

Improving Data Quality for Web Services Composition

Xitong Li
Stuart Madnick
Hongwei Zhu
Yushun Fan

Working Paper CISL# 2009-14

September 2009

Composite Information Systems Laboratory (CISL)
Sloan School of Management, Room E53-320

Massachusetts Institute of Technology
Cambridge, MA 02142

Improving Data Quality for Web Services Composition
Xitong Li1,2,† Stuart Madnick2 Hongwei Zhu3 Yushun Fan1

1Tsinghua University, Beijing 100084, China
lxt04@mails.tsinghua.edu.cn, fanyus@tsinghua.edu.cn
2MIT Sloan School of Management, Cambridge, MA 02142, USA

smadnick@mit.edu
3Old Dominion University, Norfolk, VA 23529, USA

hzhu@odu.edu

ABSTRACT
Independently developed Web services often have different
assumptions about the interpretation of the exchanged data, such
as inconsistent data representation, unit, precision, and scaling. In
practice, data misinterpretation results in many data quality
problems and further hampers the execution of service
composition. In this paper, we present a context-based mediation
approach to handle inconsistent data interpretations and improve
data quality for Web services composition. The assumptions
about data interpretation of the involved services are made
explicit and represented as contexts. A common ontology is
defined to describe the contexts. Necessary conversions between
elements of the contexts are implemented using XPath functions
and external (e.g., third-party) services to reconcile inconsistent
contexts. The WSDL descriptions of Web services are annotated
with appropriate contexts using the W3C standard SAWSDL.
Given a naïve composition ignoring contexts, the reasoning
engine can automatically detect context conflicts within the naïve
composition and reconcile these conflicts by producing a
mediated composition that incorporates appropriate conversions.
A proof-of-concept prototype, Context Mediation Tool (CMT),
has been developed to validate and demonstrate the approach.

1. INTRODUCTION
Web services have become a promising technology to develop
and integrate distributed, Web-based applications [1]. Service
composition addresses the situation in which a business need
cannot be accomplished by a single component service, whereas a
composite service consisting of a combination of multiple
independent services working together could satisfy the need.
While interfaces of single services are described by the Web
Service Description Language (WSDL) [2], process logics of
service compositions are usually specified in the Web Service
Business Process Execution Language (WS-BPEL) [3]. In
practice, the successful execution of service compositions can be

hampered by many data quality problems which result from the
misinterpretation of heterogeneous data semantics among
disparate Web services, such as inconsistent data representation,
unit, precision and scaling.

Since basic protocol standards of Web services (e.g., WSDL, WS-
BPEL) widely ignore data semantics, existing initiatives, e.g.,
OWL-S [4], WSMF/WSMO [5, 6] and METEOR-S [7, 8], have
developed languages and frameworks to explicitly add semantics
into Web services descriptions. Despite these existing efforts, data
quality problems in Web services composition are still open and
need to be addressed. Certain data quality problems are somewhat
subtle, because when they are not reconciled, service composition
can still execute but the results may be wrong or susceptible to
misinterpretation. For example, a gallon in the U.S. (so-called
U.S. gallon) is approximately 3785 ml while the “same” gallon in
the U.K. (so-called Imperial gallon) is 4546 ml, almost a liter
more. So when we learn that a particular car model has a fuel tank
capacity of 15 gallons by querying a Web service (say from the
U.K.), and learn about the gas mileage of 30 miles per gallon for
the model by querying another Web service (say from the U.S.),
we still need to know how to interpret the exchanged data (i.e., 15
gallons) between the two services to compute the distance the car
can go with a full tank of gas. For a given data element (e.g.,
volume and price) we often need additional information (e.g., U.S.
gallon as unit of measure for volume and USD as currency of
price) to interpret the meaning of the data element. Such
additional information is often implicitly assumed by Web
services. Independently developed Web services often have
different assumptions about data interpretation. The complexity of
addressing data misinterpretation and improving data quality
grows when composing multiple services developed by
independent providers that are distributed throughout the world.

In this paper, we present an approach to automatic determination
and reconciliation of heterogeneous data interpretations in Web
services composition with the purpose of improving data quality.
Our approach is inspired by the Context Interchange (COIN)
strategy for semantic interoperability among multiple data sources
[9, 10] and the preliminary work of applying the strategy to
service composition [11]. The approach requires composition
developers to define a common ontology using an ontology
expression language (e.g., RDFS, OWL-Lite) so that the
exchanged data in a service composition can be understood at a
generic conceptual level. The common ontology captures only the
generic concepts among the services involved in the composition.
Their various specifications, which are actually used by different

 † The work is done while the author studies as a visiting Ph.D. student at
MIT Sloan School of Management.

Permission to make digital or hard copies of all or part of this work for
personal, academic, or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage and
that copies bear this notice and the full citation on the first page.
International Workshop on Quality in Databases (QDB), August 24, 2009,
Lyon, France.
Copyright 2009 Universiät Tübingen and University of Rennes 1.

services, are represented using their context descriptions.
Conversions between different contexts need to be provided so
that these differences, once detected, can be reconciled. Then, the
WSDL descriptions of the involved services need to be annotated
to establish the correspondence between the data elements in the
WSDL descriptions and the concepts in the common ontology.
We use the W3C standard, the Semantic Annotation for WSDL
and XML Schema (SAWSDL) [12] for the annotation. Further,
the service composition is specified in the BPEL specification.
This BPEL composition need not concern with context
differences and is called the naïve BPEL. With the above
descriptions in place, the approach presented in this paper first
translates the annotated WSDL and the naïve BPEL to a formal
description language, LOTOS NT [13]. LOTOS NT and its
supporting tool CADP [14] provide the capability of formally
analyzing both the static and dynamic aspects of service
compositions. Based on LOTOS NT, the approach can
automatically detect which and where context conflicts occur for
the exchanged data in the composition, and then reconcile the
detected conflicts by incorporating necessary conversions into a
mediated composition. Finally, the mediated composition, now
without any context conflicts, is translated back as the deployable
code in BPEL, called the mediated BPEL.

The rest of the paper is organized as follows. Section 2 presents a
motivating example that will be used to demonstrate our approach
throughout the paper. Section 3 describes the mechanism for
composition developers to define the common ontology and
represent contexts. Conversions for reconciling these differences
are also described. Section 4 introduces the method to annotate
WSDL descriptions with semantics using SAWSDL. Section 5
presents the approach to automatically reconciling context
conflicts in Web services composition. Section 6 introduces our
mediation tool as a proof-of-concept of the approach. Section 7
reviews the related work. Finally, Section 8 concludes the paper
and highlights the future work.

