

Using Semantic Web Tools for Context Interchange

Mihai Lupu
Stuart E. Madnick

Working Paper CISL# 2007-07

September 2007

Composite Information Systems Laboratory (CISL)
Sloan School of Management, Room E53-320

Massachusetts Institute of Technology
Cambridge, MA 02142

Using Semantic Web tools for COntext INterchange

Mihai Lupu
Singapore-MIT Alliance
National University of

Singapore

mihailup@comp.nus.edu.sg

Stuart Madnick
Sloan School of Management

Massachusetts Institute of
Technology

smadnick@mit.edu

ABSTRACT
The COntext INterchange Strategy (COIN) is an approach
to solving the problem of interoperability of semantically
heterogeneous data sources through context mediation. The
existing implementation of COIN uses its own notation and
syntax for representing ontologies. More recently, the OWL
Web Ontology Language is becoming established as the W3C
recommended ontology language. A bridge is needed be-
tween these two areas and an explanation on how each of
the two approaches can learn from each other. We pro-
pose the use of the COIN strategy to solve context disparity
and ontology interoperability problems in the emerging Se-
mantic Web both at the ontology level and at the data
level. In this work we showcase how the problems that arise
from context-dependant representation of facts can be mit-
igated by Semantic Web techniques, as tools of the concep-
tual framework developed over 15 years of COIN research.

1. INTRODUCTION
Making computers understand humans is, generously put,

a hard task. One of the main reasons for which this is such
a hard task is because even humans cannot understand each
other all the time. Even if we all spoke the same language,
there still exist plenty of opportunities for misunderstand-
ing. An excellent example is that of measure units. Again,
we don’t even have to go across different names to find differ-
ences: in the US, a gallon (the so-called Winchester gallon)
is approximately 3785 ml while in the UK, the “same” gal-

lon is 4546 ml, almost 1 liter more. So when we find a piece
of information in a database on cars, for instance, and we
learn that a particular model has a fuel tank capacity of 15,
how much gas can we actually fit inside, and, consequently,
for how long can we drive without stopping at a gas station?

The answer to the previous problem comes easy if we know
where we got the data from: if the information was from the
US, we know we can fit inside 56.78 liters of gas, while if it
comes from the UK, it is 68.19 - a difference of about 11
liters, with which a car might go for another 100 miles (or

Permission to copy without fee all or part of this material isgranted provided
that the copies are not made or distributed for direct commercial advantage,
the VLDB copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Very Large Data
Base Endowment. To copy otherwise, or to republish, to post on servers
or to redistribute to lists, requires a fee and/or special permission from the
publisher, ACM.
VLDB ‘07, September 23-28, 2007, Vienna, Austria.
Copyright 2007 VLDB Endowment, ACM 978-1-59593-649-3/07/09.

161 km if the driver is not American or British).
Many more such examples exist (see [10] for a particu-

larly costly one) and the reason for which they persist is
mainly because it is hard to change the schema of relational
databases that do not include the units of their measure-
ments simply because when they were designed, they were
designed for a single context, where everybody would know
what the units are. With globalization, off-shoring, out-
sourcing and all the other traits of the modern economical
environment, those assumptions become an obstacle to con-
ducting efficient business processes.

Even in the context of a purely-semantic web application,
such as the Potluck1 project developed at the Computer Sci-
ence and AI Laboratory at MIT, contextual information is
not explicitly approached. The user is allowed to mash-up
together information from different sites, but it is not taken
into account the fact that those different data sources may
have different assumptions about an entire array of concepts.
This paper shows how the COIN strategy can be imple-
mented in this new environment and how it can contribute
to it.

