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Abstract 
 
 
 
 
 

Many real, complex networks have been shown to be scale-free. 
Scale-free in networks mean that their degree distribution is 
independent of the network size, have short path lengths and are 
highly clustered. We identify the qualities of scale-free networks, 
and discuss the mathematical derivations and numerically simulated 
outcomes of various deterministic scale-free models. Information 
Systems networks are a set of individual Information Systems that 
exchange meaningful data among themselves. However, for various 
reasons, they do not naturally grow in a scale-free manner. In this 
topic, we will specifically examine a technique proposed by MITRE 
that allows information to be exchanged in an efficient manner 
between Information System nodes. With this technique, we will 
show that a scale-free Information System Network is sound in 
theory and practice, state the characteristics of such networks and 
demonstrate how such a system can be constructed. 
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Chapter 1: Introduction 
 
Complex networks form an integral component of our daily lives. They have been 

extensively researched across several fields of study, including physics, sociology 
education, biology and the medical sciences. [1, 2] The growth of the Internet (see Figure 
1) is an example of a vast, complex and constantly evolving network. Due to the scale 
and complicated nature of these networks, their seemingly unconstrained behavior and 
pattern-less growth, these complex evolving networks were initially viewed as 
completely random.  

 
Figure 1: The Internet (Bill Cheswick, Lumeta Corp) 

 
However, research has shown that these complex evolving networks share various 

similarities and many patterns can be distinguished within all these diverse networks. 
Exhaustive efforts have been made, in particular that of Barabási, Albert [3-5] and 
derivative works, to analyze how these complex networks are formed, as well as to 
reproduce deterministically these networks in order to improve the understanding of how 
these complex networks grow. 

An Information System Network (ISN) is a cluster of interconnected Information 
Systems (IS) or databases that allows information to be interchanged and be understood 
within the cluster. For Information Systems to work and share information in a network, 
semantic integration is needed. Semantics refer to the meaning of data as opposed to 
syntax, which only defines the structure of the information. Semantic heterogeneity 
indicates that there are similarities or differences in the meaning of local data between 
two or more data sources, such as when two schema elements in two separate data 
sources have the same intended meaning, but referencing different names [6]. For our 
purposes, we will define these equivalent fields as being semantically similar. Semantic 
integration is therefore the determination of these semantically similar fields that exist 
between different data sources or ISs. The process of creating the set of semantically 
similar attributes between two ISs is known as performing an interoperability mapping. 
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There has been little research in analyzing network growth in the field of 
Information System Networks. There are many features of these networks that do not 
lend themselves easily to form large complex networks, namely the huge production and 
maintenance costs associated with creating such a large interoperable ISN. Chief among 
these features is that semantic interoperability mappings are non-transitive. Non-
transitive occurs when the Information System Network cannot determine that an object a 
is related to an object c, when it is separately known that object a is related to b, and b is 
related to c. This leads to the two poor ISN implementation choices: Either fully connect 
all the IS nodes within the networks, or suffer from a lack of interoperability. 

In my thesis, I will show that, using a new semantic interoperability technique 
developed by MITRE, substantiated by network theories developed in the myriad field of 
network research, a third Information System Networks decision choice is available.  I 
will show that this ISN will be scale-free, cost-efficient, robust, and maintain complete 
semantic interoperability without high implementation costs.  
 The thesis will be broken down into three major sections. Firstly, I will discuss 
some of the features unique to Information Systems and databases. I will examine the 
reasoning why Information Systems generally are unable to grow in an organic, self-
sufficient growth, as well as why an n2 network may ensue. 

In the second portion of the thesis I will discuss some of the network theories and 
research that is relevant in our development of a robust Information System Network 
theory. In particular, I will discuss the evolution of network research, the formulation of 
the scale-free and competitive network models, mathematical derivations of the power-
law degree distribution, as well as discuss deterministic methods that will lead to scale-
free network growth. 

Finally, I will discuss a methodology of Information System growth that will 
ensure that Information Systems Networks (ISN) will grow in an efficient, effective and 
robust network topology. In particular, I will discuss how the competitive network model 
can be applied directly to ISNs, derive the outcome behind a simple application of the 
competitive network algorithm under a given ISN setting. I will conclude by stating the 
potential limitations of this model and the conditions under which scale-free growth will 
be disrupted.  

Throughout the paper, I will utilize two running examples of Information System 
Networks (ISNs), to illustrate certain characteristics of networks, the implications of 
adding the MITRE interoperability technique layer on top of ISNs, as well as 
susceptibility of ISNs to scale-free growth. The first example pertains to growth of an 
online shopping interoperability network. Through mergers and acquisitions, a single 
company presently has a set of online shopping information databases with diverse 
context, structures and data representations and wishes to achieve complete 
interoperability between its Information Systems. The second example revolves around a 
cluster of air flight mission systems, to illustrate how the MITRE interoperability 
technique is applied, and from which one can derive the benefits and drawbacks of the 
technique in the scale-free network growth context. 
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Chapter 2: Information Systems 
 

Semantic integration allows information interchange between Information 
Systems. As each information system is created separately from each other, each system 
exist within its own unique context, based on the uses and needs of the user base, as well 
as the context of the database creator. Batini [7] stated that there are three main causes for 
semantic heterogeneity:  

(1) Different Perspectives, where different IS designers adopt their own 
viewpoints when modeling the same information  

(2) Equivalent Constructs, where a variety of combination of data constructs can 
model the same real-world information. An example is when a single 
attribute, sales price, models the association between tax and actual product 
cost in one IS, but  is explicitly split into the two respective attributes in 
another IS. 

(3) Incompatible design specifications, where different design specifications 
results in different schemas. One air mission IS design might allow for 
multiple missions for a single flight, while another IS might only allow a 
single mission profile during a specified flight. 

Data Conflict Resolution 
 
To allow for non-trivial information interoperability to exist, the following 

differences have to be resolved, which can be classified into two categories: (i) Structural 
or Syntactic Differences and (ii) Representational Differences [8]. 

Under Structural or Syntactic Differences, there are the following issues that need 
to be solved. The differences include: Naming Conflicts, Type Conflicts and Levels of 
Abstraction. Under Representational Differences, the potential incompatibilities include 
Scaling Variations and Domain Conflicts.  

For naming conflicts, integration problems can be further categorized into 
homonyms and synonyms conflicts [9, 10]. Homonym inconsistencies occur when 
different concepts or properties in different information systems share the same name. On 
the other hand, synonyms are similar concepts but captured on different information 
databases through dissimilar names. Whereas homonyms can be detected by comparing 
concepts with the same name in different schemas, synonyms can only be detected after 
an external specification [7]. 

Type conflicts occur when the same concept is represented by different coding 
constructs in different schemas, such as when an object is represented as an entity in one 
construct and an attribute in another [11]. Levels of abstraction refers to when 
information is considered on a dissimilar scale between two information systems, such as 
when Total Costs in one system is segmented into Material Costs and Labor Costs in 
another.[12] 

Scaling discrepancy is another factor, which is defined as when the same attribute 
is stored in disparate units in different IS [13]. For example, an Information System may 
utilize single units of US currency for its financial information, while another 
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Information System may represent financial statements using Japanese Yen in thousand 
unit increments.  

Another contextual variation exists when considering different data frames of 
reference, such as using different units of measurement like the metric and English 
system, or even having different Airport codes that would represent the same airport. 
These conflicts are also known as domain conflicts [14] Certain countries are denoted in 
two letter descriptors under a widely used airport naming system, while three letter 
descriptor also coexist. 

Other information integration problems include accuracy variation, which occurs 
when the depth of information stored and structured varies among the databases [13], or 
when there is missing or conflicting information. Thus, it is often a difficult and tedious 
process to attempt to integrate information sources and systems together, and it is widely 
believed that these problems are non-trivial and will scale quadratically as more 
information systems are considered together. In all, Information Systems are sufficiently 
different from one another that it is necessary to resolve these non-trivial differences to 
allow semantic exchange of information. 

Information System Networks also differ from other types of networks, in that 
there are very stringent requirements that govern whether edges between certain IS nodes 
can exist. Choosing an edge that is acceptable in the ISN is a tedious process, as well as 
the non-trivial work involved in edge creation. This is different from networks where 
edges can be added easily, such as when adding URL links in the World Wide Web, or 
networks with edges that exist naturally, such as when considering neural networks.  

Transitivity 
 

In an Information System Network, it is essential that disparate Information 
Systems are able to interoperate and share contextually meaningful data. For example, if 
an IS node a1 is mapped to an IS node a2, it means that the two Information Systems can 
share meaningful data. But without network transitivity, IS node a1 cannot share 
meaningful data with IS node a3, if the two nodes are not directly connected. Figure 2 
shows a situation when transitivity does not exist in the network. 
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Figure 2: Transitivity example 

 
 In this example, consider the case with three nodes in the network, each modeling 
a single data attribute. Next, the attribute “price” in node a1 is identified to be related to 
the attribute “cost” in node a2, in the form of the interoperability mapping edge e12. 
Separately, “cost” is also related to the attribute “unit value” in a third node a3, through 
another mapping edge e23 that maps between a2 and a3. Transitivity dictates simply that if 
“price” is related to “cost”, and “cost” is related to “unit value”, the network would 
recognize that “price” is related to “unit value”, without the need of an additional edge 
linking node a1 and a3. Without transitivity within the network, the network cannot 
establish any relation between “price” and “unit value” when only comparing the nodes 
a1 and a3, and the edges e12 and e23. To ensure no loss in interoperability, an additional 
edge, e13, must be added into the Information System Network.   