2. MOTIVATING EXAMPLE
Let us consider a scenario that an U.K. developer wants to
develop a Web service, QuoteOpeningPriceWS (denoted as CS
for short), to obtain the opening price of an U.S. company’s stock
on its first trading day. CS is intended for U.K. analysts to
monitor the U.S. stock market. The developer decides to
implement the service by composing existing services. After
searching a public service registry1, the developer discovers two
existing Web services that could be combined as components to
develop CS, i.e., StockIPOWS and HistoricalStockQuoteWS,
denoted as S1 and S2 respectively for short. S1 provides the
functionality for querying the IPO2 information of a company
traded in the U.S. The operation getDateofIPO of S1 returns the
IPO date when it is queried by using the company’s ticker
symbol. S2 provides historical stock quotes for companies traded
in the U.S. The operation getDailyOpenPrice of S2 returns the
daily open price3 of a company’s stock on a given date.

1 Web Service Search Engine @ seekda.com - http://seekda.com/.
2 Initial Public Offering (IPO) is when a company issues common stock to

the public for the first time.
3 In this paper the “opening price” specifically refers to the open price of a

company's stock on its first trading day, which can be valuable
information for investors analyzing the performance of the stock.

The signatures of the involved services are summarized in Table
1. For simplicity, we do not show the verbose WSDL and BPEL
code, and assume the low-level messages of these services have
compatible data types (e.g., string, double). As shown in Figure 1,
it appears that CS can be composed by feeding the output of the
operation getDateofIPO of S1 as the input to the operation
getDailyOpenPrice of S2.

Table 1. Signatures of involved Web services

Service Operation Input Output
CS getOpeningPrice tickerSymbol openingPrice

S1 getDateofIPO tickerSymbol dateofIPO,
tickerSymbol

S2 getDailyOpenPrice dateofQuote,
tickerSymbol dailyOpenPrice

S1: StockIPOWS
Operation: getDateofIPO

S2: HistoricalStockQuoteWS
Operation: getDailyOpenPrice

Input:
tickerSymbol

Output:
dateofIPO,
tickerSymbol

Input:
dateofQuote,
tickerSymbol

Output:
dailyOpenPrice

dateofIPO
tickerSymbol

CS: QuoteOpeningPriceWS
Operation: getOpeningPrice

Input:
tickerSymbol

Output:
openingPrice

“dd-mm-yyyy”

“mm/dd/yyyy”
price in USDprice in GBP

<receive>

<reply>

<invoke>

<invoke>

<assign>

Figure 1. Composition scenario of the motivating example

with data misinterpretation problems.

However, even if the inputs and outputs of these services are
semantically compatible at a generic level, the simply composed
CS (called the naïve composition) cannot correctly execute
without considering the different assumptions of data
interpretation: CS and S1 use the date format “dd-mm-yyyy” and
quote stock prices in the currency of British pounds (i.e., “GBP”),
while S2 uses the date format “mm/dd/yyyy” and quotes stock
prices in the currency of U.S. dollars (i.e., “USD”).
Unfortunately, in practice such assumptions are usually not
explicitly represented in service descriptions and severely
undermine data quality of Web services composition.

3. REPRESENTATION OF ONTOLOGY
AND CONTEXT
3.1 Context-enriched Ontology Model
Ontology has been widely used as a formal representation of
concepts and the relationships between these concepts. Our
approach allows composition developers to define a common
ontology to capture a set of generic concepts among the involved
services and provides a mechanism to accommodate multiple
specializations for interpreting the generic concepts.

Figure 2 shows the graphical representation of the ontology model
for the motivating example. Concepts are depicted by round
rectangles and basic is the special concept from which all other
concepts inherit. The common ontology has three kinds of

relationships: inheritance, attribute and modifier. Inheritance and
attributes are two classic relationships originated from object-
oriented modeling. For instance, concept stockPrice inherits from
concept moneyValue, since stockPrice represents the money value
of a company’s stock. Attributes are the structural relationships
between two concepts and depicted by solid arrows in Figure 2.
For example, attribute quotedOn indicates that each object of
stockPrice is quoted on a certain date.

basic

date dateFormatType

company stockSymbol

moneyValue currencyTypestockPrice

labeledBy

openQuote

currency

quotedOn

format

inheritance

attribute

modifier

Figure 2. Common ontology.

In practice, it is usually straightforward for composition
developers to find and define generic concepts among multiple
independent services. For example, S1 has a data type of
dateofIPO and S2 has data type of dateofQuote (see Table 1).
Both data types correspond to the same concept date of the
ontology. However, data instances of dateofIPO should be
interpreted by date format “dd-mm-yyyy”, while that of
dateofQuote should be interpreted by “mm/dd/yyyy”. Also,
different currencies should be considered when interpreting data
instances of the data types of openingPrice and dailyOpenPrice.
That means data instances of a concept have to be interpreted
according to certain assumptions of the corresponding services.
To accommodate different data interpretations of a generic
concept, a construct modifier is introduced to modify (i.e.,
interpret) the generic concept, so that the concept can have
multiple specializations when it is associated with different
services. In other words, modifiers are a special kind of attributes
used to capture the additional information (which we call context)
that affects data interpretation. Each modifier indicates a
dimension of the specializations of a generic concept4. Also, a
modifier can be inherited by a sub-concept from its super concept.
Modifiers are depicted by dashed arrows in Figure 2. For
example, concept date has a modifier format which indicates a
dimension of the specific interpretations of its data instances.
Data instances of concept date should be interpreted according to
the values of dataFormatType which may take different values,
e.g., “dd-mm-yyyy” and “mm/dd/yyyy”. Similarly, the data
instances of concept moneyValue may be interpreted in different
currencies, as moneyValue has a modifier currency pointing to
concept currencyType that may take different values, e.g., “GBP”
and “USD”. And concept stockPrice inherits the modifier currency
from its super-concept moneyValue, so data instances of concept

4 There might be multiple dimensions involved – e.g., prices might differ

in both currency and scale factor.

stockPrice may also be interpreted in “GBP” or “USD”. In our
approach, such different values associated with modifiers for data
interpretation are grouped into multiple collections to define
different contexts. The context refers to a collection of
specializations of all modifiers in the common ontology. In our
example, the U.K. context specifies date format to be “dd-mm-
yyyy” and currency to be “GBP”, while the U.S. context specifies
the two modifiers to have values of “mm/dd/yyyy” and “USD”,
respectively. Thus, CS and S1 are in the U.K. context, while S2 is
in the U.S. context.

3.2 Conversions for Context Differences
Context differences, once detected, need to be reconciled using
conversions so as to convert the exchanged data from the source
value vs to the target value vt. A conversion is defined for each
modifier between two different modifier values. The general form
of conversions is given below:

cvt(C, m, ctxt_s, ctxt_t, mvs, mvt, vs, vt)

Herein, C is the generic concept having a modifier m, mvs and
mvt are two different values of m in the source context ctxt_s and
target context ctxt_t, respectively. vs, vt are the actual data values
of C interpreted in ctxt_s and ctxt_t, respectively. According to
the two modifiers of the common ontology, we need to define two
conversions: cvtformat, and cvtcurrency. For Web services
composition, there are two methods to implement the
conversions: XPath functions, and external Web services.