1.1 Approach overview
Semantic web tools rely heavily on mathematical logic

to perform inferences. The result of this, in combination
with our desire to maintain a 100% pure logic approach,
is that facts cannot be deleted or modified. For instance,
even if we define a relation hasName to be of functional
type (i.e. have a unique object for each subject), it is
still legal to have two entries with different objects, such as
(location1,hasName,‘London’) and (location1,hasName,

‘Londres’), the conclusion of which will be that the names
“London” and “Londres” denote the same location. This
has both advantages and disadvantages which we will not
discuss here, but refer the reader to a wealth of literature
on mathematical logic. Instead, we focus on how we model
context in this framework.

Taking a simple Weather example [7] containing locations
and their respective temperatures, Listing 1 shows how we
might represent different values of the same temperature
using prefixes of relations.

Listing 1: A possible solution to representing con-
text, by adding an additional hasValue relation to
the Temperature object. It is simple and intuitive of
the fact that we are dealing indeed with the same
temperature.

1<?xml version="1.0"?>

1http://dfhuynh.csail.mit.edu:6666/potluck/

2<rdf:RDF
3<UK:Temperature rdf:ID="temp1">
4<UK:hasValue rdf:datatype="[...]#int">
510</UK:hasValue>
6<USA:hasValue rdf:datatype=‘‘[...]#int’’>
750</USA:hasValue>
8</UK:Temperature>
9<UK:Location rdf:ID="London">
10<UK:hasName rdf:datatype="[...]#string">
11London, UK</UK:hasName>
12<UK:hasTemperature rdf:resource="#temp1"/>
13</UK:Location>
14</rdf:RDF>

The way to add this new relation is by defining a SWRL
[5] rule such as the one in Listing 2 and then querying the
results with a query in SPARQL [12] as in Listing 3.

Listing 2: SWRL rule that generates a value in the
USA context

1UK:hasValue(?temp, ?tempValue) ∧

2UK:hasTemperature(?location, ?temp) ∧

3swrlb:multiply(?product,?tempValue,1.8) ∧

4swrlb:add(?sum, ?product, 32) →

5USA:hasValue(?temp, ?sum)

Listing 3: SPARQL query that retrieves the value
in the US context

1SELECT ?tempValue
2WHERE { ?l UK:hasTemperature ?temp .
3?l UK:hasName "London" .
4?temp USA:hasValue ?tempValue
5}

This all seems very intuitive. As always, the problems lie
in the details: How do we determine a conflict of contexts?
How do we identify the correct rule to be applied? How
should the data and rules be organized into files? Do we
apply the rule to the entire dataset thus generating massive
amounts of new data, or should we just apply it to the subset
being queried?

We answer all of these questions in the following sections.
Among these, Section 4 introduces the basic representation
of context using the Ontology Web Language (OWL [9]) and
Section 5 presents our conflict identification and resolution
method. A more detailed discussion, is available in [7].

2. BACKGROUND AND RELATED WORK

2.1 COntext INterchange
The idea of the COntext INterchange [4] system is to re-

use massive amounts of data that already exist but that are
incomplete due to design assumptions that eliminated con-
stants from the dataset. When two or more such datasets are
put together, or queried together, what used to be constants
in each of them become variables in the aggregated dataset
and consequently needs to be added back in the data. This
is in most cases unfeasible due to the rigidity of the data
structures or simply due to the fact that the end user has
no control over the repository where the data exists.

The core of the COntext INterchange approach is a con-
text mediator that rewrites queries coming from a user con-
text into a context-sensitive mediated query that addresses
the differences in meaning between the receiver and the
sources. Conceptually, the context mediator is structured
around a domain model that consists of semantic types, at-

tributes and modifiers.

A semantic type is, as the name indicates, a conceptual en-
tity. For instance, in the Weather example of Section 3, the
column temperature has no meaning by itself until it is as-
sociated with a semantic type Temperature. The coincidence
in names is just because humans created both entities, but
it should be clear to the reader that the column could very
well have been named temp and the semantic type ST2842.
The important difference between semantic types and the
columns with which they are associated is that the semantic
types come enriched with semantics and attributes. In this
simple example, Temperature has only one attribute, value.

