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Abstract. The COntext INterchange (COIN) strategy is an approach
to solving the problem of interoperability of semantically heterogeneous
data sources through context mediation. The existing implementation of
COIN uses its own notation and syntax for representing ontologies. More
recently, the OWL Web Ontology Language is becoming established as
the W3C recommended ontology language. A bridge is needed between
these two areas and an explanation on how each of the two approaches
can learn from each other. We propose the use of the COIN strategy
to solve context disparity and ontology interoperability problems in the
emerging Semantic Web both at the ontology level and at the data level.
In this work we showcase how the problems that arise from context-
dependant representation of facts can be mitigated by Semantic Web
techniques, as tools of the conceptual framework developed over 15 years
of COIN research.

1 Introduction

Making computers understand humans is, generously put, a hard task. One of
the main reasons for which this is such a hard task is because even humans can-
not understand each other all the time. Even if we all spoke the same language,
there still exist plenty of opportunities for misunderstanding. An excellent ex-
ample is that of measure units. Again, we don’t even have to go across different
names to find differences: in the US, a gallon (the so-called Winchester gallon)
is approximately 3785 ml while in the UK, the “same” gallon is 4546 ml, almost
1 liter more. So when we find a piece of information in a database on cars, for
instance, and we learn that a particular model has a fuel tank capacity of 15
gallons, how much gas can we actually fit inside, and, consequently, for how long
can we drive without stopping at a gas station?

The answer to the previous problem comes easy if we know where we got the
data from: if the information was from the US, we know we can fit inside 56.78
liters of gas, while if it comes from the UK, it is 68.19 - a difference of about 11
liters, with which a car might go for another 100 miles (or 161 km if the driver
is not American or British).



Many more such examples exist (see [NAS] for a particularly costly one) and
the reason for which they persist is mainly because it is hard to change the
schema of relational databases that do not include the units of their measure-
ments simply because when they were designed, they were designed for a single
context, where everybody would know what the units are. With globalization,
off-shoring, out-sourcing and all the other traits of the modern economical envi-
ronment, those assumptions become an obstacle to conducting efficient business
processes.

Even in the context of a purely-semantic web application, such as the Potluck
[pot] project developed at the Computer Science and Artificial Intelligence Lab-
oratory at MIT (CSAIL), contextual information is not explicitly approached.
The user is allowed to mash-up together information from different sites, but
it is not taken into account the fact that those different data sources may have
different assumptions about an entire array of concepts. This paper shows how
the COIN strategy can be implemented in this new environment and how it can
contribute to it.

1.1 Semantic Web ⇄ COntext INterchange

Our current work acknowledges the successes that the Semantic Web community
has achieved, particularly in the standardization of expressive new languages,
and builds on top of that, providing methods to address the problem of context

mediation or context interchange. The two areas, Semantic Web research and
Context Mediation research, are complementary to each other. Each one pro-
vides the means for, and, at the same time, enhances the other. In particular,
context mediation research helps resolve semantic heterogeneity in OWL/RD-
F/XML data, while semantic web research provides the standards for ontology
representation and reasoning. Figure 1 depicts this mutually beneficial environ-
ment.

1.2 Approach overview

Semantic web tools rely heavily on mathematical logic to perform inferences.
The result of this, in combination with our desire to maintain a 100% pure logic
approach, is that facts cannot be deleted or modified. For instance, even if we
define a relation hasName to be of functional type (i.e. have a unique object for
each subject), it is still legal to have two entries with different objects, such as
(location1,hasName,‘London’) and (location1,hasName, ‘Londres’), the
conclusion of which will be that the names “London” and “Londres” denote the
same location. This has both advantages and disadvantages which we will not
discuss here, but refer the reader to a wealth of literature on mathematical logic.
Instead, we focus on how we model context in this framework.

Continuing the automobile-related example from the previous section, let us
imagine a scenario where we are a British individual looking to purchase a car,
and one of our main concerns is the environment, so we want a car that has a
low gas consumption. Of course, we would prefer a more sporty car, if possible.



Fig. 1. Interaction between Semantic Web research and Context Mediation Research

We use the wealth of information on the Internet to do this, either via a mash-up
tool like Potluck [pot], or just by browsing different car manufacturers’ websites.

Imagine we look at a Ford Focus on www.ford.com, a mid-size car, and see
that it does 24 mpg (miles per gallon). Since we are also interested in sports cars,
we look at the Lotus, on www.grouplotus.com, and see that an introductory
model does 25 mpg. We might then be convinced to spend the extra money to
save the environment while enjoying the thrills of a true sports car. Unfortunately
for us, it’s not quite like that. We have the same misunderstanding that we
mentioned before: the gallon. While the Focus considers an American gallon,
the Lotus uses the British gallon. So if we transform the 24mpg of the Focus
into British gallons, we get 28.8mpg - tempering our enthusiasm for the sports
car.

