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ABSTRACT 

In the semantic Web, human and software agents can link data 

and combine them to create new data. In this context, the 

representation and management of data provenance is crucial. 

Data provenance helps determine the believability of data, which 

is an important aspect of data quality. This paper focuses on the 

representation of data provenance in the Web of linked data, and 

the use of provenance information to measure the believability of 

data. We present our provenance model and investigate how the 

concepts of this model can be represented in the semantic Web 

using existing languages and vocabularies to measure data 

believability. To our knowledge, our approach, applied in this 

paper, is the first to develop a precise, systematic approach to 

measuring data believability and making explicit use of 

provenance-based measurements in the Web of linked data. 

1. INTRODUCTION 
In the semantic Web, human and software agents can link data 

and combine them to create new data. The term “linked data” has 

been introduced to refer to a set of best practices for publishing 

and connecting structured data on the Web; the Linking Open 

Data project (http://linkeddata.org/)  aims at bootstrapping the 

semantic Web by publishing datasets on the Web and linking 

them with other datasets. 

The representation and management of data provenance is crucial 

[8,16] because it helps determine the trustworthiness and, more 

generally, the believability of data. Data believability is an 

important aspect of data quality and has been defined as “the 

extent to which data are regarded as true, real and credible” [19]. 

Believability can be considered as synonymous to credibility [18]. 

We argue that it is crucial to automate provenance-based 

measurement of data believability as much as possible, not only 

for reasons of scalability, but also to reduce the risks of 

“incredulity errors” and “gullibility errors” [18]. Incredulity errors 

happen when the product (in our case, data) is credible but the 

user perceives it as not credible. Conversely, gullibility errors 

happen when the product is not credible but the user perceives it 

as credible. 

In this paper, we focus on the representation of provenance and 

the automated, provenance-based computation of data 

believability. In contrast, in previous work [13,14], we have 

proposed a provenance model, as well as metrics and a 

computation approach to evaluate data believability based on 

provenance information. In this paper, we refine our approach and 

operationalize it in the specific context of linked data. Beyond the 

specific application to linked data, our work is at the intersection 

of provenance research and data quality research. 

The issue of provenance has been investigated in several domains. 

Provenance (aka lineage) is defined in [17] as “information that 

helps determine the derivation history of a data product, starting 

from its original sources”. Provenance is a key research issue in 

database research [1] and e-science [17], as well as other domains. 

Among the several applications of data provenance, provenance 

information is crucial for users to decide to what extent they can 

believe the electronic data [11]. However, the literature on data 

provenance lacks a global, precise approach to computing data 

believability based in provenance information. 

In data quality research, believability (aka credibility) appears as 

a dimension of data quality [3]. The survey by R. Wang and D. 

Strong [19] shows that data consumers consider believability as 

an important aspect of data quality. However, the data quality 

literature lacks metrics for precisely computing data believability, 

which consists in several sub-dimensions. Guidelines for 

measuring data believability may be found in [10] (pp. 57-58). 

However, these guidelines remain quite general and no formal 

metrics are proposed. An earlier data quality paper [2] addresses 

the issue of lineage-based data quality assessment (even if the 

terms of lineage or provenance are not explicitly mentioned). 

However, the authors address data quality (defined as the absence 

of errors) in a general and syntactic way. We argue that the 

different dimensions of quality (and, more particularly, of 

believability) have different semantics, which should be explicitly 

considered for quality computation. 

To our knowledge, this work, based on our earlier work reported 

in [13,14], is the first one to develop a precise, systematic 

approach to measuring data believability and making explicit use 

of provenance-based measurements. In this paper, we refine our 

earlier approach and apply it to the context of the Web of linked 

data. 

The paper is structured as follows. Section 2 presents the sub-

dimensions of data believability. Section 3 presents the 

provenance model. This model aims at representing and capturing 

the information that will subsequently be used for automatic 

computation of data believability. The model is independent of 

the implementation context (e.g., relational database, semantic 

Web, etc.) Section 4 investigates how this provenance model can 

be operationalized in the context of the Web of linked data. To 

this end, we map the concepts of the provenance model with 

concepts of RDF vocabularies and languages. Section 5 presents 

our approach for provenance-based believability computation, 

applying the approach to a concrete example. Section 6 concludes 

and points to further research. 
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Figure 1. Sub-dimensions of believability 

 

2. BELIEVABILITY SUB-DIMENSIONS 
A dimension of data quality, believability is itself a 

multidimensional concept. [10] proposes three sub-dimensions of 

believability: (1) of source, (2) compared to internal 

commonsense standard, and (3) based on temporality of data. In 

our approach, we refine this typology [13], decomposing the three 

initial sub-dimensions of believability. Figure 1 illustrates our 

ontology of the sub-dimensions of data believability. Although 

believability is often related to trust [18], trustworthiness is only 

one of the several aspects of believability. 

