

Improving the Data Quality

of Web Services Composition

Xitong Li

Stuart Madnick

Hongwei Zhu

Working Paper CISL# 2011-07

November 2011

Composite Information Systems Laboratory (CISL)

Sloan School of Management, Room E62-422

Massachusetts Institute of Technology

Cambridge, MA 02142

Improving the Data Quality of Web Services Composition
Xitong Li

MIT Sloan School of Management
100 Main St., E62-427
Cambridge, MA 02142
(617) 253-6629, USA

xitongli@mit.edu

Stuart E. Madnick
MIT Sloan School of Management

100 Main St., E62-422
Cambridge, MA 02142
(617) 253-6671, USA

smadnick@mit.edu

Hongwei Zhu
Old Dominion University

2079 Constant Hall
Norfolk, VA 23529

(757) 683-5175, USA

hzhu@odu.edu

Keywords:
Web service, data quality, data interpretation, semantics, context

ABSTRACT
The Internet era has evolved from a Web of documents to a Web of services. Web services are intended to be application

components that can be reused and integrated to create more advanced, innovative Web applications without needing to
develop them from scratch. Unfortunately, Web services distributed on the Internet are usually independently developed by
different organizations and/or individuals and have diverse assumptions about the interpretation of the exchanged data, such
as inconsistent data representation and conceptualization. Such data misinterpretation can result in Data Quality (DQ)
problems and hamper the potential of Web services. We identify important DQ challenges in Web services composition and
present a classification of the resulting DQ problems. We suggest a novel reconciliation framework for addressing these
problems and evaluate the framework in terms of scalability, adaptability, and extensibility. Finally, we identify important
future directions in data quality and Web services.

1. INTRODUCTION
With the increasing popularity of Service-Oriented Architecture (SOA) and Web 2.012, the Internet has evolved from a

Web of documents to a Web of services13 (e.g, SOAP-based and RESTful services). Web services are intended to be used for
the development of more advanced, innovative Web applications, so that the development from scratch is avoided. The
achievement of the full potential of Web services largely relies on how their integration (e.g, composition, mash-up2) can be
accomplished in a convenient or even automatic way. Unfortunately, Web services distributed on the Internet are usually
independently developed by different organizations and/or individuals and have diverse assumptions about the interpretation
of the data exchanged between them. The differences in data interpretation can result in Data Quality (DQ) problems8 and
prevent easy and correct use and integrating of Web services.

As seen in various online discussions, users of existing Web services are often confused by data interpretations. For
example, users of services provided by Amazon (1) and Paypal (2) have made the following comments14: (1) “I have met a
problem when I was trying to get the sales rank of digital cameras using the web service. It showed me pretty different sales
ranks from what I saw through Amazon Website”; and (2) “Can someone explain the precise distinction between ‘Completed’
and ‘Processed’ [as the output of a payment service]?” These users have in fact experienced DQ problems of Web services,
because data quality is usually defined from the users’ point of view in terms of fitness for use8. Certain DQ issues in
distributed data sources are carried over to, and even amplified by, Web services that provide easy access to the data. The use
of SOA and Web 2.0 both poses challenges and provides opportunities for developing effective solutions to address DQ
problems in Web services.

2. MOTIVATING EXAMPLES
Xignite, Inc. is an established provider of on-demand, global financial market data services and application components.

Among its published Web services, XigniteEdgar consumes the ticker symbol of any specific corporate entity and returns its
total assets. When requested using the ticker symbol “ITWO” for i2 Technology, XigniteEdgar returns the data as shown in
Figure 1. It can be seen that the returned total assets of i2 Technology is associated with the date “05/07/2009”. But should
the service users interpret the date as May 7th, 2009 or July 5th, 2009? Also, how should the figure of total assets “313776”
be interpreted? Another request to XigniteEdgar returns “68853” as the total assets of Microsoft (ticker symbol: “MSFT”). Is
it possible that i2 Technology has more than four times the total assets of Microsoft? Manual investigation finds that the
numeric data for i2 Technology is in thousands and that for Microsoft is in millions, both using “$”. But does the symbol “$”
mean US dollar, Canadian dollar, or Hong Kong dollar? If these plausible differences were not explicitly clarified, the service
XigniteEdgar could be incorrectly used by different users, and even cause surprising financial losses.

 ITWO Total Assets: “313776” of what?

What is this date “05/07/2009”?

Figure 1. Total assets returned from a real Web service showing how different interpretations of the source date and
total assets undermine its data quality.

