

Reconciling Semantic Heterogeneity
in Web Services Composition

Xitong Li

Stuart Madnick
Hongwei Zhu
Yushun Fan

Working Paper CISL# 2009-08

September 2009

Composite Information Systems Laboratory (CISL)
Sloan School of Management, Room E53-320

Massachusetts Institute of Technology
Cambridge, MA 02142

 Thirtieth International Conference on Information Systems, Phoenix 2009 1

RECONCILING SEMANTIC HETEROGENEITY IN WEB
SERVICES COMPOSITION

Completed Research Paper

Xitong Li
MIT Sloan School of Management

Cambridge, MA 02142, USA
xitongli@mit.edu

Tsinghua University
Beijing 100084, P. R. China
lxt04@mails.tsinghua.edu.cn

Stuart Madnick
Massachusetts Institute of Technology

 Sloan School of Management
Cambridge, MA 02142, USA

smadnick@mit.edu

Hongwei Zhu
Old Dominion University
Norfolk, VA 23529, USA

hzhu@odu.edu

Yushun Fan
Tsinghua University

Beijing 100084, P.R. China
fanyus@tsinghua.edu.cn

Abstract

Service Oriented Computing (SOC) is a popular computing paradigm for the development of
distributed Web applications. Service composition, a key element of SOC, is severely hampered by
various types of semantic heterogeneity among the services. In this paper, we address the various
semantic differences from the context perspective and use a lightweight ontology to describe the
concepts and their specializations. Atomic conversions between the contexts are implemented
using XPath functions and external services. The correspondences between the syntactic service
descriptions and the semantic concepts are established using a flexible, standard-compliant
mechanism. Given the naive BPEL composition ignoring semantic differences, our reconciliation
approach can automatically determine and reconcile the semantic differences. The mediated
BPEL composition incorporates necessary conversions to convert the data exchanged between
different services. Our solution has the desirable properties (e.g., adaptability, extensibility and
scalability) and can significantly alleviate the reconciliation efforts for Web services composition.

Keywords: Web service, service composition, semantic heterogeneity, ontology, context

Services Computing and Process Management

2 Thirtieth International Conference on Information Systems, Phoenix 2009

Introduction

Service Oriented Computing (SOC) has become an increasingly important computing paradigm to develop and
integrate distributed enterprise IT applications (Papazoglou et al. 2007; Zhang et al. 2007). As a technology of
choice of SOC, Web services, also simply called services, are accessible software components/applications that can
be invoked via open-standard Internet protocols (Yu et al. 2008). Web services composition addresses the situation
in which a business need cannot be accomplished by a single pre-existing service, whereas a composite service
consisting of multiple component services working together could satisfy the need. While the interface of a single
(component or composite) service is described in the Web Service Description Language (WSDL) (Christensen et
al. 2001), the workflow logic of a composite service is usually defined in the Business Process Execution Language
(BPEL) (Alves et al. 2007), a standard for specifying the process of messages exchanged between the services.

A successful service composition must ensure semantic interoperability so that data can be exchanged meaningfully
among the involved services. Unfortunately, semantic interoperability is severely hampered by the pervasive
heterogeneity among independently-developed services. For example, a gallon in the U.S. (the so-called U.S. gallon)
is approximately 3785 ml, while the “same” gallon in the U.K. (the so-called Imperial gallon) is 4546 ml, almost a
liter more. So when we learn that a particular car model has a fuel tank capacity of 15 gallons by querying a Web
service (say from the U.K.), and learn about the gas mileage of 30 miles per gallon for the model by querying
another Web service (say from the U.S.), we still need to know how to interpret the exchanged data (i.e., 15 gallons)
between the two services to compute the distance the car can go with a full tank of gas. Thus, additional information
is still needed to correctly utilize the exchanged data. The challenge of semantic heterogeneity grows when
composing multiple services developed by independent providers that are distributed throughout the world and have
disparate assumptions of data interpretation. The basic Web services standards (e.g., WSDL, BPEL) generally
ignore data semantics, rendering semantic interoperability far from reality. Several initiatives, e.g., OWL-S (Martin
et al. 2007), WSMF/WSMO (Lausen et al. 2005) and METEOR-S (Patil et al. 2004), have proposed languages and
frameworks to explicitly add semantics into service descriptions. Despite the foundations provided by these efforts,
effective methods still need to be developed for reconciling semantic heterogeneity in Web services composition.

In this paper, we present a solution to automatic determination and reconciliation of semantic heterogeneity in Web
services composition, such as inconsistent data naming, representation, precision, unit and scaling. The solution is
inspired by the Context Interchange (COIN) strategy for semantic interoperability among multiple data sources
(Bressan et al. 2000; Goh et al. 1999) and the preliminary work of applying the strategy (Li et al. 2009a; b; Mrissa et
al. 2007) to Web services composition. The solution involves the use of a lightweight ontology, known as a COIN
lightweight ontology, which defines a common vocabulary capturing only generic concepts shared by the involved
services. The COIN lightweight ontology also defines multiple contexts capturing different specializations of the
generic concepts which are actually used by the various services. Atomic conversions reconciling certain aspects of
the differences need to be provided. Further, the WSDL descriptions of the involved services need to be annotated to
establish correspondences between the data elements of WSDL descriptions and the concepts of the ontology. In this
paper, we assume the service composition is specified using BPEL – in fact, our solution can be applied with any
other composition specification languages. We call the BPEL composition, which ignores semantic heterogeneity,
the naive BPEL. With the above descriptions in place, the reconciliation approach can automatically determine
semantic conflicts in the naive BPEL and incorporate appropriate conversions into the composition. The mediated
BPEL composition, now without any semantic conflict, is produced as the output of the reconciliation approach.

The rest of the paper is organized as follows. In the second section, we provide a motivating example of service
composition with semantic conflicts. The third and fourth sections introduce the COIN lightweight ontology and
conversions which form the foundation of our solution. In the fifth section, we present a standard-compliant
mechanism for semantic and context annotation so that syntactic WSDL descriptions are elevated to the semantic
level. The sixth section describes the automatic approach to determine and reconcile semantic conflicts within
service composition. The seventh section demonstrates a proof-of-concept tool and evaluates the solution. Then, we
review and compare the related work. Finally, we conclude this paper and suggest directions of future work.

Examples of Semantic Conflicts

Lack of explicitly representing data semantics in Web services descriptions makes it difficult to use them to build
service composition. For example, a request for Total Assets of i2 Technology (ticker symbol: ITWO) by invoking a
Web service from a financial data provider Xignite (http://www.xignite.com/) returned data shown in Figure 1.

 Li et. al. / Reconciling Semantic Heterogeneity in Web Services Composition

 Thirtieth International Conference on Information Systems, Phoenix 2009 3

ITWO Total Assets: 313,776 of what?

What is this date 05/07/2009 ?

ITWO Total Assets: 313,776 of what?

What is this date 05/07/2009 ?

Figure 1. Total Assets Returned from a Real World Web Service

Should the date “05/07/2009” be interpreted as May 7th, 2009 or July 5th, 2009? Further, the same service returned
68853 as the total assets for Microsoft (ticker symbol: MSFT). Is it possible that ITWO has more than four times
total assets than MSFT? Further investigation shows that the numeric value for ITWO is in thousands and that for
MSFT is in millions, both in “$”. But does the symbol “$” mean US dollar, Canadian dollar, or HK dollar?

