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Abstract— A novel method for automatically constructing taxonomies
for specific research domains is presented. The proposed methodology
uses term co-occurence frequencies as an indicator of the semantic close-
ness between terms. To support the automated creation of taxonomies
or subject classifications we present a simple modification to the basic
distance measure, and describe a set of procedures by which these
measures may be converted into estimates of the desired taxonomy. To
demonstrate the viability of this approach, a pilot study on renewable
energy technologies is conducted, where the proposed method is used
to construct a hierarchy of terms related to alternative energy. These
techniques have many potential applications, but one activity in which
we are particularly interested is the mapping and subsequent prediction
of future developments in the technology and research.

I. I NTRODUCTION

A. Technology mining

The planning and management of research and development ac-
tivities is a challenging task that is further compounded by the large
amounts of information which researchers and decision-makers have
at their disposal. Information regarding past and current research
is available from a variety of channels, examples of which include
publication and patent databases. The task of extracting useable in-
formation from these sources, known as “tech-mining”[Porter, 2005],
presents both a difficult challenge and a rich source of possibilities;
on the one hand, sifting through these databases is time consuming
and subjective, while on the other, they provide a rich source of
data which, if effectively utilized, will allow a well-informed and
comprehensive research strategy to be formed.

There is already a significant body of research addressing this
problem (for a good review, the reader is referred to [Porter, 2005],
[Porter, 2007], [Losiewicz et al., 2000], [Martino, 1993]); interesting
examples include visualizing the inter-relationships between
research topics [Porter, 2005], [Small, 2006], identification
of important researchers or research groups [Kostoff, 2001],
[Losiewicz et al., 2000], the study of research performance by
country [de Miranda et al., 2006], [Kim and Mee-Jean, 2007]
the study of collaboration patterns [Anuradha et al., 2007],
[Chiu and Ho, 2007], [Braun et al., 2000] and the prediction
of future trends and developments [Smalheiser, 2001],
[Daim et al., 2005], [Daim et al., 2006], [Small, 2006]. We
also note that taxonomy creation has been addressed before in
[Blaschke and Valencia, 2002], [Makrehchi and Kamel, 2007],
though different approaches are taken in both cases. Nevertheless,
in view of the many difficulties inherent to these undertakings, there
is still much scope for further development in many of these areas.

For researchers and managers new to a field, it is critical to quickly
gain a broad understanding of the current state of research, future
scenarios and the identification of technologies with potential for

growth and which hence need to be prioritized. The work described
in this paper targets this important aspect of technology-mining.
Specifically, we seek to answer the following research question: given
a collection of keywords relevant to a research area of interest, is it
possible to automatically organize these keywords into a taxonomy
which reflects the structure of the research domain? In seeking an
answer to this question, the following issues will also be addressed:

1) Derivation of an asymmetric measure of distance between
keywords which indicates the degree to which one keyword
is a subclass of the other.

2) Investigation of methods for converting these distance measure-
ments into an estimate of the underlying topic taxonomy.

3) A pilot study in renewable energy as a demonstration of the
proposed approach.

B. Pilot study

To provide a suitable example on which to conduct our experiments
and to anchor our discussions, a pilot study was conducted in the field
of renewable energy.

The importance of energy to the continued and general well-being
of society cannot be understated, yet 87%1 of the world’s energy
requirements are currently fulfilled via the unsustainable burning of
fossil fuels. A combination of environmental, supply and security
problems have made renewable energy technologies such as wind
and solar power one of the most important topics of research today.

An additional consideration was the incredible diversity of renew-
able energy research; this promises to provide a rich and challenging
problem domain on which to test our methods. Besides high-profile
topics like solar cells and nuclear energy, renewable energy related
research is also being conducted in fields like molecular genetics and
nanotechnology. It was this valuable combination of social impor-
tance and technical richness that motivated the choice of renewable
energy as the subject of our pilot study.

II. K EYWORD DISTANCES FOR TAXONOMY CREATION

In the following subsections, the methods used for data collection
and analysis will be discussed in some detail. The overall process
will consist of the following two stages:

1) Identification of an appropriate indicator of closeness (or dis-
tance) between a collection of terms which can be used to
quantify the relationships between areas of research,

2) Use of this indicator to automatically construct a subject area
hierarchy or taxonomy which accurately captures the inter-
relationships between these terms.

