

Structured Contexts with Lightweight Ontology

Hongwei Zhu , Stuart Madnick
Massachusetts Institute of Technology

Cambridge, MA USA
{mrzhu, smadnick}@mit.edu

Working Paper CISL# 2006-05

May 2006

Composite Information Systems Laboratory (CISL)
Sloan School of Management, Room E53-320

Massachusetts Institute of Technology
Cambridge, MA 02142

1

 Structured Contexts with Lightweight Ontology

Hongwei Zhu, Stuart E. Madnick

Massachusetts Institute of Technology
30 Wadsworth Street, E53-320
Cambridge, MA 02142, USA
{mrzhu, smadnick}@mit.edu

Abstract
One of the challenges of dealing with multiple contexts is
the significant effort required to provide all necessary lifting
rules so that statements in one context can be viewed and
understood in other contexts. In this paper, we introduce the
notion of structured contexts, where a lightweight ontology
is used to provide a structure for representing contexts. With
structured contexts, specialized inference algorithms can be
used to significantly reduce the number of lifting rules
required. We use a semantic data integration example to
illustrate the concept of structured contexts and the benefits
of this novel use of lightweight ontology.

Introduction
Contexts play an important role in artificial intelligence
[McCarthy, 1987] and many other areas of modern
computing, such as information integration, process
integration, and various applications of web services. One
use of contexts is to allow information in one context to be
viewed and understood in other contexts. In this case,
lifting rules (also known as conversion rules) need to be
supplied to convert information from its originating
context to target contexts [McCarthy and Buvac, 1997].
When contexts are unstructured and lifting rules are
supplied in a brute-force manner, the number of lifting
rules can become too big to manage [Guha and McCarthy,
2003; Zhu, 2005].
 To substantially reduce the number of lifting rules
required, we introduce the notion of structured contexts
and show its effectiveness using an information integration
example. In our approach, we use a lightweight ontology to
provide a structure for representing contexts, and use a
specialized reasoner to compose complex lifting rules from
a small set of pre-defined simple rules.

Example and Unstructured Contexts
In this section, we use an online price comparison
example, where information from multiple sources needs

Compilation copyright © 2006, American Association for Artificial
Intelligence (www.aaai.org). All rights reserved.

to be integrated, to illustrate the problem with unstructured
contexts.

Example
Numerous vendors make their pricing information online.
With web wrappers [Firat et al., 2000] and the increasing
adoption of web services, one can gather price data and
compare offers from different vendors. To perform
meaningful comparison, one has to reconcile the semantic
differences of price data, especially when data is from
vendors scattered around the world [Zhu et al., 2002].
 Consider a scenario where data is from 30 vendors in 10
different countries. All vendors quote prices using the
same schema, represented using the following first order
predicate:
 quote(Product, Price, Date)
but each uses a different convention so that the price values
are interpreted differently depending on which vendor
provides the quote. Table 1 provides a few examples of
different interpretations of price.
Table 1. Interpretations of Price.
Vendor Interpretation of Price
1
2
3
…
30

In 1’s of USD, taxes and S&H included
In 1’s of USD, taxes and S&H excluded
In thousands of Korean won, taxes and S&H excluded
…
In millions of Turkish lira, taxes included

Let us assume that each vendor uses a different convention,
thus we have 30 unique contexts. For simplicity, we will
assume that users normally adopt a vendor context. In this
scenario, to allow users in all contexts to meaningfully
compare vendor prices, it is necessary that price data from
other contexts be converted to the user context.

Lifting Rules between Unstructured Contexts
In the logic of context developed by McCarthy and Buvac
[1997] and various other logics of context, contexts are
described in two ways: one is by the collection of all
formulae in a context; second is by the lifting rules that
relate a formula in one context to a formula in another
context.
 For the first case, the formulae in the context of vendor i
(labeled as context ci) are the collection of ground atoms

 2

quote(Product, Price, Date), which correspond to all the
records of the vendor’s quote database. These atoms
together describe context ci.
 For the second case, the lifting rules often take one of
the following two forms in the logic of context [McCarthy
and Buvac, 1997]:

).,(),(:
).,(),(:

