
 - 1 -

Effective Information Integration
and Reutilization:

Solutions to Technological Deficiency and
Legal Uncertainty

 Hongwei Zhu

Working Paper CISL# 2005-09

October 2005

Composite Information Systems Laboratory (CISL)
Sloan School of Management, Room E53-320

Massachusetts Institute of Technology
Cambridge, MA 02142

 - 2 -

Effective Information Integration and Reutilization:
Solutions to Technological Deficiency and Legal Uncertainty

by
Hongwei Zhu

B.S. Thermal Engineering, B.S. Environmental Engineering
Tsinghua University, Beijing, China, 1991

M.S. Environment Engineering
Tsinghua University, Beijing, China, 1994

M.S. Environment Engineering
University of Cincinnati, Cincinnati, OH, USA, 1998

S.M. Technology and Policy
Massachusetts Institute of Technology, Cambridge, MA, USA, 2002

Submitted to the Engineering Systems Division
in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy in Technology, Management and Policy
at the

Massachusetts Institute of Technology
September 2005

© Massachusetts Institute of Technology
All rights reserved.

Signature of Author …………………………………………………………………………..........................

Engineering Systems Division
September 12, 2005

Certified by ……………………………………………………………………………………………..........
Stuart E. Madnick, Thesis Supervisor

John Norris Maguire Professor of Information Technology and Professor of Engineering Systems

Certified by ……………………………………………………………………………………………..........
Nazli Choucri

Professor of Political Science

Certified by ……………………………………………………………………………………………..........
Michael D. Siegel

Principal Research Scientist

Certified by ……………………………………………………………………………………………..........
Frank Manola

Senior Principal Software Systems Engineer

Certified by ……………………………………………………………………………………………..........
Frank R. Field, III

Senior Research Engineer

Accepted by …………………………………………………………………………………………….........
Richard de Neufville

Professor of Engineering Systems
Chair, ESD Education Policy Committee

 - 3 -

Effective Information Integration and Reutilization:
Solutions to Technological Deficiency and Legal Uncertainty

by

Hongwei Zhu

Submitted to the Engineering Systems Division
on September 12, 2005 in Partial Fulfillment of the

Requirements for the Degree of Doctor of Philosophy in
Technology, Management and Policy

Abstract

The amount of electronically accessible information has been growing exponentially. How to
effectively use this information has become a significant challenge. A post 9/11 study indicated that
the deficiency of semantic interoperability technology hindered the ability to integrate information
from disparate sources in a meaningful and timely fashion to allow for preventive precautions.
Meanwhile, organizations that provided useful services by combining and reusing information from
publicly accessible sources have been legally challenged. The Database Directive has been intro-
duced in the European Union and six legislative proposals have been made in the U.S. to provide
legal protection for non-copyrightable database contents, but the Directive and the proposals have
differing and sometimes conflicting scope and strength, which creates legal uncertainty for valued-
added data reuse practices. The need for clearer data reuse policy will become more acute as
information integration technology improves to make integration much easier.

This Thesis takes an interdisciplinary approach to addressing both the technology and the policy
challenges, identified above, in the effective use and reuse of information from disparate sources.

The technology component builds upon the existing Context Interchange (COIN) framework for
large-scale semantic interoperability. We focus on the problem of temporal semantic heterogeneity
where data sources and receivers make time-varying assumptions about data semantics. A collection
of time-varying assumptions are called a temporal context. We extend the existing COIN representa-
tion formalism to explicitly represent temporal contexts, and the COIN reasoning mechanism to
reconcile temporal semantic heterogeneity in the presence of semantic heterogeneity of time. We
also perform a systematic and analytic evaluation of the flexibility and scalability of the COIN
approach. Compared with several traditional approaches, the COIN approach has much greater
flexibility and scalability.

For the policy component, we develop an economic model that formalizes the policy instruments
in one of the latest legislative proposals in the U.S. The model allows us to identify the circum-
stances under which legal protection for non-copyrightable content is needed, the different
conditions, and the corresponding policy choices. Our analysis indicates that depending on the cost
level of database creation, the degree of differentiation of the reuser database, and the efficiency of
policy administration, the optimal policy choice can be protecting a legal monopoly, encouraging
competition via compulsory licensing, discouraging voluntary licensing, or even allowing free riding.
The results provide useful insights for the formulation of a socially beneficial database protection
policy.

Supervisor: Stuart E. Madnick
Title: John Norris Maguire Professor of Information Technology and
 Professor of Engineering Systems

 - 4 -

 - 5 -

Acknowledgements

I am very grateful to Professor Stuart Madnick for his mentorship, encouragement, and guidance.
Without his support and constant care, I would not have been able to complete this Thesis. He is so
generous in making him available for discussions on research, and on career development in general.
Working with Professor Madnick in the past five years has had profound impact on my life – I have
learned the importance of doing good work, and at the same time, being a kind person.

I was fortunate to have the support of a relatively large committee. I am thankful to the help and
advice of all committee members. Numerous discussions with Frank Manola have helped me to
formulate the solutions and articulate them. Frank has also given me extensive comments on how to
improve the Thesis, and on how to write technical papers in general. Professor Nazli Choucri has
inspired me to look into the issues in geo-political domain and taught me how to approach these
issues using appropriate tools. Over the course of my Thesis, I benefited from useful discussions
with Dr. Michael Siegel on how to have both rigor and relevance in research. Comments from Dr.
Frank Field and Professor Richard de Neufville have helped me define the scope and improve the
formulation of the policy component of the Thesis.

Over the years, I also benefited from working with many people in the research group. I am
thankful to Aykut Firat, who brought the legacy COIN prototype to life. His articulation on many
aspects of the COIN framework helped me tremendously in formulating my research questions. The
improvement to the prototype system by Philip Lee, Tarik Alatovic, and many others, has made it
easy for me when I needed to put together demo applications. Numerous discussions with Allen
Moulton have been helpful in narrowing down research questions. I also benefited from the discus-
sions with Yu (Jeffrey) Hu, Xiaoquan (Michael) Zhang, Marshall van Alstyne, and Chander Velu on
economics and with my office mate Sumit Bhansali on broad issues. Advice on career development
from Tom Lee, Rich Wang, and Yang Lee is gratefully acknowledged.

I would like to thank Yubettys Baez and Eda Daniel, who make things happen and keep them in
order. Thanks also go to numerous friends who have helped me in the past.

I am indebted to my family. To support my study, my wife changed her job during the early
stage of her academic career. Her support and love have helped me to go through the toughest times
of the journey. My daughter, now two years old, has given me new meaning of life. I am very
thankful to my mother-in-law, who came here two years ago when everybody was afraid of traveling
during the SARS outbreak, for her dedication in helping us raise our daughter. I am very grateful that
my parents are in great health and that they finally obtained visas, after trying numerous times since
1997, to come to visit us this summer. I also thank my brother for his care and encouragement.

 - 6 -

 - 7 -

Table of Contents

 Abstract ··· 3

 Acknowledgements ··· 5

1 Introduction ·· 9
 1.1 Challenges and Objectives ·· 9
 1.2 Summary of Contributions ··· 12
 1.3 Thesis Outline ··· 14

2 Temporal Semantic Heterogeneity ··· 17
 2.1 Categorization of Semantic Heterogeneity ··· 17
 2.2 Aspects of Temporal Semantic Heterogeneity ·· 19
 2.3 Existing Approaches to Temporal Information Management ···································· 29
 2.4 Summary ·· 31

3 Resolving Temporal Semantic Heterogeneity using COIN ·· 33
 3.1 Overview of COIN Architecture ··· 33
 3.2 Example 1 – Yahoo Historical Stock Price ·· 35
 3.3 Example 2 – Economic and Environmental Development in Yugoslavia ················· 41
 3.4 Example 3 – Company Financials ·· 43
 3.5 Summary ·· 45
 Appendix 3.1 – Mediated SQL Query MQ3 ·· 47

4 Representation and Reasoning with Temporal Semantic Heterogeneity ··················· 49
 4.1 Context and Semantic Interoperability ··· 49
 4.2 The Representation Formalism of COIN ··· 52
 4.3 The Reasoning Mechanism of COIN ··· 67
 4.4 Representation for Temporal Semantic Heterogeneity ·· 71
 4.5 Reasoning about Temporal Semantic Heterogeneity ··· 77
 4.6 Discussion on Future Extensions ·· 90
 4.7 Summary ·· 93
 Appendix 4.1 – Illustration of Query Mediation using SLD+Abduction Procedure ········· 95
 Appendix 4.2 – Time Presentation using Temporal System ·· 98

5 The Flexibility and Scalability of COIN ··· 101
 5.1 Evaluation Framework ··· 101
 5.2 Traditional Approaches to Semantic Interoperability ·· 103
 5.2 Flexibility and Scalability – Comparison of Different Approaches ··························· 107

6 Public Policy for Database Protection and Data Reuse ·· 115
 6.1 Introduction – Legal Challenges to Data Reuse ··· 116
 6.2 Legal Protection for Database contents ·· 117
 6.3 Literature Review ·· 121
 6.4 A Model of Differentiated Data Reuse ··· 122
 6.5 Discussion ·· 133

7 Conclusion and Future Research ·· 137
 7.1 Conclusion ·· 137
 7.2 Future Research ·· 138

 Bibliography ··· 141

 Appendix – Source Code of the COIN Mediator ·· 149

 - 8 -

 - 9 -

Chapter 1

Introduction

This Thesis concerns the effective use and reuse of information in autonomous, heterogeneous, and
evolving sources. We take an interdisciplinary approach to develop the semantic interoperability
technology that enables information integration and analyze the public policy issues that arise when
such technology is used for systematic reuse of information from sources created by different
organizations. This chapter provides the motivation behind this study, highlights the major contribu-
tions, and outlines the structure of this Thesis.

1.1 Challenges and Objectives

This Thesis is motivated by the challenges depicted in Figure 1.1. We will explain these challenges
in detail and present the specific objectives of this Thesis.

Technological deficiency:
• Post 9/11 study finds lack of semantic interoperability
• Facilities industry loses ~$16B/year in U.S. due to lack of interoperability

Legal uncertainty:
• Valued-added data reusers get sued
• Six bills with different scope/strength to protect database contents

Objective 1: To advance semantic interoperability technology to
make information integration easier

Objective 2: To determine choices for data reuse policy

More data reuse activities occur
with improved technology

Socially beneficial policy preserves data-
base creation incentives and accommo-
dates valued-added data reuse

Figure 1.1 Challenges and objectives

In the aftermath of the 9/11 tragedy, a study by the National Research Council (2002) found that
“although there are many private and public databases that contain information potentially relevant
to counter terrorism programs, they lack the necessary context definitions (i.e., metadata) and access
tools to enable interoperation with other databases and the extraction of meaningful and timely

 - 10 -

information”. A congressional investigation 1 on 9/11 indicated that had various businesses and
government agencies been able to exchange and integrate information in a meaningful and timely
fashion, the tragedy could perhaps have been prevented. This is a typical semantic heterogeneity
problem that is often encountered in information integration, which we explain below.

When people design information systems and create databases, they typically make numerous
assumptions about various aspects of the meaning of the data, such as units of measure (e.g., profit in
Deutschmarks or Euros), scale factors (e.g., profit in thousands or millions), and definitions of data
elements (e.g., whether the profit is gross profit including taxes or net profit excluding taxes). The
semantic heterogeneity problem arises when different systems and the users of the systems have
different assumptions about what appear to be similar data. Furthermore, the assumptions can change
over times (e.g., currency can change from Deutschmarks to Euros), causing what appear to be
similar data in different time periods to have different interpretations. We call this phenomenon time-
varying semantics and the heterogeneity problem in the presence of time-varying semantics temporal
semantic heterogeneity. The differences in those assumptions need to be reconciled, automatically or
semi-automatically by integration software systems, when a user needs to integrate data from these
systems; in other words, we need to achieve semantic interoperability amongst heterogeneous
systems and system users.

Semantic interoperability is important for government agencies, businesses, and even individuals
who want to effectively use the increasing amount of information available in an ever growing
number of electronically accessible data sources. It is also a difficult challenge for the following
reasons:

• The assumptions in various information systems and by diverse system users are often not
explicitly recorded, making it impossible for a software system to account for the differences
of the assumptions. We call a set of assumptions by a system or a user a context. Thus, dif-
ferent systems and system users are often in different contexts.

• Even if the assumptions are explicitly recorded, they may be in a format not accessible to the
software that performs information integration. For example, the assumptions may be re-
corded in word processing files as system documentation that is meant for human
consumption.

• Even if the assumptions are accessible to the software, e.g., if units of measure are made part
of the data or are recorded as metadata (i.e., structured and systematic description of the data,
often managed by metadata software), the integration software won’t necessarily know what
to do with mismatched metadata, e.g., units of measure. That is, metadata in different
sources still need to be interpreted and instructions on how to deal with mismatches need to
be provided.

To summarize, the assumptions (i.e., the contexts) of various systems and system users may be
unavailable, inaccessible, or unusable for the integration software to reconcile any context differ-

1 “Joint Inquiry into Intelligence Community Activities before and after the Terrorist Attacks of September 11,
2001”, by The House Permanent Select Committee On Intelligence And The Senate Select Committee on
Intelligence, December 2002.

 - 11 -

ence. These distinctions roughly correspond to the continuum of semantics in Uschold (2003)2. In
the rest of the Thesis, we will not make these distinctions and simply call the assumptions implicit
assumptions. These assumptions need to be captured explicitly and the differences should be
reconciled systematically to allow for meaningful and timely integration for information from
diverse sources. Technologies deployed today lack this capability.

A significant amount of effort has been put into addressing this challenge. Unfortunately, most
existing approaches, which we will discuss in Chapter 5, are inefficient and very costly to implement
and maintain. As a result, despite the fact that a typical large organization spends nearly 30% of its
IT budget on integration and interoperation related efforts3, many inter- and intra- organizational
systems still have poor interoperability. We learned from the 9/11 tragedy that serious consequences
can result from this technological deficiency. As another example, the National Institute of Stan-
dards and Technology (NIST) estimates that the lack of interoperability costs the U.S. capital
facilities industry4 alone $15.8 billion per year, representing 1-2% of industry revenue; this estimate
is likely to be only a portion of the total cost of inadequate interoperability (Gallaher et al., 2004).

There have been various technical attempts to address different aspects of the challenge, and
much work continues (Lenzerini, 2001; Abiteboul et al., 2005). In this Thesis, we aim to contribute
to the technology for enabling semantic interoperability. The specific objective is:

Objective 1. To develop a representation formalism and a reasoning mechanism for repre-
senting and reconciling temporal semantic heterogeneity.

The ease of accessing data provided by the Web has made possible certain new business prac-
tices that reuse and combine data from various sources. This often requires using existing semantic
interoperability technology, even though it is in a primitive state. While most of the data reuse
practices are value creating activities, they sometimes can run afoul of the interests of the initial
database creators, who wish to have legal protection of database contents when the access to their
databases cannot be restricted via other means (e.g., data in web pages that are meant to be publicly
accessible). This has raised policy concerns about the rights a database creator (data source owner)
should have over how that data is reused, and how any policy on this subject, if needed, should be
formulated. The European Union first introduced the Database Directive5 in 1996 to require its
member states to provide legal protection to database contents beginning January 1, 1998. In the U.S.,
six legislative proposals, discussed in Chapter 6, have been introduced in Congress but none of them
has been passed into law. These proposals offer protection with differing and sometimes conflicting
strength and scope, which creates legal uncertainty for value-added data reuse practices. The need
for clearer policy will become more acute as semantic interoperability technology (the subject of

2 Semantics can be implicit, explicit but informal, formal but for human processing, and formal for machine
processing.
3 See “Reducing Integration’s Cost”, Forrester Research, December 2001.
4 The capital facilities industry, a component of the entire U.S. construction industry, encompasses the design,
construction, and maintenance of large commercial, institutional, and industrial buildings, facilities, and plants.
In 2002, the nation set in place $374 billion in new construction on capital facilities
5 “Directive 96/9/EC of the European Parliament and of the Council of 11 March 1996 on the legal protection
of databases”, a copy of the Directive can be found at http://europa.eu.int/ISPO/infosoc/legreg/docs/969ec.html

 - 12 -

Objective 1 above) improves to make data integration and reutilization much easier. Hence, this
Thesis also investigates the policy issues of data reutilization, which leads to the following objective:

 Objective 2. To analyze the policy implications when semantic interoperability technology
is applied for data reuse, identify the conditions under which legal protection for database
contents may be needed, and determine socially beneficial policy choices that preserve data-
base creation incentives and accommodate value-added data reuse.

1.2 Summary of Contributions

How to effectively use the increasing amount of electronically accessible information is one of the
biggest challenges faced by many organizations and individuals. We make unique contributions to
addressing this challenge by developing the enabling technology as well as considering the societal
implications of the technology. The interdisciplinary approach allows the outcome of the Thesis to
be of theoretical significance as well as practical impact.

The technology component of the Thesis is developed as extensions to the existing Context In-
terchange (COIN) framework (Goh, 1997; Goh et al., 1999; Firat, 2003), which offers a formalism
for explicit representation of the different assumptions made by systems and system users and for
declarative descriptions on how differences, if any, can be resolved. COIN also has a reasoning
mechanism, implemented in a software component called the mediator, which automatically com-
pares contexts and generates instructions in a mediated query to reconcile context differences.

Our extensions deal with the problem of temporal semantic heterogeneity caused by time-
varying semantics. This is different from current schema versioning and schema evolution research,
which focuses on the management of structural changes in data sources, i.e., it only concerns that
data is not lost and old data remains accessible when the schema is changed (Roddick, 1995).

In describing the contributions of the present work, certain concepts, not yet explained but cov-
ered in the rest of the Thesis, will be used.

Formalism for Representing Time-Varying Semantics

We introduce the concept of temporal context and develop a formalism for representing time-
varying semantics. The existing COIN framework uses a shared ontology and a set of special
attributes called modifiers to encode semantic assumptions in data sources and receivers6. A (static)
context is described using a single rule that assigns a value for each modifier in the shared ontology.
In a temporal context, at least one modifier changes its value over time. That is, modifiers in a
temporal context can be multi-valued. In this case, we use multiple rules for value assignment, with
each rule applicable over a time period. Intuitively, this is equivalent to using time-stamped, multi-
valued modifiers to describe temporal contexts.

6 Any system that provides data upon request is a data source; any system (including a user or a user applica-
tion) that makes such requests is a data receiver. These are the roles a system can play in information exchange.

 - 13 -

Extensions to COIN Reasoning Mechanism

We extend the COIN reasoning mechanism to process temporal contexts and reconcile temporal
semantic heterogeneity. With temporal context, the semantic differences between the sources and the
receiver become a multi-set, i.e., there are different sets of semantic differences in different time
periods. They are identified by comparing the modifier assignments in the source contexts and the
receiver context. This involves temporal reasoning because the applicability of the modifier assign-
ment rules is time dependent. We translate the temporal reasoning problem into a temporal constraint
solving problem, which is solved by constraint solvers implemented using the declarative language
Constraint Handling Rules (CHR) (Frühwirth, 1998). The effect of temporal consistency is to
generate vertical partitions for the sources so that each partition corresponds to a static context. That
is, this process reduces the temporal context problem into multiple problems with static contexts.

The temporal constraint solver in this Thesis is in fact a form of semantic query optimization; by
removing unsatisfiable temporal constraints in the mediated query, we eliminate unnecessary data
fetching in distributed sources. In addition, we also develop a method of treating certain source
capability restrictions as constraints, which are solved using CHR so that certain kinds of capability
heterogeneity can be reconciled during mediation.

Systematic Evaluation of the Flexibility and Scalability of the COIN Approach

We provide a systematic evaluation of the technology in terms of adaptability, extensibility, and
scalability. Adaptability refers to the capability of adapting to changes in sources and receivers;
extensibility is the capability of accommodating new sources and receivers with minimal effort.
These two properties are collectively called flexibility. Scalability measures the amount of effort
involved in developing data transformations between a given number of data sources and receivers.
Prior to this work, the lack of such systematic analysis has led to certain misunderstandings of the
COIN approach (Kashyap and Sheth, 2000). By comparing with commonly practiced traditional
approaches, we show that COIN is flexible because of the declarative approach it takes. It is also
scalable because it can compose all necessary conversions using a small set of component conver-
sions.

Socially Beneficial Policy Choices for Database Protection

We develop an economic model to formally analyze public policy choices for the legal protec-
tion of database contents. This is still an unsettled and widely debated issue in the U.S. and
worldwide. Similar to the existing Intellectual Property (IP) laws, a database protection law needs to
balance between protecting the incentives of creating the databases and providing opportunities of
value creation through reuse. This objective is very difficult to achieve because there is nothing like
the idea-expression dichotomy in copyright law to guide the determination of what kinds of reuse
should be allowed or disallowed. As discussed in Heald (2001), the extraction-duplication dichot-
omy does not exist in data reuse; instead, it is a continuum. The model developed in this Thesis
allows us to identify social welfare enhancing policy choices under different conditions depending
on the location on the continuum and other factors, e.g., cost of database creation and transaction

 - 14 -

cost of licenses. The results of this formal analysis allow us to derive a set of guidelines for formulat-
ing the database policy.

 Successful Demonstration of the Value of Interdisciplinary Approach

Lastly, we argue that the interdisciplinary approach to semantic interoperability constitutes a
unique contribution. A new technology often brings about new societal issues. For example, the
earliest significant data reuse case was in 1918 between International News Service (INS) and
Associated Press (AP), where INS lifted news stories from AP bulletins and wired them to its
member newspapers on the west coast. This form of data reuse was enabled by telegraphic technol-
ogy invented in the mid- to late-1800s. Many recent data reuse cases involve aggregators enabled by
the Web and information integration technologies (Madnick and Siegel, 2002; Zhu et al., 2002a).
Therefore, it is important that we understand the societal implications of the technologies we develop
and advance. By studying the technology and policy aspects of information integration conjunctively,
this Thesis generates interesting and timely results useful for improving the effective use of informa-
tion in our society. In addition, the thesis also demonstrates the value of taking an interdisciplinary
approach to technology research because technologists tend not to spend enough time to study the
societal implications of technology7, and the societal implications often have significant impact on
the effectiveness of technology.

1.3 Thesis Outline

The Thesis is organized into seven chapters. There is no centralized literature review in the Thesis.
Instead, we cite the literature that is most relevant to the particular issues addressed in each chapter.

Chapter 2 identifies and illustrates the kinds of temporal semantic heterogeneity. In addition to
time-varying data semantics, the data models for time are tremendously heterogeneous across
systems, e.g., different semantic assumptions, representations, and supported operations for temporal
entities. We identify that little work has been done to represent and reason about time-varying
semantics in the presence of heterogeneous time models. The technology component of this Thesis is
to fill this gap.

Chapter 3 uses examples to illustrate how the COIN system with the extensions developed in this
Thesis can be used to reconcile temporal semantic heterogeneities. We demonstrate the features from
the perspectives of the users and system architecture. The COIN mediation service allows users to
query data sources in diverse contexts as if they all were in the user’s own context, therefore, users
are alleviated from the burden of keeping track of contexts, the evolvement of contexts, and the data
conversions from other contexts to the user context. This service reconciles semantic heterogeneity
and at the same time supports heterogeneous user needs.

7 For example, when discussing Project Oxygen, a massive effort on pervasive and human-centered computing
at MIT’s Computer Science and Artificial Intelligence Laboratory, co-director Professor Victor Zue comments
“[W]e engineers think of wonderful ideas, but often they have unanticipated consequences” and points out the
need for more study on the societal implications of the project, and pervasive computing in general. Details of
his comments can be found at http://web.mit.edu/giving/spectrum/winter05/computer_talk.html.

 - 15 -

Chapter 4 provides the technical details behind the features illustrated in Chapter 3. We start
with a formal description of COIN, followed by the extensions for temporal semantic heterogeneity.
Previously, data transformations are introduced declaratively during mediation and their execution is
deferred to the query execution stage. When relations over temporal entities exist in the query, it
becomes beneficial to execute the transformations for ground temporal values during mediation to
perform semantic query optimization. We will discuss the tradeoffs between the two strategies. In
addition, the roles of ontology and contexts in COIN and their relationship will be discussed.

Chapter 5 presents the metrics for evaluating information integration technologies. The metrics
include adaptability, extensibility, and scalability. We then use the metrics to evaluate COIN against
other commonly practiced approaches.

Chapter 6 focuses on the analysis of data reuse policy. After an overview of the history of data-
base legislation, we present an extended spatial competition model to formalize the extraction-
duplication continuum and the provisions proposed in a recently failed bill in the U.S. In addition,
we also consider transaction cost and show how it affects the licensing provision. Based on the
results of this formal analysis, we derive a set of guidelines for making policy choices that maxi-
mally allow value added data reuse without eliminating the incentives of creating databases.

Chapter 7 provides a brief summary and points out several areas for future investigation.

 - 16 -

 - 17 -

 “A problem well-defined is half solved”
− John Dewey

Chapter 2

Temporal Semantic Heterogeneity

From Chapter 1 we know that data semantics is dependent on the assumptions made about the data.
Semantic heterogeneity exists when different systems make different assumptions about similar data,
and temporal semantic heterogeneity exists when the assumptions change over time. In this chapter,
we develop a deeper understanding about the problem of temporal semantic heterogeneity by using
examples and reviewing relevant literature. The issues identified in this chapter will be addressed by
the technology component of this Thesis.

This chapter is organized as follows. In Section 2.1, we present a categorization of types of se-
mantic heterogeneity that encompasses temporal semantic heterogeneity. In Section 2.2, we illustrate
different aspects of temporal semantic heterogeneity using examples. In Section 2.3 we survey the
existing approaches to temporal information management and identify the gap that this work is
intended to fill. We summarize in Section 2.4.

Throughout the Thesis, we use data and information interchangeably. Any system that can pro-
vide data upon request is called a data source; any system (including a user or a user application) that
makes such requests is a data receiver. Therefore, a system can be a source and a receiver, depending
on whether it is requested to send data (source) or it requests to receive data (receiver). We also use
receiver and user interchangeably.

2.1 Categorization of Semantic Heterogeneity

Various types of semantic heterogeneity have been documented in the literature (Goh, 1997; Firat,
2003; Kashyap and Sheth, 1996; Ram and Park, 2004; Naiman and Ouskel, 1995), though there is
little consensus on how to categorize them. For example, Goh (1997) distinguishes schematic
heterogeneity from semantic heterogeneity, and characterizes the distinction between them by the
differences in the structure (i.e. the logical organization of data) versus the differences in the inter-
pretation (i.e., the meaning of data); whereas in the classification of Ram and Park (2004), semantic
heterogeneity exists in the data level as well in the schema level; while in Kashyap and Sheth (1996),

 - 18 -

schematic heterogeneity includes the differences in data interpretation due to the differences in
domain definition of a schema, e.g., different units of measure.

We observe that the logical organization of data (i.e., schema), and sometimes even the syntax
used for representing the data, can convey commonly understood assumptions for interpreting the
meaning of the data. So, it is difficult to have a crisp categorization that separate out semantics from
everything else. For explication purposes, though, we still offer a categorization below.

Recall from Chapter 1 that semantic heterogeneity is usually caused by the different assumptions
made by systems and system users. The assumptions (and hence the resulting heterogeneity) can be
categorized into two types: representational and ontological; furthermore, depending on whether
time is of concern, each type can be atemporal8 or temporal. This categorization is illustrated in
Figure 2.1 and explained below.

 Atemporal Temporal
Representational Profit is in DEM v.

Profit is in USD
Profit is in DEM until 1998 and in EUR since 1999 v.
Profit is always in USD

Ontological Profit is gross with taxes included v.

Profit is net with taxes excluded

Profit is gross with taxes included until 1998 and net
with taxes excluded since 1999 v.
Profit is always net with taxes excluded

Figure 2.1 Categorization of semantic heterogeneity.

Representational heterogeneity exists when different systems make different assumptions about
the representation of the same thing, such as using different units of measure, scale factors (e.g., in
thousands or millions), or syntax (e.g., the different orders of year, month, day appearing in a date).
In the (atemporal) example in Figure 2.1, the profit of a company can be represented in DEM (i.e.,
Deutschmarks) in one system or in USD (i.e., U.S. dollars) in another, where the currency used is the
assumption.

Ontology is an established branch in philosophy concerned with the nature and the relations of
being. Bunge (1977) and Bunge (1979) provide a formal philosophical treatment on the topic. More
recently, ontology has been widely studied in computer science as a formal and structured way of
specifying a conceptualization of a set of related things. Intuitively, it offers a vocabulary for
referring to things in the real world. An in-depth discussion of ontology is out of the scope of this
Thesis; interested readers are referred to Wand and Webber (1988), Gruber (1993), Lee (1996),
Guarino (1997), and Wand et al. (1999).9 The intuitive understanding of ontology suffices for the
purpose of discussing our categorization of semantic heterogeneity.

Ontological heterogeneity exists when different systems make different assumptions in terms of
the definitions for what appears to be the same thing. In the (atemporal) example of Figure 2.1, the
profit of a company can be gross profit including the taxes in one system and net profit excluding the

8 Means “independent of time, timeless” (http://education.yahoo.com/reference/dictionary/entry/atemporal). It
has been used in temporal database literature to refer to snap-shot data models.
9 Wand and Webber (1988) draw the concepts from Bunge’s works on ontology to propose a set of ontological
principles useful in the design of information systems; Wand et al. (1999) illustrate the use the principles in
entity-relation analysis. Lee (1996) seeks to establish a philosophical foundation for semantic interoperability
by drawing Bunge’s works on ontology as well as on semantics (Bunge, 1974a; Bunge, 1974b). Gruber (1993)
and Guarino (1997) use ontology for purposes of knowledge representation and sharing.

 - 19 -

taxes in another. In this case, the assumption is which definition of profit is meant by the term profit
in each system.

Loosely speaking, representational heterogeneity concerns the different representations of the
same thing, while ontological heterogeneity concerns the different meanings denoted by the same
term.

Both the representational and the ontological assumptions can be static and do not change over
time within an interested time period, in which case time is not of concern. The resulting heterogene-
ity is atemporal. Conversely, the assumptions can change over time, and the resulting heterogeneity
is temporal. Thus, we can roughly distinguish four types of semantic heterogeneity:

• atemporal representational;
• atemporal ontological;
• temporal representational; and
• temporal ontological.

A data element can have a certain combination of these four basic types of semantic heterogeneity.
For example, the profit data in a source can have time-varying definitions (temporal ontological), yet
use the same currency through out (atemporal representational). We also give another example in
Example 2.3 in Section 2.2.1.

The examples of temporal semantic heterogeneity in Figure 2.1 are extended from the atemporal
examples by having the assumption in one system change over time. With temporal semantic
heterogeneity, interpretations of data can differ not only between systems, but also between different
time periods in a single system.

The following section focuses on temporal semantic heterogeneity. We will use examples to il-
lustrate various aspects that need to be considered when reconciling temporal semantic heterogeneity.

2.2 Aspects of Temporal Semantic Heterogeneity

In addition to time-varying semantics, we identify two other aspects that are related to temporal
semantic heterogeneity. These aspects, as summarized below, will be each discussed in the next three
sub-sections:

time-varying semantics: we use several examples to illustrate temporal representational hetero-
geneity and temporal ontological heterogeneity

different time models: just as with any other type of data, time itself can be represented and in-
terpreted differently in different systems. These differences correspond to representational
and ontological heterogeneity of time. In addition, systems can differ in their capabilities of
executing certain operations on time; we call these difference capability heterogeneity.

different associations between time and other types of data: we use examples from the literature
to explain that there can be different interpretations of the association between time and
other types of data.

 - 20 -

2.2.1 Time-varying Semantics

When the implicit assumptions change over time, data corresponding to different time periods are
subject to different interpretations. The following examples illustrate temporal semantic heterogene-
ity caused by time-varying implicit assumptions.

Example 2.1 (Temporal representational heterogeneity) Stocks of some companies are traded at
multiple stock exchanges (i.e., markets) around the world. The prices of the same stock can be
different in different markets, creating arbitraging opportunities (i.e., someone can profit from the
price differences by buying shares in one market and selling them in another market at a higher
price). There are usually some price differences, but not substantial differences. How big can price
differences be in different markets? Are prices in multiple markets converging? These are the kinds
of questions often asked by traders, financial analysts, hedge fund managers, investors, regulators, as
well as financial economists. The availability of online financial databases provides the convenience
for finding answers to such questions. In addition to subscription-based databases such as Data-
stream (from Thomson Financial at www.datastream.com), there are also sources such as Yahoo!
Finance (at finance.yahoo.com) that provide free access to certain financial data. Figure 2.2 shows an
excerpt of historical stock prices for IBM at Frankfurt (left) and New York (right) Stock Exchanges,
reported by Yahoo! Finance. The adjusted close prices are listed in the last column (labeled Adj Close*)
of each table.

Frankfurt, Germany

New York, USA

Figure 2.2 Historical stock prices for IBM (from Yahoo).

Comparing the values of adjusted close price in the Figure, we notice several surprising peculi-
arities. In the first row of data, the values enclosed in rectangles are significantly different: 78.96 in
Frankfurt vs. 89.99 in New York. Even more dramatic differences are in the bracketed values in the
lower half of the figure, which correspond to prices during the period near the end of 1998. In
addition, noticing the circled values in the middle, we observe that the value in the Frankfurt table
dropped by almost 50% on the opening day in 1999 while the change in New York was less than 1%.

How could this happen? It turns out that we need to know the currencies in which the prices are
expressed in order to interpret the values. At the beginning of 1999, the Frankfurt Stock Exchange
changed the currency from German Mark (DEM) to Euro (EUR) and the irrevocable exchange rate is

 - 21 -

1 EUR = 1.95583 DEM10, while the prices at New York Stock Exchange are always in US dollars
(USD) and 1 USD = 1.67 DEM on December 30, 1998. Much of the difference between the two
exchanges can be explained by the use of different currencies; similarly, the significant value drop
on the opening day of 1999 in Frankfurt is due to currency change at the same exchange. In fact,
there have been studies (e.g., Heimonen, 2002; Berbena and Jansenb, 2005) to show that worldwide
financial markets have become more integrated and prices in different markets have been converging
in the last two decades. That is, prices in different markets have been very close. ■

This example illustrates the challenges of lacking semantic interoperability among systems. Im-
plicit assumptions made in each system need to be captured and used to reconcile their differences
when data from these systems are combined. In the example, each stock exchange makes implicit
assumption about the currency used for representing adjusted close price. The meaning of data is
dependent on the assumption. For example, the number “149.69” circled in the Frankfurt table means
(or denotes) something different depending on whether the currency is EUR or DEM. When the
assumption changes, data semantics also changes. As a result, semantic heterogeneity exists not only
between two stock exchanges but also within Frankfurt Exchange.

Example 2.2 (Temporal ontological heterogeneity) In everyday communications and in various
information systems, it is very common that we refer to things using various codes, e.g., product
codes of a company, subject numbers in a university subject catalog, and ticker symbols commonly
used to refer to company stocks. Codes are sometimes reused in certain systems, thus the same code
can denote different things at different times. For example, subject number “6.891” at MIT has been
used to denote “Multiprocessor Synchronization”, “Techniques in Artificial Intelligence”, “Compu-
tational Evolutionary Biology”, and many other subjects in the past decade. As an another example,
ticker symbol “C” used to be the symbol for Chrysler; after Chrysler merged with Daimler-Benz in
1997, the merged company chose to use “DCX”; on December 4, 1998, the symbol “C” was as-
signed to Citigroup, which was listed as “CCI” before this change. ■

In Example 2.2., while a code may denote different things at different times, there is always a
one-to-one correspondence between a code and what the code denotes in a given system. In Example
2.3 below, we illustrate that sometimes a one-to-one correspondence may become a one-to-many
correspondence, or vice versa.

