

SPARQL Query Mediation

for Data Integration

Xiaoqing Zheng

Xitong Li

Stuart Madnick

Working Paper CISL# 2011-06

November 2011

Composite Information Systems Laboratory (CISL)

Sloan School of Management, Room E62-422

Massachusetts Institute of Technology

Cambridge, MA 02142

SPARQL Query Mediation for Data Integration
Xiaoqing Zheng

School of Computer Science
Fudan University

zhengxq@fudan.edu.cn

Xitong Li
Sloan School of Management

Massachusetts Institute of Technology

xitongli@mit.edu

Stuart E. Madnick
Sloan School of Management

Massachusetts Institute of Technology

smadnick@mit.edu

Abstract

The Semantic Web provides a set of promising technologies to make sophisticated data integration

much easier, because data on the semantic Web is allowed to be connected by links and complex

queries can be executed against the dataset of those linked data. Although the Semantic Web

techniques offer RDF/OWL to support schematic mappings between diverse data sources,

large-scale data integration is still severely hampered by various types of data-level semantic

heterogeneity among the data sources. In the paper, we show that SPARQL queries that are

intended to execute over multiple heterogeneous data sources can be mediated automatically.

1. Introduction

For several decades relational technology has been the most successful data management solution

for business information processing. New requirements for data modeling and integration are

creating needs beyond the modeling and processing capabilities of the relational technology. The

relational model works well for semantically homogenous worlds in which all views of the same

entity are consistent because it is based on first-order logic (FOL) and everything is required to be

consistent under FOL. However, the real world in which we live is complicated and usually

inconsistent. Due to design autonomy there can exist multiple views of an entity for different

purposes. As a result, the conflict between the inherent semantic heterogeneity of databases to be

integrated and the semantic homogeneity of relational model assumption leads to a great increase

in the cost of designing, developing and maintaining relational integration solutions [1].

The integration of heterogeneous databases requires identification and reconciliation of the

conflicts between schema objects that describe similar or equivalent concepts. The schema of the

relational model often represents an informal agreement between the users and developers in a

singular task-specific environment. Thus, the schemas are usually not designed to be shared or

reused, which also makes them difficult to be integrated [2]. The Semantic Web provides

promising technologies to make such integration much easier due to the ability and flexibility of its

abstract data model, the Resource Description Framework (RDF). Relational databases can be

accessed by their RDF views through mapping of relational database to RDF [3] [4]. Notice that

although it might be easy to add columns or tuples to relational tables, it can be very troublesome

to add integrity constraints or delete columns from the tables. In contrast, it is quite easy to add or

delete nodes in RDF graphs and to merge two RDF graphs (can be considered as two schemas) into

one, these are features which make the RDF model more suited to integrate or combine different

data sources. The ontology layer of the Semantic Web stack also offers the facility to create an

overarching contextualization that supports mappings between related schemas.

Using native RDF data, or data has been exported through their RDF views, the SPARQL query

language can be used as an integration tool to pose rich queries on the dataset that integrates data

from different sources. Note that the data export does not necessarily mean physical conversion of

the data, and the data can be generated on-the-fly from relational database or other non-RDF

sources at query time. However, much existing RDF data takes the form of simple values (or

literals) for properties such as lengths, prices, etc. The contextually-dependent information such as

unit and format is often omitted, and there is no standard for how to represent the context

information by using RDF. Since each data source and the potential receiver of queries over the

dataset may operate with a different context, it is generally not safe to make the assumption that

anyone accessing the dataset will understand the units and formats being used. A typical example

might be the extraction of price information from the databases: but is the price in Dollars or Yuan

(if dollars, is it US dollars or Hong Kong dollars), does it include taxes, does it include shipping?

This paper presents an approach to automatically detecting and reconciling data-level semantic

conflicts among multiple RDF data sources and rewriting naive SPARQL queries issued against

those RDF sources so that correct results can be returned to end users. The data conflicts handled

are formatting, unit, encoding, scale inconsistencies, etc. Unless the values are correctly and

dynamically converted into a uniform presentation, operations on dataset can lead to wrong

answers (see Section 2). The proposed solution also allows users (we call receivers) to specify a

context with respect to their queries so that the query can be framed with data in different

presentations from that in the RDF data sources.