0

0

jjii

jjii
pcistpcistc
pcistpcistc

→
↔

which establish the logical equivalence or logical
implication relationships between formulae pi and pj in
contexts ci and cj, respectively.
 Suppose there exists an externally implemented function
for exchange rates between a pair of currencies,
represented using the following predicate:
 r(CurFrom, CurTo, Day, Rate)
The lifting rule to convert price from context c2 to context
c3 (see Table 1) may look like the following:

.1000/*),,,,(
)),,,(,()),,(,(: 320

RPXRDkowusdr
DXIquotecistDPIquotecistc

=
→ (1)

The lifting rule to convert from c3 to c2 can be defined
similarly.
 When lifting rules are specified pair-wise for all contexts
involved in our example of 30 vendors, we need 870 (i.e.,
30*29) lifting rules to convert data between all the
contexts. Since the number grows at a rate of n2, the
approach does not scale well when there exist a large
number of unique contexts. In addition, various context
logics are only semi-decidable even under a variety of
restrictions [Guha et al., 2004].
 With this approach, contexts are only implicitly
described using ground atoms and a set of pair-wise
defined lifting rules. In other words, this approach does not
explicitly describe the characteristics of a context, e.g.,
price is quoted in a certain currency, with a certain scale
factor, and with certain costs included or excluded. When
these context characteristics are explicitly described in a
well organized fashion, it is possible to exploit the
structured descriptions to effectively solve the scalability
problem.

Ontology and Structured Contexts
To explicitly describe characteristics of multiple contexts,
we need a vocabulary interpreted consistently across all
contexts. An ontology [Gruber, 1993] can supply such a
vocabulary. In addition, an ontology can also provide a
structure for representing contexts. Reasoning algorithms
can be developed to exploit the structure of context
representation to reduce the number of lifting rules
required.

Fully-Specified vs. Lightweight Ontology
An ontology usually consists of a set of terms
corresponding to a set of predefined concepts, relationships
between concepts, and certain constraints. There are two
types of binary relationships between concepts: is_a, and

attribute. The is_a relationship indicates that a concept is
more specific (or conversely, more general) than another
(e.g., the concept of base price is more specific than the
concept of price); the attribute relationship simply
indicates that a concept is an attribute of another (e.g., the
product concept is the priceOf attribute of the price
concept).

There are at least two approaches to ontology modeling. A
widely practiced approach attempts to fully describe
specializations so that there will be no ambiguity in the
semantics of the most specific concepts (e.g.,
basePrice_in_1’s_USD) in an ontology. Such an ontology
explicitly captures all contexts of the price concept in the
example. These contexts are represented by the specialized
concepts on the leaf level of a graphic representation of the
ontology shown in Figure 1(a).
 Another approach, developed in the Context Interchange
(COIN) [Goh et al., 1999; Firat, 2003] project for semantic
data integration purposes, only includes the most generic
concepts; detailed definitions (i.e., specializations) of the
general concepts are captured outside the ontology as
localized context descriptions. To facilitate context
description, the COIN ontology includes a special kind of
attribute, called the modifier. Contexts are described by
assigning values to modifiers. We call a COIN ontology a
lightweight ontology.
 These two different approaches are illustrated in Figure
1 using the price quote example.

Price

BasePrice Base+T+SH

In USD In EUR… In USD In EUR…

In 1’s In 1M’s… … In 1’s In 1M’s…

ProductpriceOfDate dateOf

…

(a) Fully-Specified Ontology

basic

Price

currency scaleFactor
kind

ProductpriceOfDate dateOf

t Concept/

Semantic type

a Attribute m Modifier

is_a

Legend

 (b) Lightweight Ontology
Figure 1. Fully-specified v. lightweight ontologies.
 As discussed in [Zhu, 2005; Madnick and Zhu,
forthcoming] about the two ontology approaches, the
lightweight ontology approach of COIN has several
advantages, such as simplicity, maintainability, and
flexibility to accommodate variations of the semantics of
concepts. Below we compare the two approaches from the
perspective of using ontology to represent and reason about
contexts.
 Both approaches provide structured descriptions for
contexts. The fully-specified approach explicitly represents
contexts in the ontology when the correspondence is
established between the price of a vendor and a most