1year 2005. Source: Energy Information Administration, DOE, US Gov-
ernment
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A. Keyword distances

The key requirement for stage one is a method of evaluat-
ing the similarity or distance between two areas of research,
represented by appropriate keyword pairs. Existing studies have
used methods such as citation analysis [Saka and Igami, 2007],
[Small, 2006] and author/affiliation-based collaboration patterns
[Zhu and Porter, 2002], [Anuradha et al., 2007] to extract the rela-
tionships between researchers and research topics. However, these
approaches only utilize information from a limited number of publica-
tions at a time, and often require that the text of relevant publications
be stored locally (see [Zhu and Porter, 2002], for example). As such,
extending their use to massive collections of hundreds of thousands
or millions of documents would be computationally unfeasible.

Instead, we choose to explore an alternative approach which is
to define the relationship between research areas in terms of the
correlations between occurrences of related keywords in the academic
literature. Simply stated, the appearance of a particular keyword
pair in a large number of scientific publications implies a close
relationships between the two keywords. Accordingly, by utilizing
the co-occurence frequencies between a collection of representative
keywords, is it possible to infer the overall subject taxonomy of a
given domain of research?

In practice, exploiting this intuition is more complicated than
might be expected, particularly because an appropriate normal-
ization scheme must be devised. It is certainly not clear what
the exact form of this distance expression should be; even more
importantly, can it be grounded in a rigorous theoretical frame-
work such as probability or information theory? As it turns out,
there is already a closely-related technique which provides this
solid theoretical foundation, and which exploits the same intu-
ition; known as theGoogle Distance[Cilibrasi and Vitanyi, 2006],
[Cilibrasi and Vit́anyi, 2007], this method utilizes the term co-
occurence frequencies as an indication of the extent to which two
terms are related to each other. This is defined as:

NGD(tx, ty) =
max {log nx, log ny} − log nx,y

log N −min {log nx, log ny}
, (1)

where NGD stands for theNormalized Google Distance, t1 andt2 are
the two terms to be compared,n1 andn2 are the number of results
returned by a Google search for each of the terms individually and
n1,2 is the number of results returned by a Google search for both of
the terms. While a detailed discussion of the theoretical underpinnings
of this method is beyond the present scope of the present discussion,
the general reasoning behind expression in eq. (1) is quite intuitive,
and is based on the normalized information distance, given by:

NID(x, y) =
K(x, y)−min {K(x), K(y)}

max {K(x), K(y)}
, (2)

where x and y are two strings (or other data objects such as
sequences, program source code, etc.) which are to be compared.
K(x) andK(y) are the Kolmogorov complexities of the two strings
individually, while K(x, y) is the complexity of the combination of
the two strings. The distance is hence a measure of the additional
information which would be required to encode both stringsx and
y given that an encoding of the shorter of the strings is already
available. The division bymax {K(x), K(y)} is a normalization
term which ensures that the final value of the distance lies in the
interval [0,1].

In the present context, the Kolmogorov complexity is substituted
with the prefix code length, which is given by:

K(x, y)⇒ G(x, y) = log

„

N

nx,y

«

, (3)

K(x)⇒ G(x) = G(x, x). (4)

In the above, N is the size of the sample space for the “google
distribution”, and can be approximated by the total number of
documents indexed by Google or the search engine being used, if
this is not Google. Substituting (3),(4)→ (2) leads to the expression
in eq. (1).

To adapt the framework above for use in the context of technol-
ogy mapping and visualization, we introduce the following simple
modifications:

1) Instead of a general Web search engine, the prefix code length
will be measured using hit counts obtained from a scientific
database such as Google Scholar or Web of Science.

2) N is set to the number of hits returned in response to a search
for “renewable+energy”, as this represents the size of the body
of literature dealing with renewable energy technologies.

3) We are only interested in term co-occurences which are within
the context of renewable energy; as such, to calculate the co-
occurence frequencyni,j between termst1 and t2, the search
term “‘renewable+energy”+“t1”+“ t2”’ was submitted to the
search engine. Admittedly this measure may result in some
under-reporting of hit counts as the term “renewable+energy”
may not explicitly appear in all relevant documents. However,
overall it was deemed necessary as many of the keywords such
asarabidopsisandwind are very broad and would admit many
irrelvant studies.