In turns, an attribute may come endowed with a modifier.
Again, using the Weather example, we can imagine that
the value attribute of the Temperature semantic type has a
modifier unit. This is called a modifier because it changes
the meaning of the attribute to which it refers - it modifies
it. A modifier value is in this case, Celsius (C) or Fahrenheit

(F).
COIN uses this architecture to automatically determine

differences in contexts and resolve queries in a way that is
easy to interpret correctly by the user, even if the data is
expressed in a different context. Existing application in-
clude financial reporting and analysis, airfare and car-rental
aggregators, etc. [3].

2.2 A glance at the Semantic Web
Though the COIN methodology precedes the Semantic

Web, and despite the many similarities in objectives and
motivation, the two have developed mostly independently.
The wide spectrum of tools that have been proposed by dif-
ferent research groups to achieve the targets of the original
paper by Berners-Lee et al. [2] make a quick but complete
summary virtually impossible. In this section we just look at
the few tools that we identify to be “best”, both in terms of
the appropriateness for our own purposes, and also in terms
of their acceptance and popularity within the Semantic Web
community.

Clearly, one of the pillars of current Semantic Web re-
search is the Web Ontology Language (OWL) [9]. To query
the data stored in OWL format, one could map it back to a
relational database and query it with SQL or use a “native”
query language such as SPARQL [12]. For most purposes,
SPARQL can be translated back to SQL, but the advantage
of it lies in being able to query directly the RDF graph that
underlies any ontology. It has the status of Working Draft

of the W3C since October 2006.
After representation and query languages, the Semantic

Web framework requires a rule language to make inferences
on the existing data, thus enabling the creation of the smart
agents described in the original Berners-Lee paper. Though
SWRL [5] has gained most attention in the past few years,
the language has not yet been standardized by the W3C
and many different implementations exist, that rarely sup-
port the full specification, mainly because in that case the
reasoning becomes undecidable. One of the most popular
implementation is SWRLTab2 - an extension to the Protégé
framework3, that uses mainly the Jess4 inference engine
(though it could use other engines too).

2http://protege.cim3.net/cgi-bin/wiki.pl?SWRLTab
3http://protege.stanford.edu/
4http://herzberg.ca.sandia.gov/jess/

3. FROM TABLES TO INFORMATION
The first step towards making the data understandable

by different agents5 performing their activities in different
contexts is to understand the fact that we are only dealing
with representations of concepts and facts. As we exempli-
fied before, 15 = 56.78 = 12.49 if one is gallons (US), one is
liters and one is gallons (UK). Consequently, it makes more
sense to have an abstract concept representing this volume
and attach to it the knowledge that it may be expressed in
different ways.

A tempting way of moving information out of the restric-
tive relational database is to encode it using XML. Using a
näıve method implemented in most database systems, this
would result in, literally, a data dump. For instance, a sim-
ple table containing locations and temperatures (Table 1)
can be expressed as in Listing 4.

Using XML does not solve our problem. As discussed in
[8], XML is not a silver bullet - it is just another way to ex-
press the data. It only provides a more flexible way, allowing
us to add more meaning to it. A simple “data dump” from
the relational database is not enough for two reasons: First,
as we see in Listing 4, the file mixes together the structure
of the data with the data itself. Conceptually, these are dif-
ferent and should be represented as such. Second, the data
itself is stored as if to preserve the physical appearance of
the table (i.e. a sequence of rows, each with a few columns)
rather than to preserve its underlying meaning. It is thus
clear that a different approach is needed.

