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Abstract 
 
The primary objective of this research is to understand the dynamics of software 

development projects employing the Agile approach. A study of several Agile development 
methodologies leads us to the identification of the “Agile Genome”: seven characteristics that 
Agile projects share.  We gain insight into the dynamics behind Agile development by 
constructing a System Dynamics model for Agile software projects, called the Agile Project 
Dynamics (APD) model, which captures each of the seven genes as a major component of 
the model. 
  
 Large-scale software engineering organizations have traditionally used plan-driven, 
heavyweight, waterfall-style approaches for the planning, execution, and monitoring of 
software development efforts. This approach often results in relatively long development 
schedules that are susceptible to failure, especially in a rapidly changing environment: 
Schedule pressure, defects and requirements changes, can drive endless redesign, delay the 
project, and incur extra cost. Many in the commercial software world have dealt with these 
pressures by adopting Agile Software Development, an approach designed to be flexible 
and responsive to high-change environments. 
  

Software development teams that are said to employ “Agile development” in effect 
practice a variety of “agile methods”.  These practices are advertised to reduce coordination 
costs, to focus teams, and to produce stable product iterations that can be released 
incrementally. Agile software development has become a de-facto approach to the 
engineering of software systems in the commercial world, and is now entering the 
aerospace and defense sectors. 

 
The APD model developed in this research aids in the understanding of the impact 

that alternative combinations of Agile practices, combined with different management 
policies, have on project performance, compared to a waterfall approach. This research 
culminates in a formulation of insights and recommendations for how to integrate Agile 
practices into a large-scale software engineering organization.  
 
Thesis Advisor: Stuart Madnick 
Title: John Norris Maguire Professor of Information Technologies, MIT Sloan School of 
Management & Professor of Engineering Systems, MIT School of Engineering 
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1. Introduction 
1.1 Research Motivation 
 

The software industry is experiencing a high-velocity market environment. This is 
especially true in the U.S. government software sector, be it in government’s acquisitions of 
Information Technology (IT) systems, aerospace and defense systems, transportation 
systems, or other. Government customers are demanding higher productivity and faster 
cycle times for the delivery of software services, capabilities, and products. This, in turn, is 
causing software contractors to look beyond the traditional “Waterfall” approach to 
software engineering, and consider the so-called “agile” development methodologies that, 
in the commercial software world, have been heralded as being the way of doing things. 

 
Traditional software engineering approaches are said to have helped government 

contractors control schedules and costs for large-scale software projects. By “control” we 
mean “adhere to plan.” If a multi-year software project meets all of its schedule milestones 
and cost targets, then it is said to be a success.  If all of a software firm’s projects enjoyed 
such success, then the organization can be said to be “predictable” and to have “repeatable” 
processes: it can be trusted to deliver software as planned (cost and schedule-wise.) This is 
a characteristic that is desirable from a customer’s point of view. 

 
But the promise of Agile is that it will help software development organizations cut 

costs and shorten development times. Process-heavy/Waterfall software engineering is 
blamed by some for inflating the costs and duration of software projects. It can be argued 
that these process-laden development practices have redirected the focus of software 
teams towards statistical process control, driven by the desire to achieve project 
predictability and higher Capability Maturity Model (CMM) ratings as described in section 
2.3, and to fit into established models of project management. Some may even argue that 
this takes away from a firm’s focus on faster time-to-market, greater customer satisfaction, 
better design and architecture quality, etc.  

  
Today’s government customer calls for agility and responsiveness; the ability for 

rapid application deployment in the face of unpredictable and changing requirements. 
There is no better example of a high-volatility requirements environment than the war 
fighter’s situation: the threat is constantly evolving, and the fighter’s needs and 
requirements for intelligence capabilities are changing at a rate measured by weeks and 
months, not years. Under such circumstances a level-5 CMM rated organization serves 
them little if it cannot quickly deliver software-based capabilities to fulfill a real need, in 
time, and evolve the software as the need changes. 

  
As the government agencies have begun to demand faster development times and 

lower costs, the contractor community that serves them has turned towards legitimately 
looking at Agile development, with an eye towards delivering capabilities at the pace and 
cost needed to stay competitive in the government software market. In the commercial 
world, where being first-to-market and having the ability to understand and cater to your 
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customer’s evolving needs can mean the difference between life and death for a small 
software startup, organizations have embraced the family of agile methodologies as the 
way to better flexibility, greater responsiveness, and improved time-to-market.  

 
Fred Brooks, in his seminal paper on software engineering, No Silver Bullet — 

Essence and Accident in Software Engineering, argues that there is no, and probably never 
will be any “silver bullet” to solve the problem of software project failures, and that 
building software will always be a very difficult endeavor (Brooks 1987). One of the 
characteristics of modern software systems that he points to as being at the root of the 
problem is complexity. Complexity results in communication difficulties (among software 
teams) and associated managerial difficulties in the planning and execution of software 
projects.  Agile development methods are advertised to mitigate this problem by employing 
complexity-reducing practices, such as the break-up of the software into manageable 
“features” developed in short “sprints”, and improved flow of communication through 
frequent face-to-face meetings. 

 
Although Agile is the topic du-jour in the software community, many new 

technologies and methodologies in the past have also been acclaimed as the “the silver 
bullet” but have ultimately failed to meet expectations. In his IEEE article Software 
Lemmingineering, Alan Davis observes that time and time again, software organizations 
tend to blindly follow certain practices just because the masses are adopting them, and 
points out that we should be wary of such “lemmingineering.” He lists several fads that 
have stricken the software development community; he writes: “At this year’s ICSE 
(International Conference on Software Engineering) I got the impression that everyone has 
at least one foot in the process maturity stampede.” (Davis 1993) Interestingly, this was 
written in 1993, when the CMM was gaining momentum as the premiere approach to 
software engineering in industry. We have now come full circle, and Agile is the hot topic in 
software engineering circles. Is this another fad or can agile methods truly be adopted and 
implemented within the rigid structure of large-scale software engineering firms? 

 

1.2 Personal Experience with Agile 
 

During my twelve-plus years of experience as a software engineer in one of the 
largest aerospace and defense contractors (Raytheon,) I have worked on several software-
intensive programs mainly in the areas of Ballistic Missile Defense Systems (BMDS) and Air 
Traffic Management (ATM.) These were all large mission-critical, software-intensive 
systems, and often involved teams of over one hundred engineers.  During this time, the 
computer systems and software engineering industry underwent many technological shifts 
in various aspects of hardware (processing speed and power, memory, peripherals,) 
software stacks (operating systems, programming languages, and tools) and with respect 
to software development processes and methodologies. The following is a description of 
personal experiences and insights, representing my own personal views. In no way do they 
represent any official views or positions of or by Raytheon. 
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1.2.1 Early Experience with Agile Methodologies ( 1999-2001)  
 

A large part of my time as a software engineer was spent developing software for 
the Standard Terminal Automation Replacement System (STARS.)  This is a joint Federal 
Aviation Administration (FAA) and Department of Defense (DoD) program aimed at 
replacing aging ATM systems across the country with a state-of-the-art solution for Air 
Traffic Control (ATC.)  The STARS system receives and processes target reports, weather, 
flight plan information, and other data from a variety of radars, digital sensors, and 
external systems. It tracks aircraft and other “surveillance targets” and displays their 
position information to air traffic controllers on large graphical displays, provides decision 
support tools, data analysis tools, as well as visual aids and safety functions such as the 
detection of unsafe proximities between aircraft and warnings if aircraft are detected at a 
dangerously low altitude. The STARS system (hardware and software) has been evolving 
for almost two decades, controlling air traffic at a majority of the nation’s airports.  

 
 In 1999, the FAA was funding new system enhancements which required STARS to 
communicate with a variety of other systems supporting the FAA’s operations in the 
National Air Space (NAS). An “Application Interface Gateway” (AIG) subsystem was called 
for to provide these external communication functions. At the time, there were several 
difficulties on the road to putting together a new development team for the AIG:  Program 
management had agreed to a very aggressive schedule and the program was challenged to 
produce the full scope of software on time and within budget. Engineering, on the other 
hand, could not see a way to make this effort fit the schedule, based on traditional multi-
phased waterfall approach, and the lengthy schedule outlook. It simply couldn’t be done, 
given the way we did business traditionally:  We did not have the ability to quickly 
implement software changes and enhancements. 
 

Analysis showed that slow reaction time was mainly due to the sheer weight of the 
software development process: System requirements were broken down into several tiers 
of subsystem requirements, against which a software design was produced, with elaborate 
code-to-requirements tracing. This was followed by Detailed Design which consisted of 
writing software modules in pseudo-code like language called PDL (Program Description 
Language), and finally coding in the C programming language. Unit testing was a long and 
tedious manual process that included the writing of detailed test procedures for every 
software module.  

 
There were several process-related meetings and peer reviews at each afore-

mentioned stage. Therefore there was legitimate concern as to our ability to develop the 
AIG within the time and cost constraints of the program. Even worse, all of the senior 
engineers were busy with other critical system enhancements and could not be dedicated 
to this particular thread of development.  

 
At the time we had new and forward-thinking management, who were not afraid to 

adopt new methods and sponsor innovative thinking. Conditions were ripe for exploring a 
novel approach to software development. With software management’s support and 
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sponsorship (including funding) we set forth to find an approach that would be better 
suited for this endeavor. Another goal in mind was to introduce new programming 
languages and design approaches. Specifically, the program was interested in introducing 
Object-Oriented (OO) design and coding, and languages such as C++. This was the time 
when Object Oriented approaches to software were “hot” and gaining momentum in 
industry, as opposed to traditional “procedural” (also known as “imperative”) and 
“functional” programming styles.  There was difficulty in hiring new engineers proficient in 
procedural languages such as C at that time, when most graduates were taught OO design 
approaches and languages (e.g. Java, C++) and web-based technologies. This was after all, 
during the time of the internet boom. 

  
 Some of the main challenges were: how to capture software requirements for an OO 

software product? How do you document design for OO software? Is C++ a viable 
programming language? What would the development process be? First, a small team of 
engineers went through training provided by the Rational Corporation (now part of IBM) 
where we were taught the Rational Unified Process (RUP) – This training consisted mostly 
of learning the Unified Modeling Language (UML) and of learning to use Rational Rose, a 
UML modeling tool.  

  
Additionally, I led research into several new (at the time) concepts for software 

development which today fall under the general banner of “Agile Methods” (note that the 
term “agile” was not yet popular or used in industry in the late 1990s)– I focused 
specifically on “eXtreme Programming.” Keep in mind that this was 1999, and OO had not 
yet been used at all, in this part of the company, in any delivered system or product. It was 
important to define a software development process for OO.  

 
The existing stove-piped process was very specific and tied to the C language and 

left no room for OO practices.  After two months of research and training, we took what we 
found to be the best practices from RUP and eXtreme Programming, and other emerging 
concepts (such as automated unit-testing) to draft what we eventually named the “PrOOD” 
(Process for Object Oriented Development). Some of the highlights in this process are: pair 
programming, team collocation, iterative development cycles, model-based automatic code 
generation, and automated unit testing. These place a focus on and help in the early 
identification of software defects, and also speed up the development cycle. 

 
Armed with the PrOOD as our official development process, a small team of 6 

engineers produced in months what may have taken over a year to do: The requirements 
and design of the AIG were completely defined in a UML model using Rational Rose 
(requirements were modeled as Use Cases). The code was written in C++, and automated 
Unit Test framework was developed. 

 
Over time, the AIG has evolved to be one of the key STARS components, especially in 

the net-centric ATM world. Adding software interfaces to the system has become a 
relatively simple process. Almost a decade later, for example, the AIG was used to connect 
STARS to ADS-B (Automatic Dependent Surveillance-Broadcast) data sources, allowing 
GPS-based tracking (as opposed to radar-only tracking) of aircraft, enabling satellite-based 
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air traffic management, which was a huge leap forward in the FAA’s modernization efforts. 
This functionality went live in the Philadelphia airport in April of 2010, and is expected to 
be deployed nationwide by 2013, allowing air traffic controllers to efficiently and safely 
track and separate aircraft.1

 
  

As a software component, the AIG also has the lowest defect density of all CSCIs 
(Computer Software Configuration Items, i.e. components) in the product line. Defect 
density is measured by number of software defects found per one thousand lines of code, 
post-release. The PrOOD itself, which was an innovative process for Object Oriented design 
and development, found its way eventually to become part of the organization’s standards 
and practices (referred to as the ‘engineering blue book’) on how to build object-oriented 
software. The blue book was soon superseded by a “Common Process Architecture,” (CPA) 
during the CMM adoption frenzy that characterized software engineering firms of the early 
2000s (more on CMM later). Meanwhile, the PrOOD was forgotten and our successes and 
experiences with agile development were lost in the sands of time. 
 

1.2.2 Recent Experience with Scrum (2010-2011) 
 

In 2010, a new opportunity to employ agile development presented itself: the FAA 
was seeking to upgrade their terminal ATC systems’ data recording capabilities. The 
deployed systems were recording data on outdated storage media. Specifically, data was 
recorded onto magnetic tapes using DAT (Digital Archive Tape) drives, and the FAA wanted 
to upgrade the system and software to perform data recording onto RAID (Redundant 
Array of Independent Disks) storage devices, for many appropriate reasons such as 
reliability, redundancy, capacity, and performance. The effort was dubbed “CDR-R” for 
Continuous Data Recorder Replacement. The software changes required to make this 
transition were complex and non-trivial, requiring modifications to portions of the baseline 
code, some of which dated back to the 80s. Data recording is a critical component of the 
system – the FAA takes it very seriously, as they should, since this data is used not just for 
incident investigation purposes, but also to support data analysis of FAA operations. 

 
 The problem was that the scope of the changes that we estimated would be needed 

to implement the solution were such that they did not fit into the customer’s yearly budget 
and schedule… This seemed to me to be an opportunity to try a new delivery approach: 
First, inspired by Feature Driven Design (FDD,) I proposed that we divide the scope of 
changes into a set of ‘features’ such as ‘RAID recording’, ‘RAID synchronization’, ‘data 
transfer’, etc. Then, inspired by the spiral development model (described in section 3.3.2), I 
proposed an incremental delivery of the CDR-R changes in three phases: the first phase 
would provide basic RAID-based recording capabilities, the second would add additional 
monitoring and control capabilities for the RAIDs and provide data transfer tools to allow 
migration of data across various media and system installations, and finally the third phase 
would add some data maintenance functions. This new (in our program’s context) delivery 
model made the CDR-R transition more palatable for our customer and made for a better fit 

                                                        
1 http://www.aviationtoday.com/categories/commercial/67917.html 
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with their funding cycles, leading them to authorize the CDR-R development to begin. 
 
For the first phase’s set of features, we employed our traditional waterfall approach: 

software requirements were developed to meet the system level requirements, and then a 
design to fulfill the software requirements, then code was developed to implement the 
design, then testing and integration. This phase completed with a software delivery 
containing the full scope of planned phase-1 modifications, however the performance of the 
development effort suffered from cost overruns and internal schedule slippage. A lot of 
rework was generated towards the end of the development phase, as we began to test the 
software and encountered complications when running in the target hardware 
environment. Several other problems required revisiting the requirements, the design, and 
underlying code implementation. In my opinion, at the root of these issues were two main 
root causes: Unclear/uncertain requirements, and a delayed ability to test the software.  

 
These two issues have a compounding effect on each other: due to the waterfall 

approach of developing components in isolation of each other, the system functionality that 
we were trying to achieve only came to being at the tail-end of the development process, 
when all of the CSCIs (software components) were developed, tested in isolation, then 
integrated to produce the required functionality. Unfortunately, we typically only reach this 
point after 3/4ths or more of the schedule and budgeted effort have been consumed. This 
may not be problematic if requirements are well-defined, correct, complete, and 
unambiguous – but here we found this not to be the case. Identifying requirements issues 
that late in the development process meant several re-water-falling rework iterations of 
requirements/design/code at the very end of the development cycle when little time was 
left. Two key project performance measures, Schedule Performance Index (SPI) and Cost 
Performance Index (CPI), for this phase-1 of development were 0.82 SPI and 0.76 CPI, 
meaning that the software was behind schedule by 18%, and 24% over cost. 

 
For the second phase, I proposed that we employ an Agile approach to development, 

based on the Scrum methodology (described later in this research.) Management was 
receptive to this proposition, and eager to support this effort, especially as the desire to “go 
agile” was being communicated top-down through the organization, exemplified by a 
corporate-backed initiative named “SWIFT” (Software Innovation for Tomorrow) that had 
begun piloting Agile practices on several other large programs in the company. Note that 
ours was not one of the SWIFT pilot programs, but an organic home-grown desire to 
employ Agile methods, with prior successes in AIG development and the PrOOD in mind. 

 
A small team of developers was assembled, trained in Scrum methodology, and 

produced the phase-2 software increment in three sprints of three weeks each. This is 
relatively fast in an organization where conducting a code inspection alone can eat up a 
week in development time. Phase-2 thus enjoyed an SPI of 1.07 (7% ahead of schedule) yet 
the CPI of 0.73 remained less than ideal.  

 
While the Scrum approach helped us beat schedule, our cost performance did not 

improve. Looking back, there are several factors that could explain this: The team was new 
to Scrum, required training sessions, and only had the chance to execute three sprints. We 
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did not have a product owner or customer representatives involved so the requirements 
were still unclear and conflicting. A new web-based code review tool was deployed during 
our second sprint, but in retrospect was not optimally used and ended up causing wasted 
effort. We also had to deal with a slew of defects and issues from the phase-1 delivery; in 
other words we were building on top of a baseline that still had undiscovered defects. 
Finally, there was the overhead of trying to fit the agile software development model within 
an overarching heavyweight Integrated Product Development Process (IPDP) covering all 
of the phases of program execution.  

 

1.2.3 Personal Reflections 
 

It is important to note that the activity of “software development” fits within an 
integrated approach to product development that includes program processes such as 
business planning and requirements analysis, as shown in Figure 1. 

 

 
Figure 1 - Example Integrated Product Development Process 

      
Part of the problem with adopting Scrum within an environment such as shown in 

Figure 1 was that, as a Software Development Manager, only software development 
activities were within my purview, and thus only the software development team could 
adopt Scrum. Other parts of the engineering organization, such as System Engineering (SEs, 
producers of software requirements) and Software Integration and Test (SIs, integrators 
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and testers of the system) were still operating in a traditional approach, where SEs hand off 
completed requirements to development, who in turn hand off completed code to SIs.  

 
Since Scrum was adopted just within the confines of software development, and not 

as a complete IPDP overhaul, this meant that the development team had to maintain the 
same “interfaces” to the other activities in the program, and had to produce the same work 
artifacts (e.g. design documentation, review packages), employ the same level of process 
rigor– all of which was monitored by the Software Quality Assurance (SQA) oversight 
group. This included holding all of the required inspections and feeding back progress to 
management, which expected clear Earned Value (EV) based reports of progress. 

 
Yet with all of this, Scrum seemed to energize the development team, produce 

working code much faster, and speed up the experience gain of new engineers. Clearly 
there was some benefit to Agile. As a result I decided to pursue this research on Agile 
development for my graduate thesis in the M.I.T. Systems Design & Management (SDM) 
program. The research would take a “deep dive” into Agile, and take a close look at agile 
practices with the goal of understanding how to integrate them in a CMMI level 5 software 
engineering environment. During my time at SDM I also discovered the worlds of Systems 
Thinking and Systems Dynamics (SD), and found the SD approach to be the best tool for 
understanding the emergent behavior of a ‘complex socio-technical system’, in this case the 
software development enterprise. 
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1.3 Contributions 
 

The scientific contribution of this work is in developing the “Agile Genome”, a 
framework for understanding the nature of Agile software development, from a project 
management perspective. This understanding of the Agile Genome leads us to the 
development of the Agile Project Dynamics (APD) model which can be used as a tool for 
experimentation and learning about the behavior of the software project-system under 
various project conditions and with a variety of management policies and decisions. 
Additionally, this work demonstrates the value of the System Dynamics methodology for 
the modeling and simulation of complex socio-technical systems. 