As explained in [Cilibrasi and Vit́anyi, 2007], the motivation for
devising the Google distance was to create an index which quantifies
the degree of semantic dissimilarity between objects (words or
phrases) which reflects their usage patterns in society at large. By
exploiting the same intuition, it would be logical to assume that
a similar measure which utilizes term co-occurence patterns in the
academic literature instead of a general Web search engine, would
be able to more appropriately characterize the similarity between
technology related keywords in terms of their usage patterns in the
scientific and technical community.

B. Asymmetric distances for detection of subclassing

One of the important properties of a distance measure is that it
should be symmetric, i.e.: for a given distance functiond(, ):

d(i, j) = d(j, i) ∀i, j.

However, there are cases where we expect the relationships between
objects being mapped to be asymmetric. Indeed, the present situation
is one such example where, for two keywords being studied, it is
likely that the information attached to one keyword is a subset of
the information associated with the other keyword. This can indicate
that the field of research linked to one of the keywords is a subtopic
of the other. We postulate that these asymmetries can be exploited
to build a better representation of the technological landscape being
studied.

Firstly, we describe a method by which the NGD can be modified
to allow for such asymmetry. Recall that the numerator of the
expression in eq. (2) quantifies the amount of information which is
needed to produce two objectsx, y, given an encoding of the object
with the lesser information content. Choosing the object with less
information enforces the symmetry condition but also removes the
desired directional property.

Thus, a directional version of this distance can easily be obtained
as follows:

−−→
NID(x, y) =

K(x, y)−K(y)

K(x)
. (5)

In this equation, the expression
−−→
NID(x, y) denotes the directional

version of NID, and can be interpreted as the additional information
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required to obtain bothx andy given only objecty. To see how this
helps us, consider the scenario where objecty is a subclass of object
x; in this case, we expect thaty would already incorporate most of
the information regardingx.

Take the example of a circus elephant, which can be considered
a subclass of elephant since all circus elephants are elephants while
the same does not hold true in reverse. Also, it is clear that any
description of a circus elephant must include a definition of what an
elephant is, in addition to the fact that this particular elephant lives
in a circus. In the present context, we could express this as follows:

information(elephant) ⊂ information(circus elephant),

∴ K(circus elephant, elephant)−K(circus elephant) ≈ 0.

Hence, at least in this case, we can see how a small value of
K(x, y)−K(y) is an indication of subclassing.K(x) again serves
as a helpful normalization term, for example, to guard against the
trivial case whereK(x) = 0⇒ K(x, y) = K(y).

Finally, as before, we can obtain a form of this equation suitable
for use with search engines by substituting eqs. (3) and (4) into eq.
(5), which yields the corresponding directional version of the NGD:

−−→
NGD(tx, ty) =

log ny − log nx,y

log N − log nx

, (6)

It is now easy to check the validity of this intuition. Through the
appropriate Google searches, we find that:nelephant = 80, 300, 000,
ncircus elephant = 106, 000 andncircus elephant,elephant = 91, 800
(these values are the hit counts returned by the respective Google
searches, and areestimated valueswhich may change in the future,
though presumably not by much). As such:

−−→
NGD(circus elephant,elephant) =

log 106, 000− log 91, 800

log 1010 − log 80, 300, 000
= 0.03

−−→
NGD(elephant,circus elephant) =

log 80, 300, 000− log 91, 800

log 1010 − log 106, 000
= 0.59

Where, as suggested in [Cilibrasi and Vitányi, 2007], N can be
approximated by any suitably large number. As can be seen, these
figures correctly indicate that “circus elephant” is indeed a subclass
of “elephant”.
−−→
NGD can now be used to analyze collections of technology related

keywords from the perspective of graph theory. Given a collection of
keywordsV, we can construct adirected graphor digraph consisting
of the pair of (V, E), where the keyword list is mapped to the set
of nodes of the graphV, E = {(u, v) : u ∈ V, v ∈ V, u 6= v}, the
set of edges of the graph, and the weighting functionw : E → R is
given by:

w [(v, w)] =
−−→
NGD(v, w). (7)

In this context, a keyword taxonomy is represented by a subgraph
(V, E∗), where:

1) E∗ ⊂ E , |E∗| = |V| − 1
2) All nodes except one have exactly one incoming edge.
3) (V, E∗) is connected, and there are no cycles.