Our provenance model is aimed at representing and capturing 

believability-related provenance information, i.e. the information 

that will be used to compute the different sub-dimensions of data 

believability. This model is presented in the next section. 

3. PROVENANCE MODEL 
Several provenance models have been proposed in the literature 

[4,11,15,20]. The model proposed in [8] is dedicated to 

provenance capture in the context of linked data. Compared with 

these models, our provenance model was designed with the 

specific objective of computing the different sub-dimensions of 

believability. Figure 2 shows our model, represented as a class 

diagram in UML notation [12]. An earlier version of the model is 

presented in [14]. 

Since our goal is to assess the believability of data values, they 

are the central concept of the model. A data value may be atomic 

or complex (e.g. relational records, XML files, etc.) Our current 

research focuses on atomic, numeric data values.  

Source vs. Resulting data value. A data value (e.g. 109 900 000 

000) is the instance of a data (e.g. “the public expenditure in 

health in the UK, in financial year 2008-2009, in £”). A data 

value may be a source, or a resulting data value (output of a 

process run). We introduce this distinction between source and 

resulting data values because we use different believability 

metrics for these two types of values. The notion of source data 

value is relative to the information system under consideration: 

very often, a “source” data value is itself the result of process 

runs, but these processes are outside the scope of the information 

system. 

A process run is the instantiation (i.e. execution) of a process. 

This distinction between process runs and processes parallels the 

distinction between data values and data, respectively. Processes 

may have several inputs but only have one output. 
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Figure 2. Provenance model 

 

Transaction time vs. Valid time. Every data value has a 

transaction time. For a resulting data value, the transaction time is 

the execution time of the process run that generated the data 

value. For a source data value, the transaction time is attached 

directly to the data value. In addition to transaction time, we use 

the notion of valid time, defined as follows in [9] (p. 53): “The 

valid time of a fact is the time when the fact is true in the modeled 

reality. A fact may have associated any number of instants and 

time intervals, with single instants and intervals being important 

special cases.” In other words, valid time is the period of interest 

of data, while transaction time is when the data value was 

computed. Contrary to transaction time which depends on process 

execution, valid time depends on the semantics of data. For 

example, for the data “the public expenditure in health in the UK, 

in financial year 2008-2009, in British pounds”, the start valid 

time is April 1, 2008 and the end valid time is March 31, 2009. 

The distinction between valid time and transaction time is used 

explicitly in the assessment of the two sub-dimensions of 

temporality. Although transaction time and valid time are 

standard concepts in temporal databases, we haven’t encountered 

this distinction in extant provenance models.  

Related to the concept of valid time is the distinction between 

stocks and flows. This distinction is made in several disciplines, 

including system dynamics [7]. In accounting, an account balance 

at a given time is an example of stock, while sales over a period 

of time is a flow. The valid time of a flow is an interval of time, 

whereas the valid time of a stock is normally an instant (although, 

in some cases, the value of a stock may be represented as an 

average over a period of time). Consequently, our metrics for 

computing believability deal with stocks and flows differently.  

Possibility. When computing data believability, we will use the 

concept of possibility defined in possibility theory [5]. 

Accordingly, a possibility distribution is associated with data. 

Possibility distributions take their values between 0 (impossible) 

and 1 (totally possible) and may be defined on intervals. For 

example, if one considers that “the public expenditure in health in 

the UK, in financial year 2008-2009, in British pounds” is 

somewhere between 50 000 000 000 and 150 000 000 000, this 

can be expressed by a possibility distribution with a value of 1 in 

the [50 000 000 000 , 150 000 000 000] interval, and 0 outside. In 

this case, the possibility distribution is equivalent to an integrity 

constraint stating that the value should be in the [50 000 000 000 , 

150 000 000 000] range. However, possibility distributions allow 

for a fine-tuned representation of uncertainty, by using possibility 

values between 0 and 1.  

