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The following six case studies describe the data generation, growth, retention, and 
sharing trends at MIT in the fields of:

Biological Oceanography•	

Chemistry/Chemical Engineering•	

Climate Change•	

Materials Science and Engineering •	

Neuroimaging  •	

Physics•	
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Case Study Summary 

Background

In order to identify key trends in data generation, 
growth, retention, and sharing at the Massachusetts 
Institute of Technology, an MIT team conducted a 
series of interviews with 29 faculty members from a 
variety of departments and compiled the key results 
into six case studies.  These case studies focus on 
16 faculty members who are currently conducting 
research in the six following fields: Physics, 
Biological Oceanography, Neuroimaging, Chemistry/
Chemical Engineering, Materials Science and 
Engineering, and Climate Change. 

Data Generation

The amount of data generated by faculty members at 
MIT varies significantly depending on the research 
field and the specific goals of the project.  The total 
amount of data generated by the scientists featured in 
the six case studies is approximately 41,000 terabytes 
(TB) per year.  One tereabyte is 1012 bytes, or 1000 
gigabytes.  Professors in the Physics Department are 
currently generating the most data with an estimated 
20,600 TB of data per year.  The Department of 
Chemistry Instrumentation Facility (DCIF) is 
currently generating the least amount of data, with 
an average of 165 gigabytes (GB) per year.  The 
total amount of data generated by the other scientists 
interviewed are as follows: Biological Oceanography 
– 130.1 GB/year; Materials Sciences and Engineering 
– 1.46 TB/year; Neuroimaging – 5.4TB/year; Climate 
Change – 200 TB/year.  

Data Growth

Despite differing research projects and techniques, 
every professor interviewed had experienced an 
increase in data generation over the past five years.  
Today, the amount of data generated by the scientists 
featured in the case studies was about 5-10 times 
more data than five years ago.  While many scientists 
hesitated to make predictions for the future, most 

expect to see similar growth rates in the future.  
This increase in data production was most often 
attributed to improvements in experimental methods, 
instruments, computing, and cheaper data storage.    

Data Retention

Despite the large amounts of data being generated, 
few departments or research labs have data retention 
policies. While a few of the scientists hired staff 
members to manage their data, most of the professors 
that were interviewed left all data retention decisions 
up to their graduate students.  Some scientists, such 
as faculty members featured in the Neuroimaging and 
Biological Oceanography case studies, avoid making 
these decisions by permanently storing all of the data 
that they generate.  Others will delete the majority of 
their data after they publish the results of a specific 
project.  Two of the scientists featured in the Physics 
case study are involved in large, multi-university, 
international research projects, and use a tiered 
system for data distribution, storage and sharing.  

Data backup techniques also varied greatly among 
the scientists featured in the case studies.  The most 
widely used back-up system was the service offered 
by MIT.  However, many professors preferred using 
their own, less expensive backup systems, while 
other did not back up their data at all.  

Data Sharing and Reuse

Attitudes towards data sharing and reuse varied 
among labs or academic field.  The biological 
oceanographers, physicists, and climate change 
scientists were the most open to sharing their data 
with scientists at other labs or universities.  This 
willingness to share could be due to the existence of 
national or international data repositories that make it 
easier for scientists in these fields to collaborate.  For 
example, the biological oceanographers contribute 
to and download from NCBI’s Genbank database, 
although it is better suited for geneticists and is not 
specifically tailored for the needs of this field.  As 
mentioned earlier, many of the physicists interviewed 
for this project are involved in international 
collaborations that have a tiered system data sharing.  
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Biological Oceanography at MIT 

Background

Microbial life has been integral to the history and 
function of life on Earth for over 3.5 billion years. As 
such, microbes have evolved to be the fundamental 
engines that drive the cycles of energy and matter 
on Earth, past and present.  Scientists in the field 
of biological oceanography conduct research in 
marine ecology by studying relationships among 
aquatic organisms and their interactions with the 
environments of the oceans or lakes. This case 
study highlights the work of three scientists at MIT 
working in the field of biological oceanography. 

One scientist is a Professor in MIT’s Departments of 
Civil and Environment Engineering and Biological 
Engineering.  There are about 18 researchers working 
at this lab including graduate students, post doctoral 
researchers, research scientists, visiting scientists, 
and a computational biologist.  This professor is 
one of the leading scientists in the new, but rapidly 
growing segment of biological oceanography: marine 
metagenomics.  Unlike traditional microbiology 
and microbial genome sequencing studies that 
rely on cultivated cultures, marine metagenomics 
draws on genetic material recovered directly from 
environmental samples.  Metagenomic data has 
enabled scientists across disciplines, (e.g., biological 
engineering, genomics, environmental engineering, 
etc.) to begin to explore and model the relationship 
between marine microbes and things like climate 
change and the ocean’s carbon cycle.

The overall goal of this professor’s laboratory 
is “to better describe and exploit the genetic, 
biochemical, and metabolic potential that is 
contained in the natural microbial world.” Their 
central focus is on marine systems, due to the 
fundamental environmental significance of the 
oceans.  These systems are also well suited for 
enabling development of new technologies, methods, 
and theory for assessing the gene and genomic 
content of natural microbial communities without 

cultivation, quantitatively comparing gene content 
of different microbial communities based on 
environmental variables, and developing predictive 
models that relate community gene content to 
environmental process.  Currently, the lab is engaged 
in applying contemporary genomic technologies 
to dissect complex microbial assemblages.  While 
biotic processes that occur within natural microbial 
communities are diverse and complex, much of 
this complexity is encoded in the nature, identity, 
structure, and dynamics of interacting genomes in 
situ. This genomic information can now be rapidly 
and generically extracted from the genomes of 
co-occurring microbes in natural habitats, using 
standard genomic technologies.  This professor is 
currently involved in three main projects: A Time-
Series Project in the Pacific Ocean, A Microbial 
Observatory and an Oxygen Minimum Zone Project.

The second scientist is also a Professor in MIT’s 
Departments of Civil and Environmental Engineering 
and Biology.  Unlike the first professor who studies 
a wide range of microbial life, this scientist’s 
research is focused on understanding the biology 
of one single organism, Prochlorococcus, from the 
genome level to the global scale.  This organism is 
the dominant primary producer in the oceans, the 
smallest known phototroph, and the most abundant 
photosynthetic cell on the planet. Over the past ten 
years, her laboratory set as their goal to develop 
Prochlorococcus as a model system for cross-scale 
systems biology. Her lab consists of 22 graduate 
students, post-doctoral associates, research scientists, 
research assistants and MIT undergraduates spanning 
the fields of biochemistry, genomics, virology, 
microbial ecology, and oceanography, all united 
around Prochlorococcus.  The goal of this professor’s 
laboratory is to use their studies of Prochlorococcus 
to gain a better appreciation for the full complexity 
of Life’s properties and processes; not only those that 
are encoded in an organism’s DNA, but also those 
emerging at higher levels of biospheric organization.  

The final scientist is an associate Professor in MIT’s 
Department of Civil and Environmental Engineering.  
While he is also studying biological oceanography 
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and marine metagenomics, his research includes 
more computational work than the other two 
scientists in this case study and aims to develop 
complementary computational and experimental 
methods for studying microbial evolution.  His 
laboratory is also much smaller than the other two 
labs, consisting of only five graduate students and 
one undergraduate student. 

Data Generation

Most of the data generated by scientists in the field 
of biological oceanography is a combination of 
observational data (environmental conditions and 
oceanographic data that describe the water sample 
sites) and experimental data (DNA sequences).  
However, as mentioned earlier, there are some 
scientists who are also using computational models to 
generate data.  

Despite similar types of data, scientists generate this 
data in a number of different ways.  For example, 
one professor receives samples from ocean cruises 
that he sequences in his own lab using a high volume 
DNA sequencer (the ROCHE 454 pyrosequencer).  
The time-series project provides a good example of 
the typical data production protocol at his lab. The 
objective of this research program “is to provide 
a comprehensive description of the ocean at a site 
representative of the North Pacific subtropical 
gyre.” Since October 1988, scientists working on 
this project have been making repeated observations 
of the hydrography, chemistry and biology of the 
water column at a station north of Oahu, Hawaii.  
Cruises are made approximately once per month 
to the deep-water station.  At the station, scientists 
on the ship will take a water sample from eight 
different depths, called a profile.  These scientists 
will also take measurements of the thermocline 
structure, water column chemistry, currents, optical 
properties, primary production, plankton community 
structure, and rates of particle export are made on 
each cruise.  They then filter the microbes out of the 
sample, freeze them, and ship them to the professor 
at MIT.  He will then extract nucleic acids from 
the microbe sample and perform “pyrosequencing” 

to determine the DNA sequence. Pyrosequencing 
is a method of DNA sequencing based on the 
“sequencing by synthesis” principle that was 
developed by Mostafa Ronaghi and Pål Nyrén at 
the Royal Institute of Technology in Stockholm in 
the 1990s.  This method is “based on detecting the 
activity of DNA polymerase (a DNA synthesizing 
enzyme) with another chemiluminescent enzyme. 
The method allows sequencing of a single strand 
of DNA by synthesizing the complementary strand 
along it, one base pair at a time, and detecting which 
base was actually added at each step. The template 
DNA is immobilized, and solutions of A, C, G, and T 
nucleotides are added and removed after the reaction, 
sequentially. Light is produced only when the 
nucleotide solution complements the first unpaired 
base of the template. The sequence of solutions 
which produce chemiluminescent signals allows the 
determination of the sequence of the template.”

This professor’s lab performs one pyrosequencing 
run per microbe sample.  Each sample contains 
100 Megabase pairs (MBp), which is equivalent 
to 500,000 DNA sequences. Each week, they will 
perform about 2-3 pyrosequencing runs.  These runs 
generate approximately 200 Megabytes of “raw 
data” (actual DNA sequences) per week or about 30 
Gigabytes of raw data per year for all three projects.  

Once they determine the DNA sequence, his lab 
then re-formats the data so they can apply different 
analytic procedures.  For example, they may translate 
the raw DNA sequence into a predicted protein 
sequence.  The number of times that the data can be 
re-formatted varies depending on the analyses that 
will be done on the sample.  However, the raw data is 
always at least annotated, so that the researchers can 
easily identify that specific sequence when searching 
through their data.  During the annotation process, 
the DNA sequence letters in the raw data (i.e. A, T, G, 
or C) are translated into words that have a functional 
meaning (i.e. ribosomal RNA sequences, peptide 
sequences, function RNA sequence, non-coding 
regulatory regions, etc).  These annotations are 
linked to both the raw DNA sequence identified and 
the portion of the coding region.  The re-formatting 
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process essentially doubles the amount of data 
produced by the lab.  Therefore, his lab generates 
approximately 60 Gigabytes of data per year.  

In addition to the raw DNA sequences and the re-
formatted data, the pyrosequencer also produces 
images files for each sequence.  As described above, 
the pyrosequencer determines the DNA sequence 
by adding and then removing solutions of A, C, 
G, and T nucleotides to the sample.  When this 
solution complements an unpaired base, light will be 
produced.  In order to determine which bases “light-
up” the sequencer takes a picture of the sample each 
time the nucleotide solution is added.  The result is a 
time-series set of images of the sample, which is used 
to determine the entire sequence.  For a single run 
you need to create 200 images, which is equivalent 
to approximately 30 gigabytes.  However, once the 
full DNA sequence is determined, the image files are 
no longer needed.  These images are saved for six 

months, just in case the researchers want to reprocess 
them into a sequence again, however, this does 
not happen very often and the files are eventually 
deleted.   

Table 1 shows how the data production rates have 
changed with the new DNA sequencing technologies. 
This professor’s lab purchased their ROCHE 454 
pyrosequencer about one year ago.  Prior to the 454, 
they used an AB3730 capillarity sequencer, which 
was the standard technology at the time.  The Solexa 
is one of the newer technologies on the market now. 
As seen below, running the ROCHE454 costs this lab 

about 15% of the cost of running the AB3730, for the 
same amount of information.

