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Abstract – This paper presents an approach to bibliometric analysis in the context of technology mining. 

Bibliometric analysis refers to the use of publication database statistics, e.g., hit counts relevant to a 

topic of interest. Technology mining facilitates the identification of a technology’s research landscape. 

Our contribution to bibliometrics in this context is the use of a technique known as Latent Semantic 

Analysis (LSA) to reveal the concepts that underlie the terms relevant to a field. Using this technique, we 

can analyze coherent concepts, rather than individual terms. This can lead to more useful results from 

our bibliometric analysis. We present results that demonstrate the ability of Latent Semantic Analysis to 

uncover the concepts underlying sets of key terms, used in a case study on the technologies of 

renewable energy. 

1  Introduction 

1.1  Technology mining 
The planning and management of research and development activities is a challenging task that is 

further compounded by the large amounts of information available to researchers and decision-makers. 

One difficult problem is the need to gain a broad understanding of the current state of research, future 

scenarios and the identification of technologies with potential for growth and which hence need to be 

emphasized. Information regarding past and current research is available from a wide variety of 

channels (examples of which include publication and patent databases); the task of extracting useable 

information from these sources, known as “tech-mining” [Porter, 2005], presents both a difficult 

challenge and a rich source of possibilities; on the one hand, sifting through these databases is time 

consuming and subjective, while on the other, they provide a rich source of data with which a well-

informed and comprehensive research strategy may be formed. 

There is already a significant body of research addressing this problem (for a good review, the reader 

is referred to [Porter, 2005, Porter, 2007, Losiewicz et al., 2000, Martino, 1993]); interesting examples 

include visualizing the inter-relationships between research topics [Porter, 2005, Small, 2006], 

identification of important researchers or research groups [Kostoff, 2001, Losiewicz et al., 2000], the 

study of research performance by country [de Miranda et al., 2006, Kim and Mee-Jean, 2007], the study 

of collaboration patterns [Anuradha et al., 2007, Chiu and Ho, 2007, Braun et al., 2000] and the 

prediction of future trends and developments [Smallheiser, 2001, Daim et al., 2005, Daim et al., 2006, 

Small, 2006]. Nevertheless, given the many difficulties inherent to these undertakings, there is still much 

scope for further development in many of these areas. 
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1.2  Novelty and motivations 
An important motivation for technology-mining is the possibility of gaining a better understanding of 

future developments and trends in a given field of research. This is a complex task that is composed of a 

number of closely inter-related components or activities. While there is no single authoritative 

classification, we present the following scheme, proposed in [Porter et al., 1991], to help focus our 

discussion:  

• Monitoring - Observing and keeping up with developments occurring in the environment, and 

which are relevant to the field of study [Kim and Mee-Jean, 2007, King, 2004].  

• Expert opinion - An important method for forecasting technological development is via intensive 

consultation with subject matter experts [Van Der Heijden, 2000].  

• Trend extrapolation - This involves the extrapolation of quantitative historical data into the 

future, often by fitting appropriate mathematical functions [Bengsiu and Nekhili, 2006].  

• Modeling - It is sometimes possible to build causal models which not only allow future 

developments to be known, but also allow the interactions between these forecasts and the 

underlying variables or determinants to be better understood [Daim et al., 2005, Daim et al., 

2006].  

• Scenarios - Forecasting via scenarios involves the identification of key events or occurrences 

which may determine the future evolution of technology [Mcdowall and Eames, 2006, Van Der 

Heijden, 2000].  

In this context, the emphasis of the current study is on the first item, technology monitoring, as the 

primary objective is to devise methods for monitoring, understanding and mapping the current state of 

technology. In particular, our aim is to develop novel approaches to visualize and understand the 

concepts that underlie terms in a field of science and technology. Towards this end, this paper will 

address the following objectives:  

1. To utilize a technique known as Latent Semantic Analysis (LSA) to quantitatively identify such 

underlying concepts in areas of research.  