This example is anecdotal but at the same time characteristic of the prob-
lems that occur when bringing together, mechanically, information residing in
different databases.

We had previously analyzed a “Weather” example, where temperature units
were converted automatically between Celsius and Fahrenheit [LM07]. Here, we
extend that example and add a twist to it: now, the units are no longer different
in their notation: mpg simply means different thing if we are in the US or in the
UK.

Listing 1.1 shows an existing piece of information regarding the gas consump-
tion of a car, while Listing 1.2 shows how we might represent different values of
the same mileage using prefixes of relations.

Listing 1.1. Existing data regarding the gas consumption of a car

1 <?xml version="1.0"?>

2 <rdf:RDF

3 <US:mileage rdf:ID="mileage1">



4 <US:hasValue rdf:datatype="[...]# float">

5 24</US:hasValue>

6 </US:mileage>

7 <US:Automobile rdf:ID="Focus">

8 <US:hasName rdf:datatype="[...]# string">

9 Ford Focus</US:hasName>

10 <US:hasMileage rdf:resource="#mileage1"/>

11 </US:Automobile>

12 </rdf:RDF>

Listing 1.2. A possible solution to representing context, by adding an additional
hasValue relation to the Mileage object. It is simple and intuitive of the fact
that we are dealing indeed with the same mileage.

1 <?xml version="1.0"?>

2 <rdf:RDF

3 <US:mileage rdf:ID="mileage1">

4 <US:hasValue rdf:datatype="[...]# float">

5 24</US:hasValue>

6 <UK:hasValue rdf:datatype=‘‘[...]#float’’>

7 28.8</UK:hasValue>

8 </US:mileage>

9 <US:Automobile rdf:ID="Focus">

10 <US:hasName rdf:datatype="[...]# string">

11 Ford Focus</US:hasName>

12 <US:hasMileage rdf:resource="#mileage1"/>

13 </US:Automobile>

14 </rdf:RDF>

The way to add this new relation is by defining a SWRL [HPSB+04] rule
such as the one in Listing 1.3 and then querying the results with a query in
SPARQL [PS07] as in Listing 1.4.

Listing 1.3. SWRL rule that generates a value in the UK context

1 US:hasValue(?mileage , ?mileageValue) ∧

2 US:hasMileage(?car , ?mileage) ∧

3 swrlb:multiply(?product ,?mileageValue ,12) ∧

4 swrlb:divide(?newValue ,?mileageValue ,10)

5 → UK:hasValue(?mileage , ?newValue)

Listing 1.4. SPARQL query that retrieves the value in the UK context

1 SELECT ?mileageValue

2 WHERE { ?l US:hasMileage ?mileage .

3 ?l US:hasName "Ford Focus" .

4 ?mileage UK:hasValue ?mileageValue

5 }



The SWRL rule in Listing 1.3 simply states that in order to get the UK
mileage from the US mileage we have to multiply the original value by 1.2. Since
SWRL does not handle floating point values, we do this my a multiplication in
line 3 and a division in line 4.

The query in Listing 1.4 first identifies an entity ℓ (names starting with ?
represent variables) which has a particular name (“Ford Focus”) and a mileage.
It returns the UK value of the mileage of the object ℓ.

This all seems very intuitive. As always, the problems lie in the details: How
do we determine a conflict of contexts? How do we identify the correct rule to
be applied? How should the data and rules be organized into files? Do we apply
the rule to the entire dataset thus generating massive amounts of new data, or
should we just apply it to the subset being queried?

After providing some background in Sections 2 and 3, we introduce the basic
representation of context using the Ontology Web Language (OWL [MvH04]) in
Section 4 and present our conflict identification and resolution method in Section
5.

2 Background and Related Work

2.1 COntext INterchange

The idea of the COntext INterchange [GBMS99] system is to re-use massive
amounts of data that already exist but that are incomplete due to design as-
sumptions that omitted constants from the dataset. When two or more such
datasets are put together, or queried together, what were implied constants in
each of them become variables in the aggregated dataset and consequently needs
to be added back in the data. This is in most cases unfeasible due to the rigidity
of the data structures or simply due to the fact that the end user has no control
over the repository where the data exists.