Generally speaking, five years ago this professor’s 
research group was storing a total 10s -100s MBp of 
sequence data (that translates to approximately 100s 
megabytes of data).  Now, in four hours, their DNA 
sequencer produces 100 MBp of data in a single 
4 hour run.  Another professor at MIT, who uses 
the newest Solexa DNA sequencer, produces about 
100 genomes per year.  Each genome uses about 1 
gigabyte for raw data storage, resulting in about 100 
gigabytes of raw genomes produced per year.   Once 
this data is processed and assembled into sequences, 
the final amount of data is even larger.  Although 
they plan to keep this sequencing technology for 
years, this professor predicts that this rate of data 
production will still increase in the near future due to 
new types of experiments (metabolomics).

While the other biological and civil engineering 
professor is also working with sequence data, she 
does not sequence samples from the environment.  
Instead, she receives the raw sequencing data, also 
called “raw reads” and works to assemble them into 
a genome. This professor receives the raw reads 
from larger laboratories.  They are sent to her lab 
as text files, and are therefore not large files.  The 
final assembled genome will be approximately 1.5 
Megabase pairs (or approximately 1.5 megabytes of 
data).  

In addition to assembling genome sequences from 
environmental Prochlorococcus samples, researchers 

DNA 
Sequencing 
Technology AB3730 ROCHE454 Solexa

Year Launched 2002 2005 2008
Data 
Generated/Run 72 KiloBytes 200 MegaBytes 720 MegaBytes
Cost per 
Megabase pair $694 $120 $7 
AB3730 work 
equivalent - 100x AB3730/day 300x AB3730/day

Table 1: Cost and Data Production Comparison of DNA Sequencing Technologies
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in her lab conduct both physiological experiments 
(e.g. growth rate of cells as a function of some 
environmental variable, virus infection experiments, 
and experimental evolution) and experiments that 
involve culturing the Prochlorococcus cells in a 
controlled environment.  There are two main types 
of culturing experiments that they perform: micro 
array experiments and proteomic experiments.  The 
goal of the micro array experiment is to observe the 
mRNA present in different conditions.  Researchers 
at this professor’s lab will compare the results of 
these experiments to the sequence data and determine 
another round of gene annotation. There are 12 
different strains of Prochlorococcus, each with 2,000 
different genes (resulting in 24,000 genes).  By 
comparing the results of the micro array experiments 
for different strains, this professor can learn which 
strains share similar genes.  This process is called 
“comparative genomics.” 

The proteomic experiments are similar to the micro 
array experiments except they are used to detect 
peptides instead of mRNA.  By comparing the 
proteomic data to the micro array data, this professor 
can learn how the Prochlorococcus cell at the mRNA 
level differs from the cell at the protein level.  The 
proteomic experiments are relatively new for her lab 
and therefore, her researchers and students are still 
learning how to interpret their results. 

Due to new experimental techniques (such as 
the microarray experiments), faster and cheaper 
sequencing technologies, and increased funding, 
this professor is now producing about five times as 
much data as she was 5 years ago.  In the future, 
she predicts a both rapid decrease in the cost and an 
increase in speed of DNA sequencing technologies 
which could cause her lab to produce about 10-20x 
more data by 2014.  

Metadata

The metadata associated with biological 
oceanography research differs based on the type of 
raw data that it is associated with.  For example, two 
of the professor’s metadata is the oceanographic data 
from where their samples were taken.  This data is 

collected and recorded by the scientists who take the 
ocean samples.  Examples of this metadata include: 
depth (m), temp of water (degrees C), salinity, 
chlorophyll concentration (micrograms/kg), biomass 
(micromoles/kg), dissolved oxygen concentration 
(micromoles/kg), oxygen (micromoles/kilogram), 
cell counts, and pigmentation information.  Again, 
the time-series program provides a good example 
of how one professor accesses this metadata.  Once 
a frozen microbe sample arrives at his lab, he can 
log onto the project’s website, enter the date that the 
sample was taken, and download all of the metadata 
associated with the sample.  

Another professor deals with two types of metadata.  
For the raw reads that she receives, she needs 
metadata that describes how the Prochlorococcus 
strain was isolated, where it was isolated, what 
the optimal temperature is, the natural habitat of 
the organism, the ecotype of the organism, and the 
name of the person who sequenced the sample.  
This information can be hard to track down, but 
it usually exists in an excel spreadsheet created 
by the scientist who originally sequenced the 
sample.  For the experiments that she conducts 
in the lab, this professor’s metadata includes the 
experimental conditions, what strain was used, and 
the temperature.  This data will be linked to the raw 
data from the micro array or proteomic experiments 
(however, if they perform a micro array and a 
proteomic experiment on the sample, the results from 
these experiments will not be linked to each other 
or to the raw genome data).   The bioinformatics 
specialist in this lab is in the process of developing 
a centralized database to control all of the lab’s 
metadata.  

Data Retention

There is no centralized storage system for biological 
oceanographers at MIT. Additionally, there are no 
standard data retention or data back up policies.  The 
data generated at one professor’s lab is stored on 
RAID arrays at two different computational clusters 
on the MIT campus.  The smaller of the two clusters 
is located in the same building of his lab, and the 
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other is located at a building across campus where 
this professor rents space from MIT’s Information 
Services and Technology (IS&T) Department.  He 
currently rents three racks of space for this cluster.  
This professor built both of these clusters when he 
first came to MIT in 2004 and has been adding to 
them (by buying more RAID arrays) ever since. 

Both the raw data and the formatted data are stored 
on each computer.  As mentioned earlier, the image 
files created by the pyrosequencer are kept for about 
six months, but are then deleted to make room for 
new sequence data.  All other data is stored forever. 
Between the two clusters, this lab has a capacity 
of about 40-50 terabytes. Compared to other major 
labs in the country and around the world that have 
multiple sequencers running samples throughout 
the year, this laboratory generates a small number 
of DNA sequences.  As mentioned earlier, the lab 
is only generating about 60 gigabytes of data per 
year for all three projects.  However, they also 
import all of the datasets posted by other labs on 
the National Center for Biotechnology Information 
(NCBI) GenBank database to use for comparative 
analysis (either comparing their data and the places 
it comes from to similar datasets or looking at the 
same gene sequence in different environments). They 
import approximately 50 times the amount of data 
they generate.  The researchers in this professor’s 
laboratory keep the NCBI data stored on the lab’s 
computers because they frequently need it for their 
analyses and it takes too long to look up, download it 
from GenBank, and re-format it every time they need 
it. Currently, they are using about 10% of the total 
capacity (4-5 terabytes).  The GenBank database is 
described in more detail in the data sharing section 
below.  This lab does not use a formal back-up 
program for their data since they store all of their 
data at both computational clusters.  They also 
deposit as much of their data as they can to national 
data repositories like the NCBI and CAMERA 
databases (see next section).

Another professor deletes his intermediate data files 
after about six months (after the scientific papers 
they were generated for are published) but keeps the 

computer code needed to reproduce these files from 
the raw data.  Although not all of the data produced 
in his lab is backed up, the key data is moved to 
servers (outside the group) with periodic backups.

The other professor’s laboratory has 1 terabyte 
of storage at building 48 that is managed by their 
bioinformatics specialist and it is not backed 
up.   Most of the researchers in her lab keep their 
important data in their own personal computers, and 
use their own back up methods.  The laboratory’s 
final sequence data (including annotations) is kept 
on a database that was developed by this specialist 
and is backed up through MIT’s back up service.  
This entire database is only about 200 gigabytes and 
includes all of the published or publishable data).  
In addition to the storage at their laboratory, this 
professor’s research team also has shared space on 
the MIT DARWIN cluster.  Each DARWIN user is 
given 2 terabytes on the cluster, however they are 
only given 200 gigabytes of guaranteed back up.  
Therefore, most of the researchers at her  lab do 
not use this cluster for storage.  The bioinformatics 
specialist is in charge of all data retention decisions.  
The laboratory has not yet reached their data storage 
capacity, so most researchers just keep everything 
that they generate.  

Data Sharing and Reuse

Every researcher or lab that publishes a paper in the 
field of genomics or metagenomics must upload 
his or her sequence data to the NCBI GenBank 
Database.  GenBank® is the National Institutes 
of Health (NIH) genetic sequence database, an 
annotated collection of all publicly available DNA 
sequences.  There are approximately 85,759,586,764 
base pairs in the traditional GenBank division 
(~7.8 terabytes of data).  From 1982 to the present, 
the number of bases in GenBank has doubled 
approximately every 18 months.  GenBank is part 
of the International Nucleotide Sequence Database 
Collaboration, which comprises the DNA Databank 
of Japan (DDBJ), the European Molecular Biology 
Laboratory (EMBL), and GenBank at NCBI. These 
three organizations exchange data on a daily basis.
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All three of the scientists mentioned in this case 
study contribute to and draw from the NCBI 
GenBank database. NCBI places no restrictions on 
the use or distribution of the GenBank data.  While 
this database provides useful information to the field 
of genomics, only data that are linked with published 
papers are deposited to GenBank.  Additionally, 
this data has marginal utility because GenBank only 
contains flat files (i.e. no metadata is associated 
with the sequences). Although scientists can submit 
data that has not been published yet, not many 
scientists are doing this because it very arduous 
to submit to NCBI.  This is due to the GenBank 
standards and formats, which made sense when gene 
sequencing began two decades ago, but are no longer 
appropriate.  

In addition to the GenBank database, there have been 
a number of other data repositories for biological 
oceanography data.  Two of these professors 
either use or plan to use the Community Cyber 
Infrastructure for Advanced Marine Microbial 
Ecology Research and Analysis (CAMERA).   
CAMERA is a new project that aims “to serve the 
needs of the microbial ecology research community 
by creating a rich, distinctive data repository and a 
bioinformatics tools resource that will address many 
of the unique challenges of metagenomic analysis. 
One professor is a member of the scientific advisory 
board.  CAMERA went public on March 17, 2007 
and is currently in the “data catch-up” phase (i.e. 
gathering all of the metagenomic data that is already 
available to the public).  Once this phase is complete, 
CAMERA hopes to become a data deposition site for 
the metagenomic community.  CAMERA currently 
has 50-60 metagenomic datasets posted in the data 
repository that have been added in an ad-hoc fashion.

Other national data repositories for the fields 
of biological oceanography, genomics and 
metagenomics include the European Bioinformatics 
Institute (http://www.ebi.ac.uk/), the Joint Genome 
Institute (http://www.jgi.doe.gov/) and MICROBES 
online (http://www.microbesonline.org/). 

Biological oceanography data can constantly be re-
used for different analyses.  As mentioned earlier, 

researchers in one professor’s lab will often run both 
micro array and proteomic experiments the same 
sequence and/or strain and perform comparative 
analysis.  Another professor also re-uses his data 
quite frequently.  He will often go back to look 
at previously unknown chunks of DNA data and 
apply new tools that have been developed for a 
particular type of molecule.  In fact, one recent 
breakthrough in the field of marine metagenomics 
was discovered this way when a type of rhodopsin 
derived from bacteria was discovered through the 
genomic analyses of naturally occurring marine 
bacterioplankton.  Rhodopsins are light-absorbing 
pigments that are formed when retinal (vitamin A 
aldehyde) binds together integral membrane proteins 
(opsins).  Rhodoposins are currently known to belong 
to two distinct protein families: visual rhodopsins 
and archaeal rhodopsins.  These two protein families 
show “no significant sequence similarity and may 
have different origins”.  In the year 2000 (when 
the results of this study were first published), no 
rhodoposin-like sequences had been reported in 
members of the domain Bacteria.  By going back and 
studying previous unknown parts of DNA data with 
new analyses, researchers were able to demonstrate 
that archael-like rhodopsins are “broadly distributed 
among different taxa, including members of the 
domain Bacteria,” and that a “previously unsuspected 
mode of bacterially mediated light-driven energy 
generation may commonly occur in oceanic surface 
waters world wide”.  Since some relatives of the 
proteorhodopsin-containing bacteria use CO2 as a 
carbon source, these results “suggest the possibility 
of a previously unknown phototrophic pathways that 
may influence the flux of carbon and energy in the 
ocean’s photic zone worldwide”.