Example 2.3 (Temporal ontological heterogeneity) Data from multiple sources are often required to
study economic and environmental development of the world. In the past 30 years, certain regions
have gone through significant restructuring, e.g., one country breaking up into several countries.
Such dramatic changes often make it difficult to use data from multiple sources or even from a single
source. As an example, suppose a Balkans specialist is interested in studying the CO2 emissions in
the region of former Yugoslavia during 1980-2000 and prefers to refer to the region (i.e. the geo-
graphic area of the territory of former Yugoslavia) as Yugoslavia. Data sources like the Carbon
Dioxide Information Analysis Center (CDIAC)11 at Oak Ridge National Laboratory organize data by

10 http://www.oanda.com/site/euro.shtml
11 http://cdiac.esd.ornl.gov/home.html

 - 22 -

country. Figure 2.3 lists some sample data from CDIAC. Yugoslavia as a country, whose official
name is Socialist Federal Republic of Yugoslavia in 1963-1991, was broken into five independent
countries in 1991: Slovenia, Croatia, Macedonia, Bosnia and Herzegovina, and Federal Republic of
Yugoslavia (also called Yugoslavia for short in certain other sources). Suppose prior to the break-up
the specialist had been using the following SQL query to obtain data from the CDIAC source:

Select CO2Emissions from CDIAC where Country = “Yugoslavia”;

Before the break-up, “Yugoslavia” in the receiver coincidentally referred to the same geographic
area as to what “Yugoslavia” in the source referred, therefore, the query worked correctly for the
receiver until 1991. After the break-up, the query stopped working because no country is named
“Yugoslavia” (or had the source continued to use “Yugoslavia” for Federal Republic of Yugoslavia,
the query would return wrong data because “Yugoslavia” in the source and the receiver refer to two
different geographic areas). ■

Country Year CO2Emissions12
...
Yugoslavia 1990 35604
Yugoslavia 1991 24055
Slovenia 1992 3361
Croatia 1992 4587
Macedonia 1992 2902
Bosnia-Herzegovinia13 1992 1289
Federal Republic of Yugoslavia 1992 12202
...

Figure 2.3 Sample CO2 emissions data from CDIAC.

In this example, the implicit assumption is what “Yugoslavia” denotes. For the receiver, it al-
ways denotes a particular geographic area; the area happens to be denoted by “Yugoslavia” in the
source until 1991, and by five different names since 1992. According to our categorization, there is
temporal ontological semantic heterogeneity between the source and the receiver.

Alternatively, we can view the implicit assumption in terms of the organization of data: until
1991, the source organizes emissions data the same way the receiver expects; since 1992, the sum of
emissions of five particular records in the source corresponds to one record expected by the receiver.

We mentioned in Section 2.1 that there can be multiple kinds of semantic heterogeneity in one
data element. In the example, the CO2Emissions data in the source also make implicit assumptions
in three aspects: the emissions are in 1000s (scale factor) of metric tons (unit of measure) of carbon
(not CO2 gas, hence ontology/definition). Thus for this data element alone there could be both
representational and ontological heterogeneity should other sources and receivers make different
assumptions in these aspects.

A variety of implicit assumptions can change over time, e.g., units of measure, scale factors,
naming conventions, accounting standards, concept definitions, and data gathering and processing
methods. For example, while people in the 1980s believed that computers played a big role of

12 The actual column is in the source is “Total CO2 emissions from fossil-fuels (thousand metric tons of C)”.
13 Correct spelling is Herzegovina.

 - 23 -

improving productivity in the U.S, the National Income and Product Accounts (NIPA)14 data from
the Bureau of Economic Analysis (BEA) did not show any evidence to support this belief. To a
certain extent, this productivity paradox was a measurement problem, i.e. the quality improvement of
computers was not measured in BEA’s NIPA data (Jorgensen, 2001). To improve the productivity
measurement, the BEA introduced a series of changes to it accounting methods. One of major
changes is to use “constant quality price” (CQP) for various products of the information technology
industry, e.g., computers (since 1985), digital telephone switching equipment and cell phones (since
1996), semiconductors (since 1997), and prepackaged software (since 1998). Another change is the
reclassification of software expenditures as investment in 1999 (Jorgensen, 2001). Likewise, there
have been certain changes to the definition of unemployment data provided by the Department of
Labor15. A few other examples can be found in Ventrone and Heiler (1991). Although certain data
sources retroactively update historical data to conform to current standards, for various reasons
certain data in many data sources are not updated, as seen in the example of the Frankfurt stock price.

2.2.2 Different Time Models

Although the notion of time is often taken for granted in everyday use, it is actually a rather complex
concept that has multiple meanings, e.g., there are as many as 14 entries for Time as a noun in
Merriam-Webster Online Dictionary16. Hayes (1996) identifies six commonly used senses of time:
(1) a physical dimension; (2) a plenum (or “container”) within which all events are located; (3) a
duration (e.g., 3 hours); (4) an interval (or period); (5) a point; and (6) a position in a temporal
coordinate system. To appreciate the complexity of time, a printout of the documentation needed to
work with dates and times in the Java programming language (the Java Calendar and GregorianCal-
endar classes) is typically over 40 pages long.

There are two major approaches to representing temporal phenomena: change-based and time-
based (Shoham and Goyal, 1988). The intuition for the change-based approach is that time is
important only when the world changes. In this approach, time is implicitly embedded in the chang-
ing states of the world or the relationships of events. The primitives are usually actions, as in
situation calculus (McCarthy and Hayes, 1969), or events, as in event calculus (Kowalski and Sergot,
1986).

Time is explicitly introduced in the time-based approach, which is common in many information
systems. It is desirable to have a general time model that is reusable in different systems. But
different systems often have different needs for time representation, therefore not all senses of time
are necessary in a particular system and the same sense may be formalized differently in different
systems. As a result, there have been many time theories developed for different purposes. This is

14 Gross Domestic Product (GDP) and Gross Domestic Income (GDI) are computed from the national income
and product accounts prepared by the BEA.
15 See the FAQ at http://www.bls.gov/cps/cps_faq.htm. The answer to question “Have there been any changes
in the definition of unemployment” states: “The concepts and definitions underlying the labor force data have
been modified, but not substantially altered”.
16 http://www.m-w.com/

 - 24 -

also the case in a number of recent efforts of developing time ontologies (Zhou and Fikes, 2000;
Hobbs and Pan, 2004), which define a set of concepts of time and their relationships.

Maiocchi and Pernici (1991) summarize five choices that most time theories need to make:
(1) primitive time entity: point or interval
(2) time ordering: linear, branching, or circular
(3) time structure: maps to the subset of Z (integer), Q (rational), or R (real)
(4) boundedness: if time can be infinite and if open time interval is allowed
(5) time metric: units for measuring duration

The choices are made depending on the application needs. For example, an interval-based theory is
used in (Allen, 1983) to represent and reason about temporal relationships of events and states. The
reasoning takes O(n3) time (n is the number of intervals in the constraint network). However, an
interval-based theory cannot represent continuous changes (Galton, 1990). Point-based theories do
not have this limitation (Koubarakis, 1994).

Most of the time models developed in Artificial Intelligence do not have a concrete representa-
tion of time because their focus is on the relationships of the times associated with states and events.
For example, the interval logic of Allen (1983) is specifically devised for representing relative
temporal information where the exact dates or even fuzzy dates are not available. The kinds of
temporal information often have forms like “being in college” is after “being in high school” and
before “having a full-time job”. Here the primary interest is the temporal relations of propositions
(e.g., “being in college”) that represent states or events.

However, there are cases where the time position in a time coordinate system is known. For ex-
ample, we know that Frankfurt Stock Exchange started to use Euros from January 1, 1999. Most
temporal information recorded in databases has explicit time, sometimes called a timestamp. Time
series data also contains explicit time at certain granularities, e.g., daily, weekly, monthly, etc. This
Thesis focuses on heterogeneities in systems that contain explicit time. In these systems, time is
usually identified as a date (possibly with clock time) in a calendar (usually the Gregorian calendar).
As with other types of data, time data in different systems often have different semantic assumptions,
representations, and supported operations.

Different ontological assumptions. Common implicit assumptions for date and time include
calendar used, location or time zone, and standard time vs. Daylight Saving Time (DST). Under
different assumptions, a date and time string may denote different time points. For example, which
day “April 19, 2005” denotes depends on which calendar is used. If Julian calendar is used, it
denotes the day of “May 2, 2005” in Gregorian calendar; if Chinese calendar is used, it denotes the
day of “May 26, 2005” in Gregorian calendar.

Although most modern systems use the Gregorian calendar by default, other calendars can be
used on certain occasions, e.g., for recording cultural events. Conversions between different calendar
systems can be performed. There are also research efforts that aim to provide systematic multi-
calendar support (Soo and Snodgrass, 1995; Bry and Spranger, 2004).

 - 25 -

There are approximately 70 countries in the world that use DST, but DST starts and ends on dif-
ferent dates in different countries and regions17. The starting and ending dates in a country can
change over time. For example, DST in the U.S. has changed several times, as summarized in the
case study in Figure 2.418. These aspects are often implicitly assumed in systems, e.g., local time vs.
UTC (coordinated universal time); standard time vs. daylight saving time (or summer time).

1918-1919 “An act to preserve daylight and provide standard time for the United States” was
enacted on March 19, 1918. Under the Act, DST was in use from last Sunday in
March to last Sunday in October. At the end of World War I, the law was repealed
and only a few states and cities continued to observe DST.

1920-1941 No federal law for DST
1942-1945 “An act to promote the national security and defense by establishing daylight saving

time” was enacted on January 20, 1942. Under this law, DST was year-round from
February 2, 1942 to September 30, 1945.

1946-1965 No federal law for DST.
1966-1971 “The Uniform Time Act of 1966” was enacted on April 12, 1966. DST was from

last Sunday of April to last Sunday of October. States can pass law for exemption.
1972-1985 In 1972, the Act was amended to provide options for States residing in multiple

time zones.
1986-present In 1986, the Act was amended to set the beginning of DST to first Sunday of April.

Figure 2.4 Changes to Daylight Saving Time (DST) in the U.S.

Different representations. Even when a single calendar is used, there are various representations for
date and time in terms of format and structure. These different representations continue to exist
despite the international standard “ISO 8601” (ISO, 2000), which specifies standard representations
of date and time. In the following discussion, we will use the term temporal entity to refer to date,
time and combination of date and time.

The different date formats create a number of problems in information integration:

• Semantic ambiguity – e.g., what is “03/04/05”? There are three commonly used sequences
for day (D), month (M), and year (Y); there are also two conventions of interpreting a two-
digit year (e.g., “03” as 1993 or 2003). Therefore, “03/04/05” can denote six possible dates,
ranging from April 5, 1903 to April 3, 2005. The ambiguity can be eliminated by using a
standard (e.g., ISO 8601) or if one knows the “syntax” of how different parts of a calendar
date and clock time are assembled into a single temporal entity.

• Proliferation of conversions – For any given date, there can be numerous representation
styles. Given:

o 3 styles for month: April, Apr, 04
o 3 orders for parts: DMY, MDY, YMD (D: day, M: month, Y: year)
o 3 kinds of separators: -, /, space (or no space)
o 2 ways of writing year: 4-digit and 2-digit

17 See http://webexhibits.org/daylightsaving/g.html for a list of DST start and end dates in different countries.
18 Adapted from http://webexhibits.org/daylightsaving/index.html.

 - 26 -

there are a total of 54 possible combinations out of these choices, i.e., 54 different represen-
tations for any given date. A typical database management system (DBMS) supports
commonly used formats and provides conversion functions for converting between these
formats. For example Microsoft SQL Server uses the following function

CONVERT(data_type [(length)], expression [, style])
for date format conversion. The style parameter has predefined values to represent certain
formatting patterns, e.g., 101 is for “mm/dd/yy” and 107 is for “Mon dd, yy”. An example of
using CONVERT is given in the Where clause a few paragraphs below. In addition, Microsoft
also supplies a DTS (Data Transformation Service) package to allow programmers to write
data transformation programs. Date-Time string transformation is one of the built-in trans-
formations. Oracle uses the following two functions to convert data formats:

TO_CHAR(<date>, '<format>')
TO_DATE(<string>,'<format>')

where format is a pattern string assembled using a set of predefined tokens.
• Need for query rewriting – Temporal entities are often represented in different formats,

sometimes implemented using incompatible data types (e.g., system supported DATE type
vs. STRING type). As a result, query expressed against one system cannot be directly evalu-
ated in another system. For example, suppose Quote_date is present in an Oracle database as
well as a SQL Server database using the system supported DATE type and DATETIME type,
respectively. By default, date format in Oracle is “dd-MON-yy”19, such as “03-APR-05” for
April 3, 2005. When a date string with correct format is compared with a value of DATE
type, Oracle first converts the string into DATE type before comparing. Thus the Where
clause in a query to the Oracle database may look like the following:

Where Quote_date = ’03-APR-05’

However, SQL server does not automatically convert a date string to DATETIME type.
Therefore, a direct evaluation of the above Where clause in a SQL server will always return
an empty result. To ensure correct evaluation, the above Where clause must be rewritten to
convert data into the same type, e.g., converting DATETIME to string type like in the fol-
lowing:

 Where CONVERT(varchar(10), Quote_date, 101) = ’04/03/05’

As we will see next, the need for query rewriting also arises where there are structural differ-
ences and the differences in supported operations over the data types used for temporal
entity representation.

Many data sources do not use system supported time related data types for temporal entities. In-
stead, they use other primitive types, such as string, to represent time and implement the time model
in application code. When this is the case, in addition to format differences, there can be structural

19 Date format template in Oracle databases is different from than in the Java programming language. In Oracle,
“MON” indicates the use of abbreviated month name, “APR” for month April.

 - 27 -

(i.e., schematic) and granular differences. Figure 2.5 illustrates just a few examples in clinical data
(Das and Musen, 2001).

(a) Month Day Year Patient ID Weight

1 23 3001 41288 71

(b) Date Length Unit Patient ID Problem
Jan 23 2001 2 Week 41288 Pneumonia

(c) Time Drawn Time Entered Patient ID Creatinine

Feb 1 2001 7:01:23AM Feb 1 2001 10:12:54AM 41288 2.3

(d) Start Time End time Patient ID Drug Name Drug Dose Frequency Route
Jan 30 2001 5:40PM Now 41288 Gentamicin 150mg 8 IV

Figure 2.5 Heterogeneities of Temporal Entities in Clinical Data (Das and Musen, 2001).

As shown in Figure 2.5, a temporal entity can be split into multiple parts as in (a) or be in one
piece as in the rest, with or without time part; they can have different granularities; an interval can be
represented using start time and end time in two separate columns as in (d), or using a date and a
duration prior to the date as in (b). Obviously, these differences require that a query expressed
against one structure to be rewritten for a different structure to ensure the executablility and correct-
ness of the query.

Different supported operations on temporal entities (capability heterogeneity). Different sys-
tems often have different implementations for temporal entities. As a result, the supported operations
on temporal entities differ amongst systems. We call such differences capability heterogeneity. For
example, not all systems support the subtraction operation on two dates to give the duration as the
number of days between the dates, next operation on a date to return the next day, or overlaps
operation in temporal database query language TSQL2 (Snodgrass, 1995). Certain systems do not
even support all of the usual comparison operators: <, >, >=, <=, and =. For example, to retrieve
stock prices between December 21, 1998 and January 8, 1999 like those shown in Figure 2.2, one
would expect to be express the date range in a SQL query like the following:

 WHERE … DATE>=”21-DEC-98” and DATE=<”8-JAN-99” and …

But if the source does not support operators such as >= and =< on the DATE attribute, the query
cannot be executed as expressed. As we will see in Chapter 3, Yahoo data source does have such
limitations and the date range conditions have to be translated to equality on StartYear, StartMonth,
StartDay, EndYear, EndMonth, and EndDay attributes.

The problem of capability heterogeneity exists for other types of data and has been recognized in
information integration research (Yerneni, 2001). Although capability heterogeneity is a separate
issue from semantic heterogeneity, a query answering system needs to resolve such heterogeneity so
that when a user query violates certain source restrictions, the query answering system can rewrite
the query into a form executable at the source.

 - 28 -

2.2.3 Different Associations with Time

In the previous section, we focused on time itself and its representation in information systems. In
this section, we look at different ways of associating time to non-temporal data and different inter-
pretations of these associations. Temporal database literature distinguishes two dimensions of time –
valid time and transaction time (Snodgrass and Ahn 1985; Jensen and Snodgrass, 1996). Valid time
concerns the state of the modeled world (i.e., when a certain thing is true in the world), and transac-
tion time concerns the state of the database (i.e., when a certain record is current/stale in the
database). In the rest of the Thesis, we refer to valid time unless otherwise noted.

Time-stamping is a common practice of associating time to non-temporal data. For example,
Figure 2.6 shows a number of time-stamped records in a hypothetical bank account database
(adapted from Bettini et al., 2000). Account 123 has three transactions in January 2005: on January 1,
2005, there is a deposit of 100 and the resulting balance is 800; a withdrawal occurs on January 15,
2005, and the resulting balance is 750, etc.

Account Time Transaction Balance
123 1/1/2005 100 800
123 1/15/2005 -50 750
123 1/31/2005 200 950

Figure 2.6 Time-stamped bank account records.

With these records and other assumptions, such as that these records represent all changes that
could have affected the balance, one can infer this account has a balance of 800 on any given day
between January 1 and January 14; but one cannot say that the account has a transaction of 100 on
any given day between January 1 and January 14. That is, the balance-time and transaction-time
associations have different interpretations.

There are several formalizations of this phenomenon. Allen (1984) distinguishes three types of
entities to be associated with time: properties, events, and processes. In Allen’s interval logic, the
attribute “balance” is a property, which holds true over an interval iff it holds true over any subinter-
val of the interval, while the attribute “transaction” is an event, which can occur over an indivisible
interval.

Shoham (1987) introduces a logic that eliminates the need of using special predicates for differ-
ent entities and their associations with time. This is a reified20 logic that refers to the non-temporal
part as proposition type. For example, color(house17, red) is a proposition type in predicate TRUE(t1,
t2, color(hourse17, red)). This predicate is equivalently represented as a record in a database table
that has four attributes: <Begin, End, House, Color>. Thus, a proposition type roughly corresponds
to a relational attribute. The logic is expressive enough to distinguish different proposition types:
downward hereditary, upward hereditary, liquid. A proposition type is downward hereditary if
whenever it holds over an interval it holds for all its subintervals or its internal points; it is upward
hereditary if whenever it holds true for all subintervals or internal points of an interval it holds for
the interval; it is liquid if it is both downward and upward hereditary. According to these definitions,

20 Reification is the process of turning a predicate or function into an object in the language.

 - 29 -

“balance” is liquid, and “transaction” is non-hereditary. These characteristics can be used to compact
data storage (e.g., balance need not be stored for every day or every second); implicit data can be
derived based the liquidity of attributes (Bettini et al., 1998).

We observe that liquidity (or lack of liquidity) is determined by the nature of the attribute and it
does not vary across data sources or change over time. For example, “balance” is liquid in all data
sources and stays liquid all the time.

Certain functions can be applied over the time domain to obtain an aggregate attribute. Although
liquidity does not vary among sources, temporal aggregation can be different in different sources.
For example, in a precipitation database that records monthly precipitation, the value could be total
precipitation of each month, or the max, min or average daily precipitation within the month. In this
case, the function that is applied to obtain the aggregate determines the association of the attribute
with time. These different aggregates are conceptually different. Conversions between these different
aggregates are possible when the data to which functions are applied are available.

Sometimes different sources aggregate data over different granularities, e.g., daily precipitation
in one source and monthly precipitation in another, or monthly sales vs. quarterly sales. Conversion
from fine granularity to coarse granularity can be performed via aggregation, which may or may not
involve approximation (e.g., conversion from monthly sales to quarterly sales involves no approxi-
mation, while conversion from weekly sales to monthly sales does). The conversion from coarse
granularity to fine granularity can only be approximated or extra information is required (e.g.,
approximating monthly sales from quarterly sales by taking the average).

Although both cases in the two preceding paragraphs involve aggregation, there are differences
between them. In the first case, different functions are applied over the same time period, in the
second case the same aggregation function is applied over different time periods. Work in temporal
aggregates (Lopez et al., 2005) has mainly focused on developing efficient algorithms to compute an
aggregate from data in fine temporal granularity.

2.3 Existing Approaches to Temporal Information Management

Temporal information management has been extensively researched in logic, AI, and database. In
this section, we review related literature from the perspectives of temporal information representa-
tion and temporal reasoning. For representation, time can be introduced explicitly or implicitly, time
can have a homogenous representation or have heterogeneous representations. For reasoning, it may
or may not handle uncertain time or uncertain temporal relations; similarly, it may or may not deal
with data semantics that changes over time (i.e., dynamic). These aspects are schematically shown in
Figure 2.7.

 - 30 -

Temporal Information
Management

Representation

Reasoning

Time
Introduction

Time
Representation
and Semantics

Temporal
Certainty

Data
Semantics

Explicit

Implicit

Homogeneous

Heterogeneous

Uncertain

Certain

Static

Dynamic
Figure 2.7 Categorization scheme for temporal information management.

Several logic formalisms introduce time implicitly. As mentioned earlier, time is implicit in

situation calculus (McCarthy and Hayes, 1969) and event calculus (Kowalski and Sergot, 1986). The
interval logic by Allen (1983) does not have explicit time representation either; it uses the proposi-
tions that hold true in certain time intervals as surrogates for time. Temporal modal logics (Kamp,
1968; Reichgelt, 1989; Halpen and Shoham, 1986) may or may not introduce time explicitly depend-
ing on what modal operators are supported. Non-reified (Bacchus et al., 1989), reified (Allen, 1984;
McDermott, 1982; Shoham, 1987), and annotated (Frühwirth, 1996) temporal logics explicitly
introduce time.

These formalisms are developed for problem solving in AI. Most of them can reason about un-
certain temporal information and dynamic semantics. Uncertainty can exist in temporal relations
(e.g., disjunctive temporal relations in Allen, 1983) or temporal values (e.g., Frühwirth, 1996). The
formalisms are developed to particularly handle changes. However, when time is explicitly intro-
duced, they all assume homogeneous time representation and semantics.

Temporal database research (see Özsoyoglu and Snodgrass, 1995 for a survey and Date et al.,
2003 for a recent approach) focuses on efficient storing and querying large amounts of time-varying
data (i.e., temporal data). One of the objectives is to offload users from managing various aspects of
time, therefore, time is explicit from the system’s point of view. This line of research does not
concern semantic heterogeneity; it assumes that time has homogeneous representation and semantics.
Earlier research deals with certain temporal information; recent work (Dyerson, 1994; Koubarakis,
1994) starts to develop techniques for managing uncertain temporal information.

Most existing information integration approaches do not systematically handle temporal seman-
tic heterogeneity. In TSIMMIS (Garcia-Molina et al., 1995), semantic heterogeneity is identified in
view definitions and a mediator is used to reconcile semantic heterogeneity through view expansion
and query rewriting. Time-varying semantics can possibly be handled through view definitions that
partition a data source into multiple ones. However, this is a manual process to be performed before
query mediation. SCROL (Ram and Park, 2004) is a global schema approach that uses an ontology
to explicitly categorize and represent predetermined types of semantic heterogeneity. Although
heterogeneous representations of temporal entities can be handled by SCROL, its ontology does not

 - 31 -

have constructs for representing time-varying semantics. COIN (Goh et al., 1997; Firat, 2003) uses a
shared ontology for describing data semantics and a mediator to resolve semantic heterogeneities by
query rewriting. Prior to the work described in this Thesis, its capability of dealing with temporal
semantic heterogeneity is similar to that of TSIMMIS. These approaches (as well as work of this
Thesis) cannot process uncertain information.

In addition to the above approaches that are intended for any application domain, there have
been research efforts that aim to address semantic heterogeneity problems in specific domains. In the
domain of medial applications, Shahar (1994) concerns automatic construction of interpretation
contexts within which time series data can be appropriately abstracted and interpreted. For example,
given a series of patient blood pressure readings, without any further information, the system may
interpret the patient’s blood pressure to be above normal over a 2-week period; however, if it is
known that a drug with a side effect of increasing blood pressure had been administered during that
period, the system will automatically construct a different interpretation context within which the
same set of blood pressure data is interpreted as being normal. Although it facilitates data interpreta-
tion via abstraction and context construction, the interpretation within a context does not change over
time.

Das and Musen (2001) focus on heterogeneity of temporal entities. They develop a canonical
time-stamping scheme and translate timestamps in other formats into this canonical format. These
translations need to be implemented manually using a number of operators specially designed for
this purpose. They do not concern the semantics of non-temporal data, e.g., the unit of creatinine
measurement in table (c) of Figure 2.5.

We use the categorization scheme of Figure 2.7 to summarize the related work, and present the
results in Table 2.1; (Y) indicates that some, not all, approaches in the group have the indicated
property or capability. The main contribution of this work is that it processes dynamic (i.e., time-
varying) semantics in the presence of semantic heterogeneity in time itself; this unique combination
of problems has not been addressed in previous information integration research.

Table 2.1 Various approaches to temporal information management.
Time introduction Time representation/semantics Temporal uncertainty Semantic assumptions
Explicit Implicit Homogeneous Heterogeneous Certain Uncertain Static Dynamic

Temp. Logic (Y) (Y) Y N Y (Y) Y Y
Temp. Database Y N Y N Y (Y) Y N
Info Integration Y N Y Y Y N Y N
Med. Info Sys Y N Y Y Y N Y N
This work Y N Y Y Y N Y Y

2.4 Summary

We have identified three kinds of temporal semantic heterogeneity: (1) time-varying data semantics
due to changes of implicit assumptions; (2) heterogeneous time models that include a number of
aspects of time (i.e., temporal entity) itself, e.g., representations, interpretations, and operations of
time; (3) different associations of non-temporal information to time. For (3), we observe that

 - 32 -

liquidity is dependent on attribute type and does not vary by source or time. Therefore, we need not
deal with heterogeneous liquidity in information integration.

We reviewed related literature in logic/AI, temporal databases, and information integration. It
can be seen that none of the existing research systematically addresses time-varying semantics and
heterogeneous time models simultaneously. This Thesis will fill this gap. We will develop a repre-
sentation formalism and reasoning mechanism to reconcile semantic heterogeneities where both
changing semantics and heterogeneous time models are present. This will be developed as extensions
to the existing COIN approach.

Specifically, we will focus on the integration of sources with explicit time and develop tech-
niques to address the following issues encountered in the integration of temporal data sources:

• Time varying semantics
• Semantic heterogeneity in temporal entities
• Capability heterogeneity in terms of supported operations on temporal entities

We will focus on certain temporal information, and leave uncertain temporal information for future
research.

The scope of this part of the Thesis can be further understood from the perspective of system
interoperability that needs to resolve heterogeneity in all layers of information systems. With
standards such as ODBC, Web Services, and XML, systems using different hardware and software
platforms can exchange data and parse the exchanged data relatively easily. They essentially provide
physical connectivity to allow different systems to exchange data, not the semantics of the data. For
the receiver to combine data from different sources and correctly interpret the meaning of the data
for various applications, schematic and semantic heterogeneities need to be resolved. Recent work on
schema matching (Rahm and Bernstein, 2001; Hernandez et al, 2001; Bernstein et al., 2004; Madha-
van et al., 2005; Bilke and Naumann, 2005) aim to automatically generate semantic correspondences
between a pair of schemas. These algorithms are getting better at identifying similarities (e.g., price
in schema S1 is similar to sale_price in schema S2), but they still lack the capability of identifying
semantic heterogeneity (e.g., price in S1 includes tax but sale_price in S2 does not). This Thesis
focuses on developing a formalism for representing changing semantics in various sources, and a
reasoning technique for reconciling temporal semantic heterogeneity once the heterogeneity has been
described using the representation formalism.

The approach developed in the Thesis and numerous other integration approaches use ontologies
for representing semantics (Wache et al., 2001). Ontology also plays an important role on the
Semantic Web for knowledge sharing and reasoning (Berners-Lee, et al., 2001); Firat (2003)
discusses the relationship between COIN and the Semantic Web. The ontologies on the Semantic
Web and in various systems may use different representation languages and terms, and have different
structures. These differences need to be reconciled in large scale information integration that
involves multiple ontologies. Research on ontology translation, alignment, and merging addresses
this issue (Bruijn et al., 2004).

 - 33 -

“Every general theory must work in at least one case.”
− Stuart E. Madnick

Chapter 3

Resolving Temporal Semantic Heterogeneity
using COIN

In the previous chapter, we identified various kinds of temporal semantic heterogeneity. Extensions
to the COIN framework have been developed to reconcile these kinds of heterogeneity. The exten-
sions do not change the architecture of COIN, which implements the framework and is briefly
described below. Then we use three examples to illustrate the reconciliation of temporal semantic
heterogeneity using the extended COIN. A summary of its capabilities and benefits is provided in the
end. We intentionally keep the discussion intuitive, leaving the technical details to the next two
chapters.

3.1 Overview of COIN Architecture

The COIN architecture, consisting of a graphic/web-based modeling tool and a mediation service, is
depicted in Figure 3.1.

COIN
Mediator

Planner/
Optimizer/

Executioner

Receivers/
User Apps

Mediated query

User query

Data in user context
(extensional answer)

Data sources

Knowledge Representation - F-Logic based data model
Ontology – define types and binary relationships
Context descriptions – describe source and receiver contexts
Elevation – provide correspondence between data elements and types in ontology

COIN mediation service

Graphic/
Web-based
modeling tool

w
ra

pp
er

w
ra

pp
er (intensional answer)

Figure 3.1 COIN architecture.

One of the objectives of COIN is to provide a system service so that users or user applications
(i.e., receivers21) are not burdened with keeping track of and reconciling various kinds of semantic

21 In this Thesis, we use user and receiver interchangeably.

 - 34 -

heterogeneity. This is achieved by first using the modeling tool to explicitly record the implicit
assumptions made by the data sources and receivers. The explicit representation of the assumptions,
which we call context descriptions, is couched in an F-logic based data model that we will describe
in the next chapter.

Once the various assumptions have been recorded using the modeling tool, a receiver can query
all sources without the concern of semantic heterogeneity. The mediator component of the COIN
mediation service intercepts the user query, compares the context descriptions of both the receiver
and the data sources required to answer the query to detect differences, and outputs a mediated query
(MQ) that incorporates the instructions on data conversions necessary for reconciling the differences.
The query planner/optimizer/executioner (POE) then generates an optimized execution plan for the
MQ and executes it to obtain the data instances with all necessary conversions performed.

COIN assumes that all data sources have a relational data model. This gives us the convenience
of querying the data sources with SQL. When the actual implementation of a source is not relational,
we can superimpose the relational model using wrappers. For example, we can use the Cameleon
web wrapper (Firat et al., 2000) to make semi-structured web sources appear to be relational data-
bases.

Traditionally, the MQ is called the intensional answer and the data instances are the extensional
answer to the user query. Within the COIN system, the intensional answer is expressed in Datalog,
which can be further translated into SQL. We assume the readers are familiar with SQL and the
basics of relational calculus. An in-depth discussion on Datalog can be found in Ceri et al. (1989).
Since we will use the Datalog form of the MQ in the example, a brief intuitive introduction to
Datalog is provided below.

A Datalog query is the logical equivalent of an SQL query. For example, suppose there are two
catalog database relations (i.e., tables) that list items and their prices: d1(Item, Price), d2(Item, Price).
To find all items in d1 whose prices are higher than those in d2, we can issue the following SQL:

Select d1.Item from d1, d2
Where d1.Item=d2.Item and d1.Price>d2.Price;

The following is an equivalent query in Datalog:

answer(Item) :- d1(Item,P1), d2(Item, P2), P1>P2.

Here, we use predicate answer to simulate the projection operator that outputs a list of attributes in
the Select clause of SQL. A relation in the source is represented by a predicate, e.g., relation d1 is
represented by predicate d1. The attributes of a relation are referenced by the attribute names in SQL,
in contrast, they are referenced by variables of arbitrary names as the arguments of the corresponding
predicate in Datalog. The position of the argument determines the attribute being referenced. The
same variable (e.g., Item in the above Datalog query) appearing in different predicates within the
same Datalog query implies a Join condition. Conversely, variables with the same name in different
Datalog queries are not related, e.g., variables Product and P in the following two queries are not
related:

answer(Product, P) :- d1(Product, P).
answer(Product, P) :- d2(Product, P).

 - 35 -

3.2 Example 1 – Yahoo Historical Stock Price

3.2.1 Integration Scenario

We have seen the Yahoo historical stock price example in Chapter 2. At the Yahoo Finance website,
users can retrieve historical stock prices from most major stock exchanges by supplying the ticker
symbol and the desired date range. To compare stock prices at different stock exchanges around the
world, a user needs to retrieve data one exchange at a time and manually put them together. This is
very time consuming. It becomes even more problematic when it comes to “understanding” the data
because the prices at different exchanges may use different currencies and certain exchanges also
changed currencies over time without any explicit indication. It is desirable that such temporal
semantic heterogeneity is resolved by the system so that the users are not burdened with keeping
track of and reconciling the differences.
 For illustration purposes, let us consider a scenario that involves three stock exchanges, as
depicted in Figure 3.2. Each exchange is viewed as a data source, for which we provide the schema,
some sample data, and a brief description of the context. For example, YHNYSE is the source for
stock prices at New York Stock Exchange (NYSE). When a source has only one relation, we use
relation name and source name interchangeably. Auxiliary sources used for data transformation (i.e.,
conversion) are also given with necessary context descriptions.

87.57
88.23
89.36

4-JAN-99
31-DEC-98
30-DEC-98

IBM
IBM
IBM

AdjCloseQDateTicker
87.57
88.23
89.36

4-JAN-99
31-DEC-98
30-DEC-98

IBM
IBM
IBM

AdjCloseQDateTicker

YHNYSE

Context:
Monetary value is in US dollars (as in c_usa)
Date format is d-MMM-yy (as in c_germany)

75.05
149.14

4-JAN-99
30-DEC-98

IBM.f
IBM.f

AdjCloseQDateTicker
75.05
149.14

4-JAN-99
30-DEC-98

IBM.f
IBM.f

AdjCloseQDateTicker

YHFrankfurt

Context: c_germany
Monetary value is

in German marks until the end of 1998
in Euros since the beginning of 1999

Date format is d-MMM-yy

75.68
77.55

4-JAN-99
30-DEC-98

IBM.pa
IBM.pa

AdjCloseQDateTicker
75.68
77.55

4-JAN-99
30-DEC-98

IBM.pa
IBM.pa

AdjCloseQDateTicker

YHParis

Context: c_france
Monetary value is in Euros
Date format is d-MMM-yy

Context: c_usa
Monetary value is US dollars
Date format is MM/dd/yyyy, e.g., 01/04/1999

Auxiliary sources:

Olsen (exchange rate):
<Expressed, Exchanged, Rate, Date>

c_olsen: Date format is MM/dd/yy, e.g., 01/04/99

Datecvt (date format conversion):
<date1, format1, date2, format2>

Figure 3.2 Integration of historical stock prices from multiple exchanges

A context is a set of descriptions about various aspects of the meaning of data. There are two
such aspects in the example: (1) the currency used for price, which is a kind of monetary value; and
(2) the date format useful for correctly interpreting date values. We use the format pattern in Java
SimpleDateFormat class22 for describing date format. We reference a context using a context label,

22 See http://java.sun.com/j2se/1.5.0/docs/api/java/text/SimpleDateFormat.html for documentation.

 - 36 -

i.e., identifier, e.g., c_germany is the identifier for the set of descriptions shown in the lower left
corner of Figure 3.2.

We associate each column of a database table to a context label. For example, in source
YHNYSE, the “QDate” column is associated to context label c_germany (thus we know the date
format is d-MMM-yy), whereas “AdjClose” column is associated to context label c_usa (thus we
know the currency is USD). When all columns of every table in a source are associated to the same
context label, we say the source is in that particular context. For example, every column of YH-
Frankfurt is associated to context label c_germany, so we say that source YHFrankfurt is in context
c_germany, or source YHFrankfurt’s context is c_germany. We also associate each receiver to a
context label.

Ticker

End points of QDate: StartMonth,StartDay,SartYar; EndMonth,EndDay,EndYear

QDate AdjClose

Figure 3.3 Historical stock quote interface at Yahoo Finance (adapted from Yahoo).

