

Agile Project Dynamics:
A Strategic Project Management Approach to the Study of
Large-Scale Software Development Using System Dynamics

Firas Glaiel

Working Paper CISL# 2012-05

June 2012

Composite Information Systems Laboratory (CISL)
Sloan School of Management, Room E62-422

Massachusetts Institute of Technology
Cambridge, MA 02142

Agile Project Dynamics:

A Strategic Project Management Approach to the Study of
Large-Scale Software Development Using System Dynamics

By

Firas Glaiel

B.S., Computer Systems Engineering
Boston University, 1999

SUBMITTED TO THE SYSTEM DESIGN AND MANAGEMENT PROGRAM IN PARTIAL
FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF
MASTER OF SCIENCE IN ENGINEERING AND MANAGEMENT

AT THE

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
JUNE 2012

©2012 Firas Glaiel. All rights reserved.

The author hereby grants to MIT permission to reproduce and to distribute publicly paper and
electronic copies of this thesis document in whole or in part in any medium now known or

hereafter created.

Signature of Author: __
System Design and Management
May 7, 2012

Certified by: __
Stuart Madnick
John Norris Maguire Professor of Information Technologies, MIT Sloan School of Management
& Professor of Engineering Systems, MIT School of Engineering
Thesis Supervisor

Accepted by: __
Patrick Hale
Director, System Design and Management Program

2

This page left intentionally blank

3

Agile Project Dynamics:
A Strategic Project Management Approach to the Study of

Large-Scale Software Development Using System Dynamics
By

Firas Glaiel

Submitted to the System Design and Management Program on May 18th, 2012 in Partial Fulfillment
of the Requirements for the Degree of Master of Science in Engineering and Management

Abstract

The primary objective of this research is to understand the dynamics of software

development projects employing the Agile approach. A study of several Agile development
methodologies leads us to the identification of the “Agile Genome”: seven characteristics that
Agile projects share. We gain insight into the dynamics behind Agile development by
constructing a System Dynamics model for Agile software projects, called the Agile Project
Dynamics (APD) model, which captures each of the seven genes as a major component of
the model.

 Large-scale software engineering organizations have traditionally used plan-driven,
heavyweight, waterfall-style approaches for the planning, execution, and monitoring of
software development efforts. This approach often results in relatively long development
schedules that are susceptible to failure, especially in a rapidly changing environment:
Schedule pressure, defects and requirements changes, can drive endless redesign, delay the
project, and incur extra cost. Many in the commercial software world have dealt with these
pressures by adopting Agile Software Development, an approach designed to be flexible
and responsive to high-change environments.

Software development teams that are said to employ “Agile development” in effect
practice a variety of “agile methods”. These practices are advertised to reduce coordination
costs, to focus teams, and to produce stable product iterations that can be released
incrementally. Agile software development has become a de-facto approach to the
engineering of software systems in the commercial world, and is now entering the
aerospace and defense sectors.

The APD model developed in this research aids in the understanding of the impact

that alternative combinations of Agile practices, combined with different management
policies, have on project performance, compared to a waterfall approach. This research
culminates in a formulation of insights and recommendations for how to integrate Agile
practices into a large-scale software engineering organization.

Thesis Advisor: Stuart Madnick
Title: John Norris Maguire Professor of Information Technologies, MIT Sloan School of
Management & Professor of Engineering Systems, MIT School of Engineering

4

This page left intentionally blank

5

Acknowledgements

I’d like to thank Stuart Madnick, my advisor, for his guidance and direction in
completing this research. As a member of Dr. Madnick’s Information Technologies Group in
the Sloan School of Management, I have had the incredible opportunity to collaborate with
and learn from some of the brightest minds on the planet. A special thank you also goes to
Allen Moulton, research scientist at the MIT Engineering Systems Division, whose
encyclopedic domain knowledge and valuable insights contributed greatly to the quality of
this work. I would also like to express my appreciation to our project sponsors, especially
Mr. Richard Herrick at the Defense Intelligence Agency and Mr. Douglas Marquis at MIT
Lincoln Labs, for their valuable insights into the thesis problem space from both the client
and the contractor side of large-scale software engineering projects.

Thank you to Patrick Hale and the wonderful staff at the MIT System Design and

Management (SDM) program. SDM's interdisciplinary curriculum, taught by faculty experts
from all departments in MIT's School of Engineering and MIT Sloan, has transformed my
mindset. It has armed me with a Systems Thinking perspective that integrates
management, technology, and social sciences; and with leadership competencies to address
rapidly accelerating complexity and change across organizational and cultural boundaries.
SDM is truly a once-in-a-lifetime transformative experience.

This effort would not have been possible without the support of my management at
Raytheon Network Centric Systems. I’d like to thank Bronwen Bernier, Tony Casieri, and
Edmond Wong for their support and patience during the two-plus years that I have been
supporting the business part time while completing my graduate studies.

Last but not least, I’d like to thank my family, especially my wife Kimberly who has had

to cope with a part-time husband during a period where I have had to juggle work, school,
and being a new parent. Her love and support are what ultimately drove me to go back to
school and to get through the hard times. Thank you Kim for making me take the GRE exam
(unprepared) three years ago, and submitting my application to SDM– without you I would
not be where I am today.

6

This page left intentionally blank

7

Table of Contents
Abstract ... 3
Acknowledgements .. 5
Table of Contents .. 7
1. Introduction .. 10

1.1 Research Motivation .. 10
1.2 Personal Experience with Agile .. 11

1.2.1 Early Experience with Agile Methodologies (1999-2001) 12
1.2.2 Recent Experience with Scrum (2010-2011) ... 14
1.2.3 Personal Reflections ... 16

1.3 Contributions ... 18
1.4 Research Approach and Thesis Structure ... 18

2. A Brief Review of Relevant Software Engineering Topics .. 20
2.1 Software Project Management .. 21

2.1.1 The Iron Triangle ... 21
2.1.2 Earned Value Management .. 22

2.2 Waterfall and Big Design Up Front (BDUF) .. 25
2.3 The Software Capability Maturity Model (SW-CMM) ... 27
2.4 Agile Software Development .. 29
2.5 The Case for Agile in Government Software Development .. 31

3. Mapping the Genome of Agile Development .. 32
3.1 Defining the term “Agile” ... 32
3.2 A Brief Review of Agile Methodologies .. 33

3.2.1 Scrum .. 34
3.2.2 Extreme Programming .. 35
3.2.3 Test Driven Development ... 36
3.2.4 Feature Driven Development .. 37
3.2.5 Crystal Methods .. 38

3.3 The Agile Genome ... 40
3.3.1 Story/Feature Driven ... 40
3.3.2 Iterative-Incremental ... 41
3.3.3 Refactoring ... 47
3.3.4 Micro-Optimizing ... 49
3.3.5 Customer Involvement .. 50

8

3.3.6 Team Dynamics .. 52
3.3.7 Continuous Integration .. 53

3.4 Summary .. 54
4. System Dynamics and its Applicability to Software Project Management 55

4.1 Introduction to System Dynamics .. 55
4.2 The Rework Cycle ... 57
4.3 Brooks’ Law .. 62
4.4 Strategic Project Management with System Dynamics ... 68
4.5 Summary .. 69

5. Modeling the Dynamics of Agile Software Projects ... 70
5.1 APD Model High-Level Overview ... 71
5.2 Modeling the Seven Genes of Agile .. 73

5.2.1 Story/Feature Driven ... 74
5.2.2 Iterative-Incremental ... 75
5.2.3 Refactoring ... 80
5.2.4 Micro-Optimizing ... 83
5.2.5 Customer Involvement .. 85
5.2.6 Team Dynamics .. 88
5.2.7 Continuous Integration .. 92
5.2.8 Modeling Staffing and Staff Experience ... 95

5.3 Summary .. 97
6. Model Simulation Experiments ... 98

6.1 Base Case Experiment (single-pass waterfall): ... 100
6.2 Case 1: Fixed-schedule Feature-Driven Iterative/Incremental 102
6.3 Case 2: Introduction of Micro-Optimization. ... 104
6.4 Case 3: Introduction of Refactoring ... 106
6.5 Case 4: Introduction of Continuous Integration ... 108
6.6 Case 5: Introducing Customer Involvement ... 110
6.7 Case 6: Introducing Pair Programming .. 111

7. Conclusions and Recommendations ... 114
7.1 Interpretation of results .. 114
7.2 Comparison of experiment results with personal experience 115
7.3 Adopting Agile Practices in Large-Scale Software Engineering 116
7.4 Follow-on work suggestions for extending the model .. 118

9

7.5 Final Recommendations and Insights .. 120
8. Works Cited .. 122
Appendix 1 – The Full Agile Project Dynamics Model ... 124

8.1 View 1: The Software Development Cycle .. 124
8.2 View 2: Refactoring .. 126
8.3 View 3: Sprint Timing ... 127
8.4 View 4: Release Timing .. 128
8.5 View 5: Software Integration and Test Cycle ... 129
8.6 View 6: Continuous Integration .. 130
8.7 View 7: Staffing and Experience ... 131
8.8 View 8: Productivity .. 132
8.9 View 9: Team Dynamics ... 133
8.10 View 10: Micro-Optimizing .. 134
8.11 View 11: Customer Involvement .. 135
8.12 View 12: Management Dashboard ... 136

10

1. Introduction
1.1 Research Motivation

The software industry is experiencing a high-velocity market environment. This is
especially true in the U.S. government software sector, be it in government’s acquisitions of
Information Technology (IT) systems, aerospace and defense systems, transportation
systems, or other. Government customers are demanding higher productivity and faster
cycle times for the delivery of software services, capabilities, and products. This, in turn, is
causing software contractors to look beyond the traditional “Waterfall” approach to
software engineering, and consider the so-called “agile” development methodologies that,
in the commercial software world, have been heralded as being the way of doing things.

Traditional software engineering approaches are said to have helped government

contractors control schedules and costs for large-scale software projects. By “control” we
mean “adhere to plan.” If a multi-year software project meets all of its schedule milestones
and cost targets, then it is said to be a success. If all of a software firm’s projects enjoyed
such success, then the organization can be said to be “predictable” and to have “repeatable”
processes: it can be trusted to deliver software as planned (cost and schedule-wise.) This is
a characteristic that is desirable from a customer’s point of view.

But the promise of Agile is that it will help software development organizations cut

costs and shorten development times. Process-heavy/Waterfall software engineering is
blamed by some for inflating the costs and duration of software projects. It can be argued
that these process-laden development practices have redirected the focus of software
teams towards statistical process control, driven by the desire to achieve project
predictability and higher Capability Maturity Model (CMM) ratings as described in section
2.3, and to fit into established models of project management. Some may even argue that
this takes away from a firm’s focus on faster time-to-market, greater customer satisfaction,
better design and architecture quality, etc.

Today’s government customer calls for agility and responsiveness; the ability for

rapid application deployment in the face of unpredictable and changing requirements.
There is no better example of a high-volatility requirements environment than the war
fighter’s situation: the threat is constantly evolving, and the fighter’s needs and
requirements for intelligence capabilities are changing at a rate measured by weeks and
months, not years. Under such circumstances a level-5 CMM rated organization serves
them little if it cannot quickly deliver software-based capabilities to fulfill a real need, in
time, and evolve the software as the need changes.

As the government agencies have begun to demand faster development times and

lower costs, the contractor community that serves them has turned towards legitimately
looking at Agile development, with an eye towards delivering capabilities at the pace and
cost needed to stay competitive in the government software market. In the commercial
world, where being first-to-market and having the ability to understand and cater to your

11

customer’s evolving needs can mean the difference between life and death for a small
software startup, organizations have embraced the family of agile methodologies as the
way to better flexibility, greater responsiveness, and improved time-to-market.

Fred Brooks, in his seminal paper on software engineering, No Silver Bullet —

Essence and Accident in Software Engineering, argues that there is no, and probably never
will be any “silver bullet” to solve the problem of software project failures, and that
building software will always be a very difficult endeavor (Brooks 1987). One of the
characteristics of modern software systems that he points to as being at the root of the
problem is complexity. Complexity results in communication difficulties (among software
teams) and associated managerial difficulties in the planning and execution of software
projects. Agile development methods are advertised to mitigate this problem by employing
complexity-reducing practices, such as the break-up of the software into manageable
“features” developed in short “sprints”, and improved flow of communication through
frequent face-to-face meetings.

Although Agile is the topic du-jour in the software community, many new

technologies and methodologies in the past have also been acclaimed as the “the silver
bullet” but have ultimately failed to meet expectations. In his IEEE article Software
Lemmingineering, Alan Davis observes that time and time again, software organizations
tend to blindly follow certain practices just because the masses are adopting them, and
points out that we should be wary of such “lemmingineering.” He lists several fads that
have stricken the software development community; he writes: “At this year’s ICSE
(International Conference on Software Engineering) I got the impression that everyone has
at least one foot in the process maturity stampede.” (Davis 1993) Interestingly, this was
written in 1993, when the CMM was gaining momentum as the premiere approach to
software engineering in industry. We have now come full circle, and Agile is the hot topic in
software engineering circles. Is this another fad or can agile methods truly be adopted and
implemented within the rigid structure of large-scale software engineering firms?

1.2 Personal Experience with Agile

During my twelve-plus years of experience as a software engineer in one of the
largest aerospace and defense contractors (Raytheon,) I have worked on several software-
intensive programs mainly in the areas of Ballistic Missile Defense Systems (BMDS) and Air
Traffic Management (ATM.) These were all large mission-critical, software-intensive
systems, and often involved teams of over one hundred engineers. During this time, the
computer systems and software engineering industry underwent many technological shifts
in various aspects of hardware (processing speed and power, memory, peripherals,)
software stacks (operating systems, programming languages, and tools) and with respect
to software development processes and methodologies. The following is a description of
personal experiences and insights, representing my own personal views. In no way do they
represent any official views or positions of or by Raytheon.

12

1.2.1 Early Experience with Agile Methodologies (1999-2001)

A large part of my time as a software engineer was spent developing software for
the Standard Terminal Automation Replacement System (STARS.) This is a joint Federal
Aviation Administration (FAA) and Department of Defense (DoD) program aimed at
replacing aging ATM systems across the country with a state-of-the-art solution for Air
Traffic Control (ATC.) The STARS system receives and processes target reports, weather,
flight plan information, and other data from a variety of radars, digital sensors, and
external systems. It tracks aircraft and other “surveillance targets” and displays their
position information to air traffic controllers on large graphical displays, provides decision
support tools, data analysis tools, as well as visual aids and safety functions such as the
detection of unsafe proximities between aircraft and warnings if aircraft are detected at a
dangerously low altitude. The STARS system (hardware and software) has been evolving
for almost two decades, controlling air traffic at a majority of the nation’s airports.

 In 1999, the FAA was funding new system enhancements which required STARS to
communicate with a variety of other systems supporting the FAA’s operations in the
National Air Space (NAS). An “Application Interface Gateway” (AIG) subsystem was called
for to provide these external communication functions. At the time, there were several
difficulties on the road to putting together a new development team for the AIG: Program
management had agreed to a very aggressive schedule and the program was challenged to
produce the full scope of software on time and within budget. Engineering, on the other
hand, could not see a way to make this effort fit the schedule, based on traditional multi-
phased waterfall approach, and the lengthy schedule outlook. It simply couldn’t be done,
given the way we did business traditionally: We did not have the ability to quickly
implement software changes and enhancements.

Analysis showed that slow reaction time was mainly due to the sheer weight of the
software development process: System requirements were broken down into several tiers
of subsystem requirements, against which a software design was produced, with elaborate
code-to-requirements tracing. This was followed by Detailed Design which consisted of
writing software modules in pseudo-code like language called PDL (Program Description
Language), and finally coding in the C programming language. Unit testing was a long and
tedious manual process that included the writing of detailed test procedures for every
software module.

There were several process-related meetings and peer reviews at each afore-

mentioned stage. Therefore there was legitimate concern as to our ability to develop the
AIG within the time and cost constraints of the program. Even worse, all of the senior
engineers were busy with other critical system enhancements and could not be dedicated
to this particular thread of development.

At the time we had new and forward-thinking management, who were not afraid to

adopt new methods and sponsor innovative thinking. Conditions were ripe for exploring a
novel approach to software development. With software management’s support and

13

sponsorship (including funding) we set forth to find an approach that would be better
suited for this endeavor. Another goal in mind was to introduce new programming
languages and design approaches. Specifically, the program was interested in introducing
Object-Oriented (OO) design and coding, and languages such as C++. This was the time
when Object Oriented approaches to software were “hot” and gaining momentum in
industry, as opposed to traditional “procedural” (also known as “imperative”) and
“functional” programming styles. There was difficulty in hiring new engineers proficient in
procedural languages such as C at that time, when most graduates were taught OO design
approaches and languages (e.g. Java, C++) and web-based technologies. This was after all,
during the time of the internet boom.

 Some of the main challenges were: how to capture software requirements for an OO

software product? How do you document design for OO software? Is C++ a viable
programming language? What would the development process be? First, a small team of
engineers went through training provided by the Rational Corporation (now part of IBM)
where we were taught the Rational Unified Process (RUP) – This training consisted mostly
of learning the Unified Modeling Language (UML) and of learning to use Rational Rose, a
UML modeling tool.

Additionally, I led research into several new (at the time) concepts for software

development which today fall under the general banner of “Agile Methods” (note that the
term “agile” was not yet popular or used in industry in the late 1990s)– I focused
specifically on “eXtreme Programming.” Keep in mind that this was 1999, and OO had not
yet been used at all, in this part of the company, in any delivered system or product. It was
important to define a software development process for OO.

The existing stove-piped process was very specific and tied to the C language and

left no room for OO practices. After two months of research and training, we took what we
found to be the best practices from RUP and eXtreme Programming, and other emerging
concepts (such as automated unit-testing) to draft what we eventually named the “PrOOD”
(Process for Object Oriented Development). Some of the highlights in this process are: pair
programming, team collocation, iterative development cycles, model-based automatic code
generation, and automated unit testing. These place a focus on and help in the early
identification of software defects, and also speed up the development cycle.

Armed with the PrOOD as our official development process, a small team of 6

engineers produced in months what may have taken over a year to do: The requirements
and design of the AIG were completely defined in a UML model using Rational Rose
(requirements were modeled as Use Cases). The code was written in C++, and automated
Unit Test framework was developed.

Over time, the AIG has evolved to be one of the key STARS components, especially in

the net-centric ATM world. Adding software interfaces to the system has become a
relatively simple process. Almost a decade later, for example, the AIG was used to connect
STARS to ADS-B (Automatic Dependent Surveillance-Broadcast) data sources, allowing
GPS-based tracking (as opposed to radar-only tracking) of aircraft, enabling satellite-based

14

air traffic management, which was a huge leap forward in the FAA’s modernization efforts.
This functionality went live in the Philadelphia airport in April of 2010, and is expected to
be deployed nationwide by 2013, allowing air traffic controllers to efficiently and safely
track and separate aircraft.1

As a software component, the AIG also has the lowest defect density of all CSCIs
(Computer Software Configuration Items, i.e. components) in the product line. Defect
density is measured by number of software defects found per one thousand lines of code,
post-release. The PrOOD itself, which was an innovative process for Object Oriented design
and development, found its way eventually to become part of the organization’s standards
and practices (referred to as the ‘engineering blue book’) on how to build object-oriented
software. The blue book was soon superseded by a “Common Process Architecture,” (CPA)
during the CMM adoption frenzy that characterized software engineering firms of the early
2000s (more on CMM later). Meanwhile, the PrOOD was forgotten and our successes and
experiences with agile development were lost in the sands of time.

1.2.2 Recent Experience with Scrum (2010-2011)

In 2010, a new opportunity to employ agile development presented itself: the FAA
was seeking to upgrade their terminal ATC systems’ data recording capabilities. The
deployed systems were recording data on outdated storage media. Specifically, data was
recorded onto magnetic tapes using DAT (Digital Archive Tape) drives, and the FAA wanted
to upgrade the system and software to perform data recording onto RAID (Redundant
Array of Independent Disks) storage devices, for many appropriate reasons such as
reliability, redundancy, capacity, and performance. The effort was dubbed “CDR-R” for
Continuous Data Recorder Replacement. The software changes required to make this
transition were complex and non-trivial, requiring modifications to portions of the baseline
code, some of which dated back to the 80s. Data recording is a critical component of the
system – the FAA takes it very seriously, as they should, since this data is used not just for
incident investigation purposes, but also to support data analysis of FAA operations.

 The problem was that the scope of the changes that we estimated would be needed

to implement the solution were such that they did not fit into the customer’s yearly budget
and schedule… This seemed to me to be an opportunity to try a new delivery approach:
First, inspired by Feature Driven Design (FDD,) I proposed that we divide the scope of
changes into a set of ‘features’ such as ‘RAID recording’, ‘RAID synchronization’, ‘data
transfer’, etc. Then, inspired by the spiral development model (described in section 3.3.2), I
proposed an incremental delivery of the CDR-R changes in three phases: the first phase
would provide basic RAID-based recording capabilities, the second would add additional
monitoring and control capabilities for the RAIDs and provide data transfer tools to allow
migration of data across various media and system installations, and finally the third phase
would add some data maintenance functions. This new (in our program’s context) delivery
model made the CDR-R transition more palatable for our customer and made for a better fit

1 http://www.aviationtoday.com/categories/commercial/67917.html

15

with their funding cycles, leading them to authorize the CDR-R development to begin.

For the first phase’s set of features, we employed our traditional waterfall approach:

software requirements were developed to meet the system level requirements, and then a
design to fulfill the software requirements, then code was developed to implement the
design, then testing and integration. This phase completed with a software delivery
containing the full scope of planned phase-1 modifications, however the performance of the
development effort suffered from cost overruns and internal schedule slippage. A lot of
rework was generated towards the end of the development phase, as we began to test the
software and encountered complications when running in the target hardware
environment. Several other problems required revisiting the requirements, the design, and
underlying code implementation. In my opinion, at the root of these issues were two main
root causes: Unclear/uncertain requirements, and a delayed ability to test the software.