While data re-use can often result in new discoveries 
like the rhodopsin derivation, it can also lead to 
some problems because once a gene expression is 
published, it is hard to record how it is evolving.  
This is a frequent problem for one of the professor’s 
research group. 
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Key Trends and Indicators for Data Growth

Based on the work of the three biological 
oceanographers highlighted in the case study, we 
have identified the following trends and indicators 
for data growth: 

Data generation will rapidly increase with new 1.	
improvements in gene sequencing technologies. 
Five years ago, the state of the art DNA 
sequencers were only generating about 72 
kilobytes of data per run, now they are producing 
about 720 Megabytes per run.  If this trend 
continues, then sequencers in 2014 should be 
producing about 7 gigabytes per run. 

New experimental techniques have also led to an 2.	
increase in metagenomic data production. 

Metadata is extremely important to the field 3.	
of biological oceanography and especially in 
marine metagenomics.  Types of metadata range 
from oceanographic data describing sample sites 
(for raw sequence data), to experimental and lab 
conditions (for cultured samples).

Every researcher or lab that publishes a paper 4.	
in the field of genomics or metagenomics 
must upload his or her sequence data to the 
NCBI GenBank Database.  GenBank® is the 
National Institutes of Health (NIH) genetic 
sequence database, an annotated collection of all 
publicly available DNA sequences.  There are 
approximately 85,759,586,764 base pairs in the 
traditional GenBank division (~ 7.8 terabytes of 
data).  From 1982 to the present, the number of 
bases in GenBank has doubled approximately 
every 18 months.
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Chemistry and Chemical 
Engineering at MIT 

Background

The Department of Chemistry at the Massachusetts 
Institute of Technology has over 30 faculty members 
who teach and conduct research on a variety of 
subjects including biological chemistry, inorganic 
chemistry, organic chemistry, physical chemistry, 
environmental chemistry, materials chemistry and 
nanoscience.  One scientist interviewed, for example, 
is currently studying quantum chemistry in an effort 
to develop new methods to make reliable predictions 
about chemical phenomena.  Currently, his lab is 
focused on physical chemistry topics such as electron 
transfer, electron dynamics, electron spins, and 
molecular magnetism.

Many faculty members of this department conduct 
experiments at the Department of Chemistry 
Instrumentation Facility (DCIF).  This NSF-funded 
facility’s function is to maintain state-of-the-art 
major analytical instruments in order to support 
the ongoing research programs within the MIT 
Chemistry Department. Currently, four permanent 
staff members provide instrument training, 
maintenance, repair, and applications assistance to 
well over four hundred users. The lab houses seven 
Nuclear Magnetic Resonance (NMR) spectrometers, 
one Electronic Paramagnetic Resonance (EPR) 
spectrometer, one high-resolution Fourier Transform 
mass spectrometer, a Gas Chromatograph mass 
spectrometer, a polarimeter, a Bruker Omniflex 
MALDI-TOF, and a Fourier Transform Infrared (FT-
IR) spectrometer.

In addition to the Chemistry Department, MIT has 
a separate department of Chemical Engineering.  
Chemical Engineers at MIT conduct research in areas 
of chemistry, biology, and physics, and have made 
significant contributions to the fields of medicine, 
biotechnology, microelectronics, advanced materials, 
energy, consumer products, manufacturing, and 

environmental solutions.  For example, one scientist 
in this department conducts research in areas of 
metabolic engineering, biochemical engineering, 
bioprocess engineering, and synthetic biology to 
harness the synthetic power of biology to build 
“microbial chemical factories.”  Her current efforts 
are focused on the development of tools and 
methodologies for novel biosynthetic pathway design 
and the investigation of gene dosage effects on the 
physiology and productivity of engineered microbes.

For this case study, three scientists were interviewed, 
including two from the Department of Chemistry and 
one from Chemical Engineering. 

Data Generation

As mentioned earlier, scientists in the Departments 
of Chemistry and Chemical Engineering conduct 
research in various subject areas from quantum 
chemistry to biotechnology.  The amount of data 
generated by each scientist varies based on the goals 
of the specific research project and the instruments 
used to generate data.  One way to estimate the 
total amount of data generated by scientists in these 
two departments is by the data produced at the 
Department of Chemistry’s Instrumentation Facility 
(DCIF).

The DCIF is open to faculty members and research 
groups at MIT, as well as members of other academic 
institutions and of industry in the area.  Over the 
course of a year, about 60 research groups (over 400 
users) actively use the DCIF.  Industrial customers 
use about 12% of the total “instrument use time”, 
while the remaining 88% is used by groups from 
academic institutions (MIT research groups account 
for 84% of “instrument use time” by academic 
institutions).

The majority of the data generated at the DCIF 
is produced by the Nuclear Magnetic Resonance 
(NMR) spectrometers.  NMR is a phenomenon that 
occurs when the nuclei of certain atoms are immersed 
in a static magnetic field and exposed to a second 
oscillating magnetic field. Not all nuclei experience 
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this phenomenon – it depends on whether the protons 
in the nucleus possess a property called spin. The 
spin of a proton is like a magnetic moment vector, 
which causes the proton to behave like a magnet with 
a north and south pole.  When the proton is placed 
in an external magnetic field, the spin vector of the 
particle aligns itself with the external field, just like a 
magnet would1. 

Spectroscopy is the study of the interaction of 
electromagnetic radiation with matter. Nuclear 
magnetic resonance spectroscopy is the use of the 
NMR phenomenon to study physical, chemical, and 
biological properties of matter.  NMR spectroscopy 
is routinely used by chemists to study chemical 
structures using simple one-dimensional techniques.  
Other NMR techniques include: two-dimensional 
techniques to determine the structure of more 
complicated molecules, time domain techniques to 
probe molecular dynamics in solutions, and solid 
state NMR spectroscopy to determine the molecular 
structure of solids.  

Figure 1 is a schematic representation of the major 
systems of a NMR spectrometer.  At the top of this 
diagram is the NMR spectrometer’s super conduction 
magnet. This magnet is one of the most expensive 
components of the nuclear magnetic resonance 
spectrometer system and produces the static magnetic 
field necessary for all NMR experiments.  The shim 
coils (which are located immediately within the bore 
of the magnet) are for homogenizing the magnetic 
field produced by the super conduction magnet.   
Within the shim coil is the probe, which contains RF 
coils.  The sample is positioned within the RF coil of 
the probe.  These RF coils serve two purposes: 1.) To 
produce the second, oscillating magnetic field, which 
is necessary to rotate the spins of the sample during 
NMR experiments; and 2.) To detect the signal from 
the spins within the sample. 

As shown in Figure 1, the instrument’s computer 
controls all components of the spectrometer.   The 
operator of the spectrometer gives input (i.e. 
RF frequency, the width and shape of the RF 
1	 Hornak, Joseph P. The Basics of NMR.  The Rochester 
Institute of Technology (2002).

electromagnetic pulses for the oscillating magnetic 
field) to the computer through a console terminal 
with a mouse and keyboard. Some spectrometers also 
have a separate small interface for carrying out some 
of the more routine procedures on the spectrometer. 
A pulse sequence is selected and customized from 
the console terminal. The operator can see spectra on 
a video display located on the console and can make 
hard copies of spectra using a printer.

  Figure 1: Schematic representation of the 
major systems of a nuclear magnetic resonance 

spectrometer1

NMR spectrometers produce spectral data.  Figure 
2 illustrates an example of a low resolution NMR 
spectrum.  The number of peaks in the spectrum is 
equal to the number of different environments the 
hydrogen atoms are in.  The ratio of the areas under 
the peaks is the ratio of the number of hydrogen 
atoms in each of these environments.  The amount of 
splitting indicates the number of hydrogens attached 
to the carbon atom or atoms “next-door.”  The 
number of sub-peaks in a cluster is one more than 
the number of hydrogens attached to the “next-door” 
carbon(s).  Figure 2 shows the NMR spectrum for 
C4H8O2.  The three peaks indicate that there are 
three different environments for the hydrogens.  The 
hydrogens in those three environments are in the ratio 
2:3:3. Since there are 8 hydrogens altogether, this 
ratio represents a CH2 group and two CH3 groups.  
The CH2 group at about 4.1 ppm is a quartet, which 
means that it is “next-door” to a carbon with three 

!



   http://giic.ucsd.edu

   HMI? Case Studies: Chemistry and Chemical Engineering at MIT 	 14

hydrogens attached - a CH3 group.  The CH3 group 
at about 1.3 ppm is a triplet.  Therefore, this group 
must be “next-door” to a CH2 group.  The CH3 
group at about 2.0 ppm is a singlet. That means 
that the carbon “next-door” is not attached to any 
hydrogen atoms2.

Figure 2: Low resolution NMR spectrum for 
C4H8O2.

In total the 7 NMR spectrometers instruments at the 
DCIF generate a maximum of about 3.3 gigabytes of 
data per week or approximately 165 GB of raw data 
per year (see table 1).  The biggest data generator is 
the Bruker AVANCE 400 MHz NMR spectrometer 
with Spectro Spin superconducting magnet.  This 
instrument generates approximately 677-843 MB per 
week.  Although the other instruments at the facility 
do generate data, it is insignificant when compared 
to the amount produced by the NMR spectrometers 
(about 1/10th of the data).

Table 1: Data generated by the NMR spectrometers 
at MIT’s DCIF

2	 http://www.chemguide.co.uk/analysis/nmr/highres.html

The amount of data generated at the DCIF has 
increased over time.  This increase is due to an 
increase in the use of the instruments, not a change 
in the instruments themselves.  Therefore, the best 
way to gauge this increase is by examining the billing 
statements, which describe the amount of minutes 
the facility bills each month.  In 2003, the facility 
billed an average of 99.5 kilominutes per month and 
a total of 1194 kilominutes for the year.  In 2008, the 
monthly average increased to 115 kilominutes and 
the total billed time increased to 1382 kilominutes.  
Since there is a limit to the amount of time that the 
instruments can be used, the data generated at the 
DCIF has the potential to plateau (assuming that 
the facility does not add any new instruments).  
However, based on current trends, the facility does 
not expect to reach this plateau in the next five years, 
and predicts the increase in billed time to be similar 
to the increase over the past five years.  This would 
result in a monthly average of 133 billed kilominutes 
and an annual total of 1595 billed kilominutes in the 
year 2014.  

Although many faculty members in the Chemistry 
Department use the DCIF, others may conduct 
experiments at different facilities, either at MIT or 
other collaborating institutions.  Additionally, there 
are a number of scientists in this department who 
generate data from models and simulations and do 
not conduct experiments at all.  These scientists 
often generate a lot of “intermediate” or “temporary” 
data while their models run, but only need to save a 
small amount of this data in the end.  For example, 
the scientist in this department studying quantum 
chemistry generates approximately 32 gigabytes 
of temporary data per run but then condenses that 
data into about 1 megabyte of what he considers 
“output data.”  The temporary data usually contains 
more information than the research group is able to 
analyze or store, so they sift through and keep only 
the information needed for the given project.  For the 
quantum chemist, the research data is usually the x, 
y, and z coordinates of an atom in a certain chemical 
situation, while the temporary data would usually 
include “everything you would want to know about 
the atom.”  Although he does not generate large 
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amounts of data, the data production has increased 
over time.  Five years ago he stored approximately 
100 gigabytes of data, and today he has about 1 
terabyte of total data stored.  In the future, he predicts 
that data generation will continue to increase as 
computers get faster and storage prices decrease.