1.4 Research Approach and Thesis Structure 
 

This research aims to understand the dynamics that drive the performance of Agile 
software projects, and the strengths and weaknesses of “Agile” as compared to the classic 
software engineering approaches that are based on the Waterfall model. Software 
development projects are in and of themselves complex socio-technical systems whose 
behavior is driven by the interactions of people, processes, tools, and policies. When we 
add layers of planning, budgeting, staffing, and management of such a program, it becomes 
an even more complex and dynamic system with many competing feedback effects. This 
section details the research approach we have employed to study the software project-
system, and presents the structure of this research chapter-by-chapter. 

 
Chapter 2 presents a brief review of relevant topics in software project 

management, including a historical review of waterfall software development and the rise 
of Agile methodologies. The chapter concludes by looking at why large-scale software 
engineering organizations, traditional laggards in the adoption of now processes and 
methodologies, are now embracing Agile development.  

  
Chapter 3 presents an overview of Agile software development and leads to an 

understanding of the nature of agility in software projects. Several popular methodologies 
are inspected in order to distill the essence of what makes a software project “agile” - We 
call the results of this analysis the “Genome of Agile Development.” This is based on 
extensive literature review, interviews, and professional experience with software 
development teams. 
 

To frame and understand the behavior of “the software development project as a 
system”, this research will employ a holistic view of the software project-system and will 
capture its structure and feedback effects in the form of a System Dynamics model.  

 
Chapter 4 presents System Dynamics (SD), a powerful methodology for framing, 

understanding, and discussing complex strategic project management issues and problems. 
Software project management is well suited for a "systems approach" because those 
involved in software development must not only understand the minutia of software 
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development technologies, processes and tools, but also the complexities of project-team 
dynamics, as well as the effects of management policy (especially the far-reaching effects of 
short-term management actions and decisions.) System Dynamics provides a method to 
model the cause-and-effect relationships among various policy variables.   

 
Chapter 5 follows by constructing a system dynamics model to simulate the effects 

of agile practices on software project performance, using the insights gained from the 
previous chapter. The modeling is inspired by the work of Abdel-Hamid and Madnick, in 
Software Project Dynamics, which includes a validated “Software Project Dynamics” (SPD) 
model of the classic Waterfall process.  We create an “Agile Project Dynamics” (APD) to 
study the strengths and weaknesses of the Agile approach as compared to the classic 
Waterfall model. We use this APD model to understand how and why the project-system 
behaves as it does. It can be used to understand the impact of management policies and 
adoption of one, many, or all of the “Agile genes”.  

 
In Chapter 6, the APD model is used to perform “what if” scenario investigation, by 

performing several controlled simulation experiments and observing project performance 
under several policy variable combinations. We start with a base-case single pass waterfall 
project and compare its behavior to that of an Agile project with several combinations of 
Agile genes. 
 

Finally, Chapter 7 concludes with a set of insights and observations gained from out 
research and experimentation with the model, which can lead to the formulation of good 
rules and policies for the management of software development projects. 
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2. A Brief Review of Relevant Software Engineering 
Topics 

 
Large-scale software engineering organizations, particularly government 

contractors, have traditionally used plan-driven, heavyweight, waterfall-style approaches 
to the planning, execution, and monitoring of large software development efforts. This 
approach is rooted in ideas stemming from statistical product quality work such as that of 
W. Edward Deming and Joseph Juran.  

 
The general idea is that organizations can improve performance by measuring the 

quality of the product development process, and using that information to control and 
improve process performance. The Capability Maturity Model (CMM) and other 
statistical/quality–inspired approaches such as Six Sigma and ISO 9000 follow this idea.  As 
a result, the collection and analysis of process data becomes a key part of the product 
development process (Raynus 1998).  

 

 
Figure 2 - CHAOS Report Summary 1994-2009 

Nevertheless, these types of “big” software projects have been susceptible to failure 
in terms of cost, schedule, and/or quality. The Standish group every few years produces the 
“CHAOS Report,” one of the software industry’s most widely-cited reports showcasing 
software project success and failure rates. It measures success by looking at the “Iron 
Triangle” of project performance: schedule, cost, and scope (whether or not the required 
features and functions were delivered.) Roughly, only about a third of software projects are 
considered to have been successful over the last two decades (see Figure 2) In April 2012, 
the worldwide cost of IT failures was conservatively calculated to be around $3 trillion 
(Krigsman 2012). 
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It is with this in mind that the software industry often refers to “the software crisis.” 
A whole business ecosystem has evolved around the software industry’s need to address 
the software crisis, including: 

- Project management approaches to controlling schedule, cost, and to building 
more effective teams. 

- Engineering approaches to architecture and design to produce higher quality 
(low defect, more flexible, more resilient, scalable, modifiable, etc.) software. 

- Processes and methodologies for increasing productivity, predictability, and 
efficiency of software development teams. 

- Tools and environments to detect and prevent defects, improve design quality, 
automate portions of the development workflow, and facilitate team knowledge. 
 

Let us briefly explore some of these in the context of government software systems 
development. 
 

2.1 Software Project Management  

2.1.1 The Iron Triangle 
 

 
Figure 3 - The Iron Triangle of Project Management 

 
Like any human undertaking, projects need to be performed and delivered under 

certain constraints. Traditionally, these constraints have been listed as "scope," "time," and 
"cost" (Chatfield & Johnson 2007). Note that “scope” in this context refers to the set of 
required features in the software, as well as the level of quality of these features. 

 
 These three constraints are referred to as the “Iron Triangle” (Figure 3) of project 

management – This is a useful paradigm for tracking project performance: In an ideal 
world, a software project succeeds when it delivers the full scope of functionality, on 
schedule as planned, and within budget. However, in the real world projects suffer from 
delays, cost overruns, and scope churn.  Expressions such as “scope churn” and “scope 
creep” refer to changes in the project’s initial scope (often captured contractually in the 
form of requirements). A project with many Change Requests (CRs) is said to experience 

http://en.wikipedia.org/wiki/Scope_(project_management)�


22 

high scope churn. In order to deliver, project managers must adjust project goals by 
choosing which sides of the constraints to relax. When a project encounters performance 
problems, the manager’s choices are to pull one of the three levers of the iron triangle: 

• Increase effort (and thus cost) by authorizing overtime or hiring more staff. 
• Relax the schedule by delaying delivery or milestones. 
• Cut scope by deferring a subset of features to future software releases, or reduce 

the quality of the features delivered.   
 
 As will be shown later in this research, taking any one of these actions can result in 
negative and unforeseen side-effects, making things even worse. In section 4.3, we will take 
a close look at “Brooks’ Law” which states that "adding manpower to a late software project 
makes it later". 

2.1.2 Earned Value Management 
 

Earned Value Management (EVM) is a management methodology for monitoring 
and controlling schedule, cost, and scope. It allows management to measure and track 
project execution and progress. In 1997 the U.S. Office of Management and Budget (OMB) 
released the Capital Programming Guide, which since then requires the use of EVM for all 
contractor performance-based management systems. This guide is an appendix to the 
OMB’s Circular A-11, which provides guidance on preparing Fiscal Year (FY) budgets and 
contains instructions on budget execution. This means that all budget approvals depend on 
performance as measured by EVM, behooving government contractors such as Raytheon, 
Boeing, Lockheed Martin, General Dynamics, Northrop Grumman, and others to adopt EVM 
as part of their standard management practices. EVM evolved from the DoD Cost/Schedule 
Control Systems Criteria (C/SCSC) which was an early attempt in 1967 to standardize 
contractor requirements for reporting cost and schedule.  

 
The problem with comparing actual expenditures to baseline plan, which is what 

other project management techniques do, is that it ignores the amount of work “actually 
completed.” EVM addresses this by distinguishing between cost variances resulting from 
progress deviations due to either over or under-spending. The approach compares the 
planned amount of work with what has actually been completed, at any point in the project. 
This is used to determine if cost, schedule, and work accomplished (percent of scope 
completed), are progressing as planned. 

  
The implications of this, in the software development domain, is that software 

project management boils down to the monitoring and control of what are essentially the 
three sides of the “Iron Triangle” – key project performance data points are collected to 
answer a basic set of questions related to the current state of the project, as listed in Table 
1.  
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QUESTION EVM Data Elements 
How much work should be done? Budgeted Cost for Work Schedules (BCWS) 
How much work is done? Budgeted Cost for Work Performed (BCWP) 
How much did the "is done" work cost? Actual Cost of Work Performed (ACWP) 
What was the total job supposed to Cost? Budget at Completion (BAC) 
What do we now expect the total job to Cost? Estimate at Completion (EAC) 

Table 1- Key EVM Data Points 

After this data is collected it is then used to derive some key project performance 
indicators, some of which are listed in Table 2 below. 

 
Metric Symbol Formula Description 

Percent Complete %Done BCWP Ratio of work accomplished in terms of 
the total amount of work to do. 

 
BAC 

Cost Performance Index CPI BCWP Ratio of work accomplished against  
money spent (Efficiency Rating:   
Work Done for Resources Expended) 

 
ACWP 

To Complete Performance 
Index TCPI BAC - BCWP

 

 
EAC - ACWP 

Ratio of work remaining against funds 
remaining (Efficiency which must be 
achieved to complete the remaining work 
with the expected remaining money) 

Schedule Performance Index SPI BCWP
Ratio of work accomplished against what 
should have been completed. (Efficiency 
Rating:  Work done as compared to what 
should have been done) 

 
BCWS 

Estimate At Completion EAC ETC + ACWP 

Calculation of the estimate to complete 
plus the money already spent. I.e. how 
much do we expect the total project to 
cost  

Estimate To Complete ETC BAC - BCWP
Calculation of the budgeted work  
remaining against the performance 
factor. I.e. how much more will the 
project cost than planned?  

 
CPI 

Table 2- EVM Key Data Analysis Calculations2

 

  

These indicator metrics are inspected at regular intervals to spot trends, take 
corrective actions, and ensure that a project is on track. Figure 4 below illustrates the 
tracking of EVM metrics over time. 

 

                                                        
2 www.acq.osd.mil/pm 
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Figure 4- Example Earned Value Chart3

 

  

Organizations that have traditionally practiced this EVM style of project 
management have paired it with a “Waterfall” approach to engineering and CMM-inspired 
processes. While EVM might at first seem complicated or hard to grasp, it is essentially a 
formal technique for understanding: 

- Is work being accomplished as planned? 
- Is it costing as planned? 
- What is the remaining work likely to cost? 
- When will the project be finished? 

 
When management periodically takes time to focus on these questions and takes 

corrective actions to steer the project back on course when there is a deviation from the 
plan, EVM is reported to provide a powerful mechanism for large-scale project control. 
However, in the software engineering realm there are two big problems with EVM: 

1) Controlling a project to-plan requires a full up-front plan. This means that the scope 
of the project must be fully understood, specified and planned up front. Any later 
changes in direction are regarded as scope changes and must go through a formal 
contractual change process. The plan cannot evolve and change as new information 
or insight is gained. Re-planning (“reprogramming” in project management speak) is 
a difficult affair in EVM. In other words, a rigid plan is not an Agile plan and thus 
takes away from the project’s potential for “nimbleness”. 

                                                        
3 Source: http://acc.dau.mil 
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2) EVM milestones are arguably arbitrary. For example, EVM claims a significant 
portion of “earned value” on a development project after the requirements and the 
design phases are completed. A project can thus claim to be at 50% completion even 
though no code has yet been produced. On the other hand, as we will discuss in later 
chapters, Agile projects track progress by feature: project percent-complete is more 
accurately tracked based on number of features completed. This is also a more 
valuable customer proposition, as 50% complete means that they can potentially 
receive a software delivery with 50% of the functionality already in it. 

 
Agile project management techniques are by comparison light-weight, but focus on 

some of the same project performance questions (is the work progressing as planned? Is it 
costing as planned?) using mechanisms such as ‘sprint burn down charts’ (monitors how 
much work is remaining in one sprint) and ‘team velocity’ (how much effort a team can 
handle in one sprint).  

 
We feel that EVM and Agile project management are not at odds and in fact can be 

mostly complementary. What would be needed, for Agile and EVM to coexist is Agility on 
the management side. Management must be able to practice what is known as “rolling wave 
planning” on a near-continuous basis. For example: plan only a month or so ahead of time, 
thus allowing for a greater degree of flexibility in the project plan (or more specifically, the 
Performance Management Baseline - PMB) against which performance is measured. 
 
 

2.2 Waterfall and Big Design Up Front (BDUF) 
 
 The origins of the so-called “Waterfall” approach can be traced back to Winston 
Royce, a director at Lockheed Software Technology in the 1970s, and his now-famous 
paper from the 1970 IEEE proceedings, entitled “Managing the Development of Large 
Software Systems.” Although the term “waterfall” was not used in this paper, it was the first 
to describe the process that has come to be called “Waterfall”, due to its graphical 
representation depicting workflow trickling from one stage of the process to the next, 
reminiscent of an actual waterfall. Figure 5 shows Royce’s original depiction of the 
Waterfall process. 
 



26 

 
Figure 5 - Winston Royce's Waterfall 

 
 The Waterfall as an engineering approach is said to have probably first been applied 
on a large-scale project by IBM during the development of the System/360 operating 
system in the 1960s. (Cusumano & Smith 1995) 
 
 In a 2004 interview with Fred Brooks, director of the IBM System/360 project, he 
was asked “Have we learned anything about software development in 40 years?” His 
response was: “We’ve learned that the waterfall model of development has to be 
abandoned, and it hasn’t been yet. We need to adopt the spiral model …” We discuss the 
spiral model in section 3.3.2. 
 
 The waterfall process has the advantage of focusing early on complete requirements 
specification (getting it right the first time,) and since most software projects are said to 
suffer from poor requirements definition, this approach puts an emphasis on requirements. 
However, in reality requirements changes are unavoidable (“we might as well embrace it,” 
according to Agile practitioners) – The problem with the waterfall is that the cost of change 
is prohibitive, and very slow. This is because at the end of each phase, the outputs are 
certified (via formal inspection and verification) and become the inputs for the next phase. 
Team members are not supposed to change outputs that the project has already certified.  
(Cusumano & Smith 1995) 
  
 Much of the debate in software engineering related to Agile development frames the 
discussion in terms of “Waterfall vs. Agile.” This is not exactly an appropriate comparison. 
Waterfall simply describes a “stage-wise” model of development in stages (e.g. planning, 
analysis, implementation, test, deployment) whereas Agile describes project team 
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performance and use of “agile methods” as we will elaborate in section 3. In other words, a 
software team can be Agile within a waterfall development model, and a Waterfall iteration 
can be used within an Agile project – However for simplicity in the context of this research 
we will continue to contrast Agile with Waterfall, with the term “Waterfall” being a 
placeholder for  “traditional, stage-wise, complete design up-front, single-pass waterfall 
software engineering approach.” 
 
   

2.3 The Software Capability Maturity Model (SW-CMM)  
 

To deal with the “software crisis” in the 1980s, the US Air Force prompted the 
Software Engineering Institute (SEI) to develop a method for selecting software 
contractors. A study of past projects showed that they often failed for non-technical 
reasons such as poor configuration management, and poor process control.  

 
In essence, the SEI took the ideas of “software lifecycle” and along with the ideas of 

quality maturity levels, and developed the SW-CMM, or simply CMM, which rates a 
software organization’s maturity level. In CMM, maturity is measured on a scale of 1 to 5. 
Rather than enumerating and describing each level, suffice it to say that maturity ranges 
from level 1, or “initial,” which applies to the least mature organization (e.g. a startup with 
two developers) up to level 5, “optimizing,” which applies to the most mature of 
organizations, whose processes are standardized, repeatable, predictable, and optimizing.  

 
There is a set of Key Process Areas (KPAs) that an organization must address in 

order to rate at each level.  Each KPA is met when the organization has a defined process 
for it, and is committed, and able to follow that process, all while measuring, analyzing and 
verifying implementation of said process. For example, an organization must have defined 
practices for Software Configuration Management for a Level 2 or higher rating.  

 
The implication here is that with a higher maturity levels comes a higher software 

process performance. From a management perspective, predictable software development 
means better performance on cost and productivity. 

 
The CMM represents a good set of software “common sense”. One of the good things 

about it is that it guides an organization on what process areas to address, but does not 
dictate how this must be done. This sometimes leads organizations down a slippery slope 
of process overload, where an exorbitant amount of time and money is spent developing, 
maintaining, and deploying processes aimed complying with the CMM KPAs. 

 
In 2002, the SEI’s Capability Maturity Model Integration (CMMI) replaced the CMM. 

The difference, at a high level, is that the CMMI added new “process areas” to the CMM (e.g. 
Measurement Analysis,) and better integrated other non-software development process in 
of product development (e.g. Systems Engineering activities.) 
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Practices added in CMMI models are improvements and enhancements to the SW-
CMM. Many of the new practices in CMMI models are already being implemented by 
organizations that have successfully implemented processes based on the improvement 
spirit of SW-CMM best practices (SEI 2002). For the purposes of this research we will use 
the terms “CMM” and “CMMI” interchangeably to mean “process improvement model that 
defines key processes for product development enterprises.” 

 
As a developer I experienced the process overhaul leading to an initial assessment 

of a CMM level 3 in the late nineties, and later as a software development manager I saw 
our organization mature to a CMMI level 5. Today we have a ”Common Process 
Architecture,” a complex framework of process Work Instructions and measurement 
capabilities designed as our implementation of the CMMI.  

 
The problem with “mature” organizations, perhaps, is that we become encumbered 

with the cost and effort of managing processes, collecting, analyzing, and reporting on 
metrics (in fact the CMMI introduced a whole process area for Measurement and Analysis.) 
“Optimizing” means continuous improvement: so we do things like six sigma projects to 
improve and optimize processes.  One must wonder whether the software community that 
the authors of the original CMM document purport to have come to “broad consensus” with 
really represents the whole of the software community, because we cannot find examples 
of large commercial software firms such as Google or Microsoft adopting CMMI or boasting 
high CMMI ratings.  
 

Since 2002 the Defense Department has mandated that contractors responding to 
Requests for proposal (RFP) show that they have implemented CMMI practices. Other 
branches of the Federal Government also have begun to require a minimum CMMI maturity 
level. Often federal RFPs specify a minimum of CMMI level 3. It is therefore no surprise that 
the contractor community has embraced the CMM (and subsequently the CMMI). It is 
reported to have worked well for many large, multi-year programs with stable 
requirements, funding, and staffing.  

 
Traditional criticisms of the CMM are that it imposes too much process on firms, 

making them less productive and efficient. It is said that only organizations of a certain 
scale can afford the resources required to control and manage all of the KPAs at higher 
maturity levels. But again, the CMM tells us what processes areas to address, not how to 
address them (although best practices are suggested.) Problems arise when firms design 
their processes ineffectively.  

 
We feel the need to mention the CMM in this research because, in industry, the case 

is often presented as “Agile vs. CMM”. In fact, CMM is not at odds with Agile. Au contraire 
they could be very complementary. The CMMI version 1.3 was released in November of 
2010, adding support for Agile. Process areas in the CMMI were annotated to explain how 
to interpret them in the context of agile practices. There are even several published 
examples of “Agile CMMI Success Stories”, for example the CollabNet project at a large 
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investment banking firm4

  

. Again, the CMM only guides an organization on what process 
areas to address, but does not dictate how this must be done. Organizations only get into 
trouble when they over-engineer their processes, making them so cumbersome and time 
consuming that, as a result, projects lose their potential for agility and responsiveness 
because they are burdened by the weight of their engineering processes. 