For certain simple cases, conversions can be specified using
XPath functions. We adopt XPath functions, because the BPEL
specification [3] and most BPEL engines (e.g., ActiveBPEL5)
support XPath 1.0. For example, the conversion cvtformat for
converting date formats from “dd-mm-yyyy” to “mm/dd/yyyy”
can be implemented using the following XPath function and
encapsulated as a custom function cvtFormatUKtoUS for further
reuse, i.e., Vt = cvtFormatUKtoUS (Vs), as shown in Figure 3.

Figure 3. Conversion cvtformat for converting date formats
from “dd-mm-yyyy” to “mm/dd/yyyy”.

Figure 4. WSDL template for the external Web service.

In case XPath functions cannot address certain complex
conversions, conversions have to be performed by external Web
services. For example, it is needed to invoke an external currency
exchange service (e.g., DOTSCurrencyExchange6) as the conversion
cvtcurrency. The external service translates the money value vs in

5 http://www.activevos.com/community-open-source.php
6 See http://ws2.serviceobjects.net/ce/CurrencyExchange.asmx?WSDL

Vt = concat(substring-before(substring-after(Vs,“-"),“-"),
 “/", substring-before(Vs,“-"),
 “/", substring-after(substring-after(Vs,“-"),“-"))

 <wsdl:operation name="cvtOP">
 <wsdl:input message="msgType_s" name="msgName_s"/>
 <wsdl:output message="msgType_t" name="msgName_t"/>
 </wsdl:operation>

USD to the money value vt in GBP. Figure 4 gives the WSDL
template that developers can use to discover an appropriate
service for the conversion. Note that the WSDL template is
specified in WSDL 1.1, so developers who use WSDL 2.0 may
produce a slightly different WSDL template.

4. SEMANTIC ANNOTATION
WSDL describes Web services at a syntactic level. To achieve the
vision of SWSs, semantic annotation in a WSDL file is widely
used to establish correspondence between the data elements in the
WSDL and the concepts in a semantic model [7, 8]. Annotations
can be done using the W3C standard, Semantic Annotation for
WSDL and XML Schema (SAWSDL) [12]. SAWSDL itself
doesn’t provide any explicit semantics or enforce any language
for expressing semantics, but it enables developers to annotate the
syntactic WSDL descriptions with pointers to semantic concepts
(identified via URIs) [15, 16]. In our work, we adopt SAWSDL to
annotate WSDL descriptions.

SAWSDL provides an extension attribute modelReference for
specifying the correspondence between WSDL components (e.g.,
data/element types, input and output messages) and semantic
concepts in the ontology. We propose to use modelReference in
two ways for context annotation: (1) Global context annotation:
we allow the <wsdl:definitions>7 element of the WSDL
specification to have the attribute modelReference and use it to
indicate that all data elements in the WSDL file subscribe to the
context identified by the URI value; (2) Local context annotation:
for any data element, in addition to the URI value indicating the
corresponding ontological concept, we allow the attribute
modelReference to have an additional URI value to indicate the
context of the data element. Note that multiple values are allowed
by the SAWSDL standard which states that “the value of the
modelReference attribute is a set of zero or more URIs, separated
by whitespaces, that identify concepts in a semantic model” [12].
Thus, both global and local context annotations comply with the
SAWSDL standard.

Global context annotation allows the developer to succinctly
declare the context for all elements in a WSDL file, while the
local context annotation provides a mechanism for certain
elements to have their contexts different from the globally
declared context. This “overriding” capability can be useful in
case a small number of elements in a WSDL have contexts
different from the context of the other elements.

<wsdl:definitions targetNamespace="http://stockQuote.coin.mit"
 xmlns:stkOntology="http://stockQuote.coin.mit/ontologies/stockOntology#"
 xmlns:sawsdl="http://www.w3.org/ns/sawsdl" …
 sawsdl:modelReference="stkOntology#ctxtUK">
<wsdl:types>
<schema elementFormDefault="qualified"
 targetNamespace="http://stockQuote.coin.mit"
 xmlns="http://www.w3.org/2001/XMLSchema">
 <element name="getDateofIPO">
 <complexType>
 <sequence>
 <element name="tickerSymbol" type="xsd:string"
 sawsdl:modelReference="stkOntology#stockSymbol"/>
 </sequence>
 </complexType>

7 <wsdl:definitions> is a WSDL element of WSDL 1.1. For WSDL 2.0,

the corresponding element is <wsdl:definition>.

 </element>
 <element name="getDateofIPOResponse">
 <complexType>
 <sequence>
 <element name="getDateofIPOReturn" type="impl:IPOBean"/>
 </sequence>
 </complexType>
 </element>
 <complexType name="IPOBean">
 <sequence>
 <element name="dateofIPO" nillable="true" type="xsd:string"
 sawsdl:modelReference="stkOntology#date stkOntology#ctxtUK"/>
 <element name="tickerSymbol" nillable="true" type="xsd:string"
 sawsdl:modelReference="stkOntology#stockSymbol"/>
 </sequence>
 </complexType>
</schema>
</wsdl:type>
<wsdl:message name="getDateofIPORequest">
 <wsdl:part element="impl:getDateofIPO" name="parameters"/>
</wsdl:message>
<wsdl:message name="getDateofIPOResponse">
 <wsdl:part element="impl:getDateofIPOResponse" name="parameters"/>
</wsdl:message>
<wsdl:portType name="StockIPO">
 <wsdl:operation name="getDateofIPO">

<wsdl:input message="impl:getDateofIPORequest"
 name="getDateofIPORequest"/>
<wsdl:output message="impl:getDateofIPOResponse"
 name="getDateofIPOResponse"/>

 </wsdl:operation>
</wsdl:portType>
</wsdl:definitions>

List 1. Annotated WSDL description of S1 using global and
local context annotations.

List 1 presents the annotated WSDL description of S1 (i.e.,
StockIPOWS) in which the annotations are highlighted in bold.
Each leaf data type element of S1 uses modelReference to point to
its corresponding concept. For example, the elements of
tickerSymbol and dateofIPO point to concepts stockSymbol and
date in the ontology (see Figure 2), respectively. As discussed in
Section 3.1, S1 uses the U.K. context: date format “dd-mm-yyyy”
and currency “GBP”. The modelReference attribute of element
<wsdl:definitions> has the value “stkOntology#ctxtUK”, which is
the URI of the U.K. context defined in the common ontology.
This annotation indicates that all messages/data of S1 should be
interpreted in the U.K. context. Also, each leaf data type element
in List 1 is annotated using modelReference. Each
modelReference attribute of the leaf data type element has one
value or two values separated by a whitespace. When there is only
one value, it is the URI of the concept to which the data element
corresponds. When there are two values, the former value is the
URI of the concept and the latter value is the URI of the context
in which the element is interpreted. For illustration purposes, both
global and local context annotations are used in List 1. In fact, the
local annotation in List 1 is unnecessary because it does not
override the global context for different contexts.