Consider a movie actors database such as Internet Movie Database, IMDB.com. A 
network analysis of thISN does not factor transitivity into its analysis, i.e. if actors a1 and 
a2 acted together in a movie, and actors a2 and a3 acted together in another movie, actors 
a1 and a3 have a two degrees of separation apart, but they do not have a direct 
relationship. Transitivity in this case would imply that because of the above relationships, 
actors a1 and a3 have acted together in a movie, which is untrue. Although such a loose 
relationship is sufficient to generate a movie actor network, it is not acceptable for 
Information Systems Networks. 

There has been a lot of research to resolve data interoperability between 
databases. For example, the Context Interchange (COIN) project [15] solves contextual 
and representational differences through having a centralized knowledge representation 
and reasoning system that possesses the ability to resolve contextual variation for 
common concepts such as Time and Currency. The approach of COIN, however, 
addresses syntactic differences inherently in its implementation methodology by 
identifying and resolving semantically similar attributes in its coding structure. The 
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MITRE Semantic Interoperability Technique [16] builds on the COIN approach by 
providing a systematic resolution for these syntactic differences as well. 

Performance Metrics of Information System Networks 
 

There can be many measures for IT artifacts, in both quantifiable and qualitative 
measures. Where analytical metrics are appropriate, one can perform a comparison 
assessment to determine which Information System Networks are better. Johansson et al. 
[17]  stated that previous cost-based approaches on Information Systems, which ascribe a 
unit cost to each computing resource and determined the total minimum costs, did not 
account sufficiently for response time. He proposed a model of response time that is 
interdependent on communication delays and parallelism. Other metrics for Information 
System Networks have been proposed by Salton [18] that assesses distributed 
information databases in terms of precision and recall. 

The three metrics we will use to assess our Information System Networks are:  
(1) Implementation Costs, denoted as the unit cost of creating and 

maintaining a network connection. 
(2) Response Time, measured in how long it takes for an execution-time 

query to get a response. In our case, we will relate response time to the 
average number of edge traversals to answer a given query between 
two nodes in the network. 

(3) Semantic Interoperability, denoted by how complete and lossless data 
can be exchanged within the network. 

 
Figure 3: Performance Criterias for Information Systems 
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 When we only consider an ISN that has complete information interoperability, the 
most desired ISN solution is one that has a fast response time, and requires a low 
implementation cost. We will first consider the fully interconnected ISN before 
establishing how one can achieve the most desired outcome ISN. 

Fully Interconnected ISN  
 

With the lack of transitivity, the way to ensure full information exchanges 
between all Information System nodes is for every node to be separately linked to every 
other nodes existing in the system. For a network system with n number of nodes, this 
would mean that there needs to be n(n-1)/2 connections to ensure full data 
interoperability. This leads to the problem of n2 connections between nodes.  
 Having n2 connections within a ISN entails different advantages and drawbacks as 
opposed to the usual network theories. The fully connected network is advantageous in 
certain ways. It is robust; with the loss of a single Information System in the network, 
information can still be exchanged between the remaining Information Systems. The 
shortest path distance between any two Information Systems is of unit length, which 
means that every node is directly connected to every other node. Information exchange 
between any two nodes can be performed with a single edge traversal, indicating fast 
query response time.  

However, there are severe disadvantages of having a fully connected ISN. Firstly, 
mapping between IS is non-trivial work. Although there are many ways to automate the 
processes, a large amount of human intervention is still necessary to identify attributes 
that can be mapped to each other. Creating a fully connected network can be fairly simple 
initially, but the amount of work scales quadratically with the network size. A network 
with 100 nodes would require 4950 edges to be completely interconnected. When a new 
IS is added to this existing network, it will have to separately create 100 more edges, 
deterring the continued growth of the network. Also, as the purpose of an individual IS 
changes, its data schema and area of interest may change as well. A change in the data 
schema/ structure in an IS also signify that all connected mappings will also have to be 
updated. The creation costs and maintenance costs of the network are therefore 
prohibitively expensive in a large interconnected network.  
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Figure 4: N-squared network 

 
We thus need to examine the possible alternate scenarios in which we can achieve 

the most desired outcome for our Information System Network, one that can grow 
without having implementation costs scaling quadratically, while still maintaining a high 
level of interoperability.  
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Chapter 3: Information Systems as Networks 
 
To relate Information Systems Interoperability Clusters to network theory, we 

need to conceptualize ISs on an appropriate abstract level. Networks are graphs 
consisting of nodes (or vertices) connected by edges (or links). Nodes are often used to 
denote independent, individual entities that are created and subsequently exist on a 
separate basis. Depending on the field of discussion, nodes can either be domain-level 
routers, when discussing physical web connections, people which is relevant to social 
networks or even human contagion networks. Under citation networks, nodes can be 
published papers which cite previous existing works and theories.  

In the IS model, we will consider an individual internally consistent Information 
System as a individual node, consisting of its own data structure or schema, information 
context, and data assumptions. Figure 5 shows an example of a data schema that defines 
the data stored within an individual Information System that stores customer information. 
For our discussion, an IS node i will be denoted by the symbol ai. A network with n 
nodes will have nodes labeled a1, a2, … , ai, … an.  

 
Figure 5: Example of a Data schema 

 
Edges are the connections formed between two nodes. Edges can be directed, 

where traversals or flows can only occur in a single stated direction, or undirected, where 
bidirectional traversals are possible. For directed edges, they can flow “into” a node, or 
flow “out of” a node. Edges can be a physical connectivity between two nodes, such as a 
fiber optic connection between two routers, or more non-corporeal, such as friendship 
connections in a social network. In the Information System world, an edge will be 
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defined as the creation and maintenance of the resolution of representational, contextual 
and structural difference between two information systems. Depending on the type of 
interoperability technique applied to the system, edges can be directed or undirected. In 
this discussion, an undirected interoperability technique will be examined. An edge 
formed between two nodes ai and aj will be denoted by eij. 

Edges can also be weighted or non-weighted, depending on the network under 
discussion. In many fields, it is well known that the interaction strengths can vary widely, 
such variations being essential to the network’s ability to carry on its basic functions. 
Researchers have repeatedly argued about the importance of assigning strengths to links, 
such as the link strength in neural or transportation networks.[19],[20]. Although it is 
acknowledged that nodes and edges in Information Systems Networks are unique, the 
workload required to create an edge between two information systems is approximately 
equal, thus there is no requirement or basis to assign different weights to the nodes. 
Under the network model of Information Systems, only non-weighted edges will be 
discussed. 

To apply the concept of a set of nodes and edges to an Information System 
Network, we need to address the concept of nodal depth. As stated earlier, each IS entity 
is not identical since the architecture and make-up depends on several factors such as the 
purpose of its creation and subsequent use. Also, the context of its origins plays an 
important factor. Finally, the IS characteristics is heavily influenced by the context and 
assumptions of its creator. All these factors serve to make each IS node, if not completely 
unique, then sufficiently different such that resolution between nodes is necessary. It is 
un-necessary to have to capture every nodal variation when relating Information Systems 
to network theory. Rather, a certain level of abstraction can be applied when modeling 
nodes of an ISN.  

To understand the level of abstraction to be utilized, it is necessary to examine the 
actual task/work needed to achieve interoperability among ISs. Mapping between 
different IS or databases primarily depends on identifying concepts or attributes that 
share the same semantic meaning between the entities that are being mapped. 
Semantically similar attributes is independent of naming variations, scaling, contextual or 
even referential differences. 
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Figure 6: AO Flight IS schema [16] 

 

 
Figure 7: AM Flight IS schema [16] 

 
For example, in Figure 6 and Figure 7, we have the data schemas of two 

Information Systems utilized for military air flight purpose tasked to handle different 
types of air flight information. As with most Information Systems, they were created 
independently to serve separate functions. An interoperability agent will identify the 
various concepts that are similar between them. In this example, “AM Coord” in the AM 
IS and “AO-Coord” in the AO IS are identified to be sharing the same semantics. 
Similarly, “TakeOff” in the AM  IS is the same as “DEP” in the AO IS. 
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Figure 8: Example of a Wine schema [21] 

 
Conversely, attempting to map an AM IS to a completely orthogonal Information 

System such as the one in Figure 8 which stores and disseminates wine data, there will be 
very little shared commonalities. A cursory glance will show that there is little to no 
semantically similar attributes between the two IS. As stated in Chapter 1, semantically 
similar attributes are two schema elements in two separate data sources that have the 
same intended meaning, but referencing different names. There is no additional value 
rendered from mapping between attributes of different semantics. Attempting to map a 
“hasWineDescriptor” attribute to an “AMAirplaneType” attribute will only produce 
trivial or erroneous data integration. Thus, one notes that when creating edges between 
IS, one is in fact mapping all the semantically similar attributes that exist in both ISs. 
Unless at least a semantically similar attribute exist between two Information Systems, a 
connection or an edge cannot practically exist. This is a limitation that must be taken into 
consideration when extending the network model to the IS framework. As a means of 
mediating this difference, we would need to consider the inclusion of data schema 
attributes in our abstract model.   

For an edge to exist there must be at least a set of semantically similar attributes 
present in both ISs. Since the attributes of an Information System plays an essential role 
in determining whether a mapping can exist between two ISs, it is essential that any 
network theory or algorithm recognize and compensate for this unique IS feature. As 
edges are thus defined, edges that loop onto the same nodes will not be considered, as 
well as the situation when multiple edges exist between any two ISs. 