2.4 Agile Software Development 
 

In the 1990s, as the large software firms were “maturing” along the CMM dimension, 
and coinciding with the internet boom and massive growth in the commercial software 
industry, a parallel movement was taking place: lightweight software development 
methods, so-called “Agile” methods were evolving, focusing on “soft” factors such as cross-
functional teams, customer involvement, and face-to-face communication, collaboration, 
and creativity. Agile approaches emphasize rapidly building working software, rather than 
spending a lot of time writing specifications up front. Agile also is geared towards 
incremental delivery and frequent iteration, with continuous customer input along the way. 

 
One of the early examples of agile methodologies is eXtreme Programming (XP,) 

which appeared in the mid-nineties. Extreme Programming emphasizes teamwork. 
Managers, customers, and developers are all equal partners in a collaborative team. It 
implements a simple, yet effective environment enabling teams to become highly productive5

 

. 
It preaches such practices as pair-programming, automated unit-testing and incremental 
development. 

In the dot-com era, time-to-market became critical for web-based startups, as the 
business became an extremely high-velocity environment. The ecosystem of users, needs, 
and technologies were changing at a break-neck speed. One of the main realizations that 
came with this was that “change is inevitable, so we might as well embrace it.” This goes 
against the traditional Change-Management approach of locking down requirements and 
specifications at the outset of a project; however it was the reality for most software 
developers in the commercial realm. 

 
In February 2001, a group of experienced software professionals, representing 

practices ranging from Extreme Programming to SCRUM, and others sympathetic to the 
need for an alternative to heavyweight software development processes, convened in Utah. 
They formed the Agile Alliance and what emerged was the “Agile Manifesto”6

 

, which put 
forth a declaration of the following core values: 

                                                        
4 http://www.open.collab.net/media/pdfs/AgileCMMI_CollabNet.pdf 
5 http://extremeprogramming.org 
6 http://agilemanifesto.org 
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We are uncovering better ways of developing software by doing it and helping others do it. 
Through this work we have come to value: 

Individuals and interactions over processes and tools  
Working software over comprehensive documentation 

Customer collaboration over contract negotiation  
Responding to change over following a plan 

That is, while there is value in the items on the right, we value the items on the left more. 
 
 
In addition to these values, the “Twelve Principles of Agile Software” were also declared: 
 

Our highest priority is to satisfy the customer through early and continuous delivery of 
valuable software.  

Welcome changing requirements, even late in development. Agile processes harness change 
for the customer's competitive advantage.  

Deliver working software frequently, from a couple of weeks to a couple of months, with a 
preference to the shorter timescale. 

Business people and developers must work together daily throughout the project. 

Build projects around motivated individuals. Give them the environment and support they 
need, and trust them to get the job done. 

The most efficient and effective method of conveying information to and within a 
development team is face-to-face conversation. 

Working software is the primary measure of progress.  

Agile processes promote sustainable development. The sponsors, developers, and users 
should be able to maintain a constant pace indefinitely.  

Continuous attention to technical excellence and good design enhances agility.  

Simplicity--the art of maximizing the amount of work not done--is essential.  

The best architectures, requirements, and designs emerge from self-organizing teams.  

At regular intervals, the team reflects on how to become more effective, then tunes and 
adjusts its behavior accordingly. 

 
Table 3 - Principles Behind the Agile Manifesto7

 

 

 
                                                        
7 http://agilemanifesto.org/principles.html 
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 Commercial software companies started adopting agile practices. Today there are 
dozens of purportedly agile methodologies. Yet it is hard to point to a single document, 
framework, or process description to find out exactly what defines Agile.  
 

2.5 The Case for Agile in Government Software Development 
 

A common attitude in the software industry has been that Agile only works for 
small-scale projects with small experienced teams, and that CMM/Waterfall is better suited 
projects of larger scale. However,  the waterfall development life cycle, based on an 
assumption of a relatively stable business environment, becomes overwhelmed by high 
change (Highsmith 2002b). High change is exhibited in today’s environment: whether it is 
to support the war efforts in the 2000s, to address rapidly-evolving cyber-security threats, 
or to compete in an ever-more net-centric world: the demands of the software customer 
today are such that capabilities are needed on shorter time horizons, quality expected out 
of the gate, and the software producers are expected to be nimble enough to mirror the 
fast-paced changes in their customer’s needs and environment changes.  
 

Taking inspiration from the world of biology, Charles Fine argues that each industry 
has its own evolutionary life cycle (or “clockspeed”), measured by the rate at which it 
introduces new products, processes, and organizational structures (Fine 1996). The 
government systems software market had historically been a slow-to-medium-clockspeed 
environment, with software being only a component within large multi-year projects. It is 
now becoming a fast-clockspeed environment, with demand for quick software delivery to 
run on existing networks, infrastructure, and systems. Fine argues that firms must adapt to 
the changing environment to maintain any competitive advantage. Government software 
contractors must then adapt to survive. 
  

In 2010, the Under Secretary of Defense for Acquisition, Technology and Logistics, 
Dr. Ashton Carter (now deputy Secretary of Defense) issued a memo entitled “Better 
Buying Power: Guidance for Obtaining Greater Efficiency and Productivity in Defense 
Spending “– He was on a mission to rein in cost overruns and spending as part of an overall 
plan by Defense Secretary Robert Gates to cut $100 billion from the Pentagon budget over 
the subsequent five years. Carter also directed acquisition managers to award more 
services contracts to small businesses because they provide Defense with “an important 
degree of agility and innovation,” with lower overhead costs (Berwin 2010). 

 
The big government software contractors took note… The Pentagon budget is 

shrinking and they now will increasingly have to compete with small/nimble firms for 
contracts. This is perhaps the single driving force behind why these companies are taking a 
serious look at disrupting their mature product development practices by incorporating 
Agile software development as methods that are practiced in the commercial world, 
including in today’s dominant “born-on-the-web” software giants like Google, Facebook, 
and Amazon. A Forrester Research survey of 1000+ IT professionals in 2009, followed by 
one in 2010, (see Figure 6 in section 3.2) shows a decline in the use of “Traditional” 
development methodologies, and a rise in adoption of Agile. 
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3. Mapping the Genome of Agile Development 
 
The most important thing to know about Agile methods or processes is that there is no such 
thing. There are only Agile teams. The processes we describe as Agile are environments for a 
team to learn how to be Agile. 

• Kent Beck, creator of eXtreme Programming 

3.1 Defining the term “Agile” 
 
 So far in this paper we have been using the words “agile” and “Agile” without 
pausing to ponder the meaning of or explain the context within with they are being used. At 
the outset of this research, I had a very narrow view of what Agile meant. This was based 
on my experiences with XP and Scrum. Subsequently, through research and discussion with 
software professionals from various software industry domains at M.I.T., I quickly realized 
that there is no consensus on the definition of Agile and that different mental models exist 
pertaining to how agile practices fit within the software engineering discipline. 
 

The American Heritage Dictionary defines “agile” as: Characterized by quickness, 
lightness, and ease of movement; nimble. These are the characteristics that we as software 
project managers desire to imbue into our projects, and that we as software developers 
want to see in our development practices. We want to be able to quickly produce high-
quality software and respond in near-real time to changes in customer needs and 
requirements, while reaping benefits in terms of cost and schedule.  

 
Another popular word in industry that has come to represent this concept is “lean.” 

The terms Lean Software Engineering, Lean Software Development, and other similar 
constructs are also being used in conjunction with or en lieu of Agile. The lean concept 
finds its roots in manufacturing and supply chain management, tracing back to the Toyota 
Production System. Lean relates to Agile in that the end goal is to produce product 
(software or other) faster, cheaper, and more efficiently. Lean principles revolve around 
process improvement, such as improving efficiency (eliminating waste), Just-In- Time (JIT) 
engineering, rapid delivery, and team empowerment. For our purposes, Lean is the set of 
"tools" that assist in the identification and steady elimination of “muda” (a Japanese word 
meaning an activity that is wasteful and doesn't add value or is unproductive). As waste is 
eliminated, quality improves while production time and cost are reduced (Gershon 2011). 
As will be presented later in this research, Agile employs Lean tools and principles to 
deliver value. 
 
 Hereafter, when we refer to “agile software development” and “agile development 
methods” we are referring to practices geared towards improving the engineering effort of 
software production. When we refer to “agile project management” we are referring to the 
management of agile software development projects, and not an agile approach to project 
management in general. Finally, there is no definitive definition for the capitalized term 
“Agile” as it is used in various contexts to mean various things. To avoid semantic 
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complications, in this research we use Agile an umbrella term symbolizing the general 
movement towards agile methods in software engineering and its management.  
 
 

3.2 A Brief Review of Agile Methodologies 
 

This research aims to produce a System Dynamics model of Agile software projects. 
In order to model Agile, we must first understand the essence of agility: What makes 
software development agile?  In 2009 and 2010 Forrester Inc. surveyed 1298 and 1093 
software professionals respectively, asking them to select the methodology that most 
closely reflected their development process.  As shown in Figure 6, respondents pointed to 
several popular development methodologies, all of which fall under the Agile umbrella 
(West et al. 2011). In 2010 almost 40% of all responses named one of the “agile family” of 
methodologies. 

 

 
Figure 6 – Forrester Inc. Survey of Agile Methodologies Practiced 

The respondents identified some of the most in-use Agile methodologies, with 
Scrum being the most popular.  In the following section we take a very brief look at some of 
these methodologies. 
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3.2.1 Scrum 
 

Scrum’s origins can be traced back to an article that appeared in the January 1986 
Harvard Business Review, entitled “The New New Product Development Game”. It 
contrasts Waterfall-like practices at the National Aeronautics and Space Administration 
(NASA) to novel approaches at companies like 3M, Fuji-Xerox, Honda, and Cannon. The 
Waterfall approach is likened to a relay-race, while approaches at successful companies 
were portrayed as being more akin to rugby teams “moving the scrum downfield” 
(Takeuchi & Nonaka 1984). Over time, what they called the “rugby approach” later 
morphed into “Scrum”.   

 
 

 
Figure 7 - Representation of the Scrum Process (Deemer et al. 2009) 

Scrum is an iterative, incremental framework for projects and product or 
application development. It structures development in cycles of work called Sprints 
(Deemer et al. 2009). Each sprint is typically a three to four week long development cycle 
wherein self-organizing teams prioritize and select a subset of the features of the software 
to implement. At the end of each sprint, completed features are demonstrated to the 
customer or user, whose feedback is incorporated into the software in later sprints. This 
methodology also calls for short daily stand-up meetings, also known as daily scrums, 
where team members exchange information on progress, next tasks, and surface issues and 
roadblocks so that they are dealt with quickly. Each sprint culminates with a set of 
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completed software features that are “potentially shippable.” Figure 7 above is a simplified 
depiction of this process.  
  

3.2.2 Extreme Programming 
 

Extreme Programming, also referred to as XP, is a lightweight methodology for 
small-to-medium-sized teams developing software in the face of vague or rapidly changing 
requirements (Beck 1999). Like Scrum, it emphasizes iterative and incremental delivery of 
small releases, as depicted in the XP project flowchart in Figure 8. 

 

 
Figure 8 - The XP Development Flowchart 

 
The development practices of XP teams are governed by the following rules: 
 
• The Planning Game. Quickly determine the scope of the next release by 

combining business priorities and technical estimates. As reality overtakes the 
plan, update the plan. 

• Small releases. Put a simple system into production quickly, then release new 
versions on a very short cycle. 

• Metaphor. Guide all development with a simple shared story of how the whole 
system works. 

• Simple design. The system should be designed as simply as possible at any given 
moment. Extra complexity is removed as soon as it is discovered. 

• Testing. Programmers continually write unit tests, which must run flawlessly for 
development to continue. Customers write tests demonstrating that features are 
finished. 

• Refactoring. Programmers restructure the system without changing its behavior 
to remove duplication, improve communication, simplify, or add flexibility. 

• Pair programming. All production code is written with two programmers at one 
machine. 

• Collective ownership. Anyone can change any code anywhere in the system at 
any time. 

• Continuous integration. Integrate and build the system many times a day, every 
time a task is completed. 

http://www.extremeprogramming.org/map/iteration.html�
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• 40 hour week. Work no more than 40 hours a week as a rule. Never work 
overtime a second week in a row. 

• On-site customer. Include a real, live user on the team, available full-time to 
answer questions. 

• Coding standards. Programmers write all code in accordance with rules 
emphasizing communication through the code. 

 
XP was perhaps the first methodology, in the late 1990s, which called for automated 

unit testing of code, and is renowned for also being the first to call for the still-to-this-day 
controversial practice of pair programming.  

3.2.3 Test Driven Development 
 

Inspired by the “test first” philosophy from XP, Test Driven Development (TDD) 
starts the development process by coding automated test cases for the software features 
that are to be produced. Then, production code is developed iteratively until all the tests 
are passed. After each cycle (iteration), all of the tests are re-run to ensure that new 
functionality is well integrated. Refactoring is performed to maintain quality and remove 
duplication in both production and test code. Figure 9 illustrates this process as practiced 
by a software development group at IBM (Maximilien & Williams 2003).  

 

 
Figure 9 - Test Driven Development Process at IBM (UT = Unit Test) 

 TDD’s test-first approach is reported to have a significant impact on defect 
prevention, but more importantly it influences the design of the software. Since developers 
must focus on the interfaces of their modules (this helps in developing modules to pass the 
unit tests) it means that they must employ a type of “Design by Contract” (often referred to 
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as “DbC”) approach to software development. Test-first code tends to be more cohesive and 
less coupled than code in which testing isn’t part of the intimate coding cycle (Beck 2001). 
In a nutshell, Kent Beck, the creator of XP and TDD, lists the benefits of a test-first approach 
as follows: 

• Encourages you to be explicit about the scope of the implementation, 
• Helps separate logical design from physical design from implementation, 
• Grows your confidence in the correct functioning of the system as the system grows. 
• Simplifies your designs.   

 
 

3.2.4 Feature Driven Development 
 
Feature Driven Development (FDD)  is described as having “just enough process to 

ensure scalability and repeatability and encourage creativity and innovation all along the 
way”  (Highsmith 2002a). As shown in Figure 10, FDD breaks the system into feature sets, 
and iterates to produce incremental client-valued pieces of functionality.  FDD can be 
summarized by its eight “best practices”:  
• Domain object modeling: Since FDD was developed originally in 1997 for a Java language 

based project, it is tailored to an Object-Oriented (OO) approach. FDD calls for building 
class diagrams to capture the attributes and relationships between the significant 
objects in the problem space. 

• Developing By Feature: The system is broken up into a set of features which can be 
developed incrementally. In FDD, a feature is a small, client valued function that can be 
implemented in two weeks (Goyal 2007).  

• Individual class ownership: Unlike XP, which calls for “collective code ownership”, FDD 
asks that each class (a unit of code in OO programming) is assigned to an individual who 
is ultimately responsible for it. 

• Feature teams: Features are developed by teams comprised of feature owners and a 
combination of the class owners needed to implement the given feature. 

• Inspections: formal code reviews are held to prevent defects and ensure quality. 
• Regular builds: Allows early detection of integration problems, and makes sure there is 

always a current build available to demo to the customer. 
• Configuration management: The use of source control and version tracking.  
• Reporting and visibility of results: Progress for each feature is based on the completion of 

development milestones (e.g. Design completion, Design Inspection Completion, etc.) 
Progress of the feature sets is regularly reported. 
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Figure 10 - Stages of Feature Driven Development8

FDD is similar to the “agile modeling” methodology since it relies on a UML (Unified 
Modeling Language) model of the system. 

 

 
 

3.2.5 Crystal Methods 
 

On a quest to develop an effective software methodology, Alistair Cockburn interviewed 
and studied project teams for 10 years. He found that “people-centric methodologies” do better 
than “process-centric” methodologies, and that one must choose and tailor the methodology to 
the team and the assignment - no methodology fits all projects. (Cockburn 2004) 

 
The result is Crystal, which is actually a family of methods, rather than a single 

methodology, developed to address the variability between projects. Projects are sized along two 
dimensions: team size, and program criticality. A version of Crystal is subsequently chosen and 
adapted to the specifics of the project. See Figure 11. 

 

                                                        
8 http://www.step-10.com/SoftwareProcess/FeatureDrivenDevelopment/FDDProcesses.html 
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Figure 11 - The Crystal family of methods.9

Team Size accounts for the fact that as a team gets larger communication costs rise and 
face to face communication becomes less effective. More management and coordination become 
required. Criticality on the other hand measures the system’s “potential for causing damage” 
ranging from “loss of life” to “loss of comfort.” The combination of team size and the criticality 
directs a given development effort towards a corresponding Crystal methodology. There are only 
two rules that govern the practice of the Crystal family of methods. 

 

 
1) Incremental cycles cannot exceed four months.  
2) Reflection workshops must be held after every delivery so that the methodology is self-

adapting. 
 

Crystal “focuses on people, interaction, community, skills, talents, and communication as 
first order effects on performance. Process remains important, but secondary” (Highsmith 2002a) 
 
  

                                                        
9 http://alistair.cockburn.us/Crystal+light+methods 
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3.3 The Agile Genome 
 

After review and analysis of many Agile methodologies, some of which were 
described in section 3.2, we come to find that they all share common characteristics. The 
project teams that employ these methodologies in effect practice a variety of remarkably 
similar “agile techniques.”  

 
When seeking to identify the basic set of common attributes that these Agile 

methodologies share, we can start to develop a set of characteristics that we can call “the 
Genome of Agile” – We have distilled these into the following seven genes. 
 

3.3.1 Story/Feature Driven 
 

A principle of the Agile Alliance is that “Working software is the primary measure of 
progress.” Most Agile teams break up their projects into manageable sets of “features”, 
“stories”, “use cases”, or “capabilities,” rather than architecting the complete system up-
front as is done in classic Big Design Up Front (BDUF) approaches. The terminology differs 
across the various methodologies, but the concept is the same. Feature Driven 
Development is perhaps the most obvious example of such a methodology, as it involves 
building a feature list, then planning, designing, and implementing the software feature by 
feature. Note that not all features are equal in size, complexity, or priority. In most agile 
methodologies, features are sized or weighted depending on an estimate of the amount of 
effort required to implement the feature. Feature planning activities must also take into 
account feature inter-dependencies, and plan accordingly. 

 
From a management perspective, the implication of using this approach is that 

management can have a concrete measure of progress by-feature (i.e. 9 out of 10 features 
implemented means 90% complete, assuming all features weighted equally.) This differs 
from traditional EVM-like measures of progress, based on arguably arbitrary milestones, 
where for example, the completion of the design phase translates to claiming forty percent 
of the project complete. One of problems with using a waterfall method paired with EVM 
management methodology is that a project can report to be at 90% completion, yet still 
have no functioning software. 

 
Another advantage of the feature-driven approach is that, as features are developed 

and integrated into the software, they become available for early customer demonstrations 
as well as early integration and test activities – all of which help reduce uncertainty and 
detect defects early in the development cycle, as opposed to waiting for a complete 
integrated build.  

 
The downside of a featured approach is that over time, the software’s architecture 

and code start to exhibit signs of having “high coupling” and “low cohesion,” making it 
harder (and more costly) to maintain and evolve. Coupling refers to the degree to which 
software modules, components, etc., depend on each other – in a system with high coupling 
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there is a high degree of dependency, meaning that changes to one software element is 
likely to have ripple effects and impact on the behavior of other elements. Cohesion is a 
measure of how strongly related the responsibilities of a single software module or 
component are – low cohesion is an indicator of lack of structure in the system. (for 
example, a software library or component that provides a large set of completely unrelated 
functions or services is said to exhibit low cohesion, whereas one that only specifically 
provides string manipulation functions is said to be highly cohesive.) The segmentation of a 
system by feature can lead to “high coupling” and “low cohesion.” Higher coupling and 
lower cohesions means that there are a lot of software interdependencies; changes to one 
area of the software will have more impact on other parts of the system, and thus makes 
future changes more costly and difficult to make. This is why Refactoring (see section 3.3.3) 
is called for by most feature-driven methods. 