All the sources for historical stock prices are actually from the web site of Yahoo Finance (at
finance.yahoo.com). We also use Olsen (at Oanda.com) as a source for historical exchange rates, and
a servlet application called Datecvt for date format conversions. We use the Cameleon web wrapper
to provide an SQL interface to these web sources so that they can be queried using SQL.

As an example, Figure 3.3 shows the actual user interface of historical stock prices at Yahoo Fi-
nance. Using the web wrapper, we can superimpose the following relational schema on the source:

 <Ticker, QDate, AdjClose, StartMonth, StartDay, StartYear, EndMonth, EndDay, EndYear>

The last six attributes corresponds to the month, day, and year of “Start Date” and “End Date” and
are necessary only because the data source does not accept inequalities on the “QDate” attribute. Not
all sources have such restrictions. This is an example of capability heterogeneity discussed in
Chapter 2. Like the semantic heterogeneity, capability heterogeneity should be handled by the
integration technology, not the users. Therefore, users can specify the date range using >= and =<
operators on “QDate” attribute and the COIN mediation service will convert them to the correspond-
ing comparisons on the last six attributes in the schema.

This scenario illustrates several kinds of heterogeneity. First, the date formats are different in
several contexts. This is a simple example of time model heterogeneity. Second, different currencies
are assumed in different contexts; in the context of YHFrankfurt source, the currency also changed
from German Marks (i.e., Deutschmarks) to Euros. In addition, the sources also have capability

 - 37 -

restrictions that other sources may not have. Therefore, we can use this simple scenario to illustrate
the following features:

• Resolving time-varying semantic heterogeneity in the presence of time model heterogeneity
• Automatic query rewriting for source capability heterogeneity

3.2.2 Using COIN in this Example

Suppose a receiver in the context c_usa, as depicted in Figure 3.1, is interested in IBM stock price in
Frankfurt during December 20, 1998 and January 10, 1999. To retrieve this information, the receiver
can issue the following SQL:

Q1: select QDate, AdjClose from YHFrankfurt
where Ticker="IBM.f" and QDate >="12/20/1998" and QDate =<"01/10/1999";

This query cannot be executed as is because of the source’s inability in evaluating inequalities on
“QDate”; even if it could, it does not return meaningful data to the user. Comparing the context
definitions for the source and the user in Figure 3.2, we notice that there are currency and date
format differences. The currency assumed in the source also changed within the specified date range.
These capability restrictions, semantic differences and the change of semantics are recognized by the
COIN mediator, which subsequently generates the following mediated Datalog query:

MDQ1: answer(V6, V5):-
 olsen("DEM", "USD", V4, V3),
 datecvt(V3, "MM/dd/yy", V6, "MM/dd/yyyy"),
 datecvt(V2, "d-MMM-yy", V6, "MM/dd/yyyy"),
 V5 is V1 * V4,
 yhfrankfurt("IBM.f", V2, V1, "Dec", "20", "1998", "Dec", "31", "1998").

answer(V6, V5):-
 olsen("EUR", "USD", V4, V3),
 datecvt(V3, "MM/dd/yy", V6, "MM/dd/yyyy"),
 datecvt(V2, "d-MMM-yy", V6, "MM/dd/yyyy"),
 V5 is V1 * V4,
 yhfrankfurt("IBM.f", V2, V1, "Jan", "1", "1999", "Jan", "10", "1999").

 - 38 -

The corresponding mediated SQL query is:

MQ1: select datecvt.date2, (yhfrankfurt.adjClose*olsen.rate)
from (select 'DEM', 'USD', rate, ratedate
 from olsen
 where exchanged='DEM'
 and expressed='USD') olsen,
 (select date1, 'MM/dd/yy', date2, 'MM/dd/yyyy'
 from datecvt
 where format1='MM/dd/yy'
 and format2='MM/dd/yyyy') datecvt,
 (select date1, 'd-MMM-yy', date2, 'MM/dd/yyyy'
 from datecvt
 where format1='d-MMM-yy'
 and format2='MM/dd/yyyy') datecvt2,
 (select 'IBM.f', qDate, adjClose, 'Dec', '20', '1998', 'Dec', '31', '1998'
 from yhfrankfurt
 where Ticker='IBM.f'
 and StartMonth='Dec' and StartDay='20' and StartYear='1998'
 and EndMonth='Dec' and EndDay='31' and EndYar='1998') yhfrankfurt
where datecvt2.date1 = yhfrankfurt.qDate
and datecvt.date2 = datecvt2.date2
and olsen.ratedate = datecvt.date1
union
select datecvt3.date2, (yhfrankfurt2.adjClose*olsen2.rate)
from (select 'EUR', 'USD', rate, ratedate
 from olsen
 where exchanged='EUR'
 and expressed='USD') olsen2,
 (select date1, 'MM/dd/yy', date2, 'MM/dd/yyyy'
 from datecvt
 where format1='MM/dd/yy'
 and format2='MM/dd/yyyy') datecvt3,
 (select date1, 'd-MMM-yy', date2, 'MM/dd/yyyy'
 from datecvt
 where format1='d-MMM-yy'
 and format2='MM/dd/yyyy') datecvt4,
 (select 'IBM.f', qDate, adjClose, 'Jan', '1', '1999', 'Jan', '10', '1999'
 from yhfrankfurt
 where Ticker='IBM.f'
 and StartMonth='Jan' and StartDay='1' and StartYear='1999'
 and EndMonth='Jan' and EndDay='10' and EndYear='1999') yhfrankfurt2
where datecvt4.date1 = yhfrankfurt2.qDate
and datecvt3.date2 = datecvt4.date2
and olsen2.ratedate = datecvt3.date1

The SQL syntax is a bit verbose, so we will examine the more concise Datalog query MDQ1. It has
two sub-queries: one for the time period from December 20, 1998 to December 31, 1998, the other
for the time period from January 1, 1999 to January 10, 1999. This is because the currency assumed
in the source is German Mark in the first period and is Euro in the second period, each needing to be
processed separately.

Let us focus on the first sub-query for the moment, which is reproduced in Figure 3.4 with line
numbers and annotations added. Line 6 queries the YHFrankfurt source. Notice that the date range
has been translated to equalities of the six attributes of month, day, and year of start date and end
date of the actual schema; the values for month are now in the format required by the source, i.e.,
“Dec” for December. Variable V2 corresponds to “QDate”, V1 corresponds to “AdjClose”. None of
them are in line 1 to be reported back to the user; the code in lines 2-5 has the instructions on how to
transform them to V6 and V5 as values to be returned to the user.

 - 39 -

1 answer(V6, V5):-
2 olsen("DEM", "USD", V4, V3), %obtain exchange rate V4
3 datecvt(V3, "MM/dd/yy", V6, "MM/dd/yyyy"), %obtain date V3 in MM/dd/yy
4 datecvt(V2, "d-MMM-yy", V6, "MM/dd/yyyy"), %obtain date V6 in MM/dd/yyyy
5 V5 is V1 * V4, %convert price: DEM -> USD
6 yhfrankfurt("IBM.f", V2, V1, "Dec", "20", "1998", "Dec", "31", "1998").

Figure 3.4 Data transformations in MDQ1

The procedural reading of the code is:
• line 4 converts “QDate” (V2) from the source format to the format expected by user

(V6), i.e., from “d-MMM-yy” format (e.g., 20-Dec-98) to “MM/dd/yyyy” format (e.g,
12/20/1998);

• line 3 converts V6 (from line 4) to V3 so that V3 has the format expected by source ol-
sen, i.e., it converts date format from “MM/dd/yyyy” (e.g, 12/20/1998) to “MM/dd/yy”
(e.g, 12/20/98);

• line 2 queries the olsen source to obtain exchange rate (V4) between Deutschmark
(DEM) and U.S. dollar (USD) for the date given by V3; and

• line 5 converts “AdjClose” (V1) to USD using the exchange rate (V4) from line 2.

The second sub-query is almost the same except that it deals with a different date range within
which the currency difference is EUR v. USD instead of DEM v. USD.

When the mediated query is executed, the user receives data instances23 as shown in the left pane
of Figure 3.5. For comparison, we also show the “raw” data from the source; notice that the unusual
abrupt price drop in the raw data (which is actually due to the change in currencies) no longer
appears in the mediated data.

Mediated results Non-mediated results (original data)

QDate AdjClose
01/08/1999 91.65
01/07/1999 90.10
01/06/1999 92.94
01/05/1999 88.28
01/04/1999 88.61
12/30/1998 89.27
12/29/1998 90.54
12/28/1998 90.14
12/23/1998 88.06
12/22/1998 84.84
12/21/1998 84.96

(user format) (in USD)

QDate AdjClose
8-Jan-99 78.67
7-Jan-99 77.22
6-Jan-99 79.15
5-Jan-99 74.81
4-Jan-99 75.05

30-Dec-98 149.13
29-Dec-98 151.54
28-Dec-98 151.54
23-Dec-98 147.2
22-Dec-98 141.89
21-Dec-98 141.41

(original format)

Figure 3.5 Mediated and non-mediated data instances.

The mediated query for Q1 has two sub-queries because the currency in the source changed
within the specified date range. When the user specifies a different date range within which there is

23 Mediated results are rounded for easy reading.

EUR

DEM

 - 40 -

no such change, the mediator will generate a mediated query accordingly. For example, when the
user issues the following query to obtain more recent data:

Q2: select QDate, AdjClose from YHFrankfurt
where Ticker="IBM.f" and QDate >="05/01/2005" and QDate =<"05/13/2005";

The mediated Datalog query becomes

MDQ2: answer(V6, V5):-
 olsen("EUR", "USD", V4, V3),
 datecvt(V3, "MM/dd/yy", V6, "MM/dd/yyyy"),
 datecvt(V2, "d-MMM-yy", V6, "MM/dd/yyyy"),
 V5 is V1 * V4,
 yhfrankfurt("IBM.f", V2, V1, "May", "1", "2005", "May", "13", "2005").

Notice that this mediated Datalog query contains only one sub-query similar to the second sub-query
in MDQ1 – during the specified date range, the currency difference is EUR v. USD.

When the user wants to compare stock prices at the three stock exchanges for the same date
range as in Q1, the following query can be issued to the mediator:

Q3: select YHFrankfurt.QDate, YHFrankfurt.AdjClose, YHParis.AdjClose, YHNYSE.AdjClose
from YHFrankfurt, YHParis,YHNYSE
where YHParis.Ticker="IBM.PA"and YHNYSE.Ticker="IBM" and YHFrankfurt.Ticker="IBM.f"
and YHFrankfurt.QDate=YHNYSE.QDate and YHFrankfurt.QDate=YHParis.QDate
and YHFrankfurt.QDate >="12/20/1998" and YHFrankfurt.QDate =< "01/10/1999";

The mediated Datalog query MDQ3 (see below) looks similar to MDQ1, except that it queries
three sources instead of only one. The corresponding mediated SQL query MQ3 is shown in the
appendix at the end of the chapter.

MDQ3: answer(V10, V9, V8, V7):-
 V9 is V6 * V5,
 olsen("EUR", "USD", V4, V3),
 datecvt(V3, "MM/dd/yy", V10, "MM/dd/yyyy"),
 olsen("DEM", "USD", V5, V3),
 datecvt(V2, "d-MMM-yy", V10, "MM/dd/yyyy"),
 V8 is V1 * V4,
 yhnyse("IBM", V2, V7, "Dec", "20", "1998", "Dec", "31", "1998"),
 yhparis("IBM.PA", V2, V1, "Dec", "20", "1998", "Dec", "31", "1998"),
 yhfrankfurt("IBM.f", V2, V6, "Dec", "20", "1998", "Dec", "31", "1998").

answer(V9, V8, V7, V6):-
 datecvt(V5, "MM/dd/yy", V9, "MM/dd/yyyy"),
 olsen("EUR", "USD", V4, V5),
 V8 is V3 * V4,
 datecvt(V2, "d-MMM-yy", V9, "MM/dd/yyyy"),
 V7 is V1 * V4,
 yhnyse("IBM", V2, V6, "Jan", "1", "1999", "Jan", "10", "1999"),
 yhparis("IBM.PA", V2, V1, "Jan", "1", "1999", "Jan", "10", "1999"),
 yhfrankfurt("IBM.f", V2, V3, "Jan", "1", "1999", "Jan", "10", "1999").

The data instances are shown in Figure 3.624. The currency has been converted into USD for all
prices; the date is also expressed in user preferred format. In this uniform context, it is easy to
compare the prices at different exchanges. Further analyses can be performed much more easily, e.g.,
one can calculate the maximum price differential across the three exchanges and find it to be $2.73
on 12/22/1998.

24 In theory, the values in YHFrankfurt.AdjClose column in Figure 3.6 should be the same as those in the left
pane of Figure 3.5, but we notice that they differ by up to a few cents. This is because that sometimes Yahoo
Finance returns slightly different values when it is queried at a different time.

 - 41 -

YHFrankfurt.QDate YHFrankfurt.AdjClose YHParis.AdjClose YHNYSE.AdjClose
01/08/1999 91.67 91.10 89.75
01/07/1999 90.12 91.24 91.01
01/06/1999 92.95 92.50 90.32
01/05/1999 88.29 88.52 90.74
01/04/1999 88.62 89.36 87.57
12/30/1998 89.28 90.83 89.36
12/29/1998 90.55 91.26 89.54
12/28/1998 90.14 91.76 90.56
12/23/1998 88.07 88.94 88.52
12/22/1998 84.85 87.58 87.21
12/21/1998 84.97 86.25 84.40

Figure 3.6 Price comparison for IBM stock, 1998-1999

With the support of the mediation service, it becomes much easier to perform price comparison
and other analyses. Users can use the sources without the burden of keeping track of their contexts
and how the contexts change over time. They can also use the sources without being concerned about
source capability differences.

3.3 Example 2 – Economic and Environmental Development in Yugoslavia

The Yugoslavia example in Chapter 2 shows that temporal semantic heterogeneity can arise when
the real world undergoes changes. Based on the example, we construct a scenario that involves two
data sources and one receiver, as shown in Figure 3.7. The sources share the same context.

Context c_src
1. Monetary values are in official currency of the country, with

a scale factor of 1M;
2. Mass is a rate of tons/year with a scale factor of 1000;
3. All other numbers have a scale factor of 1;
4. All values are aggregated by country.

Schema of source 1:
 Statistics(Country, Year, GDP, Population)

Schema of source 2:
 Emissions(Country, Year, CO2)

Context c_receiver
1. Monetary values are always in USD, with a scale

factor of 1M;
2. Mass is in tons/year;
3. Other numbers have a scale factor of 1;
4. If country code is “YUG”, aggregate values for the

region of the former Yugoslavia.

Figure 3.7 Sources and receiver contexts in Yugoslavia example.

In the scenario, the receiver is interested in the longitudinal economic and environmental
changes in the region of the former Yugoslavia; however, the sources organize the data by sovereign
country. Before the former Yugoslavia was broken up into five countries in 1992, the sources and the
receiver coincided on how data is organized; from 1992 onward, data for the five countries need to
be aggregated to meet the receiver need. In other words, the receiver wants to continue to use
“Yugoslavia” to refer to the region within the boundaries of the former country “Yugoslavia”. In
addition, the sources and the receiver also make other implicit assumptions in terms of currencies
and scale factors, as shown in Figure 3.7. The five countries and their official currencies are shown
in Table 3.1.

 - 42 -

Table 3.1 Countries and their currencies of former Yugoslavia
Country Code Currency Currency Code
Yugoslavia25 YUG New Yugoslavian Dinar YUM
Bosnia and Herzegovina BIH Marka BAM
Croatia HRV Kuna HRK
Macedonia MKD Denar MKD
Slovenia SVN Tolar SIT

With the support of the mediation service, the receiver can issue the following query to retrieve the
data:

Q4: Select S.Country,S.Year,GDP,CO2
From Statistics S, Emissions E
Where S.Country=E.Country and S.Year=E.Year and S.Country=”YUG”;

The mediator generates the following mediated query to ensure that semantic differences both before
and after the break-up of the region are correctly reconciled:

MDQ4: answer(V8, V7, V6, V5) :-
 V5 is V4 * 1000.0,
 olsen("YUM", "USD", V3, V7),
 statistics("YUG", V7, V2, V1),
 emissions("YUG", V7, V4),
 V7 =< 1991, V6 is V2 * V3.
answer(V96, V95, V94, V93) :-
 V92 is V91 * 1000.0, V90 is V89 * 1000.0,
 V88 is V87 * 1000.0, V86 is V85 * 1000.0,
 V84 is V83 * 1000.0, V82 is V90 + V92,
 V81 is V88 + V82, V80 is V86 + V81,
 V93 is V84 + V80, V79 is V78 * V77,
 V76 is V75 * V74, V73 is V72 * V71,
 V70 is V69 * V68, olsen("SIT", "USD", V67, V95),
 Statistics("SVN", V95, V66, V65),
 olsen("MKD", "USD", V68, V95),
 statistics("MKD", V95, V69, V64),
 olsen("HRK", "USD", V71, V95),
 statistics("HRV", V95, V72, V63),
 olsen("BAM", "USD", V74, V95),
 statistics("BIH", V95, V75, V62),
 olsen("YUM", "USD", V77, V95),
 emissions("SVN", V95, V83),
 emissions("MKD", V95, V85),
 emissions("HRV", V95, V87),
 Emissions("BIH", V95, V89),
 statistics("YUG", V95, V78, V61),
 emissions("YUG", V95, V91),
 1992 =< V95, V60 is V66 * V67,
 V59 is V76 + V79, V58 is V73 + V59,
 V57 is V70 + V58, V94 is V60 + V57.

The first sub-query reconciles semantic differences for the time period before the break-up: informa-
tion in the source is organized the same way the receiver expects, but there are currency and scale
factor differences. The second sub-query is more complicated because what the receiver expects
corresponds to the sum of the data of the five countries in each data source; currency and scale factor
differences in these records need to be reconciled as well.

25 The Federal Republic of Yugoslavia was renamed Serbia and Montenegro in 2003. We will not encode this
change in the example to simplify illustration.

 - 43 -

3.4 Example 3 – Company Financials

In the preceding examples, only one semantic aspect changes (and it only changes once) during the
relevant time period. The temporal semantic heterogeneities resulting from such a “simple” change
are by no means “simple”, as illustrated by the complex mediated queries. Furthermore, the media-
tion service is not limited to “one-time change of one thing” at all. We will show an example where
multiple semantic aspects change more than once.

The example involves a receiver who is interested in annual financial data of a certain company.
The context definitions and source schema are shown in Figure 3.8. Notice that profit data in the
source makes assumptions on currency, scale factor, and profit definition in terms whether taxes are
included; all of the assumptions changed over time, not necessarily at the same time. The scale factor
changed twice, whereas currency and profit definition changed only once. The scale factor for
num_employee also changed once. Receiver context can change over time, as well. For simplicity,
we illustrate with a receiver whose context is static in the example.

Context c_src
1. All monetary values are in French Francs until 2000 and in

Euros afterwards;
2. All monetary values have a scale factor of 1M until 1999,

1K until 2001, and 1M from 2002
3. Profit is tax excluded until 2000, tax included afterwards
4. All other numbers have a scale factor of 1 until 2001 and

1K afterwards

Schema:
 Financials(Year, Num_Employee, Profit, Tax)

Context c_receiver
1. All monetary values are always

in USD;
2. All monetary values always have

a scale factor of 1K
3. Profit is always tax included
4. All other numbers always have a

scale factor of 1K

Figure 3.8 Source and receiver contexts in the company financials example.

Again, with the support of the mediation service, the receiver need not worry about context dif-
ferences and how contexts evolve. For example, the receiver can issue the following query to retrieve
company annual data from year 2000 and onward:

Q5: Select Year,Num_Employee,Profit
From Financials
Where 2000=<Year;

The following mediated query is generated to reconcile all semantic differences for the specified
time range:

MDQ5: answer(2000, V21, V20) :-
 V21 is V19 * 0.001, % adjusting num_employee to 1K
 financials(2000, V19, V18, V17),
 olsen("FRK", "USD", V16, 2000), % V16 is exchange rate
 V15 is V18 * V16, % converting profit to USD
 V14 is V17 * V16, % converting tax to USD
 V20 is V15 + V14. % summing up to get tax-included profit
answer(2001, V13, V12) :-
 V13 is V11 * 0.001, % adjusting num_employee to 1k
 financials(2001, V11, V10, V9),
 olsen("EUR", "USD", V8, 2001), % V8 is exchange rate
 V12 is V10 * V8. % converting tax-included profit to USD
answer(V7, V6, V5) :- % (no difference for num_employee)
 olsen("EUR", "USD", V4, V7), % V4 is exchange rate
 financials(V7, V6, V3, V2),
 2002 =< V7, % year>=2002
 V1 is V3 * V4, % converting profit to USD
 V5 is V1 * 1000.0. % adjusting for scale factor

 - 44 -

1999

2000

2001

2002

FRFFRF

EUREUR

1K

1M1M

1M1M

Excl
Tax
Excl
Tax

11

1K1K

monetaryValue profit sem_num
currency scale kind scale

1K1K

c_src: source context c_receiver: receiver context

Incl
Tax
Incl
Tax 1K1K

monetaryValue profit sem_num
currency scale kind scale

Incl
Tax
Incl
Tax

USDUSD

Figure 3.9 Graphical comparison of source and receiver contexts

To explain MDQ5, we need the assistance of Figure 3.9, which graphically presents the context
descriptions of Figure 3.8. In the figure, horizontal lines are drawn to indicate context changes. Time
line is on the left; each column shows how a modifier value evolves along the time line. A monetary
value, such as profit or tax, makes assumptions about currency and scale factor; a profit also makes
assumption on whether taxes are included; the number of employees also makes assumption about
scale factor.

For the year 2000 and beyond, we see three time periods separated by the horizontal lines; each
sub-query in MDQ5 corresponds to a time period. For example, when Year = 2000, the profit data in
the source is in FRF and it excludes taxes, while the receiver expects it to be in USD and with taxes
included; both the source and receiver assume the scale factor is 1K. In addition, the number of
employees has different scale factors: 1 in the source, 1K in the receiver. The annotation in MDQ5
shows that these differences are correctly reconciled. The other two sub-queries can be understood
with the annotations and Figure 3.9.

If the user issues a query like Q5 but without the WHERE clause, the mediated query will con-
sist of four sub-queries: in addition to the three in MDQ5, there is a fourth sub-query that reconciles
the semantic differences for Year=<1999:

answer(V32, V31, V30) :-
 V29 is V28 * 1000.0,
 V31 is V27 * 0.001,
 olsen("FRK", "USD", V26, V32),
 V28 is V25 * V26,
 financials(V32, V27, V25, V24),
 V32 =< 1999,
 V23 is V24 * V26,
 V22 is V23 * 1000.0,
 V30 is V29 + V22.

If the user is only interested in historical employee data and issues the following query,

Q6: Select Year,Num_Employee
From Financials;

the mediated query will consist of only two sub-queries:

 - 45 -

MDQ6: answer(V9) :-
 financials(V8, V7, V6, V5),
 V8 =< 2001,
 V9 is V7 * 0.001.
answer(V4) :-
 financials(V3, V4, V2, V1),
 2002 =< V3.

the first of which reconciles the scale factor difference (1 in the source, 1K in the receiver); the
second of which does not perform any transformation because there is no difference between the
source context and the receiver context (both have a scale factor of 1K).

3.5 Summary

As mentioned earlier, one of the main objectives of COIN is to relieve users from keeping track of
and reconciling semantic heterogeneities. This is accomplished by providing a system service that
records contexts and reconciles semantic differences automatically. With this service, any user
whose context has been recorded can use all sources as if they were in the user context.

The mediator rewrites the user query into a mediated query that includes instructions on how to
reconcile semantic differences; the mediated query can be optimized and executed to obtain data
instances with all necessary transformations performed. The user can get the mediated query as the
intensional answer and the data instances as the extensional answer. This two-step process has
several benefits (Imielinski, 1987; Goh, et al., 1999). First, the intensional answer contains useful
information that the extensional answer does not have – the data transformations in the MQ allow
one to examine and infer what semantic differences are there and how they are reconciled26. Second,
the mediated query can be saved for repeated uses or can be used by the administrator to create
views27. This feature increases the usability of the mediation service. And lastly, it allows for the
opportunity of applying existing query optimization techniques to optimize the mediated query so
that the query can be executed efficiently.

The following features are due to the work reported in this Thesis.
In line with the primary objective of COIN, users also need not worry about how data semantics

changes over time in the data sources. The system automatically determines the semantic differences
in different time periods and reconciles them accordingly.

 The mediated query usually consists of multiple sub-queries, one for each time period. In effect,
these sub-queries create partitions for the data sources; within each partition, the data semantics does
not change. Although partitioning can be done manually by the administrator, COIN dynamically
adjusts the partitions according to the user query. This automatic and dynamic portioning offers
certain advantages over manual and static partitioning.

First, the manual approach would generate more data sources, which complicates the task of
writing user queries. In Example 3, to ensure that there is no time-varying semantics in each partition,
the company financials data source must be partitioned into four (virtual) sources with the following
conditions on “Year” attribute: (1) Year ≤1999; (2) Year=2000; (3) Year=2001; and (4) Year≥2002.

26 A table can be generated by the mediation service to summarize all the aspects in which the source and the
receiver are different.
27 A view is a virtual table based on the result of a query.

 - 46 -

Second, the manual approach sometimes creates too many partitions with respect to certain user
queries, which adds unnecessary complexity. For example, four partitions are more than is necessary
if the user is only interested in the number of employees; two partitions are enough because scale
factor for number of employees changed only once in history. With four partitions, the user has to
write four sub-queries, three of which deal with the same scale factor difference in the same way. In
contrast, the COIN approach generates only two necessary partitions automatically for this particular
query.

The automatic and dynamic partitioning also constitutes a form of semantic query optimization.
In MDQ5, the mediator uses the condition introduced in the WHERE clause to prune away sub-
queries that would conflict with this condition. In MDQ6, the first sub-query can be considered as a
result of coalescing three adjoining periods that would have been created by a manual partitioning.
These queries are said to be semantically optimized because for the first case it avoids unnecessary
access to data sources only to generate an empty answer, and for the second case it avoids repeated
accesses to the data source.

The mediator is responsible for rewriting user queries. Although the main goal of this rewriting
is to reconcile semantic differences, we can also let it reconcile source capability heterogeneities.
This capability is demonstrated in Example 1.

Other features of COIN and the extensions will be discussed after we have presented the techni-
cal details in the next chapter.

 - 47 -

Appendix 3.1 – Mediated SQL Query MQ3

Mediated SQL query corresponding to MDQ3.

MQ3: select datecvt.date2, (yhfrankfurt.adjClose*olsen2.rate),
 (yhparis.adjClose*olsen.rate), yhnyse.adjClose
from (select 'EUR', 'USD', rate, ratedate
 from olsen
 where exchanged='EUR'
 and expressed='USD') olsen,
 (select date1, 'MM/dd/yy', date2, 'MM/dd/yyyy'
 from datecvt
 where format1='MM/dd/yy'
 and format2='MM/dd/yyyy') datecvt,
 (select 'DEM', 'USD', rate, ratedate
 from olsen
 where exchanged='DEM'
 and expressed='USD') olsen2,
 (select date1, 'd-MMM-yy', date2, 'MM/dd/yyyy'
 from datecvt
 where format1='d-MMM-yy'
 and format2='MM/dd/yyyy') datecvt2,
 (select 'IBM', qDate, adjClose, 'Dec', '20', '1998', 'Dec', '31', '1998'
 from yhnyse
 where Ticker='IBM'
 and StartMonth='Dec'
 and StartDay='20'
 and StartYear='1998'
 and EndMonth='Dec'
 and EndDay='31'
 and EndYear='1998') yhnyse,
 (select 'IBM.PA', qDate, adjClose, 'Dec', '20', '1998', 'Dec', '31', '1998'
 from yhparis
 where Ticker='IBM.PA'
 and StartMonth ='Dec'
 and StartDay ='20'
 and StartYear ='1998'
 and EndMonth ='Dec'
 and EndDay ='31'
 and EndYear ='1998') yhparis,
 (select 'IBM.f', qDate, adjClose, 'Dec', '20', '1998', 'Dec', '31', '1998'
 from yhfrankfurt
 where Ticker='IBM.f'
 and StartMonth ='Dec'
 and StartDay ='20'
 and StartYear ='1998'
 and EndMonth ='Dec'
 and EndDay ='31'
 and EndYear ='1998') yhfrankfurt
where datecvt2.date1 = yhnyse.qDate
and yhnyse.qDate = yhparis.qDate
and yhparis.qDate = yhfrankfurt.qDate
and datecvt.date2 = datecvt2.date2
and olsen.ratedate = datecvt.date1
and datecvt.date1 = olsen2.ratedate
union
select datecvt3.date2, (yhfrankfurt2.adjClose*olsen3.rate),
 (yhparis2.adjClose*olsen3.rate), yhnyse2.adjClose
from (select date1, 'MM/dd/yy', date2, 'MM/dd/yyyy'
 from datecvt
 where format1='MM/dd/yy'
 and format2='MM/dd/yyyy') datecvt3,
 (select 'EUR', 'USD', rate, ratedate
 from olsen
 where exchanged='EUR'
 and expressed='USD') olsen3,
 (select date1, 'd-MMM-yy', date2, 'MM/dd/yyyy'
 from datecvt

 - 48 -

 where format1='d-MMM-yy'
 and format2='MM/dd/yyyy') datecvt4,
 (select 'IBM', qDate, adjClose, 'Jan', '1', '1999', 'Jan', '10', '1999'
 from yhnyse
 where Ticker='IBM'
 and StartMonth='Jan'
 and StartDay='1'
 and StartYear='1999'
 and EndMonth='Jan'
 and EndDay='10'
 and EndYear='1999') yhnyse2,
 (select 'IBM.PA', qDate, adjClose, 'Jan', '1', '1999', 'Jan', '10', '1999'
 from yhparis
 where Ticker='IBM.PA'
 and StartMonth ='Jan'
 and StartDay ='1'
 and StartYear ='1999'
 and EndMonth ='Jan'
 and EndDay ='10'
 and EndYear ='1999') yhparis2,
 (select 'IBM.f', qDate, adjClose, 'Jan', '1', '1999', 'Jan', '10', '1999'
 from yhfrankfurt
 where Ticker='IBM.f'
 and StartMonth ='Jan'
 and StartDay ='1'
 and StartYear ='1999'
 and EndMonth ='Jan'
 and EndDay ='10'
 and EndYear ='1999') yhfrankfurt2
where datecvt4.date1 = yhnyse2.qDate
and yhnyse2.qDate = yhparis2.qDate
and yhparis2.qDate = yhfrankfurt2.qDate
and datecvt3.date2 = datecvt4.date2
and datecvt3.date1 = olsen3.ratedate

 - 49 -

“There is nothing more practical than a good theory.”
− Kurt Lewin

Chapter 4

Representation and Reasoning with Temporal
Semantic Heterogeneity

This chapter provides the detail about the techniques that underpin the COIN capabilities described
in the previous chapter. Since the new representation and reasoning capabilities are developed as
extensions to the existing COIN, most of the formal descriptions of COIN in Goh (1997) and Firat
(2003) are still valid. To make the Thesis as self-contained as possible, we present the theoretical
foundation of COIN in the first half of the chapter, followed by a formal presentation of the exten-
sions for temporal representation and reasoning.
 In presenting the material of this chapter, we assume the readers have background knowledge in
several areas related to logic programming. The following pointers should be helpful if reader needs
further information about several useful topics. We suggest Lloyd (1987) for the theories of logic
programming, Bratko (2001) for introductory Prolog and its applications in AI, Sterling and Shapiro
(1994) for advanced Prolog programming, and Frühwirth and Abdennadher (2003) for constraint
logic programming and its implementation using constraint handling rules (CHR) (Frühwirth, 1998).
 The rest of the chapter is organized as follows. In Section 4.1, we briefly introduce the effort of
formalizing context and discuss how it is related to the COIN approach. In Section 4.2, we describe
the representation formalism of COIN. Several important notions that are missing in prior COIN
work are provided in this section. In Section 4.3, we give background information on Abductive
Constraint Logic Programming (ACLP) (Kakas et al., 2000) and CHR (Frühwirth, 1998), and then
we describe the COIN reasoning mechanism. In Sections 4.4 and 4.5, we present the extensions to
the representation formalism and the reasoning mechanism respectively. In Section 4.6, we discuss
several issues that need further investigation. A brief summary is given in the last section.

4.1 Context and Semantic Interoperability

According to MaCarthy (1987), the truth or falsity of a statement can only be determined by refer-
encing a given context. For example, Holmes is a detective is true in the context of Sherlock Holmes
stories, whereas Holmes is a Supreme Court Justice is true in the context of U.S. legal history. These

 - 50 -

can be formalized using a logic of context that contains the following basic relations (McCarthy and
Buvač, 1997):

),(:0 pcistc
),(:0 ecvaluec

The first relation means that the p is true in context c, this statement itself being asserted in an outer
context c0. While contexts can be nested infinitely, most practical problems often need only one layer
of outer context. Here, p can be a variable-free proposition or a first order logic (FOL) formula with
quantified variables. We refer to p as a statement when this distinction is not necessary. The second
relation is a function that returns the value of term e in context c.

Lifting axioms are used to describe the relationship between terms and formulas in different con-
texts. Guha (1995) provides several kinds of lifting axioms, most of which have one of the following
forms:

),(),(:
),(),(:

22110

22110
pcistpcistc
pcistpcistc

→
↔

which establishe the logical equivalence or logical implication relationship between statements p1
and p2 in contexts c1 and c2, respectively (e.g., the second lifting axiom states “if p1 is true in c1, then
p2 is true in c2”).

This notion of context is useful for understanding semantic heterogeneities between sources and
receivers. The tuples in relational sources can be seen as logical statements, asserting that certain
relationships exist between things represented by pieces of data. However, even if these statements
are true in the context associated with the source, they may be false in the context of a given receiver.
Lifting, or transformation, or conversion, is necessary to derive true statements for the receiver from
statements true in the source contexts. For example, the sample tuples in the YHFrankfurt source in
Figure 3.2 are equivalent to the following two statements:

).14.149,"98DEC30","IBM.f("
).05.75,"99JAN4","IBM.f("

−−
−−

tyhfrankfur
tyhfrankfur

The statements are true in context c_germany; in the logic of context, they are written as:

)).14.149,"98DEC30","IBM.f(",_(:
)).05.75,"99JAN4","IBM.f(",_(:

0

0
−−

−−
tyhfrankfurgermanycistc
tyhfrankfurgermanycistc (4.1)

However, the two statements are not true in the receiver context c_usa; they have to be transformed,
to the following statements:

).27.89,"998130//12","IBM.f("
).61.88,"4/19990/01","IBM.f("

tyhfrankfur
tyhfrankfur

which become true in the receiver context, i.e.,

)).27.89,"998130//12","IBM.f(",_(:
)).61.88,"4/19990/01","IBM.f(",_(:

0

0
tyhfrankfurusacistc
tyhfrankfurusacistc (4.2)

The primary objective of semantic interoperability technology is to provide a transformation ser-
vice so that statements true in one context can be correctly restated in another context. The outer
context c0 is the context of the service, i.e., the integration context. Descriptions about inner contexts
(e.g., “In c_usa, currency of monetary value is USD”) and definitions on conversions between inner
contexts are all stated in this integration context c0.

 - 51 -

The transformation can be declaratively defined using lifting axioms in logic of context
(McCarthy and Buvač, 1997; Guha, 1995). For example, it is possible to specify the following lifting
axioms to enable the transformation from (4.1) to (4.2):

))."","",,(
),"MM/dd/yyyy","yyMMMd",(

,(,_(
)"1999JAN1"),,(,_(

),,(:
))."","",,(

),"MM/dd/yyyy","yyMMMd",(
,(,_(

)"1998Dec31"),,(,_(
),,(:

0

0

USDEURDatePriceg
Datef

Stocktyhfrankfurusacist
DatePriceDateStocktyhfrankfurgermanycist

PriceDateStockc
USDDEMDatePriceg

Datef
Stocktyhfrankfurusacist

DatePriceDateStocktyhfrankfurgermanycist
PriceDateStockc

−−

→−−≥∧
∀

−−

→−−≤∧
∀

where f and g are conversion functions that can be defined using the logic or implemented in an
external program to return a value when all the parameters become instantiated. Notice that the
axioms are expressed over predicates with universally quantified variables. For semantic interopera-
bility, this is equivalent to expressions over the relations in data sources.