Trustworthiness. Processes are under the responsibility of agents 

(organizations, groups or persons). This concept also represents 

the providers of the source data values. When computing 

believability, we are not interested in agents per se, but in the 

trustworthiness of these agents. The concept of trustworthiness is 

essential for assessing the dimension “trustworthiness of source”. 

Trustworthiness is evaluated for an agent, for a specific 

knowledge domain. Trustworthiness in an agent for a domain is 

measured by a trustworthiness value, normalized between 0 and 1. 

We assume that these values are obtained from outside sources, 

e.g. review systems. For example, the trustworthiness of the 

organization “the Economist Magazine” in the domain of 

economics is available from Epinions (www.epinions.com).  

In the appendix, a table illustrates the relationship between our 

provenance model and the computation of believability, by 

showing which concepts are used in which metrics. The concepts 

of the provenance model and their properties are shown in the left 

column (properties are properties of classes or roles of 

relationships; when roles have not been named, we use the name 

of the target class, e.g. Person.groups represents the groups to 

which a person belongs). The believability metrics are shown in 



the right column (they correspond to the terminal nodes of the 

ontology of believability sub-dimensions in Figure 1). 

In the next section, we investigate how the concepts of our 

provenance model can be operationalized in the Web of linked 

data, by mapping the provenance model with RDF vocabularies 

and languages. 

4. MAPPING THE PROVENANCE MODEL 

INTO RDF 
RDF is central to the Web of linked data. It is used to represent 

datasets as resources and properties, and connect datasets 

together. 

Several RDF vocabularies are available. In this paper, our purpose 

is not to propose yet another vocabulary, but rather to investigate 

how extant vocabularies and languages can be used to 

operationalize our provenance model. To this end, we map the 

concepts and properties of the provenance model into RDF. The 

RDF vocabularies and languages that we have found relevant for 

this purpose are: XML Schema 

(http://www.w3.org/TR/xmlschema-2/), OWL 

(http://www.w3.org/TR/owl-overview/), OWL-S 

(http://www.w3.org/Submission/OWL-S/), Dublin Core 

(http://dublincore.org/documents/dcmi-terms/), FOAF (Friend Of 

A Friend, http://xmlns.com/foaf/spec/20100101.html), SKOS 

(http://www.w3.org/TR/2009/REC-skos-reference-20090818/), 

the Trust Ontology (http://trust.mindswap.org/trustOnt.shtml), 

SCOVO (Statistical Core Vocabulary, 

http://purl.org/NET/scovo#) and Data-gov (http://data-

gov.tw.rpi.edu/). 

The following tables show the mappings between the concepts 

(classes) and properties of our provenance model and classes and 

properties in these RDF vocabularies and languages. We divide 

our provenance model into three clusters: (1) agents, domains and 

trustworthiness, (2) data and (3) data values and processes.  

4.1 Agents, Domains and Trustworthiness 
Table 1. Mapping the provenance model into RDF: agents, 

domains and trustworthiness 

Concept of the 

provenance model 

RDF term RDF 

vocabulary 

Agent Agent FOAF 

Person 

 groups 

 organizations 

Person FOAF 

member FOAF 

  

Group 

 organization 

Group FOAF 

  

Organization Organization FOAF 

Domain 

 sub_domain_of 

Concept SKOS 

narrower SKOS 

Trustworthiness 

 agent 

 domain 

 trustworthiness value 

TopicalTrust Trust Ontology 

trustedPerson Trust Ontology 

trustSubject Trust Ontology 

trustValue Trust Ontology 

 

The concepts of agent, person, group and organization in the 

provenance model can be mapped directly to the FOAF 

vocabulary, although (unlike FOAF) we exclude software agents 

from our definition of agents: even if a process may be executed 

by software, the agent responsible for a process run or providing a 

data value is human. 

Despite this mapping of concepts between our model and FOAF, 

FOAF only partly represents membership information between 

persons, groups and organizations.  

To represent knowledge domains and their hierarchical 

organization, SKOS is appropriate. This vocabulary has been 

designed to represent thesauri, taxonomies, classification schemes 

and subject heading systems. 

Finally, the Trust Ontology is appropriate for representing the 

concept of trustworthiness and its properties. 