These two issues have a compounding effect on each other: due to the waterfall

approach of developing components in isolation of each other, the system functionality that
we were trying to achieve only came to being at the tail-end of the development process,
when all of the CSCIs (software components) were developed, tested in isolation, then
integrated to produce the required functionality. Unfortunately, we typically only reach this
point after 3/4ths or more of the schedule and budgeted effort have been consumed. This
may not be problematic if requirements are well-defined, correct, complete, and
unambiguous – but here we found this not to be the case. Identifying requirements issues
that late in the development process meant several re-water-falling rework iterations of
requirements/design/code at the very end of the development cycle when little time was
left. Two key project performance measures, Schedule Performance Index (SPI) and Cost
Performance Index (CPI), for this phase-1 of development were 0.82 SPI and 0.76 CPI,
meaning that the software was behind schedule by 18%, and 24% over cost.

For the second phase, I proposed that we employ an Agile approach to development,

based on the Scrum methodology (described later in this research.) Management was
receptive to this proposition, and eager to support this effort, especially as the desire to “go
agile” was being communicated top-down through the organization, exemplified by a
corporate-backed initiative named “SWIFT” (Software Innovation for Tomorrow) that had
begun piloting Agile practices on several other large programs in the company. Note that
ours was not one of the SWIFT pilot programs, but an organic home-grown desire to
employ Agile methods, with prior successes in AIG development and the PrOOD in mind.

A small team of developers was assembled, trained in Scrum methodology, and

produced the phase-2 software increment in three sprints of three weeks each. This is
relatively fast in an organization where conducting a code inspection alone can eat up a
week in development time. Phase-2 thus enjoyed an SPI of 1.07 (7% ahead of schedule) yet
the CPI of 0.73 remained less than ideal.

While the Scrum approach helped us beat schedule, our cost performance did not

improve. Looking back, there are several factors that could explain this: The team was new
to Scrum, required training sessions, and only had the chance to execute three sprints. We

16

did not have a product owner or customer representatives involved so the requirements
were still unclear and conflicting. A new web-based code review tool was deployed during
our second sprint, but in retrospect was not optimally used and ended up causing wasted
effort. We also had to deal with a slew of defects and issues from the phase-1 delivery; in
other words we were building on top of a baseline that still had undiscovered defects.
Finally, there was the overhead of trying to fit the agile software development model within
an overarching heavyweight Integrated Product Development Process (IPDP) covering all
of the phases of program execution.

1.2.3 Personal Reflections

It is important to note that the activity of “software development” fits within an
integrated approach to product development that includes program processes such as
business planning and requirements analysis, as shown in Figure 1.

Figure 1 - Example Integrated Product Development Process

Part of the problem with adopting Scrum within an environment such as shown in

Figure 1 was that, as a Software Development Manager, only software development
activities were within my purview, and thus only the software development team could
adopt Scrum. Other parts of the engineering organization, such as System Engineering (SEs,
producers of software requirements) and Software Integration and Test (SIs, integrators

17

and testers of the system) were still operating in a traditional approach, where SEs hand off
completed requirements to development, who in turn hand off completed code to SIs.

Since Scrum was adopted just within the confines of software development, and not

as a complete IPDP overhaul, this meant that the development team had to maintain the
same “interfaces” to the other activities in the program, and had to produce the same work
artifacts (e.g. design documentation, review packages), employ the same level of process
rigor– all of which was monitored by the Software Quality Assurance (SQA) oversight
group. This included holding all of the required inspections and feeding back progress to
management, which expected clear Earned Value (EV) based reports of progress.

Yet with all of this, Scrum seemed to energize the development team, produce

working code much faster, and speed up the experience gain of new engineers. Clearly
there was some benefit to Agile. As a result I decided to pursue this research on Agile
development for my graduate thesis in the M.I.T. Systems Design & Management (SDM)
program. The research would take a “deep dive” into Agile, and take a close look at agile
practices with the goal of understanding how to integrate them in a CMMI level 5 software
engineering environment. During my time at SDM I also discovered the worlds of Systems
Thinking and Systems Dynamics (SD), and found the SD approach to be the best tool for
understanding the emergent behavior of a ‘complex socio-technical system’, in this case the
software development enterprise.

18

1.3 Contributions

The scientific contribution of this work is in developing the “Agile Genome”, a
framework for understanding the nature of Agile software development, from a project
management perspective. This understanding of the Agile Genome leads us to the
development of the Agile Project Dynamics (APD) model which can be used as a tool for
experimentation and learning about the behavior of the software project-system under
various project conditions and with a variety of management policies and decisions.
Additionally, this work demonstrates the value of the System Dynamics methodology for
the modeling and simulation of complex socio-technical systems.

1.4 Research Approach and Thesis Structure

This research aims to understand the dynamics that drive the performance of Agile
software projects, and the strengths and weaknesses of “Agile” as compared to the classic
software engineering approaches that are based on the Waterfall model. Software
development projects are in and of themselves complex socio-technical systems whose
behavior is driven by the interactions of people, processes, tools, and policies. When we
add layers of planning, budgeting, staffing, and management of such a program, it becomes
an even more complex and dynamic system with many competing feedback effects. This
section details the research approach we have employed to study the software project-
system, and presents the structure of this research chapter-by-chapter.

Chapter 2 presents a brief review of relevant topics in software project

management, including a historical review of waterfall software development and the rise
of Agile methodologies. The chapter concludes by looking at why large-scale software
engineering organizations, traditional laggards in the adoption of now processes and
methodologies, are now embracing Agile development.

Chapter 3 presents an overview of Agile software development and leads to an

understanding of the nature of agility in software projects. Several popular methodologies
are inspected in order to distill the essence of what makes a software project “agile” - We
call the results of this analysis the “Genome of Agile Development.” This is based on
extensive literature review, interviews, and professional experience with software
development teams.

To frame and understand the behavior of “the software development project as a
system”, this research will employ a holistic view of the software project-system and will
capture its structure and feedback effects in the form of a System Dynamics model.

Chapter 4 presents System Dynamics (SD), a powerful methodology for framing,

understanding, and discussing complex strategic project management issues and problems.
Software project management is well suited for a "systems approach" because those
involved in software development must not only understand the minutia of software

19

development technologies, processes and tools, but also the complexities of project-team
dynamics, as well as the effects of management policy (especially the far-reaching effects of
short-term management actions and decisions.) System Dynamics provides a method to
model the cause-and-effect relationships among various policy variables.

Chapter 5 follows by constructing a system dynamics model to simulate the effects

of agile practices on software project performance, using the insights gained from the
previous chapter. The modeling is inspired by the work of Abdel-Hamid and Madnick, in
Software Project Dynamics, which includes a validated “Software Project Dynamics” (SPD)
model of the classic Waterfall process. We create an “Agile Project Dynamics” (APD) to
study the strengths and weaknesses of the Agile approach as compared to the classic
Waterfall model. We use this APD model to understand how and why the project-system
behaves as it does. It can be used to understand the impact of management policies and
adoption of one, many, or all of the “Agile genes”.

In Chapter 6, the APD model is used to perform “what if” scenario investigation, by

performing several controlled simulation experiments and observing project performance
under several policy variable combinations. We start with a base-case single pass waterfall
project and compare its behavior to that of an Agile project with several combinations of
Agile genes.

Finally, Chapter 7 concludes with a set of insights and observations gained from out
research and experimentation with the model, which can lead to the formulation of good
rules and policies for the management of software development projects.

20

2. A Brief Review of Relevant Software Engineering
Topics

Large-scale software engineering organizations, particularly government

contractors, have traditionally used plan-driven, heavyweight, waterfall-style approaches
to the planning, execution, and monitoring of large software development efforts. This
approach is rooted in ideas stemming from statistical product quality work such as that of
W. Edward Deming and Joseph Juran.

The general idea is that organizations can improve performance by measuring the

quality of the product development process, and using that information to control and
improve process performance. The Capability Maturity Model (CMM) and other
statistical/quality–inspired approaches such as Six Sigma and ISO 9000 follow this idea. As
a result, the collection and analysis of process data becomes a key part of the product
development process (Raynus 1998).

Figure 2 - CHAOS Report Summary 1994-2009

Nevertheless, these types of “big” software projects have been susceptible to failure
in terms of cost, schedule, and/or quality. The Standish group every few years produces the
“CHAOS Report,” one of the software industry’s most widely-cited reports showcasing
software project success and failure rates. It measures success by looking at the “Iron
Triangle” of project performance: schedule, cost, and scope (whether or not the required
features and functions were delivered.) Roughly, only about a third of software projects are
considered to have been successful over the last two decades (see Figure 2) In April 2012,
the worldwide cost of IT failures was conservatively calculated to be around $3 trillion
(Krigsman 2012).

0%

10%

20%

30%

40%

50%

60%

1994 1996 1998 2000 2002 2004 2006 2009

Successful

Challenged

Failed

21

It is with this in mind that the software industry often refers to “the software crisis.”
A whole business ecosystem has evolved around the software industry’s need to address
the software crisis, including:

- Project management approaches to controlling schedule, cost, and to building
more effective teams.

- Engineering approaches to architecture and design to produce higher quality
(low defect, more flexible, more resilient, scalable, modifiable, etc.) software.

- Processes and methodologies for increasing productivity, predictability, and
efficiency of software development teams.

- Tools and environments to detect and prevent defects, improve design quality,
automate portions of the development workflow, and facilitate team knowledge.

Let us briefly explore some of these in the context of government software systems
development.

2.1 Software Project Management

2.1.1 The Iron Triangle

Figure 3 - The Iron Triangle of Project Management

Like any human undertaking, projects need to be performed and delivered under

certain constraints. Traditionally, these constraints have been listed as "scope," "time," and
"cost" (Chatfield & Johnson 2007). Note that “scope” in this context refers to the set of
required features in the software, as well as the level of quality of these features.

 These three constraints are referred to as the “Iron Triangle” (Figure 3) of project

management – This is a useful paradigm for tracking project performance: In an ideal
world, a software project succeeds when it delivers the full scope of functionality, on
schedule as planned, and within budget. However, in the real world projects suffer from
delays, cost overruns, and scope churn. Expressions such as “scope churn” and “scope
creep” refer to changes in the project’s initial scope (often captured contractually in the
form of requirements). A project with many Change Requests (CRs) is said to experience

http://en.wikipedia.org/wiki/Scope_(project_management)�

22

high scope churn. In order to deliver, project managers must adjust project goals by
choosing which sides of the constraints to relax. When a project encounters performance
problems, the manager’s choices are to pull one of the three levers of the iron triangle:

• Increase effort (and thus cost) by authorizing overtime or hiring more staff.
• Relax the schedule by delaying delivery or milestones.
• Cut scope by deferring a subset of features to future software releases, or reduce

the quality of the features delivered.

 As will be shown later in this research, taking any one of these actions can result in
negative and unforeseen side-effects, making things even worse. In section 4.3, we will take
a close look at “Brooks’ Law” which states that "adding manpower to a late software project
makes it later".

2.1.2 Earned Value Management

Earned Value Management (EVM) is a management methodology for monitoring
and controlling schedule, cost, and scope. It allows management to measure and track
project execution and progress. In 1997 the U.S. Office of Management and Budget (OMB)
released the Capital Programming Guide, which since then requires the use of EVM for all
contractor performance-based management systems. This guide is an appendix to the
OMB’s Circular A-11, which provides guidance on preparing Fiscal Year (FY) budgets and
contains instructions on budget execution. This means that all budget approvals depend on
performance as measured by EVM, behooving government contractors such as Raytheon,
Boeing, Lockheed Martin, General Dynamics, Northrop Grumman, and others to adopt EVM
as part of their standard management practices. EVM evolved from the DoD Cost/Schedule
Control Systems Criteria (C/SCSC) which was an early attempt in 1967 to standardize
contractor requirements for reporting cost and schedule.

The problem with comparing actual expenditures to baseline plan, which is what

other project management techniques do, is that it ignores the amount of work “actually
completed.” EVM addresses this by distinguishing between cost variances resulting from
progress deviations due to either over or under-spending. The approach compares the
planned amount of work with what has actually been completed, at any point in the project.
This is used to determine if cost, schedule, and work accomplished (percent of scope
completed), are progressing as planned.

The implications of this, in the software development domain, is that software

project management boils down to the monitoring and control of what are essentially the
three sides of the “Iron Triangle” – key project performance data points are collected to
answer a basic set of questions related to the current state of the project, as listed in Table
1.

23

QUESTION EVM Data Elements
How much work should be done? Budgeted Cost for Work Schedules (BCWS)
How much work is done? Budgeted Cost for Work Performed (BCWP)
How much did the "is done" work cost? Actual Cost of Work Performed (ACWP)
What was the total job supposed to Cost? Budget at Completion (BAC)
What do we now expect the total job to Cost? Estimate at Completion (EAC)

Table 1- Key EVM Data Points

After this data is collected it is then used to derive some key project performance
indicators, some of which are listed in Table 2 below.

Metric Symbol Formula Description

Percent Complete %Done BCWP Ratio of work accomplished in terms of
the total amount of work to do.

BAC

Cost Performance Index CPI BCWP Ratio of work accomplished against
money spent (Efficiency Rating:
Work Done for Resources Expended)

ACWP

To Complete Performance
Index TCPI BAC - BCWP

EAC - ACWP

Ratio of work remaining against funds
remaining (Efficiency which must be
achieved to complete the remaining work
with the expected remaining money)

Schedule Performance Index SPI BCWP
Ratio of work accomplished against what
should have been completed. (Efficiency
Rating: Work done as compared to what
should have been done)

BCWS

Estimate At Completion EAC ETC + ACWP

Calculation of the estimate to complete
plus the money already spent. I.e. how
much do we expect the total project to
cost

Estimate To Complete ETC BAC - BCWP
Calculation of the budgeted work
remaining against the performance
factor. I.e. how much more will the
project cost than planned?

CPI

Table 2- EVM Key Data Analysis Calculations2

These indicator metrics are inspected at regular intervals to spot trends, take
corrective actions, and ensure that a project is on track. Figure 4 below illustrates the
tracking of EVM metrics over time.

2 www.acq.osd.mil/pm

24

Figure 4- Example Earned Value Chart3

Organizations that have traditionally practiced this EVM style of project
management have paired it with a “Waterfall” approach to engineering and CMM-inspired
processes. While EVM might at first seem complicated or hard to grasp, it is essentially a
formal technique for understanding:

- Is work being accomplished as planned?
- Is it costing as planned?
- What is the remaining work likely to cost?
- When will the project be finished?

When management periodically takes time to focus on these questions and takes

corrective actions to steer the project back on course when there is a deviation from the
plan, EVM is reported to provide a powerful mechanism for large-scale project control.
However, in the software engineering realm there are two big problems with EVM:

1) Controlling a project to-plan requires a full up-front plan. This means that the scope
of the project must be fully understood, specified and planned up front. Any later
changes in direction are regarded as scope changes and must go through a formal
contractual change process. The plan cannot evolve and change as new information
or insight is gained. Re-planning (“reprogramming” in project management speak) is
a difficult affair in EVM. In other words, a rigid plan is not an Agile plan and thus
takes away from the project’s potential for “nimbleness”.

3 Source: http://acc.dau.mil

25

2) EVM milestones are arguably arbitrary. For example, EVM claims a significant
portion of “earned value” on a development project after the requirements and the
design phases are completed. A project can thus claim to be at 50% completion even
though no code has yet been produced. On the other hand, as we will discuss in later
chapters, Agile projects track progress by feature: project percent-complete is more
accurately tracked based on number of features completed. This is also a more
valuable customer proposition, as 50% complete means that they can potentially
receive a software delivery with 50% of the functionality already in it.

Agile project management techniques are by comparison light-weight, but focus on

some of the same project performance questions (is the work progressing as planned? Is it
costing as planned?) using mechanisms such as ‘sprint burn down charts’ (monitors how
much work is remaining in one sprint) and ‘team velocity’ (how much effort a team can
handle in one sprint).

We feel that EVM and Agile project management are not at odds and in fact can be

mostly complementary. What would be needed, for Agile and EVM to coexist is Agility on
the management side. Management must be able to practice what is known as “rolling wave
planning” on a near-continuous basis. For example: plan only a month or so ahead of time,
thus allowing for a greater degree of flexibility in the project plan (or more specifically, the
Performance Management Baseline - PMB) against which performance is measured.

2.2 Waterfall and Big Design Up Front (BDUF)

 The origins of the so-called “Waterfall” approach can be traced back to Winston
Royce, a director at Lockheed Software Technology in the 1970s, and his now-famous
paper from the 1970 IEEE proceedings, entitled “Managing the Development of Large
Software Systems.” Although the term “waterfall” was not used in this paper, it was the first
to describe the process that has come to be called “Waterfall”, due to its graphical
representation depicting workflow trickling from one stage of the process to the next,
reminiscent of an actual waterfall. Figure 5 shows Royce’s original depiction of the
Waterfall process.

26

Figure 5 - Winston Royce's Waterfall

 The Waterfall as an engineering approach is said to have probably first been applied
on a large-scale project by IBM during the development of the System/360 operating
system in the 1960s. (Cusumano & Smith 1995)

 In a 2004 interview with Fred Brooks, director of the IBM System/360 project, he
was asked “Have we learned anything about software development in 40 years?” His
response was: “We’ve learned that the waterfall model of development has to be
abandoned, and it hasn’t been yet. We need to adopt the spiral model …” We discuss the
spiral model in section 3.3.2.

 The waterfall process has the advantage of focusing early on complete requirements
specification (getting it right the first time,) and since most software projects are said to
suffer from poor requirements definition, this approach puts an emphasis on requirements.
However, in reality requirements changes are unavoidable (“we might as well embrace it,”
according to Agile practitioners) – The problem with the waterfall is that the cost of change
is prohibitive, and very slow. This is because at the end of each phase, the outputs are
certified (via formal inspection and verification) and become the inputs for the next phase.
Team members are not supposed to change outputs that the project has already certified.
(Cusumano & Smith 1995)

 Much of the debate in software engineering related to Agile development frames the
discussion in terms of “Waterfall vs. Agile.” This is not exactly an appropriate comparison.
Waterfall simply describes a “stage-wise” model of development in stages (e.g. planning,
analysis, implementation, test, deployment) whereas Agile describes project team

27

performance and use of “agile methods” as we will elaborate in section 3. In other words, a
software team can be Agile within a waterfall development model, and a Waterfall iteration
can be used within an Agile project – However for simplicity in the context of this research
we will continue to contrast Agile with Waterfall, with the term “Waterfall” being a
placeholder for “traditional, stage-wise, complete design up-front, single-pass waterfall
software engineering approach.”

2.3 The Software Capability Maturity Model (SW-CMM)

To deal with the “software crisis” in the 1980s, the US Air Force prompted the
Software Engineering Institute (SEI) to develop a method for selecting software
contractors. A study of past projects showed that they often failed for non-technical
reasons such as poor configuration management, and poor process control.

In essence, the SEI took the ideas of “software lifecycle” and along with the ideas of

quality maturity levels, and developed the SW-CMM, or simply CMM, which rates a
software organization’s maturity level. In CMM, maturity is measured on a scale of 1 to 5.
Rather than enumerating and describing each level, suffice it to say that maturity ranges
from level 1, or “initial,” which applies to the least mature organization (e.g. a startup with
two developers) up to level 5, “optimizing,” which applies to the most mature of
organizations, whose processes are standardized, repeatable, predictable, and optimizing.

There is a set of Key Process Areas (KPAs) that an organization must address in

order to rate at each level. Each KPA is met when the organization has a defined process
for it, and is committed, and able to follow that process, all while measuring, analyzing and
verifying implementation of said process. For example, an organization must have defined
practices for Software Configuration Management for a Level 2 or higher rating.

The implication here is that with a higher maturity levels comes a higher software

process performance. From a management perspective, predictable software development
means better performance on cost and productivity.

The CMM represents a good set of software “common sense”. One of the good things

about it is that it guides an organization on what process areas to address, but does not
dictate how this must be done. This sometimes leads organizations down a slippery slope
of process overload, where an exorbitant amount of time and money is spent developing,
maintaining, and deploying processes aimed complying with the CMM KPAs.

In 2002, the SEI’s Capability Maturity Model Integration (CMMI) replaced the CMM.

The difference, at a high level, is that the CMMI added new “process areas” to the CMM (e.g.
Measurement Analysis,) and better integrated other non-software development process in
of product development (e.g. Systems Engineering activities.)

28

Practices added in CMMI models are improvements and enhancements to the SW-
CMM. Many of the new practices in CMMI models are already being implemented by
organizations that have successfully implemented processes based on the improvement
spirit of SW-CMM best practices (SEI 2002). For the purposes of this research we will use
the terms “CMM” and “CMMI” interchangeably to mean “process improvement model that
defines key processes for product development enterprises.”

As a developer I experienced the process overhaul leading to an initial assessment

of a CMM level 3 in the late nineties, and later as a software development manager I saw
our organization mature to a CMMI level 5. Today we have a ”Common Process
Architecture,” a complex framework of process Work Instructions and measurement
capabilities designed as our implementation of the CMMI.

The problem with “mature” organizations, perhaps, is that we become encumbered

with the cost and effort of managing processes, collecting, analyzing, and reporting on
metrics (in fact the CMMI introduced a whole process area for Measurement and Analysis.)
“Optimizing” means continuous improvement: so we do things like six sigma projects to
improve and optimize processes. One must wonder whether the software community that
the authors of the original CMM document purport to have come to “broad consensus” with
really represents the whole of the software community, because we cannot find examples
of large commercial software firms such as Google or Microsoft adopting CMMI or boasting
high CMMI ratings.

Since 2002 the Defense Department has mandated that contractors responding to
Requests for proposal (RFP) show that they have implemented CMMI practices. Other
branches of the Federal Government also have begun to require a minimum CMMI maturity
level. Often federal RFPs specify a minimum of CMMI level 3. It is therefore no surprise that
the contractor community has embraced the CMM (and subsequently the CMMI). It is
reported to have worked well for many large, multi-year programs with stable
requirements, funding, and staffing.

Traditional criticisms of the CMM are that it imposes too much process on firms,

making them less productive and efficient. It is said that only organizations of a certain
scale can afford the resources required to control and manage all of the KPAs at higher
maturity levels. But again, the CMM tells us what processes areas to address, not how to
address them (although best practices are suggested.) Problems arise when firms design
their processes ineffectively.