2. To conduct a preliminary case study in renewable energy by using the results from LSA, as a 

demonstration of the proposed approach.  

1.3  Case study 
To provide a suitable example on which to conduct our experiments and to anchor our discussions, a 

preliminary case study was conducted in the field of renewable energy. 



3 

 

The importance of energy to the continued well-being of society cannot be understated, yet 87%
1
  of 

the world’s energy requirements are fulfilled via the unsustainable burning of fossil fuels. A combination 

of environmental, supply and security problems compounded the problem further, making renewable 

energies such as wind power and solar energy one of the most important topics of research today. 

An additional consideration was the incredible diversity of renewable energy research, which 

promises to be a rich and challenging problem domain on which to test our methods. Besides high-

profile topics like solar cells and nuclear energy, renewable energy related research is also conducted in 

fields like molecular genetics and nanotechnology. It was this valuable combination of social importance 

and technical richness that motivated the choice of renewable energy as the subject of our case study. 

2  Latent Semantic Analysis 
Towards our goal of technology mining, we use bibliometric techniques; i.e., analysis of hit counts

2
 

returned by publication databases
3
 for technologies of interest.  However, directly querying just the 

name of the technology can give misleading results.  This is because a one-word search query tends not 

to be representative of the field as a whole.  For example, if we are interested in the state of the 

renewable energy field, we would want to include in our search applicable technologies such as 

hydroelectric power and wind power, in order to get a representative number of hits.  Similarly, if we 

are interested in “oil,” we might also like to include “petroleum,” since some documents may use that 

word instead. 

 We want to automate the process of collecting related terms.  It is not enough to make 

educated guesses as to which terms should be combined in search queries.  Instead, we seek a 

mathematically sound algorithm for generating groupings of terms based on data from publication 

databases.  One such technique, clustering, is presented in [Woon and Madnick, 2008].  In this section, 

we propose to use a different approach, known as Latent Semantic Analysis, which is used to reveal the 

underlying concepts that relate terms to one another. 

2.1  Latent Semantic Analysis background 
Latent Semantic Analysis (LSA) is a technique for identifying relationships between key terms in a set of 

documents.  It produces a set of concepts, each of which is a different combination of the terms being 

analyzed.  A concept can be thought of as a grouping of terms that relate to one another.  However, LSA 

and the identification of concepts should not be confused with clustering.  Clusters are disjoint; any 

given term is in one and only one cluster.  Each LSA concept, on the other hand, contains a particular 

weighted combination of every term.  Each concept, taken as a whole, is independent from all others 

                                                           
1
Year 2005. Source: Energy Information Administration, DOE, US Government 

2
 The “hit count” is the number of documents that were found that contain the specified term(s). 

3
 Examples of publication databases includes Google Scholar, Scirus, etc. 
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(literally orthogonal vectors in a space, shown later), but the terms that make up each concept are 

found, with some weighting, in all of the concepts. 

 LSA is a matrix algebra process.  The procedure takes as input a term-document matrix [Berry 

et al., 1995].  This matrix is a representation of the frequency of occurrence of each term in each 

document in the database.  Terms are listed along the rows of the matrix, and documents are listed 

along the columns. 

 The frequency values in the term-document matrix can be obtained from a few different 

metrics.  One straightforward approach is to simply use the count of the number of times the given term 

occurs in the given document.  A second method normalizes these counts by the total number of words 

in the document.  If a term appears 5 times in a document with 500 words, its value in the term-

document matrix would be 0.01.  A third method, known as Term Frequency-Inverse Document 

Frequency (tf-idf), further normalizes this term frequency by the fraction of documents in the entire 

database that contain the given term [Landauer et al., 1998].  In the example of the term that appears 5 

times in a 500-word document, if that term also appears in all other documents in the database, its 

document frequency will be 1, and the value that goes in the term-document matrix will be 5 divided by 

1, or 5.  If, however, the term occurs in only 1% of all documents, the term-document value will be 5 

divided by 0.01, or 500.  Any of the above methods produce suitable term-document matrices for LSA. 