Using one service is not easy, and composing multiple services is even more challenging. Consider a scenario that a
U.K. developer wants to develop a new Web service, OpeningPriceMarketCap (denoted as CS for short for
Composite Service), to obtain the opening stock price and market capitalization of a U.S. company on its first
trading day. CS is intended to be used by a U.K. analyst to study the U.S. stock market. The developer decides to
implement the service by composing three existing services: StockIPOWS, OpeningPriceWS and DailyMarketCap,
denoted as S1, S2 and S3 respectively. S1 has the operation getDateofIPO that provides the IPO date of a company
traded in the U.S. by using the company’s ticker symbol. The operation getOpeningPrice of S2 provides the opening
stock price of a company on its first trading day. The operation getDailyMarketCap of S3 provides the daily market
capitalization of a company on a given date. The signatures of the four involved services (i.e., CS, S1, S2 and S3) are
summarized in Table 1. For simplicity, we do not show the verbose WSDL descriptions and assume the low-level
messages of these services have compatible data types (e.g., string, double).

Table 1. Signatures of Involved Web Services in the Composition
Service Operation Input Output

CS getOpeningPriceMarketCap tickerSymbol openingPrice, openingMarketCap
S1 getDateofIPO tickerSymbol dateofQuote, tickerSymbol
S2 getOpeningPrice tickerSymbol openingPrice
S3 getDailyMarketCap dateofQuote, tickerSymbol dailyMarketCap

It appears that CS can be accomplished by a composition of S1, S2 and S3. Specifically, the input tickerSymbol of
CS needs to be transferred to S1 and S2, respectively. The output openingPrice of CS is obtained from the output
openingPrice of S2. The output openingMarketCap of CS can be achieved by feeding the output of S1 to the input of
S3 and delivering the output of S3 to CS. According to this plan, the developer defines the workflow logic of the
composition using a typical BPEL tool, ActiveVOS BPEL Designer (http://www.activevos.com/). The BPEL
composition process is graphically illustrated in Figure 2. Note that ActiveVOS BPEL Designer alerts no error in the
composition process. However, since these four services are developed by independent providers, they have
different assumptions of data interpretation, as summarized in Table 2. Usually, these assumptions are not explicitly
represented in the WSDL descriptions. Further, existing BPEL tools cannot detect the conflicting assumptions and
fail to alert these conflicts in the composition (see Figure 2), because the differences of data interpretation, also
known as semantic conflicts, exist at the data instance level. If not reconciled, these semantic conflicts would result
in severe errors and failures during the execution of the composition.

Services Computing and Process Management

4 Thirtieth International Conference on Information Systems, Phoenix 2009

Figure 2. BPEL Composition with Semantic Conflicts

Table 2. Different Assumptions of Data Interpretation

Service Date format Currency Scale factor
CS NULL GBP 1
S1 dd-mm-yyyy NULL NULL
S2 NULL USD 1
S3 mm/dd/yyyy USD 1000

A brute-force solution to address these semantic conflicts is to manually construct and insert ad-hoc conversions to
transform the output of one service to the input of another service. Every time an involved service in the
composition is changed or upgraded, the composition developers, however, have to manually specify new custom
conversions and insert them into the composition process. As a result, the brute-force solution potentially makes the
number of manually identified custom conversions very large and difficult to maintain over time. A survey
(Seligman et al. 2002) shows that approximately 70% of the costs of integration projects are spent on identifying
semantic differences and developing custom code to reconcile these differences. Our solution can significantly
reduce the cost of semantic reconciliation for Web services composition.

COIN Lightweight Ontology

An alternative solution to semantic interoperability is to use a common ontology to support the transformation of the
data exchanged among various services. An ontology is a collection of concepts and the relationships between these
concepts. In practice there are various ontologies ranging from lightweight, rather informal, to heavyweight, more
formal ontologies (Wache et al. 2001). To combine their strengths and avoid their weaknesses, we adopt a
lightweight ontology, which requires a small set of generic concepts among the involved services and can structure
their respective assumptions for interpreting the generic concepts by means of contexts.

Figure 3 presents a graphical representation of the COIN lightweight ontology for the composition example.
Concepts are depicted by round rectangles and basic is the special concept from which all other concepts inherit.
Like traditional ontologies, the COIN lightweight ontology has two classic relationships: is_a and attribute.
For instance, concept openingPrice is a type of stockMoneyValue. An attribute is a binary relationship between a
pair of concepts. For example, attribute dateOf indicates that each instance of concept stockMoneyValue reflects the
money value of a stock on a certain date. In practice, it is frequently straightforward to identify generic concepts
among multiple independent services. For example, S3 has the output data dailyMarketCap and CS has an output
data openingMarketCap. Both of them correspond to a generic concept marketCapital. However, S3 provides the
data instances of dailyMarketCap using currency “USD” and scale factor “1000”, while CS interprets and furnishes
the data instances of openingMarketCap according to currency “GBP” and scale factor “1”. To accommodate the

 Li et. al. / Reconciling Semantic Heterogeneity in Web Services Composition

 Thirtieth International Conference on Information Systems, Phoenix 2009 5

different data interpretations, the construct modifier is introduced to allow multiple variations (i.e.,
specializations) to be associated with different services. In other words, modifier is used to capture additional
information that affects the data interpretations of the generic concepts. A generic concept can have multiple
modifiers, each of which indicates an orthogonal dimension of the variations. Also, a modifier can be inherited by a
sub-concept from its ancestor concepts.

Figure 3. COIN Lightweight Ontology Shared by Involved Services of the Composition

Table 3. Context Definition of Involved Services in the Composition

Service Context
CS ctxt0 = {<dateFormat, NULL>, <currency, GBP>, <scaleFactor, 1>}
S1 ctxt1 = {<dateFormat, dd-mm-yyyy>, <currency, NULL>, <scaleFactor, NULL>}
S2 ctxt2 = {<dateFormat, NULL>, <currency, USD>, <scaleFactor, 1>}
S3 ctxt3 = {<dateFormat, mm/dd/yyyy>, <currency, USD>, <scaleFactor, 1000>}

Modifiers are depicted by dashed arrows in Figure 3. For example, concept stockMoneyValue has two modifiers,
currency and scaleFactor, which indicates that its data instances need to be interpreted according to two dimensions:
money currency and scale factor, respectively. Also, concept date has modifier dateFormat that indicates its data
instances can be interpreted by different date formats. The actual interpretation of a generic concept depends on
modifier values. For instance, CS interprets concept openingMarketCap using currency “GBP”. Thus, the value of
modifier currency is “GBP” in case of CS. According to Table 2, the modifier value of currency is “USD” in case of
S2 and S3. That means that different services may need to assign different values to the modifiers. In our work, the
different value assignments to a collection of modifiers are referred to as different contexts, and in a certain
context each modifier is assigned by a specific modifier value. Specifically, a context is conceptually a set of
assignments of all the modifiers of the COIN ontology and can be described by a set of <modifier, value> pairs.
Further, each service involved in the composition may be associated with a context which corresponds to its
assumption of data interpretation. For example, the different assumptions in Table 2 can be described using four
contexts associated with the four services involved in the composition, as shown in Table 3. As a result, semantic
differences among these services can be treated as context differences.

Conversions between Different Contexts

Context differences, once detected, need to be reconciled using conversions for converting the exchanged data from
the source value vs to the target value vt. In our work, a conversion is defined for each modifier between two
different modifier values. Below is a general representation of the conversions, where C is the generic concept
having a modifier m, mvs and mvt are two different values of m in the source context ctxt_s and the target context
ctxt_t, respectively. In fact, mvs, mvt can be derived by querying the context definition according to ctxt_s, ctxt_t
(see Table 3).

cvt(C, m, ctxt_s, ctxt_t, mvs, mvt, vs, vt)

Services Computing and Process Management

6 Thirtieth International Conference on Information Systems, Phoenix 2009

The conversions defined with modifiers are called atomic conversions. Since there exist three modifiers in the
exemplified COIN ontology (see Figure 3 and Table 3), three atomic conversions need to be defined, i.e., cvtdateFormat,
cvtcurrency and cvtscaleFactor.