We feel the need to mention the CMM in this research because, in industry, the case

is often presented as “Agile vs. CMM”. In fact, CMM is not at odds with Agile. Au contraire
they could be very complementary. The CMMI version 1.3 was released in November of
2010, adding support for Agile. Process areas in the CMMI were annotated to explain how
to interpret them in the context of agile practices. There are even several published
examples of “Agile CMMI Success Stories”, for example the CollabNet project at a large

29

investment banking firm4

. Again, the CMM only guides an organization on what process
areas to address, but does not dictate how this must be done. Organizations only get into
trouble when they over-engineer their processes, making them so cumbersome and time
consuming that, as a result, projects lose their potential for agility and responsiveness
because they are burdened by the weight of their engineering processes.

2.4 Agile Software Development

In the 1990s, as the large software firms were “maturing” along the CMM dimension,
and coinciding with the internet boom and massive growth in the commercial software
industry, a parallel movement was taking place: lightweight software development
methods, so-called “Agile” methods were evolving, focusing on “soft” factors such as cross-
functional teams, customer involvement, and face-to-face communication, collaboration,
and creativity. Agile approaches emphasize rapidly building working software, rather than
spending a lot of time writing specifications up front. Agile also is geared towards
incremental delivery and frequent iteration, with continuous customer input along the way.

One of the early examples of agile methodologies is eXtreme Programming (XP,)

which appeared in the mid-nineties. Extreme Programming emphasizes teamwork.
Managers, customers, and developers are all equal partners in a collaborative team. It
implements a simple, yet effective environment enabling teams to become highly productive5

.
It preaches such practices as pair-programming, automated unit-testing and incremental
development.

In the dot-com era, time-to-market became critical for web-based startups, as the
business became an extremely high-velocity environment. The ecosystem of users, needs,
and technologies were changing at a break-neck speed. One of the main realizations that
came with this was that “change is inevitable, so we might as well embrace it.” This goes
against the traditional Change-Management approach of locking down requirements and
specifications at the outset of a project; however it was the reality for most software
developers in the commercial realm.

In February 2001, a group of experienced software professionals, representing

practices ranging from Extreme Programming to SCRUM, and others sympathetic to the
need for an alternative to heavyweight software development processes, convened in Utah.
They formed the Agile Alliance and what emerged was the “Agile Manifesto”6

, which put
forth a declaration of the following core values:

4 http://www.open.collab.net/media/pdfs/AgileCMMI_CollabNet.pdf
5 http://extremeprogramming.org
6 http://agilemanifesto.org

30

We are uncovering better ways of developing software by doing it and helping others do it.
Through this work we have come to value:

Individuals and interactions over processes and tools 
Working software over comprehensive documentation

Customer collaboration over contract negotiation 
Responding to change over following a plan

That is, while there is value in the items on the right, we value the items on the left more.

In addition to these values, the “Twelve Principles of Agile Software” were also declared:

Our highest priority is to satisfy the customer through early and continuous delivery of
valuable software.

Welcome changing requirements, even late in development. Agile processes harness change
for the customer's competitive advantage.

Deliver working software frequently, from a couple of weeks to a couple of months, with a
preference to the shorter timescale.

Business people and developers must work together daily throughout the project.

Build projects around motivated individuals. Give them the environment and support they
need, and trust them to get the job done.

The most efficient and effective method of conveying information to and within a
development team is face-to-face conversation.

Working software is the primary measure of progress.

Agile processes promote sustainable development. The sponsors, developers, and users
should be able to maintain a constant pace indefinitely.

Continuous attention to technical excellence and good design enhances agility.

Simplicity--the art of maximizing the amount of work not done--is essential.

The best architectures, requirements, and designs emerge from self-organizing teams.

At regular intervals, the team reflects on how to become more effective, then tunes and
adjusts its behavior accordingly.

Table 3 - Principles Behind the Agile Manifesto7

7 http://agilemanifesto.org/principles.html

31

 Commercial software companies started adopting agile practices. Today there are
dozens of purportedly agile methodologies. Yet it is hard to point to a single document,
framework, or process description to find out exactly what defines Agile.

2.5 The Case for Agile in Government Software Development

A common attitude in the software industry has been that Agile only works for
small-scale projects with small experienced teams, and that CMM/Waterfall is better suited
projects of larger scale. However, the waterfall development life cycle, based on an
assumption of a relatively stable business environment, becomes overwhelmed by high
change (Highsmith 2002b). High change is exhibited in today’s environment: whether it is
to support the war efforts in the 2000s, to address rapidly-evolving cyber-security threats,
or to compete in an ever-more net-centric world: the demands of the software customer
today are such that capabilities are needed on shorter time horizons, quality expected out
of the gate, and the software producers are expected to be nimble enough to mirror the
fast-paced changes in their customer’s needs and environment changes.

Taking inspiration from the world of biology, Charles Fine argues that each industry
has its own evolutionary life cycle (or “clockspeed”), measured by the rate at which it
introduces new products, processes, and organizational structures (Fine 1996). The
government systems software market had historically been a slow-to-medium-clockspeed
environment, with software being only a component within large multi-year projects. It is
now becoming a fast-clockspeed environment, with demand for quick software delivery to
run on existing networks, infrastructure, and systems. Fine argues that firms must adapt to
the changing environment to maintain any competitive advantage. Government software
contractors must then adapt to survive.

In 2010, the Under Secretary of Defense for Acquisition, Technology and Logistics,
Dr. Ashton Carter (now deputy Secretary of Defense) issued a memo entitled “Better
Buying Power: Guidance for Obtaining Greater Efficiency and Productivity in Defense
Spending “– He was on a mission to rein in cost overruns and spending as part of an overall
plan by Defense Secretary Robert Gates to cut $100 billion from the Pentagon budget over
the subsequent five years. Carter also directed acquisition managers to award more
services contracts to small businesses because they provide Defense with “an important
degree of agility and innovation,” with lower overhead costs (Berwin 2010).

The big government software contractors took note… The Pentagon budget is

shrinking and they now will increasingly have to compete with small/nimble firms for
contracts. This is perhaps the single driving force behind why these companies are taking a
serious look at disrupting their mature product development practices by incorporating
Agile software development as methods that are practiced in the commercial world,
including in today’s dominant “born-on-the-web” software giants like Google, Facebook,
and Amazon. A Forrester Research survey of 1000+ IT professionals in 2009, followed by
one in 2010, (see Figure 6 in section 3.2) shows a decline in the use of “Traditional”
development methodologies, and a rise in adoption of Agile.

32

3. Mapping the Genome of Agile Development

The most important thing to know about Agile methods or processes is that there is no such
thing. There are only Agile teams. The processes we describe as Agile are environments for a
team to learn how to be Agile.

• Kent Beck, creator of eXtreme Programming

3.1 Defining the term “Agile”

 So far in this paper we have been using the words “agile” and “Agile” without
pausing to ponder the meaning of or explain the context within with they are being used. At
the outset of this research, I had a very narrow view of what Agile meant. This was based
on my experiences with XP and Scrum. Subsequently, through research and discussion with
software professionals from various software industry domains at M.I.T., I quickly realized
that there is no consensus on the definition of Agile and that different mental models exist
pertaining to how agile practices fit within the software engineering discipline.

The American Heritage Dictionary defines “agile” as: Characterized by quickness,
lightness, and ease of movement; nimble. These are the characteristics that we as software
project managers desire to imbue into our projects, and that we as software developers
want to see in our development practices. We want to be able to quickly produce high-
quality software and respond in near-real time to changes in customer needs and
requirements, while reaping benefits in terms of cost and schedule.

Another popular word in industry that has come to represent this concept is “lean.”

The terms Lean Software Engineering, Lean Software Development, and other similar
constructs are also being used in conjunction with or en lieu of Agile. The lean concept
finds its roots in manufacturing and supply chain management, tracing back to the Toyota
Production System. Lean relates to Agile in that the end goal is to produce product
(software or other) faster, cheaper, and more efficiently. Lean principles revolve around
process improvement, such as improving efficiency (eliminating waste), Just-In- Time (JIT)
engineering, rapid delivery, and team empowerment. For our purposes, Lean is the set of
"tools" that assist in the identification and steady elimination of “muda” (a Japanese word
meaning an activity that is wasteful and doesn't add value or is unproductive). As waste is
eliminated, quality improves while production time and cost are reduced (Gershon 2011).
As will be presented later in this research, Agile employs Lean tools and principles to
deliver value.

 Hereafter, when we refer to “agile software development” and “agile development
methods” we are referring to practices geared towards improving the engineering effort of
software production. When we refer to “agile project management” we are referring to the
management of agile software development projects, and not an agile approach to project
management in general. Finally, there is no definitive definition for the capitalized term
“Agile” as it is used in various contexts to mean various things. To avoid semantic

33

complications, in this research we use Agile an umbrella term symbolizing the general
movement towards agile methods in software engineering and its management.

3.2 A Brief Review of Agile Methodologies

This research aims to produce a System Dynamics model of Agile software projects.
In order to model Agile, we must first understand the essence of agility: What makes
software development agile? In 2009 and 2010 Forrester Inc. surveyed 1298 and 1093
software professionals respectively, asking them to select the methodology that most
closely reflected their development process. As shown in Figure 6, respondents pointed to
several popular development methodologies, all of which fall under the Agile umbrella
(West et al. 2011). In 2010 almost 40% of all responses named one of the “agile family” of
methodologies.

Figure 6 – Forrester Inc. Survey of Agile Methodologies Practiced

The respondents identified some of the most in-use Agile methodologies, with
Scrum being the most popular. In the following section we take a very brief look at some of
these methodologies.

0.0%

2.0%

4.0%

6.0%

8.0%

10.0%

12.0%

14.0%

2009

2010

34

3.2.1 Scrum

Scrum’s origins can be traced back to an article that appeared in the January 1986
Harvard Business Review, entitled “The New New Product Development Game”. It
contrasts Waterfall-like practices at the National Aeronautics and Space Administration
(NASA) to novel approaches at companies like 3M, Fuji-Xerox, Honda, and Cannon. The
Waterfall approach is likened to a relay-race, while approaches at successful companies
were portrayed as being more akin to rugby teams “moving the scrum downfield”
(Takeuchi & Nonaka 1984). Over time, what they called the “rugby approach” later
morphed into “Scrum”.

Figure 7 - Representation of the Scrum Process (Deemer et al. 2009)

Scrum is an iterative, incremental framework for projects and product or
application development. It structures development in cycles of work called Sprints
(Deemer et al. 2009). Each sprint is typically a three to four week long development cycle
wherein self-organizing teams prioritize and select a subset of the features of the software
to implement. At the end of each sprint, completed features are demonstrated to the
customer or user, whose feedback is incorporated into the software in later sprints. This
methodology also calls for short daily stand-up meetings, also known as daily scrums,
where team members exchange information on progress, next tasks, and surface issues and
roadblocks so that they are dealt with quickly. Each sprint culminates with a set of

35

completed software features that are “potentially shippable.” Figure 7 above is a simplified
depiction of this process.

3.2.2 Extreme Programming

Extreme Programming, also referred to as XP, is a lightweight methodology for
small-to-medium-sized teams developing software in the face of vague or rapidly changing
requirements (Beck 1999). Like Scrum, it emphasizes iterative and incremental delivery of
small releases, as depicted in the XP project flowchart in Figure 8.

Figure 8 - The XP Development Flowchart

The development practices of XP teams are governed by the following rules:

• The Planning Game. Quickly determine the scope of the next release by

combining business priorities and technical estimates. As reality overtakes the
plan, update the plan.

• Small releases. Put a simple system into production quickly, then release new
versions on a very short cycle.

• Metaphor. Guide all development with a simple shared story of how the whole
system works.

• Simple design. The system should be designed as simply as possible at any given
moment. Extra complexity is removed as soon as it is discovered.

• Testing. Programmers continually write unit tests, which must run flawlessly for
development to continue. Customers write tests demonstrating that features are
finished.

• Refactoring. Programmers restructure the system without changing its behavior
to remove duplication, improve communication, simplify, or add flexibility.

• Pair programming. All production code is written with two programmers at one
machine.

• Collective ownership. Anyone can change any code anywhere in the system at
any time.

• Continuous integration. Integrate and build the system many times a day, every
time a task is completed.

http://www.extremeprogramming.org/map/iteration.html�

36

• 40 hour week. Work no more than 40 hours a week as a rule. Never work
overtime a second week in a row.

• On-site customer. Include a real, live user on the team, available full-time to
answer questions.

• Coding standards. Programmers write all code in accordance with rules
emphasizing communication through the code.

XP was perhaps the first methodology, in the late 1990s, which called for automated

unit testing of code, and is renowned for also being the first to call for the still-to-this-day
controversial practice of pair programming.

3.2.3 Test Driven Development

Inspired by the “test first” philosophy from XP, Test Driven Development (TDD)
starts the development process by coding automated test cases for the software features
that are to be produced. Then, production code is developed iteratively until all the tests
are passed. After each cycle (iteration), all of the tests are re-run to ensure that new
functionality is well integrated. Refactoring is performed to maintain quality and remove
duplication in both production and test code. Figure 9 illustrates this process as practiced
by a software development group at IBM (Maximilien & Williams 2003).

Figure 9 - Test Driven Development Process at IBM (UT = Unit Test)

 TDD’s test-first approach is reported to have a significant impact on defect
prevention, but more importantly it influences the design of the software. Since developers
must focus on the interfaces of their modules (this helps in developing modules to pass the
unit tests) it means that they must employ a type of “Design by Contract” (often referred to

37

as “DbC”) approach to software development. Test-first code tends to be more cohesive and
less coupled than code in which testing isn’t part of the intimate coding cycle (Beck 2001).
In a nutshell, Kent Beck, the creator of XP and TDD, lists the benefits of a test-first approach
as follows:

• Encourages you to be explicit about the scope of the implementation,
• Helps separate logical design from physical design from implementation,
• Grows your confidence in the correct functioning of the system as the system grows.
• Simplifies your designs.

3.2.4 Feature Driven Development

Feature Driven Development (FDD) is described as having “just enough process to

ensure scalability and repeatability and encourage creativity and innovation all along the
way” (Highsmith 2002a). As shown in Figure 10, FDD breaks the system into feature sets,
and iterates to produce incremental client-valued pieces of functionality. FDD can be
summarized by its eight “best practices”:
• Domain object modeling: Since FDD was developed originally in 1997 for a Java language

based project, it is tailored to an Object-Oriented (OO) approach. FDD calls for building
class diagrams to capture the attributes and relationships between the significant
objects in the problem space.

• Developing By Feature: The system is broken up into a set of features which can be
developed incrementally. In FDD, a feature is a small, client valued function that can be
implemented in two weeks (Goyal 2007).

• Individual class ownership: Unlike XP, which calls for “collective code ownership”, FDD
asks that each class (a unit of code in OO programming) is assigned to an individual who
is ultimately responsible for it.

• Feature teams: Features are developed by teams comprised of feature owners and a
combination of the class owners needed to implement the given feature.

• Inspections: formal code reviews are held to prevent defects and ensure quality.
• Regular builds: Allows early detection of integration problems, and makes sure there is

always a current build available to demo to the customer.
• Configuration management: The use of source control and version tracking.
• Reporting and visibility of results: Progress for each feature is based on the completion of

development milestones (e.g. Design completion, Design Inspection Completion, etc.)
Progress of the feature sets is regularly reported.

38

Figure 10 - Stages of Feature Driven Development8

FDD is similar to the “agile modeling” methodology since it relies on a UML (Unified
Modeling Language) model of the system.

3.2.5 Crystal Methods

On a quest to develop an effective software methodology, Alistair Cockburn interviewed
and studied project teams for 10 years. He found that “people-centric methodologies” do better
than “process-centric” methodologies, and that one must choose and tailor the methodology to
the team and the assignment - no methodology fits all projects. (Cockburn 2004)

The result is Crystal, which is actually a family of methods, rather than a single

methodology, developed to address the variability between projects. Projects are sized along two
dimensions: team size, and program criticality. A version of Crystal is subsequently chosen and
adapted to the specifics of the project. See Figure 11.

8 http://www.step-10.com/SoftwareProcess/FeatureDrivenDevelopment/FDDProcesses.html

39

Figure 11 - The Crystal family of methods.9

Team Size accounts for the fact that as a team gets larger communication costs rise and
face to face communication becomes less effective. More management and coordination become
required. Criticality on the other hand measures the system’s “potential for causing damage”
ranging from “loss of life” to “loss of comfort.” The combination of team size and the criticality
directs a given development effort towards a corresponding Crystal methodology. There are only
two rules that govern the practice of the Crystal family of methods.

1) Incremental cycles cannot exceed four months.
2) Reflection workshops must be held after every delivery so that the methodology is self-

adapting.

Crystal “focuses on people, interaction, community, skills, talents, and communication as
first order effects on performance. Process remains important, but secondary” (Highsmith 2002a)

9 http://alistair.cockburn.us/Crystal+light+methods

40

3.3 The Agile Genome

After review and analysis of many Agile methodologies, some of which were
described in section 3.2, we come to find that they all share common characteristics. The
project teams that employ these methodologies in effect practice a variety of remarkably
similar “agile techniques.”

When seeking to identify the basic set of common attributes that these Agile

methodologies share, we can start to develop a set of characteristics that we can call “the
Genome of Agile” – We have distilled these into the following seven genes.

3.3.1 Story/Feature Driven

A principle of the Agile Alliance is that “Working software is the primary measure of
progress.” Most Agile teams break up their projects into manageable sets of “features”,
“stories”, “use cases”, or “capabilities,” rather than architecting the complete system up-
front as is done in classic Big Design Up Front (BDUF) approaches. The terminology differs
across the various methodologies, but the concept is the same. Feature Driven
Development is perhaps the most obvious example of such a methodology, as it involves
building a feature list, then planning, designing, and implementing the software feature by
feature. Note that not all features are equal in size, complexity, or priority. In most agile
methodologies, features are sized or weighted depending on an estimate of the amount of
effort required to implement the feature. Feature planning activities must also take into
account feature inter-dependencies, and plan accordingly.

From a management perspective, the implication of using this approach is that

management can have a concrete measure of progress by-feature (i.e. 9 out of 10 features
implemented means 90% complete, assuming all features weighted equally.) This differs
from traditional EVM-like measures of progress, based on arguably arbitrary milestones,
where for example, the completion of the design phase translates to claiming forty percent
of the project complete. One of problems with using a waterfall method paired with EVM
management methodology is that a project can report to be at 90% completion, yet still
have no functioning software.

Another advantage of the feature-driven approach is that, as features are developed

and integrated into the software, they become available for early customer demonstrations
as well as early integration and test activities – all of which help reduce uncertainty and
detect defects early in the development cycle, as opposed to waiting for a complete
integrated build.

The downside of a featured approach is that over time, the software’s architecture

and code start to exhibit signs of having “high coupling” and “low cohesion,” making it
harder (and more costly) to maintain and evolve. Coupling refers to the degree to which
software modules, components, etc., depend on each other – in a system with high coupling

41

there is a high degree of dependency, meaning that changes to one software element is
likely to have ripple effects and impact on the behavior of other elements. Cohesion is a
measure of how strongly related the responsibilities of a single software module or
component are – low cohesion is an indicator of lack of structure in the system. (for
example, a software library or component that provides a large set of completely unrelated
functions or services is said to exhibit low cohesion, whereas one that only specifically
provides string manipulation functions is said to be highly cohesive.) The segmentation of a
system by feature can lead to “high coupling” and “low cohesion.” Higher coupling and
lower cohesions means that there are a lot of software interdependencies; changes to one
area of the software will have more impact on other parts of the system, and thus makes
future changes more costly and difficult to make. This is why Refactoring (see section 3.3.3)
is called for by most feature-driven methods.

3.3.2 Iterative-Incremental

Another principle of the Agile Alliance is to “deliver working software frequently,

from a  couple of weeks to a couple of months.”

• Take advantage of what was learned during earlier development in later
iterations.

Development is performed in repeated
cycles (iterative) and in portions at a time (incremental.) This allows developers to:

• Focus on short term objectives.

In this approach, development will start with a simple implementation of a subset of

the software requirements and iteratively enhance the evolving versions until the full
system is implemented. With each iteration, design modifications are made and new
functional capabilities are added. Most value is derived when iterations are designed such
that early tasks help resolve uncertainty later in the project. Rather than one big design
phase, one big code phase, then one big test phase, here many iterations are performed,
with each iteration consisting of a short design-code-test cycle. (Figure 12)

42

Figure 12- Design-Code-Test iterations (de Weck, & Lyneis 2011)

This “Iterative-Incremental” characteristic combines with the afore-mentioned

“feature-driven” gene (see section 3.2.4) to allow the software product to continually
evolve as a series of product increments, each one adding more features to the existing
software product.

The Iterative-Incremental concept is not novel nor unique to Agile methodologies.

There is well documented evidence of extensive Incremental Iterative Development (IID)
for major software development efforts dating back to the sixties (Larman & Basili 2003).
Software historians seem to agree that Royce’s original work on the Waterfall has been
misrepresented as calling for a single iteration of the Waterfall, and that he actually
proposed several iterations of the process.

In 1994 the DoD’s Defense Science Board Task Force on Acquiring Defense Software

Commercially, issued a report that stated, “DoD must manage programs using iterative
development. Apply evolutionary development with rapid deployment of initial functional
capability.” (Larman & Basili 2003) The result was a new standard for software acquisition
introduced that same year, Mil-Std-498, which stated:

If a system is developed in multiple builds, its requirements may not be fully defined
until the final build […] If a system is designed in multiple builds, its design may not be
fully defined until the final build.

43

 This allowed projects to start while only needing fully-defined requirements for one
build at a time, rather than a full requirements specification for the entire project, allowing
later requirements analysis efforts to be informed by work and experience from earlier
build – a step in the agile direction. This standard, although later replaced by others, was a
first attempt to introduce the concept of lifecycle and incremental delivery to government
software projects. It is also an acknowledgement of the fact that Waterfall development and
acquisition was problematic, and that the previous DoD standards had a “Waterfall bias”
(perceived preference towards a single-pass Waterfall model of development.)