Location Temperature

london 10
paris 12

Table 1: Sample relational table
Listing 4: XML representation of relational
database

1<?xml version="1.0"?>
2<mysqldump xmlns:xsi="[...]XMLSchema-instance">
3<database name="test">
4<table_structure name="weatherUK">
5<field Field="location" Type="varchar(20)" />
6<field Field="temperature" Type="int(11)" />
7</table_structure>
8<table_data name="weatherUK">
9<row>
10<field name="location">london</field>
11<field name="temperature">10</field>
12</row>
13[...]
14</table_data>
15</database>
16</mysqldump>

There exist attempts to extract ontological information
from relational tables [1, 6]. What we want here is not
nearly as ambitious as the works mentioned before. For
our purpose, we don’t necessarily need to infer a full scale
ontology from the data, but simply to express things that
are the same as being the same and things that are different
as being different. It sounds simple for a human being, but
computers have serious difficulties in performing even this
simple task.

The first thing we want to do is separate the structure
of the representation from the data itself. Listing 5 shows
5we prefer the term ’agents’ to show that they can be either
human end-users or other computer systems

how we can define an ontological structure to organize the
data in the table. We use the term “ontological” simply be-
cause we use the ontology specification language, OWL, but
one should not imagine a complex theory behind it: in this
listing we simply state that we deal with two concepts (Loca-

tion and Temperature) who are connected by a relationship
hasTemperature. The difference between this approach and
the simple XML dump is that here location and tempera-

ture are regarded as concepts, rather than fields in a table.
It is a subtle, but essential difference. Here, a particular
instance of the Location class has a name, but is separate
from its name. This distinction will allow us later to specify
that London is the same location with Londres and that 10
is the same temperature with 50 (one in Celsius and one
in Fahrenheit degrees). This way, in the data file shown in
Listing 6 we can define the abstract temperature temp1 and
give it a value and then define the abstract location London

and give it a name and associate it with the abstract tem-
perature value. In these listings, an ObjectProperty relates
two instances of two classes, while a DatatypeProperty re-
lates the instance of a class to a pre-defined type (integer,
string, etc.).

Listing 5: legacyUK.owl:Ontology structure for the
information in the relational database

1<?xml version="1.0"?>
2<rdf:RDF[...]
3xml:base="legacyUK.owl">
4<owl:Ontology rdf:about=""/>
5<owl:Class rdf:ID="Location "/>
6<owl:Class rdf:ID="Temperature"/>
7<owl:ObjectProperty rdf:ID="hasTemperature">
8<rdfs:domain rdf:resource="#Location"/>
9<rdfs:range rdf:resource="#Temperature"/>
10</owl:ObjectProperty>
11<owl:DatatypeProperty rdf:ID="hasValue ">
12<rdfs:range rdf:resource="[...]#int"/>
13<rdfs:domain rdf:resource="#Temperature"/>
14</owl:DatatypeProperty>
15<owl:FunctionalProperty rdf:ID="hasName">
16<rdfs:range rdf:resource="[...]#string"/>
17<rdfs:domain rdf:resource="#Location"/>
18<rdf:type rdf:resource="#DatatypeProperty"/>
19</owl:FunctionalProperty>
20</rdf:RDF>

Listing 6: legacyUKdata.owl:Data represented using
the ontological structure

1<?xml version="1.0"?>
2<rdf:RDF [...]
3xmlns:UK="legacyUK.owl#"
4xmlns:cntxts="cntxts.owl#"
5xml:base="legacyUKdata.owl">
6<owl:Ontology rdf:about="">
7<owl:imports>
8<rdf:Description rdf:about="legacyUK.owl">
9</rdf:Description>
10</owl:imports>
11</owl:Ontology>
12<UK:Temperature rdf:ID="temp1">
13<UK:hasValue [...]">10 </UK:hasValue>
14</UK:Temperature>
15<UK:Location rdf:ID=‘‘London ’’>
16<UK:hasName [...]>London, UK <UK:hasName>
17<UK:hasTemperature rdf:resource=‘‘#temp1"/>
18</UK:Location>[...]
19</rdf:RDF>

Listings 5 and 6 show the kind of input our system con-
siders as source. With respect to the amount of reasoning

Figure 1: Our model: apart from the source, three
components are needed, and the Modifier is the
binding concept
necessary at this point, our requirements are quite low since
the machine needs not understand the concepts, but merely
identify them as concepts rather than rows or columns in a
table. The translation from the relational-model represen-
tation to our ontological representation is easily done auto-
matically using one of the several available transformation
languages such as XSLT, FleXML or HaXml.