Our solution is agnostic about the actual implementation of the atomic conversions. In practice, depending on its
complexity, an atomic conversion can be implemented using an XPath function1 or an external (e.g., third-party)
service. If possible, XPath functions are recommended due to the consideration of execution efficiency. For
example, the atomic conversion cvtdateFormat for converting the date format from “dd-mm-yyyy” to “mm/dd/yyyy”
can be implemented using the following XPath function:

cvtdateFormat: Vt = concat(substring-before(substring-after(Vs,“-"),“-"),“/",
 substring-before(Vs,“-"),“/",substring-after(substring-after(Vs,“-"),“-"))

Also, the atomic conversion cvtscaleFactor, which converts a number value from the scale factor mvs to mvt, can be
implemented using the following XPath function2:

cvtscaleFactor: Vt = Vs * mvs div mvt

In complex cases, the conversions have to be implemented by invoking external (e.g., third-party) services, such as
by using Web wrapper services (Madnick et al. 2000). For example, it is needed to invoke an external currency
exchange service CurrencyExchange (denoted as S4 for short) which consumes the source and target currencies mvs,
mvt and a money value vs and converts to another money value vt. Thus, S4 can be used to implement the atomic
conversion cvtcurrency. In general, the WSDL template, which developers can use to discover and document an
appropriate external service for the conversions, is presented in Figure 4. In our work we adopt WSDL 1.1 instead of
WSDL 2.0, because current BPEL specification (Alves et al. 2007) only supports WSDL 1.1.

<wsdl:portType name="cvtPT">
 <wsdl:operation name="cvtOP">
 <wsdl:input message="msgType_s" name="msgName_s"/>
 <wsdl:output message="msgType_t" name="msgName_t"/>
 </wsdl:operation>
</wsdl:portType>

Figure 4. WSDL Template of External Web Services

It is worth noting that cvtscaleFactor and cvtcurrency are defined as parameterized conversions: the source and target
modifier values mvs, mvt are used as parameters of the conversions. A parameterized conversion can be applied to
handle any pair of different modifier values mvs and mvt (i.e., a dimension of the context differences), not only a
specific one. For example, cvtcurrency can be used to convert money value between any pair of currencies. Using
parameterized conversions can largely reduce the number of predefined atomic conversions and significantly
enhance the scalability of our reconciliation solution.

In addition, atomic conversions can be used to construct composite conversions. In the motivating composition
example, the market capitalization value in context ctxt3 from S3 is transferred to the value in context ctxt0 for CS.
As shown in Table 3, the differences of both currency and scale factor need to be reconciled. In brute-force
solutions, the conversion for this reconciliation is frequently specified in a straightforward but manual way.
According to the COIN ontology, two modifiers (i.e., scaleFactor and currency) are considered and our solution can
automatically construct the composite conversion by applying the two atomic conversions cvtscaleFactor and cvtcurrency
successively. The algorithm of conversion composition can be found in (Zhu and Madnick 2006). Compared to the
brute-force integration approaches, the mechanism of constructing composite conversions consisting of
parameterized atomic conversions significantly enhances the adaptability and scalability of our reconciliation
solution (Gannon et al. 2009; Zhu and Madnick 2006).

Semantic and Context Annotation

Web services are described using the WSDL specification at a syntactic level, rather than a semantic level. To
facilitate semantic interoperability, semantic annotation is widely used to establish correspondences between the

1 The BPEL specification and most BPEL engines (e.g., ActiveBPEL) support XPath 1.0.
2 Note that this is a general purpose conversion function that works for any values of mvs and mvt.

 Li et. al. / Reconciling Semantic Heterogeneity in Web Services Composition

 Thirtieth International Conference on Information Systems, Phoenix 2009 7

data elements of WSDL descriptions and the concepts of an ontological model (Patil et al. 2004; Sivashanmugam et
al. 2003). The annotations can be done using the W3C standard, Semantic Annotation for WSDL and XML Schema
(SAWSDL) (Farrell and Lausen 2007). SAWSDL allows any language for expressing an ontological model and
enables developers to annotate the syntactic WSDL descriptions with pointers to the concepts (identified via URIs)
of the ontological model (Kopecký et al. 2007; Verma and Sheth 2007). We use SAWSDL to annotate the WSDL
descriptions so that the syntactic descriptions are lifted to a semantic level.

SAWSDL provides an extension attribute modelReference for specifying the correspondence between WSDL
components (e.g., data/element types, input and output messages) and the concepts of an ontology. Herein, we
introduce two alternative ways of using the modelReference attribute to annotate the WSDL descriptions to the
COIN lightweight ontology: (1) Global context annotation: we allow the <wsdl:definitions> element of the WSDL
specification to have the modelReference attribute and use its value to indicate that all data elements of a
WSDL description subscribe to a certain context identified via the URI value; (2) Local context annotation: for any
data element, in addition to the URI value indicating the corresponding ontological concept, we allow the
modelReference attribute to have an additional URI value to indicate the context of the data element.

Global context annotation affects the entire WSDL description and allows the developers to succinctly declare the
context for all elements of the WSDL description. Local context annotation provides a mechanism for certain
elements to have their contexts different from the globally declared context. In case a small number of elements in a
WSDL description have contexts different from that of the other elements, this overriding capability devised in
our solution can be useful to simplify the annotation task.

<wsdl:definitions targetNamespace="http://openingPriceMarketCap.coin.mit” …
 xmlns:stkCoin="http://coin.mit.edu/ontologies/stockOntology#”

 xmlns:sawsdl="http://www.w3.org/ns/sawsdl”
 sawsdl:modelReference="stkCoin#ctxt3" >

 <wsdl:types>
<schema xmlns="http://www.w3.org/2001/XMLSchema" elementFormDefault="qualified"
 targetNamespace="http://openingPriceMarketCap.coin.mit">

 <element name="ticekerQuoteDate">
 <complexType>
 <sequence>
 <element name="tickerSymbol" type="xsd:string"
 sawsdl:modelReference="stkCoin#stockSymbol" />
 <element name="dateofQuote" type="xsd:string"

 sawsdl:modelReference="stkCoin#date stkCoin#ctxt3" />
 </sequence>
 </complexType>

</element>
<element name="dailyMarketCap" type="xsd:double"

 sawsdl:modelReference="stkCoin#marketCapital stkCoin#ctxt3" />
 </schema>
 </wsdl:types>
 <wsdl:message name="getDailyMarketCapResponse">
 <wsdl:part element="impl:dailyMarketCap" name="parameters"/>
 </wsdl:message>
 <wsdl:message name="getDailyMarketCapRequest">
 <wsdl:part element="impl:ticekerQuoteDate" name="parameters"/>
 </wsdl:message>
 <wsdl:portType name="DailyMarketCap">
 <wsdl:operation name="getDailyMarketCap">
 <wsdl:input message="impl:getDailyMarketCapRequest" name="getDailyMarketCapRequest"/>
 <wsdl:output message="impl:getDailyMarketCapResponse" name="getDailyMarketCapResponse"/>
 </wsdl:operation>
 </wsdl:portType>
</wsdl:definitions>

Figure 5. Annotated WSDL Description of S3 Using Global and Local Context Annotations

Figure 5 shows the annotated WSDL description of S3 in which the annotations are highlighted in bold. Each leaf
data element of S3 has the modelReference attribute to point to its corresponding concept in the COIN
ontology. For example, the elements tickerSymbol and dateofQuote correspond to the concepts stockSymbol and

Services Computing and Process Management

8 Thirtieth International Conference on Information Systems, Phoenix 2009

date, respectively. Since S3 use context ctxt3 (see Table 3), the modelReference attribute of the element
<wsdl:definitions> has the value “stkCoin#ctxt3” which is the URI of context ctxt3 defined in the COIN ontology.
As shown in Figure 5, the modelReference attribute of a data element has one value, or two values separated by
a whitespace3. In case of only one value, it is the URI of the concept to which the data element corresponds. In case
of two values, the former value is the URI of the concept and the latter is the URI of the context in which the data
element is interpreted. It is worth noting that both global and local context annotations comply with the SAWSDL
standard. For illustration purposes, both the global and local context annotations are used in Figure 5, though the
local annotation in Figure 5 is unnecessary - it does not override the global context for a different one.