The core of the COntext INterchange approach is a context mediator that
rewrites queries coming from a user context into a context-sensitive mediated
query that addresses the differences in meaning between the receiver and the
sources. Conceptually, the context mediator is structured around a domain model

that consists of semantic types, attributes and modifiers.
A semantic type is, as the name indicates, a conceptual entity. For instance,

in the Automobile example of Section 3, the column mileage has no meaning
by itself until it is associated with a semantic type Mileage. The coincidence in
names is just because humans created both entities, but it should be clear to the
reader that the column could very well have been named milespergallon and
the semantic type ST2842. The important difference between semantic types
and the columns with which they are associated is that the semantic types come
enriched with semantics and attributes. In this simple example, Mileage has only
one attribute, value.

In turns, an attribute may come endowed with a modifier. Again, using the
Automobile example, we can imagine that the value attribute of the Mileage



semantic type has a modifier unit. This is called a modifier because it changes
the meaning of the attribute to which it refers - it modifies it. The modifier value

could be Kilometers per liter (kml) or Miles per gallon (mpg). In our example,
we will only consider mpg, but keep in mind that it will mean different things in
different contexts - something that we will need take into consideration and to
model.

COIN uses this architecture to automatically determine differences in con-
texts and resolve queries in a way that is easy to interpret correctly by the user,
even if the data is expressed in a different context. Existing application include
financial reporting and analysis, airfare and car-rental aggregators, etc. [Fir03].

2.2 A glance at the Semantic Web

Though the COIN methodology precedes the Semantic Web, and despite the
many similarities in objectives and motivation, the two have developed mostly
independently. The wide spectrum of tools that have been proposed by different
research groups to achieve the targets of the original paper by Berners-Lee et
al. [BLHL01] make a quick but complete summary virtually impossible. In this
section we just look at the few tools that we identify to be “best”, both in
terms of the appropriateness for our own purposes, and also in terms of their
acceptance and popularity within the Semantic Web community.

Clearly, one of the pillars of current Semantic Web research is the Web On-
tology Language (OWL) [MvH04]. To query the data stored in OWL format,
one could map it back to a relational database and query it with SQL or use a
“native” query language such as SPARQL [PS07]. For most purposes, SPARQL
can be translated back to SQL, but the advantage of it lies in being able to
query directly the RDF graph that underlies any ontology. It has the status of
Working Draft of the W3C since October 2006. The necessity of defining a new
query language for tuples, such as SPARQL may be questionable at first glance,
since SQL is also working with tuples, though represented in a different way,
and XQuery, also developed within the W3C, addresses the problem of querying
XML, of which OWL is but a flavor. In [Mel06], the author argues that though it
is true that most data could be represented conceptually in RDF and expressed
in either relational databases or basic XML and thus queried by either SQL
or XQuery, SPARQL provides a much easier way of querying the RDF graph,
making the entire development process, including debugging, more fluent.

After representation and query languages, the Semantic Web framework re-
quires a rule language to make inferences on the existing data, thus enabling
the creation of the smart agents described in the original Berners-Lee paper.
Though SWRL [HPSB+04] has gained most attention in the past few years,
the language has not yet been standardized by the W3C and many different
implementations exist, that rarely support the full specification, mainly because
in that case the reasoning becomes undecidable. One of the most popular im-
plementation is SWRLTab [swr] - an extension to the Protégé framework [pro],
that uses mainly the Jess [jes] inference engine (though it could use other en-



gines too). Other implementations are: R2ML [r2m], Bossam [bos], Hoolet [hoo],
Pellet [pel], KAON2 [kao] and RacerPro [rac].

3 From tables to information

The first step towards making the data understandable by different agents3 per-
forming their activities in different contexts is to understand the fact that we
are only dealing with representations of concepts and facts. As we exemplified
before, 15 = 56.78 = 12.49 if one is gallons (US), one is liters and one is gallons
(UK). Consequently, it makes more sense to have an abstract concept repre-
senting this volume and attach to it the knowledge that it may be expressed in
different ways.

A tempting way of moving information out of the restrictive relational database
is to encode it using XML. Using a näıve method implemented in most database
systems, this would result in, literally, a data dump. For instance, a simple table
containing cars and mileage values (Table 1) can be expressed as in Listing 1.5.

Using XML does not solve our problem. As discussed in [Mad01], XML is
not a silver bullet - it is just another way to express the data. It only provides a
more flexible way, allowing us to add more meaning to it. A simple “data dump”
from the relational database is not enough for two reasons: First, as we see in
Listing 1.5, the file mixes together the structure of the data with the data itself.
Conceptually, these are different and should be represented as such. Second, the
data itself is stored as if to preserve the physical appearance of the table (i.e. a
sequence of rows, each with a few columns) rather than to preserve its underlying
meaning. It is thus clear that a different approach is needed.