In graph theory this construct is known as anarborescence,
which is basically the directed equivalent of a spanning tree (fig.1).
However, for any digraph there could be a very large number of
such arborescences, any one of which could potentially be a valid
keyword taxonomy. To solve this, we choose to follow the principle
of parsimony in suggesting that the arborescence with theminimum
total edge weightprovides the best possible organization of the terms.
In graph theory the problem of finding this arborescence is referred
to as the minimum arborescence problem.

a

b dc

f gh e

Fig. 1. Directed graph. The solid lines show one of a number of arborescences
in the graph

To demonstrate that this principle works, it is used to automatically
infer the taxonomic structure of two small selections of renewable
energy related keywords, and these are shown in fig. 2. The resulting
topic trees show that the terms have been organized into hierarchies
that approximately reflect the inter-dependencies between the terms.

C. Weighted cost functions

As mentioned above, when searching for the most likely taxonomy of
keyword terms, the selection criteria is the total weight (i.e. distance
values) of the edges in the corresponding arborescence.

Using the cost function derived from eq. (6) often resulted in local
structure which did not reflect the actual inheritance structure. In a
noiseless environment this would not be a problem but in practice
there are a number of situations where this reduces the accuracy of
the results.

For example, consider the taxonomy in fig. 2(a). We see thatsugars
has been classified under the Biomass subtree. However,genomics
and model plant have subsequently been placed as subclasses of
sugars. However, it would appear that the aspect of genomics
research related to sugars may be separate from the subset of
research in sugars related to biomass. We can check this by studying
the directional distances:

−−→
NGD(sugars, biomass) = 0.237, while

−−→
NGD(genomics, sugars) = 0.336, both of which are the smallest
values in the respective rows of the distance matrix. However,
−−→
NGD(genomics, biomass) = 0.462 which is somewhat greater
than
−−→
NGD(genomics, renewable energy) = 0.395, suggesting that

perhaps the genomics subtree might be better portrayed as a separate
branch of research from biomass.

Another example is shown in fig. 2(b), where the termcell has
attracted a large number of direct descendants:solar-cells, TiO2
thin films, molecular genetics, CdTe, genetic-linkage maps. This is a
problem which is frequently encountered, in which very broad terms
(such ascells) tend to dominate the subclassing process, resulting in
extremely flat hierarchies. A further complication is that the keyword
cells has two senses: solar “cells”, and biological “cells”.

In common with many other inverse problems, the two issues stated
above can be linked to the fundamentally ill-posed nature of the
problem - not only are we attempting to estimate the underlying
taxonomy from indirectly observed and noisy aggregate data, the
“truely optimal” structure of the taxonomy itself is also difficult to
define - even by human experts.

However, one way in which we can try to improve the situation
is by incorporating information regarding global structure into the
process, as this will hopefully reduce glaring inconsistencies within
the generated taxonomies. As an initial measure, we propose the fol-
lowing weighted cost function for evaluating the quality of generated
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renewable energy

biomass solar

poplar sunflower oil sugars dye sensitized solar cells organic solar cells

genomics

model plant

(a) Example 1

energy

hydrolysis pyrolysis cells

cellulose solar-cells tio2 thin-films molecular-genetics cdte genetic-linkage maps

lignocellulosic materials rapd markers

(b) Example 2

Fig. 2. Sample renewable energy taxonomies

renewable energy

biomass solar genomics

poplar sunflower oil sugars dye sensitized solar cells organic solar cells model plant

(a) Example 1

energy

hydrolysis pyrolysis cells

cellulose solar-cells molecular-genetics

tio2 thin-films cdtelignocellulosic materials genetic-linkage maps

rapd markers

(b) Example 2

Fig. 3. Sample taxonomies generated using the weighted cost function
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taxonomies:

fV(E∗) =
X

v∈V

Pn

i=1 αi

−−→
NGD(v, vi

E∗)
Pn

i=1 αi

, (8)

whereE∗ is the set of edges in the taxonomy under consideration,V
is the set of nodes,vi

E∗ denotes theith ancestor of nodev given the
edge-setE∗ andn is the number of ancestors for a given node. The
co-efficientsαi are weights which determine the extent to which the
score of a particular node is affected by its indirect ancestors. Thus,
α1 = 1, α2...n = 0 simply results in the total path length objective
function (i.e. optimizing this is equivalent to finding the minimum
arborescence).