If business needs were to change over time and we later needed to shift the date format of S3 from “mm/dd/yyyy” to
“dd-mm-yyyy”, the only thing we need to do is to update the context of the dateofQuote element of S3 to context
ctxt1 (see Table 3) by means of the local context annotation. Then, our solution would automatically determine and
reconcile possible semantic differences resulting from the date format change. Thus, the global and local context
annotations promote the flexibility of our solution to handle the evolving semantics of services.

Reconciliation Approach

In the domain of Web services composition, context conflicts probably occur when a piece of data from the source
service with one context is transferred to and consumed by the target service with another context. Figure 6 shows
the typical scenario where a context conflict occurs in the composition. As shown in Figure 6, there exists a data
transfer where the data data_s from service WS_s is transferred and consumed as data data_t of service WS_t. Using
context annotation, both data_s and data_t are annotated to concept C having a modifier m. Also, WS_s and WS_t
are annotated with two contexts ctxt_s, ctxt_t, respectively. According to the context definition of the COIN
ontology, data_s and data_t are interpreted differently by WS_s and WS_t if the modifier value of m in ctxt_s is mvs
different from the value mvt of m in ctxt_t. As a result, a context conflict occurs within the data transfer.

Figure 6. Scenario of Context Conflict in Web Services Composition

Herein, we introduce the approach to determine and reconcile context conflicts within Web services composition.
The reconciliation approach consists of three procedures that can be automatically performed. In the following
sections, we assume the needed context annotation is specified in the WSDL descriptions and the process/workflow
logics of service composition are defined in BPEL. Note that our solution need not extend or annotate the BPEL
specification. Also, the solution can be easily adapted for many other process modeling languages.

Identifying Data Transfers

Recall that the BPEL composition which defines the process of service composition ignoring context conflicts is
called the naive BPEL. Since context conflicts occur within data transfers, it is needed to analyze the data flow of
the naive BPEL and identify all the data transfers. Each data transfer can be represented using the following form,
where ws_s/ws_t and data_s/data_t are the source/target service and data element involved in the data transfer, and
type is the type of the data transfer, which can be either explicit or implicit.

3 The SAWSDL specification allows the modelReference attribute having multiple values separated by whitespaces.

 Li et. al. / Reconciling Semantic Heterogeneity in Web Services Composition

 Thirtieth International Conference on Information Systems, Phoenix 2009 9

dataTrans(type, data_s, ws_s, data_t, ws_t)

Each explicit data transfer involves two variables and can be easily identified according to the <assign> activity
which is used to copy the data of the source variable to the target variable. As shown in Figure 2, there are two
<assign> activities within the composition example: one is to transfer the data dailyMarketCap, and the other is to
transfer the data openingPrice. Thus, two explicit data transfers are identified.

Each implicit data transfer involves one variable and can be identified in case the source and target interaction
activities manipulating the variable are different. The BPEL specification provides four types of interaction
activities, that is, <receive>, <reply>, <invoke>, and <onMessage> contained in <pick>. For a certain variable var,
its source interaction activity may be <receive>, <onMessage>, or <invoke> in case var is the output variable. Its
target interaction may be <reply>, or <invoke> in case var is the input variable. By examining each variable in the
composition, all implicit data transfers in the BPEL composition can be identified.

Input: BPEL process proc;
Output: The set of explicit data transfers EDT = {edt},
 The set of implicit data transfers IDT = {idt};

1. Set EDT = ∅, IDT = ∅
2. For each <assign> activity asn in proc
3. var_s ← getSourceVariable(asn)
4. var_t ← getTargetVariable(asn)
5. act_s ← getSourceInteractionActivity(proc, asn)
6. act_t ← getTargetInteractionActivity(proc, asn)
7. edt ← getDataTransfer(var_s, var_t, act_s, act_t)
8. EDT ← EDT ∪ {edt}
9. For each variable var in proc
10. Lvar ← getInteractionActivitySeries(proc, var)
11. For each source activity act_s1 in Lvar
12. act_s2 ← getNextSourceActivity(Lvar, act_s1)
13. Tvar ← getTargetActivitySeries(Lvar, act_s1, act_s2)
14. For each target activity act_t in Tvar
15. idt ← getDataTransfer(var, act_s1, act_t)
16. IDT ← IDT ∪ {idt}
17. Return EDT, IDT

Figure 7. Algorithm 1: Algorithm for Identifying Explicit and Implicit Data Transfers

Figure 7 gives the algorithm (Algorithm 1) for identifying explicit and implicit data transfers. Using Algorithm 1,
three implicit and two explicit data transfers are identified within the composition example, as shown in Table 4.
Instead of explicitly using the <assign> activity, the output of invoking S1 is directly transferred and consumed as
the input of invoking S3 through variable tickerQuoteDate. An implicit data transfer is thus identified, where the
source and target interaction activities are the invocation of S1, S3, respectively. As shown in Figure 2, the
composition example involves <receive>, <reply> and <invoke>, except <onMessage>.

Table 4. Data Transfers of the Composition Example
dt1 dataTrans (implicit, tickerSymbol, CS, tickerSymbol, S1)
dt2 dataTrans (implicit, tickerSymbol, CS, tickerSymbol, S2)
dt3 dataTrans (implicit, tickerQuoteDate, S1, tickerQuoteDate, S3)
dt4 dataTrans (explicit, openingPrice, S2, openingPrice, CS)
dt5 dataTrans (explicit, dailyMarketCap, S3, openingMarketCap, CS)

Determining Context Conflicts

When a data transfer is identified, the annotated WSDL descriptions of its source and target services (denoted as
ws_s and ws_t, respectively) can be derived through <partnerLinkType> of the BPEL composition. According to the
context annotation, the concept C corresponding to the transferred data is obtained. Also, if the source data data_s
and the target data data_t are annotated with contexts, their contexts are denoted as ctxt_s, ctxt_t, respectively. In
order to determine possible context conflicts, all modifiers of concept C need to be examined. In case a certain

Services Computing and Process Management

10 Thirtieth International Conference on Information Systems, Phoenix 2009

modifier m has different values mvs, mvt in ctxt_s and ctxt_t, respectively, a context conflict is thus determined. The
scenario of determining context conflicts is illustrated in Figure 6. For example, dt3 (see Table 4) is an implicit data
transfer involving variable tickerQuoteDate which contains two data elements dateofQuote and tickerSymbol. In the
WSDL descriptions of S1 and S3, dateofQuote is annotated to concept date of the COIN ontology. The concept date
has a modifier dateFormat with different values in the contexts of S1 and S3: “dd-mm-yyyy” for S1 and
“mm/dd/yyyy” for S3 (see Table 3). As a result, a context conflict occurs when dateofQuote is transferred from S1 to
S3 through the data transfer dt3.