Metadata

Like the raw experimental or model data, the 
metadata generated by chemists and chemical 
engineers at MIT varies based on the research 
project. For example, the metadata for the chemist 
mentioned in the previous section is mostly 
descriptors of the accuracy of the model used.  This 
information is stored in text files that are usually 
about 1 kilobyte per project.   This metadata is often 
stored in lab notebooks as well.  

Data Retention

There are no formal data retention policies for the 
Chemical Engineering or Chemistry Departments.  
Each scientist decides how to store, manage and back 
up his or her own data.  One chemical engineer, who 
generates High Performance Liquid Chromatography 
(HPLC) and mass spectrometry data, will store all of 
her data in two locations: on the HPLC instrument, 
and on her students’ personal computers. Each 
student is in charge of his or her own data.  Lab 
members use MIT’s central back up service to back 
up the data on their personal computers, but not the 
data on the instrument computers.  While MIT’s 
back up service does offer nightly back up, most 
students are not constantly connected to the MIT 
network and need to manually back-up their data on 
their own schedule.  In addition to the data storage 
on computers, this scientist also keeps hard copies 
of the data that she personally generates.  First she 
records all of the data in her lab notebook, and then 
she prints out copies of all of the data generated by 
an experiment.  While she believes in creating paper 
back ups, not all of the students in her lab practice 
this technique. 

While the Chemical Engineering and Chemistry 

departments as a whole do not have specific data 
retention policies, since their disk space is limited the 
DCIF is trying to institute a five-year data retention 
policy for the facility.  Currently, this facility has 
approximately 1.5 terabytes of disk space on the 
main lab computers.  If they get close to capacity, 
then the facility will delete the oldest files.  If the 
new five-year retention policy were implemented, 
then the facility would automatically delete any data 
that has been stored on the main lab computers for 
more than five years.  

The DCIF backs up all of the data that is generated 
in their lab onto DVDs.  Each week they copy 
two weeks worth of data (so each week’s data is 
eventually copied twice).  The DVDs are kept onsite.  
Based on the data generation estimates discussed in 
the previous section, this facility backs up about 330 
GB of data per year.  

Data Sharing and Reuse

While many chemists and chemical engineers 
from different laboratories do share data there are 
no widely used national data repositories.  For the 
experiments run by the chemical engineer mentioned 
in the previous section, the experimental conditions 
are often more important than the results.  She will 
often call her colleagues at different universities or 
labs and ask about their experimental conditions.  

Another scientist in the Department of Chemistry 
sometimes uses the National Institute of Standards 
and Technology’s Computational Chemistry 
Comparison and Benchmark Database.  This 
database is a collection of experimental and ab 
initio thermochemical properties for a selected set 
of molecules.  The goals of this data collection are 
to: 1) provide a benchmark set of molecules for 
the evaluation of ab initio computational methods; 
and 2) allow the comparison between different ab 
initio computational methods for the prediction of 
thermochemical properties.  The thermochemical 
values included in the CCCBDB are enthalpies of 
formation, entropies, heat corrections (integrated heat 
capacity), data needed to compute thermochemical 
properties (such as geometries, rotational constants, 
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vibrational frequencies, barriers to internal rotation, 
and electronic energy levels), and additional 
computed properties (such as atomic charges, 
electric dipole moments, quadrupole moments, 
polarizabilities, and HOMO-LUMO gaps)3.

Key Trends and Indicators for Data Growth

Although the different researchers in the 
Departments of Chemistry and Chemical 
Engineering study a range of different topics, there 
are several key trends and indicators for data growth 
that we have identified:

MIT’s Department of Chemistry Instrumentation 1.	
Facility generates approximately 165 GB of 
data per year, and an additional 330 GB of data 
backups.  The majority of this data is generated 
by the seven Nuclear Magnetic Resonance 
(MR) spectrometers.  Of these seven NMR 
spectrometers, the biggest data generator is the 
Bruker AVANCE 400 MHz NMR spectrometer 
with Spectro Spin superconducting magnet.  This 
instrument generates approximately 677-843 MB 
per week.

12% of the total “instrument use time” at 2.	
the DCIF is from industrial customers.  The 
remaining 88% is used by groups from academic 
institutions (MIT research groups account for 
84% of “instrument use time” in this category).

In addition to the scientists using the DCIF, there 3.	
are also many chemist and chemical engineers 
that generate data with models instead of 
instruments.  While these scientists can generate 
large amount of data while the model is running, 
most of this data is the temporary outputs of 
calculations and is either deleted or significantly 
condensed before the model is finished running.  

Data retention and back-up policies vary 4.	
depending on the preference of the specific 
researcher.  Some scientists will delete their 
data after publishing a paper, while others keep 
everything until their storage capacity is reached 

3	 http://cccbdb.nist.gov/

(and then delete the oldest files).  Others will 
keep their data forever and buy more storage if 
they reach their current storage capacity.
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Climate Change at MIT 

Background

In recent years, our society has become more aware 
of the delicate balance of the Earth system, and has 
devoted much time and energy to debates over how 
best to ensure a sustainable future for the planet.  
The Earth System Initiative (ESI) is predicated on 
the notion that, to be meaningful, these debates must 
be informed by reliable scientific data regarding 
the evolution and current state of our planet. ESI 
scientists and engineers marshal their efforts around 
four broad research themes:

System Characterization•	
System Organization•	
Evolutionary Processes•	
Human Impacts•	

The Earth System Initiative facilitates the 
development of large-scale research efforts in key 
areas of Earth system science and engineering. 
In December 2006, the Darwin Project, the first 
example of such an undertaking, was launched.

The Darwin Project is an ESI initiative to advance 
the development and application of novel models 
of marine microbes and microbial communities, 
identifying the relationships of individuals and 
communities to their environment, connecting 
cellular-scale processes to global microbial 
community structure.

For this case study, three scientists in MIT’s 
Department of Earth, Atmospheric and Planetary 
Science were interviewed.  These research scientists 
focus on the large scale modeling of the physical 
and biological processes in the global oceans.  To do 
this, they build large numerical simulations that are 
constrained with observational ocean data.

Data Generation

Numerical models produce about 90% of the data 

generated by scientists in the Earth Science Initiative 
within the MIT Department of Earth, Atmospheric 
and Planetary Science, and particularly for the 
Darwin Project.  The remaining 10% is observational 
data that is recorded by NASA satellites or 
oceanographers.  There are about 20-25 people who 
work on the Darwin Project at MIT.  They post all 
of their numerical models on the project website for 
others in the field to download and use.  The primary 
research estimates that there are another two hundred 
people around the world who download these models 
to use in a variety of different ways.  The group 
at MIT communicates with these other scientists 
through the web, and often collaborates on projects. 

Over the last year, this project has generated about 
200 terabytes of data.  The majority of the data is 
from high resolution calculations that model the 
processes (both physical and biological) occurring 
in a certain area of the ocean.  One high-resolution 
calculation will run for about 1-2 months and will 
produce about 60 terabytes of data.  However, the 
amount of data produced is very dependent on the 
specific processes that are being modeled.  

The amount of data produced by these models 
has increased over time.  However, this increase 
is largely due to better storage technologies, not 
changes in the models.  Five years ago, the research 
group was “theoretically capable” of generating just 
as much data as today, but they did not have enough 
storage to handle the size of the data files.  As the 
storage hardware continues to improve and become 
less expensive, the amount of data that is generated 
by improvement to the resolution of the models 
will continue to increase.  According to the primary 
research scientist, mathematically speaking, there is 
“no upper bound.” Since 2003, the data generated 
by these researchers has increased by a factor of 
100. In the next five years they predict that it will 
increase by another factor of 100 as the computer 
infrastructure continues to become less expensive 
and more widespread. Based on these predictions, 
the group could produce about 20 petabytes of data 
in 2014. 
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Metadata

Metadata for this project’s research includes the 
grid (area of the ocean) that the model is using, 
the physical fields that are produced by the model 
configuration, and the biological fields being 
modeled. Like other areas of scientific research, the 
amount of metadata is very small in comparison 
to the experimental or model data produced, but is 
critical to making use of the primary data.

Data Retention

The data generated by this group of researchers is 
stored on their computational cluster’s file system.  
The cluster is a collection of 750 hard drives, with a 
certain amount of redundancy in case a drive fails.  
Currently, they do not have the capacity to do a 
redundant back up of the entire cluster.  Instead, they 
use national facilities to back up important data.  One 
facility that they frequently use is the NASA-Ames 
Lab, which has an archive system to which they can 
transfer data over the network.  It is relatively simple 
(although sometimes time consuming) to re-run a 
model, so data can also be reproduced if it is lost.    

The storage capacity of his team’s cluster is 500 TB.  
They have had this storage technology for about 18 
months.  Before purchasing this hardware, the team 
was storing all of their data the NASA-Ames facility, 
which had 100 terabytes of storage available for 
them to use, however the transfer time was very slow 
(approximately 1 terabyte per day).  

This research group saves the source code for all 
of their model configurations, but has no other data 
retention policies. The individual scientist running 
a model will usually decide what data to keep, 
and what to delete.  Five years after a project is 
completed, only about 10% of the data from that 
project is still available.  The research group employs 
a computer system administrator to manage the 
computational cluster, however he only informs 
the researchers when they are close to their storage 
capacity limit. He does not make any decisions about 
data retention.  

Data Sharing and Reuse

As mentioned earlier, this research team posts all 
of their computational models online and is open to 
sharing their data with other researchers in this field.  
They also use the NASA-Ames facility to archive 
important data.  However, the NASA-Ames archive 
is only shared with immediate collaborators and is 
not publicly accessible.  

In addition to sharing their data with other 
researchers, the research group is constantly re-using 
their own data, mainly to re-run models to test for 
reproducibility of results, or to re-analyze data with 
different models.  

Key Trends and Indicators for Data Growth

Several key trends and indicators for data growth 
can be identified for the Earth Science Initiative on 
Climate Change:

The amount of data currently generated is more 1.	
than 200 terabytes per year (based on one large 
project within the Initiative).
Increases in computing power and storage 2.	
capacity have caused the amount of data 
generated to increase by a factor of 100 over the 
past five years. If hardware trends continue, in 
the next five years data production could reach 
20 petabytes annually.
Like other scientific areas, although metadata 3.	
is important to research projects, the amounts 
generated are not significant.
Data retention decisions are up to the individual 4.	
researchers and retention is not a major concern 
today. Retention is constrained by the volume 
of data produced, and is facilitated by use of 
national data archiving facilities (managed by 
NASA, in this case). 
Data sharing and reuse are commonplace 5.	
in Climate Change research, and would be 
facilitated by improved data storage and 
archiving capabilities.
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Materials Science and Engineering 
at MIT 

Background

There are 41 faculty members in MIT’s Department 
of Materials Science and Engineering, covering a 
wide range of expertise that includes both theoretical 
and applied research, with interests spanning the 
entire materials cycle from mining and refining 
of raw materials, to production and utilization 
of finished materials, and finally to disposal and 
recycling.  For example, one scientist studies the 
coupling phenomenon that occurs at materials 
interfaces.  By exploring coupling at the fundamental 
force and length scales of atoms and molecules, she 
looks for commonalities among materials ranging 
from metallic crystals to living biological cells that 
her research group can exploit for human advantage 
in sensing, actuating and transduction applications.  
Another scientist studies how materials change at 
the atomic level by applying external stimuli like 
plastic deformation, bombardment by energetic 
ions, or exposure to rapidly varying temperatures.  
By understanding how materials respond to these 
stimuli at an atomic level, this scientist hopes to 
create strategies for designing materials with desired 
properties from the atomic scale up.