 Given a suitable term-document matrix, the next step in LSA is to calculate the Singular Value 

Decomposition, SVD, of the matrix.  In general, the SVD is defined as follows: Given an � � � matrix �, 

the SVD factors it into the form 

 �∑�	.   

 � is � � � and contains the eigenvectors of ��	. � is � � � and contains the eigenvectors of 

�	�.  ∑ is an � � � diagonal matrix that contains the square roots of the eigenvalues of ��	 along its 

diagonal.  It is also important to note that � and � are orthonormal matrices.  Their columns are unit-

magnitude vectors orthogonal to one another. 

 In the context of LSA, the columns of the � matrix contain our “concepts” [Berry et al., 1995].  

Recall that the � � � term-document matrix (� terms and � documents) produces an � � m � matrix.  

Each of the � columns of �, or concepts, is then a vector in term-space.  The concept vectors can be 

thought of as an orthonormal basis of the term space.  This is intuitively appealing as it implies 

independence across the set of concepts; i.e., knowledge that a document contains one particular 

concept gives no information about whether that document also contains a different concept.  This is as 

opposed to the use of terms or concepts that are not independent, say “car” and “automobile.”  The 

likelihood of a document containing “automobile” increases if one knows that the document also 

contains the word “car.” 
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2.2  Intuitive appeal 
As a hypothetical example of LSA, consider the following set of terms: Storm, Lightning, Bolt, Nut, 

Muffin, Whale.   

Note that the words “Bolt” and “Nut” have (at least) two different meanings.  If one were 

interested in searching for documents related to storms, the word “Bolt” might be a poor choice of 

search term because unwanted documents on machining would also be returned.  Similarly, if one were 

interested in food with nuts in it, a direct search for “Nut” would also return irrelevant results.  For the 

search for storm documents, “Storm” or “Lightning” would also return non-ideal search results, but for 

the opposite reason: some documents may contain one term but not the other, and a simple search for 

only one of the terms would leave out some relevant documents.  The semantic similarity between 

terms such as “Storm,” “Lightning,” and “Bolt,” as well as the multiple meanings of terms such as “Bolt” 

and “Nut” suggest that we would do better by first breaking the terms down into independent concepts.  

These concepts are, intuitively: 

[Storm, Lightning, Bolt] 

[Bolt, Nut] 

[Nut, Muffin] 

[Whale] 

 The results returned from actual use of LSA would be similar, but in a slightly different form.  

The two key differences are that:  (1) each concept contains a combination of every term, and (2) there 

are as many concepts as there are terms (six in this case).  The first difference is usually alleviated by the 

fact that most concepts contain terms with weightings that are virtually zero.  If very small values are 

rounded to zero, then concepts can be considered to contain only a subset of the terms rather than all 

of them.  The second difference, that there must be as many concepts as there are terms, can be harder 

to grasp intuitively.  In some cases, the “extra” concepts can be thought of as concepts that do in fact 

exist in the set of documents, but only actually occur a small number of times.  In other cases, a concept 

may appear to be an “inverted” version of another. For example, we may see [Bolt: 0.8, Nut: 0.6] as one 

concept, and [Nut: 0.8, Bolt: 0.6] in another.   

While it may be difficult in some cases to interpret the results from LSA, it is important to keep 

in mind that the results are simply a representation of the data given to it; they are neither right nor 

wrong.  In cases where the results seem puzzling, it could mean either that the documents have an 

unusual bias to them, or, more interestingly, that we did not previously have an accurate mental picture 

of the interrelationships among the terms being analyzed. 