Figure 13 - The Spiral Model of Development (Boehm 1987)

Explicit iteration and incremental development is neither new nor unique to Agile. It
first came to the fore-front of the software engineering community’s conscience in 1986
with Barry Boehm’s "A Spiral Model of Software Development and Enhancement". The Spiral
model, shown in Figure 13, very simply put, calls for repeated waterfall iterations to build
and refine a software product. Early spirals can achieve goals of producing quick-to-market

44

prototypes which can be tested or presented to customers for early feedback, which
produces valuable information for later spirals. This approach mitigates project risk and
allows requirements to be evolved and refined incrementally, keeping the project agile in
that software is built incrementally and that the approach caters to the reality of evolving
requirements.

In 2002, the DoD declared “Evolutionary acquisition strategies shall be preferred
approach to satisfying operational needs” and “Spiral development shall be the preferred
process“10

• Incremental Development: End-state requirement is known, and requirement will
be met over time in several increments

 The following two acquisition models became the official standards:

• Spiral Development: End-state requirements are not known at Program Initiation.
Requirements for future increments dependent upon technology maturation and
user feedback from initial increments.

3.3.2.1 Illustrative Example

To illustrate the difference between Iterative-Incremental Story/Feature-driven
approaches vs. a Waterfall/BDUF approach, let us consider the following fictional example:
Suppose that we are to develop software for an Automated Teller Machine (ATM). The
software is required to allow users to check balances, withdraw/deposit money, and
transfer funds between accounts. How would the two approaches differ? Albeit contrived
and simplified, this example helps clarify the difference.

3.3.2.2 Waterfall/BDUF

Figure 14 depicts the flow of a classic Waterfall/BDUF approach: In the Analysis

phase the requirements for the ATM system may be documented in a “System
Requirements” document as the result of discussions, negotiations, analysis, and
compromise between the customer agent and the contractor’s system engineer or business
analyst. This document is usually named something akin to “System/Subsystem
Specifications” (SSS). Once the SSS requirements for the system are “locked-in”, the next
phase “Requirements Specification” can begin.

10 DoD Instructions 5000.1 and 5000.2

45

Figure 14 - Example Waterfall Development Flow

Using a functional decomposition approach, the next levels of requirements are
developed: the architecture is produced, which defines three main subsystems, in this ATM
example:

• A User Interface subsystem or component, encapsulating the software for
interacting with the ATM user.

• A Database component, which is responsible for communicating with the bank’s
central database and accessing account information.

• A Hardware Controller subsystem for interfacing with the actual ATM hardware.

For each of subsystem, a “Software Requirements Specification” (SRS) document is
produced. Also, interfaces between the subsystems/components are specified in some sort
of document, named something like “Interface Requirements Document” (IRS) or “Interface
Control Document” (ICD). In theory, if each component meets its SRS requirements, and
adheres to applicable ICDs, then the system will function as specified in the original SSS.

Next, an individual or team is assigned to the design and development of each

subsystem, based on its SRS. A design is produced for each subsystem, followed by the
coding of each software module to implement the design. Then, each module is individually
tested (Unit Testing.) Once unit testing is completed, the subsystem is tested as a whole,
bringing together the individual modules in a “Software Integration and Test” (SWIT)
activity. Finally, the components are integrated and the ATM software system is tested as a
whole and validated against the original SSS.

46

3.3.2.3 Story/Feature Driven

Figure 15 - Feature-Driven Scrum Approach

Figure 5 illustrates development of the same ATM software using a Scrum

methodology. Using a Story/Feature driven approach, the ATM system is segmented not
into functional components, but rather into a set features corresponding to the system’s
use cases: In this example, the ATM software’s list of features may be: Check Balance,
Withdraw Cash, Deposit Check, Deposit Cash, and Transfer Balances. Note that in feature-
driven approaches, not all features are equal in size or effort. In Scrum, each feature is sized
by “story points”, a relative measure of the amount of effort estimated to be needed to
implement that feature. For the purposes of this example, let us consider these features
equal.

The development team follows by then prioritizing the set of features and starts to

develop the software feature-by-feature or a subset of features at a time in short “Sprints”.
As each sprint is completed, the set of features developed are added as an increment to the
software product’s baseline producing a “potentially shippable product increment.”

47

3.3.3 Refactoring

An incremental and feature driven approach to the development of software systems
can produce sub-optimal architectures compared to a waterfall model, as discussed
previously. One of the advantages of BDUF is that the complete up-front design is optimized
for a full-featured release. Components are well-integrated and duplication is minimized.

On the other hand refactoring is needed to pay off the “technical/design debt” which

accrues over time, especially when incremental and evolutionary design results in a
bloated code base, inflexible architecture, duplication, and other undesirable side effects.

The metaphor of technical debt was used by Ward Cunningham (creator of the Wiki)

to describe what happens as the complexity and architecture of a software project grow
and it becomes more and more difficult to make enhancements. Figure 16 illustrates this
concept: as the software product degrades over time, the cost of change increases to the
detriment of the customer responsiveness.

Figure 16 - Technical Debt Curve11

This concept of technical debt has become popular as it can be understood by both
technical minded and business minded people. Just like credit debt, technical debt accrues
interest payments in the form of extra effort that must be made in subsequent development
cycles. Management can choose to pay down the principal on this debt by refactoring, and
keep the future cost of change as low as possible.

Controlling the cost of change is very important for an Agile project, since the
philosophy is to embrace change. Indeed one of the twelve principles of the Agile Manifesto

11 source: http://jimhighsmith.com

48

is to welcome changing requirements, even late in development. Agile processes harness
change for the customer's competitive advantage. (see Table 3 - Principles Behind the Agile
Manifesto.) Therefore refactoring is critical to keeping the agile process sustainable
through the pay-down of technical debt.

Holistically speaking, one could argue that true Agile is not only about the agility of

the development process, or the team, but also about the software product itself. In other
words, a “Systems Thinking” perspective would suggest that the software product itself is
part of the system under study here, in addition to the people, processes, and tools. If the
software is constantly refactored to keep it easy to adapt and evolve along with the
requirements, needs, or market environment, then the project can truly be agile. Perhaps
one of the problems with Agile adoption in large-scale government programs is with
attempting to employ it on long-running legacy programs that are already deep in technical
debt.

Many agile methodologies (in particular XP) consider refactoring to be a primary

development practice. Refactoring has the disadvantage that it takes extra effort and
requires changing baseline software without any direct or apparent ROI. A project manager
may ask “why are we spending effort re-designing portions of the system unrelated to the
next planned set of features?” This is when the technical debt metaphor comes in handy as
a tool for communicating the business impact of design and architectural decisions.

 The project management may still resist refactoring with: “If we do refactoring, we

will have to re-test and re-certify existing baseline functionality, at added effort and cost to
the project!” Any change has the potential to reduce the maturity and the stability of the
software, requiring regression testing and revalidation of the baseline feature set. This is
why it is advantageous to practice refactoring in conjunction with test-heavy practices (e.g.
TDD) and Continuous Integration techniques (see section 3.3.7).

 An example of a software organization that embraces refactoring as part of its

software engineering culture is Google. The following points, taken from Google’s Agile
Training (Mcfarland 2006), summarize some of the reasons behind their embrace of
Refactoring:

• As code ages, the cost of change goes up
• As Google grows, the percentage of code in maintenance mode grows with it
• We need to keep code flexible, so we can change it to suit new market conditions

quickly
• It’s not important if all you’re trying to do is get new products out. (Smart

programmers can develop very good applications without tests, but those applications
will be much harder to maintain.)

A final note on refactoring and technical/design debt is that this phenomenon can be

observed at the enterprise level. We observe that much of the work in net-centric
architectures, which involves evolving an ecosystem of silo’d systems towards a system-of-
systems architecture using technical approaches such as SOA (Service-Oriented

49

Architecture), can be understood through the lens of technical debt as grand-scale
exercises in refactoring.

3.3.4 Micro-Optimizing

This gene represents the adaptive nature of agile processes. We employ the term
“Optimizing” because, in most agile methodologies, teams are empowered if not
encouraged to modify aspects of the development process or dynamically adapt to
changing circumstances. “Micro” is used to indicate that small process adjustments and
improvements are made frequently and as needed. For example, the Scrum process
requires a “Sprint Retrospective” in between iterations. Likewise, Alistair Cockburn –
author of the Crystal methods -- believes that as the project and the people evolve over
time, the methodology so too must be tuned and evolved. Crystal therefore calls for
reflection workshops to be held after every delivery so that the methodology is self-
adapting.

This relates to the concept of Double Loop Learning, as applied to software

development: Single Loop learning describes the plan-do-check-adjust cycle where we
learn and increase the efficiency of what we are doing. Double Loop learning is when we
step back and question our assumptions and goals and revise them.

Figure 17 - Simple Representation of Double-Loop Learning

As an example of this, consider code reviews in a software development

organization that has a process in place that calls for software inspections. This process
may include an onerous series of tasks such as the manual preparation of code review
packages. There are so many components, checklists, and forms required to be part of the

50

package that it may take a developer a whole day (or from a project management
perspective, a person-day worth of effort) to produce this package. Then perhaps several
days elapse before a meeting can be scheduled for all of the necessary players to convene
and perform the code review. Finally, action items must be documented, implemented, and
verified.

Traditional improvement efforts will focus on automating this process and making it

more efficient. The result of single-loop learning may be process enhancements and
automations to speed up the code review process for example by automating the review
package generation task.

On the other hand, a team that exhibits characteristics of double loop learning will

question the goal of the inspection process itself. What is the return on investment (ROI),
or value-add, that this inspection process brings to the development effort? It may find that
the intent is to simply detect and correct coding defects. The team may react by eliminating
this process altogether and adopting the use of pair programming (as a flavor of real-time
code inspection) in conjunction with static analysis tools, and even arrange for customer
demonstrations and user involvement events, in a push to even further attain the goal of
detecting software defects at the implementation level as well as at the level of system
users’ needs.

Classic development approaches, even ones that employ a single-pass waterfall, can

exhibit a “light” flavor of this gene: heavyweight processes often call for Lessons Learned
activities at the completion of a software project. The problem is that this usually produces
a Lessons Learned document that rarely feeds into the next development cycle and has
little improvement effect on subsequent development projects. In the context of Agile,
however, the sprints are short enough and retrospectives frequent enough so that process
adjustment is near-continuous throughout the life of a project.

Another aspect of many agile methodologies is that teams are often empowered to

self-regulate workload. Teams are trusted to self-adjust and gradually learn about how
much work they can handle in a given period of time (e.g. sprint). In Scrum, the measure of
“Velocity” or “Sprint Velocity” represents how much product backlog effort can handle in
one sprint. It is established on a sprint-by-sprint basis as the team learns about the project
and about working with each other. Typically, team velocity improves as sprint cycles are
completed and experience gained.

3.3.5 Customer Involvement

The Agile Manifesto values “customer collaboration over contract negotiation.” A
more traditional way of doing things would be to lock-in the system requirements early on
in the project. Any subsequent change in direction will require contractual changes for
“added scope” or “scope change”, and formal CCP (Contract Change Proposal) negotiations.
Although this type of project control mechanism helps keep the size of the project in check

51

(and thus helping limit growth in costs and schedule) in the end it may mean that a very
long time could be spent up front developing, refining, and validating requirements, but the
customer may not get the best software product. The customer may get what they agreed
to contractually, but not get the software that they really need.

There are two distinct problems with this “fixed requirements” attitude:
- The “ah-hah” moment: the first time that you actually use the working product. You

immediately think of 20 ways you could have made it better. Unfortunately, these very
valuable insights often come at the end. (Deemer et al. 2009)

- It is a well-known fact that undetected requirements defects can wreak havoc on a
project if detected late in the schedule. Indeed, that is one of the reasons that the
Waterfall method came to be, to lock-down and specify the requirements so that later
development could proceed without turbulence. However, as discussed previously, in a
changing environment requirements must evolve.

When requirements are
locked-in up front, there is no room for making the product better later in the
development cycle.

Often the customer (e.g. the DoD) interfaces with the contractor’s business

operations and project managers. Requirements are generated by business analysts (in
some industries also referred to as “system engineers” or “domain experts”) and are flowed
down to the development team. This means that the people implementing the software are
at least two or three degrees of separation away from the customer. To make things worse,
the customer is often not the end user of the software product. For example, the real end-
user might be a soldier in the field.

Figure 18 – Disconnect Between Development and Users

Consider how the waterfall life cycle evolved. First the software development
process was divided into phases—planning, analysis, design, coding, testing—and then
roles were assigned to each phase—planner, analyst, designer, coder, tester—and then
documents were defined for each phase—plan, specification, design document, code, test
cases. As roles gave rise to specialized groups and people believed that documentation
could convey all the required information to the next group, the barriers to conversation
became greater and greater. (Highsmith 2002b)

52

For this research, the “Customer-focused” gene means accepting changing
requirements and including the user and/or customer in the development team (to the
degree that this is possible). This can be in daily stand-ups, design reviews and product
demos. The customer’s availability and input to the development process helps to reduce
uncertainty and identify rework early. This requires working with the user/customer to
evolve the requirements throughout the process – with later requirements informed by
insights gained from earlier development.

An Example of this is the “Product owner” role in the Scrum process, whereby a

customer or user proxy is present at all team meetings (the daily Scrum), and is the witness
of product demos to give real-time feedback.

3.3.6 Team Dynamics

 The “Team Dynamics” gene represents the collection of “soft factors” and effects
related to unique agile practices and approaches, and how they affect the development
team’s performance.

The majority of Agile methods call for frequent meetings to allow teams to self-
organize, prioritize, and assign tasks, while communicating roadblocks. The most efficient
and effective method of conveying information to and within a development team is face-
to-face conversation (Allen & Henn 2006). Practices such as ‘pair programming,’ and
attitudes such as ‘collective code ownership’ also are claimed to have positive effects on
project performance.

A unique team dynamic that emerges in agile teams is a distinctive “social/schedule

pressure” effect – As teams convene frequently (on a daily basis, in most cases) to report on
what they are doing, what they have done, and what they plan to do next, a certain level of
peer pressure comes into play, driving individuals to perform at a higher productivity.
Additionally, when developing in short increments/sprints, the team experiences more
frequent bouts of schedule pressure coinciding with the end of each iteration, as opposed
to a single end-of-project schedule pressure effect.

Another well-known agile practice is that of Pair Programming. In pair

programming, two programmers jointly produce work products (e.g. code, design
documentation). The two programmers periodically switch roles as “the driver” controls
the pencil, mouse, or keyboard and writes the code. The other partner continuously and
actively observes the driver’s work, watching for defects, thinking of alternatives, looking
up resources, and considering strategic implications. The partners deliberately switch roles
periodically. This practice has been reported in most cases to reduce productivity but
produce higher quality code.

53

Team co-location and open workspaces and environments are also preferred in
Agile teams. These also help promote the flow of information between and drive team
performance through transparency.

3.3.7 Continuous Integration

 Agile methodologies often include certain policies and approaches to Configuration
Management (CM,) as well as a high level of automation of as many aspects of the
development process as possible, to speed up the development by eliminating repetitive
and manual tasks.

 Traditionally, the popular CM approach was to have different teams develop
portions of the software in isolated environments, and integrate their work products later,
towards the end of the development cycle. In the mid-1990s, Microsoft moved beyond the
Waterfall approach to a "synch-and-stabilize" process which relies primarily on daily
builds for frequent synchronizations and incremental milestones for periodic stabilizations
of the products under development (Cusumano & Smith 1995). This is one of the early
examples of automating nightly software builds and frequently integrating various pieces
of software under development to detect early conflicts. That is one example of Continuous
Integration.

This gene also includes test automation. Testing can be automated at various levels,
from unit testing, to the of system-level tests. Test automation means having software
perform the testing that would otherwise need to be done manually. Once tests have been
automated, they can be run quickly and repeatedly. This is the most cost effective method
for software products that have a long maintenance life, which often requires copious
regression testing to verify that there is no breakage in baseline functionality introduced by
added features.

Traditionally software houses employ a different set of standards and practices when it

comes to software development versus software delivery. In fact, it often is the
responsibility of two completely different teams, whom often use a different set of tools
and environments. The delivery team’s focus is to compile and ship working software, not
necessarily developing code. However Continuous Integration calls for a shared
environment for both - integrating and automating as much as possible. Some principles of
Continuous Integration are:
Development:

1) Stay current (merge code early and often)
2) Deliver working code (don’t submit changes that break the build)
3) If the code changes, write a new test

Delivery:
1) Build from a clean environment.
2) Fixing the build is top priority.
3) Tests should be thorough and repeatable, and run automatically to verify the build.

54

3.4 Summary

Research into agile methodologies has revealed a set of recurring patterns and
similarities across the software industry. We have captured the essence of what we think
makes a software project Agile in the following seven characteristics we now dub the
“Genome of Agile” – see Table 4 - The Genome of Agile.

Gene Name Short Description

Story/Feature Driven Break up of project into manageable pieces of functionality;
sometimes named “features”, “stories”, “use cases”, or
“threads”.

Iterative-Incremental Development is performed in repeated cycles (iterative) and in
portions at a time (incremental.)

Refactoring Refinement of the software design and architecture to improve
software maintainability and flexibility.

Micro-Optimizing Teams are empowered to modify aspects of the process or
dynamically adapt to changing circumstances. Small
improvements and variable changes are made frequently and
as needed.

Customer-Involvement Customer/User involved in demonstrations of functionality to
verify/validate features. Higher frequency feedback and
clarification of uncertainty. Availability to participate in
development meetings.

Team Dynamics “Soft” factors related to the project team. Daily meetings, agile
workspaces, pair programming, schedule/peer pressure,
experience gain, etc.

Continuous Integration Policies and practices related to Configuration Management,
and build and test automation.

Table 4 - The Genome of Agile

 In the following chapters, we will introduce the System Dynamics methodology and
put it to use in modeling the software project-system, including the seven agile genes.

55

4. System Dynamics and its Applicability to Software
Project Management

Feedback processes govern all growth, fluctuation, and decay. They are the fundamental basis
for all change. They allow new insights into the nature of managerial and economic systems
that have escaped past descriptive and statistical analysis.

• Jay Forrester, creator of System Dynamics

This chapter provides a high-level introduction to System Dynamics. It follows by taking
a look at two project-related phenomena, the “rework cycle” and “Brooks’ law”, that have
been studied in prior research with system dynamics. We conclude this chapter by
presenting examples of how System Dynamics has been used in industry to study software
project behavior.

4.1 Introduction to System Dynamics

 Dr. Jay W. Forrester at the Massachusetts Institute of Technology created System
Dynamics in the 1960s. It is a method for modeling and understanding the dynamic
behavior of complex systems. Originally applied to the study of management and
engineering systems, this powerful approach has found its way into many other fields,
which study complex systems such as social, urban, economic, and ecological systems,
amongst others.

 First, let us define the word system. My favorite definition comes from Russel Ackoff,
a professor at the Wharton School, and a pioneer in the field of Systems Thinking. In
“Towards a System of Systems Concepts” (Ackoff 1971), Ackoff presents perhaps the best
attempt at defining the concept of system. It can be summed up in the following definition:

A system is a set of two or more elements, and satisfying the following conditions:

- Each element can affect the behavior of the whole.
- The way each element affects the whole depends on at least one other

element – i.e. no element has an independent effect on the whole

- If you take any groups/subsets of elements and arrange them in any
fashion, form subgroups in any way at all, then the subgroups will have
these two properties:

 (the parts
are interconnected.)

o Every subgroup can affect the behavior of the whole
o The way each subgroup affects the whole depends on at least other

subgroup (no subgroup can have an independent effect)

An oversimplified version of this would be: “A system is a whole which cannot be divided
into independent parts.”

56

If we study this definition carefully, it implies two things about systems that are
extremely important for management:

1) The essential properties of any system are properties of the whole which none of its
parts have. Therefore when a system is taken apart it loses its essential properties.
E.g. if we disassemble a car, we no longer have a car but a collection of car parts.

2) No system is the sum of the behavior of its parts; it is a product of their interactions.
When a system is disassembled, not only does it lose its properties, but so do all of
the parts. E.g. an engine moves a car, but alone it moves nothing.

 Therefore, we cannot study the development process without considering the
development team (one criticism of CMM is that it looks at individual programmers as
replaceable parts.) We cannot study the development team without understanding the
software they are developing. And so on…

 System Dynamics allows us to model the structure of a system and all its “parts”,
including the time-delayed relationships among its components. The underlying
relationships and connections between the components of a system are called the
structure of the system. The term dynamics refers to change over time. If something is
dynamic, it is constantly changing. A dynamic system is therefore a system in which the
variables interact to stimulate changes over time. The way in which the elements or
variables composing a system vary over time is referred to as the behavior of the system.
(Martin 1997)

 Central to System Dynamics is the concept of feedback loops, and the concepts of
stock and flow (also referred to as level and rate). A stock is something that accumulates
(or drains) over time. A rate describes the quantity per unit-time at which a stock
accumulates (or drains). Feedback loops are the cause-and-effect chains in the system
through which a change in one variable creates a circular feedback, ultimately affecting
itself.

Figure 19 - Simple System Dynamics Example

57

To demonstrate these concepts, Figure 19 presents a very simple example of a single-
stock system:

- Population: is the stock that represents a human population.
- Birth Rate and Death Rate are the rates at which the stock accumulates and drains,

respectively.
- The loop annotated with “R” is a positive feedback loop, also called a reinforcing

feedback loop because it drives growth in the system. In our example: the more
Population, the more People Having Children, and thus a higher Birth Rate, leading
to even more Population. In other words, an increase in population triggers more
increase in population.

- The loop annotated with “B” is a negative feedback loop, also called a balancing
feedback loop because it has a stabilizing effect on the system. In our example: the
more Population, the greater Over-population, leading to a higher Death Rate,
which causes a reduction in Population. In other words, an increase in population
triggers a decrease in population.

The previous example is a very simple single-stock system with only two feedback

loops. The study of a software development project on the other hand includes many
stocks, variables, and loops. The type of large scale software projects we are interested in
belong to the class of complex dynamic systems that, according to John Sterman (Sterman
1992), exhibit the following characteristics:

- They are complex and consist of multiple components.
- They are highly dynamic.
- They involve multiple feedback processes.
- They involve non-linear relationships.
- They involve both “hard” and “soft” data.