5. COMPOSITION REPRESENTATION
AND MEDIATION
Context conflicts, which can be a source of data quality problems,
can occur when a message (i.e., data) as output of the upstream

service with one context is transferred and consumed as input of
the downstream service with another context, even if the schema
declaration of the message defined in both services are the same.
In the following sections, we assume that service compositions
are defined in BPEL and the descriptions of component and
composite services are specified in WSDL 1.1.

In this section, we first briefly introduce a formal description
language, LOTOS NT [13], which is compatible with the main
concepts of BPEL specification and provides the capability of
formally analyzing both static and dynamic aspects of Web
services composition. Then, we describe the correspondence and
translation between WSDL/BPEL and LOTOS NT. After that, we
introduce the procedures that automatically detect context
conflicts in the composition and incorporate necessary
conversions into the mediated composition to reconcile the
detected conflicts.

5.1 LOTOS NT in a Nutshell
LOTOS, as a kind of Process Algebras (PAs), can describe and
analyze both static and dynamic aspects of distributed software
systems. It consists of two sub-languages: the static part is
dedicated to the description of data structures, which is based on
algebraic specification language ACT ONE [17] for abstract data
types; the dynamic part is based on the process algebra approach
for concurrency, like CCS [18] and CSP [19]. Recently, LOTOS
has attracted considerable attention for describing, composing and
reasoning with Web services at an abstract level [20-23]. LOTOS
NT removes a few undesirable characteristics of LOTOS and
follows the main concepts of E-LOTOS8 (for Extended-LOTOS)
which has become an ISO specification language and is supported
by the TRAIAN compiler [13].

We chose LOTOS NT as the abstract formalism of our approach
because: (1) LOTOS NT provides rich expressiveness for defining
complex data structures and data handling so that we can describe
and analyze the messages (e.g., data types) defined in
WSDL/BPEL, which usually have more than one part/element.
Other PAs roughly describe the messages as tokens, so different
parts/elements of the message cannot be distinguished [20]; (2)
LOTOS NT is a strongly typed and fully imperative language
which is necessary for description safety and analysis of data
types. For example, complex types can be defined using type
constructors with existing types, and variables, once initialized,
can store the data and be accessed by read and write operations;
(3) LOTOS NT allows the modular description of systems and
description reusability which is compatible with WSDL/BPEL
specifications.

5.2 Translating WSDL/BPEL to LOTOS NT
We identify the correspondence between WSDL/BPEL and
LOTOS NT. Specifically, the static aspect of service composition
(e.g., data types, variables, etc.) is mapped to type declarations of
LOTOS NT, and the dynamic aspect (i.e., process descriptions) is
mapped to process declarations of LOTOS NT.

5.2.1 Translation of Static Aspect
WSDL descriptions of the composite and component Web
services (e.g., data types, messages and operations) as well as

8 http://www.inrialpes.fr/vasy/pub/elotos/

descriptions of variables and partner links in BPEL are considered
as the static aspect of a service composition, which is translated to
type declarations of LOTOS NT. Type declarations are used to
define new types, regardless whether they consist of several
subtypes. The type declarations in LOTOS NT follow the general
approach of constructed types in functional languages, which use
the special operation constructor [13].

Take the WSDL description of data types as an example. The
annotated WSDL description of S1 (see List 1), defines a complex
type IPOBean. The definition of IPOBean is translated to the type
declaration of LOTOS NT, as shown in List 2. To preserve the
WSDL complex type “IPOBean”, we define a LOTOS NT type
with the name “IPOBeanComplexType”. The suffix
“ComplexType” added at the end is used to keep track of the fact
that this type is originally a complex type in WSDL. A
constructor, also named as “IPOBeanComplexType”, is declared
with two parameters, tickerSymbol and dateofIPO. This
constructor is used to initialize type IPOBeanComplexType. In
List 2, “string”is a predefined type of LOTOS NT which indicates
that data types of tickerSymbol and dateofIPO are originally
“xsd:string” in the WSDL description. The annotations using
SAWSDL are captured as comments in LOTOS NT, i.e., the text
from “(*” to “*)”. Using these comments, the reasoning engine is
able to know the corresponding concept and context of a data type
and check possible context conflicts, as presented later.

(* @ tickerSymbol:mdlRef="stkOntology#stockSymbol"
 * @ dateofIPO:mdlRef="stkOntology#date stkOntology#ctxtUK"
 *)
type IPOBeanComplexType is
 IPOBeanComplexType (tickerSymbol:string, dateofIPO:string)
end type

List 2. Snippet of type declaration in LOTOS NT.

Other static components of WSDL/BPEL (e.g., simple/complex
types, messages, port types, operations and partner link types in
WSDL, and partner links and variables in BPEL) can also be
translated to type declarations of LOTOS NT in a similar way.

5.2.2 Translation of Dynamic Aspect
LOTOS NT provides a means for describing concurrent (parallel)
evolution of software systems and their communication actions.
The actions must be communicated by the rendezvous on
communication points called gates. LOTOS NT allows us to
name an action using a process definition [13]. The process
description (i.e., workflow logic) and activities in BPEL can be
compatibly translated to the action/process declaration of LOTOS
NT. For example, several interaction activities in BPEL (e.g.,
<receive>, <reply>, <invoke>, and <onMessage> of <pick>) can
be translated to the communication action in LOTOS NT.

We identify several mappings between the constructs of BPEL
process and actions/processes of LOTOS NT, as presented in
Table 2. Consider the first two mappings where v is a variable and
c is a gate through which the variable v is exchanged. With the
identifier of a gate, the attributes of partner link, port type and
operation in the BPEL specification can be derived. Action “c?v”
and “c!v” denote a message (i.e., data represented by a variable) v
is received and emitted over the gate c, respectively. The LOTOS
NT operator “;” denotes the sequential order of two

activities/actions in the workflow logic. In the BPEL
specification, variables, which can be shared by activities within a
scope or the whole process, are defined to store the exchanged
data. The activity <assign> and its element <copy> are used to
explicitly specify data transfers. In LOTOS NT, explicit data
transfers are represented using the assignment operator “:=”. A
comprehensive set of mappings between BPEL and LOTOS can
be found in [20, 24]. According to the mappings given in Table 2,
the naïve BPEL composition of the motivating example,
illustrated in Figure 1, can be translated to a LOTOS NT process,
known as naïve LOTOS NT process. The naïve LOTOS NT
process is given in List 3.