Intuitively, as we traverse the tree from any nodev towards the
root, the distances

−−→
NGD(v, vi

E∗) would be expected to increase as we
move away fromv. As such, a reasonable choice forαi would be a
monotonically decreasing function, i.e. the highest priority is given
to the immediate ancestor of a given node, while the influence of
subsequent ancestors gradually diminishes. A number of weighting
functions were tested and in the following sections we present results
generated using three such functions:

1) Uniform weighting α1...n = 1
2) Linear weighting αi = n− i

3) Exponential weigthing αi = 1
2

i−1

As an example, taxonomies containing the same keywords have
been generated by optimizing the linear weighted cost function,
and are shown in fig. 3 (optimization was done using a genetic
algorithm, which is discussed in the following section). As can be
seen from these two figures, the use of the weighted cost function
produces some noticeable improvements in the resulting taxonomies.
In particular, the sub-treegenomics→model plantin fig.3(a) has been
directly connected to the root node, while in In fig.3(b), the sub-tree
descending fromcells is now more structured (in fig.2(b), this subtree
was mainly a flat hierarchy. Accordingly, the two sense ofcells have
now been appropriately divided into two separate subtrees, each of
which shows a reasonable inheritance structure.

III. M ETHODS AND DATA

A. Edmond’s algorithm

Finding the minimum arborescence for a digraph can be done effi-
ciently using Edmond’s algorithm [Korte and Vygen, 2006]. Briefly,
this is as follows:
Algorithm Edmonds(V, E)
Input: A digraph consisting of verticesV and edgesE
Output: Minimum weight arborescenceE∗

1. E∗ ← ∅ , V∗ ← V
2. for v ∈ V∗

3. do
4. Identify u = argminu {w[e(u, v)] : u ∈ V, u 6= v}
5. E∗ ← E∗ + {e(u, v)}
6. if no cycles formed,
7. Expand pseudo-nodes (if any), and returnE∗

8. else
9. Contract the nodesV ′ ⊆ V in each cycle into a pseudo-

nodev′

10. V∗ ← V∗ − V ′ , V∗ ← V∗ + {v′}
11. Replace allincomingedges with:

w[e(u, v
′)] = w[e(u, v)]− w[e(x(v), v)] . . .

. . . +
X

{e:e∈E′,e6=x(v)}

w[e],

where,x(v) is the immediate ancester of nodev and
E ′ is the set of edges in pseudonodev′.

c

h f

a

b d

e g

c

h f

Fig. 4. Taxonomy tree mutation operator. The dashed lines denote nodes
and edges which are to be removed.

f

c

h

b

a

g f

hd

e

c

Fig. 6. Chromosome repair process. The dashed lines denote nodes and
edges which are to be removed.

12. For eachoutgoingedge, set:

w[e(v′
, u)] = minv∈V′w[e(v, u)]

13. Repeat from (2) until all cycles have been eliminated

B. Genetic algorithms for taxonomy optimization

While efficient algorithms exist for standard problems such as
the minimum spanning tree (Kruskal’s algorithm, Prim’s algorithm
[Korte and Vygen, 2006]), as well as Edmond’s algorithm for the
minimum arborescence problem, the situation in cases when the cost
function incorporates custom modifications or constraints is less clear.

In particular, Edmond’s algorithm is inapplicable for the cost
function in eq. (8), nor does there appear to be any efficient algorithm
for finding the global optimum of this function. As the number of
possible taxonomies grows exponentially with the number of nodes,
exhaustive searches quickly become computationally infeasible.
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c

h f

b e

c

a

b d

e g

c

h f

a

g f

hd

Fig. 5. Taxonomy tree crossover operator (stage 1). The dashed lines denote nodes and edges which are to be removed.