  
  

3.3.2 Iterative-Incremental 
 
Another principle of the Agile Alliance is to “deliver working software frequently, 

from a  couple of weeks to a couple of months.” 

• Take advantage of what was learned during earlier development in later 
iterations.  

Development is performed in repeated 
cycles (iterative) and in portions at a time (incremental.) This allows developers to: 

• Focus on short term objectives. 
 
In this approach, development will start with a simple implementation of a subset of 

the software requirements and iteratively enhance the evolving versions until the full 
system is implemented. With each iteration, design modifications are made and new 
functional capabilities are added. Most value is derived when iterations are designed such 
that early tasks help resolve uncertainty later in the project. Rather than one big design 
phase, one big code phase, then one big test phase, here many iterations are performed, 
with each iteration consisting of a short design-code-test cycle. (Figure 12) 
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Figure 12- Design-Code-Test iterations (de Weck, & Lyneis 2011) 

 
This “Iterative-Incremental” characteristic combines with the afore-mentioned 

“feature-driven” gene (see section 3.2.4) to allow the software product to continually 
evolve as a series of product increments, each one adding more features to the existing 
software product. 

 
The Iterative-Incremental concept is not novel nor unique to Agile methodologies. 

There is well documented evidence of extensive Incremental Iterative Development (IID) 
for major software development efforts dating back to the sixties (Larman & Basili 2003). 
Software historians seem to agree that Royce’s original work on the Waterfall has been 
misrepresented as calling for a single iteration of the Waterfall, and that he actually 
proposed several iterations of the process. 

 
In 1994 the DoD’s Defense Science Board Task Force on Acquiring Defense Software 

Commercially, issued a report that stated, “DoD must manage programs using iterative 
development. Apply evolutionary development with rapid deployment of initial functional 
capability.” (Larman & Basili 2003) The result was a new standard for software acquisition 
introduced that same year, Mil-Std-498, which stated:  
 

If a system is developed in multiple builds, its requirements may not be fully defined 
until the final build […] If a system is designed in multiple builds, its design may not be 
fully defined until the final build. 
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 This allowed projects to start while only needing fully-defined requirements for one 
build at a time, rather than a full requirements specification for the entire project, allowing 
later requirements analysis efforts to be informed by work and experience from earlier 
build – a step in the agile direction. This standard, although later replaced by others, was a 
first attempt to introduce the concept of lifecycle and incremental delivery to government 
software projects. It is also an acknowledgement of the fact that Waterfall development and 
acquisition was problematic, and that the previous DoD standards had a “Waterfall bias” 
(perceived preference towards a single-pass Waterfall model of development.)  
 
  

 
Figure 13 - The Spiral Model of Development (Boehm 1987) 

Explicit iteration and incremental development is neither new nor unique to Agile. It 
first came to the fore-front of the software engineering community’s conscience in 1986 
with Barry Boehm’s "A Spiral Model of Software Development and Enhancement". The Spiral 
model, shown in Figure 13, very simply put, calls for repeated waterfall iterations to build 
and refine a software product. Early spirals can achieve goals of producing quick-to-market 
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prototypes which can be tested or presented to customers for early feedback, which 
produces valuable information for later spirals. This approach mitigates project risk and 
allows requirements to be evolved and refined incrementally, keeping the project agile in 
that software is built incrementally and that the approach caters to the reality of evolving 
requirements. 
 

In 2002, the DoD declared “Evolutionary acquisition strategies shall be preferred 
approach to satisfying operational needs” and “Spiral development shall be the preferred 
process“10

• Incremental Development:  End-state requirement is known, and requirement will 
be met over time in several increments 

 The following two acquisition models became the official standards: 

• Spiral Development:  End-state requirements are not known at Program Initiation.  
Requirements for future increments dependent upon technology maturation and 
user feedback from initial increments. 

 
 

3.3.2.1 Illustrative Example 
 

To illustrate the difference between Iterative-Incremental Story/Feature-driven 
approaches vs. a Waterfall/BDUF approach, let us consider the following fictional example: 
Suppose that we are to develop software for an Automated Teller Machine (ATM). The 
software is required to allow users to check balances, withdraw/deposit money, and 
transfer funds between accounts. How would the two approaches differ? Albeit contrived 
and simplified, this example helps clarify the difference. 
 
 

3.3.2.2 Waterfall/BDUF 
 
Figure 14 depicts the flow of a classic Waterfall/BDUF approach: In the Analysis 

phase the requirements for the ATM system may be documented in a “System 
Requirements” document as the result of discussions, negotiations, analysis, and 
compromise between the customer agent and the contractor’s system engineer or business 
analyst. This document is usually named something akin to “System/Subsystem 
Specifications” (SSS). Once the SSS requirements for the system are “locked-in”, the next 
phase “Requirements Specification” can begin. 
 

                                                        
10 DoD Instructions 5000.1 and 5000.2 
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Figure 14 - Example Waterfall Development Flow 

Using a functional decomposition approach, the next levels of requirements are 
developed:  the architecture is produced, which defines three main subsystems, in this ATM 
example: 

• A User Interface subsystem or component, encapsulating the software for 
interacting with the ATM user. 

• A Database component, which is responsible for communicating with the bank’s 
central database and accessing account information. 

• A Hardware Controller subsystem for interfacing with the actual ATM hardware. 
 

For each of subsystem, a “Software Requirements Specification” (SRS) document is 
produced. Also, interfaces between the subsystems/components are specified in some sort 
of document, named something like “Interface Requirements Document” (IRS) or “Interface 
Control Document” (ICD). In theory, if each component meets its SRS requirements, and 
adheres to applicable ICDs, then the system will function as specified in the original SSS.  

 
Next, an individual or team is assigned to the design and development of each 

subsystem, based on its SRS. A design is produced for each subsystem, followed by the 
coding of each software module to implement the design. Then, each module is individually 
tested (Unit Testing.) Once unit testing is completed, the subsystem is tested as a whole, 
bringing together the individual modules in a “Software Integration and Test” (SWIT) 
activity. Finally, the components are integrated and the ATM software system is tested as a 
whole and validated against the original SSS.  
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3.3.2.3 Story/Feature Driven 
 

 
Figure 15 - Feature-Driven Scrum Approach 

 
Figure 5 illustrates development of the same ATM software using a Scrum 

methodology. Using a Story/Feature driven approach, the ATM system is segmented not 
into functional components, but rather into a set features corresponding to the system’s 
use cases: In this example, the ATM software’s list of features may be: Check Balance, 
Withdraw Cash, Deposit Check, Deposit Cash, and Transfer Balances. Note that in feature-
driven approaches, not all features are equal in size or effort. In Scrum, each feature is sized 
by “story points”, a relative measure of the amount of effort estimated to be needed to 
implement that feature. For the purposes of this example, let us consider these features 
equal. 

 
The development team follows by then prioritizing the set of features and starts to 

develop the software feature-by-feature or a subset of features at a time in short “Sprints”. 
As each sprint is completed, the set of features developed are added as an increment to the 
software product’s baseline producing a “potentially shippable product increment.” 
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3.3.3 Refactoring 
 

An incremental and feature driven approach to the development of software systems 
can produce sub-optimal architectures compared to a waterfall model, as discussed 
previously. One of the advantages of BDUF is that the complete up-front design is optimized 
for a full-featured release. Components are well-integrated and duplication is minimized.  

 
On the other hand refactoring is needed to pay off the “technical/design debt” which 

accrues over time, especially when incremental and evolutionary design results in a 
bloated code base, inflexible architecture, duplication, and other undesirable side effects.  

 
The metaphor of technical debt was used by Ward Cunningham (creator of the Wiki) 

to describe what happens as the complexity and architecture of a software project grow 
and it becomes more and more difficult to make enhancements. Figure 16 illustrates this 
concept: as the software product degrades over time, the cost of change increases to the 
detriment of the customer responsiveness. 

 

 
Figure 16 - Technical Debt Curve11

 

 

This concept of technical debt has become popular as it can be understood by both 
technical minded and business minded people. Just like credit debt, technical debt accrues 
interest payments in the form of extra effort that must be made in subsequent development 
cycles. Management can choose to pay down the principal on this debt by refactoring, and 
keep the future cost of change as low as possible.  
 

Controlling the cost of change is very important for an Agile project, since the 
philosophy is to embrace change. Indeed one of the twelve principles of the Agile Manifesto 

                                                        
11 source: http://jimhighsmith.com 
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is to welcome changing requirements, even late in development. Agile processes harness 
change for the customer's competitive advantage. (see Table 3 - Principles Behind the Agile 
Manifesto.) Therefore refactoring is critical to keeping the agile process sustainable 
through the pay-down of technical debt.  

 
Holistically speaking, one could argue that true Agile is not only about the agility of 

the development process, or the team, but also about the software product itself. In other 
words, a “Systems Thinking” perspective would suggest that the software product itself is 
part of the system under study here, in addition to the people, processes, and tools. If the 
software is constantly refactored to keep it easy to adapt and evolve along with the 
requirements, needs, or market environment, then the project can truly be agile. Perhaps 
one of the problems with Agile adoption in large-scale government programs is with 
attempting to employ it on long-running legacy programs that are already deep in technical 
debt. 

 
Many agile methodologies (in particular XP) consider refactoring to be a primary 

development practice. Refactoring has the disadvantage that it takes extra effort and 
requires changing baseline software without any direct or apparent ROI. A project manager 
may ask “why are we spending effort re-designing portions of the system unrelated to the 
next planned set of features?” This is when the technical debt metaphor comes in handy as 
a tool for communicating the business impact of design and architectural decisions. 

 
 The project management may still resist refactoring with: “If we do refactoring, we 

will have to re-test and re-certify existing baseline functionality, at added effort and cost to 
the project!” Any change has the potential to reduce the maturity and the stability of the 
software, requiring regression testing and revalidation of the baseline feature set. This is 
why it is advantageous to practice refactoring in conjunction with test-heavy practices (e.g. 
TDD) and Continuous Integration techniques (see section 3.3.7).  

 
 An example of a software organization that embraces refactoring as part of its 

software engineering culture is Google. The following points, taken from Google’s Agile 
Training (Mcfarland 2006), summarize some of the reasons behind their embrace of 
Refactoring: 

• As code ages, the cost of change goes up 
• As Google grows, the percentage of code in maintenance mode grows with it 
• We need to keep code flexible, so we can change it to suit new market conditions 

quickly 
• It’s not important if all you’re trying to do is get new products out. (Smart 

programmers can develop very good applications without tests, but those applications 
will be much harder to maintain.) 

 
A final note on refactoring and technical/design debt is that this phenomenon can be 

observed at the enterprise level. We observe that much of the work in net-centric 
architectures, which involves evolving an ecosystem of silo’d systems towards a system-of-
systems architecture using technical approaches such as SOA (Service-Oriented 
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Architecture), can be understood through the lens of technical debt as grand-scale 
exercises in refactoring.  

 

3.3.4 Micro-Optimizing 
 

This gene represents the adaptive nature of agile processes. We employ the term 
“Optimizing” because, in most agile methodologies, teams are empowered if not 
encouraged to modify aspects of the development process or dynamically adapt to 
changing circumstances. “Micro” is used to indicate that small process adjustments and 
improvements are made frequently and as needed. For example, the Scrum process 
requires a “Sprint Retrospective” in between iterations. Likewise, Alistair Cockburn – 
author of the Crystal methods -- believes that as the project and the people evolve over 
time, the methodology so too must be tuned and evolved. Crystal therefore calls for 
reflection workshops to be held after every delivery so that the methodology is self-
adapting.  

 
This relates to the concept of Double Loop Learning, as applied to software 

development: Single Loop learning describes the plan-do-check-adjust cycle where we 
learn and increase the efficiency of what we are doing. Double Loop learning is when we 
step back and question our assumptions and goals and revise them.  

 

 
Figure 17 - Simple Representation of Double-Loop Learning 

 
As an example of this, consider code reviews in a software development 

organization that has a process in place that calls for software inspections. This process 
may include an onerous series of tasks such as the manual preparation of code review 
packages. There are so many components, checklists, and forms required to be part of the 
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package that it may take a developer a whole day (or from a project management 
perspective, a person-day worth of effort) to produce this package. Then perhaps several 
days elapse before a meeting can be scheduled for all of the necessary players to convene 
and perform the code review. Finally, action items must be documented, implemented, and 
verified.  

 
Traditional improvement efforts will focus on automating this process and making it 

more efficient. The result of single-loop learning may be process enhancements and 
automations to speed up the code review process for example by automating the review 
package generation task. 

 
On the other hand, a team that exhibits characteristics of double loop learning will 

question the goal of the inspection process itself. What is the return on investment (ROI), 
or value-add, that this inspection process brings to the development effort? It may find that 
the intent is to simply detect and correct coding defects. The team may react by eliminating 
this process altogether and adopting the use of pair programming (as a flavor of real-time 
code inspection) in conjunction with static analysis tools, and even arrange for customer 
demonstrations and user involvement events, in a push to even further attain the goal of 
detecting software defects at the implementation level as well as at the level of system 
users’ needs. 

  
Classic development approaches, even ones that employ a single-pass waterfall, can 

exhibit a “light” flavor of this gene: heavyweight processes often call for Lessons Learned 
activities at the completion of a software project. The problem is that this usually produces 
a Lessons Learned document that rarely feeds into the next development cycle and has 
little improvement effect on subsequent development projects. In the context of Agile, 
however, the sprints are short enough and retrospectives frequent enough so that process 
adjustment is near-continuous throughout the life of a project. 

 
Another aspect of many agile methodologies is that teams are often empowered to 

self-regulate workload. Teams are trusted to self-adjust and gradually learn about how 
much work they can handle in a given period of time (e.g. sprint). In Scrum, the measure of 
“Velocity” or “Sprint Velocity” represents how much product backlog effort can handle in 
one sprint. It is established on a sprint-by-sprint basis as the team learns about the project 
and about working with each other. Typically, team velocity improves as sprint cycles are 
completed and experience gained.   

 
 

3.3.5 Customer Involvement 
 

The Agile Manifesto values “customer collaboration over contract negotiation.” A 
more traditional way of doing things would be to lock-in the system requirements early on 
in the project. Any subsequent change in direction will require contractual changes for 
“added scope” or “scope change”, and formal CCP (Contract Change Proposal) negotiations. 
Although this type of project control mechanism helps keep the size of the project in check 



51 

(and thus helping limit growth in costs and schedule) in the end it may mean that a very 
long time could be spent up front developing, refining, and validating requirements, but the 
customer may not get the best software product. The customer may get what they agreed 
to contractually, but not get the software that they really need. 
 
There are two distinct problems with this “fixed requirements” attitude: 
- The “ah-hah” moment: the first time that you actually use the working product. You 

immediately think of 20 ways you could have made it better. Unfortunately, these very 
valuable insights often come at the end. (Deemer et al. 2009) 

- It is a well-known fact that undetected requirements defects can wreak havoc on a 
project if detected late in the schedule. Indeed, that is one of the reasons that the 
Waterfall method came to be, to lock-down and specify the requirements so that later 
development could proceed without turbulence.  However, as discussed previously, in a 
changing environment requirements must evolve. 

When requirements are 
locked-in up front, there is no room for making the product better later in the 
development cycle.  

 
Often the customer (e.g. the DoD) interfaces with the contractor’s business 

operations and project managers. Requirements are generated by business analysts (in 
some industries also referred to as “system engineers” or “domain experts”) and are flowed 
down to the development team. This means that the people implementing the software are 
at least two or three degrees of separation away from the customer. To make things worse, 
the customer is often not the end user of the software product. For example, the real end-
user might be a soldier in the field. 

 

 
Figure 18 – Disconnect Between Development and Users  

Consider how the waterfall life cycle evolved. First the software development 
process was divided into phases—planning, analysis, design, coding, testing—and then 
roles were assigned to each phase—planner, analyst, designer, coder, tester—and then 
documents were defined for each phase—plan, specification, design document, code, test 
cases. As roles gave rise to specialized groups and people believed that documentation 
could convey all the required information to the next group, the barriers to conversation 
became greater and greater. (Highsmith 2002b) 
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For this research, the “Customer-focused” gene means accepting changing 
requirements and including the user and/or customer in the development team (to the 
degree that this is possible). This can be in daily stand-ups, design reviews and product 
demos. The customer’s availability and input to the development process helps to reduce 
uncertainty and identify rework early. This requires working with the user/customer to 
evolve the requirements throughout the process – with later requirements informed by 
insights gained from earlier development. 

 
An Example of this is the “Product owner” role in the Scrum process, whereby a 

customer or user proxy is present at all team meetings (the daily Scrum), and is the witness 
of product demos to give real-time feedback. 
 
 

3.3.6 Team Dynamics 
 
 The “Team Dynamics” gene represents the collection of “soft factors” and effects 
related to unique agile practices and approaches, and how they affect the development 
team’s performance. 
 

The majority of Agile methods call for frequent meetings to allow teams to self-
organize, prioritize, and assign tasks, while communicating roadblocks. The most efficient 
and effective method of conveying information to and within a development team is face-
to-face conversation (Allen & Henn 2006). Practices such as ‘pair programming,’ and 
attitudes such as ‘collective code ownership’ also are claimed to have positive effects on 
project performance. 

 
A unique team dynamic that emerges in agile teams is a distinctive “social/schedule 

pressure” effect – As teams convene frequently (on a daily basis, in most cases) to report on 
what they are doing, what they have done, and what they plan to do next, a certain level of 
peer pressure comes into play, driving individuals to perform at a higher productivity. 
Additionally, when developing in short increments/sprints, the team experiences more 
frequent bouts of schedule pressure coinciding with the end of each iteration, as opposed 
to a single end-of-project schedule pressure effect. 

 
Another well-known agile practice is that of Pair Programming.  In pair 

programming, two programmers jointly produce work products (e.g. code, design 
documentation). The two programmers periodically switch roles as “the driver” controls 
the pencil, mouse, or keyboard and writes the code. The other partner continuously and 
actively observes the driver’s work, watching for defects, thinking of alternatives, looking 
up resources, and considering strategic implications. The partners deliberately switch roles 
periodically. This practice has been reported in most cases to reduce productivity but 
produce higher quality code.  
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Team co-location and open workspaces and environments are also preferred in 
Agile teams. These also help promote the flow of information between and drive team 
performance through transparency. 
 

3.3.7 Continuous Integration 
 
       Agile methodologies often include certain policies and approaches to Configuration 
Management (CM,) as well as a high level of automation of as many aspects of the 
development process as possible, to speed up the development by eliminating repetitive 
and manual tasks. 
 
 Traditionally, the popular CM approach was to have different teams develop 
portions of the software in isolated environments, and integrate their work products later, 
towards the end of the development cycle. In the mid-1990s, Microsoft moved beyond the 
Waterfall approach to a "synch-and-stabilize" process which relies primarily on daily 
builds for frequent synchronizations and incremental milestones for periodic stabilizations 
of the products under development (Cusumano & Smith 1995). This is one of the early 
examples of automating nightly software builds and frequently integrating various pieces 
of software under development to detect early conflicts. That is one example of Continuous 
Integration. 
 

This gene also includes test automation. Testing can be automated at various levels, 
from unit testing, to the of system-level tests. Test automation means having software 
perform the testing that would otherwise need to be done manually. Once tests have been 
automated, they can be run quickly and repeatedly. This is the most cost effective method 
for software products that have a long maintenance life, which often requires copious 
regression testing to verify that there is no breakage in baseline functionality introduced by 
added features.  