Each context conflict can be represented using the following form, where dt is the data transfer in which the context
conflict occurs. [(mi, mvsi, mvti)]i={1,…,n} depicts the array of 1 to n modifiers with different values in
ctxt_s and ctxt_t.

ctxtConflict(dt, C, ctxt_s, ctxt_t, [(mi, mvsi, mvti)]i={1,…,n})

Figure 8 gives the algorithm (Algorithm 2) to automate the determination procedure. Using Algorithm 2, three
context conflicts within the naive BPEL composition are determined as shown in Table 5.

Input: BPEL process proc, the set of data transfers DT = {dt},
 The set of annotated WSDL description WS = {ws}, COIN ontology onto;
Output: The set of context conflicts CC = {cc};

1. Set CC = ∅
2. For each data transfer dt in DT
3. ws_s ← getSourceService(dt, proc, WS)
4. ws_t ← getTargetService(dt, proc, WS)
5. data_s ← getSourceDataElement(ws_s, dt)
6. data_t ← getTargetDataElement(ws_t, dt)
7. c ← getConcept(ws_s, data_s)
8. ctxt_s ← getContext(ws_s, data_s)
9. ctxt_t ← getContext(ws_t, data_t)
10. For each modifier m of c in onto
11. mvs ← getModifierValue(c, m, ctxt_s)
12. mvt ← getModifierValue(c, m, ctxt_t)
13. If mvs ≠ mvt
14. Then cc ← getContextConflict(C, m, ctxt_s, ctxt_t, mvs, mvt)
15. CC ← CC ∪ {cc}
16. Return DT

Figure 8. Algorithm 2: Algorithm for Determining Context Conflicts

Table 5. Context Conflicts of the Composition Example

cc1 ctxtConflict (dt3, date, ctxt1, ctxt3, [(dateFormat, “dd-mm-yyyy”, “mm/dd/yyyy”)])
cc2 ctxtConflict (dt4, openingPrice, ctxt2, ctxt0, [(currency, “USD”, “GBP”)])

cc3 ctxtConflict (dt5, dailyMarketCap, ctxt3, ctxt0, [(scaleFactor, “1000”, “1”);
 (currency, “USD”, “GBP”)])

Incorporating Conversions

Once a context conflict is determined within a data transfer, it is needed to identify an appropriate conversion to
reconcile the conflict. The appropriate conversion is either a predefined atomic conversion or a composite
conversion consisting of several atomic conversions. For reconciliation, the identified conversion is incorporated
into the data transfer to convert the exchanged data in the source context to the target context.

In case the determined context conflict occurs in an implicit data transfer, the data transfer needs to be made explicit
in order to incorporate the conversion. Suppose var is the variable involved in the implicit data transfer. To make the
data transfer explicit, it is needed to create a new variable named var_t which has the same element type with var,
and to insert a <assign> activity into the data transfer for copying var to var_t. As discussed above, data transfer dt3
is an implicit data transfer where a context conflict of date format occurs. To make dt3 explicit, a new variable

 Li et. al. / Reconciling Semantic Heterogeneity in Web Services Composition

 Thirtieth International Conference on Information Systems, Phoenix 2009 11

tickerQuoteDate_t is declared using the same element type of variable tickerQuoteDate. Since tickerQuoteDate has
two data elements dateofQuote and tickerSymbol, the <assign> activity inserted into dt3 has two <copy> elements
for copying dateofQuote and tickerSymbol of tickerQuoteDate to that of tickerQuoteDate_t. Then, the input variable
of the invocation of S3 is changed from variable tickerQuoteDate to variable tickerQuoteDate_t. After this step, all
data transfers with context conflicts are explicit.

In case a context conflict involves only one modifier, it can be reconciled using a predefined atomic conversion that
is identified according to its information. For example, the context conflict cc1, as shown in Table 5, involves
modifier dateFormat of concept date. It is thus easy to identify the atomic conversion cvtdateFormat that can reconcile
cc1. The conversion cvtdateFormat is applied through substituting the input vs of the XPath function as data element
dateofQuote. Also, the context conflict cc2 involves modifier currency of concept openingPrice, which can be
reconciled using the atomic conversion cvtcurrency. As discussed before, cvtcurrency is implemented by the external
currency exchange service S4, rather than using XPath function. Thus, a <invoke> activity is inserted in the data
transfer dt4 of cc2 in order to convert openingPrice in “USD” from S2 to the equivalent price in “GBP”, an output
data of CS. Necessary <assign> activities are also inserted to explicitly transfer the exchanged data.

Input: BPEL process proc, the set of annotated WSDL description WS = {ws},
 the set of context conflicts CC = {cc},
 the set of predefined atomic conversions CVT = {cvt};
Output: Mediated BPEL process mediatedProc;

1. mediatedProc = proc
2. For each context conflict cc in CC
3. dt ← getDataTransfer(cc)
4. If isImplicit(dt) == ‘TRUE’
5. Then var ← getVariable(dt), var_t ← declareNewVariable(var),
6. insertAssign(mediatedProc, dt, var, var_t)
7. AMV = [(mi, mvsi, mvti)] ← getArrayOfModifierValues(cc)
8. If |AMV| == “1”
9. Then cvt ← getAtomicConversion(cc, m, CVT)
10. insertConversion(mediatedProc, cvt)
11. Else
12. For each (mi, mvsi, mvti) in AMV
13. cvti ← getAtomicConversion(cc, mi, CVT)
14. insertConversion(mediatedProc, cvti)
15. Return mediatedProc

Figure 9. Algorithm 3: Algorithm for Incorporating Conversions

When a certain context conflict involves two or more modifiers, no predefined atomic conversion can reconcile the
context conflict, as each atomic conversion is defined with only one modifier. In these complex cases, the context
conflict can still be reconciled using the composition of multiple atomic conversions, each of which is defined with
one of the modifiers involved in the context conflict. For example, the context conflict cc3 involves two modifiers
scaleFactor and currency of concept marketCapital. Among the predefined atomic conversions, modifier
scaleFactor and currency correspond to cvtscaleFactor, cvtcurrency, respectively. Therefore, cc3 can be reconciled using
the composition of the two atomic conversions, successively applying cvtscaleFactor and cvtcurrency. Specifically, the
output data dailyMarketCap from S3 is first converted by cvtscaleFactor from the scale factor “1000” to “1”, and then
converted by cvtcurrency from the currency “USD” to the equivalent amount in “GBP”. After the two-step composite
conversion consisting of cvtscaleFactor and cvtcurrency, the exchanged data is converted and transferred to the output data
openingMarketCap of CS. Figure 9 gives the algorithm (Algorithm 3) to automate the procedure of incorporating
conversions to reconcile the determined context conflicts.

Implementation and Evaluation

A proof-of-concept prototype, Context Mediation Tool (CMT), has been implemented to validate the
reconciliation solution. The COIN lightweight ontology with structured contexts is defined using the COIN Model
Application Editor4 which is a Web-based tool for creating and editing COIN ontologies and contexts in RDF/OWL.
Atomic conversions between the contexts are defined in a specification file. The WSDL descriptions of the

4 http://interchange.mit.edu/appEditor/TextInterface.aspx?location=MIT

Services Computing and Process Management

12 Thirtieth International Conference on Information Systems, Phoenix 2009

composite and component services (i.e., CS and S1 ~ S3) are annotated with the modelReference attribute of the
SAWSDL standard to the COIN lightweight ontology. To facilitate the annotation task, we have developed the
context annotation tool Radiant4Context which is an extension to Radiant5, an open-source Eclipse plug-in for
semantic annotation. We assume that the U.K. developer, being unaware of semantic differences among the
services, created the naive BPEL process of the motivating composition example.