Table 1. Sample relational table

Automobile Mileage

Ford Focus 24

Lotus Elise S 25

Listing 1.5. XML representation of relational database

1 <?xml version="1.0"?>

2 <mysqldump xmlns:xsi="[...] XMLSchema -instance">

3 <database name="test">

4 <table_structure name="US cars">

5 <field Field="automobile" Type="varchar(20)" />

6 <field Field="mileage" Type="float (11)" />

7 </table_structure>

3 we prefer the term ’agents’ to show that they can be either human end-users or other
computer systems



8 <table_data name="cars">

9 <row>

10 <field name="automobile">Ford Focus</field>

11 <field name="mileage">24</field>

12 </row>

13 [...]

14 </table_data>

15 </database>

16 </mysqldump>

There exist attempts to extract ontological information from relational tables
[Ast04,LM04]. What we want here is not nearly as ambitious as in these works.
For our purpose, we don’t necessarily need to infer a full scale ontology from
the data, but simply to express things that are the same as being the same and
things that are different as being different. It sounds simple for a human being,
but computers have serious difficulties in performing even this simple task.

The first thing we want to do is separate the structure of the representation
from the data itself. Listing 1.6 shows how we can define an ontological structure
to organize the data in the table. We use the term “ontological” simply because
we use the ontology specification language, OWL, but one should not imagine
a complex theory behind it: in this listing we simply state that we deal with
two concepts (Automobile and Mileage) who are connected by a relationship
hasMileage. The difference between this approach and the simple XML dump is
that here automobile and mileage are regarded as concepts, rather than fields
in a table. It is a subtle, but essential difference. Here, a particular instance of
the Automobile class has a name, but is separate from its name. This distinction
will allow us later to specify that Ford Focus is the same car as Focus and
that 28.8 is the same mileage as 24 (one using British gallons and one using
American gallons). This way, in the data file shown in Listing 1.7 we can define
the abstract mileage mileage1 and give it a value and then define the abstract
car Focus and give it a name and associate it with the abstract mileage value. In
these listings, an ObjectProperty relates two instances of two classes, while a
DatatypeProperty relates the instance of a class to a pre-defined type (integer,
string, etc.).

Listing 1.6. legacyUS.owl:Ontology structure for the information in the rela-
tional database

1 <?xml version="1.0"?>

2 <rdf:RDF[...]

3 xml:base="legacyUS.owl">

4 <owl:Ontology rdf:about=""/>

5 <owl:Class rdf:ID="Car"/>

6 <owl:Class rdf:ID="Mileage"/>

7 <owl:ObjectProperty rdf:ID="hasMileage">

8 <rdfs:domain rdf:resource="#Car"/>

9 <rdfs:range rdf:resource="#Mileage"/>



10 </ owl:ObjectProperty>

11 <owl:DatatypeProperty rdf:ID="hasValue">

12 <rdfs:range rdf:resource="[...]# float"/>

13 <rdfs:domain rdf:resource="#Mileage"/>

14 </ owl:DatatypeProperty>

15 <owl:FunctionalProperty rdf:ID="hasName">

16 <rdfs:range rdf:resource="[...]# string"/>

17 <rdfs:domain rdf:resource="#Car"/>

18 <rdf:type rdf:resource="#DatatypeProperty"/>

19 </ owl:FunctionalProperty>

20 </rdf:RDF>

Listing 1.7. legacyUSdata.owl:Data represented using the ontological struc-
ture

1 <?xml version="1.0"?>

2 <rdf:RDF [...]

3 xmlns:US="legacyUS.owl#"

4 xmlns:contexts="contexts.owl#"

5 xml:base="legacyUSdata.owl">

6 <owl:Ontology rdf:about="">

7 <owl:imports>

8 <rdf:Description rdf:about="legacyUS.owl">

9 </rdf:Description>

10 </owl:imports>

11 </owl:Ontology>

12 <US:Mileage rdf:ID="mileage1">

13 <US:hasValue [...]">24</US:hasValue >

14 </US:Mileage >

15 <US:Car rdf:ID="Focus">

16 <US:hasName [...] >Ford Focus<US:hasName >

17 <US:hasMileage rdf:resource="#mileage1"/>

18 </US:Car >[...]