4. SEPARATING CONTEXT FROM DATA
REPRESENTATION

In order to be able to do the things outlined in Section
1.1 we first need to establish a way to represent context.
The flexibility of the RDF and OWL languages allow for
such a variety of architectures to be defined, that one of the
problems we faced was focusing on one in particular, one
that provides, in our opinion, the best solution for future
extensions.

Initially, we had reduced the possibilities to three models,
as detailed in [7]. Finally, the chosen model considers the
semantic types to be independent of both the context and
the source. In fact, we should imagine these semantic types
as defined in an external ontology. This method provides the
most independence between the different concepts. We will
be using three files to express context (rectangles in Figure
1), in addition to the two files that represent the data (the
ontology and the instances represented together as Source

in Figure 1).
First, Listing 7 defines what a context is: a set of modifiers

attached to a semantic type (some items present in the file
will be explained in the next sections).

Listing 7: cntxtDefs.owl: the context definition
1<?xml version="1.0"?>
2<rdf:RDF
3xmlns:p1="cntxtDefs.owl#"
4xml:base="cntxtDefs.owl">
5<owl:Ontology rdf:about=""/>
6<owl:Class rdf:ID="Context "/>
7<owl:Class rdf:ID="Query "/>
8<owl:Class rdf:ID="TriggeredRules"/>
9<owl:Class rdf:ID="SemanticType"/>
10<owl:Class rdf:ID="Modifier "/>
11<owl:Class rdf:ID="ModifierValue"/>
12<owl:ObjectProperty rdf:ID="hasModifiers">
13<rdfs:range rdf:resource="#Modifier"/>
14<rdfs:domain rdf:resource="#SemanticType"/>
15</owl:ObjectProperty>
16<owl:ObjectProperty rdf:ID="isSemanticType">

17<rdfs:range rdf:resource="#SemanticType"/>
18</owl:ObjectProperty>
19<owl:DatatypeProperty rdf:ID="hasValue ">
20<rdfs:range rdf:resource="[...]#string"/>
21<rdfs:domain rdf:resource="#ModifierValue"/>
22</owl:DatatypeProperty>
23<owl:ObjectProperty rdf:ID="hasContext"/>
24<owl:ObjectProperty rdf:ID="inContext">
25<rdfs:range rdf:resource="#Context"/>
26<rdfs:domain rdf:resource="#ModifierValue"/>
27</owl:ObjectProperty>
28<owl:ObjectProperty rdf:ID="isForModifier">
29<rdfs:range rdf:resource="#Modifier"/>
30</owl:ObjectProperty>
31<owl:DatatypeProperty rdf:ID="ruleName">
32<rdfs:domain rdf:resource="#TriggeredRules"/>
33<rdfs:range rdf:resource="[...]#string"/>
34</owl:DatatypeProperty>[...]
35</rdf:RDF>

The following listing (Listing 8) contains the file that rep-
resents the system’s understanding of the world : a list of
concepts, what properties they have (modifiers) and how
they relate to each other.

Listing 8: cntxtOntology.owl: Semantic types defini-
tions (including the modifiers they accept)

1<?xml version="1.0"?>
2<rdf:RDF
3xmlns="cntxtOntology.owl#"
4xmlns:cntxtDef="cntxtDefs.owl#"
5xml:base="cntxtOntology.owl">
6<owl:Ontology rdf:about="">
7<owl:imports rdf:resource="cntxtDefs.owl"/>
8</owl:Ontology>
9<cntxtDef:SemanticType rdf:ID="Temperature">
10<cntxtDef:hasModifiers>
11<cntxtDef:Modifier rdf:ID="TemperatureUnit"/>
12</cntxtDef:hasModifiers>
13</cntxtDef:SemanticType>
14<cntxtDef:SemanticType rdf:ID="Location"/>
15</rdf:RDF>

Finally, Listing 9 shows the instance of a context: all, or
just a subset of modifiers, are assigned values in this file.