2. Motivational Examples

DBpedia
1
 is a community effort to extract structured information from Wikipedia and to make this

information available on the Semantic Web. The DBpedia knowledge base allows you to ask

interesting queries, like "Give me the rivers that flow into the Rhine and are longer than 50

kilometers". The SPARQL query can be formulated as shown on the left of Figure 1.

The SPARQL query, however, does not take into account the fact that both receiver and source

operate with different contexts. Specifically, the user works with kilometers, but the lengths of

rivers are recorded using meters in the source. The answer returned would be wrong unless Line 6

of the query is transformed into "FILTER (?length >= 50000)". It is still not enough because the

answers returned should be further transformed to the context of the receiver.

1 http://wiki.dbpedia.org/

NAÏVE SPARQL QUERY

1: PREFIX dbo: <http://dbpedia.org/ontology/>
2: SELECT ?river ?length
3: WHERE { river dbo:type :River ;
4: dbo:length ?length ;
5: dbo:riverMouth ?mouth ;
6: FILTER (?length >= 50) .
7: FILTER regex(?mouth, "rhine", "i") . }

Figure 1. DBpedia example

CONTEXT: RECEIVER

 Length is expressed in kilometers.

CONTEXT: SOURCE

 Length is expressed in meters.

Consider another simple example of finding the countries whose GDP is more than 50 trillion

Chinese Yuan (CNY) against the Semantic Web version of the CIA Factbook
2
 database as shown

in Figure 2. The query will return almost all of the countries on the planet because the GDPs are

reported in US dollars with a scale-factor of 1 in the CIA Factbook database and 50 dollars is a

very tiny number comparing to the GDP of any country. For this query it is not enough to just

rewrite 50 into 50 × 10
12

 as we did in the DBpedia example since the context of the receiver differs

from the source not only in the scales but also in the currencies.

There is only one source involved in the above two examples. If multiple data sources

originating from different contexts are brought together and we can pose queries on the whole

dataset, the situations would become much more complex and many semantic conflicts would

occur. The semantic conflicts would occur when the constraints typed by receivers are tested

against data sources or the values from different sources need to be compared.

Suppose there are three data sources that record the financial information about companies from

United States, China, and Japan, using different currencies and scale-factors as shown on the right

of Figure 3. In this example, all the data sources are included as named graphs. The query is to find

the companies where more than 50% of their profits come from their oversea branches and the

profits of the branches are greater than twenty million USD. Line 11 of the query is used to

calculate the percentage of the profits of oversea branches to the total profits of their parent

companies. The variables ?bprofit and ?pprofit might be bound to the values from different sources.

How the values bound to ?bprofit and ?pprofit are transformed so that the two transformed values

2 http://www4.wiwiss.fu-berlin.de/factbook/

NAÏVE SPARQL QUERY

1: PREFIX foaf: <http://xmlns.com/foaf/0.1/>
2: PREFIX xbrl: <http://www.xbrl.org/>
3: SELECT ?pname ?bprofit ?percent
4: WHERE {
5: GRAPH ?graph1
6: { ?comp foaf:name ?pname ;
7: xbrl:branch ?branch ;
8: xbrl:profit ?pprofit . }
9: GRAPH ?graph2
10: { ?branch xbrl:profit ?bprofit . }
11: LET (?percent := (?bprofit / ?pprofit)) .
12: FILTER (?percent >= 0.50) .
13: FILTER (?bprofit >= 20000) . }

Figure 3. XBRL example

CONTEXT: RECEIVER

 Currency is USD with a scale-factor of 1,000.

CONTEXT: SOURCE1 (USA)

 Currency is USD with a scale-factor of 10,000.

CONTEXT: SOURCE2 (Japan)

 Currency is JPY with a scale-factor of 10,000.

CONTEXT: SOURCE3 (China)

 Currency is CNY with a scale-factor of 10,000.

NAÏVE SPARQL QUERY

1: PREFIX fk:
2: <http://www4.wiwiss.fu-berlin.de/factbook/ns#>
3: PREFIX db:
4: <http://www4.wiwiss.fu-berlin.de/factbook/resource/>

5: SELECT ?country ?gdp
6: WHERE {
7: ?country fk:GDP_purchasingpowerparity ?gdp .
8: FILTER (?gdp >= 50) }

Figure 2. CIA Factbook example

CONTEXT: RECEIVER

 Currency is CNY with a scale-factor of trillion.