In our case, hard data would be measurable data such as cost, and soft data would

be more intangible data such as ‘employee motivation’.

4.2 The Rework Cycle

The conventional view of a project is as a collection of predefined tasks. Based on a
predetermined work rate (number of tasks that can be accomplished by the project team
per unit of time,) the project manager can project an estimate of how long it takes to
complete development. Figure 20 shows the SD representation of a project model based on
these assumptions, using stocks and rates as follows:

- Work To Do: The amount of work to be performed.
- Work Done: The amount of work completed.
- Productivity: The amount of work that can be done per-developer, per unit of

time.
- Number of Developers: The number of developers available.
- Work Rate: The rate at which Work To Do is drained, and at which Work Done

accumulates. It is the product of Productivity by Number of Developers.

58

Figure 20 - Traditional View of Development Work Completion

If we execute this model with the following initial values:
- Work To Do = 8000 Source Lines of Code (SLOC)
- Productivity = 160 SLOC per Month, per person
- Number of Developers = 10 people

Then our Work Rate will be a steady 1600 SLOC per month, and the project will take five
months to complete (the time at which the level of Work To Do reaches zero), as shown in
the Figure 21 simulation results from executing this model.

Figure 21 - Development Progress Based on Simple Project Model

However, it is clear that this model is overly simplistic. It does not take into account

the fact that Work To Do is constantly changing, not only decreasing because of work being
completed, but also fluctuating because defects, errors, and other forms of “rework” are
generated during development.

Evolving this model to add in the concept of rework yields the following version of
the model in Figure 22, where a Fraction Correct and Complete (FCC) dictates the
percentage of completed work that is correct and defect-free, ending up in the stock of
Work Done Correctly. The remainder of the work is either incorrect or incomplete and
requires rework, and thus makes it into the Undiscovered Rework stock.

Work To Do Work Done
Work Rate

Productivity Number of
Developers

Development Progress
8,000

6,000

4,000

2,000

0
0 1 2 3 4 5 6

Time (Month)

SL
O

C

Work To Do Work Done

Project Complete

59

Figure 22 – Basic Project Model with Rework Generation.

Continuing with our example, assuming an FCC of 80%, we find that 1600 additional
SLOC worth of rework have been introduced into the system by the fifth month, as shown
in the graph in Figure 23, generated by executing this revision of the model.

Figure 23 -Development Progress and Undiscovered Rework

Note that the project is considered complete when Work To Do reaches zero at

month five. However we also observe that at month five, there are yet 1600 SLOC in
Undiscovered Rework. In other words, 20% of the completed work needs to be re-worked,
but the project team is not yet aware of this. It is also important to note that while rework

Work To Do
Work Done
CorrectlyCorrect and

Complete
Work Rate

ProductivityNumber of
Developers

Undiscovered
Rework

Rework
Generation Rate

Fraction Correct
and Complete

Work Rate

Development Progress
8,000

6,000

4,000

2,000

0
0 1 2 3 4 5 6

Time (Month)

SL
O

C

Work To Do
Work Done Correctly

Undiscovered Rework

Project Complete

60

remains undiscovered, project management can overestimate progress, thinking that by
month 5 the project will be complete.

In real projects however, rework is discovered at various stages through validation

and verification – Let us further refine this model to introduce an element of rework
discovery. As code is inspected, tested, integrated, deployed, etc. rework is discovered and
added to the collection of Work To Do. Figure 24 shows the model revised to add rework
discovery, assuming a nominal Time to Discover Rework of one month.

Figure 24 - Basic Project Model with Rework Generation and Discovery

Figure 25 - Development Progress with Rework Generation and Discovery

Work To Do Work Done
CorrectlyCorrect and

Complete
Work Rate

Productivity

Number of
Developers

Undiscovered
Rework

Rework
Generation Rate

Fraction Correct
and Complete

Work Rate

Rework
Discovery Rate Time to Discover

Rework

Min Work Rate

<TIME STEP>

Development Progress
8,000

6,000

4,000

2,000

0
0 1 2 3 4 5 6 7 8 9

Time (Month)

SL
O

C

Work To Do
Work Done Correctly

Undiscovered Rework

Project Complete

61

This completes a simplified model of the classic “Rework Cycle”. Due to the rework
effects, a project that was planned to complete in five months now takes up to ten months,
as shown in the output graph in Figure 25. This in part explains the “90%” phenomena:
often, as a project nears its end, it seems to be stuck at “90% complete” for a long time,
without apparent progress. The “90% syndrome” is due to the effect of rework discovery:
especially at the tail-end of a Waterfall project where system level testing and integration
activities ramp up and begin to identify defects and rework. In our example, our project is
stuck at 90% from months 6 to 10. As software components are completed and integrated,
interface problems are identified, as well as user/customer related issues when the final
product is first presented to them.

Additionally, as rework and defects remain undiscovered in the system, new

development work built on top of these may end up needing rework as well. We call this
the “Errors upon Errors” effect: A second order feedback describing the compounding
nature of undiscovered rework, as shown in Figure 26. The more undiscovered rework in
the project, the more likely that new work built on top of it will require rework as well. In
our example, when adding this loop even more rework is generated, and now the project
takes about 16 months to complete (see Figure 27)!

Figure 26 - Rework Cycle Model with Errors-Upon-Errors Effect

Work To Do Work Done
CorrectlyCorrect and

Complete
Work Rate

Productivity

Number of
Developers

Undiscovered
Rework

Rework
Generation Rate

Fraction Correct
and Complete

Work Rate

Rework
Discovery Rate Time to Discover

Rework

Min Work Rate

<TIME STEP>

Effect of Undiscovered
Rework on FCC

Work Believed to Be
Done By Management

Fraction of Work Done that
is Actually Correct and

Complete

Normal FCC

62

Figure 27 - Development Progress with Errors Upon Errors Effect.

In the field of Strategic Project Management, the rework cycle is seen as being at the
root of the dynamics behind project performance. Errors and undiscovered rework lead to
more work in the form of further cycles (iterations) which are unplanned. Traditionally,
project managers deal with this situation by adding a “buffer” to the project in the planning
phase, either in the form of a schedule buffer (such as practiced in Critical Chain Path
Management) or a cost buffer (e.g. the ‘management reserve’ in EVM) to fund extra staffing
or overtime effort.

The clear messages from the rework cycle are (1) improve fraction correct and
complete (do it right the first time); (2) discover rework as soon as possible (avoid the
“errors upon errors” effect); and (3) incorporate estimates of undiscovered rework in
project status. (de Weck & J. Lyneis 2011) Fine-tuned System Dynamics models can be used
to estimate the potential impact of rework in projects and plan accordingly.

4.3 Brooks’ Law

In one of the classic works of software project management, “The Mythical Man
Month: Essays on Software Engineering”, Fred Brooks first articulated what has now come
to be known as “Brooks’ Law”:

Adding manpower to a late software project makes it later. (Brooks 1975)

Brooks attributes this phenomenon to two main factors. One is the fact that new

people on the project take time to become productive, as there is a learning curve

Development Progress
8,000

6,000

4,000

2,000

0
0 2 4 6 8 10 12 14 16 18

Time (Month)

SL
O

C

Work To Do
Work Done Correctly
Undiscovered Rework

Project Complete

63

associated with introducing new team members. Regardless of a developer’s experience
and depth of technical expertise, there is usually project-specific knowledge that is unlikely
to be known to a new person. During this “ramp up” time the team is less productive as a
whole. This is due not only to the initial low productivity of new team members, but is also
due to the time that experienced team members must spend mentoring and coaching new
staff, causing the experienced staff to be less productive themselves. The second factor has
to do with the communication and coordination costs that increase as the team size grows.

In the context of our SD example model from the previous section, we can describe

this effect by decomposing our Number of Developers into two stocks of Inexperienced
Developers and Experienced Developers. Over time, Inexperienced Developers gain
experience at a rate dictated by Time to Gain Experience. Also, we add a Hiring Rate and a
Staff Departure Rate to incorporate the effect of people leaving and joining the project. This
simple staffing model is depicted below in Figure 28.

Figure 28 - Simple Project Staffing Model

 Now, the other problem with simple project management models is that they
employ non-dynamic values for Staff, and do not incorporate the effects of a dynamically
changing staff composition on Productivity and FCC:

- Staff (Number of Developers) often changes, especially on long-term programs.
Moreover, not all developers are equal. Experience mix and learning curves play
a part in how much “effective staff” are actually applied to the work.

- Productivity is affected by the experience mix of the team.
- The same is true for FCC, as a higher ratio of experienced to inexperience staff

will lower defect generation.

Simple project models rely on a static, average, value of productivity, such as the 160
SLOC per person-month used in our example in section 4.2. Usually this is a historical
measure of an organization’s performance on other projects. Let us improve this by
extending the previous model to incorporate the effects of staff on project performance. A
straightforward approach to this is modeled in Figure 29.

64

Figure 29 - Experience Mix Added to Model

 Relative Experience of New Staff represents the answer to “how experienced are new
staff members compared to existing project staff members?” This can vary greatly from
project to project, and organization to organization. For example a new developer on a Java
project in the Air Traffic Control (ATC) domain may be a Java coding guru with years of
experience, but be a new hire to the company and have no experience with ATC, the
company culture, etc. For our modeling purposes, Relative Experience of New Staff is
modeled as an exogenous variable.

Using this relative experience ratio we can formulate values for the Effect of
Experience on Productivity and the Effect of Experience on FCC. The effect is based on the
fraction of staff which are inexperienced and the Relative Experience of New Staff. Adding
these effects in our model now shows how staffing dynamics affect controlling parameters
of the rework cycle (Productivity and FCC.) Choosing a value of 20% for Relative Experience
of New Staff, and ten new developers at the outset of the project, and zero experienced
developers, we see the following model behavior.

65

Figure 30 - Effect of Experience on Productivity

Figure 31 - Effect of Experience on Fraction Correct and Complete

 Figure 30 and Figure 31 show how Productivity and FCC suffer due to staff
inexperience, but as developers gain experience and assimilate into the pool of experienced
staff, the average productivity sees a marked improvement. These graphs plot the Effect of
Experience on FCC, the number of New Staff¸ and the number of Experienced Staff to provide
a visual indicator of improvement in FCC as the team composition evolves towards mostly
experienced staff. Note that the Effect of Experience on FCC is a fraction, and modeled as a
dimensionless unit (denoted “Dmnl” in these graphs). For example, an Effect of Experience
on FCC of 1.05 means that this has a 5% improvement effect of FCC.

Effect of Experience on Productivity
1 Dmnl

20 person

0.8 Dmnl
10 person

0.6 Dmnl
0 person

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32
Time (Week)

Effect of Experience on Productivity : Current Dmnl
New Staff : Current person
Experienced Staff : Current person

Effect of Experience on Productivity
1 Dmnl

20 person

0.8 Dmnl
10 person

0.6 Dmnl
0 person

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32
Time (Week)

Effect of Experience on FCC : Current Dmnl
New Staff : Current person
Experienced Staff : Current person

66

Our simple case so far assumes no staffing changes during the span of the project.
However, in real projects (especially large-scale software engineering), staff churn is a
reality that project management must fully consider as an integral part of the project-
system. Let us see what effect staff experience has on project completion time (Figure 32):
It now takes about 22 months to complete all of Work To Do, for a project that “ideally”
took five months to do back in Figure 23!

Figure 32 - Project Completion With Staff Experience

Now, let us see what happens when the management, at month number 16, decides
to “rescue” the project by adding 5 more developers to the team. The results are shown in
Figure 33. It now takes up to 24 month to complete.

Figure 33 - Project Performance with Late Hiring (Brooks' Law)

 Although a contrived example, this model illustrates the behavior behind Brooks’
law. The lesson for software project managers here is again to look for ways to improve
FCC and Productivity – Adding staff late in the project simply makes things worse because

Development Progress
8,000

6,000

4,000

2,000

0
0 2 4 6 8 10 12 14 16 18 20 22 24

Time (Month)

SL
O

C

Work To Do
Work Done Correctly

Undiscovered Rework

Development Progress
8,000

6,000

4,000

2,000

0
0 2 4 6 8 10 12 14 16 18 20 22 24

Time (Month)

SL
O

C

Work To Do
Work Done Correctly

Undiscovered Rework

New Staff Hired

67

it lowers productivity and increases defect generation, in aggregate. We can observe the
effect of management’s hiring decision for example by comparing the graphs for Rework
Generation Rate for both cases (with and without hiring at month 15). The comparison is
shown in Figure 34. This extra rework, generated due to the addition of new staff, increases
the amount of work that needs to be done for the project to complete.

Figure 34 - Rework Generation, With Increased Rework Generation Due to New Staff

Rework Generation Rate
2,000

1,500

1,000

500

0
0 2 4 6 8 10 12 14 16 18 20 22 24 26

Time (Month)

SL
O

C
/M

on
th

Rework Generation Rate : With_Rework_EuponE_StaffExp_and_Hiring
Rework Generation Rate : With_Rework_EuponE_and_StaffExp

New Staff Hired

68

4.4 Strategic Project Management with System Dynamics

System Dynamics was famously used by Pugh-Roberts/PA Consulting to diagnose the
causes of cost and schedule overruns on an Ingalls Shipbuilding (a division of Litton
Industries, Inc.) multibillion-dollar shipbuilding program in the 1970s, leading to a $447
million dollar settlement for the shipbuilder (Cooper 1980). Since then, they have applied
system dynamics in dozens of contract disputes related to cost and schedule overruns on
very large complex engineering projects.

Figure 35 - SD Model Reproducing Behavior of Real (Disguised) Project

Figure 35 shows the project staffing profile on a real multi-million dollar aerospace and
defense project that ran into such trouble (J. M. Lyneis et al. 2001). Note that the model was
able to accurately reproduce the system’s behavior, which was well off plan. Furthermore,
System Dynamics goes beyond post-mortem analysis of troubled projects. System
Dynamics models can be used to aid in a proactive, strategic/tactical management of design
and development projects.

69

Figure 36 - Planned vs Simulated Cumulative Effort for Peace Shield Air Defense System Project

This is illustrated by a case study of the Peace Shield Air Defense System, a $1 billion-
plus Hughes Aircraft (now part of Raytheon) program. On this project, a model (at the heart
of which was the rework cycle) was used to support the project bid, to identify and manage
risks, and to assess the benefit of several process and organization changes, which were
implemented on the project. Upon completion, the actual project results mirrored the
project plan, on time and within budget (Figure 36). The Acting Assistant Secretary of the
Air Force for Acquisition, was quoted as saying ‘‘In my 26 years in acquisitions, this is the
most successful program I’ve ever been involved with, and the leadership of the U.S. Air
Force agrees.’’ (J. M. Lyneis et al. 2001)

4.5 Summary

This chapter introduced the Systems Dynamics approach to modeling socio-technical

systems. After a brief overview of stocks, flows, and feedback loops – the basic elements of
system dynamics models - we took a look at the rework cycle, a model construct that has
been shown to be at the root of project performance in various System Dynamics research
efforts. We’ve also illustrated System Dynamics’ applicability to the domain of software
project management by using the rework cycle along with a simple staffing model to
demonstrate Brooks’ law (adding manpower to a late software project makes it later). We
concluded by presenting real-world examples of the use of System Dynamics for strategic
project management. With this in mind, we next proceed to model the “software
development system”, while incorporating the structure and feedbacks that capture the
seven “Agile Genes” presented in section 3.3. This model can be part of an “ongoing
learning system” that will aid in the design and deployment of software development
processes for projects that seek to enjoy the benefits of Agile Software Development.

70

5. Modeling the Dynamics of Agile Software Projects

This chapter presents the Agile Project Dynamics (APD) model. Following the research
into Agile methodologies and our formulation of the agile genome in the previous chapters,
we now employ System Dynamics to build a model of the software project-system. Figure
37 is a notional illustration of the APD model as a “black box” system. As exogenous inputs
to this model are project-specific parameters (system features, staff, number of releases,
etc), project-team specific parameters (productivity, rework discovery rate, etc.) and “agile
levers” (i.e. policies regarding which agile practices, or ‘genes’ to be used in the project).
Based on these inputs, model simulations capture project performance as output in terms
of cost, schedule, and quality.

Figure 37 - APD Model "Black Box"

71

5.1 APD Model High-Level Overview

The APD model is a complex model developed using the Vensim PLE system
dynamics modeling tool. It is built using several “views” which allow us to build different
subcomponents of the model in isolation, and to link them via the use of “shadow
variables”. At the core of the model is the “Agile Rework Cycle”. This consists of the rework
cycle structure extended to support an iterative-incremental development style, or a
single-pass waterfall approach – so that we can compare these differences. Figure 38 shows
this cycle. Note that in this figure, many variables and causal links have been removed or
renamed for clarity and display purposes. This full model structure, complete with all
contributing variables and loops, is presented in Appendix 1 – The Full Agile Project
Dynamics Model. Sections 5.2.1 and 5.2.2 will later explain how this structure supports the
“Feature Driven” and “Iterative-Incremental” gene behaviors.

Figure 38 - APD Model, Agile Rework Cycle

We characterize our complete model as “complex” because it includes 179 variables
(parameters, lookup tables, equations) and a high number of feedback loops. The table
below summarizes the number of loops that some of our key parameters are involved in:

72

Variable Number of Loops
Fraction Correct and Complete 5164
Sprint Work Being Accomplished 977
Sprint Backlog 619
Product Backlog 611
Sprint Rework Discovery 242
Release Backlog 212
Undiscovered Rework In Sprint 111
Sprint Rework Generation 90
Productivity 68
Development Rework Discovery Rate 65
Effective Staff 12

Table 5 - Loop Counts for a Sample of Variables in the APD Model

 Since there are so many loops driving the behavior of the system, we cannot hope to
explain them all in this document, however what follows is a description of how all of the
pieces ‘fit together’ in this model.

Each of the seven genes’ has its own set of dynamic effects on these controlling
variables of the “Agile Rework Cycle” (Figure 38). In other words, each agile practice or
characteristic has both positive and negative effects on:

• the rate at which work is accomplished,
• the rate at which defects are produced,
• the rate at which defects are discovered, and
• the rate at which working software is released.

Each gene, when possible, is modeled in its own view, and connected back to the

agile rework cycle using shadow variables. Shadow variables are a mechanism in the
Vensim modeling tool whereby a variable that appears in one model view can be
referenced (or “imported”) into another model view. This allows linking model structure
across views, and building ‘sub-systems’ of the model in multiple views.

73

Figure 39 - Shadow Variables Linked to FCC in APD Model

For example, Figure 39 shows how Fraction Correct and Complete (FCC) is

influenced by a host of other variables. Each one of these shadow variables can be found in
another view of the model - “Effect of Experience on FCC”, for example, can be found in the
“Staffing and Experience” model view, as presented in section 5.2.8. In this case we are
“linking” this view to other parts of the model using a formula for Fraction Correct and
Complete that incorporates all these shadow variables to compute a (dynamically changing)
FCC value.

It is important to note that there is a distinction to be made between the model itself,
and a given simulation (or “run”) of the model with specific parameters. The model does
not change, but it can be run with different parameters.

5.2 Modeling the Seven Genes of Agile

The following section describes sections of the Agile Project Dynamics (APD) model

pertaining to agile methods, and delves into the specifics of how each of the seven “agile
genes” characteristics is modeled in its own view. Where possible, Scrum is used as an
example and as the “reference methodology” when modeling certain aspects of Agile
development.

74

5.2.1 Story/Feature Driven

We begin to model the Story/Feature driven nature of an Agile project by modifying

the structure of the rework cycle to account for the stocks (or “buckets”) of features that
are maintained as software capabilities are envisioned, planned, prioritized, developed,
tested, and reworked.

This is better understood when considering that in Scrum, the following stocks of

work exist:
- Product Backlog: A backlog exists and evolves over the lifetime of the product; it is
the product road map. At any point, the Product Backlog is the single, definitive view of
“everything that could be done by the Team ever, in order of priority”. The Product Backlog
is continuously updated to reflect changes in the needs of the customer, new ideas or
insights, moves by the competition, technical hurdles that appear, and so forth. (Deemer et
al. 2009)
- Release Backlog: The subset of the Product Backlog that is intended for the
upcoming release of the software. This is the result of planning and prioritization to select
which features in the product backlog need to be implemented in the next cycle.
- Sprint Backlog: The list of tasks/work that the development team must address
during the next sprint. It consists of a set of tasks required to complete the features
selected for a subset of the Release.

Note that the features in the Product Backlog and Release Backlog, in Scrum, would

typically be sized using “story points,” an estimate of the effort that will be required to
complete them, whereas the Sprint Backlog is a collection of tasks. Therefore all of these
backlogs can be modeled as stocks of fungible “tasks” in our APD model. These structures
of the model are shown in Figure 40:

Figure 40 – SD Model structure of the Backlogs in an Agile Project

 A project begins with an initial amount of work (in unit of “tasks”) in the Product
Backlog. A subset of those tasks is moved into the Release Backlog at the start of a release
cycle. Each sprint in turn takes a subset of the Release Backlog into the Sprint Backlog to
begin development work.

 Work within a sprint follows the dynamics of the Rework Cycle, described in section
4.2. The sprint rework cycle in our APD model is shown below in Figure 41 - Sprint Rework
Cycle

75

Figure 41 - Sprint Rework Cycle

 Also, as part of this gene, we assume that the recipient of the software product is
willing to accept the delivery of software releases as integrated “feature sets” or sets of
client-valued functionality.

5.2.2 Iterative-Incremental

To model the iterative and incremental nature of an Agile project, we must repeat
the process described above in several builds, within several releases, and with a
fluctuating Product Backlog. Since, as described above, the transition of tasks (quantities of
work) from one backlog to the other is time/event based, we need signals indicating the
start and end of release and sprint cycles, to trigger the transition of work.