One factor to note is that certain ISs have unique attributes that do not exist 
elsewhere in the network. As these attributes have no semantically similar attributes, they 
need not be considered when mapping between nodes. Thus we will only consider 
attributes that can be mapped, and will denote γi as the semantically similar attributes that 
are captured in an Information System node.  

 To recap, in our abstract model of an Information System Network, a node ai 
represents a single IS. Within it, there are any number of attributes, with each single 
attribute, denoted by γk, present within that IS. Between nodes ai and aj, there are semantic 
interoperability mappings that exist, denoted by edge eij. Edges are thus the sum of the 
mappings of semantically similar attributes that exist between any two IS. Edges will be 
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undirected and of unit length, with at most a single edge existing between any two given 
nodes. 

With that understanding, we will be able to extend our ISN model into network 
theory discussions, and be able to understand and utilize concepts and terms employed in 
network theory. We will now examine some of the network quality measurements used in 
network theory that is also pertinent to our discussion. 

 

Network Quality Measurements 
 
Over the course of the literature available regarding network research, there are 

several established measures of network quality that defines the behavior and attributes 
within the network. Those qualities are average path length, clustering coefficient and 
degree distribution. 

 

Average Path Length 
 
Path length, l, is the shortest distance necessary to traverse between two given 

nodes. l is also known as the diameter of a network, as it effectively establishes the linear 
size of a network, the average separation of pairs of nodes. In a fully-connected network, 
l=1. For non-weighted edges, when every edge between two different nodes is of uniform 
unit length, the path length is the shortest number of link traversals it takes to connect 
from one node to another. The average path length, l , is the average of all the distance 
between nodes in the network.  
 

Clustering Coefficient 
 

Networks usually exhibit signs of clustering or cliques, whether social, neural or 
even citation networks. The inherent tendency to cluster is quantified by the clustering 
coefficient[22]. As a defining example, for a node i in the network, having ki edges which 
connect to ki other nodes. For a fully connected cluster, there would be ki(ki-1)/2 edges 
between the ki nodes in that cluster. Thus, the clustering coefficient is defined as the ratio 
of the number Ei of edges that actually exist between these ki nodes and the total possible 
number of edges that can exist. 

)1(
2

−
=

ii

i
i kk

E
C  

The clustering coefficient of the whole network is the average of all individual 
Ci’s. 

Degree Distribution 
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Degree of a node is the number of undirected edges that are connected to that 
node. Not all nodes in a network have the same number of edges. The spread in the 
node’s degrees is characterized by a distribution function P(k), which gives the 
probability that a randomly selected node has exactly k edges. Degree distributions are 
classified into in-degree or out-degree when referring to directed edge networks. The 
degree distribution is particularly relevant as recent network theories postulate that 
complex evolving networks grow in a manner independent of scale, but rather follows the 
network’s degree distribution.  

With the ability to extend Information System clusters into the network theory 
arena, we can now examine the various network theories that have been recently 
employed to explain complex, evolving networks. 
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Chapter 4: MITRE Semantic Interoperability Technique 
 
Sabbouh [16] suggested a Semantic Interoperability Technique that utilizes 

Information System data models, context ontologies and a small number of simple 
OWL/RDF mappings to enable information originating in one part of the enterprise to be 
used in another in a way that is highly automated. 

The technique solves the problem of semantic interoperability through a two-step 
process: 1) Resolving representational differences 2) Resolving structural and syntactic 
mismatches.  

There are several ubiquitous enterprise concepts like types of Things, Time and 
Position. Representational differences would be having disparate levels of accuracy, 
scaling conflicts and dissimilar data context. Resolving representational differences is 
done by building or reusing a context ontology structure for each of the various concepts. 
For example the Position ontology can resolve differences between different grid 
reference systems, such as between UTM and WGE coordinate systems. The resolution 
mechanism is provided either through direct hard-coding, such as resolving unit-scale 
differences or through the use of appropriate Web Services, like GeoTrans for Position 
contextual differences. 

Initially, a context ontology structure is constructed that captures common 
concepts across the enterprise space, while accounting for each IS’s representation for a 
particular concept. When a new information system is added to the network, OWL/RDF 
is first utilized to construct the data schema. Next, context mediation is performed by 
mapping all the context relations from the information system to the context ontology. 
This operation is only performed once, during the addition of a new Information System 
to the network, and the mapping occurs between the information system and the context 
ontology. Using the Position context, the mapping requires the Coordinate Systems, 
Coordinate Reference Frame and Datum to disambiguate any geo-Coordinate position. 
The corresponding attributes in the Information System schema will be mapped to the 
context ontology if it exists. The mapping occurs in the form of OWL/RDF encoding. 
Please see example [16] for the full documentation of the MITRE technique. It is 
important to note that this mapping occurs independently of other Information Systems, 
as there is no need to possess any knowledge of Geo-Coordinate context data from other 
Information Systems in the network during the mapping of a new Information System. 
This methodology is similar to the technique employed in Context Mediation [15]. 
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Figure 9: Methodology of MITRE Semantic Interoperability Technique[16] 

 
Next is the resolution of structural and syntactic mismatches that would occur 

between information systems in the network. Structural differences include data 
behavioral conflicts, different levels of abstraction of data, and the identification of 
related concepts. For example, TakeOff, Landing, Departure and Arrival are all 
extensions of the concept EventType, but they have inherently different semantic 
meaning. Mapping the attribute TakeOff in one Information System to the attribute 
Departure in another Information System would be an accurate mapping. Conversely, 
mapping the attribute TakeOff to the attribute Arrival will produce erroneous data 
interoperability assumptions. The example illustrates that the resolution of structural and 
syntactic differences occurs between Information Systems, and is dependent on the data 
that is to be shared between the two systems. 

Features of MITRE Semantic Interoperability Technique 
 

For data retrieval and semantic interoperability, the MITRE technique performs a 
series of constrained graph traversals that identify all connected conceptually similar 
data. Reasoning algorithms such as Directed Path Query (DPQ) or Incoming Intersection 
Query (IIQ) are used when there is a need to resolve instance data capture in one IS into 
the context and data structure of another. For a given list of inputs and a desired output, 
DPQ searches through the available paths between them. A direct path is the sequence of 
nodes and relations or mappings that connects them. 

 IIQ uses a two-pronged approach, first creating the set of direct paths that lead to 
the desired output, followed by creating another set of directed paths that lead to the 
given inputs. The intersection of the two sets will be the pathway between the given 
inputs and the desired output. 
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(a) Transitivity in MSIT 

 
Figure 10: Direct Path Query and Incoming Intersection Query 

 
Figure 10 shows how the two query algorithms layered on top of the Information 

System cluster enables transitivity within the network in relation to the earlier example of 
three Information Systems that have a single semantically similar data attribute. With 
DPQ and IIQ, the price attribute in System A will be logically linked to the cost attribute 
in System C, since a logical connection is made through the traversals on the edges e12 
and e23. This eliminates the need for an additional edge e13 that maps the price attribute in 
node a1 to the unit value attribute in node a3 for interoperability purposes. 
 Thus, with transitivity intelligence built on the MITRE layer on top of the 
Information System, through the utilization of path queries executed along the 
connections between IS nodes, one can clearly see that full interoperability within 
Information System clusters can exist without requiring a fully interconnected network.  
 

(b) Attribute Independence 
In general, a binary relation consists of the following terms: a key and a value, 

which refer to entities; a predicate, which is an access function connecting the terms 
together in a relationship; cardinality, which states the number of elements in the 
relationship. An example of a binary relation statement is: 

relation( access function, key, value, cardinality) 
Binary relationships are associations that are frequently utilized in databases and 

information systems, specifically the relational models. Quite often, information systems 
utilize ternary and higher-degree to describe relationships between entities, as they are 

 
Price 

Cost 

Unit Value 

a1 

a3 

a2 

e12 e23 

(i) DPQ & IIQ part 1

(ii) IIQ part 2 

(iii) IIQ part 3: Intersection of part 1 and 2 
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indicative of the natural understanding of the relationship that exists between several 
objects. Methods to reduce N-ary relations to binary relations has been an intense subject 
of research [23-30]. One method for resolving N-ary relation is Reification, which uses 
an Entity-Relationship model to resolve the N-ary relation into several binary relations 
while preserving most of an N-ary relationship semantic integrity. [31] The formula for 
reification works as this: 

relation(t1,...,tn)  ---> (exists e)(relation(e) & first(e, t1) & second(e, t2) &...& nth(e, tn)) 
The Semantic Web OWL/RDF language represents properties as a set of binary 

relations. A W3C Working Paper Draft, dated 21 July 2004, states how OWL/RDF is 
able to Define N-ary relations in terms of binary relations. The solution utilizes 
reification, and models a complicated N-ary relationship into a set of binary relations by 
the introduction of a new complex object. All previous objects that shared the original N-
ary relations now share a binary relation with the new complex object. [32] 

MSIT uses the OWL/RDF language to describe the ontology of the various 
information systems. Each IS is represented by a set of binary relations that completely 
illustrates the features and context of that particular Information System. For example, in 
our AO system ontology, there are several binary relationships to describe the entire 
schema. 

relation(Has-AO-Longitude, AO-Coord, AO Longitude, 1-1) 
relation(Has-AO-Latitude, AO-Coord, AO Latitude, 1-1) 
relation(Is-A, Event Type, TakeOff, 1-n) 
… 
Similarly for our AM system ontology, there are several similar binary 

relationships. 
relation(Has-Northingy, AM Coord, Coord Northingy, 1-1) 
relation(Has-Eastingx, AM Coord, Coord Eastingx, 1-1) 
relation(Is-A, AM Sortie Event Type, Dep, 1-n) 
… 
Under the modeling technique employed by MITRE, all information models, data 

ontologies and schemas are expressed as a set of binary relationships. Within boundary of 
similar concept mapping, binary relationships are distinct and non-interfering. For the 
purposes of mapping similar concept, each binary relationship is distinct and does not 
affect the performance and relationship of other binary relationships present within the 
same information model. This binary relation expression of an Information System’s data 
ontology means that the assortment of data attributes captured within the data schema can 
be expressed into distinct quantized units that can be considered individual element, 
rather than a combined set of information qualifiers. From Figure 7, using the AM 
Information System as an example, we can see clearly that the AM IS has the following 
data attributes: “AM-Sortie-Event”, “AM-Coord”, “Coord Northingy”, “Dep”, “Arr”, 
“AM Location”, etc. All these attributes, though related to each other as defined by the 
data schema, are distinct data elements that can be considered on their own. 