4.2 Data 
Table 2. Mapping the provenance model into RDF: data 

Concept of the 

provenance model 

RDF term RDF 

vocabulary 

Data 

 

 

 data_label 

 

 

 

 data_type 

 is_stock 

 start_valid_time 

 

 end_valid_time 

RDF property (general case) 

 

Item SCOVO 

Name of the 

RDF property 

(general case) 

Name of the 

Item 

SCOVO 

datatype XML Schema 

  

time_period Data-gov 

min SCOVO 

time_period Data-gov 

max SCOVO 

Possibility_distribution 

 possibility_distribution 

  

minInclusive 

minExclusive 

maxInclusive 

maxExclusiv

e 

XML Schema 

 

In most RDF vocabularies, data are not represented as first-class 

citizens, but as properties of RDF classes. A notable exception is 

SCOVO, where the class Item represents a single piece of data. 

This allows for a richer, more precise representation of the 

different dimensions and properties of data. 

The XML schema vocabulary can be used for data types (in our 

case, we focus on atomic, numeric data types). 

Data-gov has a time_period property, defined as the “date or time 

interval(s) for which the data set provides data”. This property 

corresponds to the concept of valid time. However, it is defined at 

the granularity level of a data set, and not for a specific piece of 

data. In SCOVO, a valid time can be associated with a specific 

piece of data (Item in SCOVO vocabulary): an Item has several 

dimensions, one of which can be the valid time, with a min 

(start_valid_time) and a max (end_valid_time). 

We did not find a direct equivalent of possibility distributions in 

RDF vocabularies. However, XML Schema enables the definition 

of a lower bound and an upper bound for ordered domains of 

values. These lower and upper bounds define the interval outside 

of which the possibility value is equal to 0. 



4.3 Data Values and Processes 
Table 3. Mapping the provenance model with RDF: data 

values and processes 

Concept of the 

provenance model 

RDF term RDF 

vocabulary 

Data_value 

 

 

 data_value 

 

 

 data 

RDF property 

value 

(general case) 

rdf:value SCOVO 

Value of the RDF 

property 

(general case) 

rdf:value SCOVO 

RDF property (general case) 

Item SCOVO 

Source_data_value 

 provided_by 

 

 

 

 transaction_time 

  

publisher 

creator 

contributor 

Dublin Core 

 

agency Data-gov 

created 

modified 

Dublin Core 

 

date_released 

date_updated 

Data-gov 

Resulting_data_value 

 process_run 

 

 

  

collection_mode 

statistical_ 

methodology 

Data-gov 

Process_run 

 under_responsibility_of 

 

 

 

 transaction_time 

 

 

 

 process 

  

publisher 

creator 

contributor 

Dublin Core 

 

agency Data-gov 

created 

modified 

Dublin Core 

 

date_released 

date_updated 

Data-gov 

  

Process 

 input 

 output 

Process OWL-S 

hasInput OWL-S 

hasOutput OWL-S 

 

As pointed out in [8], Dublin Core can be used to represent data 

providers and time information (time of data creation or 

modification, i.e. transaction time). Dublin Core even 

distinguishes between the roles of publisher, creator and 

contributor. However, with Dublin Core alone, these properties 

cannot be represented at the level of the data value. Similarly to 

Dublin Core, Data-gov has the concepts of agency (“the 

government agency publishing the data set”), date_released and 

date_updated. These properties are defined at the granularity level 

of data sets. 

OWL-S enables the representation of processes, their inputs and 

outputs. However, at the instance level, i.e. to represent the 

process execution from which a data value results, the RDF 

vocabularies do not provide a direct, satisfying solution. Data-gov 

has the properties of collection_mode and 

statistical_methodology, but these properties are not formalized 

and may have very different values. Examples of collection 

modes include radar, satellite, numeric prediction models… The 

statistical methodology is defined as “a description of the overall 

approach used for statistical design, sampling, data collection, 

statistical analysis, and estimation.” An example of statistical 

methodology is “1 percent random, representative sample of 

administrative records of Social Security beneficiaries”. 

Summing up the mapping between our provenance model and 

RDF vocabularies and languages, extant vocabularies and 

languages provide several classes and properties for representing 

the concepts of our provenance model. However, in some cases 

we have no equivalent, and we need to use several vocabularies in 

conjunction (as often happens in extant data sets). 