 3

specialized price concept on the leaf level of the ontology.
For example, context c2 can be described by mapping the
price data of vendor 2 to the left-most concept on the leaf
level, which is basePrice_in_1’s_USD.
 In contrast, the lightweight ontology approach represents
context outside the ontology. It does so by assigning values
to modifiers present in the ontology. For example, context
c2 can be represented by a set of <modifier, value> pairs:
 c2 := { <kind, basePrice>,
 <currency, usd>,
 <scaleFactor, 1>}
 Although both approaches allow for structured context
description and the structure can be exploited to reduce the
number of lifting rules required, the fully-specified
approach tends to invite implementations that require pair-
wise lifting rules between contexts represented by the leaf
concepts in the ontology. We call a lifting rule defined
between different contexts a composite lifting rule.
 With the lightweight ontology approach, simple lifting
rules can be supplied for each modifier between different
modifier values. For example, a lifting rule can be defined
for currency modifier to convert values in different
currencies using the exchange rate function shown earlier.
We call a lifting rule defined for a modifier a component
lifting rule. As we will see next, reasoning algorithms can
be implemented to compose the composite lifting rules
using component lifting rules. With this auto composition
capability, we can significantly reduce the number of
lifting rules needed.

Lifting Rule Composition
We use Figure 2 to illustrate the concept of lifting rule
composition.
c2: Base price in

1’s of USD
c3: Base Price in
1000’s of KOW

cvtcurrency(∆) =⌂ cvtscaleFactor(⌂)

∆ ○

Figure 2. Composition of Lifting Rules.
 In Figure 2, the triangle symbol on the left represents the
price data in context c2, i.e., base price in 1’s of USD; and
the circle symbol on the right represents the price data in
context c3, i.e., base price in 1000’s of Korean won
(KOW). For data in context c2 to be viewed in context c3,
they need to be appropriately converted by applying lifting
rules. The dashed straight arrow represents the application
of composite lifting rule, such as rule (1) shown earlier
using logic of context.
 With the lightweight ontology approach, we can
compose the composite lifting rule using predefined
component lifting rules. As shown in Figure 2, we first
apply the component lifting rule for currency modifier
(represented by cvtcurrency), then apply the component lifting
rule for scaleFactor modifier (represented by cvtscaleFactor).
 The composition algorithm, shown in Figure 3, is quite
simple. In COIN project, it is implemented using abductive
constraint logic programming (ACLP) [Kakas et al., 2000].

Input: data value V, corresponding concept C in ontology,
 source context C1, target context C2
Output: data value V (interpretable in context C2)
Find all modifiers of C
 For each modifier mi
 Find and compare mi’s values in C1 and C2
 If different: V=cvtmi(V); else, V=V
Return V

Figure 3. Algorithm for lifting rule composition.

Benefit of Rule Composition
The primary benefit of the rule composition capability is
the small number of component lifting rules required, thus
increased scalability when many data sources and contexts
are involved in data integration applications. A detailed
analysis of scalability and other benefits can be found in
[Zhu and Madnick, 2004; Zhu, 2005]; below we provide a
brief discussion of the scalability benefit.
 In the worst case, the number of component lifting rules
required by the lightweight ontology approach of COIN is:

∑ −
=

m

i
ii nn

1
)1(

where ni is the number of unique values that the ith
modifier has for representing all contexts, m is the number
of modifiers in the lightweight ontology.
 Symbolic equation solver techniques have been
developed to exploit the relationships between component
lifting rules of a same modifier [Firat, 2003]. For example,
consider a scenario where we have three definitions for
price: (A) base price, (B) price with tax included, and (C)
price with tax and shipping & handling included. This can
be modeled by using a modifier that has three unique
values for price concept in the ontology. With known
equational relationships among the three price definitions,
and two lifting rules:

(1) from base_price to base_price+tax (i.e., A to B) and
(2) from base_price+tax to base_price + tax + shipping