2.3  Modification for practical implementation 
For our purposes, we use a novel modification to the standard LSA algorithm.  The sheer number of 

documents to be searched renders the first step of standard LSA – generating the term-document 

matrix – highly impractical.  Such a matrix could potentially have millions of columns.  Additionally, 
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determining each value in the matrix would require searching the complete text of each document to 

count term occurrences.  Furthermore, creating this matrix would only begin to be feasible if all 

documents were available on a local machine, which is an unacceptable limitation for our purposes 

given the sources that we are using (e.g., Scirus, Google Scholar), which are not under our control or 

available for local usage.   

Our approach instead allows us to easily use the billions of published papers available on the 

Internet as our document set.  We only have to be willing to accept a simplifying assumption about our 

documents.  The key assumption is that any given term occurs in any given document either 0 times or 1 

time, i.e. that all document vectors in the term-document matrix are binary encoded and cannot contain 

values other than 0 or 1.  While this is clearly not completely accurate, the assumption gives us the 

ability to use enormous online collections of documents which makes this approach far superior to 

standard LSA for our purposes. 

Instead of counting term occurrences in documents, we use only the hit count returned from a 

search engine to generate a term covariance matrix.  If we are analyzing � terms, the covariance matrix 

� is � � m, with each value ��,
 representing the covariance between terms � and �.  Such a matrix 

could have been derived from the term-document matrix, but for our purposes, our simplifying 

assumption allows us to construct an approximation of the covariance matrix from hit counts alone. 

The derivation of the covariance matrix is as follows.  We treat the numbers of occurrences of a 

particular term in each document as realizations of a random variable.  Then, by definition, the 

covariance of two of these random variables (the covariance between two terms � and � in a term-

document matrix �) is  

�����, �� � ����� � ������ � ��
 � ���
��� 

 The expectations of ��  and �
 are calculated by taking the average of each value across all � 

documents for the given term.  For example, �����, the expectation of the number of occurrences of 

term �, is 
�
� ∑ ��,����� .   

The outer expectation is similarly calculated by averaging the values for terms  and  across all 

 documents.  Then our covariance expression becomes 

�ov��, �� � �
� ∑  !��,� � �

� ∑ ��,"�"�� # � !�
,� � �
� ∑ �
,"�"�� #$ ���� . 

 This expands to 

�����, �� � �
� !∑ ��,��
,����� � �

� ∑ ��,"�"�� ∑ �
,����� � �
� ∑ �
,"�"�� ∑ ��,����� % �

� ∑ ��,"�"�� ∑ �
,"�"�� #. 

 Combining the last three terms gives 
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�ov��, �� � �
� !∑ ��,��
,����� � �

� ∑ ��,����� ∑ �
,����� #. 

Simplification of this expression requires us to utilize our assumption that each value in the 

term-document matrix is either a 0 or a 1.  With this simplification in mind, ∑ ��,�����  represents the 

number of documents that contain term �, ∑ �
,�����  represents the number of documents that contain 

term �, and ∑ ��,��
,�����  represents the number of documents that contain both term � and term �.  

This is represented with this final covariance expression. 

�ov��, �� � �
� !&�,
 � �

� &�&
#. 

In the above expression, &�,
 represents the number of hits returned from a search for both 

terms, while &� and &
 represent the number of hits returned for terms � and � respectively.  � 

represents the number of documents being searched.  We approximate � with the number of hits 

returned from a search for a large term that subsumes terms � and �.  For our purposes, we use the field 

that is the focus of our case study, renewable energy, as the search term to acquire �. 

 Using our covariance expression, which was approximated under the assumption that a 

document can contain a given term zero times or one time, we can construct a term-by-term covariance 

matrix.  Given this matrix, we can then obtain our desired concept vectors by simply calculating its 

eigenvectors.  In other words, the eigenvectors of our covariance matrix are equivalent to the columns 

of the � matrix obtained from the singular-value decomposition of the term-document matrix.  