5. PROVENANCE-BASED 

BELIEVABILITY COMPUTATION  
We illustrate our approach for provenance-based believability 

computation, operationalized in the Web of linked data. We first 

introduce the scenario. We then present metrics for the sub-

dimensions of believability. We have defined a metric for each 

elementary sub-dimension of believability (i.e. for each terminal 

node in Figure 1); due to space limitation, we focus here on the 

metrics defined for the temporality of data. Finally, we present 

and illustrate our approach for spatio-temporal assessment of data 

believability (i.e. overal assessment of believability, based on the 

sub-dimensions of believability and the lineage of data values). 

5.1 Example Scenario 
The example is based on linked data from www.data.gov.uk, a 

recent initiative of the UK Government, advised by Sir T. 

Berners-Lee and N. Shadbolt. The data used in the example are 

presented in the lower part of Figure 3, along with provenance 

information. We assume that there is a need to compute the public 

expenditure in health and social protection per inhabitant in the 

UK, in 2008-2009, in USD (the data value v). As shown in Figure 

3, this data value is computed from three data values: the public 

expenditure (in British pounds) in health and social protection in 

the UK in 2008-2009 (v21), the population of the UK (v22) and the 

exchange rate of the British pound (v23). Values v22 and v23 are 

taken from the CIA World Fact Book, available on the Web. 

Value v21 is the sum of values v11 and v12, which are stored as 

linked data in Data.gov.uk. Figure 3 shows the information that 

we will need to compute the believability of the final data value 

(the value v). This information is represented in the provenance 

model, and extracted from the Web (apart from the transaction 

times of data values v21 and v). Since this paper focuses on 

metrics related to the temporality of data, we focus on the 

information that we will need to compute these metrics. It should 

be noted that v22 and v23 represent stocks, while other values are 

flows. 

The RDF representation uses the SCOVO vocabulary, 

representing, among other things, the start and end valid times for 

the dimension “financial year 2008-09”. Figure 3 also shows the 

cell value corresponding to v11, as it appears in Excel.  

5.2 Metrics for Assessing the Sub-Dimensions 

of Believability 
As a first building block of our approach for believability 

computation, we have defined 6 metrics. These metrics are used 

to assess the believability of each data value, for each elementary 

sub-dimension of believability. The metrics have been presented 

in [14]. Some metrics need to distinguish between source data 

values (in our case, v11, v12, v22 and v23) and data values resulting 

from a process run (v21 and v).  

http://www.data.gov.uk/
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Figure 3. Example scenario 

 

Our notation convention for metrics is based on the order 

believability sub-dimensions appear in Figure 1. For example, Q32 

is the metric for valid times overlap. In this paper, we focus on the 

two metrics pertaining to the temporality of data (Q31 and Q32). 

Compared with the initial version [14], these metrics have been 

significantly extended and clarified. We present the metrics and 

apply them to the example scenario. 

Let us first consider Q31(val), the metric for assessing the sub-

dimension “degree transaction follows valid time” for a data 

value val. For this metric, the intuition is that a data value 

computed in advance (estimation) is more reliable as the valid 

time (especially the end valid time) of the data value approaches. 

When transaction time is equal or superior to the end valid time, it 

may also happen that the data value remains an estimation for a 

while (for example, in our scenario, values for recent financial 

years are accruals, as opposed to actual cash spending for earlier 

years). To capture this idea, we need a function that grows 

exponentially for transaction times before the end valid time, and 

also for transaction times after the end valid time. Thus, we need 

a function with a “S” shape (sigmoid function), bounded by 0 and 

1. We can use the logistic function, defined as:  

1
( )

1 x
f x

e
 

To control the shape of the curve, we can apply a decline 

coefficient, as proposed in the literature (e.g. in [6]). Since the 

exponential growth of the function is likely to be more rapid after 

the end valid time, we can define two logistic functions (each 

with a specific decline coefficient): one for transaction time 

before valid time, and one for transaction time after valid time. 

Formally, the metric Q31(val) is expressed as follows: 

Let tt:Date such that val.transaction_time = tt 

Let evt:Date such that val.data.end_valid _time = evt 

Let 1 and 2 be two decline factors ( 2> 1>0) 

If (tt<evt)  

 Then 



31
1*( )

1
( )

1 evt tt
Q val

e
 

 Else 

31
2*( )

1
( )

1 evt tt
Q val

e
 

Endif 

To illustrate the behavior of this metric, Figure 4 shows how the 

value of the metric evolves as a function of transaction time. We 

assume here that 1=0.005,  2=0.010, and the end valid time is 

March 31, 2009. 