Listing 9: UKCntxt.owl: Context instance file
1<?xml version="1.0"?>
2<rdf:RDF
3xmlns="UKcntxt.owl#"
4xmlns:cntxtOntology="cntxtOntology.owl#"
5xmlns:cntxtDef="cntxtDefs.owl#"
6xml:base="UKcntxt.owl">
7<owl:Ontology rdf:about="">
8<owl:imports rdf:resource="cntxtOntology.owl"/>
9</owl:Ontology>
10<cntxtDefs:ModifierValue rdf:ID="C ">
11<cntxtDefs:inContext rdf:resource="#UKContext"/>
12<cntxtDefs:isForModifier rdf:resource=
13"cntxtOntology.owl#TemperatureUnit"/>
14<cntxtDefs:hasValue rdf:datatype="[...]#string"
15>C </cntxtDefs:hasValue>
16</cntxtDefs:ModifierValue>
17</rdf:RDF>

One problem with the structure presented above is that
a basic query cannot differentiate between the two values of
a modifier, even if they were defined in different files. This
issue can be overcome using the from named construct in
the SPARQL query language, as we show in [7].

4.1 The mediator file
To make the system work, one file needs to import all

these bits and pieces together and build the construct of the
COntext INtegration strategy. We call this the mediator file.
Listing 10 shows an extract of its contents, in particular the
import statements and the way we define the context of a
source. In this example, the source is just the Temperature
entity temp1 defined in the UKInstances.owl file. However,
it can be anything else: an entire file, a class or just an
instance as in this case.

Listing 10: The mediator file puts together all the
different pieces of the architecture and defines par-
ticular contexts of the sources

1<owl:Ontology rdf:about="">
2<owl:imports rdf:resource="USAcntxt.owl"/>
3<owl:imports rdf:resource="UKcntxt.owl"/>
4<owl:imports rdf:resource="UKinstances.owl"/>
5</owl:Ontology>
6<rdf:Descripton rdf:about="UKinstances.owl#temp1">
7<j.0:isSemanticType rdf:resource=
8"cntxtOntology.owl#Temperature"/>
9<j.0:hasCntxt rdf:resource="UKcntxt.owl#"/>
10</rdf:Description>

Now we can, for instance, identify the context of a source
using a query similar to the following:

Listing 11: Query to identify the context of a source
1prefix cntxtDefs:<cntxtDefs.owl#>
2prefix mediator:<all.owl#>
3select ?data ?context
4from <all.owl>
5where {?data cntxtDefs:hasCntxt ?context}

5. CONTEXT CONFLICT IDENTIFICATION
AND RESOLUTION

In the previous sections we have explained how a user
might query the data to find out what is the appropriate
context it refers to. In this section we will show how we do
this automatically for the purpose of context conflict deter-
mination and how this determination will trigger the neces-
sary conversion rules. We will continue to use the example of
locations and temperatures presented throughout this work.

The approach we follow in this work is a two-step ap-
proach: first, we need to determine the need for a conversion
(i.e. determine the existence of two different contexts) and
then apply the corresponding rule.

These two phases are implemented in two sets of rules:
first a trigger rule analyses the data and the query to iden-
tify potential conflicts. If one such conflict is identified, a
flag is raised, to announce the necessity of the application
of a conversion rule. We will describe the implementation
of this flag shortly. Upon assertion of the trigger flag, the
corresponding rule will automatically be triggered and con-
text mediation will take place by addition of new data to
the dataset.

The trigger rule. Listing 12 shows the exact rule used to
determine conflicts between any two attributes of the same
type. Lines 1-4 identify the difference between the contexts
of the data and the query. Then, lines 5-6 identify the se-
mantic type and modifier, lines 7-9 identify the value of the
modifier in the context of the dataset while lines 10-12 do
the same for the value of the modifier in the query context.