& handling (i.e., B to C)
the symbolic equation solver can compute the other four
conversions automatically (A to C and the three inverses).
This technique further reduces the number of component
lifting rules needed.
 In many cases, the lifting rule for a modifier can be
parameterized, i.e., the rule can be applied to convert for
any given pair of modifier values. In this case, we only
need to supply one component lifting rule for the modifier,
regardless of the number of unique values that the modifier
may have. With the exchange rate function given earlier,
we only need one component lifting for currency modifier.
 Let us use the online price comparison example to
illustrate the benefit of the approach. With the given
scenario, we can model the 30 unique contexts using the
three modifiers in the lightweight ontology shown in
Figure 1(b). Suppose the number of unique values of each
modifier is as shown in Table 2. In the worst case, the
lightweight ontology approach needs 102 (i.e., 90+6+6)
component lifting rules. Since the lifting rules for currency
and scaleFactor modifiers are parameterizable, the actual

 4

number of component lifting rules needed is further
reduced to 8, which is a significant improvement from the
870 composite lifting rules required when contexts are
unstructured and lifting rules are specified pair-wise
between contexts.
Table 2. Modifier values.
Modifier Unique values
currency 10, corresponding to 10 different currencies
scaleFactor 3, i.e., 1, 1000, 1 million
kind 3, i.e., base, base+tax, base+tax+S&H

Related Work and Discussion
There has been a lot of work done to develop logic
formalisms for contexts, characterize the computational
complexities of the formalisms, and develop theories for
reasoning about contexts. But not so much work has been
done to characterize lifting rules. We are only aware of a
recent effort by Guha and McCarthy [2003], who began
looking at possible ways to reduce the number of lifting
rules required. One way to reduce the number is by using
default lifting rules, much like the use of frame default in
dealing with the frame problem in AI. Another possible
way is by writing more general lifting rules (e.g., instead of
one rule per predicate, it may be possible to use one rule
for all predicates that have certain characteristics). As a
first step toward this direction, Guha and McCarthy [2003]
provide a lifting rule categorization to reveal certain
patterns of lifting rules. More work is needed to show how
these patterns help with creation of general lifting rules and
how these rules can be applied to reason with multiple
contexts.
 The unique characteristic of the COIN approach is in the
use of lightweight ontology to provide a structure for
context representation. The approach allows for explicit
and structured context representation. In addition, it allows
us to use a reasoning algorithm that exploits the context
structure and provides the capability of lifting rule
composition. The capability helps reduce the required
number component lifting rules.
 Ontology is used in [Kashyap and Sheth, 1996] to
provide structured context representation. However, we are
not certain if their ontology constitute a lightweight
ontology. No assessment about the number of lifting rules
required by their approach is given in their paper.
 Ontology is also used in [Ram and Park, 2004], where
all types of data level and schema level heterogeneity in
multiple data sources are explicitly represented using a
semantic conflict resolution ontology (SCROL). For
example, when acres and square meters are used in
different sources to represent the area of a parcel of land,
the SCROL ontology will explicitly represent the semantic
difference by including two sub-concepts of area:
area_in_acre, and area_in_sq_meter. A SCROL ontology
resembles the one in Figure 1(a). The ontology needs to be
updated when a new kind of heterogeneity is introduced,

e.g., “area in square miles”. No characterization on the
number of lifting rules needed is given in the paper.
 A Context Ontology Language (CoOL) is introduced in
[Strang et al., 2003], where an Aspect-Scale-Context
(ASC) model is used to organize contexts and assist with
specifications of lifting rules (which are called
IntraOperations in the paper). Roughly speaking, the
Aspect corresponds to the modifier, and the Scale
corresponds to the specifications for a modifier in the
COIN approach. The paper does not provide a
characterization of the number of lifting rules needed by
the ASC approach.

