

Reconciling Protocol Mismatches of Web Services
by Using Mediators

Xitong Li, Yushun Fan, Stuart Madnick, Quan Z. Sheng

Working Paper CISL# 2008-17

December 2008

Composite Information Systems Laboratory (CISL)
Sloan School of Management, Room E53-320

Massachusetts Institute of Technology
Cambridge, MA 02142

Reconciling Protocol Mismatches of Web Services by Using Mediators†

Xitong Li1, Yushun Fan1, Stuart Madnick2, Quan Z. Sheng3
1 Department of Automation, Tsinghua University, Beijing 100084, P.R. China

2 MIT Sloan School of Management, 50 Memorial Drive, Cambridge, MA 02142, USA
3 School of Computer Science, University of Adelaide, Adelaide, SA 5005, Australia

Abstract
 In the era of Global Services, Service Oriented Architecture (SOA) has been gaining momentum for
building Web-based information systems. Service composition is one of the key objectives for adopting
SOA. Unfortunately, Web services are not always exactly compatible and it is a non-trivial task to address
the mismatches between them. To this end, an approach based on mediator patterns is proposed to
develop mediators for reconciling protocol mismatches of partially compatible services and mediating
them together. A heuristic technique is developed for identifying protocol mismatches and selecting
appropriate patterns. The main steps of the reconciliation approach are presented.

Abstrait
 Les services de Web ne sont pas toujours exactement compatibles et les disparités entre eux devraient
être adressées. On propose une approche basée sur des modèles de médiateur pour développer des
médiateurs pour réconcilier des disparités de protocole. Une technique heuristique est développée pour
identifier des disparités de protocole et choisir les modèles appropriés. Les étapes principales de
l'approche de réconciliation sont présentées.

1. Introduction
 In the era of Global Services, Service Oriented Architecture (SOA) has been gaining momentum for
building Web-based information systems. Service composition, whereby multiple independent services
are used in combination to accomplish a more complex task, is one of the key objectives for adopting
SOA, as it facilitates the seamless integration of heterogeneous information systems within and/or across
enterprise boundaries [1]. Unfortunately, Web services are not always exactly compatible. Reconciling the
mismatches of partially compatible services is a non-trivial task and much effort may be needed.
 Mismatches of service composition are generally recognized at both the signature level and protocol
level. Signature mismatches, which occur in the message types, have received considerable attention [2].
In comparison, the problem of protocol mismatches, which occur in the message exchanging sequences, is
still open. A frequently-used approach to the reconciliation of protocol mismatches is to develop a
mediator which is a piece of code that sits between the interacting services [3]. However, current
approaches only provide partial solutions. The mediators developed by these approaches have no control
logics and fail to compensate complicated mismatches. Few of these approaches can be used to

† Acknowledgement: The work is partially supported by the MIT Sloan China Management Education Project.

automatically generate deployable codes. Additionally, none of them provides a systematic solution to
reconciliation of protocol mismatches. Last but not least, to the best of our knowledge, there exists no
software tool which can assist developers to ease their efforts on mediation tasks, such as identifying
protocol mismatches and generating mediation codes.
 In the previous work, six basic patterns of protocol mismatches and appropriate basic mediator
patterns for reconciling these mismatches have been identified [4, 5]. By using the basic mediators as
patterns, complicated mediators can be modularly built and contain control logics, which can compensate
all possible protocol mismatches. The basic mediator patterns are: 1) Simple Storer: the mediator with the
capability of simply receiving and storing messages of certain specific type; 2) Simple Constructor: the
mediator with the capability of simply constructing and sending messages of certain specific type; 3)
Splitter: the mediator with the capability of receiving a single message of certain type and splitting it into
two or more partial messages; 4) Merger: the mediator with the capability of receiving two or more partial
messages and merging them into a single one; 5) Storing Controller: the mediator with the capability of
storing and conditionally sending some messages of certain type in terms of specific logic; 6)
Constructing Controller: the mediator with the capability of conditionally constructing and sending some
messages of certain type in terms of specific logic. Details of the mediator patterns and the discussion of
the comprehensiveness of these patterns are presented in [4, 5].