19 </rdf:RDF >

Listings 1.6 and 1.7 show the kind of input our system considers as source.
We call the files legacy because they are obtained directly from existing data,
without any context information. With respect to the amount of reasoning nec-
essary at this point, our requirements are quite low since the machine needs
not understand the concepts, but merely identify them as concepts rather than
rows or columns in a table. The translation from the relational-model repre-
sentation to our ontological representation is easily done automatically using
one of the several available transformation languages such as XSLT [Cla99],
FleXML [Ros01] or HaXml [WR99]. Subsequently, we can use expressions like
isSemanticType(Car, ST398) to express the fact that the type Car defined in
Listing 1.6 represents the conceptual type ST 398. We refer to such expression



as elevation axioms because they elevate the class Car from its meaning as a
collection of entities in a legacy database, to a conceptual level. Using such el-
evation axioms instead of attaching properties to the original class Car reduces
the amount of work that the user needs to do by increasing the reusability of
the code.

4 Separating context from data representation

In order to be able to do the things outlined in Section 1.2 we first need to estab-
lish a way to represent context. The flexibility of the RDF and OWL languages
allow for such a variety of architectures to be defined, that one of the problems
we faced was focusing on one in particular, one that provides, in our opinion,
the best solution for future extensions.

Initially, we had reduced the possibilities to three models (Figure 2).
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Fig. 2. Models for context expression

4.1 Model 1: Semantic Type as part of the Source

This model was our initial approach and it states that a data source should
have a context and that it should contain a set of semantic types. It is the most
basic approach because it attempts to link everything directly to the legacy data
source.

This model was not eventually acceptable because a source should not actu-
ally contain a semantic object. It contains objects that we subsequently identify



as being automobiles, mileages, temperatures, locations, or anything else. By it-
self, it contains only some non-identifiable classes and objects that, in the COIN
methodology, have to be related to semantic types via the elevation axioms.

4.2 Model 2: Semantic Type as part of the Context

From the first model, we have learned that the semantic types need to be defined
separately from the data itself. Consequently, we considered having them defined
as part of the context. This method provides sufficient flexibility to allow each
user that defines his or her own context to have complete freedom as to what it
considers to be significant types and how these should be represented.

The disadvantage of the method also lies in the flexibility we just mentioned:
additional mediation is needed and even if two users define two contexts with
semantic types having exactly the same representation, they still appear as du-
plicates when everything is put together to allow query answering. (see Figure 3:
the instance browser at the middle of the image shows duplicate semantic types
corresponding to each of the two contexts defined)

Fig. 3. Duplicate definitions of Semantic types using the second model

4.3 Model 3: Semantic types defined independently of everything

else

Finally, the chosen model considers the semantic types to be independent of both
the context and the source. In fact, we should imagine these semantic types as
defined in an external ontology. This method provides the most independence
between the different concepts. Figure 4 presents a more detailed view than
the one in Figure 2, showing the files used for each component and referencing
Listings presented in this paper. We will be using three files to express context,
in addition to the two files that represent the data. Two of the three are also



Fig. 4. Our model, along with the files that contain each component

represented in Figure 4, while the third - the contextDefs.owl file in Listing 1.8
provides the basic definitions needed for context representation. As such, it can
be though of as the entire Figure 4 (without the sources). The contextDefs.owl
files defines the context as a set of modifiers attached to a semantic type (some
items present in the file will be explained in the next sections).

Listing 1.8. contextDefs.owl: the context definition

1 <?xml version="1.0"?>

2 <rdf:RDF

3 xml:base="contextDefs.owl">

4 <owl:Ontology rdf:about=""/>

5 <owl:Class rdf:ID="Context"/>

6 <owl:Class rdf:ID="Query"/>

7 <owl:Class rdf:ID="TriggeredRules"/>

8 <owl:Class rdf:ID="SemanticType"/>

9 <owl:Class rdf:ID="Modifier"/>

10 <owl:Class rdf:ID="ModifierValue"/>

11 <owl:ObjectProperty rdf:ID="hasModifiers">

12 <rdfs:range rdf:resource="#Modifier"/>

13 <rdfs:domain rdf:resource="#SemanticType"/>

14 </ owl:ObjectProperty>

15 <owl:ObjectProperty rdf:ID="isSemanticType">

16 <rdfs:range rdf:resource="#SemanticType"/>

17 </ owl:ObjectProperty>



18 <owl:DatatypeProperty rdf:ID="hasValue">

19 <rdfs:range rdf:resource="[...]# string"/>

20 <rdfs:domain rdf:resource="#ModifierValue"/>

21 </ owl:DatatypeProperty>

22 <owl:ObjectProperty rdf:ID="hasContext"/>

23 <owl:ObjectProperty rdf:ID="inContext">

24 <rdfs:range rdf:resource="#Context"/>

25 <rdfs:domain rdf:resource="#ModifierValue"/>

26 </ owl:ObjectProperty>

27 <owl:ObjectProperty rdf:ID="isForModifier">

28 <rdfs:range rdf:resource="#Modifier"/>

29 </ owl:ObjectProperty>

30 <owl:DatatypeProperty rdf:ID="ruleName">

31 <rdfs:domain rdf:resource="#TriggeredRules"/>

32 <rdfs:range rdf:resource="[...]# string"/>

33 </ owl:DatatypeProperty>[...]