As such, it was decided to use a Genetic Algorithm (GA) to
optimize the automatically generated taxonomies. While not the only
applicable technique, this approach does provide a very flexible
framework in which a variety of different cost functions can be
easily tested without having to devise a new optimization algorithm
each time. In addition, GAs have been used in similar appli-
cations [Li and Bouchebaba, 2000], [Raidl, 2000], [Li, 2001] with
some success, though in these previous studies the GAs were applied
to problems involving undirected trees.

The basic components of any GA are:

1) A method for encoding a full set of the parameters to be
optimized, where each encoded parameter set is called a “chro-
mosome”. For this study, the chromosomes were simply the
connection matrices representing the digraphs. A connection
matrix is a matrix with elementsci,j whereci,j = 1 indicates
that there is an edge linking nodei to nodej, while ci,j = 0
means that there is no connection between the two nodes. In
GA terminology, each chromosome is sometimes associated to
an “individual”.

2) A fitness function for evaluating each chromosome. As dis-
cussed previously, in this study the GAs will be used to test
the weighted subclassing cost functions.

3) A set of cross-overand mutation operations on the chromo-
somes. Traditionally, GAs have been based on linear, binary
chromosomes but this would be inappropriate in the current
application where the natural representation of parameters is as
a tree structure. Instead, we adopt the following two customized
operations for chromosome transformation:

• Mutation - the mutation procedure operates on individual
trees. A random subtree is moved from one point of the
hierarchy to another randomly selected point in the same
tree (fig.4).

• The Cross-overprocedure accepts pairs of trees at a time.
The operation comprises two stages: in the first stage, a
random subtree is selected from each of the original trees
and is transplanted onto a random point in the other tree
(fig. 5). However, this process invalidates the original tax-
onomies as the transplanted nodes would now appear twice
in the same taxonomy. To resolve this, the transplantation
stage is immediately followed by a chromosome repair

process (fig. 6) where theoriginals from the duplicated
nodes are removed and all descendants thereof promoted
to the ancestor nodes at the next level in the hierarchy.

Once all these components have been specified we are ready to
attempt the GA optimization. Broadly, this proceeds as follows:

1) Initialization of the GA by creating a population of randomly
generated individuals.

2) The fittest amongst these are selected for reproduction and
propogation to the next iteration of the algorithm.

3) During this reproduction process, random perturbations are in-
troduced in the form of the mutation and cross-over operations
discussed above.

C. Data collection

To conduct the pilot study on renewable energy, energy related
keywords were extracted using ISI Web of Science’s database in the
following manner: a search for “renewable+energy” was submitted,
and the matching publications were sorted according to citation
frequency, then the top 35 hits were used. In total, 72 “Author
Keywords”, i.e. keywords specified by the authors were extracted
(the complete lists of keywords are provided in Appendix I of this
paper).

Once the keywords were collected, the distances discussed in II-A
could be calculated where, as discussed, hit counts obtained from
the Google scholar search engine were used. A number of other
alternatives were considered including the Web of Science, Inspec,
Ingenta, Springer and IEEE databases. However, our preliminary
survey of these databases indicated that zero hits were returned for
a large number of keyword pairs. There appeared to be two main
reasons for this observation: Firstly, most of these search engines
simply did not index a large enough collection to provide ample
coverage of the more specialized of the keywords that were in the list;
furthermore, not all of the search engines allowed full text searches
(the Web of Science database, for example, only allows searching
by keywords or topics) - while sufficient for literature searches and
reviews, keyword searches simply did not provide sufficient data for
our purposes.

Even when using Google scholar, there were also a number of
keyword pairs for which there were no hits at all. This can cause
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serious problems it will cause the logarithms ofni,j in eq.5 to be
undefined. This can be viewed as a type of round-off error asni,j is
used to estimate the probability of co-occurrence of the termsti and
tj - as hit counts can only take integer values, small values of this
probability could very possibly result inni,j = 0. To resolve this,
we setn′

i,j = max{ǫ, ni,j}, whereǫ is the machine precision (in our
implementationǫ = 2.22×10−16), n′

i,j is then used in place ofni,j .

IV. RESULTS

The experiments described in the previous sections were con-
ducted. The Author keywords extracted from the top 35 cited papers
on “renewable+energy” from the Web of Science database where
collected and the taxonomy generating process described in the
preceeding sections carried out.