Lifting axioms are often specified pair-wise for all contexts, thus the number of lifting axioms in
this approach grows rapidly with the increase of the number of different contexts. COIN takes a
different strategy to overcome this problem. The technical details and the merits of the COIN
strategy will be covered in the rest of the chapter and the next chapter. Here, we only provide a brief
summary about how it differs from the strategy that relies on the expressiveness of logic of context.
The differences are mainly in how context is modeled and described, and how context is associated
with statements.

There has been no consensus on what context is. Particularly, McCarthy has insisted on not giv-
ing context a definition. In McCarthy and Buvač (1997), a poor context can be fully described, while
a rich context cannot be fully described at all. In Guha (1995), contexts are regarded as rich objects
that capture everything that is necessary to make a set of statements true. For example, he says:

“In the formula ist(NaiveMoneyMt A1), the context denoted by the symbol NaiveMoneyMt
is supposed to capture everything that is not in A1 that is required to make A1 a meaningful
statement representing what it is intended to state. This includes assumptions made by A1
about the domain, assumptions about the applicability of A1, how A1 might relate to state-
ments in other contexts, etc.”

In his formulation, contexts are described using rules that specify the scope of a theory, certain
properties common to a class of contexts, and lifting rules that relate statements in one context to
those in another. In other words, a context is described indirectly by all the statements that are true in
the context and directly by the rules that relate these statements to those in the other contexts. Such
formulations are often very expressive but at a price of sacrificing computational tractability. Even
with certain restrictions such as assuming the same symbols denote the same objects across contexts
in Buvač (1996) and disallowing context nesting and quantification over contexts in Nayak (1994),
the resulting logics are still only semi-decidable (Guha et al., 2004). In addition, there will be a
proliferation of lifting axioms when there are a large number of contexts.

 - 52 -

In COIN, contexts are described using the vocabulary from a shared ontology, namely by assign-
ing values to a set of modifiers present in the ontology. We will explain the concepts of ontology and
modifier later in the chapter. Although using just modifiers for context description has limited
expressiveness28, it provides a systematic and structured way of describing contexts. We can exploit
the structure by devising more efficient reasoning algorithms to replace the generic inference
mechanism built into the various logics of contexts. Another benefit is that the number of lifting
axioms can be significantly reduced.

In Guha (1995), lifting axioms are specified for individual predicates, functions, and formulas so
that other formulas involving these specified components can be lifted automatically through
composition supported by the inference mechanism. In COIN, we go even further by allowing the
association of contexts with individual terms, which corresponds to the arguments in a predicate,
and the arguments correspond to attributes (i.e., columns) of a relation (i.e., table) in the relational
model. An example of associating attributes to contexts is given in Figure 4.2 of Section 4.2. The
finer granularity in COIN enhances context sharing and reduces the number of lifting axioms to be
specified.

Next, we describe the COIN framework, which consists of a representation formalism and a rea-
soning mechanism for describing contexts and using the descriptions to automatically generate
instructions for transforming data from source contexts to receiver context.

4.2 The Representation Formalism of COIN

The purpose of knowledge representation in COIN is to have a formal way of describing various
assumptions about data and what each data element in the sources and receivers denote. Referring to
the statements in (4.1) above for the record yhfranfurt(“IBM.f”, “4-JAN-99”, 75.05), the fact that the
value “75.05” denotes a stock price given in the currency EUR needs to be somehow represented. A
receiver may need the same stock price in a different currency, say, USD. Once such knowledge is
represented using a certain formalism, it can be manipulated by the mediator (i.e. software compo-
nent that implements the reasoning mechanism of the COIN framework) to automatically convert
data values in the source to the values desired by the receiver, e.g., deriving “88.61”as in (4.2) for the
receiver from “75.05” in the source. The representation formalism used by COIN is based on an
object-oriented data model. In the model, we introduce semantically “rich” data types, called
semantic types (e.g., stockPrice) to distinguish them from primitive types (e.g., integer, string). The
instances of these types are respectively called semantic objects and primitive objects; the relations
of these objects are respectively called semantic relations and primitive relations. The key concepts
of this data model are illustrated in Figure 4.1 and explained below.

28 We have not encountered any problem in various prototype applications we developed for testing the
approach. If more expressive power becomes necessary, we should introduce richer constructs in ontology or
look into other alternatives.

 - 53 -

stockPrice

basic
currency

4-JAN-99IBM.f 75.05 EUR 01/04/1999IBM.f 88.61USD

currency(c_germany)
currency(c_usa)value(c_germany) value(c_usa)

Ontology
(Semantic types)

Semantic objects

Primitive objects

date

format

… …

75.05
149.14

4-JAN-99
30-DEC-98

IBM.f
IBM.f

AdjCloseQDateTicker

75.05
149.14

4-JAN-99
30-DEC-98

IBM.f
IBM.f

AdjCloseQDateTicker

88.61
89.27

01/04/1999
12/30/1998

IBM.f
IBM.f

AdjCloseQDateTicker

88.61
89.27

01/04/1999
12/30/1998

IBM.f
IBM.f

AdjCloseQDateTicker

ticker date price()

Primitive
relation

Semantic
relation

c_germany c_usa

integration context

yhfrankfurt Virtual
Relation

Figure 4.1 Object-oriented data model in COIN

Each semantic type can have various aspects that may be different in different contexts. These
aspects are described for each context. For example, currency is an aspect of stockPrice, and for each
context we describe what currency is used. To access these descriptions, we construct semantic
objects that correspond to the data in the sources and receivers. For example, corresponding to data
value “75.05” in the source (and its corresponding context c_germany), there is a semantic object
(shown as a circle in Figure 4.1) that is an instance of stockPrice semantic type. Since this object is
created from a value in the context of c_germany, we call c_germany the original (or originating)
context of the object. The context descriptions are accessed through methods (shown as labeled
arrows pointing downward in Figure 4.1) of the semantic object, e.g., through currency method, the
mediator can determine that the currency of the semantic object is “EUR” in c_germany and “USD”
in c_usa. By applying appropriate currency conversion, the value “88.61” in c_usa can be derived.

Each semantic object is internally identified by a unique object-id (OID) constructed using
Skolemization, which we present in Section 4.2.3. As seen in the example, a semantic object can
have different values in different contexts. The value of a semantic object in a given context is
returned by calling the value method. To avoid confusion, we sometimes call the “value” returned by
the value method primitive value, which is in fact a primitive object. For a primitive object, we do
not distinguish between its OID and its value.

In the above discussion, for explications purposes we used data instances (e.g., “75.05”) in data
sources to illustrate the distinction between a semantic object and a primitive object. In the COIN
approach, we actually do not create a semantic object for each data instance in the source. Instead,
we create a semantic object for each attribute in the source relation, e.g., there will be one semantic
object for “AdjClose” attribute. Such objects are meta-objects. The value method of a meta-object
does not return data instances, instead, it returns either the attribute (if no conversion is needed) or a
series of conversions applied to the attribute (e.g., currency conversion for converting “AdjClose”
attribute from EUR to USD) in the form of a query (which we call mediated query). Data instances

 - 54 -

are obtained when the query is executed. However, there are cases where we do create a semantic
object based on a particular data instance. These points will become clear when we discuss Skolemi-
zation in Section 4.2.3.

4.2.1 The Concepts of Knowledge Representation

Loosely speaking, COIN implements the objected-oriented data model using the following four
components:

• an ontology, also called a domain model, that provides the semantic types in the application
domain and a vocabulary for describing contexts;

• a context set that has a collection of context descriptions using the vocabulary provided by
the ontology. The context descriptions capture all aspects of data interpretation that may
vary and specify conversion rules for each of the aspects;

• a source set that specifies the source schemas by identifying the relations and their integrity
constraints. These relations are called primitive relations; and

• an elevation set that creates a semantic relation for each primitive relation by mapping each
attribute of the primitive relation to a corresponding type in the ontology and associating
each attribute with a context.

We will give detailed explanations of these components in the rest of the section. After providing an
informal description of the main concepts, we present the formal specification of each component.
We will use Figure 4.2 to explain the four components. The Figure consists of a graphical represen-
tation of the ontology, certain informal context descriptions, one data source from the Yahoo
historical price example in Chapter 3, and the mappings between the relational attributes and the
types in the ontology.

date monetaryValue

basic
format currency

AdjClose)QDate,(Ticker, AdjClose)QDate,(Ticker,

75.05
149.14

4-JAN-99
30-DEC-98

IBM.f
IBM.f

AdjCloseQDateTicker

75.05
149.14

4-JAN-99
30-DEC-98

IBM.f
IBM.f

AdjCloseQDateTicker

yhfrankfurt

Extensional (primitive) relation

skAdjClose)skQDate ,(skTicker, skAdjClose)skQDate ,(skTicker, (intensional) Semantic relationyhfrankfurt’

(intensional) Primitive relation

MM/dd/yyyyd-MMM-yyformat

‘USD’‘DEM’,
(-∞,31-DEC-98]

‘EUR’,
[1-JAN-99,+∞)

currency

c_usac_gernany

MM/dd/yyyyd-MMM-yyformat

‘USD’‘DEM’,
(-∞,31-DEC-98]

‘EUR’,
[1-JAN-99,+∞)

currency

c_usac_gernany

t Semantic type

a Attribute
m Modifier

is_a

Legend

Ontology

cvtcurrency := …
cvtformat := …

Contexts

Sources

c_germanyc_germany c_germany

Elevations

tempAttribute

stockPrice

Figure 4.2 Components of Knowledge Representation in COIN

 - 55 -

Ontology

From the conceptual modeling perspective, the ontology consists of all major concepts in the
application domain and the relationships between the concepts. These are high level concepts, the
precise interpretation of which needs to be further specified by each source and receiver according to
their respective contexts. Thus the terms representing the concepts still have certain ambiguities,
which are disambiguated in context descriptions. This approach simplifies ontology development by
requiring minimal ontological commitment on a much smaller set of terms. For example, the sources
and the receivers only need to agree that there is general notion of monetary value, having their
freedom of choosing the currency, the scale factor, and any other aspects that together disambiguate
the general notion. A further discussion about the benefit of this approach can be found in Chapter 5.

We distinguish three kinds of relationship: is_a, attribute, and modifier. The is_a relationship
indicates that a concept is more specific (or conversely more general) than another, and is shown
with a double shafted arrow in Figure 4.2. For example, stock price (stockPrice) is a more specific
concept than monetary value (monetaryValue). Since all concepts have a concrete representation, we
use basic for the concrete representation and all the other concepts are connected to it either directly
or via the transitive closure of is_a relation.

A concept can be an attribute of another concept, e.g., the date concept is an attribute (tempAt-
tribute) of the monetaryValue concept. Similar to relations in Entity-Relation modeling where a
relationship (also called a role) can be described in both directions (e.g., the relationship between a
person and a company can be “works_for” or “employs”), monetaryValue can be the dateFor
attribute of date, although we did not include this attribute in the ontology. Attributes often reflect
certain structural relationships between data elements in the sources and provide a mechanism of
accessing them for inference purposes.

A modifier is a special kind of attribute whose purpose is to capture one aspect of the interpreta-
tion of a concept that may vary in the sources and receivers. We include two modifiers in the sample
ontology in Figure 4.2: currency modifier for monetaryValue concept, indicating that a monetary
value may be in different currencies; format modifier for date concept, indicating that there may be
different representation formats. Each concept can have more than one modifier. For example, in
addition to currency, we could also include a scaleFactor modifer for monetaryValue concept to
indicate that monetary values can be expressed using different scale factors. Using these modifiers
we can explicitly capture those assumptions that are implicitly made by the sources and the receivers.
We do so by assigning values to the modifiers for each context. These assignments are part of the
context descriptions and are used to disambiguate the high level concepts in the ontology.

From an object-oriented modeling point of view, the concepts in the ontology are classes, which
we call semantic types (or types for short). Thus, the ontology provides a typing system that organ-
izes the types in a generalization hierarchy with provision of inheritance. Both structural inheritance
and behavioral inheritance are supported. Through structural inheritance, a type inherits all the
attributes and modifiers declared for its parent types in the is_a relation. Through behavioral inheri-
tance, a type also inherits the value assignments and conversion specifications of the parent types
with optional overriding, where a type has value assignments different from those of its parent types.

 - 56 -

The attributes and modifiers are equivalent to the properties of an object, with the attributes corre-
sponding to the properties explicitly present in the data sources and the modifiers corresponding to
the properties implicitly assumed by the sources and receivers.

As mentioned earlier, instances of the semantic types are semantic objects. When at least one of
the modifiers, including the inherited ones29, of a semantic object has different values in different
contexts, the semantic object has different values in these contexts. Conversely, if all modifiers of a
semantic object have the same values in different contexts, the object has the same value in these
contexts. If a semantic object has no modifier, it has the same value in all contexts.

Context

Context descriptions disambiguate the concepts in the ontology by explicitly capturing the implicit
assumptions in the sources and the receivers. These descriptions come in two parts. (1) The first part
uses declarative rules, i.e., axioms, to assign values to modifiers or specify how modifier values can
be obtained dynamically through accessing other semantic objects. A context is a collection of value
assignments or specifications of all modifiers in the ontology and is referenced by a unique identifier.
In Figure 4.2, two contexts, c_germany and c_usa, are shown with the value assignments for the two
modifiers in the ontology. (2) The second part of context description is a collection of conversion
rules that specify, for each modifier, how to convert the value of a semantic object from one context
to another that has a different modifier value. These conversion rules are used for the same purposes
as McCarthy’s lifting axioms, but they are much finer grained and more structured than lifting
axioms. The rules are specified for each modifier and are called component conversion rules; when
the data elements of interest involve multiple semantic types, each potentially having multiple
modifiers, all relevant component rules are identified to compose a composite conversion. As
discussed in Chapter 5, this mechanism significantly reduces the number of conversion rules to be
manually specified and maintained.

Source

Sources in COIN are treated uniformly as relational sources. Without loss of generality, we assume
the relations in all sources have unique names; this can be ensured by prefixing each relation with a
unique identifier maintained by a name space mechanism. The sources are represented by a collec-
tion of predicates (with non-ground arguments) that correspond to the relational schemas and a set of
rules for the integrity constraints in the sources. We call the predicates intensional primitive relations,
or primitive relations for short, because their arguments correspond to the primitive values in the
sources. For example, yhfrankfurt(Ticker, QDate, AdjClose) is a primitive relation in Yahoo Frank-
furt data source. The actual data records in the source are called the extensional relations. Integrity
constraints are usually key constraints, foreign key constraints, and other constraints that are useful
for query pruning and optimization.

29 Inheritance is an intrinsic characteristic of object orientation. In the ensuing discussion, unless noted
otherwise, the attributes and modifiers of an object always include those inherited from parent types.

 - 57 -

Elevation

The data elements in each source are meaningful only in their own contexts. To make them also
meaningful in other contexts, we need to identify necessary conversions and generate the instructions
on how to perform these conversions. This is accomplished by mapping these data elements to the
semantic types and associating them with corresponding context descriptions. These mappings and
associations are generated using a collection of elevation axioms that create a semantic relation for
each primitive relation. In a semantic relation, each argument is a semantic object, which is created
using a structure that indicates (1) the attribute in the primitive relation, (2) its corresponding
semantic type, and (3) its context. The intuition of elevation can be explained using the links shown
in Figure 4.2. For example, by indicating that “AdjClose” attribute is of stockPrice type and is in
c_germany context, the subsequent reasoning mechanism can determine the modifiers and their
value assignments, and incorporate appropriate conversion rules to generate the instructions for
transforming the values to conform to the receiver context. Therefore, elevation axioms play a vital
role of enriching primitive data elements in the sources with the explicit data semantics captured by
the ontology and context descriptions.

4.2.2 The COIN Data Model

The knowledge representation concepts introduced above are formalized with a logical object-
oriented data model. It is logical because it uses mathematical logic as a way of representing knowl-
edge and expressing operations on various constructs of knowledge. It is also object-oriented
because it supports the object-orientation features discussed earlier.

The language of the COIN data model is a subset of F(rame)-logic (Kifer et al., 1995), which is a
first order logic (FOL) with syntactic sugar for object orientation. We choose this formalism because
of its support for inheritance. Semantic types can be expressed using type declarations. Attributes,
modifiers, and the conversion rules for modifiers are expressed as methods for semantic types.

COIN does not use the query answering and deductive inference mechanism of the F-logic lan-
guage; instead, we take advantage of its equivalence to FOL by translating F-logic expressions into
FOL expressions, and then implement inheritance and query answering in Prolog. This approach
combines the strengths from the two language paradigms: the succinct syntax of F-logic to support
object-orientation and the industrial strength programming platform of Prolog to support prototyping
and implementation. In addition, F-logic was not implemented when the first COIN prototype was
developed. Although there have been two implementations of F-logic30 since then, they only have
limited support for constraint handling. As the implementation improves, we will reevaluate the
feasibility of using F-logic directly in the future.

In the rest of this sub-section, we describe the COIN data model in terms of its language. A
number of important concepts that are missing or not clear in Goh (1997) and Firat (2003) are
provided. In the next sub-section, we introduce the correspondence between the COIN constructs and
a set of FOL predicates.

30 Currently there are two implementations of F-Logic: FLORA-2 (http://flora.sourceforge.net/) and FLORID
(http://www.informatik.uni-freiburg.de/~dbis/florid/). Both lack integration with constraint solvers essential to
the Abductive Constraint Logic Programming techniques (discussed in Section 4.3) that we use in COIN.

 - 58 -

The COIN Language

The alphabet of the language consists of the following:

• a set of type symbols to represent semantic types; basic is a reserved semantic type; ⊥τ

represents all primitive data types;
• a set of constant symbols for representing the OIDs of primitive objects and a set of

variable symbols; recall that the OID and the value of a primitive object are the same;
• a set of function symbols and predicate symbols; srcContext and srcValue are two re-

served functions;
• a set of method symbols corresponding to attributes and modifiers31; cvt is a built-in

method for value conversions and value is built-in method to derive the primitive value
of a semantic object in a given context;

• the usual logical connectives, quantifiers, and auxiliary symbols, e.g.,),(,,,,,, ¬∃∨∀∧

⇒←→ ,,::,:,],[, , etc. → is a domain mapping symbol; ← is a logical implication sym-

bol; a and “;” are used for if-then-else conditional implication, e.g., YXA ;a means if
A then X, else Y; and

• a set of context symbols , of the distinguished object type called ctx.

A term is either a constant, a variable, or a function of the form f(t1, …, tn), where f is a function
symbol and t1, …, tn are terms. The OIDs for semantic objects are Skolem functions which we
describe later. A predicate, function, or method is said to be n-ary if it expects n arguments.
 In the following discussion, we use τ , with or without certain super- or sub-script, as a type
symbol; it can be the special type basic. Similarly, we use t, with or without certain super- or sub-
script, as a term symbol.

Definition 4.1 A declaration is defined as follows:

• '::ττ is a type declaration; we say that τ is a subtype of 'τ , and conversely, that 'τ is a su-
pertype of τ . For any type ''τ such that ''::' ττ , τ is also a subtype of ''τ ; this is true

recursively. basic is supertype of all the other types.

Example: stockPrice::monetaryValue is a declaration for the is_a relationship shown in
Figure 4.2

• τ:t is a semantic object declaration; we say that t is an instance of type τ . If 'τ is a super-
type of τ , then t is said to be of inherited type 'τ . Similarly, ⊥⊥ τ:t is a primitive object

declaration.

Example: X:stockPrice declares that variable X represents a object of type stockPrice.

31 An attribute (or modifier) of a semantic object is another semantic object, which is returned when the
attribute (or modifier) method is called.

 - 59 -

• if p is predicate symbol, then),,(1 np ττ K is a predicate declaration; the signature of predi-

cate p is nττ ××L1 ; a predicate with all arguments being primitive type can be declared

similarly.

Example: yhfrankfurt(basic, date, stockPrice) is a declaration for yhfrankfurt relation.

• if a is an attribute symbol, then]'[ττ ⇒a is an attribute declaration, which means that se-

mantic type τ has attribute a; the signature of the attribute is 'ττ → .

Example: monetaryValue[tempAttribute ⇒ date] declares the tempAttribute attribute
shown in Figure 4.2.

• if m is a modifier, then]'@[ττ ⇒ctxm is a modifier declaration. We say that m is a modifier

of semantic type τ and has a signature of 'ττ → ; the parameter of m is of type ctx.

Example:][basiccurrrencyluemonetaryVa ⇒ declares currency modifier.

•],|,|,,@[21 ⊥⊥⊥⊥ ⇒τττττττ ctxmcvt is a component conversion declaration for modifier m;

symbol “|” indicates that argument can be one and only one of the types separated by “|”; the
signature of the component conversion is ⊥⊥ →× τττ .

Example:],,,,@[floatfloatstringstringctxcurrencycvtluemonetaryVa ⇒ declares the com-

ponent conversion for currency modifier of semantic type monetaryValue.

•],@[⊥⊥ ⇒τττ ctxcvt is a composite conversion declaration; the signature of the composite

conversion is ⊥⊥ →× τττ .

Example:],@[floatfloatctxcvtluemonetaryVa ⇒ declares the composite conversion for

semantic type monetaryValue.

•]@[⊥⇒ττ ctxvalue is a value declaration; its signature is ⊥→ττ .

Example:]@[floatctxvalueluemonetaryVa ⇒ declares the value method for semantic type

monetaryValue.

• ctxsrcContext ⇒)(τ declares the srcContext function, whose signature is ctx→τ ;

⊥⇒ττ)(srcValue declares the srcValue function, whose signature is ⊥→ττ .

Example: ctxluemonetaryVasrcContext ⇒)(declares the scrContext function for semantic

type monetaryValue; similarly floatluemonetaryVasrcValue ⇒)(declares the srcValue

function for semantic type monetaryValue.

Declarations for attributes, modifiers, conversions, and the built-in method value are collectively
referred to as method declarations. ■

In the following definition, we will not include examples. Plenty of examples about this definition
can be found in Sections 4.4 and 4.5.

 - 60 -

Definition 4.2 An atom is defined as follows:

• if p is an n-ary predicate symbol with signature of nττ ××L1 and ntt ,,1 L are of (inherited)

types nττ ,,1 L respectively, then),,(1 nttp K is a predicate atom; similarly for a predicate

with primitive arguments.
• if a is an attribute symbol with signature 'ττ → , t, 't are of (inherited) types ',ττ respec-

tively, then]'[tat → is an attribute atom. Similarly, if m is a modifier symbol and c is a

context symbol, then]'@[tcmt → is a modifier atom.

• if m is a modifier symbol, its component conversion has signature ⊥⊥ →× τττ , t is of (inher-

ited) type τ , tms and tmr are of type mτ , 1⊥t and 2⊥t are of type ⊥τ , and tc is a context term

(i.e., it can be a constant or a variable of type ctx), then],,,,@[21 ⊥⊥ → tttttmcvtt mrmsc is a

component conversion atom. Similarly,],@[21 ⊥⊥ → tttcvtt c is a composite conversion atom.

• if c2 is a context symbol, t and 2⊥t are of type τ and ⊥τ respectively, then

]@[22 ⊥→ tcvaluet is a value atom.

The atoms corresponding to attributes, modifiers, and built-in methods cvt and value are referred to
collectively as method atoms. ■

For notational convenience, atoms can be combined to form molecules using the following syn-
tactic sugar:

•];;[11 kk tmtmt →→ L as a shorthand for the conjunction][][11 kk tmttmt →∧∧→ L ;

•]][[211 tmtmt →→ as a shorthand for][][2111 tmttmt →∧→ ; when t1 is not referenced else-

where, we can replace it with _ as in Prolog:]]_[[21 tmmt →→ ; and

•]'[: tmt →τ as a shorthand for]'[: tmtt →∧τ .

Well formed formulas (wffs) are defined inductively as follows:
• an atom is a formula;
• if φ and ϕ are formulas, so are φ¬ , ϕφ ∧ , and ϕφ ∨ ; and

• if φ is a formula and X is a variable occurring in φ , then both)(φX∀ and)(φX∃ are for-

mulas.
As suggested in Goh (1997), it is customary to restrict wffs to Horn clauses to have better computa-
tional tractability. A Horn clause has the following form:
 .,,| 1 nBBA L←−Γ

where A is an atom, and is called the head of the clause; nBB ,,1 L is a conjunction of atoms and is

called the body of the clause. The body can be empty; when it is empty, the implication symbol can
be omitted. Γ is a collection of type declarations. When A is a method atom, all oid-terms in A must
be declared in Γ ; otherwise, Γ may be omitted.

 - 61 -

The value and cvt Methods

As discussed earlier, a semantic object can have different primitive values in different contexts. The
value and cvt methods provide the means of obtaining these primitive values of a semantic object.
These two methods are important in the COIN approach, but they are not well defined in either Goh
(1997) or Firat (2003). Below we provide definitions for them.

As mentioned in the beginning of Section 4.2 and will be seen in Section 4.2.3, a semantic object
is created from a relational attribute a given source and is associated with a particular context. We
call this context the original context of the object.

The value method of a semantic object derives the primitive value of the object in a given con-
text. This is a built-in method of COIN and is evaluated internally. If the type of the object is basic
or any other semantic type that does not have any modifier, it returns the primitive value of the
object in its original context:

).(],@[]@[|:
).(]@[|:

tsrcValuetttmtttvaluett
tsrcValuetttvaluetbasict

acc

c
=→¬←→−

=←→−
⊥⊥

⊥⊥
τ (4.3)

Otherwise, value method invokes the composite conversion of the object to generate the instructions
on how to derive the primitive value tk in (receiver) context ck from the primitive value t0 in original
(source) context c:

].,@[),(]@[|: 00 kkkk ttccvtttsrcValuettcvaluett →=←→−τ (4.4)

From now on, we drop the subscript ⊥ for terms representing primitive objects because they can be

inferred from the signatures of value and cvt methods. For example, both tk and t0 in formula (4.4)
are primitive types.

In COIN, the composite conversion of semantic object t is not defined a priori; instead, it is
composed at query mediation time by the mediator that consecutively invokes the component
conversions of all modifiers (including the inherited modifiers) of t. If the original context of t (i.e.,
the source context) is c, and t has k modifiers m1, …, mk, the composite conversion can be obtained
according to the following formula:

.]),,,,@[;(
]],@_[@[]],@_[@[

,
]),,,,,@[;(

]],@_[@[]],@_[@[
]),,,,,@[;(

]],@_[@[]],@_[@[
],@[

|:

11

212221222

2222

101110111

1111

0

kkkrkskkkkiris

krkkkkskk

rskrs

rkksk

rskrs

rkksk

kk

ttttcmcvtttttt
tcvaluecmttcvaluecmt

ttttcmcvtttttt
tcvaluecmttcvaluecmt

ttttcmcvtttttt
tcvaluecmttcvaluecmt

ttccvtt
t

→===
→→→→

→===
→→→→

→===
→→→→

←→
−

−−a

L
a

a

τ

 (4.5)

The head of formula (i.e.,],@[0 kk ttccvtt →) indicates that given the semantic object t and its value

t0 in its original context, the composite conversion derives tk as the value of t in context ck. The body
of the rule specifies the derivation procedure, which is roughly as follows: (1) for each modifier,
obtain the value assignments in the original context of t and the receiver context ck; (2) then compare
modifier values: if they are the same, do not change the primitive value, otherwise, introduce a
component conversion to convert the primitive value. Below we explain this procedure using the two
lines that contain modifier m2 in (4.5):

 - 62 -

• the first molecule (i.e.,]]@_[@[22 sk tcvaluecmt →→) obtains the assignment for modifier m2

in (source) context c. The assignment is an unnamed semantic object represented by “_”.
Then use value method to derive this object’s primitive value t2s in (receiver) context ck;

• the second molecule (i.e.,]]@_[@[22 rkk tcvaluecmt →→) is similar to the first one, but it ob-

tains m2’s assignment in (receiver) context ck, then derives its primitive value t2r also in
(receiver) context ck; and

• in the second line containing m2, it tests to see if the modifier has same values (i.e., if t2s
equals t2r): if so, assign t1 to t2, otherwise, invoke the component conversion for m2 to derive
the primitive value t2 from t1.

After the invocation of the kth component conversion, we derive semantic object t’s value tk in
(receiver) context ck.
 We also provide an alternative explanation of the composite conversion. As we noted earlier,
each modifier captures one aspect of interpretation that may vary across contexts. After invoking a
component conversion, the semantic object is lifted to a (intermediate) context that is the same as the
receiver context in terms of this aspect; by invoking the component conversions consecutively, the
semantic object is lifted through a series of intermediate contexts, each having one less aspect being
different from the receiver context; it reaches the receiver context in the end when no aspect is
different from the receiver context.
 In the explanation of (4.5) we assumed the invocation of the component conversions is in the
order of their appearance in (4.5). Does the order matter? The answer to this question depends on the
orthogonality of the modifiers, which we discuss next.

Orthogonality of Modifiers

The modifiers of the (inherited) type τ are orthogonal if the value derived from its composite
conversion is not affected by the order in which the component conversions are invoked. For
example, the currency and scaleFactor modifiers of type monetaryValue are orthogonal: we derive
the same value either by converting currency first followed by scale factor adjustment or by adjust-
ing scale factor first followed by currency conversion.

For a pair of modifiers that are not orthogonal, the component conversions need to be invoked in
a particular order to ensure the correctness of the composite conversion; we call this order a correct
order. The order often depends on how the component conversion is specified. We will use the
following example to illustrate this.

Suppose a source contains profit and tax data, expressed in 1000’s of South Korean Won (KRW);
the profit is net profit not including taxes. A receiver needs gross profit data that includes the taxes,
expressed in 1’s of USD. These context descriptions are illustrated in Figure 4.3, which also shows
the source r1(Profit, Tax) and the auxiliary source r(FromC, ToC, Rate) for currency conversion.
Profit data is mapped to profit type, tax data is mapped to monetaryValue type, data in the auxiliary
source are mapped to type basic.

 - 63 -

monetaryValue

profit

basic
currency

scaleFactor

kind

3)9,
…

r1 (

Tax)Profit,r1 (

skTax)skProfit,r1’ (

3)9,
…

r1 (

Tax)Profit,r1 (

skTax)skProfit,r1’ (

‘USD’,

FromC,

skFromC,

1200)‘KRW’,
…

r (

Rate)ToC,r (

skRate)skToC,r’ (

‘USD’,

FromC,

skFromC,

1200)‘KRW’,
…

r (

Rate)ToC,r (

skRate)skToC,r’ (

c1 c1
c2 c2 c2

incl_taxno_axkind
11000scaleFactor

‘USD’‘KRW’currency

c2c1

incl_taxno_axkind
11000scaleFactor

‘USD’‘KRW’currency

c2c1

Semantic relations

Primitive relations

Extensional relations

Context descriptionsOntology

exclTax

Figure 4.3 Example for Illustrating Modifier Orthogonality

Type profit has three modifiers: scaleFactor, currency, and kind, the first two of which are inherited
from its supertype monetaryValue. The component conversions for these modifiers are given below
(here we follow the logic programming convention where terms started with capital letters are
variables):

./*],,,,@[
|:

rsrsr MMUVVUMMCrscaleFactocvtM
luemonetaryVaM

=←→
−

.*),,,(
],,,,@[

|:

RUVRMMr
VUMMCcurrencycvtM

luemonetaryVaM

rs

rsr
=

←→
−

.
],@[

],[
],'_','_',,@[

|:

p

pr

r

TUV
TCvalueT

TexclTaxP
VUtaxincltaxnoCkindcvtP

profitP

+=
→

→
←→

−

As in logic programming, variables with the same name appearing in different clauses are not related.
Each of the component conversions converts from (source) context Cs to (receiver) context Cr to
derive primitive value V from U. In the conversions for scaleFactor and currency, the modifier
values in source and receiver contexts are Ms and Mr; these parameters are variables, indicating that
the component conversions can convert between any arbitrary pair of contexts. The profit conversion
can convert from any context whose kind modifier has a value of ‘no_tax’ to any other context
whose kind modifier has a value of ‘incl_tax’.
 As we mentioned earlier, modifiers scaleFactor and currency are orthogonal. In fact, we can
illustrate this using the component conversions shown above: starting with a primitive value x,

applying scaleFactor conversion followed by currency conversion we derive Rx
r

s
M
M ⋅⋅ ; we derive

r

s
M
MRx ⋅⋅ when currency conversion is applied before scaleFactor conversion. The two derived

values are equal.

 - 64 -

The component conversion for kind, as specified above, must be invoked after those for scale-
Factor and currency. The component conversion first obtains the semantic object T representing the
taxes excluded from the profit data using the attribute method exclTax; then it calls the value method
of T to obtain its primitive value Tp in (receiver) context Cr; and finally it adds Tp to the initial value
U to arrive at value V. T is of type monetaryValue and has scaleFactor and currency modifiers; the
component conversions of the two modifiers are invoked when the value method of T is called, i.e.,
Tp is the result of transforming the tax data in the source with scale factor adjustment and currency
conversion. Adding Tp to U entails the assumption that U has been transformed for scale factor and
currency before the addition takes place; otherwise T will be transformed twice for scale factor and
currency, resulting in wrong data. The above data transformation sequence is shown in Figure 4.4(a)
using the sample data record in the extensional relation. As shown in Figure 4.4(b), if the component
conversion for kind is invoked first, the result will be incorrect because the tax data will be adjusted
for scaleFactor and currency differences twice.

9
9*1000

9*1000/1200
(9*1000/1200)+(3*1000/1200) =10

11
22

33
(a) scaleFactor, currency, kind (correct)

9
9+(3*1000/1200)

[9+(3*1000/1200)]*1000/1200

11
22

33
[9+(3*1000/1200)]*1000

=9.583
(b) kind, scaleFactor, currency (incorrect)

9
9+3

(9+3)*1000
(9+3)*1000/1200

11

22

33 =10
(c) kind, scaleFactor, currency (correct)

9
9*1000

9*1000/1200
9*1000/1200+3

11
22

33 =10.5
(d) scaleFactor, currency, kind (incorrect)

Figure 4.4 Different Sequences of Data Transformation.

An alternative specification of the component conversion for modifier kind is to replace Cr with
Cs in the value method for semantic object T: the derived value Tp will be the primitive value of tax
data in (source) context Cs. In this case, adding Tp to value U requires the assumption that U is the
primitive value of profit data in source context Cs and the component conversion for kind modifier
should be invoked before those for scaleFactor and currency. This sequence is illustrated in Figure
4.4(c) using the sample data. With this specification of the component conversion for kind, if the
conversion is invoked last, the result will be incorrect because the tax data will not be adjusted for
scaleFactor and currency differences. This incorrect sequence is shown in Figure 4.4(d).

When a type has non-orthogonal modifiers, the precedence of modifiers should be specified so
that the component conversions can be applied in correct order. For example, with the component
conversions as shown earlier, we can specify the precedence of the three modifiers as the following:

[scaleFactor, currency] p [kind]
where modifiers enclosed in the same brackets are orthogonal. The above specification means that
component conversion for kind must be applied after those for scaleFactor , whereas the order
between scaleFactor and currency does not matter. This can be implemented as a list structure for
each semantic type (using a list imposes an ordering for orthogonal modifiers, but this does not affect
the correctness because any order amongst orthogonal modifiers is correct). Before applying the

 - 65 -

composite conversion procedure, modifiers are first sorted according to the list to ensure that
component conversions are introduced in correct order.

4.2.3 COIN Constructs to FOL Translation

In this section, we introduce the FOL predicates corresponding to the COIN constructs in the F-logic
based COIN language. These correspondences provide the foundation for implementing the COIN
data model using mature Prolog programming platform; they are also helpful to readers of COIN
literature by bridging the gap between the different presentations, such as those in Goh (1997) and
Firat (2003). We also introduce a Skolem function that is used in the construction of semantic
relations.