Table 2. Mappings between BPEL and LOTOS NT

BPEL LOTOS NT
<receive variable=”v” …/> (c?v)

<reply variable=”v” …/> (c!v)

<invoke inputVariable=”v1”
 outputVariable=”v2”…/>

(c!v1 ; c?v2)

<assign …>
 <copy>
 <from variable=”v1”>
 <to variable=”v2”/>
 </copy>
 <copy>
 <from variable=”v3”>
 <to variable=”v4”/>
 </copy>
</assign>

(v2 := v1;
v4 := v3)

<sequence …>
 <…activity1…/>
 <…activity2…/>
</sequence>

(action1 ; action2)

<flow …>
 <…activity1…/>
 <…activity2…/>
</flow>

(action1 [] action2)

<pick …>
 <onMessage variable=”v1”…>
 <…activity1…>
 </onMessage>
 <onMessage variable=”v2”…>
 <…activity2…>
 </onMessage>
</pick>

(c1?v1 ; action1
[]

c2?v2 ; action2)

5.3 Detecting Context Conflicts
Context conflicts occur within data transfers where a message in a
process is provided by one action (source action) and then
consumed (i.e., received) by another action (target action).
Specifically, context conflicts occur in case data interpretations of
source and target actions of a data transfer are different. Thus,
each data transfer in a process needs to be checked in order to
detect all possible context conflicts.

A process may contain two types of data transfers: explicit and
implicit. Explicit data transfers are easily identified, as they are
indicated using the assignment operator “:=” in LOTOS NT. For
example, the data transfers of tickerSymbol and dateofIPO

between the invocations of S1 and S2 are explicit, because the
LOTOS NT process, as shown in List 3, contains an assignment
statement. Implicit data transfers occur when the data is
transferred through a shared variable but its reception and
emission gates are different. Thus, implicit data transfers can be
identified through checking the shared variables. As shown in
List 3, variable getDateofIPO, in which tickerSymbol is defined as
its element, is initialized after the data is received as input of CS
over gate QuoteOpeningPricePL. Then, getDateofIPO is directly
used as the input variable to invoke S1, so the data of
getDateofIPO is consumed by S1. In this case, the data transfer
of tickerSymbol carried in getDateofIPO from the input of CS to
the input of S1 is implicit. Similarly, the data transfer of
openingPrice from the output of S2 to the output of CS, through
variable getDailyOpenPriceResponse, is also implicit. In other
cases implicit data transfers may also occur between two
invocations of component services.

Once a data transfer is identified, its reception and emission gates
are checked to identify corresponding source and target partners
(i.e., services) using the information of partner link, port type and
operation derived from the gates. Then, we compare the contexts
of the source and target services to check whether the contexts are
consistent. Take the explicit data transfer of dateofIPO as an
example. Its source variable is getDateofIPOResponse, whose
data type is defined in the LOTOS NT module StockIPO
corresponding to the WSDL description of S1. Its target variable
is getDailyOpenPrice, whose data type is defined in the LOTOS
module HistoricalStockQuote corresponding to the WSDL
description of S2. Accordingly, its source and target services are
S1, S2, respectively. According to the semantic annotation
presented in Section 4 and Section 5.2.1, both dateofIPO and
dateofQuote are annotated to point to concept date in the ontology
(see Figure 2). By reasoning with the ontology enriched with
contexts, we know that concept date has a modifier format with
two different values: “dd-mm-yyyy” in the U.K. context and
“mm/dd/yyyy” in the U.S. context. A context conflict is thus
detected within the data transfer of dateofIPO. After checking all
the data transfers in the LOTOS NT process shown in List 3, we
detect another context conflict in the implicit data transfer of
dailyOpenPrice (through variable getDailyOpenPriceResponese).

5.4 Incorporating Conversions into LOTOS
NT Process
Once a context conflict is detected within a data transfer,
necessary conversion needs to be identified from the predefined
conversions (see Section 3.2) and incorporated into the data
transfer for converting data between different contexts.

In case that the detected context conflict occurs in an implicit data
transfer, the data transfer needs to be made explicit. As shown in
Section 5.3, a context conflict occurs within the implicit data
transfer of dailyOpenPrice because of different currencies used to
interpret the stock prices: “USD” for S2 and “GBP” for CS. To
make it explicit, a new variable, getOpeningPriceResponse, is
automatically declared using the same data type of variable
getDailyOpenPriceResponse. Then, an assignment statement is
inserted in the data transfer to initialize variable
getOpeningPriceResponse with the value of variable
getDailyOpenPriceResponse. Also, the output variable of the
emission gate from CS is changed as getOpeningPriceResponse.

 (* Definition of a module with three module importation
 * directives which corresponds to the WSDL descriptions
 * of the composite and two component services. *)
module QuoteOpeningPriceProcess (QuoteOpeningPrice,
 StockIPO, HistoricalStockQuote) is

(* Each partner link corresponds to a communication gate with
 * which necessary information, such as partner link, port type,
 * operation and partner service, can be derived. *)
gate StockIPOPLGate is
 (StockIPOPLTPartnerLinkType) end gate
gate HistoricalStockQuotePLGate is
 (HistoricalStockQuotePLTPartnerLinkType) end gate
gate QuoteOpeningPricePLGate is
 (QuoteOpeningPricePLTPartnerLinkType) end gate

(* Process declaration *)
process QuoteOpeningPriceProcess
 [StockIPOPL:StockIPOPLGate,

HistoricalStockQuotePL:HistoricalStockQuotePLGate,
QuoteOpeningpricePL:QuoteOpeningPricePLGate] () is

(* Declaration of variables that are used in the process *)
var getDateofIPO:getDateofIPOType,
 getDateofIPOResponse:getDateofIPOResponseType,
 getDailyOpenPrice:getDailyOpenPriceType,
 getDailyOpenPriceResponse:getDailyOpenPriceResponseType
in

(* Corresponding to <receive> of CS *)
QuoteOpeningPricePL(?quoteOpeningPriceRole
(getOpeningPriceInput(getOpeningPriceRequestMessage
(getDateofIPO)))) ;

(* Corresponding to <invoke> of S1 *)
StockIPOPL(!stockIPOServiceRole(getDateofIPOInput
(getDateofIPORequestMessage(getDateofIPOType
(getDateofIPO))))) ;
StockIPOPL(?stockIPOServiceRole(getDateofIPOOutput
(getDateofIPOResponseMessage(getDateofIPOResponse)))) ;

(* Corresponding to <assign> *)
getDailyOpenPrice := getDailyOpenPriceType
(getDateofIPOResponse.getDateofIPOReturn.tickerSymbol,
 getDateofIPOResponse.getDateofIPOReturn.dateofIPO) ;