 
Traditionally software houses employ a different set of standards and practices when it 

comes to software development versus software delivery. In fact, it often is the 
responsibility of two completely different teams, whom often use a different set of tools 
and environments. The delivery team’s focus is to compile and ship working software, not 
necessarily developing code. However Continuous Integration calls for a shared 
environment for both - integrating and automating as much as possible. Some principles of 
Continuous Integration are: 
Development: 

1) Stay current (merge code early and often) 
2) Deliver working code (don’t submit changes that break the build) 
3) If the code changes, write a new test 

Delivery: 
1) Build from a clean environment. 
2) Fixing the build is top priority. 
3) Tests should be thorough and repeatable, and run automatically to verify the build. 
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3.4 Summary 
 

Research into agile methodologies has revealed a set of recurring patterns and 
similarities across the software industry. We have captured the essence of what we think 
makes a software project Agile in the following seven characteristics we now dub the 
“Genome of Agile” – see Table 4 - The Genome of Agile. 

 
Gene Name Short Description 

Story/Feature Driven Break up of project into manageable pieces of functionality; 
sometimes named “features”, “stories”, “use cases”, or 
“threads”. 

Iterative-Incremental Development is performed in repeated cycles (iterative) and in 
portions at a time (incremental.)  

Refactoring Refinement of the software design and architecture to improve 
software maintainability and flexibility. 

Micro-Optimizing Teams are empowered to modify aspects of the process or 
dynamically adapt to changing circumstances. Small 
improvements and variable changes are made frequently and 
as needed. 

Customer-Involvement Customer/User involved in demonstrations of functionality to 
verify/validate features. Higher frequency feedback and 
clarification of uncertainty. Availability to  participate in 
development meetings. 

Team Dynamics “Soft” factors related to the project team. Daily meetings, agile 
workspaces, pair programming, schedule/peer pressure, 
experience gain, etc. 

Continuous Integration  Policies and practices related to Configuration Management, 
and build and test automation. 

Table 4 - The Genome of Agile 

 In the following chapters, we will introduce the System Dynamics methodology and 
put it to use in modeling the software project-system, including the seven agile genes. 
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4. System Dynamics and its Applicability to Software 
Project Management 

 
Feedback processes govern all growth, fluctuation, and decay. They are the fundamental basis 
for all change. They allow new insights into the nature of managerial and economic systems 
that have escaped past descriptive and statistical analysis. 

• Jay Forrester, creator of System Dynamics 
 

This chapter provides a high-level introduction to System Dynamics. It follows by taking 
a look at two project-related phenomena, the “rework cycle” and “Brooks’ law”, that have 
been studied in prior research with system dynamics. We conclude this chapter by 
presenting examples of how System Dynamics has been used in industry to study software 
project behavior. 
  

4.1 Introduction to System Dynamics 
 
 Dr. Jay W. Forrester at the Massachusetts Institute of Technology created System 
Dynamics in the 1960s.  It is a method for modeling and understanding the dynamic 
behavior of complex systems. Originally applied to the study of management and 
engineering systems, this powerful approach has found its way into many other fields, 
which study complex systems such as social, urban, economic, and ecological systems, 
amongst others. 
 
 First, let us define the word system. My favorite definition comes from Russel Ackoff, 
a professor at the Wharton School, and a pioneer in the field of Systems Thinking. In 
“Towards a System of Systems Concepts” (Ackoff 1971), Ackoff presents perhaps the best 
attempt at defining the concept of system. It can be summed up in the following definition: 
 
A system is a set of two or more elements, and satisfying the following conditions: 

- Each element can affect the behavior of the whole. 
- The way each element affects the whole depends on at least one other 

element – i.e. no element has an independent effect on the whole

- If you take any groups/subsets of elements and arrange them in any 
fashion, form subgroups in any way at all, then the subgroups will have 
these two properties: 

 (the parts 
are interconnected.) 

o Every subgroup can affect the behavior of the whole 
o The way each subgroup affects the whole depends on at least other 

subgroup (no subgroup can have an independent effect) 
 

An oversimplified version of this would be:  “A system is a whole which cannot be divided 
into independent parts.” 
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If we study this definition carefully, it implies two things about systems that are 
extremely important for management: 

1) The essential properties of any system are properties of the whole which none of its 
parts have. Therefore when a system is taken apart it loses its essential properties. 
E.g. if we disassemble a car, we no longer have a car but a collection of car parts. 

2) No system is the sum of the behavior of its parts; it is a product of their interactions. 
When a system is disassembled, not only does it lose its properties, but so do all of 
the parts. E.g. an engine moves a car, but alone it moves nothing. 
 

 Therefore, we cannot study the development process without considering the 
development team (one criticism of CMM is that it looks at individual programmers as 
replaceable parts.) We cannot study the development team without understanding the 
software they are developing. And so on… 
 
 System Dynamics allows us to model the structure of a system and all its “parts”, 
including the time-delayed relationships among its components. The underlying 
relationships and connections between the components of a system are called the 
structure of the system. The term dynamics refers to change over time. If something is 
dynamic, it is constantly changing. A dynamic system is therefore a system in which the 
variables interact to stimulate changes over time. The way in which the elements or 
variables composing a system vary over time is referred to as the behavior of the system. 
(Martin 1997)  
 
 Central to System Dynamics is the concept of feedback loops, and the concepts of 
stock and flow (also referred to as level and rate). A stock is something that accumulates 
(or drains) over time. A rate describes the quantity per unit-time at which a stock 
accumulates (or drains). Feedback loops are the cause-and-effect chains in the system 
through which a change in one variable creates a circular feedback, ultimately affecting 
itself.  
 

 
Figure 19 - Simple System Dynamics Example 
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To demonstrate these concepts, Figure 19 presents a very simple example of a single-
stock system: 

- Population: is the stock that represents a human population. 
- Birth Rate and Death Rate are the rates at which the stock accumulates and drains, 

respectively. 
- The loop annotated with “R” is a positive feedback loop, also called a reinforcing 

feedback loop because it drives growth in the system. In our example: the more 
Population, the more People Having Children, and thus a higher Birth Rate, leading 
to even more Population. In other words, an increase in population triggers more 
increase in population. 

- The loop annotated with “B” is a negative feedback loop, also called a balancing 
feedback loop because it has a stabilizing effect on the system. In our example: the 
more Population, the greater Over-population, leading to a higher Death Rate, 
which causes a reduction in Population. In other words, an increase in population 
triggers a decrease in population. 

 
The previous example is a very simple single-stock system with only two feedback 

loops. The study of a software development project on the other hand includes many 
stocks, variables, and loops. The type of large scale software projects we are interested in 
belong to the class of complex dynamic systems that, according to John Sterman (Sterman 
1992), exhibit the following characteristics: 

- They are complex and consist of multiple components. 
- They are highly dynamic. 
- They involve multiple feedback processes. 
- They involve non-linear relationships. 
- They involve both “hard” and “soft” data. 

 
In our case, hard data would be measurable data such as cost, and soft data would 

be more intangible data such as ‘employee motivation’. 
 

4.2 The Rework Cycle 
 

The conventional view of a project is as a collection of predefined tasks. Based on a 
predetermined work rate (number of tasks that can be accomplished by the project team 
per unit of time,) the project manager can project an estimate of how long it takes to 
complete development.  Figure 20 shows the SD representation of a project model based on 
these assumptions, using stocks and rates as follows: 

- Work To Do: The amount of work to be performed. 
- Work Done: The amount of work completed. 
- Productivity: The amount of work that can be done per-developer, per unit of 

time. 
- Number of Developers: The number of developers available. 
- Work Rate: The rate at which Work To Do is drained, and at which Work Done 

accumulates. It is the product of Productivity by Number of Developers. 
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Figure 20 - Traditional View of Development Work Completion 

If we execute this model with the following initial values: 
- Work To Do = 8000 Source Lines of Code (SLOC) 
- Productivity = 160 SLOC per Month, per person 
- Number of Developers = 10 people 

Then our Work Rate will be a steady 1600 SLOC per month, and the project will take five 
months to complete (the time at which the level of Work To Do reaches zero), as shown in 
the Figure 21 simulation results from executing this model. 

 
Figure 21 - Development Progress Based on Simple Project Model 

 
However, it is clear that this model is overly simplistic. It does not take into account 

the fact that Work To Do is constantly changing, not only decreasing because of work being 
completed, but also fluctuating because defects, errors, and other forms of “rework” are 
generated during development. 
 

Evolving this model to add in the concept of rework yields the following version of 
the model in Figure 22, where a Fraction Correct and Complete (FCC) dictates the 
percentage of completed work that is correct and defect-free, ending up in the stock of 
Work Done Correctly. The remainder of the work is either incorrect or incomplete and 
requires rework, and thus makes it into the Undiscovered Rework stock. 
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Figure 22 – Basic Project Model with Rework Generation. 

Continuing with our example, assuming an FCC of 80%, we find that 1600 additional 
SLOC worth of rework have been introduced into the system by the fifth month, as shown 
in the graph in Figure 23, generated by executing this revision of the model.  

 
 

 
Figure 23 -Development Progress and Undiscovered Rework 

 
Note that the project is considered complete when Work To Do reaches zero at 

month five. However we also observe that at month five, there are yet 1600 SLOC in 
Undiscovered Rework. In other words, 20% of the completed work needs to be re-worked, 
but the project team is not yet aware of this. It is also important to note that while rework 
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remains undiscovered, project management can overestimate progress, thinking that by 
month 5 the project will be complete. 

  
In real projects however, rework is discovered at various stages through validation 

and verification – Let us further refine this model to introduce an element of rework 
discovery. As code is inspected, tested, integrated, deployed, etc. rework is discovered and 
added to the collection of Work To Do. Figure 24 shows the model revised to add rework 
discovery, assuming a nominal Time to Discover Rework of one month.  
  

 
Figure 24 - Basic Project Model with Rework Generation and Discovery 

 
Figure 25 - Development Progress with Rework Generation and Discovery 
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This completes a simplified model of the classic “Rework Cycle”. Due to the rework 
effects, a project that was planned to complete in five months now takes up to ten months, 
as shown in the output graph in Figure 25. This in part explains the “90%” phenomena: 
often, as a project nears its end, it seems to be stuck at “90% complete” for a long time, 
without apparent progress. The “90% syndrome” is due to the effect of rework discovery: 
especially at the tail-end of a Waterfall project where system level testing and integration 
activities ramp up and begin to identify defects and rework. In our example, our project is 
stuck at 90% from months 6 to 10. As software components are completed and integrated, 
interface problems are identified, as well as user/customer related issues when the final 
product is first presented to them.  

 
Additionally, as rework and defects remain undiscovered in the system, new 

development work built on top of these may end up needing rework as well. We call this 
the “Errors upon Errors” effect: A second order feedback describing the compounding 
nature of undiscovered rework, as shown in Figure 26. The more undiscovered rework in 
the project, the more likely that new work built on top of it will require rework as well. In 
our example, when adding this loop even more rework is generated, and now the project 
takes about 16 months to complete (see Figure 27)!    

  

 
Figure 26 - Rework Cycle Model with Errors-Upon-Errors Effect 
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Figure 27 - Development Progress with Errors Upon Errors Effect. 

 
 

In the field of Strategic Project Management, the rework cycle is seen as being at the 
root of the dynamics behind project performance. Errors and undiscovered rework lead to 
more work in the form of further cycles (iterations) which are unplanned. Traditionally, 
project managers deal with this situation by adding a “buffer” to the project in the planning 
phase, either in the form of a schedule buffer (such as practiced in Critical Chain Path 
Management) or a cost buffer (e.g. the ‘management reserve’ in EVM) to fund extra staffing 
or overtime effort.   
 

The clear messages from the rework cycle are (1) improve fraction correct and 
complete (do it right the first time); (2) discover rework as soon as possible (avoid the 
“errors upon errors” effect); and (3) incorporate estimates of undiscovered rework in 
project status. (de Weck & J. Lyneis 2011) Fine-tuned System Dynamics models can be used 
to estimate the potential impact of rework in projects and plan accordingly. 

 
 
 

4.3 Brooks’ Law 
 

In one of the classic works of software project management, “The Mythical Man 
Month: Essays on Software Engineering”, Fred Brooks first articulated what has now come 
to be known as “Brooks’ Law”: 

 
Adding manpower to a late software project makes it later. (Brooks 1975) 
 
Brooks attributes this phenomenon to two main factors. One is the fact that new 

people on the project take time to become productive, as there is a learning curve 
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associated with introducing new team members. Regardless of a developer’s experience 
and depth of technical expertise, there is usually project-specific knowledge that is unlikely 
to be known to a new person. During this “ramp up” time the team is less productive as a 
whole. This is due not only to the initial low productivity of new team members, but is also 
due to the time that experienced team members must spend mentoring and coaching new 
staff, causing the experienced staff to be less productive themselves. The second factor has 
to do with the communication and coordination costs that increase as the team size grows.  

 
In the context of our SD example model from the previous section, we can describe 

this effect by decomposing our Number of Developers into two stocks of Inexperienced 
Developers and Experienced Developers. Over time, Inexperienced Developers gain 
experience at a rate dictated   by Time to Gain Experience. Also, we add a Hiring Rate and a 
Staff Departure Rate to incorporate the effect of people leaving and joining the project. This 
simple staffing model is depicted below in Figure 28. 

 

 
Figure 28 - Simple Project Staffing Model 

 Now, the other problem with simple project management models is that they 
employ non-dynamic values for Staff, and do not incorporate the effects of a dynamically 
changing staff composition on Productivity and FCC: 

- Staff (Number of Developers) often changes, especially on long-term programs. 
Moreover, not all developers are equal. Experience mix and learning curves play 
a part in how much “effective staff” are actually applied to the work. 

- Productivity is affected by the experience mix of the team. 
- The same is true for FCC, as a higher ratio of experienced to inexperience staff 

will lower defect generation. 
 

Simple project models rely on a static, average, value of productivity, such as the 160 
SLOC per person-month used in our example in section 4.2. Usually this is a historical 
measure of an organization’s performance on other projects. Let us improve this by 
extending the previous model to incorporate the effects of staff on project performance. A 
straightforward approach to this is modeled in Figure 29. 
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Figure 29 - Experience Mix Added to Model 

 
 Relative Experience of New Staff represents the answer to “how experienced are new 
staff members compared to existing project staff members?” This can vary greatly from 
project to project, and organization to organization. For example a new developer on a Java 
project in the Air Traffic Control (ATC) domain may be a Java coding guru with years of 
experience, but be a new hire to the company and have no experience with ATC, the 
company culture, etc. For our modeling purposes, Relative Experience of New Staff is 
modeled as an exogenous variable.  
 

Using this relative experience ratio we can formulate values for the Effect of 
Experience on Productivity and the Effect of Experience on FCC. The effect is based on the 
fraction of staff which are inexperienced and the Relative Experience of New Staff. Adding 
these effects in our model now shows how staffing dynamics affect controlling parameters 
of the rework cycle (Productivity and FCC.) Choosing a value of 20% for Relative Experience 
of New Staff, and ten new developers at the outset of the project, and zero experienced 
developers, we see the following model behavior. 
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Figure 30 - Effect of Experience on Productivity 

 
Figure 31 - Effect of Experience on Fraction Correct and Complete 

 
 Figure 30 and Figure 31 show how Productivity and FCC suffer due to staff 
inexperience, but as developers gain experience and assimilate into the pool of experienced 
staff, the average productivity sees a marked improvement. These graphs plot the Effect of 
Experience on FCC, the number of New Staff¸ and the number of Experienced Staff to provide 
a visual indicator of improvement in FCC as the team composition evolves towards mostly 
experienced staff. Note that the Effect of Experience on FCC is a fraction, and modeled as a 
dimensionless unit (denoted “Dmnl” in these graphs). For example, an Effect of Experience 
on FCC of 1.05 means that this has a 5% improvement effect of FCC. 
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Our simple case so far assumes no staffing changes during the span of the project. 
However, in real projects (especially large-scale software engineering), staff churn is a 
reality that project management must fully consider as an integral part of the project-
system. Let us see what effect staff experience has on project completion time (Figure 32): 
It now takes about 22 months to complete all of Work To Do, for a project that “ideally” 
took five months to do back in Figure 23! 

 

 
Figure 32 - Project Completion With Staff Experience 

Now, let us see what happens when the management, at month number 16, decides 
to “rescue” the project by adding 5 more developers to the team. The results are shown in 
Figure 33. It now takes up to 24 month to complete. 

 

 
Figure 33 - Project Performance with Late Hiring (Brooks' Law) 

 Although a contrived example, this model illustrates the behavior behind Brooks’ 
law. The lesson for software project managers here is again to look for ways to improve 
FCC and Productivity – Adding staff late in the project simply makes things worse because 
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it lowers productivity and increases defect generation, in aggregate. We can observe the 
effect of management’s hiring decision for example by comparing the graphs for Rework 
Generation Rate for both cases (with and without hiring at month 15). The comparison is 
shown in Figure 34. This extra rework, generated due to the addition of new staff, increases 
the amount of work that needs to be done for the project to complete. 
  

 
Figure 34 - Rework Generation, With Increased Rework Generation Due to New Staff 
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4.4 Strategic Project Management with System Dynamics  
 

System Dynamics was famously used by Pugh-Roberts/PA Consulting to diagnose the 
causes of cost and schedule overruns on an Ingalls Shipbuilding (a division of Litton 
Industries, Inc.) multibillion-dollar shipbuilding program in the 1970s, leading to a $447 
million dollar settlement for the shipbuilder (Cooper 1980). Since then, they have applied 
system dynamics in dozens of contract disputes related to cost and schedule overruns on 
very large complex engineering projects.  

 

 
Figure 35 - SD Model Reproducing Behavior of Real (Disguised) Project 

 
Figure 35 shows the project staffing profile on a real multi-million dollar aerospace and 
defense project that ran into such trouble (J. M. Lyneis et al. 2001). Note that the model was 
able to accurately reproduce the system’s behavior, which was well off plan. Furthermore, 
System Dynamics goes beyond post-mortem analysis of troubled projects. System 
Dynamics models can be used to aid in a proactive, strategic/tactical management of design 
and development projects.  
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Figure 36 - Planned vs Simulated Cumulative Effort for Peace Shield Air Defense System Project 

This is illustrated by a case study of the Peace Shield Air Defense System, a $1 billion-
plus Hughes Aircraft (now part of Raytheon) program. On this project, a model (at the heart 
of which was the rework cycle) was used to support the project bid, to identify and manage 
risks, and to assess the benefit of several process and organization changes, which were 
implemented on the project. Upon completion, the actual project results mirrored the 
project plan, on time and within budget (Figure 36). The Acting Assistant Secretary of the 
Air Force for Acquisition, was quoted as saying ‘‘In my 26 years in acquisitions, this is the 
most successful program I’ve ever been involved with, and the leadership of the U.S. Air 
Force agrees.’’ (J. M. Lyneis et al. 2001) 

 

4.5 Summary 
 
This chapter introduced the Systems Dynamics approach to modeling socio-technical 

systems. After a brief overview of stocks, flows, and feedback loops – the basic elements of 
system dynamics models - we took a look at the rework cycle, a model construct that has 
been shown to be at the root of project performance in various System Dynamics research 
efforts. We’ve also illustrated System Dynamics’ applicability to the domain of software 
project management by using the rework cycle along with a simple staffing model to 
demonstrate Brooks’ law (adding manpower to a late software project makes it later). We 
concluded by presenting real-world examples of the use of System Dynamics for strategic 
project management. With this in mind, we next proceed to model the “software 
development system”, while incorporating the structure and feedbacks that capture the 
seven “Agile Genes” presented in section 3.3. This model can be part of an “ongoing 
learning system” that will aid in the design and deployment of software development 
processes for projects that seek to enjoy the benefits of Agile Software Development. 
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5. Modeling the Dynamics of Agile Software Projects 
 

This chapter presents the Agile Project Dynamics (APD) model. Following the research 
into Agile methodologies and our formulation of the agile genome in the previous chapters, 
we now employ System Dynamics to build a model of the software project-system.  Figure 
37 is a notional illustration of the APD model as a “black box” system. As exogenous inputs 
to this model are project-specific parameters (system features, staff, number of releases, 
etc), project-team specific parameters (productivity, rework discovery rate, etc.) and “agile 
levers” (i.e. policies regarding which agile practices, or ‘genes’ to be used in the project). 
Based on these inputs, model simulations capture project performance as output in terms 
of cost, schedule, and quality. 