Table 4.1 summarizes these correspondences. Notice that COIN declarations are simplified: (1)
type 'τ in attribute and modifier declarations are not indicated in the corresponding predicates,
instead, it is implied by the term t′ in the respective atom definition; (2) predicate, conversion (cvt),
and value declarations are omitted; and (3) object declarations are omitted and can be inferred from
atom definitions. Composite conversion declarations and atom definitions are omitted; as we
mentioned earlier, composite conversions are composed dynamically by the mediator.

Table 4.1 Correspondences between COIN Constructs and FOL Predicates
 COIN Construct FOL Predicate Comment
Type declaration '::ττ)',(_ ττais
Attribute
declaration

]'[ττ ⇒a]),,[,(1 kaaattributes Lτ],,[1 kaa L is a list of all
attributes of type τ ; can be
an empty list

Modifier
declaration

]'@[ττ ⇒ctxm]),,[,(1 kmmmodifiers Lτ],,[1 kmm L is a list of all
modifiers to type τ ; can be
an empty list

Attribute atom]'[tat →)',,(tatattr
Modifier atom]'@[tcmt →)',,,,(tcmtmodifier τ
Component
conversion

],,,,@[21 tttttmcvtt mrmsc →),,,,,,,(21 tttttmtcvt mrmscτ

value method]@[22 tcvaluet →),,(22 tctvalue

As mentioned before, elevation axioms create semantic relations for primitive relations. Each

argument in a semantic relation is a semantic object denoted by a Skolem term. In mathematical logic,
Skolemization is a technique for eliminating existentially qualified variables, often by introducing
function symbols over constants or universally quantified variables to construct unique terms called
Skolem constants or Skolem functions. Below is the template for creating such Skolem terms in COIN:

)),,(,,,,(LL iliii AricAskolem τ (4.6)

where iτ is the semantic type of the attribute Ai, Ai is the ith attribute of primitive relation rl, ci is the

context of the attribute and can be different for different attribute. Terms constructed with this
template are guaranteed to be unique because of the uniqueness of primitive relation. The following

 - 66 -

is an example of using the template to specify the semantic relation corresponding to primitive
relation r1(Profit, Tax) in Figure 4.3:

).,()

)),(,2,,,(
)),,(,1,,,(('

1
11

111

TaxProfitr
TaxProfitrcTaxluemonetaryVaskolem

TaxProfitrcProfitprofitskolemr

←
 (4.7)

For brevity, we will refer to a semantic relation by a predicate that post-fixes the relation name
and argument names of the corresponding primitive relation with the prime symbol, e.g., we use
r1′(Profit′, Tax′) to refer to the semantic relation as defined by the above rule.

Sometimes we need to create a semantic object for a particular primitive object in a certain con-
text. For example, later we will see that we need a semantic object for “31-DEC-98”, which is a
primitive object in context c_germany. This is done by using template (4.6), but replacing the
attribute reference with the primitive object, and replacing the primitive relation with the special
predicate cste/1, which is always evaluated true. Below is the semantic object constructed for “31-
DEC-98”:

))"9831(",1,_,"9831",(−−−− DECcstegermanycDECdateskolem

Sources are represented by the predicates corresponding to the primitive relations. In addition,
they are further described using the following 5-ary relation predicate:

),,,_,_(capabilityattrListpurposeIDNamerelNamesrcrelation

where the first two arguments are source name and relation name, purposeID can be one either “i” or
“e”, with “i” indicating that the relation can appear in mediated query, and “e” indicating that the
relation is an internally defined view not appearing in mediated query; attrList is a list of attributes of
the relation, each element of list is a [Attribute_name, Primitive_type] pair; and capability is an
argument indicating the capability record of the relation32.
 Rules are used to describe various constraints that hold in the source. These can be key con-
straint on one relation, foreign key constraints between two relations, and other constraints that are
useful for query optimization. These rules are expressible using FOL wffs. For example, if K is the
key attribute in relation r(K, A1, …, An), the following wff expresses the key constraint:

A1=B1, …, An=Bn ← r(K, A1, …, An), r(K, B1, …, Bn).
This is a non-clausal form rule; in our prototype system, such rules are expressed using the Con-
straint Handling Rules (CHR) language, which allows non-clausal formulae.

4.2.4 Summary

We described the knowledge representation formalism of COIN in this section. The data model can
represent the four components introduced earlier; the components are collectively referred to by the
quadtuple <O, C, E, S>, where

32 A capability record indicates the operators on an attribute supported in the source. It helps the POE to
generate executable query plan. See Alatovic (2002) for details. In current COIN prototype, the capability
record is given in an external file. For backward compatibility, we still keep the argument, but it can be left
unspecified using symbol “_” in Prolog.

 - 67 -

O ::= ontology: a set of semantic types and the binary relations over the types: is_a, attribute,
and modifier.

C ::= context descriptions: a set of rules that specify modifier values or how to derive values for
modifiers and another set of rules specifying conversions for each modifier

E ::= elevation axioms: map each a relational attribute in the primitive relation to a type in the
ontology and assign it a context

S ::= source descriptions: a set of rules describing the source schemas and constraints

4.3 The Reasoning Mechanism of COIN

As mentioned before, although the COIN approach can be understood with McCarthy’s formal
treatment of context and has a data model that is based on F-logic, we do not perform reasoning
using the machinery in these logics. Instead, we implement a reasoning algorithm in the mediator;
the structure provided by the ontology allows the algorithm to perform specialized and more efficient
reasoning. In particular, the mediator automatically composes the composite conversions according
to (4.5) using the component conversions of the modifiers of relevant semantic types.

The algorithm is implemented using Abductive Constraint Logic Programming (ACLP) (Kakas
et al., 2000), which combines Abductive Logic Programming (ALP) and Constraint Logic Program-
ming (CLP). Constraints are processed using solvers written in the constraint language called
Constraint Handling Rules (CHR) (Frühwirth, 1998). In this section, we first provide the background
on ACLP and CHR, and then we describe the mediation implementation and query answering
mechanism in COIN.

4.3.1 Abductive Constraint Logic Programming (ACLP)

Abduction inference was first introduced by the philosopher Peirce (1903). It is a form of hypotheti-
cal and non-monotonic reasoning that derives possible explanations for a given observation from a
set of rules. In this reasoning paradigm, a set of predicates need to be declared to be abducible
predicates, also called abducibles for short. Intuitively, abducibles should be something “interesting”
and can serve as explanations in a particular application domain. For example, given the following
rules:

wet_grass ← sprinkler_was_on.
wet_grass ← rained.

and knowing that sprinkler_was_on and rained are abducibles, for the observation wet_grass,
through abduction we can derive {springler_was_on} and {rained} as possible explanations. In
Appendix 4.1 we show how the explanations are derived using the SLD+Abduction procedure first
introduced in Cox and Pietrzykowski (1986). Abduction is non-monotonic because if later we learn
that it did not rain last night, we can retract rained from the explanations.

Abductive Logic Programming (ALP) is the extension of logic programming to support abduc-
tive reasoning. It has been used as a problem solving technique in many AI applications, e.g.,
planning and scheduling, natural language understanding, database view updates (Kakas et al., 1993,
Kakas et al., 2000, and references therein). The use of ALP in COIN for information integration, first
proposed by Goh (1997), is a novel application of ALP. In these applications, the goals to be solved

 - 68 -

are seen as observations to be explained by abduction, e.g., the mediated query is viewed as an
explanation for the intended user query.

Formally, the ALP framework is defined as a triple <T, A, I>, where T is a theory defined by a
logic program, A is a set of predicates designated as abducible predicates, or abducibles for short,
and I is the set of constraints (Eshghi and Kowalski, 1989; Denecker and Kakas, 2002). Given a
query (i.e., observation) Q, the abductive task is characterized by the following:

∆−>< abdQIAT |,,,

that is, the task is to derive a set of abducibles ∆ as an explanation for Q such that
QT =∆ |U ;

∆UT satisfies I; and
∆UT is consistent

The abducibles can be either ground or non-ground with variables existentially qualified, e.g.,
)(XaX
rr

∃ ; the latter case is known as constructive abduction (Kakas and Mancarella, 1993).

Constraint Logic Programming (CLP) is an extension of logic programming with a set of con-
straint predicates and the corresponding dedicated constraint solvers. These solvers are implemented
with special algorithms to gain computational efficiency.

The similarity between ALP and CLP is observed by Kakas, et al. (2000): in both frameworks an
answer to a query is constructed from a set of special predicates – abducible predicates in ALP and
constraint predicates in CLP, which are constrained either by integrity constraints in ALP or by a
constraint theory in CLP. Abductive constraint logic programming (ACLP) aims to unify these two
frameworks by posting abducible predicates and constraint predicates into a constraint store; we use
the term constraint store to informally refer to a collection of constraints that need to be solved and
checked for consistency. The inconsistency of the store is used as immediate feedback to the abduc-
tion procedure, which promptly abandons hopeless search branches to reduce search space.

There are numerous constraint solving techniques; the book by Marriott and Stuckey (1998) is a
good and extensive introduction to this topic, and the book by Frühwirth and Abdennadher (2003)
provides a concise introduction and numerous examples using a high level and declarative solver
specification language called Constraint Handling Rules (CHR). The constraint theory in COIN is
implemented using CHR, which is briefly introduced in the next sub-section.

4.3.2 Constraint Handling Rules (CHR)

Traditional constraint solvers were implemented in low-level languages as “black boxes” that are
difficult to debug, maintain, and explain. Most built-in constraint solvers in many CLP systems are
still implemented in this fashion. CHR was introduced as a declarative language for writing solvers
for user defined constraints; it offers significantly more flexibility than the traditional approach and
is much easier to develop solvers for fast prototyping. More details about CHR can be found in
Frühwirth (1998), here we give a brief introduction on its syntax and informal semantics.

CHR distinguishes two kinds of constraints: built-in constraints and CHR (i.e., user defined)
constraints. Built-in constraints are handled by the CLP system that hosts CHR; CHR constraints are
defined by a CHR program, which consists of a finite set of rules as defined below.

 - 69 -

There are three types of rules:
• simplification rule: GCE |⇔

• propagation rule: GCE |⇒

• simpagation rule: GCFE |\ ⇔ , which is a shorthand for GECFE ∧⇔∧ |

where E (or F), called the head, is a conjunction CHR constraints; C, called the guard, is a conjunc-
tion of built-in constraints; and G, called the goal, can be true, fail, or a conjunction of built-in and
CHR constraints. Here true and fail are trivial built-in constraints.

Before we present the operational and declarative semantics of CHR, let us first look at an ex-
ample of a CHR program consisting of simplification and propagation rules.

Example (CHR program for ≤): Given the built-in constraints true and =, below is a CHR pro-
gram for partial order relation ≤ :

trueYXYX |=⇔≤ (r1: reflectivity)

YXXYYX =⇔≤∧≤ (r2: anti-symmetry)

ZXZYYX ≤⇒≤∧≤ (r3: transitivity) □

Operational semantics. Intuitively, when a simplification rule is applied, the constraints in the
constraint store that match the rule head are replaced with the goal of the rule. Take r1 above as an
example: guard X=Y will be first checked; if guard checking returns true, head X≤Y will be replaced
with goal true; if guard checking returns false, the rule will not be applied. Like r1 and r2 in the
example above, simplification rules often have a smaller number of constraints in the goal than in the
head, therefore they tend to reduce the number of constraints to be solved.

When a propagation rule is applied, the constraints in the goal are added to the store without re-
moving the ones matching the head. Propagation rules (e.g., r3 above) appear to introduce certain
redundant constraints, but this redundancy may be useful to trigger the application of other rules that
can further reduce the number of constraints.

As is usually done for programming languages, the operational semantics of CHR is formally
given through a state transition system. A state is a pair <G, C>, where G is a goal, and C is a built-in
constraint. The initial state is of the form <G, true>. A state transitions to the next by applying a
simplify, propagate, or solve transition rule. The simplify and propagate transition rules are similar to
the intuitive explanation to simplification and propagation rules above. The solve transition rule
updates a state (e.g., consolidating built-in constraints in a state) to a normal form as defined in
Abdennadher et al. (1999). A formal specification of these transition rules can be found in (Früh-
wirth and Abdennadher, 2003). A successful final state is reached when there no applicable rule, and
the state is of the form <G, C> where C is not false; <G, false> is a failed state.

Let us continue to use the partial order (≤) example to illustrate the use of transition rules. Given
the goal CBACBA ≤∧≤∧≤ , the following shows the state transitions that solve the goal; the CHR

constraints that are considered in the current transition step are underlined:

 - 70 -

)(,
)2,(,
)2,(,

)3,(,
,

solveCBBAtop
rsimplifyCBBA
rsimplifyCBABBA

rpropagatetrueBCCBACBA
trueCBACBA

>=∧=<
>==<

>=≤∧≤<
>≤∧≤∧≤∧≤<

>≤∧≤∧≤<

where the state in the line is a successful final state and “top” in the state represents an empty goal.
Declarative semantics. The declarative semantics of CHR is given by the following FOL formu-

las corresponding to simplification and propagation rules:
GCE |⇔ ≡))((GyEC r

∃↔→∀

GCE |⇒ ≡))((GyEC r
∃→→∀

where yr are the variables that appear only in the body G.

The soundness and completeness of the derivation procedure specified by the operational seman-
tics can be established using the above declarative semantics (Abdennadher et al., 1999).

4.3.3 Query Answering in COIN

Figure 4.5 illustrates how queries are evaluated in COIN. It is a two step process: the user query is
first mediated to generate a mediated query as the intensional answer; the mediated query is then
optimized and executed to retrieve the data instances as the extensional answer. We focus on the
mediation step only in this Thesis.

O := Ontology

C := Context

E := Elevation

S := Source

T := Theory

I := Integrity
Constraints

A := Abducibles

+ Clark’s FEQ

+ predicates for
arithmetic operators

<SQL, c>
Naïve datalog Well-formed

COIN Query Abductive Query

Abductive Answer

Mediated Query

Extensional
Answer

Query planner/
optimizer/executioner

Intensional
Answer

User perspective COIN Representation ACLP Framework
Figure 4.5 Query Answering in COIN

The user query in SQL along with the user context c are submitted to the system. The SQL is
first translated into a clausal form (i.e., datalog) using predicates corresponding to primitive relations
and the conditions specified in user query. This query is called naïve datalog query because it does
not consider the semantic differences between the source contexts and the user context. For example,
when <Q1, c_usa> is submitted, where Q1 is the first sample query as shown below:

Q1: select QDate, AdjClose from YHFrankfurt
where Ticker="IBM.f" and QDate >="12/20/1998" and QDate =<"01/10/1999";

the system generates the following naïve datalog query:

 - 71 -

answer(QDate,AdjClose) :-
 yhfrankfurt(Ticker,QDate,AdjClose,
 StartMonth,StartDay,Startyear,EndMonth,EndDay,EndYear),

 Ticker="IBM.F", QDate>="12/20/1998", QDate =<"01/10/1999".

Then the system translates the naïve datalog query into a so called well-formed COIN query. Both
Goh (1997) and Firat (2003) discuss the procedure for this translation, which systematically renames
the variables and introduces value predicate so that all primitive values are in the user context. The
well-formed COIN query of the above example is:

answer(V10,V11) :- yhfrankfurt’(V1’,V2’,V3’,V4’,V5’,V6’,V7’,V8’,V9’),
value(V1’, c_usa, "IBM.f"),
value(V2’, c_usa, V10), V10>="12/20/1998", V10 =<"01/10/1999",
value(V3’, c_usa, V11).

Notice that the first predicate in the body is a semantic relation with arguments V1’ through V9’
representing semantic objects. The types and contexts of semantic objects V1’, V2’ and V3’ are
illustrated earlier in Figure 4.2; semantic objects V4’ through V9’ are of basic type. As discussed in
Section 4.2, the value predicate introduces the composite conversion for the semantic object; the
composite conversion as specified in formula (4.5) then introduces component conversions specified
for the semantic object. This process is automated by the mediator, which is implemented in ACLP.

In Figure 4.5 we illustrate the approximate correspondences between the COIN representation
components <O, C, E, S> and the ACLP components <T, A, I>. Specifically:

• Ontology O, context descriptions C, and elevation axioms E of COIN correspond to
logic theory T in ACLP;

• Abducible predicates A include the predicates corresponding to source relations (e.g., yh-
frankfurt/9, olsen/4, etc.) 33, predicates corresponding to externally defined functions,
and built-in predicates corresponding to arithmetic and relational (comparison) operators;

• Integrity constraints I include the constraints defined in sources S, Clark’s Free Equality
(Clark, 1978) axioms, and symbolic equation solving constraints (Firat, 2003).

Abduction is implemented with an extended SLD+Abduction procedure as described in Goh
(1997); constraint handling is implemented with CHR. Abducible predicates encountered in the
procedure are put into a constraint store whose consistency is maintained by a CHR program. The
mediated query is constructed from the abducibles in the constraint store after the CHR program has
reached a successful final state. More details will be provided in Section 4.5.

4.4 Representation for Temporal Semantic Heterogeneity

We described the existing COIN approach in two previous sections. We gave a procedural definition
for the value method not previous defined in COIN literature. For a semantic object, this method
derives the primitive value of the object in any given context. We also clarified the notion of modi-
fier orthogonality that is only briefly mentioned in Goh (1997) and Firat (2002).

33 We follow the Prolog convention that uses predicate/arity as a shorthand notation to refer to a predicate
without explicitly listing all its arguments; arity indicates the number of arguments the predicate expects.

 - 72 -

Starting from this section, we will present the temporal extensions developed for the existing
COIN. This section focuses on the extensions to the representation formalism, and the next section
focuses on the extensions to the reasoning mechanism.

 As outlined in Chapter 2, we need to address the kind of temporal semantic heterogeneity
caused by time-varying semantics, which inevitably involves heterogeneous time models that include
such things as different representations (e.g., Month/Year v. Year-Month), operations capable to
perform (e.g., not all sources support ≤ operation on temporal entities), and implicit assumptions
about temporal concepts (local time v. UTC time).

Similar to the case of non-temporal concepts, the different representations and implicit assump-
tions about temporal concepts can be described using ontology and contexts. Depending on the
integration scenario, the ontology may need to include a single temporal concept (e.g., temporal
entity, date, etc) or all concepts of a full-blown time ontology such as the DAML time ontology
(Hobbs, 2002). What modifiers are needed for describing contexts (i.e., possible variations of
interpretation of a concept) also depends on the integration scenario. For example, for integration of
certain time series data, a date format modifier for describing different formats of date values my be
enough, while for integration of flight information, we may also need a modifier for time offset (i.e.,
combination of time zone and whether daylight saving time is in effect) in addition to date format.

4.4.1 Dynamic Modifier v. Dynamic Context Association

We identify two possible ways of representing time-varying semantics:

• Approach 1 (dynamic modifier): allow modifiers to have non-static values within a context
referenced by a context identifier, i.e., a modifier can have different values at different times
in a context.

• Approach 2 (dynamic context association): allow modifiers to only have static values within
a context referenced by a context identifier, but associate an argument (i.e., attribute) of a
primitive relation with different contexts at different times.

In Figure 4.6 below, we illustrate the two approaches when they are used to describe time-varying
currencies of the “AdjClose” argument in primitive relation yhfrankfurt/9.

yhfrankfurt(_,_,AdjClose,_,_,_,_,_,_)

c_germany

Context c_germany
currency=“DEM”, if time≤”12/ 31/1998”
currency=“EUR”, if time≥”1/1/1999”

(a) dynamic modifier

Yhfrankfurt(_,_,AdjClose,_,_,_,_,_,_)

c_germany1

Context c_germany1
currency=“DEM”

c_germany2

if time≤”12/ 31/1998” if time≥”1/1/1999”

Context c_germany2
currency=“EUR”

(b) dynamic context association

Figure 4.6 Two Approaches to Describing Time-varying Semantics

With the dynamic modifier approach (Figure 4.6 (a)), we use c_germany to refer to the context
within which modifier currency has a value of “DEM” until December 31, 1998 and a value of
“EUR” since January 1, 1999. Then we simply associate the “AdjClose” argument of yhfrankfurt/9

 - 73 -

with context c_germany. The parameter time in both (a) and (b) of Figure 4.6 will be bound to
temporal entities in sources after a source attribute is associated with the context.

With the dynamic context association approach (Figure 4.6 (b)), we describe two contexts: in
context c_germnay1, modifier currency has a value of “DEM”; in context c_germany2, modifier
currency has value of “EUR”. Then we dynamically associate the “AdjClose” argument of yhfrank-
furt/9 with the two contexts: “AdjClose” is associated with c_germany1 until December 31, 1998,
and it is associated with c_germany2 since January 1, 1999.

The following two definitions will be useful in the ensuing discussion about the two approaches.

Definition 4.3 (Static Context) A context is a static context iff every modifier has a single static
value in the context.

Definition 4.4 (Temporal Context) A context is temporal context iff at least one modifier has time-
varying values in the context.

The apparent differences between the two approaches are where time-dependent conditions are
specified: with the dynamic modifier approach the time-dependent conditions are given in the
description of temporal context, thus context association is simpler; with the dynamic context
association approach the time-dependent conditions are given in the context association, thus only
static context descriptions are necessary.

We select the dynamic modifier approach to representing time-varying semantics for the follow-
ing two reasons.

First, the existing COIN can be straightforwardly extended to admit dynamic modifiers. We will
present this extension in Section 4.4.2. In contrast, it is much more involved to develop the exten-
sions for the dynamic context association approach. Recall from Section 4.2.3 (especially formulas
4.6 and 4.7) that a Skolem function is used to associate a relational attribute to a context. We have to
introduce more complicated structures to include time-dependent context associations. In addition,
since each semantic object has an original context, now multiple semantic objects need to be created
for a relational attribute (e.g., for “AdjClose”, we need a semantic object with original context
c_germany1, and another one with original context c_germany2). Consequently, we need to cerate
multiple semantic relations for a primitive relation. Further research is needed to find means for
reducing or avoiding such complications.

Second, when multiple sources share the same context, the dynamic modifier approach avoids
repeated specifications of the time-dependent conditions. For example, in addition to Frankfurt, all
the other exchanges in Germany switched currency in the beginning of 1999, thus the temporal
context c_germany can be shared among them. However, with the dynamic context association, the
time-dependent conditions have to be specified repeatedly for all exchanges despite that share the
two static contexts c_germany1 and c_germany2. Managing these redundancies can be cumberson
and error-prone.

We shall point out that a potentially useful feature may be developed by extending the notion of
dynamic context association to dynamic elevation, i.e., a relational attribute in a primitive relation
can be elevated to different semantic types at different times. The feature is useful when certain
fields in a relational source are recycled to represent different things at different times. Field recy-

 - 74 -

cling is a form of domain evolution exemplified in Ventrone and Heiler (1991). Future research
should further examine the merit of dynamic context association as well dynamic elevation.

In a temporal context the value of at least one modifier is dependent on time. In some cases the
modifier value may depend on factors other than time. Thus we can extend the notion of temporal
context to dynamic context, of which temporal context is a special case.

Definition 4.5 (Dynamic Context) A context is a dynamic context iff at least one modifier has
multiple values in the context.

Goh (1997) gives an example of dynamic context where company financials are reported in the
official currencies of the countries where the companies are incorporated; the value of currency
modifier is determined by first obtaining the company attribute, then using it to find the country in
which the company is incorporated, and lastly finding the official currency of the country and
assigning it to the modifier. Country of incorporation information is in the data source and can be
determined only at query execution step. Goh et al. (1999) provides another example where in a
context the scaleFactor modifier depends on the currency modifier and the currency modifier
depends on the country of incorporation like in the other example; scaleFactor has a value 1000 if
the currency is "JPY", and a value 1 otherwise.

The dependency of modifier on factors that cannot be determined during the mediation step com-
plicates the provision of component conversions and the mediated query has to consider all
possibilities. Temporal context is a special case because the modifier value depends on time only,
not other arbitrary factors. We can take advantage of this special case by systematically processing
the time dependency; in Section 4.5, we show how this is done to simplify (i.e., semantically
optimize) the mediated query.

4.4.2 Representation of Time-Dependent Dynamic Modifiers

A dynamic modifier can have multiple values over the time span in a temporal context, with each
individual value being valid for a particular time period within the span. The previously defined
COIN language allows single-valued modifiers only; certain extension is necessary to allow for
multi-valued modifiers. There are two alternative approaches to the extension: (1) treating time as a
distinguished type (much like type ctx for context) in the COIN data model; and (2) treating time as a
user defined type (i.e., a semantic type in the domain ontology). Below discuss these two alternatives.

Approach 1: Time as a Distinguished Type. This approach introduces a new object type tmp for
symbols representing temporal entities. The modifier declaration and the modifier atom can be
augmented with an argument of type tmp as below:

]',@[ττ ⇒tmpctxm

]',@[ttcmt m → , where c:ctx, and tm:tmp.

Because a modifier can be dynamic in one context and static in another, declarations with one
parameter and two parameters are both needed, which is supported by the polymorphism of the
language. This seems to be a plausible extension. But there are at least two issues that lie in the new
object type tmp. First, the purpose of introducing context is to use it as a mechanism of capturing the
sources of variance in data interpretation; time is just another such source, so it should be part of

 - 75 -

context instead of being a special type that is of the same significance as context. Second, as we
discussed in Chapter 2, time is a complex data type. Using a symbol to represent an instance of a
complex data type requires the language to be committed to a predefined model for the complex type
(e.g., time point or time period, single- or multi-granularity, a calendar system for referencing time
line, etc.). Such commitment not only limits the expressiveness of the language, it may be even
impossible to suit the diverse needs for time representation in different integration scenarios.

Approach 2: Time as a User Defined Type. Instead of making time a distinguished type, we can
treat it like any other semantic type, which means that the semantics of the type is specified exter-
nally by the ontology and the context descriptions, not by the COIN language. This alternative
approach allows for greater flexibility in handling time. We can do so by extending the language to
allow a modifier method to return multiple semantic objects with the following modifier declaration:

]'@[ττ ⇒⇒ctxm

where the double-arrow indicates that modifier m in context ctx has multiple objects of type 'τ .
Since these objects have different values in the same context, we sometimes call a dynamic modifier
a multi-valued modifier. For example, we use the following to declare that the currency modifier in
certain context is multi-valued:

]@[basicctxcurrencyluemonetaryVa ⇒⇒

We distinguish a multi-valued method here from a set-valued method in F-logic. The validity of
different objects returned by a multi-valued modifier is dependent on different (temporal) conditions;
all elements in the set returned by a set-valued method are valid under the same set of conditions.

The different conditions of a dynamic modifier are specified using multiple rules. When describ-
ing time-varying semantics, the conditions inevitably contain comparisons of temporal entities. For
example, when quote date is =< “December 31, 1998”, the currency is “DEM” in context c_germany.
Here the comparison is between temporal entities in a source and the ground temporal entity “De-
cember 31, 1998”. Since we can only compare primitive values in the same context, we need to
decide the context in which the compassion is performed. There are two alternative choices of the
context: (1) the source context (more precisely is the context to be described); and (2) the receiver
context, which is known when a query is submitted for mediation. We discuss each choice below.

Temporal Comparison in Source Context. In this case, the ground temporal entity in the com-
paring can be a primitive object in the source, e.g., we can use “31-DEC-98” for “December 31,
1998”. The following rules illustrate how to define modifier currency for context c_germany using
c_germany as the context of comparison:

".9831"],_@[],[
],""_@)[,_(

)],_(_@[
|:),_(,:

−−≤→→
→

←→
−

DECTTgermanycvalueTTutetempAttribO
DEMgermanycvalueOgermanyccurrency

OgermanyccurrencygermanyccurrencyO
basicOgermanyccurrencyluemonetaryVaO

vv

 (4.8)

".991"],_@[],[
],""_@)[,_(

)],_(_@[
|:),_(,:

−−≥→→
→

←→
−

JANTTgermanycvalueTTutetempAttribO
EURgermanycvalueOgermanyccurrency

OgermanyccurrencygermanyccurrencyO
basicOgermanyccurrencyluemonetaryVaO

vv

 (4.9)

 - 76 -

In the above rules,),_(Ogermanyccurrency is a Skolem function representing the semantic object

returned by the method of currency modifier. In the body of each rule, the primitive value of the
object is given, the remaining atoms first obtain the temporal attribute T of semantic object O, then
derive the primitive value of T in the context to be described (i.e., c_germany), and specify certain
constraint the primitive value needs to satisfy using comparison predicates such as ≤ and ≥ .

These comparison predicates are abducible constraint predicates and are abducted during query
mediation. For example, when rule (4.8) is selected during mediation, "9831" −−≤ DECTv is abducted

into the constraint store. When the user query involves multiple contexts, constraints with primitive
values in these contexts will be abducted into the constraint store. Thus the constraint store will
consist of constraints of primitive values in different contexts (e.g., “31-DEC-98”, “12/31/1998”,
“1998.12.31”, 31-12-1998”, etc. when the involved contexts have different date formats as shown
with these sample values). As we will see in the next section, there are several challenging difficul-
ties in solving constraints in multiple contexts. Therefore, we need to consider the choice of
performing comparison only in the receiver context.

Temporal Comparison in Receiver Context. In this case, the ground temporal entity in the com-
parison should be a semantic object from the source. This semantic object is created using a Skolem
function and a special predicate cste/1 that is always evaluated true. To access the receiver context
when a user query is submitted, we need to add a fact about the receiver context C: rcvContext(C).
The following rules illustrate how to define modifier currency for context c_germany using receiver
context C as the context of comparison:

.
]@))["9831(",1,_,"9831",(

],@[],[),(
],""_@)[,_(

)],_(_@[
|:),_(,:

cv

c

v

TT
TCvalueDECcstegermanycDECdateskolem

TCvalueTTutetempAttribOCrcvContext
DEMgermanycvalueOgermanyccurrency

OgermanyccurrencygermanyccurrencyO
basicOgermanyccurrencyluemonetaryVaO

≤
→−−−−

→→
→

←→
−

 (4.10)

.
]@))["991(",1,_,"991",(

],@[],[),(
],""_@)[,_(

)],_(_@[
|:),_(,:

cv

c

v

TT
TCvalueJANcstegermanycJANdateskolem

TCvalueTTutetempAttribOCrcvContext
EURgermanycvalueOgermanyccurrency

OgermanyccurrencygermanyccurrencyO
basicOgermanyccurrencyluemonetaryVaO

≥
→−−−−

→→
→

←→
−

 (4.11)

With this form of representation, primitive values in all constraints abducted into the constraint
store are in the receiver context. For example, if the receiver context is c_usa, the value method for
semantic object created for the ground temporal entity in (4.10) will derive primitive value
“12/31/1998” for Tc.

Time-varying Semantics of Temporal Entities

In the preceding discussion we used examples where the interpretations of semantic objects other
than temporal entities are dependent on the comparisons of temporal entities. Such dependency is
specified using temporal entities in the context to be described in both forms of representation: one
uses the primitive objects, the other uses the semantic objects. The implicit assumption is that the

 - 77 -

interpretations of these temporal entities do not change over time, i.e., the modifiers of the temporal
entities should be static. We will discuss the implications of the non-static case and suggest potential
solutions in Section 4.6.

4.4.3 Backward Compatibility

The representation extensions presented above do not affect how static modifiers are defined. For
example, the following much simpler rule specifies the currency modifier in context c_usa:

].""_@)[,_(
)],_(_@[
|:),_(,:

USDusacvalueOusaccurrency
OusaccurrencyusaccurrencyO

basicOusaccurrencyluemonetaryVaO

→
←→
−

 (4.12)

which states that in context c_usa currency is always USD.
As we will see in the next section, abducible constraint predicates appearing in dynamic modifier

definitions are abducted into a constraint store; by solving the constraints of all modifiers involved in
the user query, we obtain a set of simplified common constraints under which all modifiers have a
single valid value. This means that we do not need to change how component conversions are
specified.

4.5 Reasoning about Temporal Semantic Heterogeneity

We have chosen to use dynamic modifiers to represent time-varying semantics and treat temporal
entity types like other semantic types when the interpretations of temporal entities do not change
over time. This representation formalism makes it possible to use the existing COIN query answering
mechanism to reason about temporal semantic heterogeneity. We first illustrate the use of existing
COIN for reconciling temporal semantic heterogeneity. Certain deficiencies of existing COIN are
identified. Then we present the improvements made in constraint handling to overcome these
deficiencies.

4.5.1 Reconciling Temporal Semantic Heterogeneity with Existing COIN

We will use the historical stock price example in Chapter 3 for illustration. We need Figure 3.2 for
an informal description of the contexts and Figure 4.2 for the ontology. For ease in reading, we
reproduce the figures below.

 - 78 -

87.57
88.23
89.36

4-JAN-99
31-DEC-98
30-DEC-98

IBM
IBM
IBM

AdjCloseQDateTicker
87.57
88.23
89.36

4-JAN-99
31-DEC-98
30-DEC-98

IBM
IBM
IBM

AdjCloseQDateTicker

YHNYSE

Context:
Monetary value is in US dollars (as in c_usa)
Date format is d-MMM-yy (as in c_germany)

75.05
149.14

4-JAN-99
30-DEC-98

IBM.f
IBM.f

AdjCloseQDateTicker
75.05
149.14

4-JAN-99
30-DEC-98

IBM.f
IBM.f

AdjCloseQDateTicker

YHFrankfurt

Context: c_germany
Monetary value is

in German marks until the end of 1998
in Euros since the beginning of 1999

Date format is d-MMM-yy

75.68
77.55

4-JAN-99
30-DEC-98

IBM.pa
IBM.pa

AdjCloseQDateTicker
75.68
77.55

4-JAN-99
30-DEC-98

IBM.pa
IBM.pa

AdjCloseQDateTicker

YHParis

Context: c_france
Monetary value is in Euros
Date format is d-MMM-yy

Context: c_usa
Monetary value is US dollars
Date format is MM/dd/yyyy, e.g., 01/04/1999

Auxiliary sources:

Olsen (exchange rate):
<Expressed, Exchanged, Rate, Date>

c_olsen: Date format is MM/dd/yy, e.g., 01/04/99

Datecvt (date format conversion):
<date1, format1, date2, format2>

Figure 3.2 Integration of historical stock prices from multiple exchanges (reproduced)

date monetaryValue

basic
format currency

AdjClose)QDate,(Ticker, AdjClose)QDate,(Ticker,

75.05
149.14

4-JAN-99
30-DEC-98

IBM.f
IBM.f

AdjCloseQDateTicker

75.05
149.14

4-JAN-99
30-DEC-98

IBM.f
IBM.f

AdjCloseQDateTicker

yhfrankfurt

Extensional (primitive) relation

skAdjClose)skQDate ,(skTicker, skAdjClose)skQDate ,(skTicker, (intensional) Semantic relationyhfrankfurt’

(intensional) Primitive relation

MM/dd/yyyyd-MMM-yyformat

‘USD’‘DEM’,
(-∞,31-DEC-98]

‘EUR’,
[1-JAN-99,+∞)

currency

c_usac_gernany

MM/dd/yyyyd-MMM-yyformat

‘USD’‘DEM’,
(-∞,31-DEC-98]

‘EUR’,
[1-JAN-99,+∞)

currency

c_usac_gernany

t Semantic type

a Attribute
m Modifier

is_a

Legend

Ontology

cvtcurrency := …
cvtformat := …

Contexts

Sources

c_germanyc_germany c_germany

Elevations

tempAttribute

stockPrice

Figure 4.2 Components of Knowledge Representation in COIN (reproduced)

There are two modifiers in the ontology: format for type date and currency for type monetary-
Value. The component conversions for the modifiers are specified as follows:

).,,,(
],,,,@[

|:

rs

rsr
MVMUdatecvt

VUMMCformatcvtD
dateD

←→
−

 (4.13)

.*],@['
],@['],@['],@['

),',',','('],@[],[
],,,,@[

|:

vvr

vrrrcsrc

ccvr

rsr

RUVRCvalueR
TCvalueDMCvalueTMCvalueF

DRTFolsenTCvalueTTutetempAttribM
VUMMCcurrencycvtM

luemonetaryVaM

=→
→→→

→→
←→

−

 (4.14)

 - 79 -

Rule (4.13) specifies date format component conversion. In its body, predicate datecvt(Date1,
Format1, Date2, Format2) corresponds to the primitive relation (implemented as a function) that
converts a date value from one given format to another given format; e.g., the query

:- datecvt("1-JAN-99", "d-MMM-yy", V, "MM/dd/yyyy").

would return V="01/01/1999". In the rule body we use the primitive relation rather than the seman-
tic relation because the terms appearing in the head and as the arguments of datecvt/4 are all
primitive objects.