When performing mappings between information systems, one seeks semantically 
similar concepts or elements present within the two systems. For example, the “AM-
Coord” attribute in the AM IS can be mapped to the attribute “AO-Coord” in the AO IS. 
Conversely, there is no conceivable value obtained from mapping the “AM-Coord” 
attribute in one IS to an Event Type attribute in another. One cannot map divergent 
attributes and hope to produce useful, consistent information interchange. Only attributes 
with the same semantics can be mutually mapped. Divergent attributes present in the 
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Information Systems that are to be mapped thus do not play a role in determining the 
mapping. We can therefore set each Information Systems’ attributes for 
consideration separately from other attributes. 
 

(c) Need to Map all Attributes to Ensure Interoperability 
 Having established that transitivity exists for attributes under the MITRE 
Semantic Interoperability technique, as well as that attributes within a single Information 
System are independent of one another with regards to interoperability mapping, it leads 
to the conclusion that to ensure complete interoperability between all the nodes within the 
network, one has to first consider every attribute independently. Next, every semantic 
type attribute within the system must be separately and completed connected to all 
semantically similar nodes.  
 Using the shopping Information System cluster, as shown in Figure 11, consider 
three Information System nodes that separate holds data pertaining to online shopping. 
Nodes a1 and a3 both describes shopping data in terms of five distinct semantic 
information types: 1) Price/Unit Value, 2) Quantity/Number of units, 3) Tax/Sales Tax, 
4) Shipping/ Ship/Handle 5) Item Description/Item Review. 
 Now, if a1 and a3 are not directly mapped to each other, but rather through a third 
information system a2 instead. a2 describes shopping data held within its data schema in 
terms of 4 attributes: Cost, Quantity, Sales Tax, Description. When the edge e12 is 
created, information about shipping costs, captured in the a1’s data schema under the 
attribute Shipping, is not translated/mapped to a2’s data structure.  

This also holds true for the edge e23, where there is no semantically similar 
attribute in a2 to account for the attribute “Ship/Handle Charges” present in a3. This 
indicates that the attributes “Ship/Handle”, as well as its semantically similar attribute 
“Shipping”, are not mapped to each other.  

Loss of information quality occurs if one assumes that if transitivity exists on the 
nodal level (between nodes a1 and a3), it will similarly exist on the attribute level 
(between all the attributes in a1 and a3). To retain complete interoperability, an additional 
edge e13 is required, that will provide the mappings between the Shipping attribute in a1 
and the Ship/Handle Charges attribute in a3. This example shows that every single 
attribute must be attached to every other attribute that shares the same semantic type in 
the network within the network to enjoy complete semantic interoperability.  
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Figure 11: Transitivity Insufficiency Example 

 
 
Interoperability Criterion: When a new IS node is introduced into the existing ISN, 
all of new IS node’s attributes must be semantically mapped to at least one 
semantically similar attribute already existing in the network. 

This is the case for a network that performs interoperability between existing 
nodes in the network. The conditions are different in the case of a complex, evolving 
network. Assume initially that the nodes in the Information System Network are all 
interconnected on the attribute level. When a new IS node is introduced into the network, 
if each attribute in the new IS is mapped to at least one semantically similar attribute 
existing in the network, full interoperability is still ensured.  

In Figure 12, when a new node a4 is added to the network, by fulfilling the 
interoperability criterion, we will maintain a completely semantic interoperability. For 
example, when only a single edge is added to the network , if the edge added is either e14 
or e34, all 5 attributes present in a4  is mapped, which means that only a single additional 
edge is required to ensure complete interoperability. Conversely, the interoperability 
criterion is not fulfilled if edge e24 is the only edge added between the new IS node and 
the existing network, since there is one attribute, Shipping, not mapped into the system. 
Thus another edge, e14 or e34 must be added to fulfill the interoperability criterion. 
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Figure 12: When adding new IS node to existing interoperable ISN 

 
Thus, for Information Systems interoperability, all corresponding attributes within 

a network must be fully connected to possess a fully interoperable network system. We 
will now examine various network theories and its applicability to Information System 
Networks. 
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Chapter 5: Scale-Free Networks and the Barabási-Albert 
Model 

 
It was originally perceived that such complex real evolving networks could not 

possibly arise out of any pre-determined sets of patterns. Networks such as the neural 
network, collaboration networks, public relations nets, citation of scientific papers, 
transportation networks, biological networks, food and ecological networks, social 
networks, the Internet and the World Wide Web are all examples of complex evolving 
networks that have only recently been shown to have general similar properties and 
structures that are a natural consequence of the principles underlying their growth. 

The simplest and most common network initially used to explain the growth of 
networks was the Erdös-Rényi classical random network model (ER model).  Their 
model states that the total number of nodes N in a network is fixed, and that the 
probability of two arbitrary nodes being connected together equals p. Conclusions drawn 
from the ER model state that the network would contain pN(N-1)/2 edges and that the 
degree distribution would be binomial, which means that 
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And that the average degree is )1( −= Npk . For large N, the degree distribution takes 
the Poisson form 
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This implied that the distribution rapidly decreases at large degrees. Also, the 

estimate for an average shortest-path length of such networks is ]ln[/ln~ pNNl . 
Networks that followed such a Poisson degree distribution and statistically uncorrelated 
nodes are known as classical random graphs. 
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Figure 13: Comparison the Erdös-Rényi Network and the Scale-Free Model [4] 

 
As the ability to garner information regarding complex evolving networks 

increased, it has allowed the realization that such networks, although complex and 
different in nature, often share several similar characteristics and properties. Research 
literature on several key characteristics of real networks indicated that there is a clear set 
of similarities shared by the complex real evolving networks. 
 
Table 1: Characteristics of Real Networks Studied by Albert, Barabási [33] 

Network Size, N Average 
Degree <k> 

Average 
Path 

Length, l 

Clustering 
Coefficient, 

C 
Reference 

WWW, site level 153,127 35.21 3.1 0.1078 Adamic, 1999 
Internet, domain 3015 3.52 3.76 0.18-0.3 Yook et al, 2001 

Movie actors 225,226 61 3.65 0.79 Watts and Strogatz, 1998 
Co-authors, neuro 209,293 11.5 6 0.76 Barabási et al, 2001 
Words, Synonyms 22,311 13.48 4.5 0.7 Yook et al, 2001 

Power Grid 4941 2.67 18.7 0.08 Watts and Strogatz, 1998 
Silwood Park food 

web 154 4.75 3.40 0.15 Montoya and Sole, 2000 
C. Elegans 282 2.65 2.65 0.28 Watts and Strogatz, 1998 

 
 
 For example, the path length of networks does not scale with the network size. 
For the Movie actors network, even when considering a network size of 225,226 nodes, 
the average path length stays low at 3.65, which means that, on average, every actor is 
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less than 4 degrees away from one another. Though the average path length varies with 
the type of network analyzed, it remains low compared to the network system size. 
 Clustering is also shown here, with the average cluster coefficient C high, higher 
than would be predicted under a classical random network. The various literature studied 
different co-authorship networks, and though the C varies from 0.066 to 0.726, most of 
the C values are high, indicating that there is a high tendency of nodes to cluster in real 
evolving networks as well. 

New theories were established, namely that of the small world effect, which 
explains that average shortest path length is unusually small. Watts and Strogatz [34]  
noted that the average shortest-path length between nodes is small and of the order of the 
logarithm of their size, the clustering coefficient is much greater than allowed for under 
classical random graphs. This would theoretically explain the shorter path length of most 
real networks. The WS model, also known as the small-world model, was proposed to 
demonstrate such a possibility, and the model is in the class of networks displaying a 
crossover from ordered to random structures and are those with ‘small’ average shortest-
path lengths and ‘large’ clustering coefficients. The networks introduced by Watts and 
Strogatz are generally constructed from ordered lattices by random rewiring of edges or 
by addition of connections between random nodes. 

One common feature of real networks is that often there are a few nodes that have 
an unusually high degree, while most other nodes are of low-degree, typically 
characterized by the concept of hubs and spokes. Examples can be seen when considering 
viral networks, where a highly connected hub, once infected, becomes an effective 
disease vector, and spreads the disease to a high percentage of other nodes [35].  