2.4  Demonstration of basic workability of our LSA approach 

In this section we present LSA results for the keyword set from section 2.2 of this paper.  The terms, 

again, are [Storm, Lightning, Bolt, Nut, Muffin, Whale]. These terms were chosen to illustrate two 

different functions of LSA.  The first is to highlight related terms; i.e., terms that are similar in meaning 

or terms that tend to co-occur due to topic similarity.  In this particular set of keywords, [Storm, 

Lightning, Bolt], [Bolt, Nut], and [Nut, Muffin] all illustrate topical similarity.  The other, opposite, 

function of LSA is to identify terms that have multiple meanings or belong to multiple concepts.  In this 

example, Bolt is a homonym; a bolt of lightning is different from a bolt used for assembly.  (The two uses 

may be derived from the same underlying idea, but LSA still identifies the fact that they are used 

differently.)  Nut is also a homonym; it relates to Bolt and to Muffin in entirely different ways.  Finally, 

the word Whale is added to the set as an example of a lone term unrelated to the others in the set. 

Our LSA analysis was performed on this keyword set using the Scirus database. The following 

concept vectors were obtained: 



8 

 

Concept Vector 1 Concept Vector 2 Concept Vector 3 

Storm 0.9996 Nut -0.9910 Bolt -0.9907 

Lightning 0.02543 Bolt -0.1333 Nut 0.1335 

Nut 9.696e-3 Storm 0.01054 Lightning -0.02586 

Whale 8.828e-3 Whale -6.454e-3 Whale -6.030e-3 

Bolt 5.397e-3 Lightning -5.838e-3 Storm 4.765e-3 

Muffin 5.157e-5 Muffin -1.614e-3 Muffin 2.412e-4 

 

Concept Vector 4 Concept Vector 5 Concept Vector 6 

Whale -0.9994 Lightning -0.9988 Muffin 0.999998 

Lightning -0.03310 Whale 0.03354 Nut -1.629e-3 

Storm 9.570e-3 Bolt 0.02631 Whale -7.107e-4 

Bolt 7.769e-3 Storm 0.02495 Lightning 5.253e-4 

Nut 5.761e-3 Nut 2.390e-3 Storm -4.295e-5 

Muffin -6.831e-4 Muffin 5.531e-4 Bolt 1.428e-5 

 

 The terms in each vector are sorted by decreasing absolute value.  The significance of negative 

values is still under investigation, but we currently consider only the absolute value of concept vector 

elements.  Given this sorting, we can see that the results roughly correspond to intuition.   

Concept 1 mostly contains Storm, with a contribution from Lightning.  Concepts 2 and 3 both 

contain Nut and Bolt, with one emphasizing Nut and the other emphasizing Bolt.  The fourth is mostly 

about Whale, although Lightning seems to make a small contribution.  The inclusion of Lightning may 

seem counterintuitive, but again, it simply represents the data given to it.  Evidently, some articles 

contain both Whale and Lightning.  This surprising result should be viewed in a positive light; after all, 

the purpose of LSA is to uncover latent associations between terms.  Concept 5 is an inversion of 4, in 

that Lightning is the focus, with a contribution from Whale.  And finally, the sixth concept is almost 

entirely Muffin.  Intuitively, we had predicted an association between Muffin and Nut.  The discrepancy 

is likely due to our choice of database.  The article source is Scirus, a publication database.  It is unlikely 

that many articles contained Muffin at all, and those that did apparently did not mention Nuts.  This is 

corroborated by the fact that Muffin has practically zero significance in each of the other five concepts.  

Again, this is an example of LSA showing us something that we did not previously realize; i.e., that 

Muffin and Nut are not closely associated in the set of articles that were used. 