To perform the reconciliation approach, we use CMT to create a mediation project and import all these documents.
The reasoning engine implemented within CMT first uses Algorithm 1 (see Figure 7) to identify the three implicit
and two explicit data transfers within the naive BPEL composition example. Then, CMT uses Algorithm 2 to
determine the three context conflicts. Finally, three predefined6 atomic conversions cvtdateFormat, cvtscaleFactor and
cvtcurrency are required and incorporated into the corresponding data transfers to reconcile the three context conflicts.

CMT has three working areas for the mediation work, as shown in Figure 10. The first working area requires the
user to import the involved documents of the composition into the mediation project. To monitor the results of
different mediation steps, the second working area of CMT, Mediation Stage, allows the user to choose one of
the four consecutive stages, including Naive BPEL Process, Data Transfers, Context Conflicts, and Mediated BPEL
Process. These stages reveal the intermediate and final results that the approach produces while handling semantic
heterogeneity among services involved in the composition. For example, Figure 10 shows the stage Context
Conflicts where the three context conflicts within the motivating composition example and corresponding atomic
conversions required for the reconciliation are identified. At the stage Mediated BPEL Process, CMT produces the
mediated BPEL composition with incorporated conversions.

Figure 10. Snapshot of CMT at Stage Context Conflicts

For validation purposes, we imported the mediated BPEL composition into the typical BPEL tool ActiveVOS BPEL
Designer. We provided several sample data values for the input of CS and the output of the invoked services (i.e., S1
~ S3 and S4). We utilized the simulation feature of ActiveVOS BPEL Designer to simulate the execution of the
mediated BPEL composition, as shown in Figure 11. The execution results indicated that: a) the mediated BPEL
process normally completed; b) all the three context conflicts were successfully reconciled, that is, appropriate
conversions were properly performed to convert date formats, scale factors and currencies; and c) CS produced the
expected output: openingPrice and openingMarketCap.

5 http://lsdis.cs.uga.edu/projects/meteor-s/downloads/index.php?page=1
6 We recommend that libraries of such atom conversions be established that can be reused for future compositions.

 Li et. al. / Reconciling Semantic Heterogeneity in Web Services Composition

 Thirtieth International Conference on Information Systems, Phoenix 2009 13

Figure 11. Mediated BPEL Composition with Incorporated Conversions

Due to the limited space, we have shown only one composition example through this paper. In fact, our
reconciliation solution can handle more general and complex composition situations, such as situations that involve
inconsistent data representation, precision, unit and scaling. Further, our solution can deal with all the four types of
interaction activities supported by the BPEL specification (e.g., <receive>, <reply>, <invoke> and <onMessage>)
and complex workflow constructs for the BPEL composition, including sequence, parallel, choice and iteration.

To evaluate the benefits of our reconciliation solution, we take the evaluation framework that utilizes an analytical
approach to indirectly measure human efforts with respect to the number of conversions to be manually specified
and maintained over time (Gannon et al. 2009). The measurements of the framework are as follows:

• Adaptability: number of conversions to be updated when data semantics of the involved services change.
• Extensibility: number of conversions to be added (or removed) when a service is added (or removed).
• Scalability: number of conversions needed for the reconciliation among the involved services.

Let us assume that the CS developer later wanted to serve diverse users that require any combination of 10 different
currencies and 4 scale factors (i.e., 1, 1K, 1M, 1B). To convert the output dailyMarketCap of S3 to the output
openingMarketCap of CS, it would be most likely for composition developers to manually specify 39 (=10×4 - 1)
custom conversions if they used a brute-force approach. An even worse case would arise if currencies and scale
factors of CS, S2 and S3 changed over time independently. Actually, such situations frequently happen in reality,
because the implementations of Web services always evolve in the fast-changing global business environment.
Comparatively, it is only needed to define 2 parameterized atomic conversions (i.e., cvtscaleFactor and cvtcurrency) by
using our reconciliation solution, regardless of the changing currencies and scale factors. Therefore, our solution
holds the adaptability and extensibility, if the involved services were to be updated or services were to be added (or
removed) in the composition. Also, our solution has the scalability, as it significantly reduces the number of
conversions to be predefined. Due to limited spaces, the detailed evaluation about the adaptability, extensibility and
scalability of our solution will be presented in a future paper.

Related Work and Discussion

The basic Web services standards (e.g., WSDL, BPEL) generally ignore data semantics, rendering semantic
composition and interoperability far from reality. It has become an active research area for applying Semantic Web
technologies to Web services, referred to as Semantic Web Services (SWSs) (Burstein et al. 2005; McIlraith et al.
2001; Sycara et al. 2003). OWL-S (Martin et al. 2007), WSMF/WSMO (Fensel and Bussler 2002; Lausen et al.
2005) and METEOR-S (Patil et al. 2004; Sivashanmugam et al. 2003) are three major initiatives that have developed

Services Computing and Process Management

14 Thirtieth International Conference on Information Systems, Phoenix 2009

languages and frameworks to explicitly add semantics into the Web services descriptions. Despite the ontological
foundations provided by these efforts, it is still necessary to develop effective approaches to semantic composition
and interoperability towards the vision of SWSs.

For Web services composition, Colombo framework (Berardi et al. 2005) combines the key elements of SWSs and
can automatically synthesize composite Web services. In (Rao et al. 2006), Web services are externally described in
DAML-S and the process model of the composite service is generated using a Linear Logic theorem prover. The
INFRAWEBS approach (Agre and Marinova 2007) can find an appropriate service composition which is guided by
the algorithm for run-time decomposition of the user goal into sub-goals. Most of the efforts in this thread focus on
automatically constructing the workflow logic of service composition by means of semantics/ontologies, but ignore
semantic heterogeneity among the services that could severely hamper their composition.

In the literature only a few approaches have been developed to handle semantic heterogeneity in Web services
composition. The approach discussed in (Nagarajan et al. 2006; Nagarajan et al. 2007) deals with schematic
heterogeneity of the messages exchanged between a pair of services, rather than a composition consisting of
multiple services. The approach requires each service to be annotated and mapped to an ontology that serves as the
global schema. It is significantly more time-consuming to construct and maintain this type of global schema than the
lightweight ontology used in our approach which only needs a small set of generic concepts. More importantly, the
mappings are created manually to include necessary conversion in their approach. In contrast, the actually mappings
in our approach are automatically composed using a small number of atomic conversions.

The data-level heterogeneity between Web services is investigated in (Spencer and Liu 2004) and data
transformation rules are constructed to convert the data of the exchanged messages from one service to the other.
But the approach focuses on dealing with a pair of interoperating services, rather than a composition of multiple
services. The work in (Gagne et al. 2006; Sabbouh et al. 2008) proposes a set of mapping relations to establish the
direct correspondence between the messages of two services. The approach is also restricted to simple composition
scenarios in which only two services are integrated. Furthermore, those approaches that construct conversions (e.g.,
mappings, rules) between a pair of services will result in the gradually increasing number of conversions over time.