For this case study, two researchers from the 
Department of Materials Science and Engineering 
were interviewed during the spring semester of 2009.

Data Generation

Like most other scientific or engineering fields of 
study, the amount of data generated by materials 
scientists and engineers depends on the specific 
research goals and the experimental or computational 
techniques employed by the individual researcher. 

The scientist studying materials interfaces generates 
two kinds of data: experimental data and data from 
simulations.  The experimental data is generated 
by different instruments run by open source code 

developed by researchers in the lab.  One example 
of the type of instrument used is an atomic force 
microscope, which provides pictures of atoms on 
or in surfaces by scanning a fine ceramic or semi-
conductor tip over that surface.  This tip is set at 
the end of a cantilever beam that will deflect as 
the tip is either repelled or attracted to the surface, 
and the magnitude of that deflection is captured 
by a laser and plotted, providing the scientists 
with the resolutions of the surface topography4.  
Other examples of instruments include indentures 
(machines that pull materials) and optical 
microscopes.

The resulting file generated by one of these 
instruments is about 10 megabytes and includes 
all of the raw experimental data, as well as the 
details describing the operating parameters.  This 
raw data are typically images (see Figure 1).  This 
scientist runs about two of these experiments per 
day, resulting in approximately 7 gigabytes of 
raw data each year.  The lab then analyzes the raw 
experimental data, which generates another 10 
megabytes per experiment.  As a result, the lab 
generates a total of approximately 14 gigabytes of 
experimental data per year.

The simulations run in this lab generate the bulk of 
the data.  These simulations are based on calculations 
made from full electronic models of the materials 
being studied.  The closer the simulation is to the 
scale of the electronic model, the more storage it 
requires.  For a typical simulation, lab members 
would investigate approximately 100,000 atoms 
and generate about 5 gigabytes of raw data that 
describes the structural and functional states of the 
atoms during the simulation.  A whole study would 
require about 30 simulations and generate 150 
gigabytes of data.  This data generation phase lasts 
about three months and is followed by six months of 
data analysis.  Unlike the experimental data analysis 
which doubles the amount of data generated, the 
simulation data analysis only generates an extra 
gigabyte of data per study.  At any given time, the 
group is conducting about three different simulation 
4	 http://www.che.utoledo.edu/nadarajah/webpages/what-
safm.html
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studies resulting in approximately 450 gigabytes of 
simulation data generated each year.

Figure 1: Single molecules of poly(2-vinylpyridine) 
recorded using an AFM operating in tapping mode 

under water media of different pH5.

In total, this research lab is currently generating 
approximately 460 gigabytes of experimental and 
simulation data each year.  This is an order of 
magnitude more data than was generated five years 
ago due to an increase in research volume (i.e. 
personnel, funding, and improvements in computing 
power, speed and storage). The scientists has only 
been at the Institute for five years and this increase 
is typical for new faculty.  This order of magnitude 
increase in data generation has mostly been in the 
simulation data; the amount of experimental data has 
only doubled in the past five years.  This is because 
the instruments used to generate the experimental 
data are very expensive and are only replaced every 
8-10 years.  In the future, the scientist predicts that 
the biggest change will be the need for data storage 
from the simulations because the output from these 
simulations is increasing at a dramatic rate.  The 
amount of experimental data, on the other hand, will 
probably only double in the next five years due to 
increased personnel, not data density. 

Unlike the scientist described above, almost all of 
the data generated by the scientist studying material 

5	 Roiter and Minko, S. AFM Single molecule ex-
periments at the solid-liquid interface: in situ conformation of 
adsorbed flexible polyelectrolyte chains.  Journal of the American 
Chemical Society, vol. 127, no. 45, pp. 15688-15689 (2005).

change is computational model data.  However, he 
does exchange data with experimental scientists with 
a goal of connecting his modeling research and the 
experimental research in the field.  He is particularly 
interested in iron beam analysis, nuclear reaction 
analysis, and image-based experiments.   

As mentioned earlier, this scientist’s research is 
focused on how materials change when subjected to 
external stimuli.  A project begins by constructing an 
atomic-scale model of the material of interest.  The 
model is then run through different simulations of 
external stimuli (i.e. extreme temperature changes, 
plastic deformation, etc.) and the outputs of those 
simulations are a series of “snapshots” of how the 
atomic system looks at different times or states.  The 
research group then analyzes the state of this system 
and decides whether the initial model inputs were 
relevant.  They then iterate this process and, over 
time, begin to notice the important elements in the 
model.  The group then performs targeted simulations 
on those elements.  Over the course of this process, 
the scientist compares the outputs of the simulations 
with experimental data.  

Since this process is so iterative, the types of 
simulations run throughout one research project (and 
therefore, the amount of data generated) can greatly 
vary.  For example, the lab may run a simulation 
that only lasts a split second in order to get a feel for 
how the simulation and model works.  On the other 
hand, one simulation could also run for weeks or 
months on large-scale supercomputer at a national 
center. These large simulations, however, do not 
necessarily generate a lot of data.  For example, if 
the researcher is only interested in learning about the 
pressure profile of a material over time under certain 
conditions, a hundred million-atom simulation will 
only produce a few kilobytes of data.  However, if he 
is interested in studying the whole state of a system at 
every time step, a much “smaller” simulation (fewer 
atoms) could generate terabytes, or even petabytes of 
data. 

After the simulation is run, the research group will 
perform analysis that could increase the amount 
of data by a factor of ten.  However, the amount 
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of analysis data can vary based on the goals of the 
specific project.  For example, 90% of the scientist’s 
PhD research data was analytical (only 10% was 
raw data from simulations) while his postdoc project 
mostly consisted of raw simulation data (25% 
was analytical data).  In general, the smaller the 
simulation, the more detailed the analysis because 
larger simulations produce too much data to analyze 
in detail.  

Despite the potential to generate large amount 
of data, this scientist’s projects have produced 
only modest amounts. During his PhD project he 
generated a total of 200 gigabytes of data and for 
his postdoc project he produced approximately 1 
terabyte.  He produced this relatively small amount 
of data because, for these two particular projects, 
he tried to avoid big simulations that would have 
required reserving time on national supercomputers 
and instead worked with the smallest possible 
computer systems.    

Metadata

Like the raw data, different scientists define materials 
science and engineering metadata differently.  For 
example, the scientist does not believe that any of 
the information generated by his research projects 
should be considered “metadata” because everything 
is valuable to his research.  He considers the models 
he develops, the conditions of the simulations, and all 
other parameters to be “data” not “metadata.”

The other scientist, who runs both experiments 
and simulations, will generate metadata from her 
instruments (describing the date, time, temperature 
and other experimental conditions), and from her 
simulations (explaining the version of the software, 
the number of atoms in the simulation, date, etc).  
The experimental metadata is either recorded in lab 
notebooks or included in the instrument’s output file.  
The simulation metadata is included in the header 
of the output files.  Neither type of metadata is very 
large and is insignificant in size when compared 
to the raw data generated.  The importance of the 
metadata varies depending on the sophistication of 
the experiment or simulation.  The more complex 

methodologies, the more important the metadata 
becomes.

Data Retention

There are no common data retention policies for the 
Department of Materials Science and Engineering 
and therefore, each faculty members tackles the issue 
differently.  For example, one scientist’s research 
data is stored on her students’ and postdocs’ personal 
computers.  The data is replicated twice during the 
data production process (it is kept on the computer 
it was generated on, and on the computer that it is 
analyzed on).  The data is only backed up after a 
publication has been submitted, and no  automated 
backup system is used.  Each student in her research 
group is in charge of the data that they generate.  
The first author listed on the final publication is 
responsible for backing up the data onto a CD or 
portable hard drive.  Each year, this scientist assigns 
one of her students the task of sorting through the 
data on the lab’s cluster and deleting data from 
students who are no longer with the group (assuming 
that the data has been published and, therefore, 
backed up).  

Another scientist stores all his data on his personal 
computer and external hard drives.  One of these 
drives has automatic back up.  His total storage 
capacity is 2 terabytes.  This capacity will increase in 
the near future (before the end of the year) because 
he is in the process of setting up a new computational 
cluster, which will have 15 terabytes of storage.  This 
scientist is in charge of all his own data management, 
including data retention decisions.  He does not 
delete any of his data, and would rather buy more 
storage then delete old data.  If he used a national 
supercomputer center for a simulation then all of the 
data generated during that simulation is also stored at 
the cluster where it was generated.  There are no data 
retention policies at these clusters, but there are strict 
rules about data sharing.  
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Data Sharing and Reuse

There are no national data repositories for data 
sharing in materials science.  However, scientists 
may share data on a lab-by-lab basis.  Both of the 
scientists described above share their data a few 
times a year with colleagues at other universities 
or research institutions.  One of the scientists will 
usually share models but not the data generated 
by running the model through simulations.  The 
other scientist will often share the outputs of the 
simulations. In addition to sharing data and models, 
both scientists also reuse their own data by running 
new analyses on older models or raw data from 
previous projects. 

Key Trends and Indicators for Data Growth

Although the different researchers in the Department 
of Materials Science and Engineering study a range 
of different topics, there are several key trends and 
indicators for data growth that we have identified:

The amount of data currently generated in 6.	
the Department of Materials Science and 
Engineering is approximately 32 terabytes 
per year (based on scientists currently in this 
department, and assuming larger research groups 
and more funding opportunities allow researchers 
to generate 75% more data than assistant 
professors, and full professors to generate twice 
as much data as assistant professors).

Increases in computing power and speed have 7.	
caused the amount of data generated in this 
field to increase by an order-of-magnitude in 
the past five years.  As computer get faster and 
storage get cheaper, data generation will increase 
exponentially in the next five years.

Although metadata is important to research 8.	
projects, materials scientists and engineers to not 
generate significant amounts.

Data retention decisions are often up to the 9.	
individual researchers.  Retention policies vary 
by lab. 

There are no commonly used national data 10.	
repositories, but individual scientists are open 
to data sharing and may share their data (raw 
experimental data, simulations outputs, and 
computational models) with colleagues at other 
laboratories, universities, or research institutions.
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Neuroimaging at the Martinos 
Imaging Center 

Background

The Martinos Imaging Center is a collaboration 
among the Harvard-MIT Division of Health Sciences 
and Technology (HST), the McGovern Institute for 
Brain Research, Massachusetts General Hospital, 
and Harvard Medical School.  The center opened in 
2006 and provides one of the few places in the world 
where researchers can conduct comparative studies 
of the human brain and the brains of differing animal 
species.  

There are 12 principle investigators working at the 
Martinos Imaging Center.  While each PI’s research 
project is distinct, they all share core interests 
in three interrelated research areas: perception, 
cognition and action.  For example, one scientist 
aims to understand principles of brain organization 
that are consistent across individuals, and those 
that vary across people due to age, personality, and 
other dimensions of individuality.  To do so, he 
examines brain-behavior relations across the life 
span, from children through the elderly.  Another 
scientist’s lab focuses specifically on the cognitive 
and neural processes that support working and 
long-term memory.  Participants in her research 
are healthy young adults (e.g. MIT students), 
healthy older adults, and patients with neurological 
diseases (e.g. amnesia, Alzheimer’s and Parkinson’s 
diseases).  The overall goal of the research conducted 
at the Martinos Center is “to meet one of the great 
challenges of modern science – the development of 
deep understanding of thought and emotion in terms 
of their realization of the brain.”

In addition to the scientists at the Martinos Imaging 
Center, there are also a number of other researchers 
at MIT who use neuroimaging techniques in their 
work.  For example, one research scientist at the 
Research Laboratory of Electronics combines 
behavioral and neuroimaging studies to explore 
the processes underlying speech production and 

perception.  For this case study, two scientists at 
the Martinos Imaging Center and one researcher 
at the Research Laboratory of Electronics were 
interviewed.   