To facilitate presentation and analysis of the results, the collection
was randomly divided into two subsets - set one contains 35 key-
words, and set two contained the remaining 37 keywords. In addition,
any occurrences of the stop-words described in section III-C were also
removed before analysis was carried out. In the following subsections
the observations obtained which each of the sets are discussed in
greater detail.

A. Set 1

The proposed methods were first applied to the keywords in set
1. Taxonomies were generated using Edmond’s algorithm and GA
optimization using first the uniform weighting then the exponential
weighting functions; these are presented in fig. 7.

The main observations were:
1) In general, the generated taxonomies appear to capture the

high level orderings of the terms in the collection, at least
to a reasonable degree of accuracy. In particular, there were
two big clusters: one dedicated to Biomass related technolo-
gies and the other to technologies associated with thin-film
solar cells. There were also other nodes and “micro-clusters”
which descended directly from the root, notably the pairs
{genomics→model plant} (molecular genetics related) and
{global warming→sustainable farming and forestry} (policy
related).

2) The results obtained using the weighted schemes were almost
identical - whenαi was set to linearly and exponentially
decaying values, identical results were obtained. When using
uniform weights, the results were still similar but there was a
change in thethin film subtree, wheredye sensitized solar cells
was classified as a subclass of CdTe instead of being a direct
subclass ofthin film.

3) However, there is a bigger difference between the taxonomy
generated using Edmond’s algorithms (fig.7(a)) and those gen-
erated using the genetic algorithm. While the overall structure
remained the same, the former had a flatter hierarchy, with
much less subtree formation.
Consider, especially, thebiomass subtree; in fig.7(a), six
branches emanate from this node, only two of which have any
further descendants. In contrast, in fig.7(b) (uniform weights),
four nodes descend directly frombiomass, namelybiodiesel,
gasification, populusandalkanes. Of these,biodieselis further
linked to sunflower oil, which can be used to create biodiesel
via transesterification. Similarly,gasificationis joined to a pair
of related concepts -pyrolysisandgas engines.
We note that, while a flatter hierarchy is not necessarily
“wrong”, the presence of more structure is generally more
valuable (provided it is accurate, which it appears to be in this
case) as the objective of the whole exercise is to organize and
sort the information in a more intuitive way.

B. Set 2

Next, the second set of keywords (set 2) were organized into a
taxonomy using the proposed approach. The resulting graphs are
shown in fig. 8.

Our observations on these graphs are:

1) As before, the taxonomies show a number of significant clus-
ters, which includesolar, sugars, adsorption, natural gasand
power generation.

2) However, it was observed that there is much less consistency
amongst the four taxonomies.

3) As before, the results using Edmond’s algorithm produced a
slightly flatter hierarchy than when using the weighted cost
functions; however, this difference was less pronounced than
in the case of set 1.

4) The taxonomies created whenαi was linearly and exponentially
decreasing were very similar, though this time there was one
very minor difference between them.

5) Thenatural gassubtree is somewhat mixed in its composition
(which also changes significantly in the four taxonomies for
set 2), and appears to be a kind of “catch-all” cluster for
a number of orphaned terms. While a more reliable analysis
would require further domain knowledge, an informal scan
of the academic literature on this subject suggests that this
problem occurred as a result of a number of factors: firstly,
natural gasis an extremely common term in renewable energy,
while technical research that focusses specifically on natural gas
is relatively less common. Instead, we notice that this terms
frequently appears in articles that are broader in scope, such
as review papers and papers on various strategic issues such as
global warming, energy markets and the like. This allows the
term to attract a broad range of “subclasses” which may not
easily fit into other sections of these taxonomies. In particular,
note that many of the terms descended fromnatural gasare
themselves fairly broad in nature - and would likely appear in
similar publications.

6) The other major subtree wassugars. Again, there was signif-
icant variability across the taxonomies in terms of the nodes
classified under this subtree, as well as the intra-tree ordering
of these nodes, but in general there appeared to be three main
areas of research: one was on the chemical processes used to
break down and exploit sugars or related compounds (examples
of constituent nodes werehydrolysis, enzymatic digestionand
pretreatment). The second area was molecular genetics, with
terms such asarabidopsisand genome sequence. The final
related area of research mainly consisted of a single node,
poplar. This is a species of tree which is used as a source
of pulp and hence cellulose, a complex carbohydrate (the
exploitation of cellulosic materials such as pulp as an energy
feedstock is now an active area of research as these will not
threaten food supplies). While represented by a single node in
the present collection of keywords, this appears to be a major
area of research in biomass based sources of renewable energy.