CONTEXT: SOURCE

 Currency is USD with a scale-factor of 1.

conform to the same context and can be used to calculate correct percentage depends on which

sources are matched by the patterns in the query.

SPARQL language can be used to express queries across diverse data sources, and the different

parts of query patterns can be matched against different data sources. If the GRAPH keyword is

followed by a variable (like XBRL example), the variable will range over all the named graphs (or

data sources) in the query's dataset, which makes the SPARQL query language a powerful

integration tool, unlike SQL in which we need to indicate the tables from which data is to be

retrieved and the full attribute names.

The earlier DBpedia example shows that some constraints typed by users should be transformed

to comply with assumptions in the data source context. In the CIA Factbook example the data

might vary in two or more aspects (in that case, currency and scale) so there must be more than one

conversion of the data. The XBRL example shows that this conversion should be made in dynamic

way, depending on which data source is accessed. Besides, the answers should be further

transformed so that they conform to the context of the receiver.

3. System Architecture

To resolve the problems illustrated in the above examples, we develop a SPARQL query mediation

system in which the semantics of data (of those recorded in a source, or expected by a receiver) can

be explicitly represented in the form of a set of context statements. As shown in Figure 4, queries

submitted to the system will be intercepted by a Context Mediator, which rewrites the naïve

SPARQL query to a mediated SPARQL query and passes it to SPARQL query engine. Then, the

SPARQL query engine dispatches subqueries to individual sources and undertakes conversions

when data are exchanged between two data sources. Eventually, the correct answers are provided

to the receiver.

 Context ontology is a collection of generic concepts, which provides a common type system for

describing data semantics exchanged between disparate sources. As shown in Figure 5, the

concepts have some attributes, called modifiers, which serve as annotations that make explicit the

semantics of data in different aspects. The context ontology defines what types of modifiers apply

to which concepts. The context ontology could be seen as a knowledge representation framework,

which is used to define the contexts of receivers and data sources. Following the XBRL example,

the user needs to create a context instance of the concept "MonetaryValue" by the following two

statements:

US_dollar_ thousand hasScale "1000"^^xsd:integer .

US_dollar_ thousand hasCurrency "USD"^^xsd:string .

where "US_dollar_thousand" is used to identify the instance, "hasScale" and "hasCurrency" are

two modifiers, and "1000" and "USD" are values of the modifiers. The above statements explicitly

indicate that any data value associated with this instance is in USD currency with a scale-factor of

thousand. Such instances will be stored in a context pool, and can be reused by others. Then, the

user can declare that for the XBRL application if a data value is "MonetaryValue" type (profit

belongs to this type), he assumes that it is reported in USD currency with a scale-factor of thousand

by the statement below.

xbrl monetaryValue USD_dollar_ thousand .

The contexts of the data sources can be defined in a similar way, and the only difference is that the

attribute of data sources (not the name of application such as "xbrl") should be associated with the

context instance.

The preceding statements are not yet sufficient for resolving the conflicts of data present in

disparate contexts. Conversion functions are introduced for each modifier to achieve conversions

between different contexts. A function cvt_modifier(mvs, mvt, vs) returns the equivalent value vt

that complies with assumptions in the target context for the source value vs, where mvs and mvt are

two distinct values of the modifier in the source and target contexts respectively. We have

algorithms that use atomic functions (simple conversions such as conversion between USD and

CNY or between scale 1,000 and scale 10,000) to be automatically composited to construct

composite conversions (to convert from 10,000 CNY to 1,000 USD.). As it can be seen in the CIA

Factbook example, the data vary in two aspects: currency and scale. In the mediated query, a

composite function will be automatically constructed to reconcile those two conflicts through a

series of invocations on the conversion functions defined on each conflicting aspect.

4. Query Mediation

The context mediator uses query rewriting technique to undertake the role of detecting and

reconciling potential conflicts at the time a query is submitted. The following clauses of queries

will be rewritten to the corresponding forms that all semantic conflicts, when detected, are

resolved:

 SELECT: the answers returned should be further transformed so that they conform to the

context of the receiver.