0,0
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Figure 4. Degree transaction meets valid time: illustration of 

the metric 

Let us now consider Q32(val), the metric for assessing the sub-

dimension “valid times overlap” for a data value val. This metric 

is defined only for resulting data values (in our example, v21 and 

v). For a data value val resulting from a process P with input 

values vi, valid times overlap measures the extent to which the 

valid times of the vi are consistent with each other, i.e. their 

degree of overlap. In case there is only one input value, valid 

times overlap is equal to 1. Otherwise, the idea of the metric is to 

compute, pair-wise, the valid times overlap of input data values, 

and compute the average. We distinguish between the cases when 

the valid time is an interval, and is an instant. By convention, we 

also represent instants as specific kinds of intervals, where the left 

bound is the same as the right bound, and the length of these 

intervals is one unit of time (e.g. the length of [1-Jul-09,1-Jul-09] 

is one day). When computing the overlap between an interval and 

an instant, we consider that the overlap is higher when the instant 

is located close to the middle of the interval (e.g. if we divide the 

yearly public expenditure in a country by the total population for 

that country at a given time, it is preferable to take the figure for 

the total population at the middle of the considered year; this 

figure is more likely to reflect the average population of the 

country for that year).  

Formally, the metric Q32(val) is expressed as follows: 

Call n the number of input parameters of the process from which 

the value val results. 

If  n=1  

Then 32( ) 1Q val  

Else 

Call vi the ith input parameter of the process. 

Call Min_valid_time (resp. Max_valid_time) the earliest 

(respectively latest) start valid time (respectively end valid time) 

among the valid times of the vi. 

Call VTvi the valid time interval of vi (interval [svti,evti], 

delimited by the start and end valid time of vi; if VTvi is an 

instant, svti=evti). 

32
2

( ) *
*( 1)

( , )
( )

( _ _ , _ _ )i j

Q val
n n

overlap i j

length Min valid time Max valid time

 

Endif 

overlap(i,j) is defined as follows: 

If (VTvi VTvj = ø) 

Then ovelap(i,j)=0 

Else  

       If VTvi is not an instant and VTvj is an instant 

      Then  

( , )

min( ( , ), ( , ))

0.5* ( )

i j j i

i

overlap i j

length svt evt length svt evt

length VTv

 

       Endif 

       If VTvi is an instant and VTvj is not an instant 

       Then  

( , )

min( ( , ), ( , ))

0.5* ( )

j i i j

j

overlap i j

length svt evt length svt evt

length VTv

 

        Endif 

       If (VTvi and VTvj are not  instants) or (VTvi and 

VTvj are instants) 

       Then  

)(),( ji VTvVTvlengthjioverlap  

       Endif 

Endif 

Table 3 applies the two temporality metrics (Q31 and Q32) to our 

example scenario. 

Table 4. Temporality of data: application of the metrics  

Id Q31 Q32 

v11 0.926   

v12 0.926   

v21 0.956 1.000 

v22 0.891   

v23 0.981   

v 0.956 0.167 
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Figure 5. Application scenario: matrix M(v) (left) and influence vector G(v) (right) 

 

 

In this case, for the metric “degree transaction follows valid time” 

(Q31), we have taken the decline factors 1=0.005, and 2=0.010, 

for all data values. We could choose different decline factors for 

the different data, reflecting the temporal behavior of data (for 

example, the evolution of population and of currencies each have 

their specific behavior).  

In Table 3, the metric for valid times overlap (Q32) is defined for 

v21 and v only. The metric reflects perfect overlap for v21 (input 

values v11 and v12 have the same valid times). In the case of v, 

input values have only partly overlapping valid times (fiscal years 

differ from calendar years). Concerning the metric Q31, for all 

values, transaction time follows the end valid time.  

5.3 Spatio-Temporal Assessment of 

Believability 
Based on the metrics defined for each of the elementary sub-

dimensions of believability, we perform the spatio-temporal 

assessment of the believability of data values. To achieve this, we 

aggregate metrics both along the different sub-dimensions of 

believability (“spatio”) and along the lineage of data (“temporal”). 

We define the lineage of a data value v (noted Lineage(v)) as a 

labeled, directed acyclic graph representing the successive data 

values and processes leading to v. The data values are the vertices 

of the graph (noted V(Lineage(v))), and the processes are the 

labeled edges. In our case, we want to compute the spatio-

temporal believability of data value v, and the lineage of v is 

represented in the bottom left part of Figure 3. 

