 2007; 10(3):

243-277.

McIlraith, SA, Son, TC, and Zeng, H. Semantic Web Services. IEEE Intelligent Systems 2001; 16(2): 46-53.

Motahari Nezhad, H,, Xu, G,, and Benatallah, B. Protocol-aware matching of web service interfaces for

adapter development. Proceedings of the 19th international conference on World Wide Web

(WWW 2010); pp. 731-740.

Mrissa, M, Ghedira, C, Benslimane, D, and Maamar, Z. Context and Semantic Composition of Web

Services, Proc. of the 17th International Conference on Database and Expert Systems, Krakow,

Poland, 2006a; pp. 266-275.

Mrissa, M, Ghedira, C, Benslimane, D, and Maamar, Z. A Context Model for Semantic Mediation in Web

Services Composition, Proc. of the 25th International Conference on Conceptual Modeling,

Tucson, Arizona, USA, 2006b; pp. 12-25.

Mrissa, M, Ghedira, C, Benslimane, D, Maamar, Z, Rosenberg, F, and Dustdar, S. A context-based

mediation approach to compose semantic Web services. ACM Transactions On Internet

Technology 2007; 8(1): 4.

Nagarajan, M, Verma, K, Sheth, AP, Miller, J, and Lathem, J. Semantic Interoperability of Web Services -

Challenges and Experiences, Proc. of 4th International Conference on Web Services, Chicago,

USA, 2006; pp. 373-382.

Nagarajan, M, Verma, K, Sheth, AP, and Miller, JA. Ontology driven data mediation in web services.

International Journal of Web Services Research 2007; 4(4): 104-126.

Papazoglou, MP, Traverso, P, Dustdar, S, and Leymann, F. Service-Oriented Computing: State of the Art

and Research Challenges. IEEE Computer 2007; 40(11): 38-45.

Patil, AA, Oundhakar, SA, Sheth, AP, and Verma, K. Meteor-s web service annotation framework,

Proceedings of the13th international conference on World Wide Web, 2004; pp. 553-562.

Sabbouh, M, Higginson, JL, Wan, C, and Bennett, SR. Using Mapping Relations to Semi Automatically

Compose Web Services, Services - Part I, 2008. IEEE Congress on, 2008; pp. 211-218.

Savas, P, Evelyne, V, and Tony, H. A "Smart" Cyberinfrastructure for Research. Communications of the

ACM 2009; 52(12): 33-37.

Seligman, LJ, Rosenthal, A, Lehner, PE, and Smith, A. Data Integration: Where Does the Time Go? IEEE

Data Engineering Bulletin 2002; 25(3): 3-10.

Sheth, A, Ramakrishnan, C, Thomas, C. Semantics for the Semantic Web: The Implicit, the Formal and

the Powerful. International Journal on Semantic Web & Information Systems 2005; 1(1): pp. 1-

18.

Sivashanmugam, K, Verma, K, Sheth, A, and Miller, J. Adding Semantics to Web Services Standards,

Proceedings of 1st International Conference of Web Services (ICWS), Las Vegas, Nevada, USA:

IEEE Computer Society, 2003; pp. 395–401.

27

Spencer, B, and Liu, S. Inferring Data Transformation Rules to Integrate Semantic Web Services,

Proceedings of the 3rd International Semantic Web Conference Hiroshima, Japan: Springer

Verlag, 2004; pp. 456-470.

Storey, V, Burton-Jones, A, Sugumaran, V, and Purao, S. CONQUER: A Methodology for Context-Aware

Query Processing on the World Wide Web. Information Systems Research 2008; 19(1): 3-25.

Sun, SX, Zhao, JL, Nunamaker, JF, and Sheng, ORL. Formulating the data-flow perspective for business

process management. Information Systems Research 2006; 17(4): 374-391.

Sycara, K, Paolucci, M, Ankolekar, A, and Srinivasan, N. Automated discovery, interaction and

composition of Semantic Web services. Web Semantics: Science, Services and Agents on the

World Wide Web 2003; 1(1): 27-46.

Tan, W, Fan, Y, Zhou, M. A Petri Net-Based Method for Compatibility Analysis and Composition of Web

Services in Business Process Execution Language. IEEE Transactions on Automation Science

and Engineering 6(1): 94-106 (2009)

Uren, V, Cimiano, P, Iria, J, Handschuh, S, Vargas-Vera, M, Motta, E, and Ciravegna, F. Semantic

annotation for knowledge management: Requirements and a survey of the state of the art. Web

Semantics: Science, Services and Agents on the World Wide Web 2006; 4(1): 14-28.

van der Aalst, W, and Kumar, A. XML-based schema definition for support of interorganizational

workflow. Information Systems Research 2003; 14(1): 23-46.

Verma, K, and Sheth, A. Semantically Annotating a Web Service. IEEE Internet Computing 2007; 11(2):

83-85.

VIDE. 2009. VIsualize all moDel drivEn programming. Report WP11: Deliverable number D11.3

(Supported by the European Commission within Sixth Framework Programme), Polish-Japanese

Institute of Information Technology. Jan. http://www.vide-ist.eu/download/VIDE_D11.3.pdf (Last

accessed on 01/14/2012).

Wache, H, Voegele, T, Visser, U, Stuckenschmidt, H, Schuster, G, Neumann, H, and Hübner, S. Ontology-

based integration of information-a survey of existing approaches, IJCAI-01 Workshop on

Ontologies and Information Sharing, Seattle, WA, USA, 2001; pp. 108-117.

Yu, Q, Liu, X, Bouguettaya, A, and Medjahed, B. Deploying and managing Web services: issues, solutions,

and directions. The International Journal on Very Large Data Bases 2008; 17(3): 537-572.

Zhu, H. Effective Information Integration and Reutilization: Solutions to Technological Deficiency and

Legal Uncertainty, MIT Ph.D. Thesis, 2005.

Zhu, H, and Madnick, S. Reconciliation of Temporal Semantic Heterogeneity in Evolving Information

Systems. Ingénierie des Systèmes d'Information (Networking and Information Systems) 2009;

14(6): 59-74.

Zhu, H, and Madnick, SE. Scalable Interoperability Through the Use of COIN Lightweight Ontology, The

2nd VLDB Workshop on Ontologies-based techniques for DataBases and Information Systems

(ODBIS 2007), Seoul, Korea: SPRINGER-VERLAG, 2007; 37-50.

	CISL WP 2013-03 cover page
	ACM TOIT-final-v09 clean WP version clean