34 </rdf:RDF>

The following listing (Listing 1.9) contains the file that represents the sys-
tem’s understanding of the world : a list of concepts, what properties they have
(modifiers) and how they relate to each other. In our example, it states that
automobiles have a mileage attribute that is measured by mileage unit.

Listing 1.9. contextOntology.owl: Semantic types definitions (including the
modifiers they accept)

1 <?xml version="1.0"?>

2 <rdf:RDF

3 xmlns="contextOntology.owl#"

4 xmlns:contextDef="contextDefs.owl#"

5 xml:base=" contextOntology.owl">

6 <owl:Ontology rdf:about="">

7 <owl:imports rdf:resource="contextDefs.owl"/>

8 </owl:Ontology>

9 <contextDef:SemanticType rdf:ID="Mileage">

10 <contextDef:hasModifiers>

11 <contextDef:Modifier rdf:ID="MileageUnit"/>

12 </contextDef:hasModifiers >

13 </ contextDef:SemanticType>

14 <contextDef:SemanticType rdf:ID="Automobile"/>

15 </rdf:RDF>

Finally, Listing 1.10 shows the instance of a context: all, or just a subset of
modifiers, are assigned values in this file. In this listing, Lines 10-13 give a label
to the context, which will be used in differentiating modifier values with similar
representations in different contexts (like mpg in our case). Then, lines 14-20



define the mpg modifier value, identifying its context and the modifier it applies
to.

Listing 1.10. UScontext.owl: Context instance file

1 <?xml version="1.0"?>

2 <rdf:RDF

3 xmlns="UScontext.owl#"

4 xmlns:contextOntology=" contextOntology.owl#"

5 xmlns:contextDef="contextDefs.owl#"

6 xml:base="UScontext.owl">

7 <owl:Ontology rdf:about="">

8 <owl:imports rdf:resource="contextOntology.owl"/>

9 </owl:Ontology>

10 <contextDefs:Context rdf:id="USContext">

11 <rdfs:label rdf:datatype="[...]# string">

12 USContext</rdfs:label}

13 </contextDefs:Context>

14 <contextDefs:ModifierValue rdf:ID="mpg">

15 <contextDefs:inContext rdf:resource="#USContext"/>

16 <contextDefs:isForModifier rdf:resource=

17 "contextOntology.owl#MileageUnit"/>

18 <contextDefs:hasValue rdf:datatype="[...]# string">

19 mpg</contextDefs:hasValue>

20 </ contextDefs:ModifierValue >

21 </rdf:RDF>

4.4 Automatic identification of Context

In Listing 1.10 we identified explicitly the context of a modifier value by means
of the inContext property in line 15. This may seem redundant considering that
the value is defined in a file specific to this context. In fact, this property can be
automatically asserted using the from named construct in the SPARQL query
language. Listing 1.11 shows how this can be done, with results in Table 2.

Listing 1.11. Using the from named construct we can identify to which context
each modifier value belongs to

1 prefix contextDefs:<contextDefs.owl#>

2 select ?src ?modifier ?value

3 from named <UKcontext.owl>

4 from named <UScontext.owl>

5 where {

6 graph ?src{

7 ?modifier contextDefs:hasValue ?value

8 }

9 }



Table 2. Result of query in listing 1.11

src modifer value

contextUS.owl contextOntology:MileageUnit mpg

contextUK.owl contextOntology:MileageUnit mpg

The results in column src of Table 2 may be used to replace the labels in
Listing 1.10. In the remaining of the presentation we will assume that the labels
have already been set, either manually, or using the method we just indicated.

4.5 The mediator file

To make the system work, one file needs to import all these bits and pieces to-
gether and build the construct of the COntext INtegration strategy. We call this
the mediator file. Listing 1.12 shows an extract of its contents, in particular the
import statements and the way we define the context of a source. In this example,
the source is just the Mileage entity mileage1 defined in the legacyUSdata.owl
file (Listing 1.7). However, it can be anything else: an entire file, a class or just
an instance as in this case.

Listing 1.12. The mediator file puts together all the different pieces of the
architecture and defines particular contexts of the sources

1 <rdf:RDF>

2 xmlns:UKdefs="legacyUK.owl#"

3 xmlns:USdefs="legacyUS.owl#"

4 xmlns:USdata="legacyUSdata.owl#"

5 xmlns:contextDefs="contextDefs#"

6 [...]