To promote the automation of the pattern-based approach, we develop a heuristic technique that
assists developers to identify protocol mismatches and select appropriate mediator patterns. The proposed
reconciliation approach consists of five main steps which can lead to a systematic solution to the
reconciliation of protocol mismatches for Web services composition. This paper is organized as follows.
Section 2 introduces a motivating example that will be used to demonstrate our approach throughout the
paper. Section 3 presents the heuristic technique for identifying mediator patterns. Section 4 proposes the
reconciliation approach. Section 5 presents related work and Section 6 concludes the paper.

2. Motivating Example
The example consists of a search client (SC) and a search engine (SE). We take BPEL as the

specification language for describing their protocols, as shown in Figure 1.

 (a) BPEL of search engine service (b) BPEL of search client service
Figure 1. A motivating example of service composition with protocol mismatches

SC invokes SE by sending its login information and the search request respectively. After that, SC
waits for the acknowledgement and the results from SE. On the other hand, after receiving search request,
SE starts to search several distributed databases one by one (by performing its internal searching action).
Once SE finishes a database and obtains some searched items, it sends these items to its client immediately.
If all databases have been searched, SE sends a completing notification to its client and the search work is
finished. To make the two services compatibly interact with each other, protocol mismatches between
them needs to be identified so that appropriate mediator patterns are selected to reconcile the mismatches.

3. Identification of Mediator Patterns
 We propose a heuristic technique based on message mapping for semi-automatic identification of
protocol mismatches and mediator patterns. By semi-automation, we mean that developers should specify
the message mappings and adjust the identified patterns.
 Message mapping M is a finite set of mapping relations, i.e., M = {mri}. Each mapping relation mri is
expressed in the form of <source, cnst_s, target, cnst_t>, where source is a part/element of a sending
message and target is the corresponding part/element of a receiving message. source/target is expressed
in the form of Service.Message.Part. cnst_s is the constraint of the operation that sends source and cnst_t
is the constraint of the operation that receives target. cnst_s/cnst_t can be NULL if there is no constraint
with the sending/receiving message. In the motivating example, the receiving message SearchRequest of
SE has two parts: login and request. Thus the part login is a target and expressed as SE.sreq.login, where
sreq stands for the message SearchRequest. For the sake of simplicity, the part name is omitted if the
message consists of only one part. For example, the sending message Login of SC has only one part login.
Thus it is a source and expressed as SC.login. source/target can be NULL if the sending/receiving message
doesn’t exist. The prefix of source/target is the message name of source/target, denoted by
prefix(source/target), e.g., prefix(SE.sreq.login) = SE.sreq and prefix(SC.login) = SC.login. For any two
mapping relations, e.g., mri and mrj, it is easy to see the following formulas:

a) source(mri) ≠ NULL, if target(mri) =NULL;
b) target(mri) ≠ NULL, if source(mri) =NULL;
c) cnst_s(mri) = cnst_s(mrj), if prefix(source(mri)) = prefix(source(mrj));
d) cnst_t(mri) = cnst_t(mrj), if prefix(target(mri)) = prefix(target(mrj)).
With the above notation, developers specify the mapping relations, as shown in Table 1.

Table 1. Message Mapping Relations
mapping source cnst_s target cnst_t

mr1 SC.login NULL SE.sreq.login NULL
mr2 SC.sreq NULL SE.sreq.request NULL
mr3 NULL NULL SC.ack NULL
mr4 SE.partialResult <while> condition(x) SC.totalResult NULL
mr5 SE.ntf condition(x) NULL NULL

 The first mapping relation (i.e., mr1) indicates that SC sends a login message and SE receives the
message as the part login of its message sreq. There is no constraint with the two operations. We denote
that source(mr1) = SC.login and target(mr1) = SE.sreq.login. In the fourth mapping relation (i.e., mr4),

“<while> condition(x)” indicates that the message “SE.partialResult” is sent iteratively under the
condition x. In the fifth mapping relation (i.e., mr5), “condition(x)” indicates that the message “SE.ntf” is
sent when the condition x doesn’t hold. We also denote that cnst_s(mr5) = condition(x) and cnst_t(mr5) =
NULL.