V. D ISCUSSIONS

This paper presented a novel approach for automatically organizing
selections of keyword into taxonomies. In addition to being an
important step in the ontology creation process, these techniques can
be hugely useful to researchers seeking a better understanding of
the overall research landscape associated with the collection being
studied.

On the other hand, the results obtained indicate that there are
many technical problems which need to be overcome before this
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Fig. 7. Automatically generated taxonomies:Set 1
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Fig. 8. Automatically generated taxonomies:Set 2
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methodology can be used in a fully-automated manner. The main
issues include:

1) Complexity - as with many other inverse problems, inferring
the underlying taxonomy of a collection of keywords is ill-
posed: even ontologies created by subject matter experts can
show significant variability. This is because the exact structure
and organization of a taxonomy is very sujective and depends
heavily on the perspective and motivations of the developer.

2) Inconsistent quality of data; data obtained from publicly avail-
able sources are unregulated and are frequently noisy; this
further underscores the need for appropriate filtering and data
cleaning mechanisms.

3) Non-uniform coverage - the number of hits returned for very
general or high-profile keywords such as “energy” or “effi-
ciency” was a lot greater than for more specialized topics. This
is unfortunate as it is often these topics which are of the greater
interest to researchers. One way in which we hope to overcome
this problem is by aggregating information from a larger variety
of sources, examples of which include technical report and
patent databases and possibly even mainstream media and
blogs.

4) Inadequacy of existing data analysis tools; while - through the
research presented here - we have tried to push the envelope on
this front, the problems encountered when dealing with com-
plex, high dimensional data are common to many application
domains and are the subject of much ongoing research besides
our own. Problems related to the overfitting of data, non-unique
solutions and information loss resulting from dimensionality
reduction, are all symptoms of the inherent difficulty of this
problem.

That said, the methods described in this paper were only intended
as an early demonstration of the proposed approach, and in spite of
the above-mentioned problems, we believe that the results described
here already demonstrate the potential of the approach.

It must also be conceded that while promising, the results were
still far from perfect and contained a number of irregularities as
described in the paper. These may be viewed from a number of
perspectives; on the one hand, they could be manifestations of hitherto
unknown relationships or underlying correlations which may only
be understood after a more in-depth study of these results. On the
other hand, it is difficult to think of these results as either “right” or
“wrong” - the

−−−→
NGD is a numerical index derived from the term co-

occurence frequencies, which in turn depend on the data available
to the algorithm - nothing more, nothing less; under the correct
circumstances and provided that our assumptions are sufficiently
met, it can be very useful as a means of detecting subclassing.
Certainly, from the results obtained so far it would appear that these
requirements are satisfied for at least a reasonable proportion of the
time. However, under less favourable conditions, it can return values
which are difficult to understand or to explain, as has also been
observed in some of the examples presented here.

Our future plans include working more closely with domain experts
to improve and validate the results produced using the proposed
methodology.

APPENDIX I
RENEWABLE ENERGY RELATED KEYWORDS

biomass, CDS, CDTE, energy efficiency, gasification, global warming, least-
cost energy policies, power generation, populus, qtl, renewable energy, review,
sustainable farming and forestry, adsorption, alternativefuel, arabidopsis, ash
deposits, bio-fuels, biodiesel, biomass, biomass-fired power boilers, carbon
nanotubes, chemicals, co-firing, coal, corn stover, electricity, emissions, energy
balance, energy conversion, energy economy and management, energy policy,

energy sources, enzymatic digestion, fast pyrolysis, fuels, gas engines, gas
storage, gasification, genome sequence, genomics, high efficiency, hydrolysis,
inorganic material, investment, landfill, model plant, natural gas, poplar,
pretreatment, pyrolysis, renewable energy, renewables, sugars, sunflower oil,
thermal conversion, thermal processing, thin films, transesterification.
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