3  Case Study Results 
Results are presented here for a set of 59 keywords related to our renewable energy case study, 

compiled from authors of renewable energy publications.  These terms have been used in another 

related study reported in [Woon and Madnick, 2008].  The keywords are the following:  

 [ash deposits, alternative fuel, natural gas, renewable energy, Review, sugars, biomass, energy 

balance, model plant, energy conversion, CdTe, transesterification, enzymatic digestion, ENERGY 
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EFFICIENCY, investment, gas engines, Populus, electricity, pretreatment, gasification, GLOBAL 

WARMING, adsorption, high efficiency, genome sequence, arabidopsis, bio-fuels, energy economy and 

management, QTL, renewables, thermal conversion, co-firing, inorganic material, fuels, energy 

sources, genomics, thermal processing, biodiesel, SUSTAINABLE FARMING AND FORESTRY, gas 

storage, chemicals, carbon nanotubes, GASIFICATION, CdS, sunflower oil, energy policy, POWER 

GENERATION, LEAST-COST ENERGY POLICIES, pyrolysis, biomass-fired power boilers, BIOMASS, thin 

films, landfill, coal, corn stover, poplar, emissions, RENEWABLE ENERGY, fast pyrolysis, hydrolysis] 

Due to the size of the data set, it is infeasible to display complete results, which contain 59 

concept vectors of 59 terms each.  Instead, we display a subset of vectors, and only the significant terms 

in each; i.e., those whose values are not vanishingly small.   

Typically with eigenvector analysis, the most important vectors are those with the largest 

associated eigenvalues.  Those vectors are considered to be more significant because they represent the 

greatest variance in the data.  However, for our purposes, we are at least as interested, and perhaps 

more so, in the concepts with lower variance.  Methods for choosing good, representative subsets of 

concept vectors calculated by LSA are still being investigated, but for now, interesting vectors are largely 

chosen by inspection.  Such a sample of vectors is displayed here for the renewable energy keyword set. 

Concept Vector 1 Concept Vector 2 Concept Vector 3 

renewable energy -0.7073 alternative fuel 0.8811 POWER GENERATION 0.6977 

RENEWABLE ENERGY 0.6887 biodiesel -0.4372 electricity -0.3787 

BIOMASS -0.09997 thin films 0.09212 energy policy  -0.3271 

biomass 0.09202 natural gas -0.07202 coal -0.2316 

 bio-fuels -0.05371 Review  0.2183 

sugars 0.05141 fuels  0.2139 

   adsorption -0.2045 

   ENERGY EFFICIENCY 0.1311 

 

Concept Vector 4 Concept Vector 5 Concept Vector 6 

ENERGY EFFICIENCY 0.4777 pyrolysis -0.6103 landfill -0.8820 

electricity 0.4752 pretreatment -0.4823 energy balance 0.2344 

energy policy  -0.3904 hydrolysis -0.3845 RENEWABLE ENERGY 0.1891 

renewables -0.2674 sugars 0.2638 sugars 0.1768 

GLOBAL WARMING -0.2458 chemicals 0.1964 renewable energy 0.1757 

investment -0.2405 landfill 0.1343 chemicals -0.1079 

  GASIFICATION 0.1228 emissions 0.09202 

  fast pyrolysis -0.1221   

  gasification 0.1139   
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The first concept vector illustrates the ability of LSA to clean 

up inconsistent data.  RENEWABLE ENERGY and renewable energy, 

along with BIOMASS and biomass become grouped together, just as 

they should.  It is interesting to note that although their (absolute) 

values are close to one another, they are not equal.  Search engines 

disregard case, so renewable energy and RENEWABLE ENERGY are interpreted exactly the same.  

However, they are given to the LSA algorithm as two separate (but equal) terms, and are therefore each 

independently susceptible to noise.  In this particular case, not only are the absolute values slightly 

different, but so are the signs: renewable energy is weighted negatively at -0.7073, while RENEWABLE 

ENERGY has a positive weight, 0.6887.  Similarly, biomass and BIOMASS have positive and negative 

weightings, respectively.  This is a curious observation that lends credence to the idea that only absolute 

value, and not sign, should be considered when evaluating the importance of a term in a concept. 