To the best of our knowledge, the work in (Mrissa et al. 2006a; b; Mrissa et al. 2007), which also draws on the
original COIN strategy, is most related to this paper. However, our solution is significantly distinct from their work
in multiple aspects. (1) Their work ignores considering the composite service whose context may be different from
any component service, while our solution can address both composite and component services. (2) They embed
context definition in WSDL descriptions using a non-standard extension. As a result, their approach suffers from the
proliferation of redundant context descriptions when multiple services share the same context. In contrast, we avoid
such problem by specifying modifier values in the ontology definition separate from WSDL descriptions and use the
flexible, standard-compliant mechanism for annotating WSDL descriptions using SAWSDL. (3) Only external
services are considered in their work to reconcile context differences, while both XPath functions and external
services are proposed in our reconciliation solution. In certain cases, it is applicable and more efficient to use XPath
functions as conversions, such as date formats in different styles and numbers in different scale factors. (4) Only
context conflicts between the <invoke> activities in the BPEL composition are considered in their work, while
context conflicts between all interaction activities (e.g., <receive>, <reply>, <invoke> and <onMessage>) can be
handled using our solution. (5) Their approach requires a priori specification of the external services to be invoked
to reconcile context conflicts, thus they do not have the automatic conflict detection and conversion composition
capability, and they miss the opportunity to reuse predefined conversion. In our work we define a parameterized
atomic conversion for each modifier and use reasoning algorithms to automatically generate composite conversions
consisting of atomic conversions to handle complex context differences. Thus, the number of predefined
conversions is largely reduced. As discussed in (Gannon et al. 2009), the mechanism of the conversion composition
significantly enhances the adaptability, extensibility, and scalability of the COIN-based solution.

In addition to the literature on Web services, it is worth noting an interesting work (Sun et al. 2006) from the domain
of process/workflow management. Their work develops data-flow specification for detecting data-flow anomalies
within a process/workflow, including missing data, redundant data and potential data conflicts. However, their work
provides no automatic approach that can be used to produce the data-flow specification. Also, semantic
heterogeneity of the data exchanged is not considered. It may be able to adapt Algorithm 1 (see Figure 7) to
automatically construct data-flow specification so that potential data-flow anomalies can be also addressed.

In summary, this paper makes three important contributions:

 Li et. al. / Reconciling Semantic Heterogeneity in Web Services Composition

 Thirtieth International Conference on Information Systems, Phoenix 2009 15

First, this paper provides a solution to automatic determination and reconciliation of semantic heterogeneity in Web
services composition. The solution uses the COIN lightweight ontology which, once constructed, can be reused in
further composition/integration situations. More importantly, we use reasoning algorithms for the automatic
composition of atomic conversions to handle complex context differences and reduce the number of conversions to
be manually predefined. Also, certain atomic conversions can be parameterized to further reduce the number of
predefined conversions. Thus, our solution can significantly alleviate the reconciliation efforts and accelerate the
development of Web services composition.

Second, this paper describes a standard-compliant mechanism for annotating WSDL descriptions using SAWSDL.
This mechanism allows the annotation task to be performed using any existing SAWSDL-aware tools, e.g.,
Radiant7. Also, two alternative ways of context annotation (i.e., the global and local methods) are provided to
alleviate the complexity of handling the evolving data semantics of Web services. Thus, this mechanism facilitates
the annotation task and makes our solution practical, accessible and flexible.

Third, this paper presents a generalizable approach to automatically analyze data flows of the composition
processes, so that semantic differences between the exchanged data can be determined and reconciled. We show
how our approach can be used with BPEL. It is easy to adapt our approach to analyze the data flow of a process
specified in many other process modeling languages such as the Process Algebras, UML Activity Diagram and the
Business Process Modeling Notation (BPMN), and to extend our solution to address semantic reconciliation for
Business Process Integration (BPI) (Becker et al. 2003). For example, applying the solution to service composition
in LOTOS, a kind of process algebra, can be found in (Li et al. 2009a; b).

Conclusion

Semantic heterogeneity widely exists among Web services and severely hampers their composition and
interoperability. To this end, we adopt the context perspective to deal with the data-level semantic heterogeneity,
including inconsistent data naming, representation, precision, scaling and unit. We describe the COIN lightweight
ontology with structured contexts to define a small set of generic concepts among the services involved in the
composition. The multiple specializations of the generic concepts, which are actually used by different services, are
structured into different contexts so that the differences can be treated as context differences. We introduce a
flexible, standard-compliant mechanism of semantic annotation to elevate the syntactic WSDL descriptions to the
COIN ontology. Given the naive BPEL composition ignoring semantic differences, the reconciliation approach can
automatically determine context conflicts by reasoning on the COIN ontology and produce the mediated BPEL
process by incorporating necessary conversions. The incorporated conversions can be predefined atomic conversions
or composite conversions that are dynamically constructed using the atomic ones. As discussed, the COIN-based
reconciliation solution has desirable properties of adaptability, extensibility and scalability. In the long run, the
solution can significantly alleviate the reconciliation efforts for Web services composition.

Semantic heterogeneity among services exists not only at the data level but also at the structural/schematic level. In
the future, we plan to adapt and demonstrate our solution to handle both levels of semantic heterogeneity so that a
comprehensive reconciliation solution can be achieved. To reconcile the structural differences between exchanged
messages, it may be applicable to define appropriate conversions using XLST for transforming one message schema
to another. Also, intelligent techniques need to be developed to facilitate the (semi-)automatic construction of the
COIN ontology and contexts. In addition, we plan to extend our solution to deal with various data anomalies (e.g.,
missing data, redundant data, and conflicting data) in Web services composition and other application domains such
as Business Process Integration and scientific workflows.

Acknowledgements

The authors thank the anonymous reviewers and editor for their insightful suggestions in improving this paper. Also,
the authors thank Frank Manola, Independent Consultant, Wilmington, MA, USA, for his valuable comments in
improving the work. This work was partially supported by the MIT Sloan China Management Education Project and
grants from the National Natural Science Foundation of China (No. 60674080 and No. 60704027) and the National
High-Tech R&D (863) Plan of China (No. 2007AA04Z150).

7 http://lsdis.cs.uga.edu/projects/meteor-s/downloads/index.php?page=1

Services Computing and Process Management

16 Thirtieth International Conference on Information Systems, Phoenix 2009

References

Agre, G., and Marinova, Z. "An INFRAWEBS Approach to Dynamic Composition of Semantic Web Services,"
Cybernetics and Information Technologies (7:1), 2007, pp. 45-61.

Alves, A., Arkin, A., Askary, S., Barreto, C., Bloch, B., Curbera, F., Ford, M., Goland, Y., Guizar, A., and Kartha,
N. "Web services business process execution language version 2.0," OASIS Standard, 2007.

Becker, J., Dreiling, A., Holten, R., and Ribbert, M. "Specifying information systems for business process
integration–A management perspective," Information Systems and E-Business Management (1:3), 2003, pp.
231-263.

Berardi, D., Calvanese, D., De Giacomo, G., Hull, R., and Mecella, M. "Automatic composition of transition-based
semantic web services with messaging," in Proceedings of the 31st International Conference on Very Large
Data Bases (VLDB 2005), Trondheim, Norway: VLDB Endowment, 2005, pp. 613-624.

Bressan, S., Goh, C., Levina, N., Madnick, S., Shah, A., and Siegel, M. "Context Knowledge Representation and
Reasoning in the Context Interchange System," Applied Intelligence (13:2), 2000, pp. 165-180.

Burstein, M., Bussler, C., Finin, T., Huhns, M.N., Paolucci, M., Sheth, A.P., Williams, S, and Zaremba, M. "A
semantic Web services architecture," IEEE Internet Computing (9:5), 2005, pp. 72-81.

Christensen, E., Curbera, F., Meredith, G., and Weerawarana, S. "Web services description language (WSDL) 1.1,"
W3C Recommendation, 2001.