7 <owl:Ontology rdf:about="">

8 <owl:imports rdf:resource="UScontext.owl"/>

9 <owl:imports rdf:resource="UKcontext.owl"/>

10 <owl:imports rdf:resource="legacyUSdata.owl"/>

11 <owl:imports rdf:resource="legacyUK.owl"/>

12 </owl:Ontology>

13 <rdf:Descripton rdf:about="legacyUSdata.owl#mileage1">

14 <j.0 :isSemanticType rdf:resource=

15 "contextOntology.owl#Mileage"/>

16 <j.0 :hascontext rdf:resource="UScontext.owl#"/>

17 </rdf:Description>

18 </rdf:RDF>

In the listing above, lines 2-4 give names to particular ontologies, names
which we will use in defining the rules and the queries below.

Now we can, for instance, identify the context of a source using a query
similar to the following:



Listing 1.13. Query to identify the context of a source

1 prefix contextDefs:<contextDefs.owl#>

2 select ?data ?context

3 where {?data contextDefs:hasContext ?context}

In our example, the results of this query is shown in Table 3.

Table 3. Results of the context query in Listing 1.13

data context

USdata:mileage1 USContext:USContext

5 Context conflict identification and resolution

In the previous sections we have explained how a user might query the data to
find out what is the appropriate context it refers to. In this section we will show
how we do this automatically for the purpose of context conflict determination
and how this determination will trigger the necessary conversion rules. We will
continue to use the example of cars and mileages presented throughout this work.

The approach we follow in this work is a two-step approach: first, we need to
determine the need for a conversion (i.e. determine the existence of two different
contexts) and then apply the corresponding rule.

These two phases are implemented in two sets of rules: first a trigger rule

analyses the data and the query to identify potential conflicts. If one such con-
flict is identified, a flag is raised, to announce the necessity of the application
of a conversion rule. We will describe the implementation of this flag shortly.
Upon assertion of the trigger flag, the corresponding rule will automatically be
triggered and context mediation will take place by addition of new data to the
dataset.

5.1 The trigger rule

The idea of the trigger rule is to look for conflicts and add a flag, in the form of
a small text representing the needed conversion, which is added to a collection
of triggers called TriggeredRules1 in our example.

Listing 1.14 shows the exact rule used to determine conflicts between any
two attributes of the same type.

Listing 1.14. Rule for the determination of context conflict

1 USdefs:hasValue(?attribute , ?attributeValue) ∧

2 contextDefs:hascontext (?attribute , ?dataContext) ∧

3 contextDefs:hascontext(Query_1 , ?queryContext) ∧

4 differentFrom(?dataContext , ?queryContext) ∧



5 contextDefs:isSemanticType (?temp , ?semType) ∧

6 contextDefs:hasModifiers (?semType , ?modifier) ∧

7 contextDefs:isForModifier (?modVal, ?modifier) ∧

8 contextDefs:hasValue(?modVal , ?dataModVal) ∧

9 contextDefs:inContext(?modVal, ?datacontext) ∧

10 contextDefs:isForModifier (?modVal1 , ?modifier) ∧

11 contextDefs:hasValue(?modVal1 , ?queryModVal) ∧

12 contextDefs:inContext(?modVal1 , ?querycontext) ∧

13 rdfs:label(?queryContext , ?c1) ∧

14 rdfs:label(?dataContext , ?c2) ∧

15 swrlb:stringConcat(?tn0 ,":" ,?queryModifierValue) ∧

16 swrlb:stringConcat(?tn1 ,?c1 ,?tn0) ∧

17 swrlb:stringConcat(?tn2 ,"-to -" ,?tn1) ∧

18 swrlb:stringConcat(?tn3 ,?dataModifierValue ,?tn2) ∧

19 swrlb:stringConcat(?tn4 ,":" ,?tn3) ∧

20 swrlb:stringConcat(?triggername ,?c2 ,?tn4)

21 → contextDefs:ruleName(TriggeredRules1 , ?triggername)

A detailed explanation follows:

Lines 1-4 identify the difference between the contexts of the data and the query.
Lines 5-6 identify the semantic type and modifier
Lines 7-9 identify the value of the modifier in the context of the dataset
Lines 10-12 do the same for the value of the modifier in the query context.
Lines 13-14 identify the labels of each context, used later in generating the

trigger name
Lines 15-20 generate the name of the trigger
Line 21 asserts the trigger

In this implementation, the attribute itself is linked by a hasContext relation to
a particular context. In other situations, such a relation may only be defined for
the entire dataset, rather than for individual attributes. This is not a problem,
as a SWRL rule can extend the hasContext rule from a class to its components.