Data Generation

Magnetic Resonance Imaging (MRI) is a medical 
technique used to produce images of the internal 
structure and function of the body.  MRI scanners use 
a magnetic field to align the nuclear magnetization 
of (usually) hydrogen atoms in water in the body. 
They then systematically alter this alignment 
using radio frequency (RF) fields.  As a result, the 
hydrogen nuclei produce a rotating magnetic field, 
which is detectable by the scanner.  By manipulating 
this signal with additional magnetic fields, enough 
information is generated to construct an image of the 
body6.  

There are two types of brain images that are studied 
by researchers at the Martinos Center: structural 
magnetic resonance images (structural MRI), 
which document the brain anatomy, and functional 
magnetic resonance images (fMRI), which document 
brain physiology.  fMRI measures the hemodynamic 
response (i.e. the process that occurs when blood 
releases oxygen to active neurons at a faster rate 
than inactive neurons to provide them with energy) 
to indicate the area of the brain that is active when 
a subject is performing a certain task.  Oxygenated 
and deoxygenated blood has different magnetic 
susceptibilities, and therefore, the hemodynamic 
response in the brain to activity results in magnetic 
signal variation, which can be detected by an MRI 
scanner.  In order to perform an fMRI scan, the 
machine must also acquire structural scans.  The 
Martinos Center contains three sunken bays for the 
magnets used in fMRI.  Two of these bays house 
actual MRI machines and one is reserved for a next-
generation technology that the MIT community of 
researchers will help develop. 

One bay holds a new 3 Tesla Siemens Tim Trio 60 
6	 Novelline, Robert. Squire’s Fundamentals of 
Radiology. Harvard University Press. 5th edition. 1997. 
ISBN 0674833392.
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cm whole-body fMRI machine. Tesla refers to the 
strength of the magnet, and 3 Tesla is as strong as 
considered safe and practical for people.  While this 
is considered an fMRI machine, it also has EPI, MR 
angiography, diffusion, perfusion, and spectroscopy 
capabilities for both neuro and body applications. 
The visual stimulus system for fMRI studies uses a 
Hitachi (CP-X1200 series) projector. The image is 
projected through a wave-guide and is displayed on a 
rear projection screen (Da-Lite). 

The second bay has a higher power 9.4 Tesla MRI 
for animal studies. This machine provides higher 
resolution images, which can then provide insights 
into areas to be explored in human studies. For 
example, such animal scans led to the discovery that 
the frontal cortex is involved in working memory. In 
addition, MIT researchers investigating the role of 
specific genes in brain functions can use the imaging 
center to literally see the difference that genetic 
manipulations in animals produce. 

The image datasets produced by the fMRI machines 
are Digital Imaging and Communications in 
Medicine (DICOM) files.  DICOM is a standard 
for handling, storing, printing and transmitting 
medical images, which includes both a file format 
definition and a network communications protocol.  
DICOM enables the integration of scanners, servers, 
workstations, printers, and network hardware from 
multiple manufacturers into a picture archiving 
and communication system (PACS) and has been 
widely adopted by hospitals and medical researchers 
worldwide.  

Each visit by a subject to the scanner is called a 
“session,” which is composed of multiple “runs.”  
A run is a series of whole-brain volumes across 
a time course.  A run is distinguished by the 
kind information the researcher wants. There are 
anatomical runs, which are high-resolution scans 
of the anatomy of the brain; there are functional 
runs, which are low-resolution images of the 
hemodynamic state of the brain over time; and there 
are other special-purpose runs, like DTI (diffusion 
tensor imaging), localizers (quick scans to help 
the scanner operator line up the landmarks in the 

brain with the scanner’s field orientation).  Each 
run generates a series of images. The number of 
images can vary depending upon how long the run 
lasted.  Therefore, each session results in hundreds or 
thousands of DICOM images.  The average session 
will produce 1.4 gigabytes of DICOM images. 

Each DICOM file contains a metadata section and 
a data section.  There are about a dozen image 
types stored as DICOMs.  Examples include 
blood-oxygen-level-dependant (BOLD) images 
and diffusion tensor images (DTIs).  Each image 
type represents something different.  For example, 
different types of electromagnetic pulse sequences 
(different tissues are sensitive to different pulse 
sequences, so different pulse sequences are used). 

After the scan is complete, analysis packages make 
copies of the DICOMS and then convert them to 
a different file format for storage.  One common 
format is the Neuroimaging Informatics Technology 
Initiative (NIfTI).  Unlike the DICOM standard, 
which attempts to address the general requirements 
of digital imaging in diagnostic and therapeutic 
healthcare environment, the NIfTI standard was 
developed and implemented by neuroscientists 
to meet the specific needs of their discipline.  
While the DICOM standard has a large, clinically 
focused storage overhead and relatively complex 
specifications for multi-frame MRI and spatial 
registration, NIfTI is relatively simple format that 
has low storage overhead, resolves some immediate 
format problems in the fMRI community and is not 
difficult for developers to learn and use. 

The NIfTI format allows you to either coalesce all 
the files for one session into one monolithic 4D file 
(see Figure 1), to keep a series of separate 3D files, 
or to keep a one-to-one mapping from DICOM 
to NIFTI (see Figure 2).  After the DICOM files 
are copied and converted to NIfTI files, various 
software packages transform the NIfTI files into 
“intermediate files”. There are 8-9 “intermediate data 
files” for each NIfTI file. Examples of intermediate 
files include slice-timing corrected NIfTIs, motion 
corrected NIfTIs, realigned NIfTIs, smoothed NIfTIs, 
and normalized NIfTIs. These transformations lead 
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to a lot of wasted disk space because there are so 
many types of intermediate files. Typically, each 
DICOM file maps into one NIfTI file, and then each 
NIfTI file maps into one or more intermediate files 
(shown in Figure 2).

The Martinos Imaging Center sees about 30 human 

subjects/week (1500/year).  Each subject has one 
session and each session produces a total of 3.6 
gigabytes of data.  The scanner is booked all year 
(approximately 50 weeks).  Therefore, the center 
is generating a total about 5.4 terabytes of human 
image data each year (this estimate includes fMRI 
scans and the structural MRI scans required to 

Figure 1: Files produced by 1 fMRI session, with one monolithic 4D NIfTI file

Figure 2: Files produced by 1 fMRI session, with one to one DICOM to NIfTI mapping
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perform the fMRI scans). 

Each fMRI scan is very expensive.  It costs about 
$550/hr for the scanner time (including the staff).  
In addition to scanner time, there is the cost of 
recruiting, screening and compensating subjects.  The 
total cost per subject is approximate $750-$1,000.

Although the majority of data generated by 
researchers at the Martinos Center are fMRI and 
structural MRI images, many researchers combine 
these images with additional data about the subject 
in order to fully understand what they observe 
in the brain.  For example, one scientist often 
collects demographic information, health histories, 
behavioral data and genetic information from her 
subjects.  However, the amount of non-image data is 
significantly smaller than the MRI image data.  As a 
result, this scientist performs behavioral experiments 
on many more subjects than she is able to scan.  In 
2008, she gathered behavioral data on 260 subjects 
(five per week) but performed only 52 MRI scans 
(about one per week).  After post-processing and 
analysis, this resulted in a total of 230 gigabytes of 
image data (structural MRI and fMRI) and only a 
few hundred kilobytes of behavioral, demographic 
and genetic data.  If each of the other 11 researchers 
at the Martinos Center generated a similar amount of 
non-image data, this would only result in about 2-4 
gigabytes of data per year (an insignificant amount 
when compared to the 5.4 Terabytes of image data 
produced each year).

Since the amount of non-image data is relatively 
small when compared to the amount of MRI scan 
data, the data generation growth rate for the field 
of neuroimaging depends on the fMRI scanners.  
Since they only have one scanner, and the scanner 
is booked for the entire year, the amount of data 
generated each year at the Martinos Center has 
remained relatively constant.  However if there were 
more scanners, they would be able to increase the 
number of subjects per week and therefore produce 
more data.

Like the scientist described above, the research 

scientist in the Research Laboratory for Electronics 
also uses a combination of behavioral data and fMRI 
images in his effort to study speech.  There are four 
sets of behavioral data that he generates.  The first 
set is the experimental protocol itself.  This includes 
the information that this scientist aims to acquire 
with the behavioral experiment and the methods for 
acquiring that information (i.e. the scripts used for 
the behavioral experiment).  The other three sets 
of data are generated during the experiment itself.  
Subjects are exposed to a stimuli will be asked to 
respond on a keyboard, which generates the first 
set of data.  Video and audio data is also recorded 
throughout the experiment, generating the second and 
third experimental datasets.  During the behavioral 
experiment, the video camera is directed at the lower 
half of the subject’s mouth.  This video serves as 
back-up to the audio data.  After the experiment, 
this video data is immediately saved to DVDs and is 
only watched by the scientists if he hears something 
abnormal in the audio recording.  The most important 
sets of data from the behavioral experiments are 
the typed responses and the audio data.  For a 
given session with a subject, this researcher will 
generate about 50-100 megabytes of audio and typed 
response data.  His research group conducts about 
20-30 sessions per year resulting in a maximum 
of 3 gigabytes of audio and typed response data.  
These files are then processed, which increases the 
size of the datasets to about 1 gigabyte per subject, 
or approximately 30 gigabytes of audio and typed 
response data per year.  As mentioned earlier, 
the video data generated during the behavioral 
experiment is saved straight to DVD and is not 
processed.  Each session generates about 8 gigabytes 
of video data (two DVDs).  Therefore, this scientist’s 
research laboratory generates approximately 240 
gigabytes of video data each year.  Overall, his 
behavioral experiments generate a total of 270 
gigabytes of raw and processed data. 

This scientist then gathers neuroimage data which 
he will combine with the results of the behavioral 
studies.  He will typically obtain both structural 
and functional MRIs.  All of his scans are run at the 
Martinos Imaging Center.  Each subject generates a 
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total of about 1 gigabyte of neuroimage data.  The 
structural images will be about 16 megabytes while 
the fMRI images will be about 984 megabytes.  
There are approximately 20 neuroimaging subjects 
per year (these are different subjects than those in the 
behavioral experiments), resulting in 20 gigabytes 
of raw neuroimage data per year.  The image data is 
then analyzed, which drastically increases the size 
of the dataset.  After analysis, the structural image 
datasets will increase to about 200-240 megabytes 
(including the original 16 megabyte raw data file) 
and the fMRI datasets will double in size to about 2 
gigabytes.  As a result, the total amount of raw and 
processed neuroimage data generated by this scientist 
is approximately 67 gigabytes.  

The rate of data generation will increase as the 
hardware and software on the scanners improve. One 
scientist predicts that in five years the state of the 
art fMRI scanners will have more channels for data 
acquisition, which could increase the size of the files 
produced by each scan session by a factor of 10.  As 
mentioned earlier, the Martinos Center has a third 
sunken bay reserved for next generation technologies.  
If the center were to purchase a new scanner with 
the predicted technology improvements, then in 
2014 the Martinos Imaging Center could produce 
approximately 60 terabytes of data (assuming that the 
scanners are booked all year).  

In addition to a new fMRI scanner, the Martinos 
Center could also purchase a number of different 
technologies that could increase the amount of data 
produced each year.  For example, one scientist’s 
lab will soon have Electroencephalography (EEG) 
technology.  This technology measures the electrical 
signals recorded at the surface of the scalp.  Although 
EEG’s have lower spatial resolution than fMRI, 
they have higher temporal resolution and are widely 
used in the field of neuroimaging.  The McGovern 
Institute has also raised funds towards acquiring 
a Magnetoencephalography, or MEG, machine at 
MIT.  This technology is similar to the EEG but 
based on magnetic rather than electric signals.  The 
MEG has better spatial resolution than the EEG and 
also detects signals that are orthogonal to those of 

the EEG.  The McGovern Institute hopes to add the 
MEG capability in the next 2-3 years. 