Herein, we introduce a heuristic rule for identifying which mediator pattern should be selected by
using the mapping relations. For two mapping relations, i.e., mri and mrj, the rule is as follows:

Selection Rule of Mediator Patterns
 if (cnst_s(mri) = cnst_t(mri)) ∧ (prefix(source(mri)) = prefix(source(mrj))) ∧ (prefix(target(mri))
= prefix(target(mrj)))

then there is no need of mediator patterns;
 else if (cnst_s(mri) = cnst_t(mri))∧ (target(mri) =NULL)
 then a Simple Storer pattern is selected;

else if (cnst_s(mri) = cnst_t(mri))∧ (source(mri) =NULL)
 then a Simple Constructor pattern is selected;
 else if (cnst_s(mri) = cnst_t(mri)) ∧ (prefix(source(mri)) = prefix(source(mrj))) ∧
(prefix(target(mri)) ≠ prefix(target(mrj)))
 then a Splitter pattern is selected;
 else if (cnst_s(mri) = cnst_t(mri)) ∧ (prefix(source(mri)) ≠ prefix(source(mrj))) ∧
(prefix(target(mri)) = prefix(target(mrj)))
 then a Merger pattern is selected;
 else if (cnst_s(mri) ≠ cnst_t(mri)) ∧ ((cnst_s(mri) = NULL ∧ source(mri) = target(mri)) ∨
(cnst_s(mri) ≠ NULL∧ target(mri) =NULL))
 then a Storing Controller pattern is selected;
 else if (cnst_s(mri) ≠ cnst_t(mri)) ∧ ((cnst_t(mri) = NULL ∧ source(mri) = target(mri)) ∨
(cnst_t(mri) ≠ NULL∧ source(mri) =NULL)
 then a Constructing Controller pattern is selected;
 else developers’ intervention is needed to build more complicated mediators.

 In the motivating example, four mediator patterns can be selected to address the mismatches after
performing the selection rule. The selected mediator patterns are as follows:

1) A Merger pattern is used to receive SC.login and SC.sreq from SC, and then it sends SE.sreq to
SE, where SE.sreq = SE.sreq.(login, request). This pattern is selected according to mr1 and mr2.

2) A Simple Constructor pattern is used to construct SC.ack and send it to SC. This pattern is
selected according to mr3.

3) A Merging Repeater pattern [5] is used to iteratively receive SE.partialResult from SE until all
partial databases are finished according to mr4. The Merging Repeater merges all partial
results together and sends SC.totalResult to SC. Since mr4 corresponds to a complicated
mismatch with iterative structure, the Merging Repeater pattern can be selected by service
developers.

4) A Storing Controller pattern is used to conditionally store SE.ntf which is sent by SE. This
pattern is selected according to mr5.

As discussed in [5], service developers should configure the structures and control logics of the

selected mediator patterns and compose them together. In the motivating example, the Merging Repeater
pattern can successfully compensate the mismatch with iterative structure and there is no need of another
Storing Controller pattern. Thus three mediator patterns are eventually selected for reconciliation, i.e., a
merger, a simple constructor and a merging repeater.

4. The Reconciliation Approach
 We take the BPEL files of two partially compatible services as input and produce deployable
mediators as output for reconciling protocol mismatches if the correct mediator exists. The main steps of
the reconciliation approach are as follows.

Step 1: Service model transformation. In our approach, the protocols of both services and mediators
are depicted based on Colored Petri Net (CPN) [6]. The benefit of adopting CPN models lies in that they
provide rich analysis capability to support solid verification of protocol mediation. As the first step,
BPEL-based services are transformed to CPN-based service models.

Step 2: Selection of mediator patterns. In the WSDL/BPEL specifications of Web services, messages
exchanged between them are specified as an aggregation of parts and/or elements. For selection of
mediator patterns, developers should specify the message mapping relations between the two Web
services to be composed. By performing the selection rule (see Section 3), possible protocol mismatches
are identified and appropriate mediator patterns are selected automatically based on the message mapping.

Step 3: Mediator configuration and composition. The structures and control logics of the mediator
patterns need to be configured as parameters by service developers according to the identified mismatches.
After configuration, the mediator patterns are composed to construct a composite mediator that reconciles
all identified protocol mismatches. Both mediator patterns and composite mediators are depicted as
underlying CPN models for the following formal verification.