Concept 2, as its primary component suggests, is about 

alternative fuels.  Biodiesel, natural gas, bio-fuels, and sugars all fall 

in this category.  Thin films is only slightly off topic.  They can be 

used to increase the efficiency of solar power systems, so while not 

an alternative fuel per se, they are an important component of an 

alternative energy. 

 Concept 3 broadly consists of power generation topics.  Energy policy seems a bit out of place, 

as the rest of the concept mostly deals with technology, rather than policy.  But this tells us that it is 

common to find information regarding energy policy in the same 

articles as those about energy technologies.  Review also appears 

to be wildly out of place.  However, the explanation here is that 

review is simply too broad of a term to get clean LSA results from 

it.  Evidently, it appears in articles regarding energy technology, 

even though its actual meaning is unrelated.  In the same way, 

the word “the” would be a large component of virtually all LSA 

concept vectors if it were included in the term list.  

The fourth concept seems to broadly address energy policy 

and environmental impact.  Energy efficiency, electricity, energy 

policy, renewables, and global warming are intuitively all 

components of this concept.  Investment, on the other hand, may 

not be such an obvious member of the set.  However, in this 

particular concept, investment likely refers to investment in 

alternative energy technologies.  After all, the financial aspect of “going green” is often an important 

issue, so it should be little surprise that LSA has revealed investment as a component of an energy policy 

concept. 

 

renewable energy -0.7073 

RENEWABLE 

ENERGY 

0.6887 

BIOMASS -0.09997 

biomass 0.09202 

alternative fuel 0.8811 

biodiesel -0.4372 

thin films 0.09212 

natural gas -0.07202 

bio-fuels -0.05371 

sugars 0.05141 

POWER GENERATION 0.6977 

electricity -0.3787 

energy policy  -0.3271 

Coal -0.2316 

Review  0.2183 

fuels  0.2139 

adsorption -0.2045 

ENERGY EFFICIENCY 0.1311 

ENERGY EFFICIENCY 0.4777 

electricity 0.4752 

energy policy  -0.3904 

renewables -0.2674 

GLOBAL WARMING -0.2458 

investment -0.2405 
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The terms in concept 5 represent, for the most part, chemical 

breakdown of organic compounds.  Pyrolysis, the first term in the 

vector, refers specifically to this process.  Fast pyrolysis, found in this 

vector with a smaller weight, is clearly a related term.  Hydrolysis is a 

process related to pyrolysis that refers to breaking water down into 

hydrogen and oxygen.  Gasification (and GASIFICATION) similarly 

refers to the decomposition of organic materials into carbon 

monoxide and hydrogen.  Sugars and chemicals belong in this 

concept as well; hydrolysis of disaccharide sugars produces 

monosaccaride sugars, and chemicals, while a somewhat general and vague term, clearly applies to the 

concept as a whole.  Pretreatment and landfill seem a bit out of place in this concept, but the purpose of 

LSA is to reveal unknown term relationships, which is the case here. 

Finally, concept 6 illustrates that in some cases, one will see 

vectors that intuitively make little sense.  Aside from renewable 

energy and RENEWABLE ENERGY appearing in the same concept, as 

expected, the terms in this concept span a large range of fields, 

loosely linked only by the umbrella field of “energy.”  Recall that 

with our keyword set of 59 terms, LSA produces 59 concept vectors.  

It seems unlikely for each vector to have a clear, unique meaning, 

and in fact, a large number of the generated vectors, while mathematically meaningful, are not of much 

use to us.  This is why it is important to devise an automated method for choosing useful vectors; this is 

currently being investigated. 

Visualization 

Displaying LSA results in a meaningful way is a challenge.  The results take the form of high-dimensional 

vectors, so plotting them is not an option.  One simple visualization technique is that which has been 

used in this paper thus far; simply listing the values of the large vector components.  This could be 

equivalently displayed by plotting terms on a “concept line.”  In other words, for a given concept vector, 

each term would be plotted on a number line between -1 to 1, with its location representing that term’s 

weight in the given vector. 