Metadata

There are approximately 170 fields of metadata 
associated with each fMRI scan, which are kept in 
header files for each scanner.  Examples of fMRI 
metadata include:

Name of Principal Investigator•	

Scanner manufacturer•	

Information about the actual scan sequence •	
including patient position, nucleus being 
imaged, and repetition time.  This information 
is necessary for comparing images from two 
different scans “apples to apples.”

Subject demographic information•	

Typically, it is the MR physicist, not the 
neuroscientists, who use the metadata associated with 
each image in their research.  This is because most of 
the metadata describes the specifics of the fMRI scan 
sequence, not the subject being scanned.  Therefore, 
it is used to help replicate scans, but not in the data 
analysis. 

In addition to scan sequence information, the 
subject’s demographic information is also 
extremely important metadata for the researchers 
at the Martinos Center.  However, the amount 
of demographic information needed depends on 
the goals of the faculty member’s research.  For 
example, one scientist only needs a small amount 
of information about his subjects: mainly age, 
gender, and “handedness” (i.e. what hand the patient 
writes with, left or right).  Another scientist needs 
her subjects to submit an entire “patient fact sheet” 
describing their medical history, education history, 
drinking and smoking habits, and the geographic 
areas where they have lived.  For her research, the 
MRI scans are useless without this metadata.  

NIfTI is the de-facto standard for neuroimaging data.  
It defines the standard set of header information that 
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should exist for neuroimaging data.  However, it is 
the DICOM files that contain most of the metadata, 
not the NIfTI files.  

Although this metadata is important to the research 
conducted at the Martinos Center, the amount 
generated is small compared to the size of the image 
files.  As mentioned earlier, one of the scientists 
who needs much more metadata than the other, only 
generates a few hundred kilobytes of this data each 
year. 

Data Retention

There is no centralized data storage system for 
the Martinos Imagining Center.  One scientist’s 
lab shares a storage system with three other PIs at 
the Center.  Although the focus of their research 
differs, each of these four scientists recognized the 
importance of data storage and decided to jointly 
acquire the system.  A research specialist is in charge 
of managing this system. 

This specialist’s data storage system involves a server 
that uses a Network Files System (NFS) to allow 
the scientists to share files over the network.  The 
server is physically connected to many different 
RAID arrays.  Although this storage technique is not 
as sophisticated as Network Area Storage (NAS) or 
Storage Area Networks (SAN) solutions, it is less 
expensive and the group has a constrained budget. 
Other scientists at the imaging center employ a 
variety of different storage techniques ranging from 
high performance storage clusters to “Mac mini” 
laptops with no backup.

The shared storage system was implemented in 
January of 2008.  Since then, the four scientists have 
stored about 25 terabytes between their labs. About 3 
terabytes came from existing data that the scientists 
had previously stored on various computers.  
Therefore, 22 terabytes have been generated since 
January 2008, or about 2.2 terabytes/month (about 
½ terabyte/scientist/month). Before the system was 
implemented, each scientist stored their data on their 
own computer.  

The capacity of the current storage system is 44 
terabytes.  The research specialist in charge of it 
predicts that the system will reach capacity by the 
end of the year.  Once this happens, the lab hopes to 
move to a more scaleable storage application.  One 
possible storage application is the NetApp, which 
uses Network Area Storage.  This new system would 
be much faster, and more reliable and fault tolerant 
than the current system.

The shared storage system uses MIT’s central backup 
service for backup, which they selected because it 
is affordable, relatively easy to use, and the lab does 
not have to maintain any of the hardware.  Every 
evening the lab performs an incremental backup of 
all of their data, sending it over the MIT network 
to a secure server located on campus.  The rest of 
the researchers at the Martinos Center use a variety 
of different methods for storing their data.  One 
scientist, for example, keeps all of her MRI data on a 
server in a local hospital.  This server has a 2 terabyte 
capacity, is backed up every day, and is managed by 
an IT department at the hospital.  Additionally, this 
scientist makes copies of all of her DICOM files on 
CDs, which she keeps at MIT (each scan fills about 
two CDs).  All of her non-image data is kept at the 
Martinos Center on a Mac G4.  This computer has a 
500 gigabyte storage capacity and is managed by her 
graduate students.  Like the other system mentioned, 
this scientist uses MIT’s central backup service to 
back up the data she stores at MIT.  However, she 
also keeps hard copies of all of the patient fact sheets 
on campus. 

Despite differing storage techniques, researchers 
at the Martinos Center seem to share similar data 
retention policies: they do not delete any of their 
image data and plan to keep buying as much storage 
as they need.  This is largely due to the high scan 
cost per subject.  As mentioned earlier, the cost per 
subject is about $750-$1,000.  Additionally, although 
an experiment can be reproduced if the data was lost, 
the lab could not use the same subject because they 
could have memorized the visual stimuli.

While he can save some of his image data at the 
Martinos Center, the researcher at the Research 
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Laboratory of Electronics has his own data storage 
hardware and policies.  He has a new 8 TB server 
located in his lab that is used by all of the research 
groups in his building.  This server currently has 
about 2 TB of data stored on it.  For backup he uses 
a combination of local backup on external discs and 
the MIT backup system.  Sometimes, he will also 
burn all of his data on DVDs for a third form of back 
up.  Like the scientists at the Martinos Center, this 
researcher has not deleted any of his old data and will 
buy more storage if he reaches capacity (instead of 
deleting old data).  His oldest is stored on tapes.  

Data Sharing and Reuse

While data sharing across labs, institutions, and 
disciplines is limited in the field of neuroimaging, 
data is commonly reused within labs.  There are two 
major data analysis packages used by neuroscientists: 
Statistical Parametric Mapping (SPM) and Free 
Surfer.  Each package is based on a different 
philosophy on how the brain works, and while they 
result in the same kinds of answers, they get there in 
a different way.  Neuroscientists will often use one 
of these analysis packages to analyze their data, and 
then re-run it through the other package later on to 
compare results.

Data is also reused to perform voxel-based 
morphometry (VBM).  VBM measures change in 
brain anatomy over time and are typically used to 
study dysfunction.  In a clinical setting, VBM is done 
by looking at images of the same brain over time.  
From an epidemiology standpoint scientists take 
100, 10,000, or 1,000,000 brain images and partition 
them according to characteristics (sex, hometown 
of subject, etc.).  They then use all of the images to 
create an “average brain.”  For example, if a scientist 
is interested in learning how emissions from a factory 
affected the brains of people living near by, they 
could take 1,000 brain scans from people living in 
the area and morph them into one average brain 
for people living by the factory for that year.  They 
would then repeat this process over time (but not 
necessarily with the same subjects) to see how the 
average brain from that geographic area changes. 

Currently, there is no widely used system for 
distribution and sharing of brain imaging datasets 
across institutions, or across disciplines.  This 
reduces the chance for future re-analysis in light of 
new findings and imaging and analysis techniques.  
One major reason for this lack of data sharing is 
the sheer size of the datasets.  Another reason is 
that many scientists in this field are protective of 
their data and are not open to sharing with other 
labs.  Traditionally, neuroscientists have taken the 
“single lab” approach to research and have not been 
motivated to provide data to researchers outside of 
their local community. Many of the fundamental 
aspects of brain function, such as the questions of 
how brains can perceive and navigate so robustly, 
how sensation and action interact, or how brain 
function relies on concerted neural activity across 
scales, remain unsolved due to this lack of data 
sharing.

Despite the general disinterest in data sharing in this 
field, some research groups have started to develop 
platforms or networks for sharing neuroimaging data.  
For example, one faculty member of the Martinos 
Center for Biomedical Imaging has been working 
with a team of programmers and scientists from 
across the United States to develop an open source 
software platform designed to facilitate management 
and exploration of neuroimaging and related data 
called the Extensible Neuroimaging Archive Toolkit  
(XNAT). The Biomedical Informatics Research 
Network (BIRN), a “geographically distributed 
virtual community of shared resources,” has also 
developed a database for sharing neuroimaging 
data.  This database is called the “human imaging 
database.”  However, it only has datasets from four 
subjects available. Furthermore, the data from each 
of those subjects is stored and catalogued in different 
ways, making it unusable. 

Key Trends and Indicators for Data Growth

Although the different researchers at the Martinos 
Imaging Center have different research goals, and 
are interested in different metadata, the majority 
of the data generated at this center is produced by 
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their fMRI scanner, and therefore key trends and 
indicators for data growth can be identified.

As long as the Martinos Imaging Center only 1.	
has one fMRI scanner for human subjects, the 
amount of data generated will remain relatively 
constant at 5.4 terabytes per year.  

The rate of data generation will increase as the 2.	
hardware and software on the scanners improve. 
In 5 years, the state of the art fMRI scanners will 
have more channels for data acquisition, which 
could increase the size of the files produced 
by each scan session by a factor of 10. If the 
Martinos Center were to purchase a new scanner 
in five years (and continued to use the scanner 
they already have), then in 2014 the Martinos 
Imaging Center could produce approximately 60 
terabytes of data (assuming that the scanners are 
booked all year).  

Data generation will also increase as 3.	
the Martinos Center purchases different 
neuroimaging technologies.  In the next 
2-3 years, the center plans to have both 
Electroencephalography (EEG) and 
Magnetoencephalography (MEG) capabilities. 

The amount of metadata needed depends on the 4.	
faculty member’s specific research.  However, 
even scientists who need a relatively large 
amount of metadata still only generate a few 
hundred kilobytes each year.

While there are no official data retention 5.	
standards, most researchers at the Martinos 
Center save all of their image data permanently.  
This is because fMRI scans are expensive, time 
consuming, and almost impossible to identically 
reproduce (the same subject could not be used 
again). 

In general, scientists in the field of neuroimaging 6.	
are reluctant to share data with other laboratories.  
However, they typically reuse their own data. 
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The Department of Physics at MIT 

Background

The Massachusetts Institute of Technology’s 
Department of Physics has been a national resource 
since the turn of the 20th century.  This department 
is home to over 120 faculty members who conduct 
research on a wide variety of subject areas ranging 
from cosmology to string theory.  These faculty 
members are divided into four major research 
divisions: Astrophysics; Atomic, Condensed Matter, 
and Plasma Physics; Experimental Nuclear and 
Particle Physics; and Theoretical Nuclear and 
Particle Physics.  The largest of these divisions is 
Atomic, Condensed Matter and Plasma Physics, 
which spans a broad range of activities in physics, 
including atomic physics, optics, condensed matter 
experiment and theory, biophysics experiment and 
theory, and plasma physics. 41 faculty members and 
approximately 50% of the graduate students in the 
department conduct research in this Division.  In 
addition to the laboratories located on campus, MIT 
is affiliated with over 20 other research centers and 
facilities, including the MIT–Harvard Center for 
Ultracold Atoms, the Plasma Science and Fusion 
Center, the Fermi National Accelerator Laboratory 
(Fermilab), the European Organization for Nuclear 
Research (CERN), the Brookhaven National 
Laboratory: High Flux Beam Reactor and the Laser 
Interferometer Gravitational-Wave Observatory 
(LIGO).  These affiliated centers and facilities 
employee staff scientists who work together with 
MIT faculty and graduate students, as well as  other 
universities, on joint research projects.  For this case 
study, three scientists were interviewed  from the 
Department of Physics, Divisions of Astrophysics 
and Experimental Nuclear and Particle Physics. 

Data Generation

While there are approximately 30 theoretical 
physicists at MIT, the majority of the faculty 
members in the Physics Department are 
experimental, and therefore, most of the data 

generated in the department is experimental data.  
Many of these experiments are conducted off campus 
at one of the larger MIT-affiliated laboratories 
and run continuously for months, or even years, 
producing hundreds of megabytes of data per 
second.  For example, one scientist is working with 
the heavy ion group of the Compact Muon Solenoid 
(CMS) detector experiment at CERN, located in 
Switzerland and one of the world’s largest and 
most respected centers for scientific research. This 
scientist’s research group is made up of 20 high 
energy or nuclear physicists who receive and analyze 
data produced at the CMS detector.  In addition to 
this group, more than two thousand other scientists 
collaborate in CMS, coming from 155 institutes in 37 
countries.