 

 
Figure 37 - APD Model "Black Box" 
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5.1 APD Model High-Level Overview 
 

The APD model is a complex model developed using the Vensim PLE system 
dynamics modeling tool.  It is built using several “views” which allow us to build different 
subcomponents of the model in isolation, and to link them via the use of “shadow 
variables”. At the core of the model is the “Agile Rework Cycle”. This consists of the rework 
cycle structure extended to support an iterative-incremental development style, or a 
single-pass waterfall approach – so that we can compare these differences. Figure 38 shows 
this cycle. Note that in this figure, many variables and causal links have been removed or 
renamed for clarity and display purposes. This full model structure, complete with all 
contributing variables and loops, is presented in Appendix 1 – The Full Agile Project 
Dynamics Model. Sections 5.2.1 and 5.2.2 will later explain how this structure supports the 
“Feature Driven” and “Iterative-Incremental” gene behaviors. 

 

 
Figure 38 - APD Model, Agile Rework Cycle 

We characterize our complete model as “complex” because it includes 179 variables 
(parameters, lookup tables, equations) and a high number of feedback loops. The table 
below summarizes the number of loops that some of our key parameters are involved in: 
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Variable Number of Loops 
Fraction Correct and Complete 5164 
Sprint Work Being Accomplished 977 
Sprint Backlog 619 
Product Backlog 611 
Sprint Rework Discovery 242 
Release Backlog 212 
Undiscovered Rework In Sprint 111 
Sprint Rework Generation  90 
Productivity 68 
Development Rework Discovery Rate 65 
Effective Staff  12 

Table 5 - Loop Counts for a Sample of Variables in the APD Model 

 Since there are so many loops driving the behavior of the system, we cannot hope to 
explain them all in this document, however what follows is a description of how all of the 
pieces ‘fit together’ in this model.  
 

Each of the seven genes’ has its own set of dynamic effects on these controlling 
variables of the “Agile Rework Cycle” (Figure 38). In other words, each agile practice or 
characteristic has both positive and negative effects on:  

• the rate at which work is accomplished,  
• the rate at which defects are produced,  
• the rate at which defects are discovered, and  
• the rate at which working software is released.  

 
Each gene, when possible, is modeled in its own view, and connected back to the 

agile rework cycle using shadow variables. Shadow variables are a mechanism in the 
Vensim modeling tool whereby a variable that appears in one model view can be 
referenced (or “imported”) into another model view. This allows linking model structure 
across views, and building ‘sub-systems’ of the model in multiple views. 
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Figure 39 - Shadow Variables Linked to FCC in APD Model 

 
For example, Figure 39 shows how Fraction Correct and Complete (FCC) is 

influenced by a host of other variables. Each one of these shadow variables can be found in 
another view of the model - “Effect of Experience on FCC”, for example, can be found in the 
“Staffing and Experience” model view, as presented in section 5.2.8. In this case we are 
“linking” this view to other parts of the model using a formula for Fraction Correct and 
Complete that incorporates all these shadow variables to compute a (dynamically changing) 
FCC value. 
 

It is important to note that there is a distinction to be made between the model itself, 
and a given simulation (or “run”) of the model with specific parameters. The model does 
not change, but it can be run with different parameters. 

5.2 Modeling the Seven Genes of Agile 
 
The following section describes sections of the Agile Project Dynamics (APD) model 

pertaining to agile methods, and delves into the specifics of how each of the seven “agile 
genes” characteristics is modeled in its own view. Where possible, Scrum is used as an 
example and as the “reference methodology” when modeling certain aspects of Agile 
development. 
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5.2.1 Story/Feature Driven 
 
We begin to model the Story/Feature driven nature of an Agile project by modifying 

the structure of the rework cycle to account for the stocks (or “buckets”) of features that 
are maintained as software capabilities are envisioned, planned, prioritized, developed, 
tested, and reworked. 

 
This is better understood when considering that in Scrum, the following stocks of 

work exist: 
- Product Backlog: A backlog exists and evolves over the lifetime of the product; it is 
the product road map. At any point, the Product Backlog is the single, definitive view of 
“everything that could be done by the Team ever, in order of priority”. The Product Backlog 
is continuously updated to reflect changes in the needs of the customer, new ideas or 
insights, moves by the competition, technical hurdles that appear, and so forth. (Deemer et 
al. 2009) 
- Release Backlog: The subset of the Product Backlog that is intended for the 
upcoming release of the software. This is the result of planning and prioritization to select 
which features in the product backlog need to be implemented in the next cycle. 
- Sprint Backlog: The list of tasks/work that the development team must address 
during the next sprint. It consists of a set of tasks required to complete the features 
selected for a subset of the Release. 

 
Note that the features in the Product Backlog and Release Backlog, in Scrum, would 

typically be sized using “story points,” an estimate of the effort that will be required to 
complete them, whereas the Sprint Backlog is a collection of tasks. Therefore all of these 
backlogs can be modeled as stocks of fungible “tasks” in our APD model. These structures 
of the model are shown in Figure 40: 
 

 
Figure 40 – SD Model structure of the Backlogs in an Agile Project 

 A project begins with an initial amount of work (in unit of “tasks”) in the Product 
Backlog. A subset of those tasks is moved into the Release Backlog at the start of a release 
cycle. Each sprint in turn takes a subset of the Release Backlog into the Sprint Backlog to 
begin development work. 
 
 Work within a sprint follows the dynamics of the Rework Cycle, described in section 
4.2. The sprint rework cycle in our APD model is shown below in Figure 41 - Sprint Rework 
Cycle 
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Figure 41 - Sprint Rework Cycle 

 
 Also, as part of this gene, we assume that the recipient of the software product is 
willing to accept the delivery of software releases as integrated “feature sets” or sets of 
client-valued functionality. 
  
 

5.2.2 Iterative-Incremental 
 

To model the iterative and incremental nature of an Agile project, we must repeat 
the process described above in several builds, within several releases, and with a 
fluctuating Product Backlog. Since, as described above, the transition of tasks (quantities of 
work) from one backlog to the other is time/event based, we need signals indicating the 
start and end of release and sprint cycles, to trigger the transition of work. 

 
Figure 42 shows the model structure used to generate the Start of Release Cycle 

Event and the End of Release Cycle Event signals observed in Figure 43. The number of 
Planned Releases and the length of the project (equal to FINAL TIME) are used to calculate 
the length of a release cycle. “InRelease” is a control flag that is helpful in other parts of the 
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model, used in a Boolean fashion to indicate if we are currently within a release cycle or in 
between cycles. In our model we have set the project length to 104 weeks (FINAL TIME = 
104 weeks), with 4 planned releases (Number of Releases if Agile = 4), and half planning 
week in between releases (Release Planning Duration = 0.5 weeks).  

 

 
Figure 42 - Release Cycle Timing Model Elements 

To support the behavior of a waterfall project, we also introduce the Switch for 
Waterfall control, which if set, causes the Release Cycle Duration to equal the duration of 
the entire project (this simulates a single-pass waterfall development approach.) We can 
thus generate events to drive a multi-release or a single pass development lifecycle by 
simply switching on/off this control.  

With the parameters described above, and with the waterfall switch set to “off”, this 
results in a 26 month Release Cycle Duration as can been seen in Figure 43. On the other 
hand, turning on the Switch for Waterfall results in the single-pass release cycle shown in 
Figure 44. 
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Figure 43 - Release Event Times (Multi-release) 

 
Figure 44 - Release Event Times (Single Release) 

 A similar structure (seen in Figure 45) is used to generate sprint start and end 
events (seen in Figure 46): 
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Figure 45 - Modeling of Sprint-related events 

 
Figure 46 - Sprint Start and End Times 
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If we execute our model with all of the above, while monitoring the flow of work in 
our three backlogs, we observe the behavior shown in Figure 47: at the start of a release 
(Start of Release Cycle Event), a set of tasks (Release Size) is moved from the Product 
Backlog to the Release Backlog. At the start of a sprint (Sprint Start Event), an amount of 
work (Sprint Size) is moved from the Release Backlog to the Sprint Backlog. As work is 
performed, tasks are consumed from the Sprint Backlog. 

 
In Figure 47, the top line represents the Product Backlog: we observe it decreasing 

at the beginning of every Release The middle line is the release backlog, which decreases by 
small amounts at frequent intervals (the Sprint Duration). Finally, the almost imperceptible 
(at this scale) line at the bottom represents tasks in the Sprint Backlog. 
 

 
Figure 47 - Transfer of Work through Backlogs 

To emulate a single-pass waterfall project, we employ the Switch for Waterfall 
control to simply set the sizes of these three backlogs to an equal value, thus executing one 
big one big release with a set feature list.  The effect of this can be seen below in Figure 48. 

 

Product Backlog 
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Sprint Backlog 
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Figure 48 - APD Model Emulating a Single-pass Waterfall Project 

 Here, having ‘turned on’ the Switch for Waterfall, we observe that the product and 
release backlogs immediately drop to zero, as all of the development work is being done in 
one giant sprint, effectively emulating the performance of a waterfall-style project.  
 
 

5.2.3 Refactoring 
 

As described in section 3.3.3, refactoring is the work required to restructure the 
software baseline in order to pay off the “Technical Debt.” Technical Debt can be modeled 
as a stock representing an accumulation of tasks over time that, once they reach a certain 
threshold, must be accomplished before any other development can proceed.  
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Figure 49 - Model Elements for Refactoring 

 Figure 49 shows the APD model structure elements and feedbacks that produce this 
dynamic. As work in performed in the project, Technical Debt accrues at the Technical Debt 
Accrual Rate. Tech Debt Accrued per unit of Work represents the percentage of each 
completed work task that is susceptible to refactoring at a later point in time. Quantifying 
the Technical Debt Accrual Rate is extremely difficult; it cannot be calculated a priori, 
especially for a legacy program where development may occur “on top of” an existing 
baseline with an unknown technical debt quantity.  
 
 One way to derive a measure for technical debt is to assess the “quality” of one’s 
code. The SQALE (Software Quality Assessment based on Lifecycle Expectations) is one 
model for doing this. It is a methodology for assessing the quality of code, using algorithms 
to score software quality along the dimensions of: Reusability, Maintainability, Efficiency, 
Changeability, Reliability, and Testability. This type of analysis is available in several static 
analysis packages including:  Insite SaaS, Sonar, SQuORE, and Mia-Quality.12

                                                        
12 http://www.sqale.org/tools 

 Some have 
been using the SQALE SQI (Software Quality Index) as a measure of technical debt. 
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Agile practitioners suggest other, simpler approaches: Agile teams can monitor the 

amount of refactoring compared to the amount of new feature work in each sprint or 
iteration to establish a historical baseline for Technical Debt Accrual.  
 

For testing purposes of our APD model, we will measure technical debt as a fraction 
of the amount of correct work already performed (Release Work Done Correctly). The 
reasoning behind this is that Release Work Done Correctly is proportional to the size of the 
code base (i.e. SLOC.) It also follows that the more SLOC, the more technical debt, as it has 
been long established that lines of code are correlated to effort and defects, and that 
duplication of code is by far the most common form of technical debt.13

 

 It’s also been 
highlighted by mantras in a couple of books: the DRY (don’t repeat yourself) principle in 
the Pragmatic Programmer (A. Hunt, and D. Thomas, Addison Wesley, 1999) and “Once and 
Only Once” from Extreme Programming Explained: Embrace Change (K. Beck, Addison 
Wesley, 1999). (Fowler, 2001) 

 In our model we will use a value 0.05 to represent 5 units of technical debt for every 
100 correct tasks completed to drive Technical Debt Accrual. If Refactoring is practiced 
(using the switch Allow Refactoring) Once the Technical Debt level reaches the Technical 
Debt Pay Off Amount of Work, then that amount of work is moved into Planned Refactoring 
Work to be performed in the next sprint. Figure 50 shows the accumulation of Technical 
Debt over time. Once it reaches Technical Debt Pay Off Amount of Work, the stock is drained 
as the work is planned into the next release. 
 

 
Figure 50 - Accumulation and Pay Off of Technical Debt 

 

                                                        
13 http://jamesshore.com/Blog/An-Approximate-Measure-of-Technical-Debt.html 
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5.2.4 Micro-Optimizing 
 

As described in section 3.3.4, the Micro-Optimizing gene represents the adaptive 
nature of a given project’s development processes. In an Agile project, we can model this by 
recognizing that at the end of each iteration, the team tweaks and fine tunes the process to 
gain small gains in Productivity, FCC, and a small improvement in Rework Discovery. 
Additionally, the team learns over time what their work capacity is, and they dynamically 
adjust the size of each sprint by reducing or increasing the amount of work they choose to 
tackle in the next sprint, based on performance in a previous sprint. 

 

 
Figure 51 - APD Model Elements for Micro-Optimization 

Figure 51 shows how we add this to our APD model. At the end of each iteration, if 
any work is remaining in the Sprint Backlog, it represents the “gap” between the size of the 
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previous sprint and the amount of work that the team was able to accomplish.  This gap is 
represented by the variable Sprint Size Gap at end of Sprint.  This gap amount is used to 
decrease Ideal Sprint Size, at the next Sprint End Event. Ideal Sprint Size will be used to set 
the variable controlling the size of the next sprint, Sprint Size.  

 
On the other hand, if the team finishes all of the Sprint Backlog work before the end 

of the sprint, the Time Left In Sprint at that point is used to determine how much Extra 
Bandwidth the team had to spare in that sprint, and that amount will be used to increase 
the size of the next sprint via the Sprint Size Increase flow. 

 

 
Figure 52 - Example of Dynamically Changing Sprint Size 

Figure 52 above shows the behavior produced when we turn on the control Allow 
Micro-Optimization: a dynamically changing Sprint Size over time when running this model. 
We interpret this graph as follows: the team selects an initial sprint size of 7500 tasks, 
based on initial project parameters (Sprint Duration, Number of Releases, and Release Size). 
Then, as development work proceeds, the team learns and adapts while dynamically 
changing the sprint size, which represents how much work the team can handle within a 
single sprint. At first, there is a dip in this capacity, as the project is still assimilating its’ 
new inexperienced staff, and while requirements are still uncertain. As the project 
progresses, the team becomes more and more productive, while generating less defects, 
allowing them to bite off larger amounts of work as the project proceeds. This behavior 
matches what is observed in industry: Scrum teams report that after a dozen or more 
sprints they become “fine-tuned” and capable of tackling more work per sprint.  

 
The other set of effects that we have gathered under the micro-optimization genes, 

as discussed earlier, are its effects on Fraction Correct and Complete, on Rework Discovery 
Time, and on Productivity. In its current form the APD model uses a simple approach for 
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modeling these simply as a function of the number of sprints completed. In other words, 
the more sprints, the better the team performs along these dimensions. Quantifying this 
however is a difficult task, much like quantifying technical debt. A good approach here 
would be to derive these numbers from historical performance data. For the purposes of 
our modeling, we use a simple lookup table with very conservative values. This produces 
the following improvement over time for FCC, for example as seen in Figure 53. 

 

 
Figure 53 - Example Model Behavior: FCC Improvement as a Function of Sprints Completed 

 
 

5.2.5 Customer Involvement 
 

As detailed in section 3.3.5, Customer Involvement has some positive and some 
negative effects on our core APD rework cycle. What could be considered a negative effect 
is the fact that continuous customer input results in a certain level of requirements churn. 
We model this (Figure 54) by calculating the Fraction of Release Work Completed. Based on 
this measure of work progress, we employ a lookup table in Effect of Customer Involvement 
on Requirements Churn. This variable represents the percentage of the requirements that 
will change based on customer input and how far along in the release we are. For the 
purposes of this model we are using a bell-curve reference mode, with a maximum of 10% 
churn. The rationale behind this is that the most churn occurs toward the middle of the 
release as tangible software is produced and allows the customer to feedback changes into 
the release. 

 
 The positive effects of Customer Involvement are captured in Effect of Customer 
Involvement on FCC and Effect of Customer Involvement on Rework Discovery Time.  
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Effect of Customer Involvement on FCC: A large part of software defects are caused by 
requirements uncertainty. As progress is made during each sprint, requirements 
uncertainty is eliminated with customer feedback and product demos. This in turn 
improves our FCC. 

 
Effect of Customer Involvement on Rework Discovery Time: Likewise, customer 

availability to answer questions, detect conflicts and misunderstandings , and to identify 
usability issues during product demonstrations means that we are more likely to identify 
rework early in the process.  

 

 
Figure 54 - APD Model Elements for Customer Involvement 

 
 In Figure 55, we see the Requirements Churn Rate Based on Customer Involvement. 
This value fluctuates throughout each release between 0 and 30 tasks per week, in this 
example. In this simulation, we have four software releases, with three sprints in each 
release. Notice how, in each release, the requirements churn rate has decreasing several 
steps. These coincide with each sprint within a release – this behavior is intended to 
represent the notion that at the beginning of a release requirements are more fluid and 
subject to change, but as more sprints are completed and as there are less remaining 
features and work to do in the current release, there are fewer requirements subject to 
churn.  
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Figure 55 - Example of Requirements Churn due to Customer Involvement 

  
 Below in Figure 56 we see also the Effect of Customer Involvement on FCC. As each 
sprint nears completion, the effect of having a customer available to validate work products 
results in an improvement in FCC, as uncertainty is reduced. Our model places a lower limit 
of 0.85 on this effect (Max Effect of Requirements Uncertainty) meaning that at worse, 
requirements uncertainty can reduce the FCC by 15%. In this graph we see the value for 
this effect climb up near to 1, then drop back down to 0.85 at regular intervals, coinciding 
with the sprints in the project. This behavior is intended to represent the fact that, as each 
sprint nears completion, the requirements for the features under development in this 
sprint are less and less unclear (especially with customer involvement in scrums and 
feature demos). 
 

 
Figure 56 - APD Example Effect of Customer Involvement on FCC 
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5.2.6 Team Dynamics 
 

The portion of the model, shown in Figure 57, is a very simplistic approximation of 
the effects of the practices of Pair Programming (PP), and frequent (e.g. daily) meetings. 

 

 
Figure 57 - APD Model Elements for Team Dynamics 

 
We know that in industry pair programming is not practiced 100% of the time. 

Typically developers spend 20% to 50% of their time doing PP. Thus Percent Time Spent on 
PP is set to 0.5 for our model, however it can be adjusted per project conditions. 

 
We employ a switch (Allow Pair Programming) in the model to control whether Pair 

Programming is practiced - we can thus model the effects of PP on other parts of the 
system. These are: 

- Effect of PP on Experience Gain: studies have shown greater experience gain 
through PP. We capture this effect in this variable. 

- Effect of PP on Productivity; PP is reported to cause a reduction in productivity 
measures such as SLOC-per-month-per-person. 

- Effect of PP on Defect Generation; PP results in better design and less defects, as it 
creates a form of real-time code review. 
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-  
We also employ a variable “Number of Team Meetings per week” to simulate 

Frequent team meetings (e.g. daily Scrum) and the two effects these have on the system: 
- Effect of Team Meetings on FCC: The more frequent meetings, the more issues are 

raised, questions answered, leading to less defects in the software. 
- Effect of Team Meetings on Sprint Rework Discovery Rate: Rework is discovered 

sooner through constant feedback, especially if a customer is involved in these 
meetings. 