Step 4: Mediation verification. The mediator produced in the above steps is only a conceptual model
and should be put between the interacting services. The composition model of the two services and the
mediator need to be formally verified. Generally, we consider that the mediation has failed if any
deadlock exists. Otherwise, the mediation is successful. Details of mediation verification are beyond the
scope of this paper.

Step 5: Code generation of mediators. Only successful mediator will be performed in this step. It is
the converse of the first step, i.e., transforming CPN models to BPEL-based services. To facilitate code
generation of deployable mediators, we have developed the BPEL templates for the corresponding
mediator patterns. With these BPEL templates, the pseudo-code for reconciling protocol mismatches can
be produced automatically. Due to space constraints, we will not present the details in this paper.

To validate the feasibility of our approach, we have developed a prototype system, namely Service
Mediation Toolkit (SMT). The toolkit contains several components that are designed to facilitate the
above steps of our approach. The core component of SMT is the Mediation Workspace which provides a
GUI workbench for developers to manipulate Web services and mediators. It is implemented as an eclipse
plugin that is easy to be integrated with other eclipse-based applications.

5. Related Work
 A large number of research works have been developed for reconciling various kinds of composition

mismatches [7]. As a challenging issue, the problem of protocol mismatches is still open and needs further
research. It has been recognized that patterns can be used to reconcile protocol mismatches [3, 7]. Five
mismatch patterns are identified in [3] and corresponding templates of BPEL codes for building the
mediators are presented, but these patterns are not sufficient. The taxonomy of composition mismatches is
proposed in [7] and a selection of patterns is presented to reconcile these mismatches. The taxonomy,
however, does not sufficiently address protocol mismatches.

Inspired by [3], our approach is significantly different from the existing works in the following
aspects: 1) The mediator patterns presented in this paper are derived from our comprehensive
identification of protocol mismatches and can be used to sufficiently address those mismatches [4]; 2) A
heuristic technique is developed to (semi-) automatically identify protocol mismatches and to select
appropriate mediator patterns; 3) A formal modeling method (i.e., CPN models) is adopted as an
underlying formalism for depicting the protocols of both services and mediators., which supports solid
verification of protocol mediation; 4) The proposed approach is considered to be a systematic and
engineering solution to reconciliation of all possible protocol mismatches.

6. Conclusion
 As the world economy continually shift towards global collaboration, the need for integrating
heterogeneous information systems within and/or across enterprise boundaries has become critically
important. To compatibly integrating these systems, we propose a systematic approach that can be used to
develop mediators and reconcile protocol mismatches for composing Web services. We have been
developing a prototype system to validate the feasibility of our approach. Future work will focus on the
further implementation of the prototype system to address more general and real-world cases.

References
[1] S. Staab, W. van der Aalst, V. R. Benjamins et al., “Web services: been there, done that?,”

Intelligent Systems, IEEE, vol. 18, no. 1, pp. 72-85, 2003.
[2] M. Szomszor, T. R. Payne, and L. Moreau, “Automated Syntactic Medation for Web Service

Integration,” Proceedings of the International Conference on Web Services (ICWS), Chicago, IL,
2006.

[3] B. Benatallah, F. Casati, D. Grigori et al., “Developing Adapters for Web Services Integration,”
Proceedings of the International Conference on Advanced Information Systems Engineering
(CAiSE), 2005.

[4] X. Li, Y. Fan, and F. Jiang, “A Classification of Service Composition Mismatches to Support
Service Mediation,” Proceedings of the International Conference on Grid and Cooperative
Computing (GCC), pp. 315-321, 2007.

[5] X. Li, Y. Fan, J. Wang et al., “A Pattern-Based Approach to Development of Service Mediators
for Protocol Mediation,” Proceedings of the Working IEEE/IFIP Conference on Software
Architecture (WICSA), pp. 137-146, 2008.

[6] K. Jensen, “Coloured Petri Nets: Basic Concepts, Analysis Methods and Practical Use. vol. 1,
Basic Concepts,” Monographs in Theoretical Computer Science. Springer-Verlag, 1997.

[7] S. Becker, A. Brogi, I. Gorton et al., “Towards an Engineering Approach to Component
Adaptation,” Architecting Systems with Trustworthy Components, vol. 3938, pp. 193–215, 2006.

	CISL WP 2008-17 cover page
	Camera-ready Copy of Paper 60 for WITS 2008 - FINAL

