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Abstract 
One of the challenges of dealing with multiple contexts is 
the significant effort required to provide all necessary lifting 
rules so that statements in one context can be viewed and 
understood in other contexts. In this paper, we introduce the 
notion of structured contexts, where a lightweight ontology 
is used to provide a structure for representing contexts. With 
structured contexts, specialized inference algorithms can be 
used to significantly reduce the number of lifting rules 
required. We use a semantic data integration example to 
illustrate the concept of structured contexts and the benefits 
of this novel use of lightweight ontology. 

Introduction   
Contexts play an important role in artificial intelligence 
[McCarthy, 1987] and many other areas of modern 
computing, such as information integration, process 
integration, and various applications of web services. One 
use of contexts is to allow information in one context to be 
viewed and understood in other contexts. In this case, 
lifting rules (also known as conversion rules) need to be 
supplied to convert information from its originating 
context to target contexts [McCarthy and Buvac, 1997]. 
When contexts are unstructured and lifting rules are 
supplied in a brute-force manner, the number of lifting 
rules can become too big to manage [Guha and McCarthy, 
2003; Zhu, 2005].  
 To substantially reduce the number of lifting rules 
required, we introduce the notion of structured contexts 
and show its effectiveness using an information integration 
example. In our approach, we use a lightweight ontology to 
provide a structure for representing contexts, and use a 
specialized reasoner to compose complex lifting rules from 
a small set of pre-defined simple rules.  

Example and Unstructured Contexts 
In this section, we use an online price comparison 
example, where information from multiple sources needs 
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to be integrated, to illustrate the problem with unstructured 
contexts.  

Example 
Numerous vendors make their pricing information online. 
With web wrappers [Firat et al., 2000] and the increasing 
adoption of web services, one can gather price data and 
compare offers from different vendors. To perform 
meaningful comparison, one has to reconcile the semantic 
differences of price data, especially when data is from 
vendors scattered around the world [Zhu et al., 2002]. 
 Consider a scenario where data is from 30 vendors in 10 
different countries. All vendors quote prices using the 
same schema, represented using the following first order 
predicate: 
  quote(Product, Price, Date) 
but each uses a different convention so that the price values 
are interpreted differently depending on which vendor 
provides the quote. Table 1 provides a few examples of 
different interpretations of price. 
Table 1. Interpretations of Price.  
Vendor Interpretation of Price 
1 
2 
3 
… 
30 

In 1’s of USD, taxes and S&H included 
In 1’s of USD, taxes and S&H excluded 
In thousands of Korean won, taxes and S&H excluded 
… 
In millions of Turkish lira, taxes included 

Let us assume that each vendor uses a different convention, 
thus we have 30 unique contexts. For simplicity, we will 
assume that users normally adopt a vendor context. In this 
scenario, to allow users in all contexts to meaningfully 
compare vendor prices, it is necessary that price data from 
other contexts be converted to the user context.  

Lifting Rules between Unstructured Contexts 
In the logic of context developed by McCarthy and Buvac 
[1997] and various other logics of context, contexts are 
described in two ways: one is by the collection of all 
formulae in a context; second is by the lifting rules that 
relate a formula in one context to a formula in another 
context.  
 For the first case, the formulae in the context of vendor i 
(labeled as context ci) are the collection of ground atoms 



 2

quote(Product, Price, Date), which correspond to all the 
records of the vendor’s quote database. These atoms 
together describe context ci. 
 For the second case, the lifting rules often take one of 
the following two forms in the logic of context [McCarthy 
and Buvac, 1997]: 
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which establish the logical equivalence or logical 
implication relationships between formulae pi and pj in 
contexts ci and cj, respectively.  
 Suppose there exists an externally implemented function 
for exchange rates between a pair of currencies, 
represented using the following predicate: 
  r(CurFrom, CurTo, Day, Rate) 
The lifting rule to convert price from context c2 to context 
c3 (see Table 1) may look like the following: 
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The lifting rule to convert from c3 to c2 can be defined 
similarly.  
 When lifting rules are specified pair-wise for all contexts 
involved in our example of 30 vendors, we need 870 (i.e., 
30*29) lifting rules to convert data between all the 
contexts. Since the number grows at a rate of n2, the 
approach does not scale well when there exist a large 
number of unique contexts. In addition, various context 
logics are only semi-decidable even under a variety of 
restrictions [Guha et al., 2004].  
 With this approach, contexts are only implicitly 
described using ground atoms and a set of pair-wise 
defined lifting rules. In other words, this approach does not 
explicitly describe the characteristics of a context, e.g., 
price is quoted in a certain currency, with a certain scale 
factor, and with certain costs included or excluded. When 
these context characteristics are explicitly described in a 
well organized fashion, it is possible to exploit the 
structured descriptions to effectively solve the scalability 
problem.  