Figure 42 shows the model structure used to generate the Start of Release Cycle

Event and the End of Release Cycle Event signals observed in Figure 43. The number of
Planned Releases and the length of the project (equal to FINAL TIME) are used to calculate
the length of a release cycle. “InRelease” is a control flag that is helpful in other parts of the

76

model, used in a Boolean fashion to indicate if we are currently within a release cycle or in
between cycles. In our model we have set the project length to 104 weeks (FINAL TIME =
104 weeks), with 4 planned releases (Number of Releases if Agile = 4), and half planning
week in between releases (Release Planning Duration = 0.5 weeks).

Figure 42 - Release Cycle Timing Model Elements

To support the behavior of a waterfall project, we also introduce the Switch for
Waterfall control, which if set, causes the Release Cycle Duration to equal the duration of
the entire project (this simulates a single-pass waterfall development approach.) We can
thus generate events to drive a multi-release or a single pass development lifecycle by
simply switching on/off this control.

With the parameters described above, and with the waterfall switch set to “off”, this
results in a 26 month Release Cycle Duration as can been seen in Figure 43. On the other
hand, turning on the Switch for Waterfall results in the single-pass release cycle shown in
Figure 44.

77

Figure 43 - Release Event Times (Multi-release)

Figure 44 - Release Event Times (Single Release)

 A similar structure (seen in Figure 45) is used to generate sprint start and end
events (seen in Figure 46):

Release Event Times
1

0.75

0.5

0.25

0
0 8 16 24 32 40 48 56 64 72 80 88 96 104

Time (Week)

re
le

as
e

 Start of Release End of Release

Release Event Times
1

0.75

0.5

0.25

0
0 8 16 24 32 40 48 56 64 72 80 88 96 104

Time (Week)

re
le

as
e

 Start of Release End of Release

Release Cycle

Release Cycle

78

Figure 45 - Modeling of Sprint-related events

Figure 46 - Sprint Start and End Times

Sprint Start and End Events
1

0.75

0.5

0.25

0
0 2 4 6 8 10 12 14 16 18 20 22 24

Time (Week)

sp
rin

t

Start Event End Event

Sprint Time
Box

79

If we execute our model with all of the above, while monitoring the flow of work in
our three backlogs, we observe the behavior shown in Figure 47: at the start of a release
(Start of Release Cycle Event), a set of tasks (Release Size) is moved from the Product
Backlog to the Release Backlog. At the start of a sprint (Sprint Start Event), an amount of
work (Sprint Size) is moved from the Release Backlog to the Sprint Backlog. As work is
performed, tasks are consumed from the Sprint Backlog.

In Figure 47, the top line represents the Product Backlog: we observe it decreasing

at the beginning of every Release The middle line is the release backlog, which decreases by
small amounts at frequent intervals (the Sprint Duration). Finally, the almost imperceptible
(at this scale) line at the bottom represents tasks in the Sprint Backlog.

Figure 47 - Transfer of Work through Backlogs

To emulate a single-pass waterfall project, we employ the Switch for Waterfall
control to simply set the sizes of these three backlogs to an equal value, thus executing one
big one big release with a set feature list. The effect of this can be seen below in Figure 48.

Product Backlog

Release Backlog

Sprint Backlog

80

Figure 48 - APD Model Emulating a Single-pass Waterfall Project

 Here, having ‘turned on’ the Switch for Waterfall, we observe that the product and
release backlogs immediately drop to zero, as all of the development work is being done in
one giant sprint, effectively emulating the performance of a waterfall-style project.

5.2.3 Refactoring

As described in section 3.3.3, refactoring is the work required to restructure the
software baseline in order to pay off the “Technical Debt.” Technical Debt can be modeled
as a stock representing an accumulation of tasks over time that, once they reach a certain
threshold, must be accomplished before any other development can proceed.

Backlogs Work Transfer
200,000

150,000

100,000

50,000

0
0 16 32 48 64 80 96

Time (Week)

ta
sk

Product Backlog
Release Backlog

Sprint Backlog

81

Figure 49 - Model Elements for Refactoring

 Figure 49 shows the APD model structure elements and feedbacks that produce this
dynamic. As work in performed in the project, Technical Debt accrues at the Technical Debt
Accrual Rate. Tech Debt Accrued per unit of Work represents the percentage of each
completed work task that is susceptible to refactoring at a later point in time. Quantifying
the Technical Debt Accrual Rate is extremely difficult; it cannot be calculated a priori,
especially for a legacy program where development may occur “on top of” an existing
baseline with an unknown technical debt quantity.

 One way to derive a measure for technical debt is to assess the “quality” of one’s
code. The SQALE (Software Quality Assessment based on Lifecycle Expectations) is one
model for doing this. It is a methodology for assessing the quality of code, using algorithms
to score software quality along the dimensions of: Reusability, Maintainability, Efficiency,
Changeability, Reliability, and Testability. This type of analysis is available in several static
analysis packages including: Insite SaaS, Sonar, SQuORE, and Mia-Quality.12

12 http://www.sqale.org/tools

 Some have
been using the SQALE SQI (Software Quality Index) as a measure of technical debt.

82

Agile practitioners suggest other, simpler approaches: Agile teams can monitor the

amount of refactoring compared to the amount of new feature work in each sprint or
iteration to establish a historical baseline for Technical Debt Accrual.

For testing purposes of our APD model, we will measure technical debt as a fraction
of the amount of correct work already performed (Release Work Done Correctly). The
reasoning behind this is that Release Work Done Correctly is proportional to the size of the
code base (i.e. SLOC.) It also follows that the more SLOC, the more technical debt, as it has
been long established that lines of code are correlated to effort and defects, and that
duplication of code is by far the most common form of technical debt.13

 It’s also been
highlighted by mantras in a couple of books: the DRY (don’t repeat yourself) principle in
the Pragmatic Programmer (A. Hunt, and D. Thomas, Addison Wesley, 1999) and “Once and
Only Once” from Extreme Programming Explained: Embrace Change (K. Beck, Addison
Wesley, 1999). (Fowler, 2001)

 In our model we will use a value 0.05 to represent 5 units of technical debt for every
100 correct tasks completed to drive Technical Debt Accrual. If Refactoring is practiced
(using the switch Allow Refactoring) Once the Technical Debt level reaches the Technical
Debt Pay Off Amount of Work, then that amount of work is moved into Planned Refactoring
Work to be performed in the next sprint. Figure 50 shows the accumulation of Technical
Debt over time. Once it reaches Technical Debt Pay Off Amount of Work, the stock is drained
as the work is planned into the next release.

Figure 50 - Accumulation and Pay Off of Technical Debt

13 http://jamesshore.com/Blog/An-Approximate-Measure-of-Technical-Debt.html

Technical Debt
200

150

100

50

0
0 26 52 78 104 130 156 182

Time (Week)

ta
sk

Technical Debt : Current
Technical Debt Pay Off Amount of Work : Current

83

5.2.4 Micro-Optimizing

As described in section 3.3.4, the Micro-Optimizing gene represents the adaptive
nature of a given project’s development processes. In an Agile project, we can model this by
recognizing that at the end of each iteration, the team tweaks and fine tunes the process to
gain small gains in Productivity, FCC, and a small improvement in Rework Discovery.
Additionally, the team learns over time what their work capacity is, and they dynamically
adjust the size of each sprint by reducing or increasing the amount of work they choose to
tackle in the next sprint, based on performance in a previous sprint.

Figure 51 - APD Model Elements for Micro-Optimization

Figure 51 shows how we add this to our APD model. At the end of each iteration, if
any work is remaining in the Sprint Backlog, it represents the “gap” between the size of the

84

previous sprint and the amount of work that the team was able to accomplish. This gap is
represented by the variable Sprint Size Gap at end of Sprint. This gap amount is used to
decrease Ideal Sprint Size, at the next Sprint End Event. Ideal Sprint Size will be used to set
the variable controlling the size of the next sprint, Sprint Size.

On the other hand, if the team finishes all of the Sprint Backlog work before the end

of the sprint, the Time Left In Sprint at that point is used to determine how much Extra
Bandwidth the team had to spare in that sprint, and that amount will be used to increase
the size of the next sprint via the Sprint Size Increase flow.

Figure 52 - Example of Dynamically Changing Sprint Size

Figure 52 above shows the behavior produced when we turn on the control Allow
Micro-Optimization: a dynamically changing Sprint Size over time when running this model.
We interpret this graph as follows: the team selects an initial sprint size of 7500 tasks,
based on initial project parameters (Sprint Duration, Number of Releases, and Release Size).
Then, as development work proceeds, the team learns and adapts while dynamically
changing the sprint size, which represents how much work the team can handle within a
single sprint. At first, there is a dip in this capacity, as the project is still assimilating its’
new inexperienced staff, and while requirements are still uncertain. As the project
progresses, the team becomes more and more productive, while generating less defects,
allowing them to bite off larger amounts of work as the project proceeds. This behavior
matches what is observed in industry: Scrum teams report that after a dozen or more
sprints they become “fine-tuned” and capable of tackling more work per sprint.

The other set of effects that we have gathered under the micro-optimization genes,

as discussed earlier, are its effects on Fraction Correct and Complete, on Rework Discovery
Time, and on Productivity. In its current form the APD model uses a simple approach for

Sprint Size
30,000

22,500

15,000

7,500

0
0 16 32 48 64 80 96

ta
sk

Sprint Size

85

modeling these simply as a function of the number of sprints completed. In other words,
the more sprints, the better the team performs along these dimensions. Quantifying this
however is a difficult task, much like quantifying technical debt. A good approach here
would be to derive these numbers from historical performance data. For the purposes of
our modeling, we use a simple lookup table with very conservative values. This produces
the following improvement over time for FCC, for example as seen in Figure 53.

Figure 53 - Example Model Behavior: FCC Improvement as a Function of Sprints Completed

5.2.5 Customer Involvement

As detailed in section 3.3.5, Customer Involvement has some positive and some
negative effects on our core APD rework cycle. What could be considered a negative effect
is the fact that continuous customer input results in a certain level of requirements churn.
We model this (Figure 54) by calculating the Fraction of Release Work Completed. Based on
this measure of work progress, we employ a lookup table in Effect of Customer Involvement
on Requirements Churn. This variable represents the percentage of the requirements that
will change based on customer input and how far along in the release we are. For the
purposes of this model we are using a bell-curve reference mode, with a maximum of 10%
churn. The rationale behind this is that the most churn occurs toward the middle of the
release as tangible software is produced and allows the customer to feedback changes into
the release.

 The positive effects of Customer Involvement are captured in Effect of Customer
Involvement on FCC and Effect of Customer Involvement on Rework Discovery Time.

Improvement in FCC based on Number of Sprints Completed
1.25

1.187

1.125

1.062

1
0 4 8 12 16 20 24 28 32 36 40 44 48 52

Time (Week)

D
m

nl

Effect of MO on FCC : Current

86

Effect of Customer Involvement on FCC: A large part of software defects are caused by
requirements uncertainty. As progress is made during each sprint, requirements
uncertainty is eliminated with customer feedback and product demos. This in turn
improves our FCC.

Effect of Customer Involvement on Rework Discovery Time: Likewise, customer

availability to answer questions, detect conflicts and misunderstandings , and to identify
usability issues during product demonstrations means that we are more likely to identify
rework early in the process.

Figure 54 - APD Model Elements for Customer Involvement

 In Figure 55, we see the Requirements Churn Rate Based on Customer Involvement.
This value fluctuates throughout each release between 0 and 30 tasks per week, in this
example. In this simulation, we have four software releases, with three sprints in each
release. Notice how, in each release, the requirements churn rate has decreasing several
steps. These coincide with each sprint within a release – this behavior is intended to
represent the notion that at the beginning of a release requirements are more fluid and
subject to change, but as more sprints are completed and as there are less remaining
features and work to do in the current release, there are fewer requirements subject to
churn.

Allow Customer
Involvement

<Fraction of Sprint Work
Believed Done Correct and

Complete>

Elimination of Requirements
Uncertainty Based on Sprint

Progress

Max Effect of
Requirements
Uncertainty

Effect of Uncertain
Requirements on

FCC

<Number of Team
Meetings per week>

Improvement in Rework
Discovery Due to Customer

Involvement

Effect of Customer
Involvement on Rework

Discovery Time

Max Effect of Customer
Involvement on Rework

Discovery Time

Fraction of Release
Work Completed

<Release
Backlog>

<Release Size> <InRelease>

Effect of Customer
Involvement on

Requirements ChurnSensitivity for the Effect of
CustInv on Requirements

Churn
Requirements Churn Rate

Based on Customer
Involvement

87

Figure 55 - Example of Requirements Churn due to Customer Involvement

 Below in Figure 56 we see also the Effect of Customer Involvement on FCC. As each
sprint nears completion, the effect of having a customer available to validate work products
results in an improvement in FCC, as uncertainty is reduced. Our model places a lower limit
of 0.85 on this effect (Max Effect of Requirements Uncertainty) meaning that at worse,
requirements uncertainty can reduce the FCC by 15%. In this graph we see the value for
this effect climb up near to 1, then drop back down to 0.85 at regular intervals, coinciding
with the sprints in the project. This behavior is intended to represent the fact that, as each
sprint nears completion, the requirements for the features under development in this
sprint are less and less unclear (especially with customer involvement in scrums and
feature demos).

Figure 56 - APD Example Effect of Customer Involvement on FCC

Requirements Churn Rate Based on Customer Involvement
200

150

100

50

0
0 8 16 24 32 40 48 56 64 72 80 88 96 104

Time (Week)

ta
sk

/W
ee

k

Churn Rate

Effect of Uncertain Requirements on FCC
1

0.95

0.9

0.85

0.8
0 4 8 12 16 20 24 28 32 36 40 44 48 52

Time (Week)

D
m

nl

Effect of Uncertain Requirements on FCC : Current

88

5.2.6 Team Dynamics

The portion of the model, shown in Figure 57, is a very simplistic approximation of
the effects of the practices of Pair Programming (PP), and frequent (e.g. daily) meetings.

Figure 57 - APD Model Elements for Team Dynamics

We know that in industry pair programming is not practiced 100% of the time.

Typically developers spend 20% to 50% of their time doing PP. Thus Percent Time Spent on
PP is set to 0.5 for our model, however it can be adjusted per project conditions.

We employ a switch (Allow Pair Programming) in the model to control whether Pair

Programming is practiced - we can thus model the effects of PP on other parts of the
system. These are:

- Effect of PP on Experience Gain: studies have shown greater experience gain
through PP. We capture this effect in this variable.

- Effect of PP on Productivity; PP is reported to cause a reduction in productivity
measures such as SLOC-per-month-per-person.

- Effect of PP on Defect Generation; PP results in better design and less defects, as it
creates a form of real-time code review.

Number of Team
Meetings per week

Effective Percent
Time Spent on PP

Effect of PP on
Productivity

Nominal Effect of PP
on FCC

Effect of PP on FCC
Effect of PP on
Experience Gain

Effect of Team Meetings on
Sprint Rework Discovery

Rate

one week

Effect of Team
Meetings on FCC

Table for Effect of PP
on Experience Gain

Allow Pair
Programming

Percent Time Spent on
PP

Effect of Agile
Teams on Pdy

<Switch for
Waterfall>

89

-
We also employ a variable “Number of Team Meetings per week” to simulate

Frequent team meetings (e.g. daily Scrum) and the two effects these have on the system:
- Effect of Team Meetings on FCC: The more frequent meetings, the more issues are

raised, questions answered, leading to less defects in the software.
- Effect of Team Meetings on Sprint Rework Discovery Rate: Rework is discovered

sooner through constant feedback, especially if a customer is involved in these
meetings.

There is a third (and negative) effect that could be associated with the practice of

regular meetings. Is it not true that the more meetings, the less time spent doing work? In
most cases, the answer is yes. However in an Agile world, especially in the Scrum process,
great attention is paid to making these team meetings extremely short and extremely
productive. Daily Scrums are ideally ten to fifteen minutes stand-up meetings, often
scheduled in the morning to start the day. The time this takes away from ‘doing the work’ is
therefore negligible, which is we haven’t modeled this aspect.

 The other aspect of Team Dynamics that we presented in section 3.3.6 relates to the
nature of schedule pressure in the Agile environment: frequent short bursts of schedule
pressure are experienced at the end of each sprint.

 This dynamic is captured in the feedback loop shown in Figure 58. A calculation of the
number of extra Developers needed to complete on schedule (for the sprint) is calculated
based on the Time Left in Sprint and the Effort Remaining in Sprint. If this number is greater
than zero, then Schedule Pressure is perceived, after a short delay (controlled by Time to
Perceive Sched Pressure). Schedule Pressure in turn drives work intensity (working harder,
and using overtime), which then increases the Effective Staff, which is the product of actual
Staff by Work Intensity. That will increase the Sprint Work Rate and tasks will be
accomplished faster.

90

Figure 58 - End-of-Sprint Pressure (“Working Harder” Balancing Feedback Loop)

 However, working at higher intensity also leads to more defect generation (“Haste
Makes Waste”) as shown in Figure 59, since Work Intensity not only speeds up the
completion of correct work, but also speeds up the generation of defects:

Sprint Backlog
Work

Performed in
ReleaseSprint Work

Being
Accomplished

Effort
Remaining in

Sprint

Time to Perceive
Sched Pressure Schedule Pressure

Developers needed to
complete on schedule

Normal Work
Intensity

Max Work Intensity
Work Intensity

Effective Staff

Working
Harder at

End of
Sprint

i f

<Staff>

<Productivity>

<Number of Team
Meetings per week>

Sprint Work Rate

<Switch for
Waterfall>

91

Figure 59 - Schedule Pressure Creates More Defects (“Burn Out” Reinforcing Loop)

 Moreover, working at high intensity is only sustainable for a short period of time
before developers start to “Burn Out” and generate more defects than normal (i.e.
becoming sloppy) –Figure 60 shows this loop in our APD model which captures the effect
of increased Work Intensity leading to lower FCC (after a delay.)

92

Figure 60 - Sustained High Intensity Leads to Burn Out

5.2.7 Continuous Integration

As described previously, creating a “CI Environment” means acquiring, installing,
and configuring the tools and servers necessary to support CI. This may include custom
scripting and development to automate certain aspects of the build process, or even
modification of the software product to add harnessing or support for test automation. This
can be a costly up-front effort for any project, and the project cannot enjoy the benefits of
CI until this environment is available.

93

Figure 61 - APD Model Elements for Continuous Integration

As seen in Figure 61, our APD model captures the upfront cost of CI setup by
injecting an amount of tasks into the Continuous Integration Setup Work stock. This is
calculated simplistically here by using the formula:

Number of Tasks to Setup CI Environment = Nominal Productivity*(Time to set up CI*Staff to set up CI)

 “Time to Setup CI” and ”Staff to set up CI” both are exogenous model parameters that
can be adjusted for simulation purposes. At the beginning of the project, if there is any CI
setup work to do, it is the first set of tasks that are transitioned into the Release Backlog.

94

 Also as previously described, Continuous Integration can be broken into two sub-
practices: Configuration Management (CM), and Test Automation. As shown in Figure 61
CM and Build Environment Automation Level is a lever variable which can be set from 0 to
10 to indicate the level of automation (how much of the process of preparing and building
the software for daily development use and especially for release is automated and
repeatable.) Level of Automated Testing Used likewise represents how much test
automation is in the system; this can range from 0(no automation) to 10 (fully automated
unit testing as well as fully automated functional tests – the system can completely self-test
as part of a nightly build.)

 This allows us to ‘configure’ the Continuous Integration gene depending on the
nature and purpose of our simulation to have varying degrees of impact on productivity
and rework discovery.

Figure 62 - Examples of Effect of Continuous Integration on Productivity

For example, Figure 62 plots two graphs for the Effect of Continuous Integration on
Productivity. The solid line is the value of this variable after setting the Level of Automated
Testing Used and CM and Build Environment Automation Level parameters both to a value of
3, while the dashed line shows its value after setting them to 8. Simply put, more
automation means more productivity, as repetitive manual labor is replaced by software
that automated portions of the workflow.

Effect of Continuous Integration on Productivity
4

3

2

1

0
0 6 12 18 24

Time (Week)

D
m

nl

Autmoation Levels = 3 Autmoation Levels = 8

95

5.2.8 Modeling Staffing and Staff Experience

 Figure 63 shows the portion of the APD model that addresses staffing and
experience gain. The construct is very similar to that presented in section 4.3, describing
developer experience mix and its relationship to Brooks’ Law.

Figure 63- Staffing and Staff Experience

Figure 64 shows our staffing profile when executing this model. Here the project

starts with at a pre-determined mix of New Staff and Experienced Staff (10 and 0). As time
elapses, employees gain experience and become Experienced Staff. Note that we never
reach a level of 100% of experienced employees, because our staff is changing at the rate of
5% after every sprint (Staff Churn Rate) to model the fact that in real organizations,
developers are reassigned to different tasks and efforts regularly.

96

Figure 64 – Staffing Profile from APD Model

Over time, as employees gain experience, FCC and Productivity improve. Figure 65
shows how the effect of staff Experience on Productivity increases over time. The effect of
experience on FCC shows a similar behavior.

Figure 65 - Effect of Experience Gain on Productivity Increases Over Time

Staffing
10

7.5

5

2.5

0
0 6 12 18 24 30 36 42 48 54 60 66 72 78

Time (Week)

pe
rs

on

New Staff : Current
Experienced Staff : Current

Effect of Experience on Productivity
1

0.75

0.5

0.25

0
0 6 12 18 24 30 36 42 48 54 60 66 72 78

Time (Week)

D
im

en
sio

nl
es

s

Effect of Experience on Productivity : Current

97

5.3 Summary

In this chapter, we presented a high-level overview of the APD model, including an
overview of each Agile gene, and how it is modeled as a sub-system using Vensim views.
The full set of model views are provided for reference in Appendix 1 – The Full Agile
Project Dynamics Model. Having explained how all the pieces of the model fit together, we
now move on to experimenting with our model.

98

6. Model Simulation Experiments

In order to perform “what if” analysis and sensitivity tests on the effects produced

from the interaction of gene combinations and management policy variables, we have
constructed a “Management Dashboard” that allows us to “pull the levers” on all of our
project variables and observe the results (see Figure 66).