 
There is a third (and negative) effect that could be associated with the practice of 

regular meetings. Is it not true that the more meetings, the less time spent doing work? In 
most cases, the answer is yes. However in an Agile world, especially in the Scrum process, 
great attention is paid to making these team meetings extremely short and extremely 
productive. Daily Scrums are ideally ten to fifteen minutes stand-up meetings, often 
scheduled in the morning to start the day. The time this takes away from ‘doing the work’ is 
therefore negligible, which is we haven’t modeled this aspect. 

 
 The other aspect of Team Dynamics that we presented in section 3.3.6 relates to the 
nature of schedule pressure in the Agile environment: frequent short bursts of schedule 
pressure are experienced at the end of each sprint. 
 

 This dynamic is captured in the feedback loop shown in Figure 58. A calculation of the 
number of extra Developers needed to complete on schedule (for the sprint) is calculated 
based on the Time Left in Sprint and the Effort Remaining in Sprint. If this number is greater 
than zero, then Schedule Pressure is perceived, after a short delay (controlled by Time to 
Perceive Sched Pressure). Schedule Pressure in turn drives work intensity (working harder, 
and using overtime), which then increases the Effective Staff, which is the product of actual 
Staff by Work Intensity. That will increase the Sprint Work Rate and tasks will be 
accomplished faster. 
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Figure 58 - End-of-Sprint Pressure (“Working Harder” Balancing Feedback Loop) 

 However, working at higher intensity also leads to more defect generation (“Haste 
Makes Waste”) as shown in Figure 59, since Work Intensity not only speeds up the 
completion of correct work, but also speeds up the generation of defects: 
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Figure 59 - Schedule Pressure Creates More Defects (“Burn Out” Reinforcing Loop) 

 Moreover, working at high intensity is only sustainable for a short period of time 
before developers start to “Burn Out” and generate more defects than normal (i.e. 
becoming sloppy) –Figure 60 shows this loop in our APD model which captures the effect 
of  increased Work Intensity leading to lower FCC (after a delay.) 
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Figure 60 - Sustained High Intensity Leads to Burn Out 

 
 

5.2.7 Continuous Integration 
 

As described previously, creating a “CI Environment” means acquiring, installing, 
and configuring the tools and servers necessary to support CI. This may include custom 
scripting and development to automate certain aspects of the build process, or even 
modification of the software product to add harnessing or support for test automation. This 
can be a costly up-front effort for any project, and the project cannot enjoy the benefits of 
CI until this environment is available.  
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Figure 61 - APD Model Elements for Continuous Integration 

As seen in Figure 61, our APD model captures the upfront cost of CI setup by 
injecting an amount of tasks into the Continuous Integration Setup Work stock. This is 
calculated simplistically here by using the formula:  

 
Number of Tasks to Setup CI Environment = Nominal Productivity*(Time to set up CI*Staff to set up CI) 
 
 “Time to Setup CI” and ”Staff to set up CI” both are exogenous model parameters that 
can be adjusted for simulation purposes. At the beginning of the project, if there is any CI 
setup work to do, it is the first set of tasks that are transitioned into the Release Backlog. 
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 Also as previously described, Continuous Integration can be broken into two sub-
practices: Configuration Management (CM), and Test Automation. As shown in Figure 61 
CM and Build Environment Automation Level is a lever variable which can be set from 0 to 
10 to indicate the level of automation (how much of the process of preparing and building 
the software for daily development use and especially for release is automated and 
repeatable.) Level of Automated Testing Used likewise represents how much test 
automation is in the system; this can range from 0(no automation) to 10 (fully automated 
unit testing as well as fully automated functional tests – the system can completely self-test 
as part of a nightly build.) 
 
 This allows us to ‘configure’ the Continuous Integration gene depending on the 
nature and purpose of our simulation to have varying degrees of impact on productivity 
and rework discovery.  
 

 
Figure 62 - Examples of Effect of Continuous Integration on Productivity 

 
For example, Figure 62 plots two graphs for the Effect of Continuous Integration on 
Productivity. The solid line is the value of this variable after setting the Level of Automated 
Testing Used and CM and Build Environment Automation Level parameters both to a value of 
3, while the dashed line shows its value after setting them to 8. Simply put, more 
automation means more productivity, as repetitive manual labor is replaced by software 
that automated portions of the workflow. 
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5.2.8 Modeling Staffing and Staff Experience 
 
 Figure 63 shows the portion of the APD model that addresses staffing and 
experience gain. The construct is very similar to that presented in section 4.3, describing 
developer experience mix and its relationship to Brooks’ Law.  

 

 
Figure 63- Staffing and Staff Experience 

 
Figure 64 shows our staffing profile when executing this model. Here the project 

starts with at a pre-determined mix of New Staff and Experienced Staff (10 and 0). As time 
elapses, employees gain experience and become Experienced Staff. Note that we never 
reach a level of 100% of experienced employees, because our staff is changing at the rate of 
5% after every sprint (Staff Churn Rate) to model the fact that in real organizations, 
developers are reassigned to different tasks and efforts regularly.  
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Figure 64 – Staffing Profile from APD Model 

Over time, as employees gain experience, FCC and Productivity improve.  Figure 65 
shows how the effect of staff Experience on Productivity increases over time.   The effect of 
experience on FCC shows a similar behavior. 
 

 
Figure 65 - Effect of Experience Gain on Productivity Increases Over Time 
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5.3 Summary 
 

In this chapter, we presented a high-level overview of the APD model, including  an 
overview of each Agile gene, and how it is modeled as a sub-system using Vensim views. 
The full set of model views are provided for reference in Appendix 1 – The Full Agile 
Project Dynamics Model. Having explained how all the pieces of the model fit together, we 
now move on to experimenting with our model.  
  



98 

6. Model Simulation Experiments 
 
In order to perform “what if” analysis and sensitivity tests on the effects produced 

from the interaction of gene combinations and management policy variables, we have 
constructed a “Management Dashboard” that allows us to “pull the levers” on all of our 
project variables and observe the results (see Figure 66). 
 

 
Figure 66 -APD Management Dashboard 

 The three project performance graphs that we choose to observe in our dashboard 
are based on the three sides of the Iron Triangle: Schedule, Cost, and Quality (see section 
2.1.1). Schedule completion is determined based on the amount of time it takes for the 
Product, Release, and Sprint backlogs to be drained to 0. Cost is determined based on the 
cumulative amount of development effort spent on the project. Quality is determined based 
on the amount of rework (defects) that are in the product. 
 
 Before we begin our experiments, let us set up our base case parameters:  
 
Project Size = 200,000 tasks 
Initial Number of Inexperienced Staff = 10 people 
Initial Number of Experienced Staff = 10 people 
Normal Productivity = 200 tasks per-week, per-person  
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Using the ‘simplistic’ planning method described previously, we might project a completion 
time of 50 weeks (Project Size / Staff*Productivity). However, now that we recognize the 
existence of the rework cycle, and the effects that staff experience mix and staff churn have 
on the project’s performance, we also set the following parameters: 
 
Nominal Fraction Correct and Complete = 80% 
Relative Experience of New Staff = 20% 
 
We will hold these parameters constant for the rest of our experiments in order to perform 
a comparison of waterfall vs. agile given them same external project parameters. We will 
start with a baseline case of a single-pass waterfall project given these parameters, and we 
will proceed to “turn on” agile genes one-by-one to observe their cumulative effects of 
project performance. Table 6, summarizes the set of cases we will cover in the following 
series of experiments. 
 

Case 
Switch for 
Waterfall 

Iterative/ 
incremental 
& Feature-

driven 
Micro-

Optimization Refactoring 
Continuous 
Integration 

Customer 
Involvement 

Pair 
Programming 

Base Case Waterfall OFF OFF OFF OFF OFF OFF 
Case 1 Agile ON OFF OFF OFF OFF OFF 

Case 2 Agile ON ON OFF OFF OFF OFF 

Case 3 Agile ON ON ON OFF OFF OFF 

Case 4 Agile ON ON ON ON OFF OFF 

Case 5 Agile ON ON ON ON ON OFF 

Case 6 Agile ON ON ON ON ON ON 
 

Table 6 - APD Model Experiements Summary 

 For each of our upcoming experiments, we will monitor the results in the form of 
three project performance variables that gauge performance along the three sides of the 
Iron Triangle (refer to section 2.1.1). The first measure, Schedule, gives us an idea of the 
project duration, i.e. how long it will take to fully complete the project. The second 
measure, Cost, gives us an idea of the amount of effort that will be expended to complete 
the project. It is measured as the cumulative amount of effort (in units of “task”) expended 
on the project. The third and final measure is Quality. We measure quality by monitoring at 
the total amount of undiscovered rework in the released software across the duration of 
the project. By “released software” we mean the releases that have been delivered to 
another organization, be it integration and test teams or the final end-user. 
 

Project Performance 

Schedule 
(weeks) 

Cost  
(tasks) 

Quality 
(H/M/L) 

100 200000 M 
Table 7 - Example Project Performance Triplet 
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An important thing to keep in mind when observing the Quality measure is that we do 
not simply look at the number of undiscovered rework tasks in the product, but we give it a 
rating of “H”, “M”, or “L” (High, Medium, or Low quality) based on the probability that  
defects are latent in the system at any given point in time. The more undiscovered rework 
items are in the system, the more likely that a software release will contain a number of 
these. Since we have not built a mechanism in the model to calculate this, for our purposes 
we are simply monitoring the “Quality Profile” graph of the project and making a 
corresponding visual judgment based on the apparent area under the curve. In Figure 67 
we show a side-by-side example of quality profile graphs from two different simulations. 
Roughly, project A has much higher Undiscovered Rework, and over longer periods of time 
than project B (higher amplitude and frequency) – In this situation we score project A with 
“L” for low quality and project B with an “H” for high-quality. 

  
 

  
Figure 67- Examples of Quality Profile Graphs 

 Our APD model and set of experiments is not predicting or re-creating results from 
real projects, but comparing behavior of the project under different scenarios. Different 
exogenous parameters would produce different results, but here we are holding those 
exogenous parameters constant to perform a relative comparison of behavior based solely 
on the selection of Agile genes. 
  

6.1 Base Case Experiment (single-pass waterfall): 
   
 As a base-case, we start by executing the model in “waterfall mode” by using 
our ‘Switch for Waterfall”. It yields the following results: 
 
Project End Time Figure 68: 79 Weeks (see ). Note that the project end time is the point at 
which all of the work backlogs have been depleted.  
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Figure 68 - APD Base Case Schedule 

Project Cost Figure 69: 250,223 tasks (see ). Note that for management, this is translatable 
into a dollar cost. We are currently using “task” as a fungible unit of work. This can easily be 
substituted with person-hours. Using this in conjunction with labor costs, we can quickly 
determine the dollar amount of the effort spent. For our purposes, however, “task” is an 
acceptable unit of cost. 

 
Figure 69 - APD Base Case Cost 
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Project Quality Figure 70: 277 tasks (see ). Note that here we are measuring quality by the 
amount of undiscovered rework tasks that escape into the delivered product. 
 

 
Figure 70 - APD Base Case Quality 

In summary, our base case scenario produced the following project performance: 
 

Project Performance 

Schedule 
(weeks) 

Cost  
(tasks) 

Quality 
(rework tasks) 

79 250,223 L 
Table 8 - Base Case Project Performance 

 
 

6.2 Case 1: Fixed-schedule Feature-Driven 
Iterative/Incremental 

 
In the next experiment, we ‘turn off’ the waterfall switch. This activates the 

iterative/incremental gene and the feature-driven gene, such that our project is now 
broken up into 4 equally sized releases that are delivered in regular intervals in feature 
sets. Executing the model with these settings produces the following project performance 
results: 
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  Project Performance 

Case 
Schedule 
(weeks) 

Cost  
(tasks) 

Quality 
(tasks) 

Base Case 79 250,223 L 
Case 1 95 275,111 M 

Table 9 - Case 1 Project Performance 

 Looking at these results, we find that the same project now takes 16 extra weeks, 
ending at week 95, and incurs extra cost (roughly 25000 more tasks). However, the 
product now is delivered with zero defects. Cost and Quality graphs can be observed below 
in Figure 71. 
 

 
Figure 71 - Case 1 Cost and Quality 

 Moreover, there is a much more subtle difference generated by this case: the 
software is now delivered in four releases, i.e. four functional increments. These are 
annotated below on the Schedule graph in Figure 72. Each release is not just a random 
chunk of the software, but a cohesive feature set that is “potentially shippable” and has 
client/end-user value. Each release can be tested against system-level specifications and 
user expectations. 
 

This can be of tremendous value to the recipient of the software release: they can 
immediately start providing feedback and acting as a “beta-tester” as of release #1 in week 
24. If the recipient of this release is an integration, test, or quality assurance organization, 
they can get a head start on testing the software against the system specifications, 
performing boundary case testes, and so on. In fact, depending on the project environment, 
being able to several early increments of functionality may be more valuable to the 
customer than the added cost incurred by this case. 
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Figure 72 - Case 1 Schedule 

   

6.3 Case 2: Introduction of Micro-Optimization. 
 
Next, we will enable Micro-Optimization. As explained earlier (section 3.3.4), this model 

element simulates the management policy of empowering the development team to self-
manage workload, and to perform process tweaks in between sprints, using learning from 
prior sprints to improve future sprint performance . We start by setting the Agile Levers for 
case 2. Running the model with these two genes now produces the following project 
performance results: 
  

  Project Performance 

Case 
Schedule 
(weeks) 

Cost  
(tasks) 

Quality 
(tasks) 

Base Case 79 250,223 L 
Case 1 95 275,111 M 
Case 2 82 244,436 M 

Table 10 - Case 2 Project Performance 

We see improved project duration, down to 82 weeks instead of 95 in case 1. Our costs 
of around 244K tasks are also lower than both the base case (250K tasks) and case 1 (275K 
tasks).  
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Although this may seem counter-intuitive to management, the results here suggest that 
a team empowered to self-regulate their workload may curtail costs and schedule overrun 
as opposed to an incremental delivery model whose releases are dictated in advance. Given 
more time, it is almost always possible to improve the product and this could lead to the 
“gold-plating” effect where teams spend time over-engineering the product beyond what is 
necessary to achieve the desired functionality (it is almost the opposite of ‘technical debt’). 
However, the fact that agile iterations are time-boxed and are feature-driven mitigates this 
issue, as teams will give priority and focus to completing specific features.  

 
 
 

 
Figure 73 - Case 2 Schedule 

If we examine our work backlogs in Figure 73, we see that roughly two-thirds of the 
functionality is delivered in the first two releases, around week 50. What has happened 
here, as opposed to the previous case, is that teams can gradually handle more work than 
was allotted to them per-sprint in the previous case, and have self-regulated the amount of 
work they do per-sprint. This allows them to get more sprints completed by week 50 than 
in the previous case. 
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6.4 Case 3: Introduction of Refactoring 
 

In this case we will allow refactoring. As described earlier (5.2.3) this means that when 
the “technical/design debt” for the project reaches a threshold, the development team will 
take time to work on additional refactoring tasks to improve the quality of the software and 
keep it flexible and easy/cheap for expansion and addition of future features. 

 
Executing the model thus, with three of the genes, now produces the following 

project performance results: 
   

  Project Performance 

Case 
Schedule 
(weeks) 

Cost  
(tasks) 

Quality 
(tasks) 

Base Case 79 250,223 L 
Case 1 95 275,111 M 
Case 2 82 244,436 M 
Case 3 81.6 243,904 M 

Table 11 - Case 3 Project Performance 

Intuitively, management may have thought that allowing refactoring is akin to scope 
creep, and thus may have thought that this would have increased either our cost or slipped 
the schedule. Our results, on the contrary, show that allowing refactoring resulted in a very 
minor (albeit negligible) improvement in schedule and in cost. To explain this, let us take a 
look at the graph for Technical Debt in case 3 vs. case 2 – see Figure 74. As can be observed 
in this graph, refactoring keeps our technical debt’s “balance” low by refactoring. This is 
turn has a less detrimental effect on our Fraction Correct and Complete than when letting 
technical debt get out of hand, as shown in Figure 75. 
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Figure 74 - Technical Debt Profile, Case 2 vs. Case 3 

 
Figure 75 - Effect of Technical Debt on FCC, Case 2 vs. Case 3 

 
 Finally, there is one more subtle benefit observed in this case. Since we are now 
delivering the software in multiple releases, let’s look at the number of undiscovered 
rework tasks in the software at each release. This is shown in Figure 76.  
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Figure 76 - Defects in Software, Case 2 vs. Case 3 

 
 

Here we find that in case 2, the software was released with 28.5 defects, vs 8.9 
defects in case 3 where refactoring was allowed. In other words, refactoring also allows the 
development team to produce better quality incremental releases. This makes sense 
intuitively, as it is clear that refactoring to optimize will improve the quality of the 
software, however the surprising part is the previous finding: that refactoring has no 
detrimental effect on cost or schedule. This is because of the positive effect that unpaid 
technical debt has on defect generation. 
 
 

6.5 Case 4: Introduction of Continuous Integration 
 

We now activate the Continuous Integration lever. This will create an initial load in 
tasks to be performed, representing the initial effort to set up and configure the 
development and delivery environment. Later, once that environment is available, it 
enhances productivity, and our ability to detect rework tasks (thanks to automated 
testing).  

 
Executing the model with these parameters produces the following project 

performance results: 
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  Project Performance 

Case 
Schedule 
(weeks) 

Cost  
(tasks) 

Quality 
(tasks) 

Base Case 79 250,223 L 
Case 1 95 275,111 M 
Case 2 82 244,436 M 
Case 3 81.6 243,904 M 
Case 4 62.8 255,593 H 

Table 12 - Case 4 Project Performance 

 There are no surprises here: Introducing Continuous Integration increases cost 
somewhat, due to the up-front investment to configure such an environment. However, the 
cost is recouped in schedule time. The project duration is shortened thanks to a significant 
speed-up in rework discovery. If the project were extended beyond 104 weeks to several 
years, this up-front cost becomes negligible. Another interesting observation with this gene 
is the quality profile as exhibited in Figure 77. 
 

 
Figure 77 - Case 4 Quality 

Compared to what we saw in cases 2 and 3, our quality profile shows that defects have a 
short life on the project, as they are quickly discovered and addressed. This has several 
positive effects, chiefly: the “Errors upon Errors” dynamic, described in section 4.2, is less 
powerful, as there are less undiscovered rework tasks dormant in the system at any given 
time. 
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6.6 Case 5: Introducing Customer Involvement 
   

We now introduce the Customer Involvement gene, which means that there will be 
some requirements churn, however requirements uncertainty will be reduced as sprints 
progress, since the customer/user is available for feature demonstrations and immediate 
feedback. 

 
Running a simulation with the above parameters yields the following results: 
 

Case 
Schedule 
(weeks) 

Cost  
(tasks) 

Quality 
(tasks) 

Base Case 79 250,223 L 
Case 1 95 275,111 M 
Case 2 82 244,436 M 
Case 3 81.6 243,904 M 
Case 4 62.8 255,593 H 
Case 5 55.2 237,593 H 

Table 13 - Case 5 Project Performance 

It seems that Customer involvement has improved both cost and schedule. The root of this 
is due to the effect of requirements uncertainty on the FCC.  
 

 
Figure 78 - Effect of Uncertain Requirements on FCC, Case 4 vs. Case 5 
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Figure 78 shows the graph for Effect of Uncertain Requirements on FCC for cases 4 and 5. 
In case 4, there was no customer involvement, and thus no reduction in uncertainty (effect 
is linear at 0.85). In case 5, as each sprint nears completion there is less uncertainty (thus 
higher FCC) as the development team is able to demonstrate features to customers and 
clarify any uncertainty on a regular informal basis. 
 