Ontology and Structured Contexts 
To explicitly describe characteristics of multiple contexts, 
we need a vocabulary interpreted consistently across all 
contexts. An ontology [Gruber, 1993] can supply such a 
vocabulary. In addition, an ontology can also provide a 
structure for representing contexts. Reasoning algorithms 
can be developed to exploit the structure of context 
representation to reduce the number of lifting rules 
required. 

Fully-Specified vs. Lightweight Ontology 
An ontology usually consists of a set of terms 
corresponding to a set of predefined concepts, relationships 
between concepts, and certain constraints.  There are two 
types of binary relationships between concepts: is_a, and 

attribute. The is_a relationship indicates that a concept is 
more specific (or conversely, more general) than another 
(e.g., the concept of base price is more specific than the 
concept of price); the attribute relationship simply 
indicates that a concept is an attribute of another (e.g., the 
product concept is the priceOf attribute of the price 
concept).   

There are at least two approaches to ontology modeling.  A 
widely practiced approach attempts to fully describe 
specializations so that there will be no ambiguity in the 
semantics of the most specific concepts (e.g., 
basePrice_in_1’s_USD) in an ontology. Such an ontology 
explicitly captures all contexts of the price concept in the 
example. These contexts are represented by the specialized 
concepts on the leaf level of a graphic representation of the 
ontology shown in Figure 1(a). 
 Another approach, developed in the Context Interchange 
(COIN) [Goh et al., 1999; Firat, 2003] project for semantic 
data integration purposes, only includes the most generic 
concepts; detailed definitions (i.e., specializations) of the 
general concepts are captured outside the ontology as 
localized context descriptions. To facilitate context 
description, the COIN ontology includes a special kind of 
attribute, called the modifier. Contexts are described by 
assigning values to modifiers. We call a COIN ontology a 
lightweight ontology.  
 These two different approaches are illustrated in Figure 
1 using the price quote example.  

Price

BasePrice Base+T+SH

In USD In EUR… In USD In EUR…

In 1’s In 1M’s… … In 1’s In 1M’s…

ProductpriceOfDate dateOf

…

 
(a) Fully-Specified Ontology 

basic

Price

currency scaleFactor
kind

ProductpriceOfDate dateOf

  
t Concept/

Semantic type

a Attribute m Modifier

is_a

Legend

               (b) Lightweight Ontology 
Figure 1. Fully-specified v. lightweight ontologies. 
 As discussed in [Zhu, 2005; Madnick and Zhu, 
forthcoming] about the two ontology approaches, the 
lightweight ontology approach of COIN has several 
advantages, such as simplicity, maintainability, and 
flexibility to accommodate variations of the semantics of 
concepts. Below we compare the two approaches from the 
perspective of using ontology to represent and reason about 
contexts.  
 Both approaches provide structured descriptions for 
contexts. The fully-specified approach explicitly represents 
contexts in the ontology when the correspondence is 
established between the price of a vendor and a most 
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specialized price concept on the leaf level of the ontology. 
For example, context c2 can be described by mapping the 
price data of vendor 2 to the left-most concept on the leaf 
level, which is basePrice_in_1’s_USD.  
 In contrast, the lightweight ontology approach represents 
context outside the ontology. It does so by assigning values 
to modifiers present in the ontology. For example, context 
c2 can be represented by a set of <modifier, value> pairs: 
  c2 := { <kind, basePrice>,  
     <currency, usd>,  
     <scaleFactor, 1>} 
 Although both approaches allow for structured context 
description and the structure can be exploited to reduce the 
number of lifting rules required, the fully-specified 
approach tends to invite implementations that require pair-
wise lifting rules between contexts represented by the leaf 
concepts in the ontology. We call a lifting rule defined 
between different contexts a composite lifting rule.  
 With the lightweight ontology approach, simple lifting 
rules can be supplied for each modifier between different 
modifier values. For example, a lifting rule can be defined 
for currency modifier to convert values in different 
currencies using the exchange rate function shown earlier. 
We call a lifting rule defined for a modifier a component 
lifting rule. As we will see next, reasoning algorithms can 
be implemented to compose the composite lifting rules 
using component lifting rules. With this auto composition 
capability, we can significantly reduce the number of 
lifting rules needed.  