Finally, the test is performed in line 13 and if the two val-
ues are different, a trigger is built and added to the dataset.
In this implementation, the attribute itself is linked by a
hasCntxt relation to a particular context. In other situ-
ations, such a relation may only be defined for the entire
dataset, rather than for individual attributes. This is not
a problem, as a SWRL rule can extend the hasCntxt rule
from a class to its components.

Listing 12: Rule for the determination of context
conflict

1UKdefs:hasValue(?attribute, ?attributeValue) ∧

2cntxtDefs:hasCntxt(?attribute, ?dataContext) ∧

3cntxtDefs:hasCntxt(Query_1, ?queryContext) ∧

4differentFrom(?dataContext, ?queryContext) ∧

5cntxtDefs:isSemanticType(?temp, ?semType) ∧

6cntxtDefs:hasModifiers(?semType, ?modifier) ∧

7cntxtDefs:isForModifier(?modVal, ?modifier) ∧

8cntxtDefs:hasValue(?modVal, ?dataModVal) ∧

9cntxtDefs:inContext(?modVal, ?dataCntxt) ∧

10cntxtDefs:isForModifier(?modVal1, ?modifier) ∧

11cntxtDefs:hasValue(?modVal1, ?queryModVal) ∧

12cntxtDefs:inContext(?modVal1, ?queryCntxt) ∧

13differentFrom(?dataModVal,?queryModVal) ∧

14swrlb:stringConcat(?trigger1,"-to-",?queryModVal) ∧

15swrlb:stringConcat(?trigger,?dataModVal,
16?queryModVal)
17→ cntxtDefs:ruleName(TriggeredRules1, ?trigger)

The conversion rule. The actual conversion rule that trans-
forms degrees in Celsius to degrees in Fahrenheit is shown in
Listing 13. Line 1 checks the existence of the triggered flag
and, if this condition is satisfied, it performs the necessary
mathematical conversion functions (lines 2-5) and asserts
the new value in line 6.

The result of applying both rules on the knowledge base is
shown in Figure 2. We can see that two new facts have been
asserted: first, the trigger rule has discovered the context
conflict and, second, upon assertion of the conflict, the con-
version rule has been triggered to compute the new value.

Listing 13: Conversion rule
1cntxtDefs:ruleName(TriggeredRules1, "C-to-F") ∧

2UKdefs:hasValue(?temp, ?tempValue) ∧

3swrlb:multiply(?temp1, ?tempValue, 9) ∧

4swrlb:divide(?temp2, ?temp1, 5) ∧

5swrlb:add(?newValue, ?temp2, 32)
6→ USAdefs:hasValue(?temp, ?newValue)

Query alteration. The simple way in which we have de-
fined the conversion rule (Listing 13) allows us to re-write
the query in an equally simple manner. Listings 14 and 15
show the original and, respectively, the new query for ob-
taining the value of temperature in London. As it can be
observed, the only difference is the prefix of the hasValue

relationship.

Listing 14: Original query
1SELECT ?tempValue
2WHERE { ?loc UKdefs:hasTemperature ?temp.
3?loc UKdefs:hasName "London" .
4?temp UKdefs :hasValue ?tempValue}

Listing 15: New query for the USA context
1SELECT ?tempValue
2WHERE { ?loc UKdefs:hasTemperature ?temp.

Figure 2: With two rules in the knowledge base, the conversion between temperature units has been per-
formed automatically. In the lower half of the image we can see that the new temperature value (50F) has
been correctly asserted

3?loc UKdefs:hasName "London" .
4?temp USAdefs :hasValue ?tempValue}

Despite its ease of use and implementation, the current
method is not perfect. The relation USAdefs:hasValue is
not directly linked to the USA context. Formally, it has
no link to any specific context. Though this approach can
be implemented programatically, our future work, described
in the next section, aims towards an ever closer integration
with the semantic web tools.