Figure 66 -APD Management Dashboard

 The three project performance graphs that we choose to observe in our dashboard
are based on the three sides of the Iron Triangle: Schedule, Cost, and Quality (see section
2.1.1). Schedule completion is determined based on the amount of time it takes for the
Product, Release, and Sprint backlogs to be drained to 0. Cost is determined based on the
cumulative amount of development effort spent on the project. Quality is determined based
on the amount of rework (defects) that are in the product.

 Before we begin our experiments, let us set up our base case parameters:

Project Size = 200,000 tasks
Initial Number of Inexperienced Staff = 10 people
Initial Number of Experienced Staff = 10 people
Normal Productivity = 200 tasks per-week, per-person

99

Using the ‘simplistic’ planning method described previously, we might project a completion
time of 50 weeks (Project Size / Staff*Productivity). However, now that we recognize the
existence of the rework cycle, and the effects that staff experience mix and staff churn have
on the project’s performance, we also set the following parameters:

Nominal Fraction Correct and Complete = 80%
Relative Experience of New Staff = 20%

We will hold these parameters constant for the rest of our experiments in order to perform
a comparison of waterfall vs. agile given them same external project parameters. We will
start with a baseline case of a single-pass waterfall project given these parameters, and we
will proceed to “turn on” agile genes one-by-one to observe their cumulative effects of
project performance. Table 6, summarizes the set of cases we will cover in the following
series of experiments.

Case
Switch for
Waterfall

Iterative/
incremental
& Feature-

driven
Micro-

Optimization Refactoring
Continuous
Integration

Customer
Involvement

Pair
Programming

Base Case Waterfall OFF OFF OFF OFF OFF OFF
Case 1 Agile ON OFF OFF OFF OFF OFF

Case 2 Agile ON ON OFF OFF OFF OFF

Case 3 Agile ON ON ON OFF OFF OFF

Case 4 Agile ON ON ON ON OFF OFF

Case 5 Agile ON ON ON ON ON OFF

Case 6 Agile ON ON ON ON ON ON

Table 6 - APD Model Experiements Summary

 For each of our upcoming experiments, we will monitor the results in the form of
three project performance variables that gauge performance along the three sides of the
Iron Triangle (refer to section 2.1.1). The first measure, Schedule, gives us an idea of the
project duration, i.e. how long it will take to fully complete the project. The second
measure, Cost, gives us an idea of the amount of effort that will be expended to complete
the project. It is measured as the cumulative amount of effort (in units of “task”) expended
on the project. The third and final measure is Quality. We measure quality by monitoring at
the total amount of undiscovered rework in the released software across the duration of
the project. By “released software” we mean the releases that have been delivered to
another organization, be it integration and test teams or the final end-user.

Project Performance

Schedule
(weeks)

Cost
(tasks)

Quality
(H/M/L)

100 200000 M
Table 7 - Example Project Performance Triplet

100

An important thing to keep in mind when observing the Quality measure is that we do
not simply look at the number of undiscovered rework tasks in the product, but we give it a
rating of “H”, “M”, or “L” (High, Medium, or Low quality) based on the probability that
defects are latent in the system at any given point in time. The more undiscovered rework
items are in the system, the more likely that a software release will contain a number of
these. Since we have not built a mechanism in the model to calculate this, for our purposes
we are simply monitoring the “Quality Profile” graph of the project and making a
corresponding visual judgment based on the apparent area under the curve. In Figure 67
we show a side-by-side example of quality profile graphs from two different simulations.
Roughly, project A has much higher Undiscovered Rework, and over longer periods of time
than project B (higher amplitude and frequency) – In this situation we score project A with
“L” for low quality and project B with an “H” for high-quality.

Figure 67- Examples of Quality Profile Graphs

 Our APD model and set of experiments is not predicting or re-creating results from
real projects, but comparing behavior of the project under different scenarios. Different
exogenous parameters would produce different results, but here we are holding those
exogenous parameters constant to perform a relative comparison of behavior based solely
on the selection of Agile genes.

6.1 Base Case Experiment (single-pass waterfall):

 As a base-case, we start by executing the model in “waterfall mode” by using
our ‘Switch for Waterfall”. It yields the following results:

Project End Time Figure 68: 79 Weeks (see). Note that the project end time is the point at
which all of the work backlogs have been depleted.

Quality Profile (Example Project A)
800

600

400

200

0
0 8 16 24 32 40 48 56 64 72 80 88 96 104

Time (Week)

ta
sk

Total Undiscovered Rework : Quality1

Quality Profile (Example Project B)
60

45

30

15

0
0 8 16 24 32 40 48 56 64 72 80 88 96 104

Time (Week)

ta
sk

Total Undiscovered Rework : Quality2

101

Figure 68 - APD Base Case Schedule

Project Cost Figure 69: 250,223 tasks (see). Note that for management, this is translatable
into a dollar cost. We are currently using “task” as a fungible unit of work. This can easily be
substituted with person-hours. Using this in conjunction with labor costs, we can quickly
determine the dollar amount of the effort spent. For our purposes, however, “task” is an
acceptable unit of cost.

Figure 69 - APD Base Case Cost

Schedule (Backlogs)
200,000 task

1 Dmnl

100,000 task
0.5 Dmnl

0 task
0 Dmnl

0 16 32 48 64 80 96
Time (Week)

Product Backlog task
Release Backlog task
Sprint Backlog task
Project End Dmnl

Cost (Development Effort Spent)
400,000

300,000

200,000

100,000

0
0 16 32 48 64 80 96

Time (Week)

ta
sk

Development Effort

Project End

Final Cost

102

Project Quality Figure 70: 277 tasks (see). Note that here we are measuring quality by the
amount of undiscovered rework tasks that escape into the delivered product.

Figure 70 - APD Base Case Quality

In summary, our base case scenario produced the following project performance:

Project Performance

Schedule
(weeks)

Cost
(tasks)

Quality
(rework tasks)

79 250,223 L
Table 8 - Base Case Project Performance

6.2 Case 1: Fixed-schedule Feature-Driven
Iterative/Incremental

In the next experiment, we ‘turn off’ the waterfall switch. This activates the

iterative/incremental gene and the feature-driven gene, such that our project is now
broken up into 4 equally sized releases that are delivered in regular intervals in feature
sets. Executing the model with these settings produces the following project performance
results:

Quality (Defects in Product)
4,000 task

1 Dmnl

2,000 task
0.5 Dmnl

0 task
0 Dmnl

0 16 32 48 64 80 96
Time (Week)

Defects task
Project Finished Dmnl

Project
Completed with
undiscovered
rework.

103

 Project Performance

Case
Schedule
(weeks)

Cost
(tasks)

Quality
(tasks)

Base Case 79 250,223 L
Case 1 95 275,111 M

Table 9 - Case 1 Project Performance

 Looking at these results, we find that the same project now takes 16 extra weeks,
ending at week 95, and incurs extra cost (roughly 25000 more tasks). However, the
product now is delivered with zero defects. Cost and Quality graphs can be observed below
in Figure 71.

Figure 71 - Case 1 Cost and Quality

 Moreover, there is a much more subtle difference generated by this case: the
software is now delivered in four releases, i.e. four functional increments. These are
annotated below on the Schedule graph in Figure 72. Each release is not just a random
chunk of the software, but a cohesive feature set that is “potentially shippable” and has
client/end-user value. Each release can be tested against system-level specifications and
user expectations.

This can be of tremendous value to the recipient of the software release: they can
immediately start providing feedback and acting as a “beta-tester” as of release #1 in week
24. If the recipient of this release is an integration, test, or quality assurance organization,
they can get a head start on testing the software against the system specifications,
performing boundary case testes, and so on. In fact, depending on the project environment,
being able to several early increments of functionality may be more valuable to the
customer than the added cost incurred by this case.

Cost (Development Effort Spent)
400,000

200,000

0
0 24 48 72 96

Time (Week)

ta
sk

Development Effort

Quality (Defects in Product)
800 task

1 Dmnl

400 task
0.5 Dmnl

0 task
0 Dmnl

0 24 48 72 96
Time (Week)

Defects task
Project Finished Dmnl

104

Figure 72 - Case 1 Schedule

6.3 Case 2: Introduction of Micro-Optimization.

Next, we will enable Micro-Optimization. As explained earlier (section 3.3.4), this model

element simulates the management policy of empowering the development team to self-
manage workload, and to perform process tweaks in between sprints, using learning from
prior sprints to improve future sprint performance . We start by setting the Agile Levers for
case 2. Running the model with these two genes now produces the following project
performance results:

 Project Performance

Case
Schedule
(weeks)

Cost
(tasks)

Quality
(tasks)

Base Case 79 250,223 L
Case 1 95 275,111 M
Case 2 82 244,436 M

Table 10 - Case 2 Project Performance

We see improved project duration, down to 82 weeks instead of 95 in case 1. Our costs
of around 244K tasks are also lower than both the base case (250K tasks) and case 1 (275K
tasks).

Schedule (Backlogs)
200,000 task

1 Dmnl

100,000 task
0.5 Dmnl

0 task
0 Dmnl

0 16 32 48 64 80 96
Time (Week)

Product Backlog task
Release Backlog task
Sprint Backlog task
Project End Dmnl

Release #1 Release #2 Release #3 Release #4

105

Although this may seem counter-intuitive to management, the results here suggest that
a team empowered to self-regulate their workload may curtail costs and schedule overrun
as opposed to an incremental delivery model whose releases are dictated in advance. Given
more time, it is almost always possible to improve the product and this could lead to the
“gold-plating” effect where teams spend time over-engineering the product beyond what is
necessary to achieve the desired functionality (it is almost the opposite of ‘technical debt’).
However, the fact that agile iterations are time-boxed and are feature-driven mitigates this
issue, as teams will give priority and focus to completing specific features.

Figure 73 - Case 2 Schedule

If we examine our work backlogs in Figure 73, we see that roughly two-thirds of the
functionality is delivered in the first two releases, around week 50. What has happened
here, as opposed to the previous case, is that teams can gradually handle more work than
was allotted to them per-sprint in the previous case, and have self-regulated the amount of
work they do per-sprint. This allows them to get more sprints completed by week 50 than
in the previous case.

Schedule (Backlogs)
200,000 task

1 Dmnl

100,000 task
0.5 Dmnl

0 task
0 Dmnl

0 16 32 48 64 80 96
Time (Week)

Product Backlog task
Release Backlog task
Sprint Backlog task
Project End Dmnl

Release #2

106

6.4 Case 3: Introduction of Refactoring

In this case we will allow refactoring. As described earlier (5.2.3) this means that when
the “technical/design debt” for the project reaches a threshold, the development team will
take time to work on additional refactoring tasks to improve the quality of the software and
keep it flexible and easy/cheap for expansion and addition of future features.

Executing the model thus, with three of the genes, now produces the following

project performance results:

 Project Performance

Case
Schedule
(weeks)

Cost
(tasks)

Quality
(tasks)

Base Case 79 250,223 L
Case 1 95 275,111 M
Case 2 82 244,436 M
Case 3 81.6 243,904 M

Table 11 - Case 3 Project Performance

Intuitively, management may have thought that allowing refactoring is akin to scope
creep, and thus may have thought that this would have increased either our cost or slipped
the schedule. Our results, on the contrary, show that allowing refactoring resulted in a very
minor (albeit negligible) improvement in schedule and in cost. To explain this, let us take a
look at the graph for Technical Debt in case 3 vs. case 2 – see Figure 74. As can be observed
in this graph, refactoring keeps our technical debt’s “balance” low by refactoring. This is
turn has a less detrimental effect on our Fraction Correct and Complete than when letting
technical debt get out of hand, as shown in Figure 75.

107

Figure 74 - Technical Debt Profile, Case 2 vs. Case 3

Figure 75 - Effect of Technical Debt on FCC, Case 2 vs. Case 3

 Finally, there is one more subtle benefit observed in this case. Since we are now
delivering the software in multiple releases, let’s look at the number of undiscovered
rework tasks in the software at each release. This is shown in Figure 76.

Technical Debt
20,000

15,000

10,000

5,000

0
0 16 32 48 64 80 96

Time (Week)

ta
sk

Technical Debt : Case 2
Technical Debt : Case 3

Effect of Tech Debt on FCC
1

0.95

0.9

0.85

0.8
0 8 16 24 32 40 48 56 64 72 80 88 96 104

Time (Week)

D
m

nl

Effect of Tech Debt on FCC : Case 2
Effect of Tech Debt on FCC : Case 3

108

Figure 76 - Defects in Software, Case 2 vs. Case 3

Here we find that in case 2, the software was released with 28.5 defects, vs 8.9
defects in case 3 where refactoring was allowed. In other words, refactoring also allows the
development team to produce better quality incremental releases. This makes sense
intuitively, as it is clear that refactoring to optimize will improve the quality of the
software, however the surprising part is the previous finding: that refactoring has no
detrimental effect on cost or schedule. This is because of the positive effect that unpaid
technical debt has on defect generation.

6.5 Case 4: Introduction of Continuous Integration

We now activate the Continuous Integration lever. This will create an initial load in
tasks to be performed, representing the initial effort to set up and configure the
development and delivery environment. Later, once that environment is available, it
enhances productivity, and our ability to detect rework tasks (thanks to automated
testing).

Executing the model with these parameters produces the following project

performance results:

Quality Profile (Case 2 vs Case 3)
600 task

1 release

300 task
0.5 release

0 task
0 release

0 16 32 48 64 80 96
Time (Week)

Case 2 defects task
Case 3 defects task
Release release

Release #1
Case 2, 28.5 defects
Case 3, 8.9 defects

109

 Project Performance

Case
Schedule
(weeks)

Cost
(tasks)

Quality
(tasks)

Base Case 79 250,223 L
Case 1 95 275,111 M
Case 2 82 244,436 M
Case 3 81.6 243,904 M
Case 4 62.8 255,593 H

Table 12 - Case 4 Project Performance

 There are no surprises here: Introducing Continuous Integration increases cost
somewhat, due to the up-front investment to configure such an environment. However, the
cost is recouped in schedule time. The project duration is shortened thanks to a significant
speed-up in rework discovery. If the project were extended beyond 104 weeks to several
years, this up-front cost becomes negligible. Another interesting observation with this gene
is the quality profile as exhibited in Figure 77.

Figure 77 - Case 4 Quality

Compared to what we saw in cases 2 and 3, our quality profile shows that defects have a
short life on the project, as they are quickly discovered and addressed. This has several
positive effects, chiefly: the “Errors upon Errors” dynamic, described in section 4.2, is less
powerful, as there are less undiscovered rework tasks dormant in the system at any given
time.

Quality (Defects in Product)
100 task

1 Dmnl

50 task
0.5 Dmnl

0 task
0 Dmnl

0 16 32 48 64 80 96
Time (Week)

Defects task
Project Finished Dmnl

110

6.6 Case 5: Introducing Customer Involvement

We now introduce the Customer Involvement gene, which means that there will be
some requirements churn, however requirements uncertainty will be reduced as sprints
progress, since the customer/user is available for feature demonstrations and immediate
feedback.

Running a simulation with the above parameters yields the following results:

Case
Schedule
(weeks)

Cost
(tasks)

Quality
(tasks)

Base Case 79 250,223 L
Case 1 95 275,111 M
Case 2 82 244,436 M
Case 3 81.6 243,904 M
Case 4 62.8 255,593 H
Case 5 55.2 237,593 H

Table 13 - Case 5 Project Performance

It seems that Customer involvement has improved both cost and schedule. The root of this
is due to the effect of requirements uncertainty on the FCC.

Figure 78 - Effect of Uncertain Requirements on FCC, Case 4 vs. Case 5

Effect of Uncertain Requirements on FCC
1

0.95

0.9

0.85

0.8
0 8 16 24 32 40 48 56 64 72 80 88 96 104

Time (Week)

D
m

nl

Effect of Uncertain Requirements on FCC : Case 4
Effect of Uncertain Requirements on FCC : Case 5

111

Figure 78 shows the graph for Effect of Uncertain Requirements on FCC for cases 4 and 5.
In case 4, there was no customer involvement, and thus no reduction in uncertainty (effect
is linear at 0.85). In case 5, as each sprint nears completion there is less uncertainty (thus
higher FCC) as the development team is able to demonstrate features to customers and
clarify any uncertainty on a regular informal basis.

6.7 Case 6: Introducing Pair Programming

In the final case, we look at the effect that the pair programming has on our projects’
performance. In industry, pair programming is not practiced 100% of the time. Typically
developers spend 20% to 50% of their time doing pair programming, thus we have set the
value of Percent Time Spent on PP to a conservative 0.5.

Performing a simulation with these parameters produces the following project
performance measures:

Case
Schedule
(weeks)

Cost
(tasks)

Quality
(tasks)

Base Case 79 250,223 L
Case 1 95 275,111 M
Case 2 82 244,436 M
Case 3 81.6 243,904 M
Case 4 62.8 255,593 H
Case 5 55.2 237,593 H
Case 6 52.6 223,749 H

Table 14 - Case 6 Project Performance

 We see that our project performs even better in terms of schedule compared to case
5 (52.6 weeks vs. 55.2 weeks), as well as in cost (roughly 14000 fewer tasks in
development effort). This is also counter-intuitive: Pair Programming has a significant
effect on productivity, as described in section 5.2.6. This is visible in our graph of
development productivity in case 5 vs. case 6, seen in Figure 79.

112

Figure 79 - Productivity Comparison, Case 5 vs. Case 6

 So, why does Pair Programming improve project performance? The answer lies in
the amount of rework that is generated in each case.

Productivity
800

600

400

200

0
0 8 16 24 32 40 48 56 64 72 80 88 96 104

Time (Week)

ta
sk

/(W
ee

k*
pe

rs
on

)

Productivity : Case 5 Productivity : Case 6

113

Figure 80 - FCC, Case 5 vs. Case 6

As we can see in Figure 80, our FCC is significantly better when employing Pair
Programming. It is well understood that this practice produced higher quality code, as it
serves as a form of real-time inspection. However, what is not immediately obvious is that
better quality code begets fewer defects in subsequent development. Thus, the loss in
productivity is more than made up for by the lower defect generation rates when
employing this practice.

Fraction Correct and Complete
1.25

1.062

0.875

0.6875

0.5
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Time (Week)

D
m

nl

Fraction Correct and Complete : Case 6
Fraction Correct and Complete : Case 5

114

7. Conclusions and Recommendations

7.1 Interpretation of results

The six experiments performed in the previous section are but a subset of the
combination and permutation of genes that can be experimented with. With six Agile gene
related switches (note, that we get Feature-driven plus Interactive-incremental
automatically when we switch-off Waterfall) , this means that we could experiment with
26

, or 64 different gene combinations. Moreover, each one of the genes can have a varying
effect depending on the setting of that gene’s “sub-parameters. These sub-parameters are
summarized below:

Micro-Optimization: Improvement in FCC based on Sprints Completed, Improvement in
Productivity based on Sprints Completed, and Improvement in Rework Discovery based on
Sprints Completed are table functions that translate the number of sprints completed into a
fractional improvement in three of the rework cycle’s controlling parameters.

Refactoring: Technical Debt Accrued per Unit of Work, Effect of Technical Debt on FCC,
and Refactoring Aggressiveness represent “how much technical debt is accumulating”,
“what its effect on FCC is”, and “how proactive is the project in refactoring their software”.

Continuous Integration: Here we employ several exogenous parameters that specify
a) the cost of setting up continuous integration, b) the level of automation that is employed,
and c) the effect of continuous integration on FCC and Rework Discovery. The variables are:
Level of Automated Testing Used, CM and Build Environment Automation Level, Effect of
Automated Testing on Rework Discovery, Effect of Automated Testing on Productivity, Effect
of CM Environment on Rework Discovery, and Effect of CM Environment on Productivity.

Customer Involvement: Here we have external parameters that dictate how much
requirements changes (negative aspect) will result from customer involvement, as well as
how their involvement will help rework discovery and reduce uncertainty. The variables
are: Effect of Customer Involvement on Requirements Churn, Elimination of Requirements
Uncertainty Based on Sprint Progress, and Improvement in Rework Discovery Due to
Customer Involvement.

Team Dynamics: Here we capture the effect of team meetings and pair programming
on the rework cycle. The sub-parameter variables are: Effect of PP on FCC, Effect of PP on
Experience Gain, Effect of PP on Productivity, Effect of Agile Teams on Pdy, Effect of Team
Meetings on FCC, and Effect of Team Meetings on Rework Discovery.

 These sub-parameters (some exogenous variables and some lookup table functions)
have been modeled using conservative values and assumptions as described in section 5.2.
We have performed our experiments without changing these parameters – doing so would
have exponentially increased the complexity of our experiment, way beyond the 64 high-
level cases defined by the binary on/off variables employed in our simulations. Additional
improvements in the model can include a second dashboard that allows experimentation
with all of the sub-parameters.

115

 Without calibrating or fine-tuning these sub-parameters, we cannot make any
definitive claims about the ability of the model to reproduce the behavior of a real project,
nor can we use it for predictive purposes. Each of the seven genes has both reinforcing and
balancing effects on the system, via direct or indirect impact on the key parameters of the
project’s rework cycle, namely: Productivity, Effective Staff, Fraction Correct and Complete,
Development Rework Discovery Rate. Some of the genes also have the potential of
generating more tasks to be performed in either the Product Backlog or the Release
Backlog.

Depending on the choice of sub-parameter values, each gene’s impact can be
weighted one way or the other. To clarify this point, for example, as discussed earlier: pair
programming lowers productivity, but improves quality. Depending on which of these two
effects is more powerful, pair programming may or may not be a beneficial practice for
project performance.

 Nevertheless, the development of this model has provided insight into how these
Agile Genes interact to produce project behavior. This research has also generated
considerable personal learning through experimentation with the model structure. In
retrospect, the development of the model itself was an iterative and incremental process –
the construction of each new portion of the model revealed new insights and learning
about the inter-relationships between the different agile practices, and how they affect
project performance.

7.2 Comparison of experiment results with personal
experience

 Experimentation with the APD has led to the understanding of some of the results
from my personal experience with Agile. During the times when I have practiced some
form of Agile development, I have never been in an environment where all seven of the
Agile genes were employed.