Meaningfully understanding and use of only one simple service is not easy, but integrating multiple services is even
more challenging. Let’s consider a very simple composition scenario consisting of only two services in which a Chinese
developer wants to create a composite service ConferenceBooking which consumes a certain international conference code
and returns the registration expense of the conference and hotel expense in the city where the conference is held during the
conference period. ConferenceBooking is supposed to be used by Chinese clients. After searching a public service registry,
the developer decides to implement the service by composing two existing services: ConfRegistration and HotwireDealsa.
Given a conference code, the operation queryConfInfo of ConfRegistration provides basic information of the conference,
including the start/end dates, registration fee and the city. The operation queryRoomCharge of HotwireDeals returns the
room charge of the deals based on the city name and start/end dates. It appears that ConferenceBooking can be developed by
feeding the output of ConfRegistration’s operation queryConfInfo as the input to HotwireDeals’s operation
queryRoomCharge. Figure 2 illustrates the composition processb.

However, since these services are developed by independent providers, they may have different assumptions of data
interpretation. For example, ConferenceBooking being composed is intended to return the monetary expenses in Chinese
yuan (“CHY”) and the hotel expense should include the value-added taxes. ConfRegistration provides the dates in the format
“dd-mm-yyyy” and the registration fee in euros. HotwireDeals assumes dates are in the format “mm/dd/yyyy” and returns the
room charge in US dollars (“USD”) which doesn’t include the value-added taxes. Apparently, HotwireDeals cannot
successfully interact with ConfRegistration because of inconsistent data formats, rendering the entire composition invalid.
Also, ConferenceBooking would misinterpret the monetary figures due to different currencies used by the component
services. Without properly resolving the data misinterpretation problems, conflicts would happen in the composition process,
as noted in Figure 2 by little “explosions”.

The assumptions of data interpretation are usually not explicitly specified in service descriptions (e.g., WSDL) and
severely undermine data quality and usability of independently developed Web services. The data misinterpretation problems
primarily affect the DQ dimensions in the intrinsic, contextual and representational DQ categories8.

a HotwireDeals originates from Hotwire.com, available at http://developer.hotwire.com/docs/Hotel_Deals_API
b Note that unlike traditional data bases, which typically use query languages, web services composition is done by specifying

the information flow amongst the services using languages like Business Process Execution Language (BPEL).

Figure 2. Composition process of the composite service consisting of two services. Data misinterpretation causes
semantic conflicts in the composition.

3. CLASSIFICATION OF DATA MISINTERPRETATION PROBLEMS
We categorized data misinterpretation problems into representational and conceptual levels, both of which can be further

classified into subcategories. These problems are not unique to Web services, yet they become more prevalent and important
now, because Web services are more open, dynamic and autonomous, and the solution must be addressed in a way that works
with Web service standards.

3.1 Representational
Different organizations may use different representations for a certain data concept, which can result in representational

misinterpretation problems. Five subcategories are further identified at this level: format, encoding, unit of measure, scale
factor, and precision. Format differences occur because there often exist various format standards, such as for representing
date, time, geographic coordinates, and even numbers (e.g., “1,234.56” in USA would be represented as “1.234,56” in
Europe). Encoding differences may be the most frequent cause of representational misinterpretation, because there are often
multiple coding standards. For example, the frequently used coding standards for countries include the FIPS 2-character
alpha codes, the ISO3166 2-character alpha codes, 3-character alpha codes, and 3-digit numeric codes. Also, IATA and
ICAO are two major, different standards for airport codes. Data misinterpretation problem can occur in the presence of
different encoding standards (e.g., country code “BG” can stand for Bulgaria or Bangladesh, depending on whether the
standard is ISO or FIPS). Besides the format and encoding differences, numeric figures are usually represented using
different units of measure, scale factors, and precisions. For example, financial services use different currencies to report the
data to corresponding consumers. Scientific services may use different units of measure (e.g., meter or feet) or scale factors
(103 or 106) to record the data.