Rule (4.14) specifies currency component conversion. It uses olsen(From_currency,
To_currency, Rate, Date) to retrieve the exchange rate between a pair of currencies on a given date.
We use the semantic relation of olsen/4, indicated with prime post-fixed predicate and arguments, to
ensure that date values in olsen and of the temporal attribute in the source (obtained via tempAttrib-
ute) are converted into the same context before they are equated. Since the first three arguments in
olsen are of type basic so their values are context invariant, we can specify the component conver-
sion alternatively by converting the date value of tempAttribute to olsen’s context and use the
primitive relation of olsen:

.*
),,,,(],_@[],[

],,,,@[
|:

RUV
TRMMolsenTolsencvalueTTutetempAttribM

VUMMCcurrencycvtM
luemonetaryVaM

vrsv

rsr

=
→→

←→
−

 (4.15)

Let us continue to use the sample query Q1 with c_usa being the receiver context. As shown be-
fore, the well-formed COIN query for Q1 is:

answer(V10,V11) :- yhfrankfurt’(V1’,V2’,V3’,V4’,V5’,V6’,V7’,V8’,V9’),
value(V1’, c_usa, "IBM.f"),
value(V2’, c_usa, V10), V10>="12/20/1998", V10 =<"01/10/1999",
value(V3’, c_usa, V11).

As a reminder, the first three arguments for yhfrankfurt/9 are “Ticker”, “QDate”, and “AdjClose”,
which are mapped to basic, date, and stockPrice types respectively; stockPrice is a subtype of
monetaryValue.

When the ACLP based mediator receives this query, it tries to prove each predicate in the body.
We illustrate this mediation process in Figure 4.7, where for each step we underline the predicate to
be resolved and show the constraint store in a shaded box. Near the bottom of the figure we show
one of the two branches that correspond to the two rules specifying currency modifier in c_germany.
Recall form Section 4.2.2 that the value method first finds modifier assignments, then applies
component conversions of the modifiers. For ease in reading, we show in the figure one of the two
specifications for currency modifier and the rule for currency component conversion. Further
explanation of the mediation process is given below.

 - 80 -

yhfrankfurt’(V1’,V2’,V3’,V4’,V5’,V6’,V7’,V8’,V9’),
value(V1’, c_usa, "IBM.f"),
value(V2’, c_usa, V10), V10>="12/20/1998", V10 =<"01/10/1999",
value(V3’, c_usa, V11)

∆={}

value(V1’, c_usa, "IBM.f"),
value(V2’, c_usa, V10), V10>="12/20/1998", V10 =<"01/10/1999",
value(V3’, c_usa, V11)

∆={yhfrankfurt(V1,V2,V3,V4,V5,V6,V7,V8,V9)}

value(V2’, c_usa, V10), V10>="12/20/1998", V10 =<"01/10/1999",
value(V3’, c_usa, V11) ∆={yhfrankfurt(“IBM.f”,V2,V3,V4,V5,V6,V7,V8,V9)}

".9831"],_@[],[
],""_@)[,_(

)],_(_@[
|:),_(,:

−−≤→→
→

←→
−

DECTTgermanycvalueTTutetempAttribO
DEMgermanycvalueOgermanyccurrency

OgermanyccurrencygermanyccurrencyO
basicOgermanyccurrencyluemonetaryVaO

vv

V10>="12/20/1998", V10 =<"01/10/1999",
value(V3’, c_usa, V11) ∆={yhfrankfurt(“IBM.f”,V2,V3,V4,V5,V6,V7,V8,V9),

datecvt(V2,"d-MMM-yy",V10,"MM/dd/yyyy")}

value(V3’, c_usa, V11) ∆={yhfrankfurt(“IBM.f”,V2,V3,V4,V5,V6,V7,V8,V9),
datecvt(V2,"d-MMM-yy",V10,"MM/dd/yyyy"),
12/20/1998“=<V10, V10 =<"01/10/1999" }

∆={yhfrankfurt(“IBM.f”,V2,V3,V4,V5,V6,V7,V8,V9),
datecvt(V2,"d-MMM-yy",V10,"MM/dd/yyyy"),
12/20/1998“=<V10, V10 =<"01/10/1999" ,
V2=<“31-DEC-98”}

∆={yhfrankfurt(“IBM.f”,V2,V3,V4,V5,V6,V7,V8,V9),
datecvt(V2,"d-MMM-yy",V10,"MM/dd/yyyy"),
12/20/1998“=<V10, V10 =<"01/10/1999" ,
V2=<“31-DEC-98”
datecvt(V12,“MM/dd/yy”,V10,”MM/dd/yyyy”),
olsen(“DEM”,”USD”,R,V12), V11=V3*R}

□ □

.*],@['
],@['],@['],@['

),',',','('],@[],[
],,,,@[

|:

vvr

vrrrcsrc

ccvr

rsr

RUVRCvalueR
TCvalueDMCvalueTMCvalueF

DRTFolsenTCvalueTTutetempAttribM
VUMMCcurrencycvtM

luemonetaryVaM

=→
→→→

→→
←→

−

(4.8)

(4.14)

elevation

(4.3)

(4.13)

>= and =< are abducibles

Figure 4.7 Illustration of Mediation Process for Query Q1.

The first predicate in the body is a semantic relation, which is resolved with the elevation axiom
for primitive relation yhfrankfurt/9. This binds argument variables V1' through V9' with the semantic
objects (i.e., Skolem terms in this case) corresponding to the arguments in the primitive relation and
produces yhfrankfurt/9 as the new goal to resolve. Since predicates of primitive relations are abduci-
ble predicates, yhfrankfurt/9 is abducted into the constraint store. The constraint store now has one
predicate: {yhfrankfurt(V1,V2,V3,V4,V5,V6,V7,V8,V9)}.

Then it tries to resolve the first value predicate. Object V1' is of type basic; according to formula
(4.3), the argument in primitive relation corresponding to this object is bound to "IBM.F". Thus the
constraint store becomes {yhfrankfurt("IBM.f",V2,V3,V4,V5,V6,V7,V8,V9)}.

When it tries to resolve the second value predicate, because V2' is of type date and has modifier
format, the composite conversion for V2' is generated according to the template in formula (4.5). The
composite conversion invokes the component conversion for format, which resolves to datecvt/4
according to the conversion specified in (4.13). Since datecvt/4 corresponds to a primitive relation, it
is abducted into the constraint store. The remaining two predicates (>= and =<) in the same line are
constraint predicates, which are abducibles and are abducted. There is a simplification rule that
rewrites >= to =<. Now the constraint store becomes:

{yhfrankfurt("IBM.f",V2,V3,V4,V5,V6,V7,V8,V9),
 datecvt(V2,"d-MMM-yy",V10,"MM/dd/yyyy"),

 "12/20/1998"=<V10, V10 =<"01/10/1999" }

 - 81 -

The last value predicate introduces composite conversion for object corresponding to AdjClose
in the source. It is of inherited type monetaryValue and has a currency modifier. Following the
template of (4.5), the mediator first finds the modifier definitions in c_germany and c_usa contexts.
In context c_germany, modifier currency has different values in two time periods, so we use two
rules to specify the values and the corresponding temporal constraints. We provided two alternatives
to specifying the constraints: one specifies constraints using primitive objects in the context the be
described, the other specified uses the semantic objects in the context to be described.

Let us consider the first alternative: rule (4.8) is selected first and rule (4.9) (not shown in Figure
4.7) will be used on backtracking. In processing the rule body of (4.8), modifier currency is assigned
value “DEM”; because the context parameter of the value method of temporal attribute T is the same
as T’s context, it binds Tv to QDate (represented by variable V2) in the primitive relation; the next
predicate is a constraint predicate and is abducted, i.e., V2 =<"31-DEC-98" is added to the constraint
store.

For context c_usa, rule (4.12) is used to assign value “USD” for modifier currency. Then the
component conversion for currency is introduced. The two alternative specifications (4.14) and (4.15)
are equivalent. Suppose we chose to use (4.14): the value method on T generates another datacvt/4
and is subsequently removed by the key constraint CHR rule for datacvt/4; the semantic relations
osen'/4 produces the primitive relation olsen/4; the value methods on the three objects that are of
type basic generates the binding for the three argument in olsen/4; and the value method on object D'
on generates the abducible datecvt/4, with date format parameters being the values of modifier
format in c_germany and c_olsen. As a result, datecvt(V12,"MM/dd/yy",V10,"MM/dd/yyyy") is
added to the constraint store; primitive relation olsen/4 is abducted, with last parameter being bound
to V12: olsen("DEM","USD",R,V12). And finally, the price data is converted with the exchange rate;
because “=” is also an abducible, V11=V3*R is put into the constraint store. Now the constraint store
contains the following:

 {yhfrankfurt("IBM.f",V2,V3,V4,V5,V6,V7,V8,V9),
 datecvt(V2,"d-MMM-yy",V10,"MM/dd/yyyy"),
 "12/20/1998"=<V10, V10 =<"01/10/1999",
 V2 =<"31-DEC-98",
 datecvt(V12,"MM/dd/yy",V10,"MM/dd/yyyy"),
 olsen("DEM","USD",R,V12), V11=V3*R }

There are no CHR rules that further process these constraints to simplify them or detect any in-
consistency among them. Thus this branch of proof ends successfully. A sub-query can be
constructed using the predicates in the constraint store. On backtracking, the second rule (i.e., rule
(4.9)) for modifier currency in c_germany is used, generating constraint "1-JAN-99"=<V2; the rest is
the same as in the case when the first rule is used. Similarly, another sub-query can be constructed
from the predicates in the constraint store. The mediated query MDQ1pr

34 consisting of the two sub-
queries is shown in Figure 4.8. Certain constraints are renamed, e.g., V11=V3*R is rewritten as V11 is
V3*R.

34 Here “pr” standards for “primitive object”, indicating that the ground temporal entity is represented by a
primitive object in the source context.

 - 82 -

With the alternative that uses the semantic objects in temporal constraints, a value method is
used to derive the primitive value of the semantic object in the receiver context. In the example, two
rules are used to specify modifier currency. When the first rule (4.10) is selected, the constraint store
contains the following predicates at the end of the proof branch:

{yhfrankfurt("IBM.f",V2,V3,V4,V5,V6,V7,V8,V9),
 datecvt(V2,"d-MMM-yy",V10,"MM/dd/yyyy"),
 "12/20/1998"=<V10, V10 =<"01/10/1999",
 datecvt("31-DEC-98","d-MMM-yy",V13,"MM/dd/yyyy"), V10=<V13, "12/20/1998"=<V13,
 datecvt(V12,"MM/dd/yy",V10,"MM/dd/yyyy"),
 olsen("DEM","USD",R,V12), V11=V3*R }

(4.16)

Notice that all primitive values in constraints are in the receiver context c_usa. Variable V13
represents the primitive value in context c_usa that corresponds to "31-DEC-98" in context c_germany.
Constraint "12/20/1998"=<V13 is generated by the transitivity rule for ≤ from the two underlined
constraints. The transitivity rule is shown in Section 4.3.2.

Similarly, the second rule (4.11) is used on backtracking. The mediated query MDQ1so
35, con-

structed from the predicates in the constraint store, also consists of two sub-queries and is presented
in Figure 4.8.

MDQ1pr answer(V10,V11) :-
 yhfrankfurt("IBM.F",V2,V3,V4,V5,V6,V7,V8,V9),
 datecvt(V2,"d-MMM-yy",V10,"MM/dd/yyyy"),
 datecvt(V12,"MM/dd/yy",V10,"MM/dd/yyyy"),
 V2 =<"31-DEC-98", V10>="12/20/1998", V10=<"01/10/1999",
 olsen("DEM","USD",R,V12), V11 is V3*R.

answer(V10,V11) :-
 yhfrankfurt("IBM.F",V2,V3,V4,V5,V6,V7,V8,V9),
 datecvt(V2,"d-MMM-yy",V10,"MM/dd/yyyy"),
 datecvt(V12,"MM/dd/yy",V10,"MM/dd/yyyy"),
 "1-JAN-99"=<V2, V10>="12/20/1998", V10=<"01/10/1999",
 olsen("EUR","USD",R,V12), V11 is V3*R.

MDQ1so Answer(V10, V11):-
yhfrankfurt("IBM.f",V2,V3,V4,V5,V6,V7,V8,V9),
datecvt(V2,"d-MMM-yy",V10,"MM/dd/yyyy"),
"12/20/1998"=<V10, V10 =<"01/10/1999",

 datecvt("31-DEC-98","d-MMM-yy",V13,"MM/dd/yyyy"),V10=<V13,"12/20/1998"=<V13,
datecvt(V12,"MM/dd/yy",V10,"MM/dd/yyyy"),

 olsen("DEM","USD",R,V12), V11 is V3*R

answer(V10, V11):-
yhfrankfurt("IBM.f",V2,V3,V4,V5,V6,V7,V8,V9),
datecvt(V2,"d-MMM-yy",V10,"MM/dd/yyyy"),
"12/20/1998"=<V10, V10 =<"01/10/1999",

 datecvt("1-JAN-99","d-MMM-yy",V13,"MM/dd/yyyy"),V13=<V10,V13=<"01/10/1999",
datecvt(V12,"MM/dd/yy",V10,"MM/dd/yyyy"),

 olsen("EUR","USD",R,V12), V11 is V3*R

Figure 4.8 Mediated Queries

The two sub-queries of the mediated query generated by either approach (i.e., one performs tem-
poral comparison in source context and uses primitive objects for ground temporal entities, the other
performs temporal comparison in receiver context and users semantic objects for ground temporal
entities) retrieves and converts data of two time periods: [“December 20, 1998”, “December 31,
1998”] in the first sub-query, [“January 1, 1999”, “January 10, 1999”] in the second sub-query. Each
sub-query reconciles a set of semantic differences unique to its respective time period.

35 Here “so” standards for “semantic object”, indicating that the ground temporal entity is represented by a
semantic object from the source context.

 - 83 -

As intentional answers to the user query, both mediated queries are correct in that they reconcile
the semantic differences that exist between the source and receiver contexts. But problems arise at
the query execution step when the mediated queries are evaluated to obtain extensional answers.
These problems are caused by the deficiency of the existing COIN that we discuss next.

4.5.2 Deficiency of Existing COIN

The main deficiency in the existing COIN is that it does not have constraint handling rules for
temporal constraints and certain source capability constraints. As a result, temporal constraints often
remain unsolved in the mediation step, and the certain source limitations are not considered by the
mediated query, which lead to the following three problems:

• Lack of Semantic Optimization
• Inefficient Query Plan
• Unexecutable Query

Lack of Semantic Optimization: Undetected Inconsistent Temporal Constraints

Multiple rules are used to define a dynamic modifier in a temporal context. When a user query
involves multiple temporal contexts, the multiple rules of each modifier in each context are consid-
ered combinatorially during mediation, and each combination produces a sub-query. The number of
sub-queries is:

∏∏
c i

icn (4.17)

where nic is the number of rules for the ith modifier in context c.
The user query in the example involves two modifiers (i.e., format and currency) and two con-

texts (i.e., c_germany and c_usa). One rule is used for each modifier in each context except for
modifier currency that has two rules in context c_germany. According to (4.17), there are two sub-
queries: 2)11()12(=××× .

In the example, although both the sub-queries are semantically correct, they contain redundant
temporal constraints. In other cases, certain sub-queries may contain inconsistent constraints that are
not detected during mediation; a semantically optimized query should eliminate such sub-queries.
For example, if the currency in the receiver context c_usa also changed on the same date as in the
source context and primitive temporal values are used in the modifier definitions, the mediated query
would consist of four sub-queries that respectively have the following constraints in the body:

{…, datecvt(V2,"d-MMM-yy",V10,"MM/dd/yyyy", V2=<”31-DEC-98”, V10=<”12/31/1998”, … }
{…, datecvt(V2,"d-MMM-yy",V10,"MM/dd/yyyy", V2=<”31-DEC-98”, ”01/01/1999”=<V10, … }
{…, datecvt(V2,"d-MMM-yy",V10,"MM/dd/yyyy", ”1-JAN-98”=<V2, V10=<”12/31/1998”, … }
{…, datecvt(V2,"d-MMM-yy",V10,"MM/dd/yyyy", ”1-JAN-98”=<V2, ”01/01/1999”=<V10, … }

the two in the middle contain inconsistent constraints that are not detected by the mediator. The
number of such sub-queries can be large when there are many modifiers that have time-varying
values. In the case of the company financial example in Chapter 3, when the temporal constraints are
not solved during mediation, the mediated query for the example user query would consist of 24 sub-
queries, out of which 21 sub-queries have inconsistent constraints and should be eliminated.

 - 84 -

Inefficient Query Plan

Recall that two steps are involved in query answering in COIN: (1) mediation; and (2) query plan-
ning/optimization/execution (POE). The mediation step is responsible for generating the instructions
on how to perform appropriate conversions to reconcile semantic differences; the POE step is
responsible for generating efficient query plan and executing the plan to obtain data instances. For
optimization purposes, certain constraints expressed in the receiver context or in other source
contexts may need to be converted into a particular source context. For example, in the first sub-
query of MDQ1pr, to minimize or avoid the retrieval of unnecessary data, the constraint
V10=<”12/31/1998” in the receiver context needs to be converted to the source context so that only
data within the date range of [“December 20, 1998”, “December 31, 1998”] is retrieved. But the
mediation step did not generate the instructions on how to perform this conversion. Therefore, the
only possible plan that can be generated by the POE given the mediated query is to retrieve all data
that is on or after December 20, 1998. It is even worse with MDQ1so, with which the only possible
plan to be generated is to retrieve all data from the source to find out later that only a small fraction
is needed.

This is a COIN weakness not specific to temporal constraints. When a user introduces con-
straints, ground primitive values in the user context are used and the mediated query only introduces
conversions from the source contexts to the receiver context, not the other way around. For example,
for a query that retrieves products with price<10 in the query condition, the mediated query would
include all conversions to convert price data in the source context to the receiver context, and then
compare the converted values with 10, e.g., price*0.001*exchangrate<10. If the source has the
capability to evaluate the comparison, it is up to the source’s query optimizer to determine how the
comparison is evaluated. If it evaluates the arithmetic operation on the left of “<”, then all price data
in the sources will be converted before comparing to 10, which is inefficient. If the optimizer is
“smart” enough to rewrite the comparison as price<10/0.001/exchangerate, and knows to first
evaluate the arithmetic operations on the right of “<”, it perhaps can leverage the index on “price” to
quickly find only the price data that satisfy the condition without needing to convert all the price data.
Had 10 in the receiver context been converted to the source context by the mediator, the source
would receive price<10/0.001/exchangerate, which is the form that is more likely to be evaluated
efficiently.

While a source may be able to manipulate arithmetic operations, it is impossible for a source
manipulate other user defined operations. For example, when a user in context c_usa issues a query
with Date<”12/31/1998” to a source whose “Date” attribute is in “dd-MMM-yy” format as in context
c_germany, the mediated query will contain datecvt(Date, ”dd-MMM-yy”, D, “MM/dd/yyyy”) and
D<”12/31/1998”, which can be evaluated only by first converting all “Date” data in the source. We
should not expect the source to know datecvt enough to generate datecvt(D,”dd-MMM-

yy”, ”12/31/1998”, “MM/dd/yyyy”) and Date<D.

Unexecutable Query

The problem of query evaluation becomes much more severe when the source has certain capability
constraints. In the example, the source requires that the beginning and ending date must be given in

 - 85 -

the form of equality on year, month, and day elements. This means that it requires not only that
constraints expressed in the receiver context be converted to the source context, but also that con-
straint ≤ be rewritten as a set of equality constraints. Without such rewriting, the query cannot be
executed at all, unless a more capable wrapper is developed for the source.

4.5.3 Extensions with Temporal Constraint Handling Rules

The problems discussed above can be solved by extending the existing COIN mediator with the
following capabilities:

• solving temporal constraints in multiple contexts;
• executing conversions for ground temporal values between any contexts during media-

tion; and
• accommodating certain source capability limitations during mediation.

Before describing the solutions, let us first explain why these capabilities are needed.
From the problems discussed in the previous section, we know that the temporal constraints in

sub-queries need to be solved during mediation to eliminate the sub-queries that have inconsistent
constraints. We introduced two representation alternatives to defining dynamic modifiers: one uses
primitive objects and the other uses semantic objects to represent ground temporal entities. When
primitive objects are used in dynamic modifier definitions, the mediated query can contain con-
straints in multiple contexts. Therefore a multi-context constraint solver is needed. The alternative
approach uses semantic objects in modifier definitions to ensure that all temporal values are con-
verted to the receiver context. It seems that this approach only needs a temporal constraint solver in
the receiver context, therefore eliminating the need for a multi-context constraint solver. However,
any context can be the receiver context in the COIN framework. Thus, we still need a constraint
solver that can solve constraints in any defined context.

Traditionally, all conversions are executed for data instances in the query execution step, not in
the mediation step. For example, datecvt("31-DEC-98","d-MMM-yy",V13,"MM/dd/yyyy") in MDQ1so is
a predicate for converting the ground value (i.e., constant) "31-DEC-98" to another value represented
by variable V13 in a different context. It is not executed during mediation, therefore, the value of
variable V13 is not known until the query execution step. Without knowing the value of V13, the
constraints involving it and other ground values cannot be solved during mediation. Therefore, when
a conversion is for a ground value, the conversion should be executed during mediation instead of
being deferred to the query execution step.

In the COIN system, the mediator generates the instructions on necessary data conversions in the
form of a mediated query, and the POE component executes the mediated query by marshalling parts
of the mediated query to data sources. The POE accommodates certain source limitations by properly
sequencing different parts; if a source cannot evaluate certain expressions, the POE can compensate
for the source by evaluating the expressions itself. Some limitations of a source may be such that
instructions on data conversions are not included in the mediated query, e.g., a source may require a
begin date, therefore the begin date specified by the receiver (e.g., “12/20/1998”) needs to be
converted to the source context (e.g.,“20-DEC-98”), but the existing COIN does not generate

 - 86 -

conversions from the receiver context to source contexts. In this case, we need to handle such
limitations during mediation so that the instructions on how to perform the conversions can be
generated by the mediator.

Solution Approach

When ground primitive values in different contexts are posted into the constraint store, constraints
over these values cannot be solved until they are converted into the same context. To perform such
conversions, the constraint solver needs to have a cumbersome mechanism for keeping track of the
contexts of the ground values. This mechanism is not needed when semantic objects are used
because all ground values are in the receiver context. Therefore, we choose the representation that
uses semantic objects in modifier definitions.

Another requirement for solving the temporal constraints is that the constraint solver should be
able to determine a set of binary relations, .,,,, etc>=≤< , between the ground temporal values in all
defined contexts. For example, the constraint solver needs to know that in context c_usa

"1999/01/01""1998/31/12" < is true, it also needs to know that in context c_germany

"991""9831" −−<−− JANDEC is true, and so on. Although we can implement these binary relations
for each context, it is more efficient to adopt a model (which we call internal model) for temporal
values in the integration context, map ground temporal values in various contexts to values of this
model, and implement the relations only for this model. This model for temporal entities is within
the integration context; the mappings of ground temporal values are just bidirectional conversions
between the integration context and all the other contexts. The model and the binary conversion can
be implemented in a library accessible by the mediator. It is often desirable that the internal model is
general and flexible enough to meet the needs of a variety of integration scenarios.

The overall solution approach consists of the following:

• an internal model for time, MT, with binary relations for temporal values;
• a conversion function, fIC, that provides bidirectional conversions for ground values be-

tween the internal model and all defined contexts;
• a set of constraint handling rules that solve the temporal constraints expressed in any

given receiver context; and
• a set of constraint handling rules that address source capability limitations.

The internal time model MT can be implemented in several ways, e.g., using the Calendar class
in the Java programming language, or using date and time types supported in various relational
database management systems. Another possibility is based on a temporal system described in
Appendix 4.2.

Below, we provide the general characteristics of the bidirectional conversion and the constraint
handling rules for temporal constraints. Later we use examples to illustrate how they may be imple-
mented. Constraint handling rules for source capability limitations are specific to the limitation, thus
we illustrate them using an example in the next section.

 - 87 -

Definition 4.6 (Bidirectional conversion function fIC) If ⊥τ:,:,: tctxcMt TIC ,),,(tctf ICIC is a

predicate atom whose procedural reading can be either of the two functions: (1) given a ground
primitive value ⊥t in context c, return the corresponding value tIC; the signature of this function is

TMctx →× ⊥τ ; and (2) given a ground value tIC of the internal model, return its corresponding

primitive value ⊥t in a given context c; the signature of this function is ⊥→× τctxMT . ■

When the temporal entity type has only one modifier, the modifier value can uniquely identify a
context. In this case, we can use the modifier value in lieu of the context identifier in the definition of
fIC and the type symbol ctx in the signature declarations should be replaced by the primitive type ⊥τ .

Predicate fIC is treated as a built-in constraint, thus can be used in the guard of a CHR rule.
Temporal constraints are the conjunction of a set of binary relations over the temporal entity

domain in the receiver context. The binary relations include { >≥=≤< ,,,, }. In the ACLP framework,
these relations are treated as user defined constraints. The constraint = provides a means of variable
binding. Constraints ≥ and > are simplified into constraints ≤ and < respectively using the follow-
ing simplification rules:

ABBA ≤⇔≥ (simplification for ≥)

ABBA <⇔> (simplification for >)

With these rules, we only need to specify CHR rules for ≤ and <
For constraint ≤ , the CHR rules for reflectivity, transitivity, and anti-symmetry given in Section

4.3 are applicable in the temporal entity domain as well. Similar rules can be specified for < . We
introduce new rules for temporal constraints that that involve more than one ground temporal values.
A predicate groundTmp/1 can be used to test if a term is a ground temporal value; since we use
strings to represent ground primitive values in the receiver context, we can use string/1 for testing
purpose. For readability, we continue to use groundTmp/1 in the following discussion. There are
three types of rules that process the conjunction of two constraints at a time:

• built-in rule – to eliminate the constraint between two ground values
• inconsistency rule – to detect inconsistency of the constraints
• subsumption rule – to eliminate the constraint that is less stringent

All of the rules use the predicate tr/3 to convert ground primitive values in receiver context to
the integration context and evaluate the given predicate in the integration context. The predicate is
defined below:

).,(),,,(),,,(),(),,(21221121 MMRTCMfTCMfCrcvContextTTRtr ICIC← (4.18)

where },{ <≤∈R , T1 and T2 are ground primitive temporal values in the receiver context. The evalua-

tion of predicate),(21 MMR is provided by the internal time model MT.

A built-in rule directly evaluate the constraint ≤ or < :
).,,(|)(),(YXtrYgroundTmpXgroundTmpYX <⇔< (built-in) (4.19)

).,,(|)(),(YXtrYgroundTmpXgroundTmpYX ≤⇔≤ (built-in) (4.20)

 - 88 -

When these rules are applied, the constraint in the rule head will be removed if the rule goal is
evaluated true, otherwise, inconsistency is present and failure is signaled. For example, when
constraint “12/20/1998”=<“12/31/1998” is posted into the constraint store, rule (4.20) applies;
because the rule goal tr(=<, “12/20/1998”, “12/31/1998”) will return true, “12/20/1998”=<
“12/31/1998” will be removed from the constraint store.

The inconsistency rule is straightforwardly defined as follows,
.|),,(),(),(, failMNtrNgroundTmpMgroundTmpNXXM <⇔<< (inconsistency) (4.21)

The intuition of subsumption rules is that when one constraint is more stringent than the other,
we can remove the less stringent constraint from the constraint store. For example, given
X<"01/01/1999" ∧ X<"10/11/1999", we can remove X<"01/01/1999" because "01/01/1999"
<"10/11/1999". We use simpagation rules to specify the subsumption rules:

).,,(|)(),(\ NMtrNgroundTmpMgroundTmpNXMX <⇔≤≤ (subsumption) (4.22)

).,,(|)(),(\ NMtrNgroundTmpMgroundTmpXMXN <⇔≤≤ (subsumption) (4.23)

The other six rules can be obtained by replacing either one of all of the ≤ 's with < in the head of
rules (4.22) and (4.23).

For temporal entities, we also introduce a composite conversion predicate fcc/4 to convert ground
primitive values between two contexts. This predicate is treated as a CHR constraint and is handled
by the following rules:

).,,(),,,(|)(),(),,,(2211212211 TCMfTCMfTnongroundTgroundTmpCTCTf ICICcc ⇔ (4.24)

).,,(),,2,(|)(),(),,,(112212211 TCMfTCMfTgroundTmpTnongroundCTCTf ICICcc ⇔ (4.25)

Illustrative Example

We illustrate an implementation of the solution approach and show how it addresses the deficiency
of the existing COIN use using the Yahoo historic stock price example.

For illustration purpose, we implement the internal time model as a library using a temporal sys-
tem described in Appendix 4.2. The bidirectional conversion fIC is also implemented in the library; fIC
is accessible to the mediator using the following predicate:

date_string(IM, C, P)

where IM is the argument for internal model and C is the context of primitive value P. Argument C
is an input; arguments IM and P cannot be output argument at the same time. Thus, for conversion
purposes, the predicate can be used to derive the internal representation given ground primitive value
or to derive the ground primitive value from an internal representation.
 Since there is only one modifier for temporal entity type in the Yahoo historical quote example,
the conversion predicate datecvt/4 for the modifier is functionally equivalent to conversion predicate
fcc/4. The CHR rules for datecvt/4 can be obtained from (4.24) and (4.25) by replacing fcc with
datecvt, and replacing fIC with date_string:

).,,(_),,,(_
|)(),(),,,(

2211

212211
TCMstringdateTCMstringdate

TnongroundTgroundTmpCTCTdatecvt ⇔ (4.26)

).,,(_),,2,(_
|)(),(),,,(

112

212211
TCMstringdateTCMstringdate

TgroundTmpTnongroundCTCTdatecvt ⇔ (4.27)

 - 89 -

When datecvt is added to the constraint store and the guard of one of the above rules is evaluated to
true, the body of the rule will be applied, which in effect performs the actual conversion of a ground
temporal entity from one context to another, i.e., the datecvt is executed during mediation if the
guard is true. For example, when datecvt("31-DEC-98","d-MMM-yy",V13,"MM/dd/yyyy") is posted into
the constraint store, rule (4.26) applies, which removes the datecvt/4 constraint and binds V13 to
“12/31/1998”.

With these constraint handling rules, the constraints generated by the existing COIN can now be
further processed. Let us illustrate these transformations using the constraints produced in the proof
branch that generates the first half of MDQ1so. For reader’s convenience, we show these constraints
again below:

{yhfrankfurt("IBM.f",V2,V3,V4,V5,V6,V7,V8,V9),
 datecvt(V2,"d-MMM-yy",V10,"MM/dd/yyyy"),
 "12/20/1998" =<V10,V10 =<"01/10/1999",
 datecvt("31-DEC-98","d-MMM-yy",V13,"MM/dd/yyyy"), V10=<V13, "12/20/1998"=<V13,
 datecvt(V12,"MM/ddyy",V10,"MM/dd/yyyy"),
 olsen("DEM","USD",R,V12), V11=V3*R }

(4.16)

Figure 4.9 illustrates how the constraint store in (4.16) is transformed using the CHR rules pre-
sented earlier. The constraint predicate(s) that triggers the CHR rule is underlined; the rule applied is
indicated next to the arrow pointing to the state resulting from the application of the rule. Further
explanation is given following the figure. We shall point that with ACLP, abduction and application
of CHR rules are interleaved: as soon as a constraint is posted into the constraint store, rules applica-
ble to the constraint will be applied immediately before constraint is put into the store by abduction.
To simplify explication, in Figure 4.9 we show all constraints posted by abduction at once and
explain the applicable CHR rules one at a time.

{yhfrankfurt("IBM.f",V2,V3,V4,V5,V6,V7,V8,V9), datecvt(V2,"d-MMM-yy",V10,"MM/dd/yyyy"),

"12/20/1998" =<V10,V10 =<"01/10/1999",

datecvt("31-DEC-98","d-MMM-yy",V13,"MM/dd/yyyy"), V10=<V13, "12/20/1998"=<V13,

datecvt(V12,"MM/dd/yy",V10,"MM/dd/yyyy"), olsen("DEM","USD",R,V12), V11=V3*R }

{yhfrankfurt("IBM.f",V2,V3,V4,V5,V6,V7,V8,V9), datecvt(V2,"d-MMM-yy",V10,"MM/dd/yyyy"),

"12/20/1998" =<V10, V10 =<"01/10/1999", V10=<“12/31/1998”, "12/20/1998"=<“12/31/1998”,

datecvt(V12," MM/dd/yy ",V10,"MM/dd/yyyy"), olsen("DEM","USD",R,V12), V11=V3*R }

{yhfrankfurt("IBM.f",V2,V3,V4,V5,V6,V7,V8,V9), datecvt(V2,"d-MMM-yy",V10,"MM/dd/yyyy"),

"12/20/1998" =<V10 ,V10=<“12/31/1998”, "12/20/1998"=<“12/31/1998”,

datecvt(V12,"MM/dd/yy",V10,"MM/dd/yyyy"), olsen("DEM","USD",R,V12), V11=V3*R }

{yhfrankfurt("IBM.f",V2,V3,V4,V5,V6,V7,V8,V9), datecvt(V2,"d-MMM-yy",V10,"MM/dd/yyyy"),

"12/20/1998" =<V10 ,V10=<“12/31/1998”,

datecvt(V12,"MM/dd/yy",V10,"MM/dd/yyyy"), olsen("DEM","USD",R,V12), V11=V3*R }

(4.26) for datecvt/4

(4.22), subsumption

(4.20), built-in

(4.16)

(4.28)

Figure 4.9 Transformation of Constraint Store with CHR Rules

After predicate datecvt("31-DEC-98","d-MMM-yy",V13,"MM/dd/yyyy") is abducted, CHR rule (4.26)
for datecvt is applied. It uses the built-in predicate date_string to perform the necessary conversion.

 - 90 -

As a result, V13 is bound to "12/31/1998" and the predicate datecvt("31-DEC-98","d-MMM-

yy",V13,"MM/dd/yyyy") is removed from the constraint store.
After constraint V10=<V13 is abducted into the constraint store, as we explained earlier, the transi-

tivity rule for ≤ , which is a propagation rule, generates an extra constraint "12/20/1998"=<V13.
Meanwhile, because V13 is now bound to ground value "12/31/1998", subsumption rule (4.22) is
applicable for constraints V10 =<"01/10/1999" and V10=<V13, with M being bound to "12/31/1998" and
N being bound to "01/10/1999". Via predicate),,(NMtr < , the evaluation of),(NM< , which is the

prefix equivalent of NM < , is true in the integration context. According to the rule, V10

=<"01/10/1999" is removed from the constraint store.
Constraint "12/20/1998"=<V13 is also removed when the built-in rule (4.20) is applied.
The constraint store now contains the following constraints:
{yhfrankfurt("IBM.f",V2,V3,V4,V5,V6,V7,V8,V9),
 datecvt(V2,"d-MMM-yy",V10,"MM/dd/yyyy"),
 "12/20/1998" =<V10,V10 =<"12/31/1998",
 datecvt(V12,"d-MMM-yy",V10,"MM/dd/yy"),
 olsen("DEM","USD",R,V12), V11=V3*R }

(4.28)

At this point, the constraints cannot be further simplified, but the source capability limitation has
not been considered (i.e., the source requires that V4 through V9 are bound to various date parts of
the begin and end dates). To meet the source requirement, the ground primitive values in the con-
straints involving V10 need to be converted the source context, and the different date parts need to
be extracted and equated to variables V4 – V9. This is accomplished using the following CHR rule:

).,,(),,,(),,,(),,,(),,,(
),,,(),,,,(),,,,(|)(),(

,\),,,(),,,,,,,,,(

2121211111

112121

21222111

YFVgetYDFVgetDMFVgetMYFUgetYDFUgetD
MFUgetMFYFVdatecvtFXFUdatecvtYgroundTmpXgroundTmp

YAAXFAFQdatecvtYDMYDMPQTtyhfrankfur ⇔≤≤
 (4.29)

where the predicates starting with “get” are built-in predicates that bind the last argument according
to the first two arguments. For example, getM("1-JAN-99", "d-MMM-yy", M) binds M to "JAN".