 In these environments within which I have practiced Agile, Customer Involvement
was never truly practiced: in my case a System Engineer (SE) has played the role of
customer proxy, and was either unwilling or unable to participate in daily scrums.
Moreover, there is no guarantee that an SE could really represent the vision of the end user
(In the case described in section 1.2, the SE was completely new to the Air Traffic domain).

 Continuous Integration was also not truly practiced in my experience: Although we
employed automatic unit-testing, very little else was automated. Functional tests were still
long and laborious procedure-driven tasks. Configuration Management policy was also
isolationist: in other words, pieces of functionality were developed in isolation and only
integrated (“merged”) near the end of the development cycle, thus no “continuous” aspect
of integration to identify rework early.

116

 Refactoring (at least, large-scale refactoring) is also a frowned-upon practice. It is
considered by managers who do not understand the concept of Technical Debt to be extra
non-value-added work. In one project (other than those I have mentioned previously) I
found a massive amount of duplication in the C++ class hierarchy in various areas of the
software. When I proceeded with a big refactoring effort, a senior engineering fellow was
brought in by management to investigate my actions (as a sort of external technical
auditor). Thankfully, he agreed with what I was doing and I moved on unscathed; however
this is illustrative of the type of anti-refactoring sentiment in many large-scale software
development communities. Likewise, I only had the opportunity to practice Pair
Programming in the one case mentioned in section 1.2, otherwise this is also deemed as a
productivity waste in large-scale software organizations.

 This means that in most of my personal experiences with Agile, we were only able to
employ elements of the Feature-Driven, Iterative-Incremental, and Micro-Optimizing genes.
If we execute the APD model with the same base parameters, and only these genes
activated, we get the following results:

Case
Schedule
(weeks)

Cost
(tasks)

Quality
(tasks)

Base Case 79 250223 277
“Personal” Case 82 242213 0

Figure 81 - APD Project Performance for “Personal” Case

 The results are identical to Case #2 discussed earlier during our experimentation.
As we can see, this configuration saves some cost, improves quality, and yet delays the
project by three weeks. This is by no means a win for agile over waterfall, or grounds to
declare one superior to the other. Depending on program priorities, schedule may be the
most important factor. However this explains a bit more about the promise and reality of
agile practices.

7.3 Adopting Agile Practices in Large-Scale Software
Engineering

 Some of the “low hanging fruit”, what I will call “primitive agile genes”, are ones
such as Team Dynamics, Feature-Driven, and Iterative-Incremental. These are relatively
easy to implement or adopt, as most of these practices dictate the behavior of the software
development team alone, and do not require much buy-in from other stakeholders in the
product development organization (e.g. system engineering, quality assurance,
management, etc.) So a development team can easily adopt these primitive genes. As is
often reported, these practices are well received by developers, who will swear that they
are doing “Agile development”, even though from a project performance perspective, there
is nothing different or agile about the cost, schedule, or quality of the software as far as the
customer is concerned. Especially when practiced within a larger waterfall context, these

117

primitive agile genes have little impact externally on the overall project behavior. In other
words, Agile development can lose some of its benefits when practiced within an
otherwise-waterfall program. This approach is starting to be known as “Water-Scrum-Fall”
(Figure 82).

Figure 82 - Water-Scrum-Fall

 On the other hand, some of the more “advanced genes” such as Continuous
Integration and Customer Involvement require much more coordination and buy-in from
other stakeholders in the product development system, on a wider scale.

Continuous Integration brings with it a whole new approach and philosophy to
development environments, requiring new tools, processes, and changes to existing skill-
sets. It is an expensive venture that may involve retraining a team that has evolved over
years of waterfall development. This is a cultural change as much as a technology or
methodologies change. It means, amongst other things, that development and integration
work has to be highly parallelized and integrated – This is often not the case in large-scale
government software where development teams “throw work over the wall” to the
integration team in assembly-line fashion.

Customer Involvement would be an even bigger cultural change, for the customer as

well as the contractors: the contractor will have to be open to evolving and changing
requirements as the project progresses, and the customer will have to be available

Scrum

118

(preferably present) for daily scrums and regular product demos, as well as open to
incremental delivery models.

Assessment
Level Agile Gene examples/comments

1 Team Dynamics Daily Scrums, agile work spaces
2 Iterative-Incremental Spiral development
3 Feature Driven System segmented by feature
4 Refactoring de-duplication of code, redesign
5 Micro-Optimizing frequent process tweaks
6 Customer Involvement on-site customer/user
7 Continuous Integration Fully automated system tests

Table 15 - Notional Proposed Agility Assessment Model Levels

Considering the spectrum of primitive-to-advanced practices in the Agile Genome, and

inspired by the concept of maturity levels, we may begin formulate an “Agility Assessment
Model” (AAM) as shown in Table 15, where at each level a new Agile Gene is employed as
well as all the genes of the levels below. A software development organization could be
rated on a scale of 1 to 7, with 7 being the most Agile.

7.4 Follow-on work suggestions for extending the model

As discussed earlier, our APD model cannot does not replicate any specific past projects

nor does it predict the performance of current projects. To do that, it must be properly
calibrated. We do however claim that this model is useful for management self-directed
learning and exploration. Traditional management science often favors the case study
method, whereby information from real management situations are gathered and
organized in a descriptive form. But the case study approach leaves that information in a
descriptive form that cannot reliably cope with the dynamic complexity that is involved in a
system. System dynamics modeling can organize the descriptive information, retain the
richness of the real processes, build on the experiential knowledge of managers, and reveal
the variety of dynamic behaviors that follow from different choices of policies (Forrester
1989).

Our model can be extended, calibrated, and enhanced to support future explorations

into Agile project Dynamics. The following list summarizes suggestions as to areas of the
model that can benefit from future extension and refinement:

- Refactoring: The model component for this gene is built upon the concept of
Technical Debt. For more accuracy in model simulations, further research is
needed for understanding (a) how to quantify technical debt, and (b) how to
quantify the effect of technical debt on future development in terms of its effects

119

on the FCC and Productivity. There is a significant body of existing research on
software complexity, software evolution, and software maintenance that can be
leveraged for this effort.

- Continuous Integration: The model component for this gene uses a simple
structure and conservative parameter values to model these practices. For better
simulations we need to understand and quantify the costs and benefits of test
automation, build/delivery automation, and general configuration management
approaches, in terms of how these affect project performance. The best way to
do this may be via analysis of before-and-after project metrics for projects that
have switched to employ these practices.

- Team Dynamics: We currently model this gene by considering the effects of
frequent team meetings, pair programming, and schedule pressure on the
development team. However the parametric values need to be calibrated using
real world data. We may also seek to augment this gene by also incorporating
the effects of “agile workspaces” (i.e. open collaborative spaces), “collaborative
environments” (i.e. the use of collaborative software environments such as
internal social media platforms).

- Micro- Optimizing: The simple structure for this gene currently improves FCC,
Productivity, and Rework Discovery Time by a tiny fraction after the completion
of each sprint. This mimics reports from agile practitioners that agile teams
seem to gradually improve along these dimensions after many sprint cycles. Our
model generates such behavior by using a “sprint counter” to generate this
behavior, however this is a surrogate for the learning and knowledge gains that
take place as teams become adept at practicing Agile development. Our model
could be enhanced to model this as learning curve rather than a function of
sprints completed. Additionally, a study of agile project data and metrics must be
performed to quantify and derive plausible formulations and values for these
effects.

- Customer Involvement: The same is true for this gene. Although we use
conservative values in our experiments, we must mine the data from actual
projects to quantify the power of these effects.

- Staffing: The APD model starts with predetermined staffing levels and a pre-set
churn rate. The staffing component can be augmented to allow dynamics staff
loading. For example, it can be enhanced to allow adjusting project staff to suit
workload levels.

- Quality Assurance: We currently have a simple model structure that simulates
either a customer or other QA agency (perhaps an Integration or Test
organization) “finding” undiscovered rework in previous releases and feeding
that back into the Release Backlog. This can also be enhanced to cater for varying
QA environments and organizational configurations.

- Multi-project: The model can be extended to study a multi-project organization.
In other words, software firms typically have a portfolio of projects with
resources moving across projects as needed. Our model can be extended to study
this situation.

120

7.5 Final Recommendations and Insights

This section presents the final insights and recommendations resulting from this
research effort. These findings should be of value to large-scale software contractors as
well as to government customers.

The first observation is that our model re-affirms some findings from existing research

that uses the classic rework structure in project models, and which find rework to be at the
root of project performance:

- Increasing the rate at which work is performed is not necessarily advantageous,
as it also increases the rate at which errors are produced. Thus for positive
results, improvement in “speed” must be paired with improvement in “quality”.
In other words, increase in productivity must be paired with an increase in
Fraction Correct and Complete.

- When you find defects is as important as how you find them. The software
industry has for a long time understood the mechanics of defect containment,
and that the later a defect is found the more costly it is to correct. Our model
provides insight into the dynamics behind this truism.

Agile promises to help along these two dimensions. The notion of Agile development

began in the early nineties as a set of development practices and philosophies as to how to
approach the task of building software. However, as we have seen, Agility is much more
than just an attribute of the development methodology. It is an attribute of the whole
project. As systems thinkers, we have studied the “Agile Software Development Project as a
System”. We find Agility to be an emergent behavior of this system, as are other “-ilities”.
Since the Agile Project is a complex socio-technical system, a systems-theoretic approach is
required to properly understand it. Going back to our definition of a system in section 4, we
said that:

1. The essential properties of a system are properties of the whole which none of its

parts have. Therefore, when a system is taken apart it loses its essential
properties.

2. No system is the sum of the behavior of its parts; it is a product of their interactions.
Therefore, when a system is taken apart, not only does it lose its properties,
but so do all of the parts.

This means that we cannot study Agile project dynamics by focusing a single aspect of

the project-system in isolation from the other moving parts. For example, we cannot look at
pieces of the development process without considering the developers and the way they
interact (Team Dynamics: human agency is a big component of the system); we cannot
isolate and study the practice of pair programming without considering the complexity of
the software being developed, and the impact of previous project-related decisions
(Technical Debt). And so on… We have learned, for example, that inherent Technical Debt
in software systems impacts the cost and speed at which subsequent system features can

121

be developed. This realization may lead software project managers to institutionalize the
practice of Refactoring in order to keep the project Agile for future development cycles.

What we can do, thanks to System Dynamics, is to “surface the mental model” of

experts, managers, practitioners, and customers and capture this information in an
executable model, the APD model, that can be used for experimentation and as a tool for
learning. Through this research and the experience modeling the project-system with
System Dynamics, my own mental model and understanding of software engineering
ecosystem have benefited greatly. System Dynamics takes our assumptions about the
system and exposes them by making them explicit in the model structure and feedback.
Through interviews, literature review, and access to past project performance data, such a
model can eventually be fine-tuned to serve both as a predictive model to aid in planning
and “what-if” scenario exploration by decision makers.

We find that, for a project to be Agile, not only must it employ Agile development

methods, but must also fit within an Agile product development system: The development
organization must be willing to practice refactoring, or lose the benefits of Agile. The
software itself must be Agile, lending itself to rapid incremental deliveries and therefore
must be architected accordingly in feature sets.

The customer or recipient of the software product must also be agile, willing and open

to participate in the development process, and accept incremental releases that deliver
these feature sets. Although our APD model does not address this, there are clearly
dependencies between software features, and some feature combinations may be less
useful to the customer than others. The project’s stakeholders, on both developer and
customer sides, must be able to work together to plan and prioritize incremental deliveries;
In the commercial world, this is less of an issue, as a commercial software product
developer need not necessarily coordinate project specifics with an external entity when
prioritizing and planning software releases.

Moreover, a follow-on insight (as hinted in a previous section) is that for projects to be

Agile, they cannot simply adopt so-called development techniques at random (or by
selection of ‘lowest-hanging fruit’) and hope to derive positive project performance results.
We have learned that each practice, combined with project policies, have both positive and
negative effects on the project. The trick is to configure the project-system in a fashion that
maximizes the up-sides while minimizing the downsides of these practices. In keeping with
our metaphor of the “Agile Genome,” we might say that “Genetic Project Engineering” is
required to maximize the potential of Agile practices. The selection of management policies
and combination of agile practices by software development organizations need to be
balanced to optimize the system. Agile genes need to be paired to counter-balance negative
effects and maximize positive effects. Some examples of this that we have explored include:
The inefficiencies of the Feature Driven gene are counter-balanced by the Refactoring gene.
The loss in productivity from Pair Programming is counter-balanced by the Continuous
Integration gene.

122

8. Works Cited
Ackoff, R.L., 1971. Towards a System of Systems Concepts. Management Science, 17(11).

Allen, T.J. & Henn, G., 2006. The Organization and Architecture of Innovation: Managing the
Flow of Technology,

Beck, K., 2001. Aim, Fire.

Beck, K., 1999. Extreme Programming Explained,

Berwin, B., 2010. How a lawn mowing contract is changing Defense acquisition. NEXTGov,
pp.1-2. Available at: http://www.nextgov.com/nextgov/ng_20100916_6260.php.

Boehm, B.W., 1987. A Spiral Model of Software Development and Enhancement. , (1).

Brooks, F.P., 1987. No Silver Bullet. , (April), pp.1-14.

Brooks, F.P., 1975. The Mythical Man Month: Essays on Software Engineering,

Chatfield, B.C. & Johnson, T., 2007. A short course in project management. , pp.1-6. Available
at: http://office.microsoft.com/en-us/project-help/a-short-course-in-project-
management-HA010235482.aspx.

Cockburn, A., 2004. The Crystal Methods , or How to make a methodology fit.

Cooper, K.G., 1980. Naval ship production: a claim settled and a framework built. Interfaces,
(December 1980), pp.20-36.

Cusumano, M.A. & Smith, S., 1995. Beyond the Waterfall : Software Development at
Microsoft.

Davis, A., 1993. Software-Lemmingineering.pdf.

Deemer, P. et al., 2009. The Scrum Primer. , pp.1-22.

Fine, C.H., 1996. Industry Clockspeed and Competency Chain Design : An Introductory
Essay.

Forrester, J.W., 1989. The Beginning of System Dynamics. In International Meeting of the
System Dynamics Society. pp. 1-16.

Gershon, M., 2011. Double LEAN Six Sigma – A Structure for Applying Lean Six Sigma. ,
12(6), pp.26-31.

123

Goyal, S., 2007. Major Seminar On Feature Driven Development Agile Techniques for
Project Management Software Engineering.

Highsmith, J., 2002a. Agile Software Development Ecosystems,

Highsmith, J., 2002b. What Is Agile Software Development? CrossTalk. The Journal of
Defense Software, (October). Available at:
http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:What+Is+Agile+Soft
ware+Development+?#0 [Accessed April 18, 2012].

Krigsman, M., 2012. Worldwide cost of IT failure (revisited): $ 3 trillion. ZDNet, pp.1-9.
Available at: http://www.zdnet.com/blog/projectfailures/worldwide-cost-of-it-
failure-revisited-3-trillion/15424.

Larman, C. & Basili, V., 2003. Iterative and Incremental Development : A Brief History. ,
(June), pp.47-56.

Lyneis, J.M., Cooper, K.G. & Els, S. a., 2001. Strategic management of complex projects: a
case study using system dynamics. System Dynamics Review, 17(3), pp.237-260.
Available at: http://doi.wiley.com/10.1002/sdr.213 [Accessed March 9, 2012].

Martin, L.A., 1997. The First Step.

Maximilien, E.M. & Williams, L., 2003. Assessing Test-Driven Development at IBM.

Mcfarland, I., 2006. Agile Practices on Real-World Projects. In Google Java Users Group Agile
101.

Raynus, J., 1998. Software Process Improvement With CMM,

SEI, 2002. Upgrading from SW-CMM ® to CMMI ®.

Sterman, J.D., 1992. System Dynamics Modeling for Project Management. , 1951.

Takeuchi, H. & Nonaka, I., 1984. The new new product development game. , pp.137-147.

de Weck, O. & Lyneis, J., 2011. Successfully Designing and Managing Complex Projects First
Edit., MIT Press.

West, D. et al., 2011. Water-Scrum-Fall Is The Reality Of Agile For Most Organizations
Today.

Appendix 1 – The Full Agile Project Dynamics Model
8.1 View 1: The Software Development Cycle

125

126

8.2 View 2: Refactoring

127

8.3 View 3: Sprint Timing

128

8.4 View 4: Release Timing

129

8.5 View 5: Software Integration and Test Cycle

Integration and Test
Productivity

Number of Integration
and Test Engineers

Rework Discovery
Rate from Int and Test

<Undiscovered
Rework in Release>

Enable Integration
and Test Activities

<TIME STEP>

Nominal Integration
and Test Productivity

<Effect of CM
Environment on Rework

Discovery>

<InRelease>

Project Finished

<Product
Backlog>

<Release
Backlog>

<Sprint Backlog>

<Nominal
Productivity>

130

8.6 View 6: Continuous Integration

131

8.7 View 7: Staffing and Experience

132

8.8 View 8: Productivity

Productivity

Nominal
Productivity

<Effect of Experience on
Productivity>

<Effect of PP on
Productivity>

<Effect of MO on Pdy>

<Effect of CI on
Productivity>

<Effect of Agile
Teams on Pdy>

133

8.9 View 9: Team Dynamics

Number of Team
Meetings per week

Effective Percent
Time Spent on PP

Effect of PP on
Productivity

Nominal Effect of PP
on FCC

Effect of PP on FCC
Effect of PP on
Experience Gain

Effect of Team Meetings on
Sprint Rework Discovery

Rate

one week

Effect of Team
Meetings on FCC

Table for Effect of PP
on Experience Gain

Allow Pair
Programming

Percent Time Spent on
PP

Effect of Agile
Teams on Pdy

<Switch for
Waterfall>

134

8.10 View 10: Micro-Optimizing

135

8.11 View 11: Customer Involvement

Allow Customer
Involvement

<Fraction of Sprint Work
Believed Done Correct and

Complete>

Elimination of Requirements
Uncertainty Based on Sprint

Progress

Max Effect of
Requirements
Uncertainty

Effect of Uncertain
Requirements on

FCC

<Number of Team
Meetings per week>

Improvement in Rework
Discovery Due to Customer

Involvement

Effect of Customer
Involvement on Rework

Discovery Time

Max Effect of Customer
Involvement on Rework

Discovery Time

Fraction of Release
Work Completed

<Release
Backlog>

<Release Size> <InRelease>

Effect of Customer
Involvement on

Requirements ChurnSensitivity for the Effect of
CustInv on Requirements

Churn
Requirements Churn Rate

Based on Customer
Involvement

136

8.12 View 12: Management Dashboard

	CISL WP 2012-05 cover page
	2012-05-17 Firas_Glaiel_Thesis_Final
	Abstract
	Acknowledgements
	Table of Contents
	1. Introduction
	1.1 Research Motivation
	Personal Experience with Agile
	1.2.1 Early Experience with Agile Methodologies (1999-2001)
	1.2.2 Recent Experience with Scrum (2010-2011)
	1.2.3 Personal Reflections

	1.3 Contributions
	1.4 Research Approach and Thesis Structure

	2. A Brief Review of Relevant Software Engineering Topics
	2.1 Software Project Management
	2.1.1 The Iron Triangle
	2.1.2 Earned Value Management

	2.2 Waterfall and Big Design Up Front (BDUF)
	2.3 The Software Capability Maturity Model (SW-CMM)
	2.4 Agile Software Development
	2.5 The Case for Agile in Government Software Development

	3. Mapping the Genome of Agile Development
	3.1 Defining the term “Agile”
	3.2 A Brief Review of Agile Methodologies
	3.2.1 Scrum
	3.2.2 Extreme Programming
	3.2.3 Test Driven Development
	3.2.4 Feature Driven Development
	3.2.5 Crystal Methods

	3.3 The Agile Genome
	3.3.1 Story/Feature Driven
	3.3.2 Iterative-Incremental
	3.3.2.1 Illustrative Example
	3.3.2.2 Waterfall/BDUF
	3.3.2.3 Story/Feature Driven

	3.3.3 Refactoring
	3.3.4 Micro-Optimizing
	3.3.5 Customer Involvement
	3.3.6 Team Dynamics
	3.3.7 Continuous Integration

	3.4 Summary

	4. System Dynamics and its Applicability to Software Project Management
	4.1 Introduction to System Dynamics
	4.2 The Rework Cycle
	4.3 Brooks’ Law
	4.4 Strategic Project Management with System Dynamics
	4.5 Summary

	5. Modeling the Dynamics of Agile Software Projects
	5.1 APD Model High-Level Overview
	5.2 Modeling the Seven Genes of Agile
	5.2.1 Story/Feature Driven
	5.2.2 Iterative-Incremental
	5.2.3 Refactoring
	5.2.4 Micro-Optimizing
	5.2.5 Customer Involvement
	5.2.6 Team Dynamics
	5.2.7 Continuous Integration
	5.2.8 Modeling Staffing and Staff Experience

	5.3 Summary

	6. Model Simulation Experiments
	6.1 Base Case Experiment (single-pass waterfall):
	6.2 Case 1: Fixed-schedule Feature-Driven Iterative/Incremental
	6.3 Case 2: Introduction of Micro-Optimization.
	6.4 Case 3: Introduction of Refactoring
	6.5 Case 4: Introduction of Continuous Integration
	6.6 Case 5: Introducing Customer Involvement
	6.7 Case 6: Introducing Pair Programming

	7. Conclusions and Recommendations
	7.1 Interpretation of results
	7.2 Comparison of experiment results with personal experience
	7.3 Adopting Agile Practices in Large-Scale Software Engineering
	7.4 Follow-on work suggestions for extending the model
	7.5 Final Recommendations and Insights

	8. Works Cited
	Appendix 1 – The Full Agile Project Dynamics Model
	8.1 View 1: The Software Development Cycle
	8.2 View 2: Refactoring
	8.3 View 3: Sprint Timing
	8.4 View 4: Release Timing
	8.5 View 5: Software Integration and Test Cycle
	8.6 View 6: Continuous Integration
	8.7 View 7: Staffing and Experience
	8.8 View 8: Productivity
	8.9 View 9: Team Dynamics
	8.10 View 10: Micro-Optimizing
	8.11 View 11: Customer Involvement
	8.12 View 12: Management Dashboard