3.2 Conceptual
The same term and representation are often used to refer to similar but slightly different data concepts. This category of

data misinterpretation usually occurs when the concept can have different assumptions of the interpretation, that is, whether a
specific entity is included by the concept or not. For example, a retail price reported by European services usually includes
the value-added taxes, while retail prices reported by US services usually do not include the value-added taxesc. An even
more challenging problem in this category is “Corporate Householding”8 which refers to misinterpretation of corporate
household data. For example, to query the sales of a certain corporate (e.g., “What were the total sales of IBM?”), one (of
many) questions that needs to be clarified is whether majority owned subsidiaries of the corporate should be included or not.
The answers may be very different due to different reporting rules adopted in different countries or for different purposes.
Besides the entity aggregation issue, the conceptual extension of the inter-entity relationship may also have different
interpretations. For instance, in order to answer the question “How much did MIT purchase from IBM in the last fiscal
year?”, we need to clarify whether the purchasing relationship between MIT and IBM should be interpreted as direct

c Usually called “sales taxes” in the USA.

purchasing (i.e., purchased directly from IBM) or to include indirect purchasing through other channels (e.g., third-party
brokers, distributors, retailers). In some cases, only the direct purchasing from IBM to MIT are considered, whereas in other
cases indirect purchasing through other channels also needs to be included.

3.3 Temporal
It is worth noting that most of the above-mentioned possibilities of data interpretation can change over time.8 For

example, a Turkish auction service may have listed prices in millions of Turkish liras (TRL)d, but after the Turkish New Lira
(TRY) was introduced, it may start to list prices in unit of Turkish New Lira. Also, an accounting service may or may not
aggregate the earnings of Merrill Lynch into that of Bank of America which acquired the former in 2008. Considering the
high dynamics of Web services distributed on the Internet, these data misinterpretation problems resulting from the temporal
evolvement can become very challenging. That is, a component service might change its data interpretations after the
composition has been created, tested and deployed.

4. RECONCILIATION FRAMEWORK
Data misinterpretation can cause poor data quality when composing multiple Web services. It is thus necessary to resolve

data interpretation conflicts among them, to avoid data quality problems. In simple cases, reconciliation can be manually
done by service developers (though still vulnerable to later temporal changes.) In most non-trivial cases, however, a manual
reconciliation will be difficult and error-prone, as a large number of services and data elements are involved. For example, a
current SOA implementation of a health care accounting system consisted of over a hundred Web services. Figure 3
illustrates a suggested reconciliation framework to resolve the various data misinterpretation problems that may occur in Web
services composition and improve DQ of Web services. A preliminary composition of multiple Web services is first
produced using existing composition tools that do not consider data interpretation issues. The preliminary composition can be
described using BPEL or other languages, depending on whether the participant services are WSDL- or RESTful-based9.
Given the composition specification with possible interpretation conflicts, the framework consisting of several tools
(indicated as shaded boxes) can automatically produce a mediated composition specification in which all interpretation
conflicts are resolved.

Figure 3. Reconciliation framework that improves data quality of Web services and the composition.

4.1 Ontology & Context Modeler
The Ontology & Context Modeler is used to define a common ontology that specifies the concepts and their

relationships. As an extension to traditional light-weight ontological models, a special attribute modifier6 can be used to
capture multiple variations of the generic concepts, that is, different data interpretations. A generic concept can have multiple
modifiers, each of which indicates a dimension of the interpretation variations. Different value assignments to these modifiers

d About one million TRL equaled one US dollar.

are referred to as different contexts, and in a certain context each modifier is assigned by a specific modifier value. Each
service involved in the composition may be associated with a context corresponding to its assumptions of data interpretation.

Figure 4 shows the ontology for the composition example in Figure 2. The ontology has a generic concept roomCharge
having two modifiers: currency e and vatIncluded. In the context of HotwireDeals, currency’s value is “USD” and
vatIncluded’s value is “False”, which means that HotwireDeals’s output data of roomCharge should be interpreted by
currency “USD” and not including value-added taxes. The modifier values of currency and vatIncluded in the context of
ConferenceBooking are “CHY” and “True”, which means that ConferenceBooking has a different data interpretation from
HotwireDeals. Using such an ontology enriched with contexts, different data interpretations among the services can be
treated as context differences to be resolved.6

Figure 4. Light-weight ontology extended with modifiers that supports the reconciliation of data misinterpretation for
the composition example.