When this rule is applied to the constraints in (4.25), the two constraints involving V10 are re-
moved and variables V4 – V9 are bound to appropriate values:

{yhfrankfurt("IBM.f",V2,V3,"DEC","20","98","DEC","31","98"),
 datecvt(V2,"d-MMM-yy",V10,"MM/dd/yyyy"),
 datecvt(V12,"d-MMM-yy",V10,"MM/dd/yy"),
 olsen("DEM","USD",R,V12), V11=V3*R }

(4.30)

From these constraints, we can construct a mediated sub-query that is equivalent to the first sub-
query in MDQ1 shown in Chapter 3, with the difference only in variable names.

4.6 Discussion on Future Extensions

In developing the temporal extensions, we made certain design choices and assumptions. For
example, we chose to represent time-varying semantic using dynamic modifiers and commented on
the alternative approach of using dynamic context association in Section 4.4.1. In this section, we
discuss two other issues. The first is related to the assumption made in Section 4.4.2 about time-
invariant semantics of temporal entities, and the second is related to the mediation-execution two-
step process of query answering in relation to query optimization.

 - 91 -

4.6.1 Dealing with Time-varying Semantics of Temporal Entities

We proposed to use temporal entities in data sources in the description of time-varying semantics of
the other types of data in the sources. This approach requires that the semantics of temporal entities
is static, i.e., the modifiers of temporal entity types should have static values. Otherwise, the interpre-
tation of these temporal entities becomes indeterminate, which we explain below.

Proposition 4.1 (Indeterminacy) When temporal entities in the context to be described are used in
dynamic modifier definition and the temporal entity type has at least one modifier that is also time
dependent, the interpretation of the temporal entities become indeterminate because the reasoning
process as specified in (4.5) does not terminate. ■

Explanation: We observe that when temporal entities are used in dynamic modifier specification, at
least one value method on temporal entity is called in the definition; let us use the following predi-
cate to refer to this method call:
]@[|: vTCvalueTtitytemporalEnT →−

According to the definition of value method in (4.4), formula (4.5) is evaluated. It calls the modifier
method of all modifiers of the temporal entity type. When at least one of the modifiers is also time
dependent, its definition includes a value method call on temporal entity as shown above. It is
evaluated using formula (4.5). Then the dynamic modifier is encountered again, and the above
process continues in an infinite loop. ■

The indeterminacy can also be understood informally with the following example. Suppose a
database recording hourly temperature in Boston; it uses local time without stating whether it is EST
(Eastern Standard Time) or EDT (Eastern Daylight-saving Time). In the context description, we need
to specify this implicit assumption. Informally, we may have the following to describe when it is
EDT:

c_boston: EDT is used when T is in ["2005-4-3 2:00", "2005-10-30-2:00"]
The primitive values in the brackets are those in the source context. They can be replaced with
semantic objects in context c_boston. Either way, there is no way to tell if "2005-4-3 2:00" is EDT
or EST.

A similar problem exists for any non-temporal object when its interpretation depends on the rela-
tive values of the object. For example, suppose a database containing price information in terms of
total cost. The context is such that when the base price is below $50, a $2 shipping charge is included;
when the base price is greater than or equal to $50, there is no shipping charge. Then we cannot
determine the base price for any price value in the range (50, 52) in this context.

The problem arises from the cyclic inter-dependency illustrated in Figure 4.10: the interpretation
of objects of semanticType1 depends on the modifiers they have; the definition of one of the modifi-
ers modifier depends on objects of semanticType1.

 - 92 -

semanticType1

modifier
interp. depends on defn. depends on

semanticType2

Figure 4.10 Interdependency of a type and its modifier

One way to avoid this circularity is to avoid using the objects of the type for which the modifier is
defined; a type with static semantics in the integration context is needed. In the case of time-varying
semantics of temporal entities, this means that when defining the dynamic modifiers of temporal
entities, a special type of time whose semantics does not change should be used, i.e., an internal time
model with static interpretation is needed when the meaning of temporal entities in sources and
receivers also changes over time.

4.6.2 Extending Mediation-Execution for Query Optimization

Query answering in COIN involves two steps: (1) mediation by the mediator to generate instructions
on all necessary data conversions; and (2) execution by the POE to carry out the instructions as
efficiently as possible.

Traditionally, the mediator generates instructions for the purpose of semantic reconciliation, and
does not consider particular needs from query optimization and execution point of view. In some
cases, certain conversions are needed for the query optimization and query execution, but they are
not generated by the mediator. As a result, the mediated query, which contains instruction for
semantic reconciliation purposes only, may be difficult to optimize or even impossible to execute.

We illustrated this problem in Section 4.5.3 using the Yahoo historical quote example, where
ground temporal values in the receiver context needed to be converted to the source context to meet
certain variable binding requirements. We treated such requirements as capability constraints,
represented using CHR rules. Since the mediator processes CHR rules, conversions required by the
capability constraints are included in the mediated query.

While it may be possible to represent different requirements of POE using CHR rules, it is time
consuming to develop and keep these rules up to date, especially when the requirements of POE
evolve over time (e.g., query execution statistics accumulated over time may suggest moving the
evaluation of an expression from one source to another, therefore requiring different conversions to
be generated). Instead of changing the CHR rules manually every time the POE has new require-
ments, we contemplate a more general solution that allows the POE to request the mediator to
generate the instructions on value conversions that are not in the original mediated query but are
found necessary by the POE. We explain this using the following example:

Suppose a user query requests data from catalog a where price in a is less than price in catalog b,
thus the query contains constraint a.price<b.price. The mediated query generated by the existing
COIN would include instructions on how to convert price from context a to the receiver context as
well as instructions on how to convert price from context b to the receiver context. If we denote these
conversions with far(a.price) and fbr(b.price), then the mediated query has constraint far(a.price)<
fbr(b.price). The POE would generate a plan that converts all price data in a and b to the receiver
context and applies the constraint to obtain the tuples that meet the criterion. A better plan would

 - 93 -

either convert data from b to a (with conversion fba(b.price)), or a to b (with conversion fab(a.price)),
depending on other characteristics of the sources learned by the POE from accumulated query
execution statistics, and then apply the constraint at the source. This requires that the POE is able to
interact with the mediator to obtain the instructions on the conversions found necessary during query
optimization.

4.7 Summary

In this Chapter, we provided the technical details of the existing COIN and the extensions developed
for dealing with temporal semantic heterogeneity. Several contributions are made in the description
of the existing COIN:

• characterization of value and cvt methods – the two methods play a critical role of lifting
statements from one context to another. For the first time, we provide a clear definition
for the value method and provide a procedural definition for composition conversion
method cvt.

• modifier orthogonality – this notion is only briefly covered in previous COIN work. In
this chapter, we discover and explain its dependency on the specification of component
conversions.

• correspondence between F-logic constructs and FOL predicates – the two previous the-
ses on COIN have different representation styles: the F-logic based representation in
Goh (1997) and the FOL based presentation in Firat (2003). With F-Logic only, it is dif-
ficult to understand the implementation of COIN; with FOL only, it is difficult to
explain object-orientation that is so central to the COIN approach. The correspondence
provided in this Chapter bridges this gap.

The temporal extensions build upon the existing COIN. In “testing” the limit of the existing
COIN, we developed a number of important insights:

• constraints in modifier definitions –when ground primitive values in source contexts are
used in the constraints in modifier definitions, the constraint store can have constraints in
multiple contexts, making it difficult to detect inconsistencies and to semantically opti-
mize the mediated query. To avoid this problem, semantic objects should be used and all
constraints should be expressed in the receiver context.

• indeterminacy and the need for types in the integration context – when the semantics of
temporal entities also changes over time in a context, semantic indeterminacy arises if
temporal values in the context are used for modifier definitions. To avoid indeterminacy,
type for time interpreted in the integration is needed. In general, when the semantics of a
type is dependent on objects of the type, we need to introduce a special type whose in-
terpretation in the integration context is static.

• query optimization and the need for conversion to source context – to simplify the me-
diation task, COIN uses a strategy that converts values from source contexts to receiver
context. But from the query optimization point of view, sometimes it is better to convert

 - 94 -

certain values to source contexts. In limited cases, CHR rules can be used to generate the
necessary conversions during mediation. We proposed a more general solution where the
POE is able to request the mediator to generate conventions found useful by the POE.

We also pointed out the need for further research on dynamic context association and dynamic
elevation. The insights from this work and the results from future research will further enahnce the
capability and performance of COIN.

 - 95 -

Appendix 4.1 Illustration of Query Mediation using SLD+Abduction Pro-
cedure

The SLD+Abduction procedure is first introduced by Cox and Pietrzykowski (1986); several
extensions (e.g., Shanahan, 1989; Decker, 1996) also exist. Goh (1997) extended this procedure and
applied it to query mediation. In fact, an example of using the procedure for query mediation is given
in Chapter 5 of Goh (1997). Maybe because the example is quite involved, some readers found it
difficult to follow. The example we gave in Section 4.5 is modest, but it is complicated with con-
straint handling using CHR rules.

The goal of this appendix is to use simple examples to illustrate how abduction is used for me-
diation. We will use the “wet grass” example to explain the difference between deduction and
abduction. Then we use a simple mediation to illustrate how abduction is used for query mediation.

In the ensuring discussion, background knowledge about SLD is necessary. This can be found in
any standard logic programming text, e.g., Lloyd (1987).

Roughly speaking, the SLD+Abduction procedure makes the following modification to the SLD
procedure: when the chosen resolvant (i.e., a predicate or a negation of a predicate to be resolved) is
an abducible predicate (which we call abducible for short), it does not attempt to resolve the abduci-
ble, instead, it puts the abducible into the constraint store. Each proof branch maintains its own
constraint store.

A4.1.1 The “Wet Grass” Example

Below is a logical theory T for “wet grass”:
wet_grass ← sprinkler_was_on.
wet_grass ← rained.

Let us consider query “← wet_grass”. In Figure 4.11 we show the SLD-trees of deductive proof as
well as abductive proof. For abduction, the abducibles are A = {sprinkler_was_on, rained}.

wet_grass

sprinkler_was_on rained

fail fail
(a) SLD-tree of deduction

wet_grass

sprinkler_was_on rained

□ □

∆={}

∆={} ∆={}

∆={sprinkler_was_on} ∆={rained}
(b) SLD-tree of abduction

Figure 4.11 SLD-trees for Deduction and Abduction

The SLD-tree of deductive proof is given in Figure 4.11 (a). The deductive answer will be false
because as seen in the SLD-tree, it cannot resolve either sprinker_was_on or rained (i.e., they are not
in the logical theory).

Figure 4.11 (b) shows the SLD-tree of abduction. The constraint store ∆ at each proof step is
shown in a shaded box. When sprinkler_was_on is selected as resolvant, because it is an abducible, it
is put into the constraint store of the proof branch. The other branch is similar. In the end, the

 - 96 -

constraint stores of all successful leaf nodes are collected to form the abductive answer, which is
{sprinkler_was_on} or {rained}.

A4.1.2 A Simple Mediation Example

We use a very simple example to illustrate how the basic ideas in the “wet grass” example are
applied to query mediation.

Consider a data source containing one relation r(Company, Profit), which records profits of dif-
ferent companies in 1’s of USD. A receiver wants to see the profits in 1000’s of USD. We call the
context associated with the source c1 and the receiver context c2. When the following SQL is issued
by the receiver:

Select Company, Profit from r;

the following mediated query is expected:
Select Company, Profit*1/1000 from r;

This scenario is illustrated in Figure 4.12, where we show the simple ontology, elevation from
the source to the ontology, and context descriptions.

monetaryValue

basic scaleFactor

Profit)Company,r (

skprofit)skcompany,r’ (

Profit)Company,r (

skprofit)skcompany,r’ (

c1 c1

10001scaleFactor

c2c1

10001scaleFactor

c2c1

Semantic relations

Primitive relations

Context descriptionsOntology

Figure 4. 12 Ontology, Contexts, and Source of Simple Mediation Example

Below are the F-logic rules for elevation (4.31), modifier specifications for contexts c1 and c2
(4.32 and 4.33), and component conversion for modifier scaleFactor (4.34).

).,())),(,2,,,(
)),(,1,,,(('

1

1
ProfitCompanyrProfitCompanyrcProfituemoetaryValskolem

ProfitCompanyrcCompanybasicskolemr
← (4.31)

].1@)[,()],(@[
|:),(,:

1111

1
→←→

−
cvalueOcrscaleFactoOcrscaleFactocrscaleFactoO

basicOcrscaleFactoluemonetaryVaO (4.32)

].1000@)[,()],(@[
|:),(,:

2222

2
→←→

−
cvalueOcrscaleFactoOcrscaleFactocrscaleFactoO

basicOcrscaleFactoluemonetaryVaO (4.33)

./*],,,,@[
|:

rsrsr MMUVVUMMCrscaleFactocvtM
luemonetaryVaM

=←→
− (4.34)

As described in Section 4.2.3, these rules can be translated into Prolog rules straightforwardly. For
illustration purpose, we will use these F-logic rules. Therefore, we will omit to show the correspond-
ing Prolog rules. Modifier declaration is also omitted here.

Recall the SQL will be translated to well-formed COIN query in Datalog, which is shown below:

answer(V3,V4) :- r’(V1’,V2’), value(V1’, c2, V3), value(V2’, c2, V4).

 - 97 -

The body of the query consists of the predicates for the abductive procedure to resolve. The
SLD+Abduction procedure will resolve the predicates according to the order they appear. In Figure
4.13 below we show the SLD-tree of the abductive mediation of this query.

r’(V1’,V2’), value(V1’, c2, V3), value(V2’, c2, V4) ∆={}

value(V1’, c2, V3), value(V2’, c2, V4) ∆={r(Company, Profit)}

value(V2’, c2, V4)

□

V2’[scaleFactor@c1 …], V2’[scaleFactr@c2 …], V2’[cvt@scalFactor,… V4]

V2’[cvt@scalFactor,c2,1,1000,Profit V4]

V4 = Profit *1/1000

∆={r(Company, Profit)}

∆={r(Company, Profit)}

∆={r(Company, Profit)}

∆={r(Company, Profit)}

∆={r(Company, Profit),
V4=Profit*1/1000}

1

2

3

4

5

7

r(Company, Profit), value(V1’, c2, V3), value(V2’, c2, V4) ∆={}

rule (4.31)

r/2 is abducible

V1’ is basic, rule (4.3)

rule (4.5)

6

modifier specifications, rules (4.32), (4.33)

component conversion, rule (4.34)

= is abducible

V3=Company

Figure 4.13 SLD-tree for Query Mediation of the Simple Example

In Figure 4.13, for each step we underline the predicate to be resolved, show the constraint store,
label the step with a number, and provide a brief explanation next to the number. We only show
variable bindings useful for query construction.

In step 1, semantic relation r’ is resolved to r/2 using the elevation rule (4.31).
In step 2, because r/2 is an abducible, it is removed and put into the constraint store.
In step 3, value predicate corresponds to the value method defined in Section 4.2.2. Because se-

mantic object V1’ is of type basic, it is resolved according to (4.3) and V3 is bound to “Company”
attribute of r/2.

In step 4, similar to step 3, but composite conversion for semantic object V2’ is introduced ac-
cording to (4.5). There is only one modifier, which is scaleFactor. Here we only show the predicates
for modifier specifications and the component conversion.

In step 5, to save space, we actually combine two steps that resolve the predicates for modifier
specifications in contexts c1 and c2. Modifier values are bound to modifier variables in the next
resolvant.

In step 6, the component conversion is resolved using the conversion rule for scaleFactor (4.34).
In step 7, because “=” is an abducible, it is removed and put into the constraint store. An empty

resolvant indicates the derivation is successful.
At the end of this successful derivation, a mediated query can be constructed using the variable

binding and the predicates in the constraint store:
answer(Company,V4) :- r(Company, Profit), V4 = Profit*1/1000.

We can then translate above mediated Datalog query to obtain the mediated SQL.

 - 98 -

Appendix 4.2 Time Representation using Temporal System

The temporal system introduced by Nogueira et al. (2004) provides a flexible representation of
temporal entities. Below we describe the system and illustrate its use as an internal time model. We
adapt their definition for temporal system as a Cartesian product of non-empty subsets of integers:

Definition 4.7 TS is a temporal system ⇔ :,,,,, 11 Ζ⊂∃Ν∈∃ nn TUTUkk LL nTUTUTS L×= 1 and

nikTU ii L,1, == . TUi is called a temporal unit. A time point in TS is a tuple <x1, …, xn> TS∈ . ■

In the above definition, N is the set of natural numbers, and Z is the set of integers. The follow-
ing three examples illustrate how various temporal systems can be defined.

Example 4.1 (Annual system) An annual system AS with only year in Gregorian calendar can be
defined as AS = Year, where Year = {…, -1, 1,…}, and –i is interpreted as the year i BC, i Ν∈ . A
tuple such as <1999> represents the year 1999.

Example 4.2 (24-hour clock) The 24-hour clock system H with a granularity of minute can be
defined as H = Hour× Minute, where Hour = {0, …, 23} and Minute = {0, …, 59}. A tuple such as
<12, 35> represents 12:35 in the afternoon.

Example 4.3 (Gregorian Date) A Gregorian date system D can be defined as D = Year× Month× Day,
where Year is as specified in Example 4.1 Month = {1, …, 12}, and Day = {1, …, 31}. In addition,
other constraints that ensure the validity of a tuple can be provided as part of the definition, e.g.,
number of days in a month or a leap year. A example tuple <1998, 12, 31> represents the day
“December 31, 1998”.

Example 4.4 (Date and time) A system DT with Gregorian date, UTC time, and a granularity of
second can be defined as DT = Year× Month× Day× Hour× Minute× Second, where Year, Month,
Day, Hour and Minutes are specified as in the previous examples, and Second = {0, …, 60}. In
addition, other constraints that ensure the validity of a tuple can be provided as part of the definition,
e.g., number of days in a month, leap year, leap second. A tuple such as <1998, 12, 31, 23, 59, 60>
represents the last (leap) second in the year 1998.

Nogueira et al. (2004) introduce two basic binary relations between time points: equal and be-
fore. They are defined on the premise that the temporal units in a temporal systems are ordered in
such a way that the granularity of TUi is greater than TUi+1. Each of the two relations has a weak
form and a strong form: the strong form requires the points are from the same temporal system, and
the weak form only requires that the first temporal unit of each point is of the same granularity. We
introduce the weak form, which is more general than the strong form.

Definition 4.8 (Weak equal) Let >=< mxxx L
r ,1 and >=< nyyy ,,1 L

r be two time points and p =

min(m, n), ii yxyxpi =⇔=∈∀
rr:],1[.

 - 99 -

Definition 4.6 (Weak before) Let >=< mxxx L
r ,1 and >=< nyyy ,,1 L

r be two time points,

],1[),min(jinmj ∈∀≤∃ jjii yxyxyx <∧=⇔<
rr .

Other (weak) relations can be defined using the two basic relations. An application specific time
model consists of a temporal system or multiple systems with the same highest granularity and a set
of binary temporal relations over time points in the temporal system(s). Such a model can be
straightforwardly implemented in Prolog where a tuple is represented as a list.

 - 100 -

 - 101 -

“Never believe an observation until it is confirmed in theory.”
− Francis Crick

Chapter 5

The Flexibility and Scalability of COIN

The problem of semantic interoperability is not new, and people have tried to achieve semantic
interoperability in the past using various approaches. These approaches have sometimes been
reasonably successful in limited applications, but have proven either very costly to use, hard to scale
to larger applications, or both. COIN is an attempt to provide an approach that reduces the cost and
complexity of achieving semantic interoperability.

In this chapter, we provide a systematic evaluation of the COIN approach in terms of its flexibil-
ity and scalability. We first briefly discuss our evaluation framework. Then we give an overview of
the traditional and still commonly practiced approaches to dealing with semantic interoperability. In
the last section, we characterize and compare the traditional approaches with the COIN approach.
This systematic analysis allows us to formally show that the COIN approach is flexible and scalable.

5.1 Evaluation Framework

Although there has been extensive work to develop various semantic interoperability solutions, little
has been done to systematically evaluate these solutions. Previous work on interoperability evalua-
tion tends to be either ad-hoc or too narrowly focused. For example, in some of the surveys (Wasche,
2001; Kashyap and Sheth, 2000), we can only find informal evaluations using ad-hoc and inconsis-
tent criteria. While El-Khatib et al. (2000) and Hammer et al. (2005) develop testing cases useful for
consistent evaluation of different information integration approaches, their focus is on testing
different approaches’ capability of reconciling certain kinds of heterogeneity, not on evaluating the
amount of effort required to implement the approaches.

Below, we present our preliminary task-based evaluation framework. It is motivated by Rosen-
thal et al. (2001), where eight tasks of data integration are identified. In our framework, instead of
having the eight fine-grained tasks as in Rosenthal (2001), we group them into three major tasks for
achieving semantic interoperability amongst disparate systems36:

• Knowledge acquisition: to acquire knowledge about all systems engaging in information
exchange.

36 Recall that we use system, data source, and receiver application interchangeably.

 - 102 -

• Implementation: to encode the acquired knowledge, and implement necessary conversions as
a set of instructions on how to reconcile semantic differences between systems.

• Execution: to fulfill a given information exchange task by determining and executing all nec-
essary conversions to obtain data instances.

There are two kinds of knowledge. The first is about the similarity of the data elements in differ-
ent systems so that correspondences amongst them can be established. For example, “price” in
system A and “charge” in system B are similar and correspond to each other. The second is what we
call context knowledge that describes the subtle differences amongst similar data elements. For
example, “price” in system A may be in USD, not including taxes or shipping charges, while
“charge” in system B may be in thousands of South Korean Won, including taxes and shipping
charges.

The acquisition of both kinds of knowledge is a labor-intensive process. There has been exten-
sive research that develops automatic schema matching algorithms (Rahm and Bernstein, 2001) to
reduce the amount of human effort required for identifying correspondences, thus reducing the effort
for acquiring similarity knowledge. Several commercial tools such as Cupid from Microsoft (Mad-
havan et al., 2001), Clio from IBM (Miller et al., 2001), and ProfileStage from IBM are also
available for this purpose. Even though these algorithms and tools are helpful, substantial human
involvement is still needed to verify the correspondences suggested by software. More importantly,
these algorithms and tools are only good at identifying similarities; they cannot identify the differ-
ences amongst similar data elements, nor can they infer how the differences can be reconciled. Thus,
knowledge acquisition will continue to be a labor-intensive process. A recent survey (Seligman et al.,
2002) on time distribution among different tasks of data integration projects shows that nearly 30%
of the time is spent on knowledge acquisition.

It is even more labor-intensive to encode the acquired knowledge and implement all necessary
conversions. There are different approaches to implementing the conversion. With some of the
traditional approaches, which we will discuss latter, this process can account for up to 70% of the
costs of an integration project (Doughty, 2004).

The last task (i.e., execution) is carried out by software, which executes appropriate conversions
to convert data instances. It is desirable that the algorithm of the software is efficient in terms of its
time and space complexity (e.g., it is desirable that the algorithm always terminates in polynomial
time with a correct answer).

This task breakdown allows us to separate two aspects to consider when evaluating semantic
interoperability approaches. One concerns human efforts involved, the other concerns the perform-
ance of the software algorithm. Intuitively, the two aspects distinguish between “how hard humans
have to work” and “how hard computers have to work” to achieve semantic interoperability. Appar-
ently, tradeoffs can be made between “human efforts” and “computer efforts”. For example, one
alternative to achieving semantic interoperability is to develop a global standard and have all systems
implement the standard, in which case all systems are semantically interoperable by design. With
this approach, most of the work is upfront human effort on developing and implementing the
standard.

 - 103 -

Different criteria can be developed for evaluating approaches to fulfilling different tasks. In this
chapter, we will develop the criteria for evaluating various approaches to fulfilling the second task,
i.e., implementation.

The knowledge acquisition task generally can be decoupled from the other two tasks. The efforts
required for knowledge acquisition should not vary among interoperability approaches. However
different methodologies can be adopted for knowledge acquisition. Future research should develop
the criteria for evaluating the effectiveness of different methodologies for knowledge acquisition.

The criteria for evaluating algorithms are well established. Work has been done elsewhere to
evaluate the time complexity of algorithms useful for achieving semantic interoperability. For
example, Halevy (2001) and Lenzerini (2002) review the complexity results of query rewriting
algorithms, used by data integration approaches that rely on the view mechanism of databases. Eiter
et al. (1997) presents their complexity results of abductive reasoning, which we use in the COIN
approach.

In the next section, we describe several traditional approaches to semantic interoperability. Fol-
lowing that, we present the criteria for evaluating different approaches to fulfilling the
implementation task, and use the criteria to evaluate the traditional approaches as well as the COIN
approach.

5.2 Traditional Approaches to Semantic Interoperability

We consider semantic interoperability as the capability of meaningfully exchanging information
amongst a set of sources and receivers. This can be achieved in a number of ways, e.g., by develop-
ing and maintaining all necessary conversions for reconciling semantic differences, or by adopting
certain standards that would eliminate semantic heterogeneity in the sources all together (assuming
the standard can be enforced). In this section, we discuss three widely practiced approaches to
achieving semantic interoperability.

5.2.1 Brute-force Data Conversions (BF)

The BF approach directly implements all necessary conversions in hand-coded programs. With N
data sources and receivers, N(N-1) such conversions need to be implemented. When N is large, these
conversions become costly to implement and very difficult to maintain. This is a labor-intensive
process; as mentioned earlier, nearly 70% of integration costs come from the implementation of
these data conversion programs (Doughty, 2004)

This approach might appear sufficiently inefficient that one might be surprised at how common
it is. The reason is that usually the conversion programs are written incrementally – each individual
conversion program is produced in response to a specific need. Writing “only one conversion
program” does not seem like a bad idea – but over time, this process continues toward the N(N-1)
conversion programs that must be maintained and updated.

A possible variation of the approach is to group sources that share the same set of semantic as-
sumptions into one context. Much like the lifting axioms in McCarthy and Buvač (1997) and Guha
(1995), conversion programs need to be implemented for each pair of the contexts. The number

 - 104 -

conversions is n(n-1), with n being the number of contexts. The approach allows multiple sources in
the same context to share the same conversion programs, thus it has the potential of reducing the
number of conversion programs. However, it does require the overhead of establishing and maintain-
ing the correspondences between the sources and the contexts37. We refer to the original approach
and this variation as BFS and BFC, respectively. These approaches and two other standard-based
approaches discussed below are illustrated schematically in Figure 5.1 and elaborated further in the
remainder of the section.

1 2

6

5 4

3

1 2

6

5
context_b

context_a

4

3
context_c

4

3
context_c

1 2

6

5 4

3Interchange
standard

1 2

6

5 4

3Global
standard

BFS BFC

GS IS

Figure 5.1 Traditional approaches to Semantic Interoperability

Our illustration in Figure 5.1 uses six data sources, some of which share the same context (i.e.,
they do not have semantic differences in data). A dotted arrow represents a program that implements
all necessary conversions that convert data in the source for the receiving system to which the arrow
points.

5.2.2 Global Data Standardization (GS)

In a collaborative environment, if the parties engaging in information exchange could develop and
maintain a single data standard that defines a set of concepts and specifies the corresponding repre-
sentation, all semantic differences would disappear and there would be no need for data conversion.
Unfortunately, such standardization is usually infeasible in practice for several reasons.

Often there are legitimate needs for having different definitions for concepts, and storing and
reporting data in different formats. For example, while the metric units are used in most parts of the
world, people in the U.S. still use and find it convenient to use English units38. Since most integra-
tion and information exchange efforts involve many existing systems, agreeing to a standard often
means someone has to change his/her current implementation, which creates disincentives and makes
the standard development and enforcement extremely difficult. This difficulty is exacerbated when

37 COIN has similar requirement, but COIN provides a systematic method of describing contexts and associat-
ing sources with contexts. Other features in COIN significantly improve context and conversions sharing.
38 Arguments for metric units can be found at http://www.metric4us.com/; the site also lists sites with argu-
ments against metric unit. The NIST also has a program (http://ts.nist.gov/ts/htdocs/200/202/mpo_home.htm),
promoting the adoption of metric unit in the U.S.

 - 105 -

the number of the data elements to be standardized is large. For example, in 1991, the Department of
Defense (DoD) initiated a data administration program that attempted to standardize nearly one
million data elements39; by the year 2000, it only managed to register 12,000 elements, most of
which were infrequently reused. After a decade of costly effort, the DoD realized the infeasibility of
having a single standard and switched to an alternative approach that allows different communities
of interest to develop their own standards (Rosenthal, et al., 2004).

The latter approach by the DoD manifests the reality of standard development, i.e., there are of-
ten competing or otherwise co-existing standards. For example, there are multiple standards for
airport codes and for country codes. Different systems can potentially choose different standards to
implement. Thus, in most cases, we cannot hope that semantic differences will be standardized away;
data conversion is inevitable.

5.2.3 Interchange Data Standardization (IS)

The data exchange systems sometimes can agree on the data to be exchanged, i.e., standardizing a set
of concepts as well as their interchange formats. The underlying systems do not need to store the
data according to the standard; it suffices as long as each data sender generates the data according to
the standard. That is, this approach requires that each system have conversions between its local data
and an interchange standard used for exchanging data with other systems. Thus each system still
maintains its own autonomy. This is different from the global data standardization, where all systems
must store data according to a global standard. With N systems exchanging information, the Inter-
change Standardization approach requires 2N conversions. The IS approach is a significant
improvement over the brute-force approach that might need to implement conversions between every
pair of systems.

Similar to BFC approach, there could be an ISC approach that groups systems that share the same
context together to share conversion programs. With n unique contexts, the ISC approach requires 2n
conversions. When there are no systems sharing the same context, ISC is the same as the original IS
approach. In the ensuing discussion, we mainly focus on the original IS approach.

This approach has been used for business transactions, e.g., Electronic Data Interchange (EDI)
and various Business-to-Business (B2B) trading standards. In the military setting, the U.S. Message
Text Format (MTF) and its NATO equivalent, Allied Data Publication-3, have over 350 standard
messages that support a wide range of military operations. This standard has been used for over 50
years and currently an XML version is being developed (Miller et al., 2003). As a recent example,
the DoD standardized exchange format of weather related data, which consists of about 1,000
attributes40. This standard has been successfully used by several systems that exchange weather data
(Rosenthal, et al., 2004). Similarly, the XML-based Cursor-On-Target (COT) standard, which

39 Since it was necessary to accommodate existing systems with different contexts, there were data elements
for fuel-load-in-liters and fuel-load-in-gallons, without explicit acknowledgement of the relationship between
these elements.
40 This is also known as the “communities of interests” approach, where organizations come together to
develop standards for particulars domains in which they share common interests. These standards are equiva-
lent to interchange standards when the organizations provide translations between the conventions in existing
systems and the standards.

 - 106 -

consists of 3 entities and 13 attributes, has been used successfully by over 40 systems to exchange
targeting information (Rosenthal, et al., 2004).

Although this approach has certain advantages, e.g., local autonomy and a smaller number of
conversions required, it also has several serious limitations. First, after all parties have had a clear
understanding about the domain and decided what data elements should go into the standard (which
is part of knowledge acquisition effort), they have reach an agreement on the data definition and data
format. Reaching such an agreement can be a costly and time consuming process. It took the DoD
five years to develop the interchange standard for weather data41. Furthermore, in many cases it is
difficult to foresee what data needs to be exchanged or how the requirements might change over time,
which makes it inappropriate to have a fixed standard. When the information of interest is not
specified in the standard, ad-hoc conversions have to be implemented. Besides, any change to the
interchange standard affects all systems and the existing conversion programs. And lastly, the
approach can involve many unnecessary data conversions. For example, when the currency for price
of the interchange standard is US dollars, and a source and receiver use South Korean Won, price in
the source will be first converted to US dollars, then converted back to South Korean Won. Such
unnecessary conversions can be avoided in the BF approach.

5.2.4 Summary of Traditional Approaches

Each of the three traditional approaches has certain drawbacks that make them inappropriate for
integrating information from a large number of data sources. These weaknesses are summarized
below:

• Brute-force data conversions (BF): this requires a large number of hand-written conversions
that are difficult to maintain.

• Global Data Standardization (GS): it is costly and sometimes impossible to develop a global
standard. In addition to legitimate reasons of having multiple standards, there are techno-
logical difficulties and organizational resistance to a single standard.

• Interchange Standardization (IS): the standard is static, only suitable for routine data sharing
and it still requires a large number of hand-written conversions.

In addition, these approaches lack flexibility to adapt to changes because the data semantics is
hard-coded in the conversions for BF, in the standard in GS, and in both the conversions and the
standard in the case of IS.

The COIN approach overcomes these shortcomings by automating the code generation process.
In addition, as discussed in Chapter 4, the concepts in the shared ontology in COIN are high level
concepts that require minimal commitment; the parties engaging in information interchange still
have the freedom to further refine the concepts using context descriptions. As we will see next, this
approach allows for much greater flexibility and scalability.

In the preceding discussions, we have used the term conversion quite loosely. In the rest of the
discussion, we differentiate four types of conversions:

41 Although now used by several DoD systems, it has not been adopted by all DoD legacy systems nor non-
DoD systems (e.g., in private sector or foreign governments) that may need to interoperate with DoD systems.

 - 107 -

(1) a component conversion is defined for a modifier between two modifier values in the
COIN approach; it reconciles one aspect of semantic differences of a single data type
(e.g., a conversion that only reconciles differences in currency of profit);

(2) a compound conversion reconciles all aspects of semantic differences of a single data
type (e.g., a conversion that reconcile differences in all aspects of profit, e.g., definition,
scale factor, as well as currency);

(3) a composite conversion combines multiple component conversions to reconcile the se-
mantic differences of all data types involved in a specific user query, which may access
multiple data sources (e.g., a conversion that reconciles differences in profit, sales, and
number of employee, supposing these data types are requested in a user query); and

(4) a comprehensive conversion reconciles the semantic differences of all data types in two
systems or between a system and an interchange standard (e.g., a conversion that recon-
ciles the differences in all data types of two systems, which could have dozens or even
hundreds of data types).

These conversions are listed in an increasing order in terms of the amount of effort required to
develop and maintain them.

5.3 Flexibility and Scalability – Comparison of Different Approaches

In this section, we compare the traditional approaches with the COIN approach to show that the
COIN approach has greater flexibility and scalability. When there are no sources that share the same
context, then BFC is the same as BFS; therefore, in the rest of the analysis, we will not differentiate
the two types of BF approach.

5.3.1 Flexibility Analysis

We use the term flexibility to collectively refer to two important capabilities of accommodating
changes: adaptability is the capability of accommodating changes, such as semantic changes within a
data source with minimal effort; extensibility is the capability of adding (or removing) data sources
with minimal effort.

In this Thesis, we do not develop protocols for directly quantifying the amount of effort. Instead,
we use the number of conversions that need to be developed and maintained as a proxy for this effort.
Recall that we differentiate a comprehensive conversion from a component conversion, and a
comprehensive conversion requires significantly more effort to develop and maintain than a compo-
nent conversion.

Flexibility of Traditional Approaches

The Brute-Force (BF) data conversion approach has the least flexibility. With N sources, a change in
any source would potentially affect 2(N-1) comprehensive conversions, i.e., N-1 comprehensive
conversions converting from the changing source to the other sources and vice versa. Adding or
removing a source has similar effects.