A-L. Barabási and R. Albert, through their empirical studies on many large 
networks, demonstrate that these networks often display scale-free characteristics. They 
studied real networks in terms of their degree distribution, and noted they follow a 
power-law distribution, up to a very large degree. For example, for the World Wide Web, 
analyzing a network size of 325,729 nodes, they noted that the network follows a power-
law distribution up to nodes with degrees greater than 900 (k > 900). The analyzed in-
degree γin and out-degree γout is 2.45 and 2.1 respectively. In simpler terms, it means that 
for nodes with a lower degree than 900, the probability of the nodes in the network 
follows a simple distribution, P(k)~k-2.45 (for in-degree networks) 

As shown in Table 2, such power-law distribution is common in several networks, 
from the World Wide Web, the Internet (domain or router level), Co-authorship 
networks, citation networks, protein networks etc.  
Table 2: Real Networks Analysis [33] 

Network Size, N Average 
Degree <k> 

Degree 
of scale-

free 
cutoff, К 

indegree 
exponent, 

γin 

Outdegree 
[33]exponent, 

yout 
Reference 

WWW 325,729 4.51 900 2.1 2.45 
Albert, Jeong, and Barabási, 

1999 
WWW 4x10^7 7   2.1 2.38 Kumar et al, 1999 
WWW 2x10^8 7.5 4000 2.1 2.72 Broder et al, 2000 

WWW,site 260,000     1.94   Huberman and Adamic, 2000 

Internet, domain 
3015-
4389 3.42-3.76 30-40 2.1 2.1 Faloutsos, 1999 
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Internet, router 3888 2.57 30 2.48 2.48 Faloutsos, 1999 

Movie actors 212,250 28.78 900 2.3 2.3 Barabási and Albert, 1999 
Co-authors, 

neuro 209,293 11.54 400 2.1 2.1 Barabási et al, 2001 
Sexual contacts 2810     3.4 3.4 Liljeros et al, 2001 

Citation 783,339 8.57   3   Redner, 1998 
Words, 

Synonyms 22,311     2.8 2.8 Yook et al, 2001 
Metabolic E. Coli 778 7.4 110 2.2 2.2 Jeong et al, 2000 

 
The scale-free network growth provided a theoretical basis for the growth and 

evolution of complex networks that more closely display the characteristics of real 
networks than previous network theories. Scale free networks are created from the 
observation that most networks have several common features and dynamics. An 
example of a scale-free network topology would be like Figure 13(f), where there are 
several nodes (denoted in red) that are highly connected, while most of the remaining 
nodes have a low degree (denoted in green and black) 

Scale-free networks are significantly different from random connectivity networks 
in the presence of failure. If nodes fail randomly, scale-free networks behave even better 
than random connectivity networks, because random failures are unlikely to harm an 
important hub. Scale-free networks can be a disaster if the failure of nodes is not random. 
For instance an intelligent attacker can destroy the whole network by attacking key hubs. 
Also, as mentioned earlier, the average path length of scale-free networks is short relative 
to its system scale.  
 

The Barabási-Albert Model 
 
 Barabási and Albert argued that the scale-free nature of real networks is due to 
two generic mechanisms shared by many real networks. Unlike previous models which 
assumes a time-invariant fixed number N of nodes in the network. These nodes are then 
connected by edges according to the model used. Barabási postulated that real networks 
are open systems that grow by the continuous addition of new nodes. Real networks 
would usually start with a small nucleus of nodes, where nodes will increases throughout 
the lifetime of the network. Examples are the citation networks, where for a given topic, 
there would be a seminal set of initial papers from which additional research and papers 
will build on and cite respectively. 
 Next, most network models assume that the probability of two nodes being 
connected is independent of the nodes’ degree. Real networks, however, often exhibit 
preferential attachment, such that the likelihood of connecting to a node depends on the 
node’s degree. For example, in the citation network, a new research publication is more 
likely to cite well-known, highly cited previous research literature in the same field of 
study, rather papers that are less-cited and consequently less-known.  Similarly, in an 
ISN, there can be certain Information Systems that, for reasons of length of period of 
existence, ease of interoperability, the importance or the universality of the data captured, 
are more likely to be semantically mapped than others. 
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 The Barabási-Albert model therefore replicates these two factors and produces a 
network with a power-law degree distribution. The algorithm of the model is the 
following: 

(1) Growth: Starting with a small number (m0) of nodes, at every time step, we add a 
new node with m( m0) edges that link the new node to m different nodes already 
present in the system. 

(2) Preferential attachment: When choosing the nodes to which the new node 
connects, we assume that the probability that a new node will be connected to 
node i depends on the degree ki of node i, such that 

∑∏ =
j j

i
i k

k
 

After t time steps, there are N=t+m0 nodes and mt edges.  
Numerical simulations by Barabási and Albert indicate that thISN evolves into a 

scale-invariant state with the probability that a node has k edges follows a power law 
with an exponent γ =3, with the scale exponent independent of m. 

The dynamic properties of the scale-free model can be addressed using various 
analytical approaches. The continuum theory proposed by Barabási [4] focuses on the 
dynamics of node degrees. Other approaches include the master equation approach of 
Dorogotsev, Mendes and Samukhin [36], and the rate equation approach of Krapivsky, 
Redner and Leyvraz [37] In this thesis, we will only examine the mathematical 
derivations of scale-free behavior using the continuum theory. 

Continuum theory: The continuum approach introduced by Barabási, Albert and 
Jeong [3, 38] calculates the time dependence of the degree ki of a given node i. This 
degree will increase every time a new node enters the system and links to node i, the 
probability of this process being P(ki). Assuming that ki is a continuous real variable, the 
rate at which ki changes is expected to be proportional to P(ki). Consequently ki satisfies 
the dynamical equation  
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The sum in the denominator goes over all nodes in the system except the newly 
introduced one; thus its value is ∑ −=
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The solution of this equation, with the initial condition that every node i at its 
introduction has kt(ti)=m, is  
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Equation (2) indicates that the degree of all nodes evolves the same way, 
following a power law, the only difference being the intercept of the power law. Using 
Eq. (2), one can write the probability that a node has a degree ki(t) smaller than k, 
P[(kt(t)<k], as  
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Assuming that we add the nodes at equal time intervals to the network, the ti 

values have a constant probability density 
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The degree distribution P(k) can be obtained using 
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predicting that asymptotically (t → ∞)  
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being independent of m, in agreement with the numerical results. 
 

Average Path Length: 
 
 R. Albert and A.-L.-Barabási [39] performed a comparison study of average path 
lengths of two networks with an average degree k =4 and a similar network size. As 
shown in Figure 14, the average path length of a random network, as shown by the solid 
line along the □ symbols, is numerically contrasted to that of a Barabási-Albert network, 
denoted here by the dashed line drawn along the ○ symbols. There is a shorter average 
path-length in B-A networks than in random networks, which would be favored in the 
implementation of Information System Network interoperability techniques such as the 
one employed by MITRE.  
 A lower average path length translates into lower search cost by the network 
when performing the DPQ and IIQ queries to identify semantically similar attributes 
within the interoperable network. This characteristic of scale-free networks ensure that 
fewer nodal and edge traversals are required to confirm or deny any relationship that may 
exist between attributes in two separate information systems. A shorter path length also 
reduces the possibility of transitivity losses, as stated earlier in Chapter 4. 
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Figure 14: Characteristic average path length of B-A network vs random network of comparable size 

and degree [33] 
 

Clustering Coefficient: 
 
 The clustering coefficient of a Barabási-Albert model also differs significantly 
from that of a random network of comparable size and average degree, as shown in 
Figure 15.  Comparatively, the scale-free Barabási-Albert network has a clustering 
coefficient that is five times higher than that of the random network, and this factor 
increases with the number of nodes in the system. Once again, the scale-free model is of 
strong relevance to the Information System Network, since clustering often occurs in 
groups known as communities of interests (COI), such as a cluster of Information 
Systems referencing a particular subject topic. This clustering often occurs due to the 
higher levels of similarities that exist between these nodes, and is not duly reflected in the 
characteristics exhibited in random networks. 
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Figure 15: Clustering comparison of B-A network vs random network [33] 

 
As shown, scale-free networks exhibit much of the similar growth patterns that 

exist in Information Systems, and would thus provide a good predictor for the kind of 
growth that would arise in ISNs. We will now examine the main points of conflicts 
between the Barabási-Albert method of scale-free growth and the growth patterns of an 
interoperable Information Systems network.  
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Chapter 6: Variations between Barabási-Albert and the 
Information Systems Model 
  

As stated in Chapter 5, at every time step, a new node and m number of edges are 
added to the network, with an uneven or preferential attachment. The probability of 

attachment of a new node to an existing node ai is described by: 
∑∏ =

j j

i
i k

k
 

 
Figure 16: Example of a Barabási-Albert model of growth 

 
 Figure 16 shows an example of how the Barabási-Albert might be employed in 
the Information System context. Consider that an Information System Network exists 
with n number of nodes, of which we will examine 3 separate nodes a1, a2 and a3, with 
degrees of 6, 8 and 10 respectively. Node a1 has four attributes, γ1, γ2, γ3, and γ4, while 
nodes a2 and a3 have attributes γ1, γ2 and γ3, γ4 respectively.  

When a new Information System node, an, is added, with all four attributes γ1, γ2, 
γ3, and γ4 as in node a1, following the preferential attachment probability, where the 
probability of a new node attaching to an existing node is dependent on the degree of the 
existing node over the total degree of the network, one could see that the edge en3 
between the new node an and the existing node a3 is favored over the edge en1. It is 
important to note that even though nodes a1 and an can be very similar, where a 
connecting edge would present the best possible interoperability improvement to the 
network, under this algorithm, such a connection would be disfavored. Rather, a less 
valuable connection, in this case, en2 and en3, with only two out of four possible attributes, 
will be picked instead of en1. 