Farrell, J., and Lausen, H. "Semantic Annotations for WSDL and XML Schema," W3C Recommendation, available
at http://www.w3.org/TR/2007/REC-sawsdl-20070828/ 2007.

Fensel, D., and Bussler, C. "The Web Service Modeling Framework WSMF," Electronic Commerce Research and
Applications (1:2), 2002, pp. 113-137.

Gagne, D., Sabbouh, M., Bennett, S., and Powers, S. "Using Data Semantics to Enable Automatic Composition of
Web Services," in Proceedings of the 3rd IEEE International Conference on Services Computing (SCC 2006),
2006, pp. 438-444.

Gannon, T., Madnick, S., Moulton, A., Siegel, M., Sabbouh, M., and Zhu, H. "Framework for the Analysis of the
Adaptability, Extensibility, and Scalability of Semantic Information Integration and the Context Mediation
Approach," in Proceedings of the 42nd Hawaii International Conference on System Sciences (HICSS 2009),
Hawaii, 2009, pp. 1-11.

Goh, C.H., Bressan, S., Madnick, S., and Siegel, M. "Context interchange: new features and formalisms for the
intelligent integration of information," ACM Transactions on Information Systems (17:3), 1999, pp. 270-293.

Kopecký, J., Vitvar, T., Bournez, C., and Farrell, J. "SAWSDL: Semantic Annotations for WSDL and XML
Schema," IEEE Internet Computing 11(6), 2007, pp. 60-67.

Lausen, H., Polleres, A., and Roman, D. "Web Service Modeling Ontology (WSMO)," W3C Member Submission,
2005.

Li, X., Madnick, S., Zhu, H., and Fan, Y. "An Approach to Composing Web Services with Context Heterogeneity,"
in Proceedings of the 7th International Conference on Web Services (ICWS 2009), Los Angeles, CA, USA,
2009a, pp. 695-702.

Li, X., Madnick, S., Zhu, H., and Fan, Y. "Improving Data Quality for Web Services Composition," in Proceedings
of the 7th International Workshop on Quality in Databases (QDB 2009), co-located with the 35th International
Conference on Very Large Data Bases (VLDB 2009), Lyon, France, 2009b.

Madnick, S., Firat, A., and Siegel, M. "The Caméléon Web Wrapper Engine," in Proceedings of the VLDB
Workshop on Technologies for E-Services [SWP #4128, CISL #00-03], Cairo, Egypt, 2000, pp. 269–283.

Martin, D., Burstein, M., McDermott, D., McIlraith, S., Paolucci, M., Sycara, K., McGuinness, D., Sirin, E., and
Srinivasan, N. "Bringing Semantics to Web Services with OWL-S," World Wide Web (10:3), 2007, pp. 243-
277.

McIlraith, S.A., Son, T.C., and Zeng, H. "Semantic Web Services," IEEE Intelligent Systems (16:2), 2001, pp. 46-
53.

Mrissa, M., Ghedira, C., Benslimane, D., and Maamar, Z. "Context and Semantic Composition of Web Services," in
Proceedings of the 17th International Conference on Database and Expert Systems (DEXA 2006), Krakow,
Poland, 2006a, pp. 266-275.

Mrissa, M., Ghedira, C., Benslimane, D., and Maamar, Z. "A Context Model for Semantic Mediation in Web
Services Composition," in Proceedings of the 25th International Conference on Conceptual Modeling (ER
2006), Tucson, Arizona, USA, 2006b, pp. 12-25.

Mrissa, M., Ghedira, C., Benslimane, D., Maamar, Z., Rosenberg, F., and Dustdar, S. "A context-based mediation
approach to compose semantic Web services," ACM Transactions on Internet Technology (8:1), 2007, 4.

 Li et. al. / Reconciling Semantic Heterogeneity in Web Services Composition

 Thirtieth International Conference on Information Systems, Phoenix 2009 17

Nagarajan, M., Verma, K., Sheth, A.P., Miller, J., and Lathem, J. "Semantic Interoperability of Web Services -
Challenges and Experiences," in Proceedings of 4th International Conference on Web Services (ICWS 2006),
Chicago, USA, 2006, pp. 373-382.

Nagarajan, M., Verma, K., Sheth, A.P., and Miller, J.A. "Ontology driven data mediation in web services,"
International Journal of Web Services Research (4:4), 2007, pp. 104-126.

Papazoglou, M.P., Traverso, P., Dustdar, S., and Leymann, F. "Service-Oriented Computing: State of the Art and
Research Challenges," IEEE Computer (40:11), 2007, pp. 38-45.

Patil, A.A., Oundhakar, S.A., Sheth, A.P., and Verma, K. "Meteor-s web service annotation framework," in
Proceedings of the13th international conference on World Wide Web (WWW 2004), 2004, pp. 553-562.

Rao, J., Küngas, P., and Matskin, M. "Composition of semantic web services using linear logic theorem proving,"
Information Systems (31:4-5), 2006, pp. 340-360.

Sabbouh, M., Higginson, J.L., Wan, C., and Bennett, S.R. "Using Mapping Relations to Semi Automatically
Compose Web Services," in Proceedings of IEEE Congress on Services - Part I, 2008, pp. 211-218.

Seligman, L.J., Rosenthal, A., Lehner, P.E., and Smith, A. "Data Integration: Where Does the Time Go?" IEEE
Data Engineering Bulletin (25:3), 2002, pp. 3-10.

Sivashanmugam, K., Verma, K., Sheth, A., and Miller, J. "Adding Semantics to Web Services Standards," in
Proceedings of the 1st IEEE International Conference of Web Services (ICWS 2003), Las Vegas, Nevada,
USA, 2003, pp. 395–401.

Spencer, B., and Liu, S. "Inferring Data Transformation Rules to Integrate Semantic Web Services," in Proceedings
of the 3rd International Semantic Web Conference (ISWC 2004), Hiroshima, Japan, 2004, pp. 456-470.

Sun, S.X., Zhao, J.L., Nunamaker, J.F., and Sheng, O.R.L. "Formulating the data-flow perspective for business
process management," Information Systems Research (17:4), 2006, pp. 374-391.

Sycara, K., Paolucci, M., Ankolekar, A., and Srinivasan, N. "Automated discovery, interaction and composition of
Semantic Web services," Web Semantics: Science, Services and Agents on the World Wide Web (1:1), 2003, pp.
27-46.

Verma, K., and Sheth, A. "Semantically Annotating a Web Service," IEEE Internet Computing (11:2), 2007, pp. 83-
85.

Wache, H., Voegele, T., Visser, U., Stuckenschmidt, H., Schuster, G., Neumann, H., and Hübner, S. "Ontology-
based integration of information-a survey of existing approaches," IJCAI-01 Workshop on Ontologies and
Information Sharing, Seattle, WA, USA, 2001, pp. 108-117.

Yu, Q., Liu, X., Bouguettaya, A., and Medjahed, B. "Deploying and managing Web services: issues, solutions, and
directions," The International Journal on Very Large Data Bases (17:3), 2008, pp. 537-572.

Zhang, J., Chang, C.K., Zhang, L.J., and Hung, P.C.K. "Toward a Service-Oriented Development Through a Case
Study," IEEE Transactions on Systems, Man and Cybernetics, Part A (37:6), 2007, pp. 955-969.

Zhu, H., and Madnick, S. "Scalable Interoperability Through the Use of COIN Lightweight Ontology," in
Proceedings of the 2nd VLDB Workshop on Ontologies-based techniques for DataBases and Information
Systems (ODBIS 2006), Seoul, Korea, 2006, pp. 37-50.

	CISL WP 2009-08 cover page
	2009-09-08 CRV07_ICIS09 sm clean