Conclusion
In this paper, we introduced structured contexts, where the
structure is provided by a lightweight ontology. We also
presented an algorithm that exploits the structure to reduce
the number of required lifting rules. Since writing lift rules
is a labor intensive and error-prone process, the
requirement of a large number rules has been one of the
major obstacles in large scale information integration
projects. The lightweight ontology and structured context
approach introduced in the paper provides an effective
solution to the problem.
 Since a lightweight ontology is simpler than a fully-
specified one, we expect that it can be developed much
more easily and used more widely. For future research, we
would like to explore the applicability of this approach in
other application domains, such as context-aware web
services and peer-to-peer information sharing. Another
promising area is to apply the context representation and
reasoning techniques to Semantic Web applications. Initial
work has been done [Tan et al., 2005] to represent COIN
ontology and contexts using Semantic Web languages,
such as OWL and RuleML. The preliminary results
indicate that COIN lightweight ontology, structured
context descriptions, and component lifting rules can be
represented using Semantic Web languages. Future work
will adapt the reasoning algorithm and evaluate its
performance at large scales that are typical on the Semantic
Web.

References
Firat, A., Madnick, S. E. and Siegel, M. D. (2000) "The

Cameleon Web Wrapper Engine", Workshop on
Technologies for E-Services (TES'00), Cairo, Egypt.

Firat, A. (2003) "Information Integration using Contextual
Knowledge and Ontology Merging", PhD Thesis, Sloan
School of Management, MIT.

Goh, C. H., Bressan, S., Madnick, S. and Siegel, M. (1999)
"Context Interchange: New Features and Formalisms for
the Intelligent Integration of Information", ACM TOIS,
17(3), 270-293.

 5

Gruber, T. R. (1993) "A Translation Approach to Portable
Ontology Specifications", Knowledge Acquisition, 5(2),
199-220.

Guha, R. and McCarthy, J. (2003) "Varieties of Contexts",
CONTEXT 2003, LNAI 2680, 164-177.

Guha, R., McCool, R. and Fikes, R. (2004) "Contexts for
the Semantic Web", ISWC'04 (LNCS 3298), Japan, 32-
46.

Kakas, A. C., Michael, A. and Mourlas, C. (2000) "ACLP:
Abductive Constraint Logic Programming", Journal of
Logic Programming, 44(1-3), 129-177.

Kashyap, V. and Sheth, A. P. (1996) "Semantic and
Schematic Similarities Between Database Objects: A
Context-Based Approach", VLDB Journal, 5(4), 276-
304.

Madnick, S. E. and Zhu, H. "Improving data quality
through effective use of data semantics", Data &
Knowledge Engineering, forthcoming.

McCarthy, J. (1987) "Generality in Artificial Intelligence",
Communications of the ACM, 30(12), 1030-1035.

McCarthy, J. and Buvac, S. (1997) "Formalizing Context
(Expanded Notes)", In Computing natural language
(Eds, Aliseda, A., van Glabbeek, R. and Westerstahl,
D.), Sanford University.

Ram, S. and Park, J. (2004) "Semantic Conflict Resolution
Ontology (SCROL): An Ontology for Detecting and

Resolving Data and Schema-Level Semantic Conflict",
IEEE Transactions on Knowledge and Data
Engineering, 16(2), 189-202.

Strang, T., Linnhoff-Popien, C. and Frank, K. (2003)
"CoOL: A Context Ontology Language to Enable
Contextual Interoperability", In DAIS 2003 (LNCS 2893)
(Eds, Stefani, J. B., Demeure, I. and Hagimont, D.), pp.
236-247.

Tan, P., Madnick, S. E. and Tan, K.-L. (2005) "Context
Mediation in the Semantic Web: Handling OWL
Ontology and Data Disparity Through Context
Interchange", In Semantic Web and Databases: Second
International Workshop (SWDB 2004), Vol. LNCS 3372
(Eds, Bussler, C., Tannen, V. and Fundulaki, I.), pp.
140-154.

Zhu, H., Madnick, S. and Siegel, M. (2002) "Global
Comparison Aggregation Services", 1st Workshop on E-
Business, Barcelona, Spain.

Zhu, H. and Madnick, S. E. (2004) "Context Interchange as
a Scalable Solution to Interoperating Amongst
Heterogeneous Dynamic Services", 3rd Workshop on
eBusiness (WEB), Washington, D.C., 150-161.

Zhu, H. (2005) "Effective Information Integration and
Reutilization: Solutions to Technological Deficiency and
Legal Uncertainty", PhD, Engineering Systems Division,
MIT.