Although, as stated in this simple example, a theoretical application of the B-A 
model of growth is possible in the Information System Network, for a practical 
application within the ISN context, it is necessary to understand the underlying 
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differences between the two models and analyze if these differences can be bridged. The 
Barabási-Albert model makes several assumptions of the network nodes, before 
enforcing a growth algorithm on the network. We will now examine these assumptions 
and determine whether they are applicable to the IS model. Of those differences, we will 
examine the extent of the incompatibilities and appropriately disregard superficial 
inconsistencies, and focus only on resolving the main issues. 
 

Problem 1: Nodal Similarity 
 

The biggest conflicts resolve around the concept of nodal depth. In the Barabási-
Albert model, nodes have zero depth, i.e. they are completely similar from each other and 
share the same exact features from each other. Nodes therefore have basically the same 
basis to compete with one another for edge attachments; the only permitted distinction 
between the nodes is their present connectivity to other nodes, or degree. Each node has a 
non-fixed number of edges attached to it, following the connectivity probability of 
connecting a new node to an old node.  

 
 

 

Figure 17: B-A Growth on Heterogeneous Information 
Systems 
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Information systems tend to 

grow as a set of independently 
developed data sources. As shown in 
Chapter 2, these independently 
developed data sources have their 
own schema, with contextual, 
structural and representational 
individuality. Thus, heterogeneous 
information systems are 
predominant.  

Forcing a model of growth on 
an Information System Network that 
disregards the individuality of 
Information Systems will result in an 
unsustainable, impractical and 

unfeasible solution. Figure 17 shows the expected results of a Barabási-Albert growth in 
Information System Networks. Nodes of the same color represent Information Systems 
with many data attributes that can be mapped to one another. In this topology, the ISNs 
do not take advantage of this nodal variation, and so correlated nodes are not mapped to 
each other. This results in reduced information flow across the network. A more desired 
outcome would be Figure 18, where the network recognizes that closely correlated IS 
nodes exist, and clusters them together. This clustering allows nodes with a similar set of 
data attributes to be closely connected, allowing easier interoperability mappings and 
better overall information exchange. 

One possible remedy would be to examine extensions of the original scale-free 
model proposed by Barabási and Albert, and determine which alternative theories best 
relate to the Information System Network.  This important issue will be addressed in 
Chapter 7, when we examine the Competitive and Multi-Scaling Model proposed by 
Bianconi and Barabási as an extension of the original scale-free model.  
 

Problem 2: Edges Similarity 
 

The Barabási-Albert algorithm specified that any two nodes can be connected, 
and the probability of connectivity is only attributed to the degree of that existing node. 
However, as elaborated in Chapter 4, mappings can only exist between Information 
Systems when there are at least one semantically similar attribute shared between them. 
Attempting to replicate the B-A model in Information System Networks will create 
several problems. Firstly, un-necessary, zero-value added edges will be added to the ISN 
that would place additional burdens to network maintenance. Secondly, by the pure 
emphasis of preferential attachment due to the degree distribution, nodes with high 
degree will be sought after by the new node for edge attachment. This buries the benefits 
added to the network through the attachment to essential but lower degree nodes. 
Essential nodes in this case will refer to nodes that have a high percentage of 
semantically similar attributes with the new node introduced into the system. 

Figure 18: Desired Heterogeneous Information Systems  
Network 
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Figure 19: Edge Variation 

 
As an example of how Information System Networks differ from the B-A model, 

consider the following situation as shown in Figure 19. When a new node ai is added to 
the network, preferential attachment would dictate that edges will be formed with nodes 
a1 and a3, rather than a2. However, when noting the attributes present within each of the 
Information Systems, nodes a1 and a3 have no common attributes with ai, thus edges 
cannot exist between them.  

In the B-A model, as all nodes and all edges are identical, this allows any node to 
be connected to any other node, i.e. there is no prohibition that a certain node cannot be 
connected to another particular node. Though this implication is obvious, it represents a 
significant difference between the Barabási-Albert model and the Information Systems 
model. Thus an accurate network model of Information Systems must account for the 
condition that edges can only be formed between nodes that share conceptually similar 
attributes. 

Another reason is that, over time, certain links degrade while others strength, 
depending on the usefulness and strengths of the existing relationships. In social 
networks, as time passes, people don’t remain in contact with loosely affiliated 
acquaintances, and thus these former links wither and disappear, while stronger links 
remain. All edges in the Barabási-Albert model have the same strength and longevity, 
and the usefulness and costs of ISN interoperability mappings are not accounted for. In 
real Information System Networks, maintaining connections between nodes are costly, 
especially if its utility has been superseded by other newer edges. Utility is also reduced 
when the Information System node changes. 

One way to compensate for this inadequacy is to establish a measure of quality for 
links between the nodes in the ISN that accounts for the strength of the fitness between 
the two nodes. A strong link is a connection between two highly correlated IS nodes. A 
criterion can be added to the network construction, stating that only links over an 
acceptable threshold of acceptability will be created. This will be further elaborated in 
Chapter 8, when an aggregated Information System Network solution is proposed. 
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Problem 3: Non varying number of edges added per time-step 
 

Under the Barabási-Albert mode, a new node is introduced into the existing 
network at each time-step. Alongside the new node, a fixed number of new edges, m, are 
created between the new node and the existing nodes within the network. The number of 
nodes added each time step is arbitrary, since it does not affect the overall degree 
distribution of the network. The only criterion is that the number of edges added each 
time step must be less than m0, the initial number of nodes in the network. Thus at time t, 
there are a maximum of tm edges present in the network.  

For an Information System Networks, there are more restrictions imposed on the 
number of edges added each time-step. Firstly, the number of edges added each time step 
is dependent on the type of node added. Recall that to ensure the full interoperability 
between IS in a network that has transitivity of attributes, all attributes must be fully 
connected to their semantic counterparts. For a node that has very few common 
attributes, to ensure that the node’s attributes are fully mapped, that would most likely 
encompass just the mapping between a few nodes. However, should a Information 
System supernode appear, which has attributes that are covered separately by all the 
existing nodes, it is necessary to map this supernode to all the existing nodes to ensure 
full interoperability, thus conflicting with the non-variant edge addition. This would 
occur in real networks when the intention of the newly created node is to aggregate all the 
present data and meta-data into a central node to facilitate easy information access and/or 
data manipulation. This could potentially pose a problem when relating ISNs to the 
Barabási-Albert model. We will examine the likelihood of such an event and analyze the 
effects of this feature. 
 We will now propose an alternative model to the Barabási-Albert model. This 
new model will address the failures of the original B-A model and will be more 
applicable in the context of Information System Networks. 
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Chapter 7: Competitive and Multi-Scaling in Evolving 
Networks 

 
Nodes have an inherently different ability to compete for links. In real networks, 

often a new node introduced into the network tends to gain an uncharacteristically large 
number of links than can be purely predicted by degree distribution alone. On the World 
Wide Web, some URLs acquire a large number of links within a short timeframe, due to 
the content or marketing of the website. Seminal research papers also acquire a large 
number of citations over a very short duration. 

This is the main criticism of the original Barabási-Albert model: The model does 
not possess the capability to provide a proper assessment and subsequent network growth 
of systems where not all nodes are equally successful in acquiring links. Furthermore, 
one consequence of the B-A model is that the oldest nodes in the network tend to have 
the most number of links, due to the simple growth mechanism of attributing edges to 
nodes of higher degrees. In the consideration of ISNs, this might be true, as evidenced by 
the importance of decades-old legacy databases that are still relevant in today’s context. 
But there is no compensating effect under the original B-A model for IS supernodes, 
when a node that accumulates all present data schemas appear to form a centralized hub 
between existing information systems. 

To that end, a new model, the competitive and multi-scaling model proposed by 
Bianconi and Barabási [5], was formulated to address these shortcomings. To 
acknowledge that the nodes are no longer identical, a new parameter for fitness, ηi, is 
assigned to each node. This new fitness parameter is assumed to be unchanged over time. 
ηi is chosen from the distribution ρ(η) and is used to account for the inherent quality 
present within each node that determines how well that node competes for links.  

At each time step, a new node ai with fitness ηi is added to the network. Also, a 
fixed number of links, m, are connected from the new node ai to the nodes already 
present in the system. The probability that that a new node will connect to a node i 

already present in the network is: 
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Thus the characteristics of the network is dependent on the distribution of η, or 
ρ(η) as well as the degree distribution. 
 

Mathematical Derivation of Competitive Network Model Outcome 
 
 Using the continuum theory, as explained in Chapter 5, we can see that a node ai 
increases its degree ki at a rate proportional to the probability that a node will attach to it, 

giving 
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 From this, assume that similarly to the scale-free model the time evolution of ki 
follows a power law, but with multi-scaling incorporated. Multi-scaling implies that time 
dependence of a node depends on the fitness of the node. Mathematically, it states that 
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the dynamic exponent depends on the fitness ηi, )(

0
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η =  where t0 is the time 

when the node is introduced to the network. We can observe that 1)(0 << ηβ , since a 
node always increases in degree over time (>0), but cannot increase more than the 
number of edges added per time (<1).  
 We calculate the mean of the sum ∑

j
jjkη over all possible quenched noise {η}. 

Since each node is born at different times t0, the sum over j can be written as an integral 
over t0: 
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With 1)( <ηβ  and with t→∞, )(ηβt can be neglected compared to t, giving 
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C
ηηβ =)(           (10) 

Substituting 
C
ηηβ =)( in (3), we have: 
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With this we will discuss three fitness distributions that affect the scale-free 
characteristics of the network. The three fitness distributions discussed pertain to three 
different scenarios: (1) When all nodes are identical, (2) When nodes follow a finite 
uniform fitness distribution, and (3) When there is infinite support for the fitness 
distribution. 
 