(* Corresponding to <invoke> of S2 *)
HistoricalStockQuotePL(!historicalStockQuoteServiceRole
(getDailyOpenPriceInput(getDailyOpenPriceRequestMessage
(getDailyOpenPrice)))) ;
HistoricalStockQuotePL (?historicalStockQuoteServiceRole
(getDailyOpenPriceOutput(getDailyOpenPriceResponseMessage
(getDailyOpenPriceResponse)))) ;

(* Corresponding to <reply> of CS *)
QuoteOpeningPricePL(!quoteOpeningPriceRole
(getOpeningPriceOutput(getOpeningPriceResponseMessage
(getDailyOpenPriceResponse))))

end var
end process
end module

List 3. LOTOS NT process translated from the naïve BPEL
composition of the motivating example.

module QuoteOpeningPriceProcess (QuoteOpeningPrice,
 StockIPO, HistoricalStockQuote) is

gate StockIPOPLGate is (StockIPOPLTPartnerLinkType) end gate
gate HistoricalStockQuotePLGate is
(HistoricalStockQuotePLTPartnerLinkType) end gate
gate QuoteOpeningPricePLGate is
 (QuoteOpeningPricePLTPartnerLinkType) end gate

(* A new gate is declared to communicate with
 * the external Web service for currency conversion. *)
gate CurrencyConvertorPLGate is
 (CurrencyConvertorPLTPartnerLinkType) end gate

(* The module of currency convertor is imported. *)
process QuoteOpeningPriceProcess
 [StockIPOPL:StockIPOPLGate,

HistoricalStockQuotePL:HistoricalStockQuotePLGate,
CurrencyConvertorPL: CurrencyConvertorPLGate,
QuoteOpeningpricePL:QuoteOpeningPricePLGate] () is

(* A new variable is declared in the process. *)
var getDateofIPO:getDateofIPOType,
 getDateofIPOResponse:getDateofIPOResponseType,
 getDailyOpenPrice:getDailyOpenPriceType,

getDailyOpenPriceResponse:getDailyOpenPriceResponseType,
getOpeningPriceResponse: getDailyOpenPriceResponseType

in

QuoteOpeningPricePL(?quoteOpeningPriceRole
(getOpeningPriceInput (getOpeningPriceRequestMessage
(getDateofIPO)))) ;

StockIPOPL(!stockIPOServiceRole (getDateofIPOInput
(getDateofIPORequestMessage (getDateofIPOType
(getDateofIPO.tickerSymbol))))) ;
StockIPOPL(?stockIPOServiceRole(getDateofIPOOutput
(getDateofIPOResponseMessage(getDateofIPOResponse)))) ;

(* The XPath function, which is encapsulated in
 * a custom function with the name cvtFormatUKtoUS,
 * is incorporated. *)
getDailyOpenPrice := getDailyOpenPriceType
(getDateofIPOResponse.getDateofIPOReturn.tickerSymbol,
 cvtFormatUKtoUS (getDateofIPOResponse.
getDateofIPOReturn.dateofIPO)) ;

HistoricalStockQuotePL(!historicalStockQuoteServiceRole
(getDailyOpenPriceInput (getDailyOpenPriceRequestMessage
(getDailyOpenPrice)))) ;
HistoricalStockQuotePL (?historicalStockQuoteServiceRole
(getDailyOpenPriceOutput(getDailyOpenPriceResponseMessage
(getDailyOpenPriceResponse)))) ;

(* Invocation statement of ES *)
CurrencyConvertorPL (!currencyConvertorServiceRole
(getPriceInGBPInput (getPriceInGBPRequestMessage
(getDailyOpenPriceResponse)))) ;
CurrencyConvertorPL (?currencyConvertorServiceRole
(getPriceInGBPOutput (getPriceInGBPResponseMessage
(getOpeningPriceResponse)))) ;

(* The output variable is changed. *)
QuoteOpeningPricePL(!quoteOpeningPriceRole
(getOpeningPriceOutput(getOpeningPriceResponseMessage
(getOpeningPriceResponse))))

end var
end process end module

List 4. Mediated LOTOS NT process with incorporated
conversions.

Explicit data transfer

Implicit data transfer

Implicit data transfer

XPath function for conversion

External service for conversion

Enumerate a data
transfer

Make the data
transfer explicit

Is the data transfer
implicit? ?

YES

Incorporate appropriate
conversion

Is there a context conflict in
the implicit data transfer? ?

YES

NO

Is there a context conflict in
the explicit data transfer?

YES

NO

NO

?

Any more data
transfer?

?
YES

NO

End

Start

Figure 5. Algorithm for reconciling context conflicts.

Now that all data transfers with context conflicts are explicit,
necessary conversions need to be identified and inserted into these
data transfers. Two context conflicts exist in the naïve
composition of the motivating example: different data formats for
interpreting concept date with modifier format, and different
currencies for interpreting concept stockPrice with modifier
currency. As presented in Section 3.2, two conversions are defined
with modifier format and modifier currency, respectively - in our
work the predefined conversions are maintained in the conversion
repository. The conversion for modifier format (i.e., cvtformat),
which converts date format from “dd-mm/-yyyy” to
“mm/dd/yyyy”, is defined as a custom function
cvtFormatUKtoUS using XPath functions (see Figure 3). This
conversion is inserted to the data transfer of dateofIPO, that is,
function cvtFormatUKtoUS consumes variable dateofIPO and
produces the date interpreted by “mm/dd/yyyy”. The conversion
for modifier currency (i.e., cvtcurrency), which converts prices in
“USD” to “GBP”, is defined using an external service, denoted by
ES for short. ES has an operation getPriceInGBP which consumes
a price in USD and produces the equivalent price in GBP9.
According to this conversion, an action for invoking the operation
getPriceInGBP of ES needs to be inserted into the data transfer of
dailyOpenPrice. In fact, the assignment statement created above
is substituted by the invocation statement of operation
getPriceInGBP in which the input and output variables are
getDailyOpenPriceResponse and getOpeningPriceResponse,
respectively. The mediated LOTOS NT process of the

9 General purpose conversions, such as that between any pair of

currencies, can also be used, but discussion of this point is beyond the
space constraints of this paper.

composition is given in List 4. The generated conversion code in
the mediated LOTOS NT process is highlighted in bold.

The algorithm for reconciling context conflicts is illustrated in
Figure 5. The algorithm enumerates and examines each data
transfer of the LOTOS NT process. If a context conflict is
detected, the algorithm identifies an appropriate conversion and
incorporates it into the process. Eventually, the mediated LOTOS
NT process without any context conflict is produced.