A CMS experiment at this facility runs for nine 
months every year, writing data continuously at 
the rate of about 300-400 Megabytes per second 
(approximately 8,165 terabytes per year).  This 
raw data is then processed 2-3 times per year, 
which triples the amount of data produced by the 
experiment.   In addition to this processing, the raw 
data is also combined with simulation data generated 
at computer centers around the world, including 
the lab at MIT.   When the data from each of these 
centers is combined, the total amount of simulation 
data produced is about the same as the original CMS 
experiment (i.e. the simulations generate about 
1-2 terabytes of data per week).  As a result, one 
nine-month CMS experimental run will generate 
approximately 40,824 terabytes of data.  

Another example of physics research being 
conducted at MIT is the work being done by 
scientists at a gravitational-wave observatory 
(LIGO).  The purpose of this observatory is to 
detect cosmic gravitational waves and to develop 
gravitational-wave observations as an astronomical 
tool.  The facility consists of two separate 
installations within the United States, operated in 
unison as a single observatory. This observatory 
is available for use by the world’s scientific 
community, and is a vital member of a developing 
global network of gravitational wave observatories.  
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The MIT scientist is part of an international scientific 
collaboration, a growing group of approximately 
600 researchers at roughly 40 institutions working 
to analyze the data from the observatory and other 
detectors, and working toward more sensitive future 
detectors.

This second scientist’s research group at MIT 
consists of ten researchers working to analyze the 
data produced at the observatory.  Experiments at 
the observatory run continuously for years at a time 
and produce about 1 terabyte of data per day.  Since 
his work began on this project, the observatory 
has generated approximately 1,095 terabytes (1 
petabyte) of data.  This data was produced by five 
years of “half-run” experiments followed by one 
two-year long experiment. Like the data produced 
by the CERN collaboration, the data analysis and 
processing steps increase the total amount of data 
produced by the gravitational-wave experiments.  
However, unlike the data processing and simulation 
steps at the European facility, that more than triple 
the total amount of data generated by the experiment, 
the analysis done at the observatory only increases 
the amount of data by about 10%.  Therefore, 
the gravitational-wave observatory has generated 
approximately 1,204 terabytes of data over the past 
seven years.  

The amount of data produced has been steadily 
increasing over time.  For example, 5 years ago 
MIT was not a computer center for the European 
facility and was not producing any data simulations.  
As a result, the first scientist’s research group was 
producing about 10 times less data.  In the future, 
the group plans to improve the capabilities of 
their computing system, allowing them to produce 
about 1.5 times more data each year.  According to 
this growth plan, in 2014 this group alone will be 
generating about 540 terabytes of simulation data and 
all of the collaboration’s computer centers combined 
will be generating 61,230 terabytes (approximately 
60 petabytes) of simulation data.  

Despite the high growth rate for the simulation data, 
the amount of raw experimental data produced by 
the CMS detector will not increase as quickly.  This 

is because the detector technology will not change 
for at least another ten years.  The scientist predicts 
that the rate of raw experimental data generation will 
remain constant for the next three years and then 
increase steadily by a factor of two each year for the 
next ten years as scientists improve their methods for 
data collection and processing.  At this rate, the CMS 
detector experiment will be produce about 98,000 
terabytes of experimental (raw and processed) data in 
2014. 

The growth rates seen and predicted by this scientist 
and his colleagues seem to be typical for physics labs 
at and/or affiliated with MIT  Even smaller projects, 
like the work done by one scientist at a linear 
accelerator lab, have experienced large increases 
in data generation capabilities over the past five 
years. Similar to the CMS detector, experiments at 
this lab can run continuously for up to three years.  
However, these experiments typically generate much 
less experimental data, averaging about 1 terabyte of 
data per week.  Despite the smaller amount of data 
produced, this professor’s group has experienced 
similar data generation growth rates to the professor 
working with the CMS detector data.  He estimates 
that the experiments conducted at the linear 
accelerator currently generate anywhere from 5-10 
times more data than they were generating five years 
ago.  This professor does not attribute this increase to 
changes in experimental instruments (they typically 
use the same instrument for a number of years), but 
instead to improvements in computing power and 
data storage technologies, which allow researchers to 
run their experiments for longer periods of time and 
to perform more advanced analyses.  If the amount 
of data generated by the other 93 experimental 
physicists at MIT is similar to the amounts produced 
by the scientists interviewed, the Physics department 
as a whole is generating over 1,900,000 terabytes of 
data each year.  

Metadata

Like many other scientific fields, metadata is 
often a crucial component to physics research at 
MIT. However, standards for recording and saving 



   http://giic.ucsd.edu

   HMI? Case Studies: The Department of Physics at MIT 	 33

metadata are either non-existent or only defined 
within the specific research group.  For example, 
researchers at the gravitational-wave observatory use 
an electronic logbook to record their metadata.  This 
metadata includes experimental conditions (like start 
time, end time, data collection channels) as well as 
records of external noise that could affect the output 
of the gravitational wave detector.  For example, 
when a plane flies overhead while an experiment is 
running, the lab technician will note the date, time, 
and a description of this event in the electronic 
logbook.  The details regarding the event can be 
subjective and often vary based on which technician 
is recording the information at the time. 

Metadata is also important for scientists with CMS 
detector data.  However, the amount of metadata 
produced is extremely small when compared to 
the amount of raw and processed experimental 
or simulation data (about 10-30 kilobytes per 
experiment or simulation).  Examples of metadata 
for a CMS simulation run by this scientist include 
the configuration of the experiment, the beam energy 
used and the physics processes selected to simulate.  
The metadata is uploaded to the central CERN 
database in Europe, where it is linked up with raw 
experimental data.  

Data Retention

Due to the large amounts of data generated by 
long-running physics experiments, data storage and 
retention becomes a challenge for both individual 
researchers and larger laboratory facilities.  Usually, 
only a small amount of actual experimental data is 
kept at MIT.  Instead, research groups use a tiered 
approach, where different amounts of raw data 
are stored at multiple facilities depending on their 
capacity and research goals.  

The distributed data storage used by the European 
collaboration is a good example of the methods 
used by many MIT physicists and their affiliated 
laboratories for data analysis, storage, retention, 
and sharing.  The entire CMS research group at 
this collaboration is broken into three tiers.  One 

facility is considered “tier 0” where all of the raw 
experimental data is stored forever.  No processed 
data is stored at tier 0.  The raw data is then copied, 
divided and distributed to the “tier 1” sites to be 
processed.  The tier 1 sites must permanently store 
both the portion of the raw data that they receive 
from tier 0, as well as the processed data that they 
produce.  The tier 1 sites are located all around the 
world.  Next, the processed data is copied, divided, 
and distributed to all of the “tier 2” sites.  The MIT 
lab is considered a tier 2 site.  The tier 2 sites will 
only receive data from one tier 1 site unless they 
contact a different site and request their data. 

Since it is at the bottom of the tier structure, there is 
no permanent storage at MIT.  Instead, the university 
provides space for users to analyze the portions of the 
CMS experimental data that they receive from their 
tier 1 site.  There are approximately 500 users from 
MIT and many other local institutions that have space 
here at MIT.  Each user is provided with 1 terabyte 
of storage.  Their data is replicated in a RAID array 
but not backed up. Users will usually request about 
100 terabytes of data from the tier 1 site at a time and 
then filter down to about 1 terabyte before beginning 
analysis.  

The scientist working the gravitational-wave 
observatory’s lab is also considered a “tier 2” site in 
the observatory’s data storage and analysis structure, 
however more data is stored locally at MIT then was 
true of the CMS data.  This scientist has 10 RAID 
arrays with about 2-3 terabytes of storage each (i.e. 
a total storage capacity of about 300 terabytes).  
Additionally, members in the lab have local drives 
with about 200-300 gigabytes of short-term storage to 
use during their data analysis.  Since it is considered 
a tier 2 site, none of the raw data used by the lab is 
backed up.  However, the RAID arrays do provide 
redundancy.  The main raw data backup is located on 
the West Coast at a “tier 1” site.  The gravitational-
wave observatory’s community is involved in all 
data retention decisions.  The collaboration has 
established committees that oversee how data 
analysis is done at each site, and decides what data 
to delete if more storage is needed.  Additionally, the 
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data derived by this scientist and his colleagues at 
MIT (i.e. the output of the analysis conducted at his 
lab) is archived on tapes.  

Data Sharing and Reuse

As the examples in the previous section shows, data 
sharing among physicists is very common, and often 
essential. However the extent of data sharing differs 
depending on the research group.  For example, two 
of the scientists only share data within their research 
centers and rarely share raw data with scientists 
outside their collaboration. Another scientist’s group 
has signed an agreement with a sister project in 
Europe and frequently shares raw experimental data 
with them.

Regardless of data sharing practices, most physicists 
agree that their data can be re-used and re-analyzed 
often.  For example, one scientist explained that he 
could re-use the same raw data hundreds of times and 
often re-integrates old data into new analyses.  Since 
the raw data can be used for such a long period of 
time, the tiered data storing structure is extremely 
useful, allowing researchers in smaller labs to have 
access to the raw data without having to permanently 
store it.

Key Trends and Indicators for Data Growth

While each physicist at MIT has distinct research 
goals and methods for dealing with data, we have 
identified several trends and indicators for data 
growth.

The majority of the faculty members in MIT’s 7.	
Physics Department are experimental physicists.  
These physicists are often affiliated with large 
international or inter-institutional research 
centers and perform their experiments off 
campus.

Based on interviews with faculty members in this 8.	
department, MIT-affiliated research laboratories 
and centers are currently generating data at a rate 
of 1,900,000 terabytes of data each year.

While improvements in experimental instruments 9.	
can cause a jump in data production every 5-10 
years, these instruments take years to develop 
and are not replaced often.  Instead, the steady 
increase in data generation over time can be 
attributed to faster computing power and cheaper 
data storage hardware, which allow researchers 
to run their instruments for longer periods of time 
and to perform better data analysis.

The rate of data generation has been steadily 10.	
increasing over time.  Experimental physicists 
at MIT are currently producing about 5-10 times 
more data than they were five years ago.

Based on historical data and predicted 11.	
improvements in computing power and storage, 
the rate of data generation for MIT physicists in 
2014 will be approximately 11,400,000 terabytes 
per year. 

While metadata is a critical to understanding the 12.	
experimental conditions, the amount of metadata 
produced and stored is insignificant when 
compared to the amount of raw experimental data 
generated.

Many of the MIT-affiliated labs and centers use 13.	
tiered data storage and sharing structure where all 
of the raw data is stored permanently at the “tier 
0” site, and then divided among other tiers for 
redundancy and analysis.

Data sharing among physicists working at the 14.	
same laboratory is common; however sharing 
among scientists at different labs is rare.

MIT physicists commonly re-use raw data from 
the same experiment multiple times and often re-
integrated into new analyses as they are developed.
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About the HMI? Program

The How Much Information? (HMI?) research program is a multi-discipline, multi-university project, formed 
to investigate the nature of data and information generated and used by individuals and  enterprises.  The 
program is sponsored by seven companies, including AT&T, Cisco, IBM, Intel, LSI, Oracle, and Seagate, 
and involves multiple research universities.  The Principal Investigator is Prof. Roger Bohn and the Research 
Director is Dr. James Short, at UC San Diego’s Global Information Industry Center (http://giic.ucsd.edu). 
Founded in 1960, the University of California, San Diego is one of the nation’s most accomplished research 
universities, widely acknowledged for its local impact, national influence and global reach.
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