In our running example, this rule would generate a flag of the form USContext:mpg-

to-UKContext:mpg.

5.2 The conversion rule

The actual conversion rule that transforms the miles per gallon measure unit
from Winchester gallons to Imperial gallons is shown in Listing 1.15. Line 1
checks the existence of the triggered flag and, if this condition is satisfied, it
performs the necessary mathematical conversion functions (lines 2-4) and asserts
the new value in line 5.

The result of applying both rules on the knowledge base is shown in Figure
5. We can see that two new facts have been asserted: first, the trigger rule has
discovered the context conflict and, second, upon assertion of the conflict, the
conversion rule has been triggered to compute the new value.



Listing 1.15. Conversion rule

1 contextDefs:ruleName(TriggeredRules1 ,

2 "USContext:mpg -to -UKContext:mpg") ∧

3 USdefs:hasValue(?mileage , ?mileageValue) ∧

4 swrlb:multiply(?mileage1 , ?mileageValue , 12) ∧

5 swrlb:divide(?newValue , ?mileage1 , 10)

6 → UKdefs:hasValue(?mileage , ?newValue)

Fig. 5. With two rules in the knowledge base, the conversion between mileage units
has been performed automatically. In the lower half of the image we can see that the
new mileage value (28.8) has been correctly asserted

5.3 Query alteration

The simple way in which we have defined the conversion rule (Listing 1.15)
allows us to re-write the query in an equally simple manner. Listings 1.16 and
1.17 show the original and, respectively, the new query for obtaining the value
of the mileage for the Focus. As it can be observed, the only difference is the
prefix of the hasValue relationship.

Listing 1.16. Original query

1 SELECT ?mileageValue

2 WHERE { ?loc USdefs:hasMileage ?mileage.

3 ?loc USdefs:hasName "Ford Focus".

4 ?mileage USdefs:hasValue ?mileageValue}



Listing 1.17. New query for the UK context

1 SELECT ?mileageValue

2 WHERE { ?loc USdefs:hasMileage ?mileage.

3 ?loc USdefs:hasName "Ford Focus".

4 ?mileage UKdefs:hasValue ?mileageValue}

Despite its ease of use and implementation, the current method is not per-
fect. The relation UKdefs:hasValue is not directly linked to the UK context.
Formally, it has no link to any specific context. Though this approach can be
implemented programatically, our future work, described in the next section,
aims towards an ever closer integration with the semantic web tools.

6 Future work

Our work so far has shown how we can approach the problem of context in-
terchange using the COIN strategy via the tools of the Semantic web. To fully
achieve all the features that are currently available in COIN there are still steps
ahead, some of which we describe in this section.

The solution presented in the previous section relies on external programing
languages to transform a query such that it returns the result in a different
context. A better solution would be to have a new tertiary relation, similar to
the one that defined the value of a modifier in a particular context. This new
relation, which we call hascontextValue links together an attribute, a value and
a context. As we have seen, SWRL can only express binary relations directly,
so the only way to implement this relation is to define it as an owl:class with
three binary relations. Now, the conversion rule needs to infer the new tertiary
relation that links the attribute to the new value in the new context. Such a
rule can be created following the Semantic Web best practices [NRHW06] as in
Listing 1.18.

Listing 1.18. Tertiary relation implemented as an OWL class

1 <owl:Class rdf:ID="hascontextValueRelation"/>

2 <owl:ObjectProperty

3 rdf:ID="hascontextValueRelation context">

4 <rdfs:range rdf:resource="#Context"/>

5 </ owl:ObjectProperty>

6 <owl:ObjectProperty

7 rdf:ID="hascontextValueRelation attribute"/>

8 <owl:ObjectProperty

9 rdf:ID="hascontextValueRelation value"/>

The difficulty in inferring this relation in the conversion rule is that a new
instance has to be generated: a new individual of the hascontextValue type that
would link the three components (attribute, value and context). Unfortunately,
the current standard SWRL specification does not provide means to instantiate



classes, thus making this solution temporarily unfeasible. This leavs only the
option of an “impure” approach using external programming tools.

7 Conclusion

In this work we describe how the COntext INterchange strategy can be im-
plemented using the Semantic Web tools, in particular using OWL, SWRL and
SPARQL. We acknowledge the existence of massive amounts of data in relational
databases that lack all the necessary data required for users other than the orig-
inal designers of the database and describe how the information present in these
databases can be “elevated” to a knowledge base. Subsequently, we show how to
structure information pertaining to the context of the data - how to model the
definitions of semantic type, modifier and modifier value. Using these models we
show how the necessary conversions of the data values can be made by using a
two-step process involving pairs of trigger and conversion rules.
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