(1) Identical Nodes 
 
For )1()( −= ηδηρ , when all fitness is equal, it reduced exactly to the scale-free model, 
the results can be seen in Chapter 5. The probability connectivity distribution follows 
perfect scale-free behavior such that P(k) ~ k-3 
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(2) Finite Uniformly Distributed Fitness 
 
Competitive networks become more interesting when we consider a uniform fitness 
distribution, where nodes with different fitness compete for edges attachment. Consider 
when )(ηρ  is uniformly distributed over the interval [0,1]. The constant C in (11) can be 

determined, where exp[-2/C]=1-C, whose solution is C*=1.255. Since 
C
ηηβ =)( , each 

node will have a different dynamic exponent. 
If ρ(η) is chosen uniformly from the interval [0,1], the probability connectivity 

distribution of the network will be: 
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This states that the connectivity distribution follows a generalized power law, 
albeit with an inverse logarithmic correction. C in this case is 1.255, so following 
Equation (12) the degree distribution can be generalized as thus: P(k) ~ k-2.255  

 
Figure 20: Degree Distribution of Finite Uniform Fitness Distribution [5] 

 
Figure 20 shows the outcome of numerical simulations of the degree distribution 

in the competitive network model. In thISN growth analysis, m = 2, N = 106 nodes and 
nodal fitness is uniformly distributed. The top solid line that is lined with dots 
corresponds to the model predictions, with the exponent γ of the scale-invariant 
probability equal to 2.25. The dashed line corresponds to a simple fit P(k) ∼ k−2.255 
without consideration of a logarithmic correction. The long-dashed curve correspond to 
P(k) ∼ k−3, as predicted by the scale-free B-A model in the first scenario, when all nodes 
are identical.  
 

(3) Infinite Support Fitness Distribution 
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 Infinite support in fitness distributions indicate that at any time there will be a 
finite probability that a new node will have a fitness η > maximum fitness ηmax will be 
added to the system. This implies that the fitness scale keeps growing without bound. As 
ηmax  keeps growing in the network over time, this is indicative that the fitness distribution 
function has a time dependent aspect. As stated earlier, a time step occurs when a new 
node is added to the system, i.e. time and system scale are associated with each other. 
The fitness distributions in infinite support systems are thus scale-varying or scale-
dependent.  

As an example of an infinite support fitness distribution, consider that fitness 
distribution ρ(η)  follows an exponential curve. For a ρ(η) following an exponential 
distribution, ρ(η)=e-n, k(t) starts to scale as a power of ln(t), indicating that it is no longer 
scale-free. 
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Thus, not all ρ(η) distributions will result in a power law time dependence and 
connectivity distribution. This result is important to our discussion of scale-free networks 
in the information systems model, as the fitness distribution of the nodes is now a 
determinant of the characteristics of the information systems network. Depending on the 
type of fitness distribution, the competitive network model retains the characteristics of a 
power-law distribution, indicative that scale-free behavior is still retained.  

 
Figure 21: Degree Distribution of Infinite Support Fitness Distribution Networks [5] 

 
Figure 21 shows the outcome of numerical simulations when modeling a network 

of similar size and number of edges as the model in Figure 20, but with an exponential 
fitness distribution. One can see that there is a more even spread of nodes of varying 
degrees, as compared to a scale-free network, where there is a significant drop-off in the 
number of nodes as the degree increases. 

With the competitive network model, we can now address the biggest flaw that 
was inherent in the original B-A model; that not all nodes are equally competitive in 
attracting new nodes. We will now examine how the competitive network model can be 
applied to our Information System Network context. 
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Chapter 8: Solution approach 
  
 Instead of the original B-A model, we used the competitive, multi-scaling 
network model that designates a fitness quality to each IS node. Starting with an initial 
number of nodes, at every time step a fixed number of edges, m, are added from the new 
node to the existing nodes, where m is less than m0, the initial number of nodes in the 
network. The preferential attachment is determined by the composite probability ∏i

 of 

connecting a new node an to an existing node ai. ∑∏ =
j jj

ii
i kn

kη
 

When an IS node is introduced into the network, it brings into the Information 
System Network a unique set of data attributes that models the data it stores and 
disseminates. When performing semantic interoperability, the edges between nodes are 
actually conversion mappings between semantically similar attributes that exist in both 
nodes. This means that an edge can only exist between nodes if there is an overlap 
between the attributes in the first node and the attributes in the second node, i.e. ein exists 
if and only if 0≠∩∑ ∑ ni aa γγ  
 Attributes therefore forms the basis for an Information System Network to have a 
fitness comparison measure. The fitness quality of a node has a dependent relationship 
with the number of attributes present in the node’s schema. It is apparent, however, that a 
direct relationship between the number of attributes within an IS node and its fitness for 
connectivity does not adequately model the complexity of fitness determination, i.e. 

)(
iai Count γη =  is not an accurate modeling of fitness. A wine IS, with thousands of 

attributes modeling wine aspects, has little in common with an air mission IS, and thus 
would not be a very good fit with the air mission IS. 

A better unit of measurement of an existing node ai to have links with a newly 
introduced node an, would therefore involve the number of semantically similar attributes 
that are shared between ai and an. Mathematically, ηi, the fitness of an existing node ai in 
relation to the new node an, is: 
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Inadequacies of Barabási-Albert model addressed by the 
Competitive Network Model 
 
 This modeling of fitness will account for all the inadequacies of the Barabási-
Albert model implementation on an Information System Network.  

(1) Removal of attachment of incompatible IS nodes   
` 

This accounts for the scenario when incompatible nodes (with zero information in 
common) attempts to form an interoperability mapping. As equation (14) stipulates, ηi =0 
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when there are no semantically similar attributes between the nodes. The composite 
probability of having that connection under the competitive network model,∏i

,is also 
equal to zero, indicating that such a connection will not be formed. Thus it is a much 
more accurate depiction of IS nodes than would be possible under the B-A model. 
 

(2) Infinite Support for Fitness Distribution 
 
The bounds of the fitness ηi is [0,1] indicating that there is no infinite support in 

this system. Infinite support would have led to the eventual degradation of the scale-free 
aspect of this growth. However, due to the definition of the fitness level, infinite support 
can still occur when the number of unique attributes in the system continues to grow with 
time.  
 

(3) Uneven number of edges added each time step 
 
Barabási’s model sets a fixed number of edges added per time step, since the 

calculations show that degree distribution is independent of the number of edges added 
each time. However, the interoperability criterion determined in Chapter 4 states that to 
ensure full interoperability in the network, the attributes of each new IS node introduced 
into the system must be mapped to at least one existing node’s attributes. Clashes 
between these two networks features will occur. 
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Figure 22: N-squared behavior in transitive ISN 

 
Consider a node a1 that exists in a network of 10 nodes in Figure 22. For this node 

to attach itself to every other node in the network to ensure interoperability, it will need 
to have at least nine, or n-1, conceptually distinct attributes. Each of the n-1 distinct 
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attributes (γa1_1, γa1_1, … , γa1_1) in a1 will need to have a corresponding similar attribute in 
all the other nodes in the system to perform an attachment. Thus for a1 and a2, there 
exists an edge e12 that attaches the two nodes together for that specific similar attribute. 
With the attachment of the n-1 attributes in a1, we now have n-1 attachments, connecting 
a1 to all the other nodes. 

Now consider a2. a2 has an existing edge to a1, e12, and a2’s degree is currently 1. 
To achieve a degree of n-1, it needs to have an additional n-2 distinct attributes that are 
also distinct from a1’s n-1 distinct attributes. This distinction is necessary, since if the 
attributes in a1 and a2 have similarities in addition to the single conceptually similar 
attribute that produced e12, transitivity over e12 would mean there would be less than n-2 
additional edges needed that connects a2 to the rest of the edges. 

As this continues for the entire network, to have n2 connections between all the 
nodes in the network, the system would require at least n(n-1)/2 conceptually unique 
attributes within the networks. The distribution of the attributes would be such that each 
node ai has at least n attributes, and that between nodes, for all nodes, they only share a 
single conceptually similar attribute. 

As an example, for networks of two nodes, there is only one link between them, 
and they require at least one conceptually unique attributes. For networks of three nodes, 
there are three edges to fully connect the nodes, and it will require at least three 
conceptually unique attributes between the three nodes. Achieving two or three 
conceptually unique attributes, uniformly distributed between two or three nodes is fairly 
common. Thus initially for any network, it will resemble a fully connected network. 
However, as the number of nodes goes up, the probability of having n(n-1)/2 
conceptually diverse attributes uniformly distributed between the n nodes markedly 
decreases.  

Though this situation is unlikely to occur, one can take steps to prevent a n2 
network scenario. One is to restrict the number of semantically similar attributes that 
would be covered across the entire network. This is based on the fact that, as network size 
increases, the number of common attributes that are common across the entire network of 
IS nodes decreases, until the most general set of attribute types is obtained. These set of 
attributes varies with the ISN under construction. For an ISN built for military purposes, 
the set would be attributes relating to Time, Geographical Location and Event Type. As 
such, infinitely increasing the number of attributes to be made interoperable reaches a 
diminishing point of value after it passes these general attributes, while the complexity 
increases exponentially (n2 edges). 

The best solution is to establish a fixed set of attributes, ∑ *γ  , that an 
interoperability agent considers when performing interoperability mappings between IS 
nodes. These attributes will derive from those in common use within the context of the 
Information System Network in construction. Initially when the network size is small, 
∑ *γ  will be larger than n. However, as network size increases, n >>∑ *γ .  