 

6.7 Case 6: Introducing Pair Programming 
 

In the final case, we look at the effect that the pair programming has on our projects’ 
performance. In industry, pair programming is not practiced 100% of the time. Typically 
developers spend 20% to 50% of their time doing pair programming, thus we have set the 
value of Percent Time Spent on PP to a conservative 0.5.  
 

Performing a simulation with these parameters produces the following project 
performance measures: 
 

Case 
Schedule 
(weeks) 

Cost  
(tasks) 

Quality 
(tasks) 

Base Case 79 250,223 L 
Case 1 95 275,111 M 
Case 2 82 244,436 M 
Case 3 81.6 243,904 M 
Case 4 62.8 255,593 H 
Case 5 55.2 237,593 H 
Case 6 52.6 223,749 H 

Table 14 - Case 6 Project Performance 

 We see that our project performs even better in terms of schedule compared to case 
5 (52.6 weeks vs. 55.2 weeks), as well as in cost (roughly 14000 fewer tasks in 
development effort). This is also counter-intuitive: Pair Programming has a significant 
effect on productivity, as described in section 5.2.6. This is visible in our graph of 
development productivity in case 5 vs. case 6, seen in Figure 79. 
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Figure 79 - Productivity Comparison, Case 5 vs. Case 6 

 
 So, why does Pair Programming improve project performance? The answer lies in 
the amount of rework that is generated in each case.  
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Figure 80 - FCC, Case 5 vs. Case 6 

As we can see in Figure 80, our FCC is significantly better when employing Pair 
Programming. It is well understood that this practice produced higher quality code, as it 
serves as a form of real-time inspection. However, what is not immediately obvious is that 
better quality code begets fewer defects in subsequent development. Thus, the loss in 
productivity is more than made up for by the lower defect generation rates when 
employing this practice. 
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7. Conclusions and Recommendations 
 

7.1 Interpretation of results 
 

The six experiments performed in the previous section are but a subset of the 
combination and permutation of genes that can be experimented with. With six Agile gene 
related switches (note, that we get Feature-driven plus Interactive-incremental 
automatically when we switch-off Waterfall)  , this means that we could experiment with 
26

  

, or 64 different gene combinations. Moreover, each one of the genes can have a varying 
effect depending on the setting of that gene’s “sub-parameters. These sub-parameters are 
summarized below: 

Micro-Optimization: Improvement in FCC based on Sprints Completed, Improvement in 
Productivity based on Sprints Completed, and Improvement in Rework Discovery based on 
Sprints Completed are table functions that translate the number of sprints completed into a 
fractional improvement in three of the rework cycle’s controlling parameters.  

Refactoring:  Technical Debt Accrued per Unit of Work, Effect of Technical Debt on FCC, 
and Refactoring Aggressiveness represent “how much technical debt is accumulating”, 
“what its effect on FCC is”,  and “how proactive is the project in refactoring their software”. 

Continuous Integration: Here we employ several exogenous parameters that specify 
a) the cost of setting up continuous integration, b) the level of automation that is employed, 
and c) the effect of continuous integration on FCC and Rework Discovery. The variables are: 
Level of Automated Testing Used, CM and Build Environment Automation Level, Effect of 
Automated Testing on Rework Discovery, Effect of Automated Testing on Productivity, Effect 
of CM Environment on Rework Discovery, and Effect of CM Environment on Productivity. 

Customer Involvement: Here we have external parameters that dictate how much 
requirements changes (negative aspect) will result from customer involvement, as well as 
how their involvement will help rework discovery and reduce uncertainty. The variables 
are: Effect of Customer Involvement on Requirements Churn, Elimination of Requirements 
Uncertainty Based on Sprint Progress, and Improvement in Rework Discovery Due to 
Customer Involvement. 

Team Dynamics: Here we capture the effect of team meetings and pair programming 
on the rework cycle. The sub-parameter variables are: Effect of PP on FCC, Effect of PP on 
Experience Gain, Effect of PP on Productivity, Effect of Agile Teams on Pdy, Effect of Team 
Meetings on FCC, and Effect of Team Meetings on Rework Discovery. 

 
 These sub-parameters (some exogenous variables and some lookup table functions) 
have been modeled using conservative values and assumptions as described in section 5.2. 
We have performed our experiments without changing these parameters – doing so would 
have exponentially increased the complexity of our experiment, way beyond the 64 high-
level cases defined by the binary on/off variables employed in our simulations. Additional 
improvements in the model can include a second dashboard that allows experimentation 
with all of the sub-parameters. 
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 Without calibrating or fine-tuning these sub-parameters, we cannot make any 
definitive claims about the ability of the model to reproduce the behavior of a real project, 
nor can we use it for predictive purposes. Each of the seven genes has both reinforcing and 
balancing effects on the system, via direct or indirect impact on the key parameters of the 
project’s rework cycle, namely: Productivity, Effective Staff, Fraction Correct and Complete, 
Development Rework Discovery Rate. Some of the genes also have the potential of 
generating more tasks to be performed in either the Product Backlog or the Release 
Backlog.  
 

Depending on the choice of sub-parameter values, each gene’s impact can be 
weighted one way or the other. To clarify this point, for example, as discussed earlier: pair 
programming lowers productivity, but improves quality. Depending on which of these two 
effects is more powerful, pair programming may or may not be a beneficial practice for 
project performance.  
 
 Nevertheless, the development of this model has provided insight into how these 
Agile Genes interact to produce project behavior. This research has also generated 
considerable personal learning through experimentation with the model structure. In 
retrospect, the development of the model itself was an iterative and incremental process – 
the construction of each new portion of the model revealed new insights and learning 
about the inter-relationships between the different agile practices, and how they affect 
project performance. 
  

7.2 Comparison of experiment results with personal 
experience 

 
 Experimentation with the APD has led to the understanding of some of the results 
from my personal experience with Agile. During the times when I have practiced some 
form of Agile development, I have never been in an environment where all seven of the 
Agile genes were employed. 
 
 In these environments within which I have practiced Agile, Customer Involvement 
was never truly practiced: in my case a System Engineer (SE) has played the role of 
customer proxy, and was either unwilling or unable to participate in daily scrums. 
Moreover, there is no guarantee that an SE could really represent the vision of the end user 
(In the case described in section 1.2, the SE was completely new to the Air Traffic domain). 
 
 Continuous Integration was also not truly practiced in my experience: Although we 
employed automatic unit-testing, very little else was automated. Functional tests were still 
long and laborious procedure-driven tasks. Configuration Management policy was also 
isolationist: in other words, pieces of functionality were developed in isolation and only 
integrated (“merged”) near the end of the development cycle, thus no “continuous” aspect 
of integration to identify rework early. 
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 Refactoring (at least, large-scale refactoring) is also a frowned-upon practice. It is 
considered by managers who do not understand the concept of Technical Debt to be extra 
non-value-added work. In one project (other than those I have mentioned previously) I 
found a massive amount of duplication in the C++ class hierarchy in various areas of the 
software. When I proceeded with a big refactoring effort, a senior engineering fellow was 
brought in by management to investigate my actions (as a sort of external technical 
auditor). Thankfully, he agreed with what I was doing and I moved on unscathed; however 
this is illustrative of the type of anti-refactoring sentiment in many large-scale software 
development communities. Likewise, I only had the opportunity to practice Pair 
Programming in the one case mentioned in section 1.2, otherwise this is also deemed as a 
productivity waste in large-scale software organizations. 
 
 This means that in most of my personal experiences with Agile, we were only able to 
employ elements of the Feature-Driven, Iterative-Incremental, and Micro-Optimizing genes. 
If we execute the APD model with the same base parameters, and only these genes 
activated, we get the following results: 
 

Case 
Schedule 
(weeks) 

Cost  
(tasks) 

Quality 
(tasks) 

Base Case 79 250223 277 
“Personal” Case 82 242213 0 

Figure 81 - APD Project Performance for “Personal” Case 

 The results are identical to Case #2 discussed earlier during our experimentation. 
As we can see, this configuration saves some cost, improves quality, and yet delays the 
project by three weeks. This is by no means a win for agile over waterfall, or grounds to 
declare one superior to the other. Depending on program priorities, schedule may be the 
most important factor. However this explains a bit more about the promise and reality of 
agile practices. 
 
 

7.3 Adopting Agile Practices in Large-Scale Software 
Engineering  

 
 Some of the “low hanging fruit”, what I will call “primitive agile genes”, are ones 
such as Team Dynamics, Feature-Driven, and Iterative-Incremental. These are relatively 
easy to implement or adopt, as most of these practices dictate the behavior of the software 
development team alone, and do not require much buy-in from other stakeholders in the 
product development organization (e.g. system engineering, quality assurance, 
management, etc.) So a development team can easily adopt these primitive genes. As is 
often reported, these practices are well received by developers, who will swear that they 
are doing “Agile development”, even though from a project performance perspective, there 
is nothing different or agile about the cost, schedule, or quality of the software as far as the 
customer is concerned. Especially when practiced within a larger waterfall context, these 
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primitive agile genes have little impact externally on the overall project behavior. In other 
words, Agile development can lose some of its benefits when practiced within an 
otherwise-waterfall program. This approach is starting to be known as “Water-Scrum-Fall” 
(Figure 82). 
 

 
Figure 82 - Water-Scrum-Fall 

 On the other hand, some of the more “advanced genes” such as Continuous 
Integration and Customer Involvement require much more coordination and buy-in from 
other stakeholders in the product development system, on a wider scale.  
 

Continuous Integration brings with it a whole new approach and philosophy to 
development environments, requiring new tools, processes, and changes to existing skill-
sets. It is an expensive venture that may involve retraining a team that has evolved over 
years of waterfall development. This is a cultural change as much as a technology or 
methodologies change. It means, amongst other things, that development and integration 
work has to be highly parallelized and integrated – This is often not the case in large-scale 
government software where development teams “throw work over the wall” to the 
integration team in assembly-line fashion. 

 
Customer Involvement would be an even bigger cultural change, for the customer as 

well as the contractors: the contractor will have to be open to evolving and changing 
requirements as the project progresses, and the customer will have to be available 

 
 

Scrum 
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(preferably present) for daily scrums and regular product demos, as well as open to 
incremental delivery models. 

 
 

Assessment 
Level Agile Gene examples/comments 

1 Team Dynamics Daily Scrums, agile work spaces 
2 Iterative-Incremental Spiral development 
3 Feature Driven System segmented by feature 
4 Refactoring de-duplication of code, redesign 
5 Micro-Optimizing frequent process tweaks 
6 Customer Involvement on-site customer/user 
7 Continuous Integration Fully automated system tests 

Table 15 - Notional Proposed Agility Assessment Model Levels 

 
Considering the spectrum of primitive-to-advanced practices in the Agile Genome, and 

inspired by the concept of maturity levels, we may begin formulate an “Agility Assessment 
Model” (AAM) as shown in Table 15, where at each level a new Agile Gene is employed as 
well as all the genes of the levels below. A software development organization could be 
rated on a scale of 1 to 7, with 7 being the most Agile. 
 
 

7.4 Follow-on work suggestions for extending the model 
 
As discussed earlier, our APD model cannot does not replicate any specific past projects 

nor does it predict the performance of current projects. To do that, it must be properly 
calibrated. We do however claim that this model is useful for management self-directed 
learning and exploration. Traditional management science often favors the case study 
method, whereby information from real management situations are gathered and 
organized in a descriptive form. But the case study approach leaves that information in a 
descriptive form that cannot reliably cope with the dynamic complexity that is involved in a 
system. System dynamics modeling can organize the descriptive information, retain the 
richness of the real processes, build on the experiential knowledge of managers, and reveal 
the variety of dynamic behaviors that follow from different choices of policies (Forrester 
1989). 

 
Our model can be extended, calibrated, and enhanced to support future explorations 

into Agile project Dynamics. The following list summarizes suggestions as to areas of the 
model that can benefit from future extension and refinement: 

- Refactoring: The model component for this gene is built upon the concept of 
Technical Debt. For more accuracy in model simulations, further research is 
needed for understanding (a) how to quantify technical debt, and (b) how to 
quantify the effect of technical debt on future development in terms of its effects 
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on the FCC and Productivity. There is a significant body of existing research on 
software complexity, software evolution, and software maintenance that can be 
leveraged for this effort. 

- Continuous Integration:  The model component for this gene uses a simple 
structure and conservative parameter values to model these practices. For better 
simulations we need to understand and quantify the costs and benefits of test 
automation, build/delivery automation, and general configuration management 
approaches, in terms of how these affect project performance. The best way to 
do this may be via analysis of before-and-after project metrics for projects that 
have switched to employ these practices. 

- Team Dynamics: We currently model this gene by considering the effects of 
frequent team meetings, pair programming, and schedule pressure on the 
development team. However the parametric values need to be calibrated using 
real world data. We may also seek to augment this gene by also incorporating 
the effects of “agile workspaces” (i.e. open collaborative spaces), “collaborative 
environments” (i.e. the use of collaborative software environments such as 
internal social media platforms). 

- Micro- Optimizing: The simple structure for this gene currently improves FCC, 
Productivity, and Rework Discovery Time by a tiny fraction after the completion 
of each sprint. This mimics reports from agile practitioners that agile teams 
seem to gradually improve along these dimensions after many sprint cycles. Our 
model generates such behavior by using a “sprint counter” to generate this 
behavior, however this is a surrogate for the learning and knowledge gains that 
take place as teams become adept at practicing Agile development. Our model 
could be enhanced to model this as learning curve rather than a function of 
sprints completed. Additionally, a study of agile project data and metrics must be 
performed to quantify and derive plausible formulations and values for these 
effects.  

- Customer Involvement: The same is true for this gene. Although we use 
conservative values in our experiments, we must mine the data from actual 
projects to quantify the power of these effects. 

- Staffing: The APD model starts with predetermined staffing levels and a pre-set 
churn rate. The staffing component can be augmented to allow dynamics staff 
loading. For example, it can be enhanced to allow adjusting project staff to suit 
workload levels. 

- Quality Assurance: We currently have a simple model structure that simulates 
either a customer or other QA agency (perhaps an Integration or Test 
organization) “finding” undiscovered rework in previous releases and feeding 
that back into the Release Backlog. This can also be enhanced to cater for varying 
QA environments and organizational configurations. 

- Multi-project: The model can be extended to study a multi-project organization. 
In other words, software firms typically have a portfolio of projects with 
resources moving across projects as needed. Our model can be extended to study 
this situation. 
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7.5 Final Recommendations and Insights 
 

This section presents the final insights and recommendations resulting from this 
research effort. These findings should be of value to large-scale software contractors as 
well as to government customers.  

 
The first observation is that our model re-affirms some findings from existing research 

that uses the classic rework structure in project models, and which find rework to be at the 
root of project performance: 

- Increasing the rate at which work is performed is not necessarily advantageous, 
as it also increases the rate at which errors are produced. Thus for positive 
results, improvement in “speed” must be paired with improvement in “quality”. 
In other words, increase in productivity must be paired with an increase in 
Fraction Correct and Complete. 

- When you find defects is as important as how you find them. The software 
industry has for a long time understood the mechanics of defect containment, 
and that the later a defect is found the more costly it is to correct. Our model 
provides insight into the dynamics behind this truism. 

 
Agile promises to help along these two dimensions. The notion of Agile development 

began in the early nineties as a set of development practices and philosophies as to how to 
approach the task of building software. However, as we have seen, Agility is much more 
than just an attribute of the development methodology. It is an attribute of the whole 
project. As systems thinkers, we have studied the “Agile Software Development Project as a 
System”. We find Agility to be an emergent behavior of this system, as are other “-ilities”. 
Since the Agile Project is a complex socio-technical system, a systems-theoretic approach is 
required to properly understand it. Going back to our definition of a system in section 4, we 
said that: 

 
1. The essential properties of a system are properties of the whole which none of its 

parts have. Therefore, when a system is taken apart it loses its essential 
properties. 

2. No system is the sum of the behavior of its parts; it is a product of their interactions. 
Therefore, when a system is taken apart, not only does it lose its properties, 
but so do all of the parts. 

 
This means that we cannot study Agile project dynamics by focusing a single aspect of 

the project-system in isolation from the other moving parts. For example, we cannot look at 
pieces of the development process without considering the developers and the way they 
interact (Team Dynamics: human agency is a big component of the system); we cannot 
isolate and study the practice of pair programming without considering the complexity of 
the software being developed, and the impact of previous project-related decisions 
(Technical Debt). And so on… We have learned, for example, that inherent Technical Debt 
in software systems impacts the cost and speed at which subsequent system features can 



121 

be developed. This realization may lead software project managers to institutionalize the 
practice of Refactoring in order to keep the project Agile for future development cycles. 

 
What we can do, thanks to System Dynamics, is to “surface the mental model” of 

experts, managers, practitioners, and customers and capture this information in an 
executable model, the APD model, that can be used for experimentation and as a tool for 
learning.  Through this research and the experience modeling the project-system with 
System Dynamics, my own mental model and understanding of software engineering 
ecosystem have benefited greatly. System Dynamics takes our assumptions about the 
system and exposes them by making them explicit in the model structure and feedback. 
Through interviews, literature review, and access to past project performance data, such a 
model can eventually be fine-tuned to serve both as a predictive model to aid in planning 
and “what-if” scenario exploration by decision makers.  

 
We find that, for a project to be Agile, not only must it employ Agile development 

methods, but must also fit within an Agile product development system: The development 
organization must be willing to practice refactoring, or lose the benefits of Agile. The 
software itself must be Agile, lending itself to rapid incremental deliveries and therefore 
must be architected accordingly in feature sets.  

 
The customer or recipient of the software product must also be agile, willing and open 

to participate in the development process, and accept incremental releases that deliver 
these feature sets. Although our APD model does not address this, there are clearly 
dependencies between software features, and some feature combinations may be less 
useful to the customer than others. The project’s stakeholders, on both developer and 
customer sides, must be able to work together to plan and prioritize incremental deliveries; 
In the commercial world, this is less of an issue, as a commercial software product 
developer need not necessarily coordinate project specifics with an external entity when 
prioritizing and planning software releases. 

  
Moreover, a follow-on insight (as hinted in a previous section) is that for projects to be 

Agile, they cannot simply adopt so-called development techniques at random (or by 
selection of ‘lowest-hanging fruit’) and hope to derive positive project performance results. 
We have learned that each practice, combined with project policies, have both positive and 
negative effects on the project. The trick is to configure the project-system in a fashion that 
maximizes the up-sides while minimizing the downsides of these practices. In keeping with 
our metaphor of the “Agile Genome,” we might say that “Genetic Project Engineering” is 
required to maximize the potential of Agile practices. The selection of management policies 
and combination of agile practices by software development organizations need to be 
balanced to optimize the system. Agile genes need to be paired to counter-balance negative 
effects and maximize positive effects. Some examples of this that we have explored include: 
The inefficiencies of the Feature Driven gene are counter-balanced by the Refactoring gene. 
The loss in productivity from Pair Programming is counter-balanced by the Continuous 
Integration gene. 
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Appendix 1 – The Full Agile Project Dynamics Model 
8.1 View 1: The Software Development Cycle 
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8.2 View 2: Refactoring 
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8.3 View 3: Sprint Timing 
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8.4 View 4: Release Timing 
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8.5 View 5: Software Integration and Test Cycle 
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8.6 View 6: Continuous Integration 
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8.7 View 7: Staffing and Experience 
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8.8 View 8: Productivity 
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8.9 View 9: Team Dynamics 
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8.10 View 10: Micro-Optimizing 
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8.11 View 11: Customer Involvement 
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8.12 View 12: Management Dashboard 
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