 The idea of plotting terms on a concept line can be extended to two or three dimensions.  In the 

case of two dimensions, two vectors are chosen at a time (as opposed to one vector at a time, as has 

been shown thus far).  As all concept vectors are orthogonal to one another, the two chosen vectors can 

be placed on the x- and y-axes of a coordinate plane.  Then each term is plotted on the plane, with its x-

coordinate representing its weight in one of the two concept vectors, and its y-coordinate representing 

its weight in the other. 

pyrolysis -0.6103 

pretreatment -0.4823 

hydrolysis -0.3845 

sugars 0.2638 

chemicals 0.1964 

landfill 0.1343 

GASIFICATION 0.1228 

fast pyrolysis -0.1221 

gasification 0.1139 

landfill -0.8820 

energy balance 0.2344 

RENEWABLE ENERGY 0.1891 

sugars 0.1768 

renewable energy 0.1757 

chemicals -0.1079 

emissions 0.09202 
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 This technique can be used with three concept vectors at a time as well.  However, the resulting 

three-dimensional graph can be difficult to interpret visually, and as such, we present only two-

dimensional visualizations in this paper.   

Two plots are shown in this section.  The first uses concepts 3 and 4 as the axes, and the second 

uses concepts 4 and 5.   

The first was chosen for display because concepts 3 and 4 have some terms that are important 

components of each.  If the two concepts were completely unrelated, then all terms would appear along 

one axis or the other, representing the fact that no terms have a high importance in both concepts.  But 

in this case, we see some off-axis terms, showing that concepts 3 and 4 do appear to be related. 

 

 

 

The second graph, which plots concepts 4 and 5 together, was chosen because of the clear 

clusters that it identifies.  Four groupings are formed – sugar and chemicals; energy policy, GLOBAL 

WARMING, renewables, and investment; electricity and ENERGY EFFICIENCY; and hydrolysis, 

pretreatment, and pyrolysis.   

Figure 1: Concepts 3 and 4. Terms such as energy policy and electricity lie well off of the coordinate 

axes, showing that they are important components of both concepts. 
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By viewing two vectors at a time instead of just one, we can gain some insight from the different 

perspective it provides.  

4  Discussions 
This paper presented the Latent Semantic Analysis technique for revealing the underlying concepts 

behind a set of terms from an area of research.  LSA should prove useful in our ongoing research on 

technology landscaping and forecasting.  With the help of LSA, we can query publication databases for 

entire concepts, rather than individual terms, which can provide a more accurate picture of the number 

of publications relevant to a field. 

 Towards the goal of using LSA for technology landscaping and forecasting, the following issues 

still need to be investigated: 

Figure 2: Concepts 4 and 5. Four term clusters become apparent when these concepts are plotted 

together. 
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1. The significance of negative values in concept vectors.  We have been considering only the 

absolute value of term weightings up to this point.  However, it is likely that there is some 

significance to the sign of the weighting as well. 

2. A method for picking a subset of concept vectors from LSA results.  One concept vector is 

produced for every keyword in the data set, so with large numbers of keywords, it could 

become impractical to use every vector.  A method is needed to select important vectors from 

the set.  As was mentioned earlier, this is not as simple as choosing vectors with the largest 

eigenvalues, as that could potentially cause discard of the most interesting vectors. 

3. The sensitivity of LSA to change in data source, i.e. publication database.  Different databases 

may produce different concepts entirely, so we may need to explore ways of aggregating the 

different results. 

4. Methods for using concept vectors in database querying.  A simple “And” query of every term in 

a concept will result in a very limited set of documents, as not many documents will contain 

every term.  Similarly, an “Or” query will result in far too many results.  We are investigating 

ways to query a database for the concept as a whole. 
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