6. FUTURE WORK
Our work so far has shown how we can approach the prob-

lem of context interchange using the COIN strategy via the
tools of the Semantic web. To fully achieve all the features
that are currently available in COIN there are still steps
ahead, some of which we describe in this section.

The solution presented in the previous section relies on
external programing languages to transform a query such
that it returns the result in a different context. A better
solution would be to have a new tertiary relation, similar to
the one that defined the value of a modifier in a particular
context. This new relation, which we call hasCntxtValue
links together an attribute, a value and a context. As we
have seen, SWRL can only express binary relations directly,
so the only way to implement this relation is to define it as an
owl:class with three binary relations. Now, the conversion
rule needs to infer the new tertiary relation that links the
attribute to the new value in the new context. In [7] we
have showed how such a rule can be created following the
Semantic Web best practices [11].

The difficulty in inferring this relation in the conversion
rule is that a new instance has to be generated: a new indi-
vidual of the hasCntxtValue type that would link the three
components (attribute, value and context). Unfortunately,
the current standard SWRL specification does not provide
means to instantiate classes, thus making this solution tem-
porarily unfeasible.

7. CONCLUSION
In this work we describe how the COntext INterchange

strategy can be implemented using the Semantic Web tools,
in particular using OWL, SWRL and SPARQL. We acknowl-
edge the existence of massive amounts of data in relational
databases that lack all the necessary data required for users
other than the original designers of the database and de-
scribe how the information present in these databases can

be “elevated” to a knowledge base. Subsequently, we show
how to structure information pertaining to the context of the
data - how to model the definitions of semantic type, mod-

ifier and modifier value. Using these models we show how
the necessary conversions of the data values can be made
by using a two-step process involving pairs of trigger and
conversion rules.

8. REFERENCES
[1] I. Astrova. The Semantic Web: Research and

Applications, chapter Reverse Engineering of
Relational Databases to Ontologies. Springer Berlin /
Heidelberg, 2004.

[2] T. Berners-Lee, J. Hendler, and O. Lassila. The
semantic web. Scientific American, 2001.

[3] A. Firat. Information Integration using Contextual

Knowledge and Ontology Merging. PhD thesis, Sloan
Business School, MIT, 2003.

[4] C. H. Goh, S. Bressan, S. Madnick, and M. Siegel.
Context interchange: New features and formalisms for
the intelligent integration of information. ACM TIS,
17(3), 1999.

[5] I. Horrocks, P. Patel-Schneider, H. Boley, S. Tabet,
B. Grosof, and M. Dean. SWRL: A semantic web rule
language combining OWL and RuleML.
http://www.w3.org/Submission/SWRL/, 2004.

[6] N. Lammari and E. Metais. Building and maintaining
ontologies: a set of algorithms. NLDB, 48(2), 2004.

[7] M. Lupu and S. Madnick. On the feasibility of using
semantic web tools for context interchange.
http://www.comp.nus.edu.sg/~g0404405/coinsw.WP.pdf,
2007.

[8] S. Madnick. The misguided silver bullet: What XML
will and will not do to help information integration. In
Procs. of the iiWAS, 2001.

[9] D. McGuinness and F. van Harmelen. Owl web
ontology language overview.
http://www.w3.org/TR/owl-features/, 2004.

[10] NASA. Mars climate orbiter failure causes.
http://mars.jpl.nasa.gov/msp98/news/mco990930.html.

[11] N. Noy, A. Rector, P. Hayes, and C. Welty. Defining
n-ary relations on the semantic web.
http://www.w3.org/TR/swbp-n-aryRelations/, 2006.

[12] E. Prud’hommeaux and A. Seaborne. Sparql query
language for rdf.
http://www.w3.org/TR/rdf-sparql-query/, 2007.

	CISL WP 2007-07 Cover page.pdf
	cameraReady_aug41 - final.pdf