The determination of the number of edges added, m, can be set to the average 
number of mappings needed to cover∑ *γ . In Figure 12, there is a network with 

∑ *γ =5. Every node contains between four to five semantically similar attributes. When 
a new node an, with all five attributes, enters the network, an interoperability agent 
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requires at most two mappings to cover the ∑ *γ attributes in the system. So in this case, 
m will be set to two. 
 

Overall Conditions for Information System Network growth 
 
As a recap, we will state out all the conditions necessary that will ensure a scale-

free interoperable Information System Network: 
(1) Establish a set of attributes in common use within the space of Information 

System Network, ∑ *γ .  This set of attributes will be the attributes that is 

targeted for interoperability in the network. ∑ *γ can grow over time, so long as 

the criteria ∑ *γ << n is maintained. However, as shown in the infinite support 

example in Chapter 7, if ∑ *γ  continues to grow with respect to time, the 
network will deviate more and more from ideal scale-free behavior. This is as 
time is related to network size, thus time dependency indicates scale-dependency 
in preferential attachment probability, indicating that the network is no longer 
scale-free. 

(2) Establish a fitness measure for acceptability of a semantic interoperable 
connection between two IS nodes, ηi. The fitness measure is to be based on the 
number of semantically common attributes shared between the two nodes in 
question. 

(3) Ensure that all the attributes of a new IS node within the set of attributes targeted 
for interoperability purposes,∑ *γ , are mapped to at least one semantically 
similar attribute that is currently existing in the network. 

(4) Establish a fixed number of edges added to the network at each new node’s 
inclusion into the network. This set number can be related to∑ *γ , such as 
setting the fixed number of edges added to the network, m, equal to the average 
number of edges needed to map ∑ *γ .  
In the best case, if every new IS node only required at most m edges to map 
∑ *γ , the number of edges in the entire network will be mn× . 

In the worst case, if every new IS node needed ∑ *γ edges to interoperate the 

attributes in its schema, the number of edges will be ∑× *γn , where ny <<∑ * . 
(5) Adhere to the competitive network model’s composite probability of preferential 

attachment, 
∑∏ =

j jj

ii
i kn

kη
, when considering which existing IS nodes should 

form an attachment with a new IS node. 
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Example of Information System Network Growth through the 
Use of Competitive Network Model 

 
As a simple example, consider a network that has altogether seven distinct 

semantically-similar attributes that are to be mapped within the system. This occurs in 
communities of interests, where the cluster of nodes share similar interests and capture 
the same set of data attributes, though with different contextual information. Consider 
that every attribute has the same level of fitness as every other attribute, which means that 
nodes with three similar attributes have the same level of competitiveness for edge 
attachment. Assume a uniform discrete fitness distribution across the ISN, indicating that 
the probability of having a node with three semantically similar attributes is the same as 
having a node with seven semantically attributes. The fitness distribution will therefore 
resemble this: 
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Figure 23:  Theoretical Fitness Distribution of 7-Attribute ISN 

 
Next, we state that the median number of edges that need to be established 

between a new node and existing nodes to ensure interoperability of these seven nodes is 
two. At every time step, two edges will be extended from a new node to the existing 
nodes in the network. 
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Figure 24: Information System Fitness Model 

  
 In Figure 24, when the new node an is added, the probability of a link is 
dependent on both the degree as well as the fitness of an existing node. Note that as 
the node a1 has a sufficiently high fitness that even with a lower degree than nodes a2 
and a3, the composite for both the degree and the nodal fitness means that the probability 
of attachment e1n is higher than e2n and e3n. 
 Next, as m has been determined a priori to be two for this particular system, the two 
most likely edges to be added in this network are e1n and e3n. As can be seen, all the attributes 
in the new node an have been interoperability mapped to the existing attributes in the system, 
indicating complete interoperability still exist in the network. 
 Using the above fitness distribution, we can calculation from equation (11) that 
C=1.37101, and P(k), while depending on the nodes of different fitness levels, maintains a 
generalized power law distribution where P(k)~k-2.37101. Average path lengths and clustering 
coefficients will also extend from this scale-free growth. Apart from achieving a scale-
free growth in this Information System Network, we have also maintained the contextual 
relevancy of our proposed solution, by adequately addressing all the unique features and 
issues arising from an Information System Network. 

γ1, γ2, γ3, 
γ4 

k=6 
η=1.0 

γ1, γ2 
k=8  
η=0.5 

γ3, γ4 
k=10 
η=0.5 

γ1, γ2, γ3, 
γ4 No. of edges added each 

time, m=2 

πe1n=6/15 
πe2n=4/15 

πe3n=5/15 

New Node an 

Node a1 Node a2 Node a3 
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Chapter 9: Conclusions and Future Discussions 
 
Information Systems, by their inherent nature, do not form networks easily. These 

features that inhibit networks include: 1) Lack of data transitivity between ISs, resulting 
in little to no value of having large scale ISNs, 2) Distinctiveness of individual ISs, with 
their unique set of data attributes and structure, making any interoperability mapping 
between two ISs difficult to create and maintain, and 3) Scaling problems associated with 
ISNs. 

Using the MITRE Semantic Interoperability Technique, most of the features that 
inhibit the organic growth of Information Systems in a network are addressed or 
diminished in significance, by adding a layer of intelligence on top of the network. 
Central to the features addressed is the allowance of transitivity of data attributes between 
Information Systems. Data attributes transitivity is of the utmost importance in 
Information System Networks as they are the primary enablers of information exchange 
between disparate Information Systems. Transitivity on the data attribute level also 
implied that complete semantic interoperability of Information Systems did not require a 
fully connected network (or n2 connections). Rather, so long as the criteria that all 
relevant attributes in every IS node are mapped to their semantically similar counterparts, 
complete interoperability is still maintained. 

We next analyzed the various theories relating to complex evolving networks. 
Random classical theories proposed by Erdös and Rényi is no longer viewed as adequate 
in addressing the complexities of growth in evolving networks as well as the 
characteristics that are inherent in real complex networks. These characteristics are 
namely: Degree Distribution of network is independent of system size (Scale-Free), the 
average path lengths of large networks remain small (Small-World) and large clustering 
coefficients. Instead we examined the scale-free network theory proposed by Barabási 
and Albert that examines the growth mechanism of real networks and postulates a 
preferential growth algorithm based on the degree distribution of the network. Using the 
continuum theory, we derived that scale-free behavior is a direct result of such 
preferential growth. Numerical simulations using the preferential attachment probability 
reinforced the fact that such growth and preferential attachment in networks resulted in a 
scale-free network. 

However, the Barabási-Albert model failed to model one of the most important 
aspects in Information Systems: IS node uniqueness. This uniqueness also affects how 
well each IS node is able to compete for edge attachments. An extension of the original 
B-A model, the competitive and multi-scaling network model, addresses this issue, 
through the use of a fitness quality measure for nodes, ηi. The fitness quality measure in 
the competitive network model can be correlated to the number and type of attributes 
present within the data ontology of each Information System node. With the preferential 
attachment probability now a composite function of an existing node’s degree and fitness, 
additional restrictions must be placed on the fitness distribution range, so as to avoid the 
problems of infinite fitness support. This restriction is in the form of the number of 
distinct attribute types that will be mapped within the given Information System 
Network. This minimally restricts the interoperability of an Information System Network, 
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since the larger the network of Information Systems, the smaller the set of common 
attributes that will exist within most of the IS nodes.  
The set of conditions are: 

(1) Establish a set of attributes in common use within the space of Information 
System Network,∑ *γ . 

(2) Establish a fitness measure for acceptability of a semantic interoperable 
connection between two IS nodes, ηi. 

(3) Ensure that attributes of a new IS node are mapped to at least one semantically 
similar attribute existing in the network. 

(4) Establish a fixed number of edges added to the network at each new node’s 
inclusion into the network. 

(5) Utilize the competitive network model’s composite probability of preferential 

attachment , 
∑∏ =

j jj

ii
i kn

kη
 

By following the set of conditions, one can ensure that a generalized, scale-free 
growth will ensue in Information System Networks. The ease of implementation is shown 
in an example of a set of Information Systems with only seven common attributes 
modeled in the network, specifically how the competitive network model’s preferential 
attachment can be applied. As determined under these conditions, the network will 
maintain a generalized power law distribution where P(k)~k-2.37101, therefore presenting 
scale-free growth.  
 
 

Future Work 
 

As the ease of implementation improves, large-scale Information System 
Networks will become a common feature in the future. As such, many more work will be 
devoted to produce an efficient network of information nodes that is robust and easy to 
implement and maintain. Performance metrics for different implementations of ISNs 
should be proposed as they become increasingly popular. These efficiencies exist in the 
form of shorter average path-lengths between nodes and therefore faster computation 
time, reduction in costs associated with creating edges, or even the balance of traffic 
distribution along the various interconnections.  

Extrapolations of how large-scale Information System Networks can grow can 
also be extended from various other fields, especially in the area of social network 
research. The Barabási-Albert and the Competitive Model are basically top-down 
approaches to network growth, citing a generalized behavior pattern which leads to scale-
free networks over time. Pujol [1] modeled the various factors that would lead to the 
emergence of complex social networks from a local, bottom-up perspective. A theoretical 
extension of the bottom-up approach from the sociological perspective may also be 
applicable for ISN. Similarities between both fields include the rise of communities of 
interests (COI) as well as geographical or contextual dispersion factors. 
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