Lifting Rule Composition 
We use Figure 2 to illustrate the concept of lifting rule 
composition.  
c2: Base price in 

1’s of USD
c3: Base Price in 
1000’s of KOW

cvtcurrency(∆) =⌂ cvtscaleFactor(⌂)

∆ ○
 

Figure 2. Composition of Lifting Rules. 
 In Figure 2, the triangle symbol on the left represents the 
price data in context c2, i.e., base price in 1’s of USD; and 
the circle symbol on the right represents the price data in 
context c3, i.e., base price in 1000’s of Korean won 
(KOW). For data in context c2 to be viewed in context c3, 
they need to be appropriately converted by applying lifting 
rules. The dashed straight arrow represents the application 
of composite lifting rule, such as rule (1) shown earlier 
using logic of context.  
 With the lightweight ontology approach, we can 
compose the composite lifting rule using predefined 
component lifting rules. As shown in Figure 2, we first 
apply the component lifting rule for currency modifier 
(represented by cvtcurrency), then apply the component lifting 
rule for scaleFactor modifier (represented by cvtscaleFactor). 
 The composition algorithm, shown in Figure 3, is quite 
simple. In COIN project, it is implemented using abductive 
constraint logic programming (ACLP) [Kakas et al., 2000]. 

Input: data value V, corresponding concept C in ontology, 
  source context C1, target context C2 
Output: data value V (interpretable in context C2) 
Find all modifiers of C 
 For each modifier mi 
  Find and compare mi’s values in C1 and C2 
  If different: V=cvtmi(V); else, V=V 
Return V 

Figure 3. Algorithm for lifting rule composition. 

Benefit of Rule Composition 
The primary benefit of the rule composition capability is 
the small number of component lifting rules required, thus 
increased scalability when many data sources and contexts 
are involved in data integration applications. A detailed 
analysis of scalability and other benefits can be found in 
[Zhu and Madnick, 2004; Zhu, 2005]; below we provide a 
brief discussion of the scalability benefit. 
 In the worst case, the number of component lifting rules 
required by the lightweight ontology approach of COIN is: 

∑ −
=

m

i
ii nn
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where ni is the number of unique values that the ith 
modifier has for representing all contexts, m is the number 
of modifiers in the lightweight ontology.   
 Symbolic equation solver techniques have been 
developed to exploit the relationships between component 
lifting rules of a same modifier [Firat, 2003]. For example, 
consider a scenario where we have three definitions for 
price: (A) base price, (B) price with tax included, and (C) 
price with tax and shipping & handling included. This can 
be modeled by using a modifier that has three unique 
values for price concept in the ontology. With known 
equational relationships among the three price definitions, 
and two lifting rules:  

(1) from base_price to base_price+tax (i.e., A to B) and  
(2) from base_price+tax to base_price + tax + shipping 

& handling (i.e., B to C) 
the symbolic equation solver can compute the other four 
conversions automatically (A to C and the three inverses). 
This technique further reduces the number of component 
lifting rules needed.  
 In many cases, the lifting rule for a modifier can be 
parameterized, i.e., the rule can be applied to convert for 
any given pair of modifier values. In this case, we only 
need to supply one component lifting rule for the modifier, 
regardless of the number of unique values that the modifier 
may have. With the exchange rate function given earlier, 
we only need one component lifting for currency modifier. 
 Let us use the online price comparison example to 
illustrate the benefit of the approach. With the given 
scenario, we can model the 30 unique contexts using the 
three modifiers in the lightweight ontology shown in 
Figure 1(b). Suppose the number of unique values of each 
modifier is as shown in Table 2. In the worst case, the 
lightweight ontology approach needs 102 (i.e., 90+6+6) 
component lifting rules. Since the lifting rules for currency 
and scaleFactor modifiers are parameterizable, the actual 
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number of component lifting rules needed is further 
reduced to 8, which is a significant improvement from the 
870 composite lifting rules required when contexts are 
unstructured and lifting rules are specified pair-wise 
between contexts.  
Table 2. Modifier values. 
Modifier Unique values 
currency 10, corresponding to 10 different currencies 
scaleFactor 3, i.e., 1, 1000, 1 million 
kind 3, i.e., base, base+tax, base+tax+S&H 