4.2 Service Annotator
In practice, SOAP-based services are described using WSDL and descriptions of RESTful services are often embedded

in Web pages written in XHTML or microformat. Both are described at a syntactic level, rather than a semantic level. In
order to facilitate the integration (e.g., composition, mashup) of Web services, developers need to use Service Annotator to
annotate syntactic service descriptions, so that these services can interact with each other at a semantic level. W3C has
published the recommendation standard: Semantic Annotations for WSDL and XML Schema (SAWSDL).5 Recent efforts are
also trying to adapt SAWSDL to annotate semantics for RESTful services.10 Compliant with SAWSDL, we propose two
annotation methods (i.e., global and local)6 to establish correspondences between WSDL-based service descriptions and the
context-enriched ontology model. When semantic correspondences are established, context differences among the services
can be detected by reasoning algorithms.6

Context differences, once detected, can be reconciled using conversions for converting the exchanged data from the
source value vs to the target value vt. An atomic conversion is defined for each modifier between two different modifier
values. The general representation of the conversions is: cvt(C, m, ctxt_s, ctxt_t, mvs, mvt, vs, vt), where C is the generic
concept having a modifier m, mvs and mvt are two different values of m in source context ctxt_s and target context ctxt_t,
respectively. To resolve the differences of currency and value-added taxesf that exist in the composition example in Figure 2,
two atomic conversions cvtcurrency and cvtvatIncluded need to be defined, both of which are implemented as external Web services.
XPath functions can also be used to implement some relatively simple conversions, such as the date format conversion
cvtdateFormat. These conversion rules, registered in the conversion library, can be automatically incorporated in the service
composition by Context Mediator as introduced below.

4.3 Context Mediator
Context Mediator is the core component of this proposed reconciliation framework. It takes the composition

specification described by the developer using Web Service Business Process Execution Language (WS-BEPL) or Web
mashup languages,9 and produces a mediated composition specification in which data misinterpretation problems among the
services are resolved. Specifically, the Context Mediator first identifies all explicit and implicit data transfers in the

e The modifier currency of roomCharge is actually inherited from its super concept moneyValue.
f The two dimensions of context differences are identified by the two modifiers currency and vatIncluded.

composition process. Then, it examines the contexts of the source and target of each data transfer. By tracking the semantic
annotation and reasoning on the context-enriched ontology, potential interpretation conflicts (i.e., context differences) are
determined. Lastly, Context Mediator incorporates the appropriate conversion rules from the conversion library into the
composition process, so that the interpretation conflicts are resolved. All these steps can be performed by the Context
Mediator using the automatic algorithms.6

5. EVALUATION
We have implemented a prototype of the suggested reconciliation framework and evaluated its feasibility in resolving

various data misinterpretation problems discussed above.6 After the reconciliation, the mediated composition process can be
successfully deployed and executed without human intervention.

A quantitative evaluation of the reconciliation framework is conducted with the focus on measuring human efforts
involved in developing the conversions, i.e., the number of conversions to be manually specified and maintained over time.
The key evaluation metrics are 1) Scalability: number of conversions needed for the reconciliation among the involved
services; 2) Adaptability: number of conversions to be updated when data semantics of the involved services change; 3)
Extensibility: number of conversions to be added (or removed) when a service is added (or removed). In general, the
reconciliation framework requires much less conversions than brute-force approaches and is more flexible to be adapted for
changes. This evaluation reveals that the reconciliation framework holds the desired properties of scalability, adaptability and
extensibility.3,6

6. CONCLUSION
The number of Web services published on the Internet continues to rise dramatically. Since the spring of 2008, the

European Commission has initiated a collaborative research effort for the next generation of the Internet titled “Future
Internet” (http://www.serviceweb30.eu/). Semantic technologies are being suggested to support the integration of Web
services, indicating the direction of the evolving Internet. There needs to be a move beyond simply annotating data on Web
pages to annotating exposed functionality in the form of Semantic Web services.4 However, data misinterpretation problems,
as summarized in this paper, could undermine the DQ of Web services and hamper their integration (e.g., composition,
mashup) as well as the execution of scientific workflows involving data-intensive services.16 Therefore, this paper aims to
establish the connection between DQ and Web services composition and draw attention to the DQ challenges in composing
Web services.

Ontologies and semantics are required to address these DQ challenges. As suggested15, we expect authors of Web
services will specify certain metadata (e.g., ontologies) definition and semantic annotation. Besides that, context is an
important aspect of data semantics for interpreting the meaning of the data provided by Web services.1,7 Researchers have
begun to develop solutions2,11 albeit with limited scope, to address some of these problems. Thus, we call for further research
to develop full solutions which will include intelligent techniques that can be used to facilitate ontology/context construction
and semantic annotation for Web services. We expect over time such ontologies will become increasingly available and
service developers will provide the appropriate ontologies/context and service annotations. With the context-enriched
ontologies in place, we can develop the approaches (such as the one presented in this paper6) to address various data
misinterpretation problems of Web services.

We intend for this paper to draw the challenges and opportunities of Web services composition to the attention of both
practitioners and researchers and open up the new research directions towards improving DQ of Web services. We believe
previous data approaches can be adapted and new techniques can be developed. Some initial approaches are presented in this
paper.