Our approach for computing spatio-temporal believability is 

developed in [13]. Due to space limitation, we only summarize 

(and simplify) the main steps of this approach, and apply it to the 

scenario of linked data used in the present paper.  

The basic idea of our approach is to assess the spatio-temporal 

believability of a data value v by: 

1. Aggregating believability metrics along the lineage of 

v, for each elementary sub-dimension of believability 

(“temporal” aggregation). 

2. Aggregating the result along the different sub-

dimensions of believability (“spatial” aggregation). 

In order to aggregate believability metrics along the lineage of a 

data value v, we define an influence vector G(v), derived from the 

matrix M(v) as formalized below: 

From the graph Lineage(v), build the matrix M(v)  defined as 

follows: 

M(v)  is a square matrix of order Card(V(Lineage(v))) * 

Card(V(Lineage(v))) 

The rows/columns of M(v) represent the vertices of 

Lineage(v). (The last row/column represents v.) 

Call vr and vc  the vertices corresponding to row r and column 

c respectively. 

The content of element Mr,c(v), where r and c  

1..Card(V(Lineage(v))), is defined as follows: 

 

If an edge e  from vr to vc in Lineage(v)  

Then  Call P the label of e. 

Mr,c(v)= 
rr

r

vv
dx

dP
*)(  

Else Mr,c(v)=0 

Endif 

For each column c, divide each element Mr,c(v) by the sum of 

the elements of column c. 

Let N (v)=

eage(v))length(Lin

0k

kM(v))*(  

 (γ [0..1[ is an attenuation factor; length(Lineage(v)) is the 

length of the longest process chain from a source data value to v; 

the first term of the sum ∑ , i.e. for k=0, is the identity matrix). 

 

The final vector G(v) is the transpose of the last column of 

N(v), divided by the sum of elements of this column in order to 

normalize weights. (U is the unit column vector). 

O(v)= 

 (N (v) [1.. Card(V(Lineage(v))); Card(V(Lineage(v)))])T  

G(v)=(1/ (O(v) *U))* O(v) 

 

Figure 5 shows the resulting matrices M(v) and G(v), for our 

example scenario. We assume a default value of 0.5 for the 

attenuation factor .  

As an illustration of the computation of the values in Figure 5, 

consider the values of M1,3(v) and M2,3(v) (i.e. the values noted as 

a and b, respectively, in Figure 5). From Figure 3, we get the 

values for v11 and v22, and we know that P1(v11,v12)=v11+v12.  

We have: 



M1,3(v) = 1 1 1
11 11 11 11 12 12

11 11 12

( )* / ( )* ( )*
dP dP dP

v v v v v v
dx dx dx

 

and 

M2,3(v) = 1 1 1
12 12 11 11 12 12

12 11 12

( )* / ( )* ( )*
dP dP dP

v v v v v v
dx dx dx

 

The derivative 1
11

11

( ) 1
dP

v
dx

 and, similarly, 1
12

12

( ) 1
dP

v
dx

. It 

follows that M1,3(v) = (1*109900000000) / (1*109900000000 + 

1*203600000000) = 0.35 and M2,3(v) = (1*203600000000) / 

(1*109900000000 + 1*203600000000) = 0.65 

Once we have the influence vector G(v), we may aggregate the 

believability metrics along the lineage of v, for each of the sub-

dimensions of believability. In our example, we only consider the 

metrics Q31 and Q32, as shown in Table 3. For Q31, we perform a 

weighted average of the values shown in Table 3, using the 

weights as defined in the influence vector (weights shown in the 

right part of Figure 5). The result is 0.950. This number assesses 

Q31 (degree transaction follows valid time) by considering not 

only the value v, but also its lineage. For Q32, we proceed 

similarly to perform aggregation along the lineage of v. We get 

the result 0.474 (if we consider null values as 1 for this metric), or 

0.286 (if, in the weighted average, we consider only the defined 

values, i.e. the values for v21 and v). This figure (0.286) is higher 

than the non-aggregated value (0.167), reflecting the fact that v’s 

lineage performs better than v itself on the sub-dimension “valid 

times overlap”. 