6. CONTEXT MEDIATION TOOL
A proof-of-concept prototype, Context Mediation Tool (CMT),
has been developed to validate and demonstrate our approach.
The WSDL descriptions of composite and component services
(i.e., CS, S1 and S2) are annotated with semantic references using
Radiant4Context which is an Eclipse plug-in we have developed
as an extension to Radiant10, an open source project for semantic
annotation. The common ontology enriched with contexts is
defined using our COIN Model Application Editor11, which is a
lightweight Web-based tool for creating and editing ontologies
and contexts in RDF/OWL. Atomic conversions between contexts
are defined in a specification file. We assume that the U.K.
developer, without being aware of semantic heterogeneity among
the services, created the naïve BPEL composition of the
motivating example using ActiveVOS Designer12. After
consuming all these documents, CMT first translates the naïve
BPEL process and the involved WSDL descriptions to the naïve
LOTOS NT Process. Then, the reasoning engine implemented
within CMT uses the algorithm to automatically detect context
conflicts within the naïve LOTOS NT Process and incorporate
appropriate conversions into the mediated LOTOS NT Process.
Finally, CMT translates the mediated LOTOS NT Process back to
the mediated BPEL process, according to the mappings between
BPEL and LOTOS NT given in Table 2.

Figure 6 shows a snapshot of CMT which has three working
sections. The first working section requires the user to import the
involved documents, as described above, into a mediation project.
To monitor the results of different steps of the mediation task, the
second working section of CMT, Mediation Stage, allows the user
to choose one of the five consecutive stages, including naïve
BPEL process, naïve LOTOS NT process, detected context
conflicts, mediated LOTOS NT process and mediated BPEL
process. These five stages reveal the intermediate and final results
that our approach produces while handling context differences in
the service composition. Particularly, Figure 6 shows the stage
Detected Context Conflicts where two detected context conflicts
in the naïve composition of the motivating example are listed.
Detailed information of each context conflict is displayed, such as
corresponding services, messages/data elements, concepts,
contexts, modifiers, modifier values, and conversions. The
detailed information clearly explains what the context conflict is
and where it occurs in the composition. It is worth noting that
CMT can produce not only the mediated LOTOS NT process
(e.g., List 4), but also the mediated BPEL process.

10 http://lsdis.cs.uga.edu/projects/meteor-s/downloads/index.php?page=1
11 http://interchange.mit.edu/appEditor/TextInterface.aspx?location=MIT
12 http://www.activevos.com/activevos-enterprise-download-test.php

Figure 6. Snapshot of CMT at stage Detected Context Conflicts.

7. RELATED WORK AND DISCUSSION
The challenges of heterogeneous data semantics among Web
services have been discussed in [25]. In the literature, however,
only a few approaches have been developed to handle the data
quality problems of Web services composition that result from
heterogeneous data semantics. Based on METEOR-S, semantic
annotation and mapping are proposed to deal with schema
structural heterogeneity of the exchanged messages in service
composition [25, 26]. The approach in [27] use data
transformation rules, which are specified in a Prolog notation, to
convert the exchanged messages/data from the upstream service
to the downstream one. The approach can only deal with a pair of
interoperating services rather than a composition consisting of
several services. The work in [28, 29] proposes a set of mapping
relations which can semi-automatically compose Web services.
However, the mapping relations between two services have to be
specified by developers manually to generate the composition.
Also, this work is restricted to simple composition scenarios in
which only two services are integrated, since mapping relations
are usually defined between two services. In practice, however,
service composition may involve multiple services and have
complicated workflow logic. To the best of our knowledge, the
work in [30-32], which is also drawn on the original COIN
strategy, is most related to this paper. However, our approach is
different from that work in several aspects: (1) Their work only
considers component services but ignores the composite service,
while context differences among both composite and component
services can be handled using our solution; (2) The WSDL
description is directly annotated with the context definition -
modifier values defining the contexts are enumerated as the
extension of the WSDL elements. In case of a large number of
modifier values, it is difficult to enumerate and maintain so many
modifier values in the WSDL elements. Differently, we specify
modifier values in the ontology definition separate from WSDL
descriptions and propose the flexible, standard-compliant
mechanism for annotating WSDL descriptions using SAWSDL;

(3) Only external services are considered in their work to
reconcile context differences, while both XPath functions and
external services are proposed in our reconciliation solution. In
certain cases, it is applicable and more efficient to use XPath
functions as conversions, such as that for date formats in different
styles and numbers in different scale factors; (4) Only context
conflicts between the <invoke> activities in the BPEL
composition are considered in their work, while context conflicts
between all interaction activities (e.g., <receive>, <reply>,
<invoke> and <onMessage>) can be handled using our solution;
(5) Their work performs the detection of context conflicts in
verbose BPEL and WSDL files, while we exploit and extend
LOTOS NT so that service compositions in BPEL/WSDL are
translated to LOTOS NT and analyzed based on the formalism.

8. CONCLUSION
With the increasing opportunity to access and integrate data from
diverse Web services, data quality issues of service composition
have been drawing more attention in recent years. Many data
quality problems are actually data misinterpretation problems
which result from heterogeneous data semantics among Web
services. In this paper, we introduce a mechanism for composition
developers to flexibly define a small set of generic concepts
among the services involved in a composition as a common
ontology and use contexts to describe the specializations of the
generic concepts. We have developed a flexible, standard-
compliant method to annotate the WSDL descriptions of Web
services with contexts (i.e., using SAWSDL). Given a naïve
BPEL composition unaware of context differences, our approach
can automatically produce a mediated BPEL composition that
incorporates necessary conversions to reconcile context conflicts.
The approach alleviates the reconciliation task for addressing
heterogeneous data semantics among Web services and resolves
many data quality problems for their composition.

In the future, we plan to enhance the ability of our approach to
handle more complex composition scenarios, such as complex
data types of WSDL descriptions, complex definitions of
contexts, complex workflow logics of the BPEL composition, and
complex structural differences among the exchanged messages.

9. ACKNOWLEDGMENTS
The authors thank Hubert Garavel and Damien Thivolle, from
INRIA Rhone-Alpes / VASY, France, for their valuable
discussion about the translation of LOTOS NT. Also, the authors
thank Frank Manola, Independent Consultant, Wilmington, MA,
USA, for his valuable comments. This work was partially
supported by the MIT Sloan China Management Education
Project and grants from the National Natural Science Foundation
of China (No. 60674080 and No. 60704027) and the National
High-Tech R&D (863) Plan of China (No. 2007AA04Z150).

10. REFERENCES
[1] Q. Yu, X. Liu, A. Bouguettaya, and B. Medjahed. Deploying

and managing Web services: issues, solutions, and
directions. The VLDB Journal, 17(3): 537-572, 2008.

[2] E. Christensen, F. Curbera, G. Meredith, and S.
Weerawarana. Web services description language (WSDL)
1.1. W3C Recommendation, March 2001.

[3] A. Alves, A. Arkin, S. Askary, C. Barreto, B. Bloch, F.
Curbera, M. Ford, Y. Goland, A. Guizar, and N. Kartha,
Web services business process execution language version
2.0. OASIS Standard, April 2007.