7. REFERENCES
1. Agrawal, R., Ailamaki, A., Bernstein, P.A., Brewer, E.A., Carey, M.J., Chaudhuri, S., Doan, A., Florescu, D., Franklin,

M.J. and Garcia-Molina, H. The claremont report on database research. Communications of the ACM, 52 (6), 2009. 56-
65.

2. Di Lorenzo, G., Hacid, H., Paik, H. and Benatallah, B. Data integration in mashups. ACM SIGMOD Record, 38 (1),
2009. 59-66.

3. Gannon, T., Madnick, S., Moulton, A., Siegel, M., Sabbouh, M. and Zhu, H., Framework for the Analysis of the
Adaptability, Extensibility, and Scalability of Semantic Information Integration and the Context Mediation Approach. in
System Sciences, 2009. HICSS '09. 42nd Hawaii International Conference on, (Hawaii, 2009), 1-11.

4. Hepp, M. Semantic Web and semantic Web services: father and son or indivisible twins? Internet Computing, IEEE, 10
(2), 2006. 85-88.

5. Kopecký, J., Vitvar, T., Bournez, C. and Farrell, J. SAWSDL: Semantic Annotations for WSDL and XML Schema.
IEEE INTERNET COMPUTING, 11 (6), 2007. 60-67.

6. Li, X., Madnick, S., Zhu, H. and Fan, Y.S., Reconciling semantic heterogeneity in Web services composition. in
Proceedings of the 30th International Conference on Information Systems (ICIS 2009), (Phoenix, AZ, USA, 2009).

7. Maamar, Z., Benslimane, D. and Narendra, N.C. What can context do for web services? Communications of the ACM, 49
(12), 2006. 98 - 103.

8. Madnick, S., Wang, R., Lee, Y. and Zhu, H. Overview and Framework for Data and Information Quality Research. ACM
Journal of Data and Information Quality (JDIQ), 1 (1), 2009. 1-22.

9. Marwan, S., Jeff, H., Salim, S. and Danny, G. Web mashup scripting language Proceedings of the 16th international
conference on World Wide Web, ACM, Banff, Alberta, Canada, 2007.

10. Meersman, R., Herrero, P., Dillon, T., Maleshkova, M., Kopecký, J. and Pedrinaci, C. Adapting SAWSDL for Semantic
Annotations of RESTful Services. in On the Move to Meaningful Internet Systems: OTM 2009 Workshops, Springer
Berlin / Heidelberg, 2009, 917-926.

11. Mrissa, M., Ghedira, C., Benslimane, D., Maamar, Z., Rosenberg, F. and Dustdar, S. A context-based mediation
approach to compose semantic Web services. ACM Transactions On Internet Technology, 8 (1), 2007. 4.

12. Oreilly, T. What is Web 2.0: Design patterns and business models for the next generation of software. Communications
& Strategies, No. 1, p. 17, First Quarter 2007. Available at SSRN: http://ssrn.com/abstract=1008839.

13. Raman, T.V. Toward 2 W, Beyond Web 2.0. Communications of the ACM, 52 (2), 2009. 52-59.
14. Saleh, I., Kulczycki, G. and Blake, M.B. Demystifying Data-Centric Web Services. IEEE INTERNET COMPUTING, 13

(5), 2009. 86-90.
15. Savas, P., Evelyne, V. and Tony, H. A "Smart" Cyberinfrastructure for Research. Communications of the ACM, 52 (12),

2009. 33-37.
16. Tsalgatidou, A., Athanasopoulos, G., Pantazoglou, M., Pautasso, C., Heinis, T., Gr, R., nmo, Hj, rdis, H., Arne, J., rgen,

B., Glittum, M. and Topouzidou, S. Developing scientific workflows from heterogeneous services. SIGMOD Rec., 35
(2), 2006. 22-28.

http://ssrn.com/abstract=1008839

	CISL WP 2011-07 cover page
	SigIQ-Web services quality
	1. INTRODUCTION
	2. MOTIVATING EXAMPLES
	3. CLASSIFICATION OF DATA MISINTERPRETATION PROBLEMS
	3.1 Representational
	3.2 Conceptual
	3.3 Temporal

	4. RECONCILIATION FRAMEWORK
	4.1 Ontology & Context Modeler
	4.2 Service Annotator
	4.3 Context Mediator

	5. EVALUATION
	6. CONCLUSION
	7. REFERENCES