Finally, to perform the spatio-temporal believability of the data 

value v, we aggregate, along the different sub-dimensions of 

believability, the results obtained previously. We may choose 

between different aggregation operators [13]. In our example, we 

may use the product as aggregation operator. The final result for 

the believability of data value v (considering only two sub-

dimensions of believability), is 0.950*0.286=0.272. This 

believability measure can be used, for example, to choose 

between alternative data sources (i.e. compute the data value v 

from other data sources and see how this choice affects the 

believability of v). 

6. DISCUSSION AND CONCLUSION 
We have presented a provenance model to capture and represent 

provenance information for computing data believability, and 

have illustrated how the provenance model may be 

operationalized in this context by mapping this model into RDF. 

We have described our approach for assessing the believability of 

data, based on information stored in the provenance model. Data 

believability is composed of several sub-dimensions, for which 

specific metrics are defined. In this paper, we have focused on the 

metrics pertaining to the temporality of data, refining the metrics 

defined in previous work. Using an example scenario with linked 

data, we have illustrated how the believability of a data value is 

computed by aggregation along the lineage of the data value, and 

the sub-dimensions of believability. 

This paper follows from previous research described in [13,14]. 

Compared with this previous work, the present paper (1) 

significantly extends and clarifies our temporality metrics and (2) 

operationalizes the approach in the Web of linked data. In order to 

operationalize the approach in the Web of linked data, we have 

mapped our provenance model into RDF, and applied our 

approach to an example of linked data, using data from 

data.gov.uk.  

Instead of defining yet another RDF vocabulary for representing 

provenance in the semantic Web, we have chosen to use extant 

vocabularies. Mapping between our provenance model and RDF 

vocabularies and languages shows that almost all the concepts of 

our provenance model may be represented in the Web of linked 

data, although it is necessary to combine several vocabularies and 

languages.  

We note that a provenance vocabulary for the Web of linked data 

is currently being defined 

(http://trdf.sourceforege.net/provenance/ns.html). However, the 

definition of this vocabulary is still underway, and the vocabulary 

is not as much used as other common vocabularies like FOAF for 

example. We also note that this vocabulary lacks some concepts 

important in our approach, e.g. valid time and trustworthiness 

concepts. 

This work currently has some limitations. One limitation is that 

the Web of linked data is not much standardized yet in terms of 

vocabularies. Vocabularies generally differ from one data set to 

the other. Consequently, few data are readily available for 

automated, provenance-based computation of believability. 

Another limitation concerns the determination of valid time. In 

our approach, we are primarily interested in assessing the 

believability of decision-oriented (as opposed to transactional) 

data, e.g. statistics. For this kind of data, the valid time is 

generally known (for example, there is normally a time dimension 

in an OLAP cube). But the problem in the Web of linked data is 

that valid time is not always represented in an atomic, machine-

readable form as is the case with the data.gov.uk data set. 

Further work will consist in testing our approach with other data 

sets, and further refining the metrics defined for the believability 

sub-dimensions of data quality. 
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APPENDIX: USE OF THE PROVENANCE 

MODEL IN BELIEVABILITY METRICS 

Concept of the 

provenance model 

Believability metrics 

Person 

 groups 

 organizations 

 

trustworthiness of source 

trustworthiness of source 

Group 

 organization 

 

trustworthiness of source 

Domain 

 sub_domain_of 

 

trustworthiness of source 

Trustworthiness 

 agent 

 domain 

 trustworthiness value 

 

trustworthiness of source 

trustworthiness of source 

trustworthiness of source 

Data 

 data_label 

 

 data_type 

 is_stock 

 start_valid_time 

 

 end_valid_time 

 

consistency over sources, 

consistency over time 

 

valid times overlap 

valid times overlap, consistency 

over time 

valid times overlap, degree 

transaction follows valid time , 

consistency over time 

Possibility_distribution 

 possibility_distribution 

 

possibility 

Data_value 

 data_value 

 

 

 data 

 

trustworthiness of source, 

possibility, consistency over 

sources, consistency over time 

possibility, consistency over 

sources, consistency over time 

Source_data_value 

 provided_by 

 

 transaction_time 

 

trustworthiness of source, 

consistency over sources 

degree transaction follows valid 

time 

Resulting_data_value 

 process_run 

 

trustworthiness of source 

Process_run 

 under_responsibility_of 

 transaction_time 

 

 process 

 

trustworthiness of source 

degree transaction follows valid 

time 

trustworthiness of source 

Process 

 input 

 output 

 

trustworthiness of source 

trustworthiness of source 
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