Related Work and Discussion 
There has been a lot of work done to develop logic 
formalisms for contexts, characterize the computational 
complexities of the formalisms, and develop theories for 
reasoning about contexts. But not so much work has been 
done to characterize lifting rules. We are only aware of a 
recent effort by Guha and McCarthy [2003], who began 
looking at possible ways to reduce the number of lifting 
rules required. One way to reduce the number is by using 
default lifting rules, much like the use of frame default in 
dealing with the frame problem in AI. Another possible 
way is by writing more general lifting rules (e.g., instead of 
one rule per predicate, it may be possible to use one rule 
for all predicates that have certain characteristics). As a 
first step toward this direction, Guha and McCarthy [2003] 
provide a lifting rule categorization to reveal certain 
patterns of lifting rules. More work is needed to show how 
these patterns help with creation of general lifting rules and 
how these rules can be applied to reason with multiple 
contexts.  
 The unique characteristic of the COIN approach is in the 
use of lightweight ontology to provide a structure for 
context representation. The approach allows for explicit 
and structured context representation. In addition, it allows 
us to use a reasoning algorithm that exploits the context 
structure and provides the capability of lifting rule 
composition. The capability helps reduce the required 
number component lifting rules. 
 Ontology is used in [Kashyap and Sheth, 1996] to 
provide structured context representation. However, we are 
not certain if their ontology constitute a lightweight 
ontology. No assessment about the number of lifting rules 
required by their approach is given in their paper.  
 Ontology is also used in [Ram and Park, 2004], where 
all types of data level and schema level heterogeneity in 
multiple data sources are explicitly represented using a 
semantic conflict resolution ontology (SCROL). For 
example, when acres and square meters are used in 
different sources to represent the area of a parcel of land, 
the SCROL ontology will explicitly represent the semantic 
difference by including two sub-concepts of area: 
area_in_acre, and area_in_sq_meter. A SCROL ontology 
resembles the one in Figure 1(a). The ontology needs to be 
updated when a new kind of heterogeneity is introduced, 

e.g., “area in square miles”. No characterization on the 
number of lifting rules needed is given in the paper. 
 A Context Ontology Language (CoOL) is introduced in 
[Strang et al., 2003], where an Aspect-Scale-Context 
(ASC) model is used to organize contexts and assist with 
specifications of lifting rules (which are called 
IntraOperations in the paper). Roughly speaking, the 
Aspect corresponds to the modifier, and the Scale 
corresponds to the specifications for a modifier in the 
COIN approach. The paper does not provide a 
characterization of the number of lifting rules needed by 
the ASC approach.  

Conclusion 
In this paper, we introduced structured contexts, where the 
structure is provided by a lightweight ontology. We also 
presented an algorithm that exploits the structure to reduce 
the number of required lifting rules. Since writing lift rules 
is a labor intensive and error-prone process, the 
requirement of a large number rules has been one of the 
major obstacles in large scale information integration 
projects. The lightweight ontology and structured context 
approach introduced in the paper provides an effective 
solution to the problem.  
 Since a lightweight ontology is simpler than a fully-
specified one, we expect that it can be developed much 
more easily and used more widely. For future research, we 
would like to explore the applicability of this approach in 
other application domains, such as context-aware web 
services and peer-to-peer information sharing. Another 
promising area is to apply the context representation and 
reasoning techniques to Semantic Web applications. Initial 
work has been done [Tan et al., 2005] to represent COIN 
ontology and contexts using Semantic Web languages, 
such as OWL and RuleML. The preliminary results 
indicate that COIN lightweight ontology, structured 
context descriptions, and component lifting rules can be 
represented using Semantic Web languages. Future work 
will adapt the reasoning algorithm and evaluate its 
performance at large scales that are typical on the Semantic 
Web.  
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