[4] D. Martin, M. Burstein, D. McDermott, S. McIlraith, M.
Paolucci, K. Sycara, D. McGuinness, E. Sirin, and N.
Srinivasan. Bringing Semantics to Web Services with OWL-
S. World Wide Web, 10(3): 243-277, 2007.

[5] D. Fensel and C. Bussler. The Web Service Modeling
Framework WSMF. Electronic Commerce Research and
Applications, 1(2): 113-137, 2002.

[6] H. Lausen, A. Polleres, and D. Roman. Web Service
Modeling Ontology (WSMO). W3C Member Submission,
2005.

[7] K. Sivashanmugam, K. Verma, A. Sheth, and J. Miller.
Adding Semantics to Web Services Standards. In Proc. of
the 1st Intl. Conf. on Web Services (ICWS’03), Las Vegas,
USA, 395–401, 2003.

[8] A. A. Patil, S. A. Oundhakar, A. P. Sheth, and K. Verma.
Meteor-s web service annotation framework. In Proc. of the
13th Intl. Conf. on World Wide Web (WWW’04), New York
City, NY, USA, 553-562, 2004.

[9] C. H. Goh, S. Bressan, S. Madnick, and M. Siegel. Context
interchange: new features and formalisms for the intelligent
integration of information. ACM Trans. on Information
Systems (TOIS), 17(3): 270-293, 1999.

[10] S. Bressan, C. Goh, N. Levina, S. Madnick, A. Shah, and M.
Siegel. Context Knowledge Representation and Reasoning in
the Context Interchange System. Applied Intelligence, 13(2):
165-180, 2000.

[11] X. Li, S. Madnick, H. Zhu, and Y. Fan. An Innovative
Approach to Composing Web Services with Context
Heterogeneity. In Proc. of the 7th Intl. Conf. on Web
Services (ICWS’09), Los Angeles, CA, USA, 695-702, 2009.

[12] J. Farrell and H. Lausen. Semantic Annotations for WSDL
and XML Schema. W3C Recommendation, August, 2007.

[13] M. Sighireanu. LOTOS NT User Manual (Release 2.6).
Technical Report, Projet VASY, Inria Rhne-Alpes,
Montbonnot Saint-Martin, France, February 2008. Available
at http://www.inrialpes.fr/vasy.

[14] H. Garavel, R. Mateescu, F. Lang, and W. Serwe. CADP
2006: A toolbox for the construction and analysis of
distributed processes. In Proc. of the 19th Intl. Conf. on
Computer Aided Verification (CAV’07), Berlin, Germany,
158-163, 2007.

[15] J. Kopecký, T. Vitvar, C. Bournez, and J. Farrell. SAWSDL:
Semantic Annotations for WSDL and XML Schema. IEEE
Internet Computing, 11(6): 60-67, 2007.

[16] K. Verma and A. Sheth. Semantically Annotating a Web
Service. IEEE Internet Computing, 11(2): 83-85, 2007.

[17] J. de Meer, R. Roth, and S. Vuong. Introduction to algebraic
specifications based on the language ACT ONE. Computer
Networks and ISDN Systems, 23(5): 363-392, 1992.

[18] R. Milner. Communication and concurrency: Prentice-Hall,
Inc. Upper Saddle River, NJ, USA, 1989.

[19] C. A. R. Hoare. Communicating sequential processes:
Prentice-Hall International, 1985.

[20] A. Ferrara. Web services: a process algebra approach. In
Proc. of the 2nd Intl. Conf. on Service-Oriented Computing
(ICSOC’04)), New York City, NY, USA, 242-251, 2004.

[21] G. Salaün, A. Ferrara, and A. Chirichiello. Negotiation
among Web Services Using LOTOS/CADP. In Proc. of the
1st European Conf. on Web Services (ECOWS’04), Erfurt,
Germany, 198-212, 2004.

[22] A. Chirichiello and G. Salaün. Encoding abstract
descriptions into executable web services: Towards a formal
development. In Proc. of the 3rd IEEE/WIC/ACM Intl. Conf.
on Web Intelligence (WI'05), 457-463, 2005.

[23] R. Mateescu, P. Poizat, and G. Salaün. Adaptation of Service
Protocols Using Process Algebra and On-the-Fly Reduction
Techniques. In Prof. of the 6th Intl. Conf. on Service-
Oriented Computing (ICSOC’08), Sydney, Australia, 84-99,
2008.

[24] G. Salaün, L. Bordeaux, and M. Schaerf. Describing and
reasoning on Web Services using Process Algebra. Intl.
Journal of Business Process Integration and Management,
1(2): 116-128, 2006.

[25] M. Nagarajan, K. Verma, A. P. Sheth, J. Miller, and J.
Lathem. Semantic Interoperability of Web Services -
Challenges and Experiences. In Proc. of the 4th Intl. Conf.
on Web Services (ICWS’04), Chicago, USA, 373-382, 2006.

[26] Z. Wu, A. Ranabahu, K. Gomadam, A. P. Sheth, and J. A.
Miller. Automatic Composition of Semantic Web Services
using Process and Data Mediation. In Proc. of the 9th Intl.
Conf. on Enterprise Information Systems (ICEIS'07),
Funchal, Portugal, 453-461, 2007.

[27] B. Spencer and S. Liu. Inferring Data Transformation Rules
to Integrate Semantic Web Services. In Proc. of the 3rd Intl.
Semantic Web Conference, Japan, 456-470, 2004.

[28] D. Gagne, M. Sabbouh, S. Bennett, and S. Powers. Using
Data Semantics to Enable Automatic Composition of Web
Services. In Proc. of the 4th IEEE Intl. Conf. on Services
Computing (ICSOC’06), 438-444, 2006.

[29] M. Sabbouh, J. L. Higginson, C. Wan, and S. R. Bennett.
Using Mapping Relations to Semi Automatically Compose
Web Services. In Proc. of IEEE Congress on Services - Part
I (SERVICES’08), 211-218, 2008.

[30] M. Mrissa, C. Ghedira, D. Benslimane, and Z. Maamar. A
Context Model for Semantic Mediation in Web Services
Composition. In Proc. of the 25th Intl. Conf. on Conceptual
Modeling (ER’06), Tucson, Arizona, USA, 12-25, 2006.

[31] M. Mrissa, C. Ghedira, D. Benslimane, and Z. Maamar.
Context and Semantic Composition of Web Services. In
Proc. of the 17th Intl. Conf. on Database and Expert Systems
(DEXA’06), Krakow, Poland, 266-275, 2006.

[32] M. Mrissa, C. Ghedira, D. Benslimane, Z. Maamar, F.
Rosenberg, and S. Dustdar. A context-based mediation
approach to compose semantic Web services. ACM Trans. on
Internet Technology, 8(1): 4, 2007.

	CISL WP 2009-14 cover page
	14_QDB092 - final camera-ready copy