 WHERE: the constraints typed by the receiver should be transformed to comply with

assumptions in the data source contexts.

 FILTER and FUNCTION: one or more arguments might be transformed so that all the

arguments conform to the same context.

The mediation process starts by converting the naïve query (i.e. query ignoring semantic

differences between sources and receivers) into its well-formed query. Then, all the semantic

conflicts are detected and the corresponding conversion functions will be constructed. Finally, the

naive query is rewritten into a logically equivalent mediation query. This work is inspired by a

Figure 4. System architecture

Figure 5. An illustration of context ontology

MonetaryValue

Measure

Weight Length

Value

Number DataTime Code

City

Context hasDataType

hasScale

hasUnit

hasEncoding

hasFormat

hasCurrency

LocationColor

CONTEXT ONTOLOGY
(simplified)

Country

Class SubClassOf

Property PropertyOf

Optimized
Query

Mediated
Query

Local

Databases

RDF

Data

SPARQL

Query

Engine

Context

Mappings

RDF Data

Sources

Query

Optimizer

Context

Mediator

Context

Pool
Conversion

Functions

Relational

Databases

RDF Views
Context

Mappings

Relational

Databases

Context

Mappings

Context

Ontology

RDF

Data

UserContext Mediation

Query

Query Query Answers

Query

Query Answers Extensional Answers

long-standing research project, Context Interchange strategy [5]. We use Jena
3
 to implement the

query mediation system and demonstrate its feasibility. It also can easily be plugged in to other

existing SPARQL query engines to take advantage of their state of the art query optimization and

execution techniques, because query mediation is separated from query optimization and

execution in our system and the mediated queries encode all the necessary data transformations.

We had tested the solution with the real data from CIA Factbook and DBpedia.

5. Conclusion

With this system, the users are not burdened with the diverse data semantics in data sources, all of

which are declared in the context representation component and automatically taken into

consideration by the mediator. A user in any context is able to issue queries over any set of data

sources in other contexts as if they were in the same context. The idea for employing context

ontology and conversion rules for resolving semantic heterogeneity might be not new, but our

work highlights the data-level semantic heterogeneity among various linked RDF data sources, a

challenge which has not been fully recognized by the Linked Data pioneers. With the proposed

mediation system, multiple data sources with disparate contexts can be integrated by SPARQL

query mediation, in which case the users can just construct queries in their own contexts with no

need to understand the potential semantic conflicts. The system supports and allows the data

sources to dynamically participate in or quit the system and sets target for facing more open

environment. Adding or removing a data source is accomplished by adding or removing the

corresponding context declarations, which does not require any changes to the mediator or query

processers. Most importantly, the sources are not required to make any change or commit to any

criteria; they only need to record data semantics declaratively. Another possible use of the system

is to transform or standardize data from multiple sources for data warehouse generation. When

combining data from different sources with appropriate context definitions, the system can help

rewrite the conversion rules and quickly adapt to the change of the data sources.

Acknowledgement: This work was supported, in part, by a grant from the National Natural

Science Foundation of China (No. 60903078).

References

[1] Brodie, M.L. The power and limits of relational technology in the age of information ecosystems. Talk

at MIT CSAIL Seminar, December 9, 2010.

[2] George, D. Understanding structural and semantic heterogeneity in the context of database schema

integration. Journal of the Department of Computing, UCLAN, 4, (2005). 29-44.

[3] Keio. Data integration on Semantic Web, 2006. Retrieved July 26, 2011, from

http://www.w3.org/People/Ivan/CorePresentations/DataIntegration/Slides.html.

[4] Sahoo, S.S., Halb, W., Hellmann, S., Idehen, K., et al. A survey of current approaches of mapping of

relational database to RDF, 2009. Retrieved April 25, 2011, from

http://www.w3.org/2005/Incubator/rdb2rdf/RDB2RDF_SuveyReport.pdf.

[5] Goh, G.H., Bressan, S., Madnick, S., Siegel, M. Context Interchange: New Features and Formalisms

for the Intelligent Integration of Information. ACM Transactions on Information Systems, 17, 3, (1999),

270-293.

3 http://jena.sourceforge.net/

	CISL WP 2011-06 cover page
	2011-11-15 WITS2011 - FINAL