This problem is somewhat reduced with the Interchange Standardization (IS) approach. But it
still requires re-programming to handle changes, which can be tedious and error-prone. Especially

 - 108 -

when the interchange standard is changed, then the 2N comprehensive conversions need to be
updated to accommodate the change. Adding or removing a source requires adding or removing two
comprehensive conversions.

The Global Data Standardization (GS) approach also lacks flexibility because any change re-
quires agreement by all participants and this is a difficult and extremely time consuming process. In
addition, all systems need to implement the changes, which sometimes cause disruption in operations.
Only a source that implements the standard can be added to exchange information with existing
sources.

Flexibility of the COIN Approach

The COIN approach requires a shared ontology, which is expected to be easier to develop and agree
on because it is not as detailed as the agreements needed in the GS and IS approaches. More impor-
tantly, the COIN approach does not require an agreement on detailed definitions of the concepts in
the shared ontology and their corresponding representations in sources and receivers; disagreements
are allowed and are captured as context descriptions by assigning values to modifiers in the ontology.

This is an important distinction. As noted earlier, the knowledge acquisition task is generally the
same for all these approaches, and COIN does require that the detailed definitions of the concepts
used in the sources and receivers be captured. However, COIN captures these detailed definitions in
the (localized) context descriptions. This both eliminates the need for global agreements on these
detailed definitions, and provides a modular way of capturing the detailed knowledge required to
define the conversions between these detailed definitions. This characteristic of the COIN approach
to ontology is illustrated in Figure 5.2, using a simple ontology of company profit.

Profit

Net Profit Gross Profit

In USD In EUR… In USD In EUR…

In 1’s In 1M’s… … In 1’s In 1M’s…

companyprofitOf

(a) a fully specified ontology of profit

basic

Profit

currency scaleFactor
kind

companyprofitOf

(b) a COIN ontology of profit
Figure 5.2 Fully Specified Ontology v. COIN Ontology.

The fully specified ontology in Figure 5.2 contains possible variations of the concept profit, or-
ganized in a multi-level and multi-branch hierarchy. Each leaf node represents a most specific profit
concept. For example, the leftmost node at the bottom represents a profit that is a “net profit in 1’s of
USD”. In contrast, the COIN ontology contains only concepts in higher levels, further refinements of
these concepts do not appear in the ontology; rather, they are specified using modifiers.

Compared with the fully specified approach, the COIN approach has several advantages. First, a
COIN ontology is usually much simpler, thus easier to manage. Second, it facilitates consensus
development, because it is relatively easier to agree on a small set of high level concepts than to
agree on every piece of detail of a large set of fine-grained concepts. And more importantly, a COIN
ontology is much more adaptable to changes. For example, when a new concept “net profit in

 - 109 -

billions of South Korean Won” is needed, the fully specified ontology needs to be updated with
insertions of new nodes. The update requires the approval of all parties who agreed on the initial
ontology. In contrast, the COIN approach can accommodate this new concept by adding new context
descriptions without changing the ontology.

Regardless of the approach taken for ontology development, conversions need to be specified to
convert data between variations of the same higher level concept. The approach taken, however, may
affect the provision of the conversions. For example, the fully specified approach would likely invite
a provision of pair-wise conversions amongst the leaf nodes, leading to a solution similar to the BF
approach. As defined earlier, such conversions are compound conversions, often combining several
component conversions, e.g., the conversion from the leftmost node to the rightmost node on the leaf
level would reconcile the differences in definition (i.e., net profit and gross profit), currency (i.e.,
USD and EUR), and scale factor (i.e., 1 and 1M).

In contrast, conversions in the COIN approach are much finer-grained to allow for high reusabil-
ity. They are component conversions defined for each modifier in the ontology. We will see in the
next section that the number of component conversions is not directly dependent on the number of
sources. All pair-wise comprehensive conversions needed in BF and IS approaches are dynamically
generated from these component conversions. In most cases, changes in existing source and the
addition of new sources are accommodated by updating and adding declarative rules, which is much
simpler than updating comprehensive conversions. Therefore, the COIN approach has greater
flexibility.

Specifically, changes in existing sources and addition of new sources can be accommodated by
one of the following responses in the COIN approach, listed roughly in an ascending order of effort
involved:

(1) updating or adding modifier definitions;
(2) (1) + updating or adding component conversions;
(3) (2) + adding new modifiers, their definitions, and their component conversions;
(4) (3) + adding semantic types; and
(5) redesigning the ontology.
Responses (1)-(4) involve the updating of declarative rules or some programming of component

conversions implemented as callable functions. For example, the concept “net profit in billions of
South Korean Won” can be accommodated by response (1) if the existing component conversions
are parameterized (we discuss parameterized component conversions in the next section). Only when
the changes are such that a redesign of the ontology is needed will the COIN approach require
significant effort, in which case the traditional approaches need to rewrite all comprehensive conver-
sions or redesign a global standard.

5.3.2 Scalability Analysis

Scalability refers to the capability of achieving and maintaining semantic interoperability with the
amount of effort not growing dramatically with the number of participating sources and receivers. As
we know from earlier discussion, most of the effort is in creating and maintaining the conversions.

 - 110 -

Therefore, we use the number of conversions that need to be implemented and maintained over time
as a measurement of the scalability.

According to our measurement, the GS approach is scalable because it does not need any conver-
sion at all. But if we consider the standard development process as a semantic reconciliation process
performed by human designers, significant human efforts are involved in the process although such
efforts are difficult to quantify. In practice, it is often impossible to establish a global standard when
there are a large number sources participating in information interchange. The rest of this analysis
will focus on the other approaches.

We have informally discussed the scalability of the two other traditional approaches. We sum-
marize them below, followed by a detailed analysis on the scalability of the COIN approach.

Proposition 5.1 (Scalability of BF) The number of comprehensive conversions needed for achieving
semantic interoperability among N sources with the BF approach is N(N-1), which is O(N2). ■

Explanation: Each source needs to perform data conversions with the other N-1 sources; there are N
sources, thus a total of N(N-1) comprehensive conversions need to be in place to ensure pair-wise
information exchange, which is O(N2). ■

Proposition 5.2 (Scalability of IS) The number of comprehensive conversions needed for achieving
semantic interoperability among N sources with the IS approach is 2N, which is O(N). ■

Explanation: For each source there is a conversion to the standard and another conversion from the
standard to the source. There are N sources, so the total number of conversions is 2N = O(N). ■

Proposition 5.3 (Scalability of COIN) Suppose the semantic heterogeneity of N sources can be
described using an ontology that has M modifiers with the ith modifier having ni unique values,

Mi ≤≤1 . The number of component conversions needed for achieving semantic interoperability

with the COIN approach is ∑ −
=

M

i
ii nn

1
)1(, which is)(2

kMnO , or)(2
knO if m is fixed, where

}1|max{ Minn ik ≤≤= . ■

Explanation: As seen in Chapter 4, component conversions in COIN are defined for each modifier,
not between pair-wise sources. Thus the number of component conversions depends only on the
variety of contexts, i.e., number of modifiers in the ontology and the number of distinct values of

each modifier. In worst case, the number of component conversions to be specified is ∑ −
=

M

i
ii nn

1
)1(.

This is because in worst case for each modifier, we need to write a conversion from a value to all the
other values and vice versa, so the total number of conversions for the ith modifier is ni(ni-1). nk is the
maximum of the number of unique values of all modifiers. When both M and nk approach infinity,

)()1(2

1
k

M

i
ii MnOnn =∑ −

=
; for any given ontology with finite number of modifiers, the number of

component conversions is)(2
knO , i.e.,)()1(, 2

1
k

M

i
ii nOnnM =∑ −∀

=
. ■

 - 111 -

 Recall from Chapter 4 that in a component conversion atom],,,,@[21 ⊥⊥ → tttttmcvtt mrmsc , tms

and tmr are terms representing modifier m’s values in the source context and the receiver context,
respectively. A term can be a constant or variable. Certain component conversions use variables for
the two terms; such component conversions can convert for all possible valid modifier values. For
example, (4.13) and (4.14) for date format and currency conversions are such conversions. We call
such component conversions parameterized component conversions. If the component conversions
of a modifier are parameterizable, we only need to specify one parameterized component conversion
for the modifier.

A collection of externally defined functions called by the component conversions can be seen as
a conversion library. The COIN approach takes the advantage of this library by automating the
selection, composition, and parameter instantiation of the functions in the library.

With the BF and IS approaches, a library with each function specializing a component conver-
sion often does not exist. For example, if there is a need to convert profit data from net profit in
billions of South Korea Won to gross profit in 1’s of USD, the chances are that this will be imple-
mented as one compound conversion using some program, which is rarely reused elsewhere. The
program actually implements several component conversions, e.g., a parameterized conversion for
reconciling currency differences, one for scale factor, and one or more for profit definition. These
component conversions in the COIN approach are reused to compose many other composite conver-
sions as needed. Even if such a library existed, the decisions on what functions should be called with
what parameters are hard coded in the BF and IS approaches as oppose to being automatically
generated in the COIN approach.
 When parameterization is difficult, we can exploit certain relationships among component
conversions. In cases where a set of component conversions essentially implement a set of inter-
related equations, COIN can use symbolic equations solvers to generate conversions that are not
explicitly specified (Firat et al., 2002; Firat, 2003). For example, suppose we have three definitions
for price: (A) base price, (B) tax included price, and (C) tax and shipping & handling included price.
This can be modeled by using a price concept in the ontology, together with a modifier for price
having a distinct value for each of these definitions. With known equational relationships among the
three price definitions42, and only two conversions (1) from base_price to base_price+tax (i.e., A to
B) and (2) from base_price+tax to base_price + tax + shipping & handling (i.e., B to C), the COIN
mediator can generate the other four conversions automatically (A to C and the three inverses). Thus
the number of conversion definitions for a modifier can be reduced from n(n-1) to n-1, where n is the
number of unique values of the modifier. The requirement is that the component conversions for the
modifier are invertible, i.e.,

],,,,@[],,,,@[1221 ⊥⊥⊥⊥ →↔→ tttttmcvtttttttmcvtt msmrcmrmsc

The following propositions summarize above discussions:

Proposition 5.4 (Scalability of COIN, parameterization) When the component conversions for a
modifier are parameterizable, only one parameterized component conversion needs to be specified

42 Such relationships can be found in business rules that specify, say, how to compute taxes from a tax-included
price. The component conversions represent such business rules.

 - 112 -

for the modifier. If the component conversions of all M modifiers are parameterizable, the COIN
approach only needs M parameterized component conversions.

Proposition 5.5 (Scalability of COIN, inversion) When all component conversions are invertible, the

COIN approach needs ∑ −
=

M

i
in

1
)1(component conversions.

To put the results in perspective, let us consider a scenario of 200 agencies in a coalition of
countries sharing counterterrorism data. Suppose there are 50 types of data such as subject height,
arrival airport, meeting location, etc. The data is not standardized across the agencies. Assume that
each type of the data has different representations and semantic assumptions that can be represented
by a modifier with 3 unique values in the COIN approach. Each agency may obtain data from all the
other agencies to perform counterterrorism analysis. If we consider each agency as a source, this is a
problem of enabling semantic interoperability amongst 200 sources. According to the scalability
results:

• BF approach requires 39,800 comprehensive conversions
• IS approach requires 400 comprehensive conversions
• COIN approach requires 300 component conversions in the worst case, or 100 invertible

component conversions, or 10 parameterized component conversions

Clearly, the COIN approach has much greater scalability than BF and IS approaches.

5.3.3 Implication of Temporal Extensions

Recall that when a source has time-varying semantics, similar data at different time periods may be
interpreted differently. For example, in the Frankfurt stock price source, stock prices on or before
“December 31, 1998” are in DEM, and those on or after “January 1, 1999” are in EUR.

Time-varying semantics may be handled in several ways. With the BF or IS approach, one pos-
sibility is to write code in the comprehensive conversions to determine appropriate reconciliations
corresponding to different time periods. Although the flexibility and scalability results are the same
as previously discussed, the comprehensive conversions become much more convoluted with the
extra code that deals time-varying semantics, making the conversions more difficult to maintain.

Alternatively, a source with time-varying semantics can be partitioned a priori into multiple
sources, each having static semantics. For example, the Frankfurt stock prices source can be parti-
tioned into two (virtual) sources, with one having data on and before “December 31, 1998”, and the
other having data on or after “January 1, 1999”. While this alternative eliminates the code to deter-
mine different reconciliations for different time periods, it increases the number of (virtual) sources,
therefore, adversely impacts the scalability of BS and IS approaches.

The temporal extensions to the existing COIN approach overcome these problems. Time-varying
semantics in a source is described declaratively using modifiers that can have different values in
different time periods. Using these descriptions, the extended COIN reasoning mechanism can
determine the time periods during which there is no time-varying semantics, and for each such
period, a set of component conversions can be used to reconcile semantic difference. As a result, the
component conversions can be provided the same way as in the cases where no source has time-

 - 113 -

varying semantics. In addition, the reasoning mechanism’s capability of determining time periods of
static semantics eliminates the need for a priori partitioning of data sources. Thus, the overall effect
of the temporal extensions is that the flexibility and scalability results for COIN, as presented in the
previous section, remain unchanged when sources have time-varying semantics.

 - 114 -

 - 115 -

 “The exciting thing is serendipitous reuse of data: one person puts data up there for one thing, and
another person uses it another way.”

− Tim Berners-Lee

Chapter 6

Public Policy for Database Protection and Data
Reuse

There is an ever increasing amount of electronically accessible data, especially on the Internet and
the Web. To a certain extent, the Web has become the largest data repository consisting of sources
with semantic heterogeneity. The accessibility of the Web and a variety of technologies, including
COIN’s semantic interoperability technology, allow someone to easily create new databases by
systematically extracting and combining contents of other sources. In fact, we demonstrated in Zhu
et al. (2002b) that using the Cameleon (Firat et al., 2000) data extraction technology and the COIN
mediation technology, we can create a database to provide a global price comparison service. The
extraction technology allows us to extract and reuse price data from other web sources; the COIN
mediation technology subsequently reconciles semantic difference amongst disparate sources and
diverse users.

While many technology-enabled data reuse activities create value for society, these activities
may be against the interests (e.g., financial interests) of the source owners whose data has been
reused. This conflict has infused debate about providing legal protection to non-copyrightable
database contents43 and regulating data reuse activities.

In formulating public policy on this issue, one should consider various stakeholders and different
factors related to the value of data and the value created from data reuse. There can be many stake-
holders, among which database creators, data reusers, and the consumers of the creator and/or reuser
database products are the primary ones. One of the important factors to consider in policy formula-
tion is the financial interests in database contents. For example, a creator who invested in creating a
database is interested in recouping the investment using the revenues the database helps to generate.
The revenues can be reduced when a reuser creates a competing database by extracting the contents
from the creator’s database. Thus creators would like to have certain means of protecting the

43 A database can contain copyrightable contents, e.g., a database containing MP3 songs. In this cause, the
reuse of the contents is regulated by copyright law. Copyright laws in different jurisdictions may differ in the
minimal requirements for database contents to copyright protection. In the U.S., data records about certain
facts, e.g., phone number listings in white pages, are not copyrightable.

 - 116 -

contents in their databases. Without adequate protection, the incentives of creating database could
diminish. There may be other reasons for having restrictions on data reuse. For example, a database
creator may want to restrict reuses as a means of ensuring data quality because certain reuses can
potentially introduce inaccuracies in data. Not all reuses are for financial purposes only, in which
case, a reuser may view restrictions on reusing publicly accessible data as a violation of “freedom of
speech” right, an essential element of human rights protected by international law. Besides, privacy
concerns often arise when the data contains personal information. Furthermore, people from different
cultures and jurisdictions often hold different views, and thus attach different values (not necessarily
financial values), to these various factors.

While all factors involved are worthwhile for study, it is beyond the scope of this chapter to pro-
vide a comprehensive analysis on all of them. Rather, we focus on the financial interests in non-
copyrightable database contents, and analyze the case where the database is publicly accessible and
no enforceable contract exists to restrict data reuse. We mainly address the issue of finding a reason-
able balance between incentive protection and value creation through data reuse, i.e., determining
appropriate protection to database contents so that the creators still have sufficient incentives to
create databases, and at the same time, value-added data reuse activities are accommodated. We
achieve this objective by developing an economic model, using the model to identify various
conditions, and determining policy choices under these various conditions.

6.1 Introduction – Legal Challenges to Data Reuse

As mentioned earlier, technologies such as web data extraction and context mediation have made it
much easier to create new databases by reusing contents from other existing databases. New business
practices consequently emerged to take advantage of these capabilities. For example, Bidder’s Edge
created a large online auction database by gathering bidding data of over five million items being
auctioned on more than 100 online auction sites, including the largest online auction site eBay.
Similarly, mySimon built an online comparison shopping database by extracting data from online
vendors. Priceman provided an improved comparison shopping service by aggregating data from
over a dozen comparison databases including mySimon. There are also account aggregators that
gather data from multiple online accounts on behalf of a user and perform useful analyses, e.g.,
MaxMiles allows one to mange various rewards program accounts and Yodlee aggregates both
financial and rewards program accounts. Common to these aggregated databases is that they add
value by providing ease of use of existing data, either publicly available or accessible on behalf of
users (e.g., through the use of their user IDs and passwords). Various types of data reuse and the
business strategies for data reuse can be found in Madnick and Siegel (2002).

Unfortunately, these value added data reusers have faced serious legal challenges for the data
they extracted. For example, EBay won a preliminary injunction against Bidder’s Edge and the two
firms later settled the case. mySimon sued Priceman and the latter ceased to operate for fear of legal

 - 117 -

consequences. There have been a few other cases44. The legal principles commonly used in the
plaintiff claims include copyright infringement, trespass to chattels, misappropriation, violation of
federal Computer Fraud and Abuse Act, false advertisement, and breach of contract45. Since none of
the cases reached a definite conclusion, it is still a question whether it is legal to reuse publicly
available or otherwise accessible factual data in value creating activities. Although the issue of
reusing facts existed long before the Web became pervasive, the difficulty in applying the laws that
predate the Web and the ease of data reuse in recent years has given the lawmakers a certain sense of
urgency to resolve the issue by creating a new database protection law.

One of the purposes of such a law is to preserve the incentives of creating databases by provid-
ing legal protection to the investment in databases. This will inevitably run afoul of the societal
interests in advancing knowledge by allowing reuse of facts in databases (Samuelson, 1996). To
resolve this conflict, the new law has to strike the right balance between preserving the incentives of
database creation and ensuring adequate access for value creating data reuse.

Debate in the past and discussions in existing literature (Samuelson, 1996; Richman and
Samuelson, 1997; Sanks, 1998; Maurer, and Scotchmer, 1999; Reichman and Uhlir, 1999; O'Rourke,
2000; Lipton, 2003) have identified this major issue but fall short in finding this delicate balance. In
this chapter, we develop an economic model to identify various conditions for setting a reasonable
balance. Before delving into the model, we first briefly describe the landscape of legal protection for
databases. After a formal presentation of the model, we relate it with legal proposals and discuss
several useful insights developed from our analytic results.

6.2 Legal Protection for Database Contents

6.2.1 A Brief History of Database Legislation

Non-applicability of Copyright Law. The impetus for database protection started in 1991 after the
Supreme Court in the U.S. decided the Feist v. Rural46 case. In compiling its phone book covering
the service area of Rural Telephone Co., Feist Publications copied about 8,000 records of Rural’s
White Pages. In the appeal case, the Supreme Court decided that Feist did not infringe Rural’s
copyright in that white pages lack the minimal originality to warrant copyright protection. It is the
original selection and arrangement of data, not the investment in creating the database or the contents
in the database, that is protected by copyright in the U.S. Thus, under current case law, copyright law
has not been found to restrict the reuse of the contents in a database concerned in this Thesis.

New Database Legislation. While the database creators in the U.S. were pushing for new data-
base legislation, the European Union (EU) introduced the Database Directive47 in 1996 to provide

44 E.g., HomeStore.com v. Bargain Network (S.D. Cal, 2002), TicketMaster v. Tickets.com (C.D. Cal., 2000),
First Union v. Secure Commerce Services, In. (W.D. N.C, 1999), etc. Numerous cases in Europe can be found
at http://www.ivir.nl/files/database/index.html and in Hugenholtz (2001).
45 A legal analysis of these claims can be found in court documents, e.g., the eBay case in 100 F. Supp. 2d
1058. ND Cal., May 24, 2000.
46 499 US 340, 1991.
47 “Directive 96/9/EC of the European Parliament and of the Council of 11 March 1996 on the legal protection
of databases”, a copy of the Directive can be found at http://europa.eu.int/ISPO/infosoc/legreg/docs/969ec.html.

 - 118 -

legal protection for database contents. Under its reciprocity provision, databases from countries that
do not offer similar protection to databases created by EU nationals are not protected by the Direc-
tive within the EU. This created a situation where U.S. database creators felt they were neither
adequately protected at home, nor abroad. In response, the database industry pushed the Congress to
create a new law to provide similar protection to database contents. Since then, the U.S. has at-
tempted six proposals, all of which already failed to pass into law. The recent two bills are HR 3261
and HR 3872. Figure 6.1 briefly summarizes these legislative proposals.

9191 9696 9898 9999 0303

Feist case: US
Supreme Court
decided that
databases lacking
minimal originality are
not copyrightable

EU introduced Database
Directive granting database
makers sui generis right to
prevent unauthorized extraction
and reutilization of the whole, a
substantial part of, or systematic
extraction of insubstantial part of
database contents

HR 3531 Database
Investment and
Intellectual Property
Piracy Act: similar to
EU Directive, with no
fair use exceptions

HR 2652 Collections of
Information Antipiracy Act:
criminal and civil remedies
if reuse of substantial part
of another person’s
database causes or has
the potential to cause
harm

HR 1858 Consumer
and Investor Access to
Information Act:
disallow verbatim
copying of a database

HR354
Collections of
Information
Antipiracy Act:
similar to HR
2652 with more
fair use
exceptions

HR 3261 Database and
Collections of Information
Misappropriation act:
disallow free riders from
creating functional
equivalent databases to
reduce revenue of the
creators

Adopted

FailedStart
HR 3872 Consumer Access
to Information Act: prevent
free-rider from engaging in
direct competition that
threatens the existence or
the quality of creator
database

0404

FailedFailed

Failed Failed

Failed

Figure 6.1 History of Database Protection Legislation.

The sui generis48 right approach taken by the EU creates a new type of right in database contents;
unauthorized extraction and reutilization of the data is an infringement of this right. Lawful users are
restricted not to “perform acts which conflict with normal exploitation of the database or unreasona-
bly prejudice the legitimate interests of the maker of the database”. Here “the legitimate interests”
can be broadly interpreted and may not be limited to commercial interests.

HR 3531 of 1996 closely followed this approach with even more stringent restrictions on data
reuse. Although the Database Directive has been adopted by the EU, HR 3531 failed to pass in the
U.S. One of the main concerns is the constitutionality of the scope and strength of the kind of
protection in the EU Database Directive (Reichman and Samuelson, 1997; Colsten, 2001). Other
issues in the EU Database Directive include the ambiguity about the minimal level of investment
required to qualify for protection (Ruse, 2001; Hugenholtz, 2003), its lack of compulsory license
provisions (Colsten, 2001), the potential of providing perpetual protection under its provision of
automatic right renewal after substantial database update, the ambiguity in what constitutes a
“substantial” update, and several other issues which we discuss in the next subsection.

All subsequent U.S. proposals took a misappropriation approach where the commercial value of
databases is explicitly considered. HR 2562 of 1998 and its successor HR 354 of 1999 penalize the
commercial reutilization of a substantial part of a database if the reutilization causes harm in the

48 In Latin, meaning “of its own kind”, “unique”.

 - 119 -

primary or any intended market of the database creator. The protection afforded by these proposals
can be expansive when “intended market” is interpreted broadly by the creator. At the other end of
the spectrum, HR 1858 of 1999 only prevents someone from duplicating a database and selling the
duplicate in competition.

The proposal HR 3261 of 2003 has provisions that lie in between the extremes of previous pro-
posals. It makes a data reuser liable for “making available in commerce” a substantial part of another
person’s database if “(1) the database was generated, gathered, or maintained through a substantial
expenditure of financial resources or time; (2) the unauthorized making available in commerce
occurs in a time sensitive manner and inflicts injury on the database or a product or service offering
access to multiple databases; and (3) the ability of other parties to free ride on the efforts of the
plaintiff would so reduce the incentive to produce the product or service that its existence or quality
would be substantially threatened”. The term ‘‘inflicts an injury’’ means “serving as a functional
equivalent in the same market as the database in a manner that causes the displacement, or the
disruption of the sources, of sales, licenses, advertising, or other revenue” (emphasis added by
author).

The purpose of HR 3872 is to prevent misappropriation while ensuring adequate access to fac-
tual information. It disallows only the free-riding that endangers the existence or the quality of the
creator database. Unlike in HR 3261, injury in the form of decreased revenue alone is not an offence.
Another difference from HR 3261 is that it suggests the Federal Trade Commission be the enforcing
authority.

These legislative initiatives demonstrate the substantial difficulties in formulating a database
protection and data reuse policy that strikes the right balance, which is a prevailing issue in dealing
with other kinds of intellectual property (Besen and Raskind, 1991). An economic understanding of
the problem can help address other issues discussed in the next section.

6.2.2 Other Major Issues

Extensive legal discussions have raised many concerns about a new database law. These include but
are not limited to the issues discussed below.

Data monopoly. There are situations where data can only come from a sole source due to econ-
omy of scale in database creation or impossibility of duplicating the event that generates the data set.
For example, no one else but eBay itself can generate the bidding data of items auctioned on eBay. A
law that prevents others from using the factual data from a sole source in effect legalizes a data
monopoly. Downstream value creating reutilizations of the data will be endangered by a legal
monopoly.

Cost distortion. Both the EU database directive and the latest U.S. proposals require substantial
expenditure in creating the database for it to be qualified for protection. Database creators thus may
over invest at an inefficient level to qualify (Samuelson, 1996).

Update distortion and eternal protection. This is an issue in EU law, which allows for automatic
renewal of sui generis right once the database is substantially updated. Such a provision can induce
socially inefficient updates and make possible eternal right through frequent updates (Koboldt, 1997).

 - 120 -

Constitutionality. Although the Congress in the U.S. is empowered by the Constitution to regu-
late interstate commerce under the Commerce Clause49 and the misappropriation approach often
gives a database law a commercial guise, the restrictions of the Intellectual Property Clause50 often
apply to any grant of exclusive rights in intangibles that diminishes access to public domain and
imposes significant costs on consumers (Heald, 2001). Most database contents are facts in the public
domain; disallowing mere extraction for value creating activities runs afoul of the very purpose of
the Intellectual Property Clause that is to “promote the progress of science and useful arts”. Since
little extra value for the society as whole is being created by simply duplicating a database in its
entirety, preventing verbatim copying of a database is clearly constitutional. Extracting all contents
of a database is very much like duplicating the database. Unlike in copyright law where there is a
reasonably clear idea-expression dichotomy (i.e., copyright protects the expression, not the idea
conveyed by the expression), extraction-duplication in data reuse is much like a continuum, not a
dichotomy (Heald, 2001). Thus a constitutional database law needs to determine up to how much one
is allowed to extract database contents.

International harmonization. Given the global reach of the Web and increasing international
trade, it is desirable to have a harmonized data reuse policy across jurisdictions worldwide. The EU
and the U.S. are diverging in their approaches to formulating data reuse policies. A World Intellec-
tual Property Organization (WIPO) study (Tabuchi, 2002) also reveals different opinions from other
countries and regions. Enforcement will be a big problem without international harmonization.

We believe the solution to these challenges hinges upon our capability of finding a reasonable
balance between protection of incentives and promotion of value creation through data reuse. With
this balance, value creation through data reuse is maximally allowed to the extent that the creators
still have enough incentives to create the databases. Consensus can develop for international har-
monization if we can determine the policy choices that maximize social welfare; a database policy so
formulated should survive the scrutiny of constitutionality; other inefficiencies can be avoided or at
least better understood. We will take on this challenge in the rest of the chapter by developing an
economic model for database protection and data reuse policy.

6.2.3 Policy Instruments

When database creation requires substantial expenditure and competition from free riding reusers
reduces the creator’s revenue to a level that does not offset the cost, the creator would have no
incentives to create the database and the market fails. Policy should intervene to restore the database
market (assuming the database was worth creating). On the other hand, data reuse is often value
creating; from a social welfare point of view, it is not necessary to intervene if the creator can remain
profitable even though its revenue may decline because of competition. It is conceivable that there
exist different conditions under which policy choices differ.

49 Constitution 1.8.3, “To regulate Commerce with foreign Nations, and among the several States, and with the
Indian Tribes”.
50 Constitution 1.8.8, “To promote the Progress of Science and useful Arts, by securing for limited Times to
Authors and Inventors the exclusive Right to their respective Writings and Discoveries”.

 - 121 -

The recent U.S. proposal HR 3261 contains several useful aspects, underlined in the previous
section, which are often considered in policy formulation. “Substantial expenditure” corresponds to
the fixed cost in creating the database; “functional equivalent” measures the substitutability of the
reuser database for the creator database, which is determined by the degree of differentiation of the
two databases; “injury” or incentive reduction can be measured by decrease of revenue. “Time
sensitive manner” is redundant with differentiation. It is common that information goods can be
differentiated via temporal versioning (Shapiro and Varian, 1998). For example, real time stock
quotes and 20-minute delayed stock quotes are two differentiated economic goods.

Policy instruments in most proposals on database protection are simply (1) the grant of legal pro-
tection when all criteria are met, and (2) the specification of penalties to violators. They focus on
specifying what types of reuse constitute a violation and completely ignore the concern of the creator
becoming a legal monopoly (except for HR 1858). Provisions on what the creator is supposed to do
should not be ignored, e.g., under certain conditions the creator should be asked to license its data
under reasonable terms. Such provisions are often found in other intellectual property laws, e.g.,
compulsory license provisions in patent laws in various jurisdictions. Thus, appropriate policy
instruments should be a specification of conditions and the corresponding socially beneficial actions
of the reuser as well as the creator.

6.3 Literature Review

There have been extensive legal studies on database protection policy51 since 1996. Recently, Lipton
(2003) suggests a database registration system similar to that for trademark to allow database
creators to claim the markets within which their databases are protected from free riding. But social
welfare analysis is not performed in this study to take account of the cost of maintaining such a
system. After reviewing a number of data reuse cases in the EU and the U.S., Ruse (2001) suggests
reusers negotiate licenses from database creators and conform to the licensing terms. The paper also
criticizes the ambiguity in the Database Directive and recommends that the EU should consider the
U.S. proposals that contain more broadly defined fair uses and provisions dealing with sole source
databases. Colston (2001) provides a comparison of EU and U.S. approaches and suggests that the
EU should reconsider the compulsory license provision that was in the early draft of the Database
Directive, but removed from the final version. Hugenholtz (2003) introduces an emerging spin-off
theory for databases that are created as a by-product of other business activities, in which case the
cost of the business process should not be counted as cost of creating the database.

There has been little economics and information systems research that directly addresses the is-
sues of database protection policy. We are aware of only one paper by Koboldt (1997), who studies
various distortions of database update for sui generis right renewal under the EU Database Directive.
From the social welfare point of view, the provision can induce inadequate update or excessive
update of the database. He points out that the problem comes from the substantial change require-
ment for an update to renew the sui generis right. He shows that setting up an upper limit for

51 See http://www.umuc.edu/distance/odell/cip/links_database.html for references to published legal reviews.

 - 122 -

updating cost can eliminate the distortion of excessive update; no suggestion is made for eliminating
the distortion of inadequate update.

Several possible economic theories can be applied in analyzing the issues. Cumulative innova-
tion theory (Scotchmer, 1991) from the patent literature has been used to informally explain the
importance of ensuring adequate access to data for knowledge and value creation (Maurer, 2001).
The notion of the tragedy of anticommons (Heller, 1998) is also useful because information aggrega-
tors rely on the access to multiple information sources. As is shown in Buchanan and Yoon (2000),
when there exist multiple rights to exclude, a valuable resource will be underutilized due to increased
prices. Databases that hold factual information as a whole can be viewed as the “commons”, thus,
providing more than necessary protection to databases is analogous to anticommons and will lead to
underutilization of protected databases.

6.4 A Model of Differentiated Data Reuse

As the legal discussions suggest, the reuser is sometimes a competitor of the creator in the database
market52. Arguably, the intensity of competition depends on how differentiated the reuser database is
from the creator database. The differentiation can be either horizontal or vertical53 or both. Most
aggregator databases are horizontally differentiated from the databases being extracted because they
often have different features, over which the consumers have heterogeneous preferences. For
example, while certain consumers value the extensive information about the auctioned items from
eBay’s database, other consumers value the searchability and ease of comparison at Bidder’s Edge.
Therefore the two databases are horizontally differentiated in product characteristics space.

As to the Priceman and mySimon databases, both provide price comparison, but the Priceman
database has a wider coverage of online vendors, which may suggest a vertical differentiation
between the two databases. But the reality can be more complicated, e.g., while mySimon is less
comprehensive, it may be more reliable and responsive than PriceMan. Consumers often have
different preferences over this set of feature. Thus the two databases are largely horizontally differ-
entiated.

There may be cases where a reuser creates a database that is either superior or inferior in every
feature relative to the creator database (to target a different market). However, we are interested in
cases where the creator database is better in some features, whereas the reuser database is better in
the other features. In such cases, the creator and reuser database are horizontally differentiated, with
competing products located at different locations in the characteristics space. We will base our
analysis on an extended spatial competition model, which was introduced by Hotelling (1929) and

52 There are other reasons a creator does not want his data to be reused. For example, an online store may be
afraid that a comparison aggregator can potentially have the effect of increasing price competition and
lowering profit on sales of products. Our model focuses on “information goods” only, thus it does not capture
such effect.
53 Product characteristics are horizontally differentiated when optimal choice at equal prices depends on
consumer tastes, e.g., different consumer tastes in color. Product characteristics are vertically differentiated
when at same prices all consumers agree on the preference ordering of different mixes of these characteristics,
e.g., at equal price, all prefer high quality to low quality. See Tirole (1988) for detail.

 - 123 -

has been widely used in competitive product selection and marketing research (Salop, 1979;
Schmalensee and Thisse, 1988).

6.4.1 Model Setup

We consider a duopoly case where there are two suppliers of database: (1) a database creator who
creates one database product, and (2) a data reuser who produces a different database by reusing a
portion of the contents from the creator’s database. Both databases are for sale in the market. For
example, the database creator could be a marketing firm who compiles a database of New England
business directory that includes all business categories. A firm specializing in colleges in Greater
Boston area may compile an entertainment guide by reusing a portion of the business directory. The
two databases are different in terms of scope, organization, and purpose. In other words, they are
differentiated in the product characteristics space. We can understand the databases in eBay v.
Bidder’s Edge case as well as in other data reuse cases similarly. Although most creator and reuser
databases are free to individual consumers to view and search, a consumer still pays a price in an
economic sense, e.g., time spent and certain private information revealed (e.g., search habit).

In a spatial competition model, we index database features onto a straight line of unit length,
with the creator’s database at point 0 and the reuser’s database at point 1; the prices they set for their
databases are p0 and p1, respectively. Consumers have heterogeneous preferences over the database
features. For simplicity, we assume a unit mass of consumers uniformly distributed along the line

]1,0[. We assume each database is worth a value v to a consumer with exact preference match. A

customer at]1,0[∈x consumes either none or exactly one database. When he does consume a

database, he enjoys value v, pays a price, and also incurs a preference mismatch cost determined by
the distance and a penalty rate t. This is summarized by the following utility function:

1. firm from buys if
0; firm from buys if

none; buys if

,)1(
,

,0

1,1

0,0








=−−−
=−−=

x

xx

uxtpv
utxpvu

We further assume that both the creator and the reuser have the same marginal cost, which is
normalized to 0. The creator’s investment in creating the database is modeled as a fixed cost F. The
reuser incurs a fixed cost f, where fF >> , so we normalize f to 0. This assumption reflects the fact

that the innovative reuser possesses complimentary skills to efficiently create the second database
that the creator cannot preemptively develop. Firms simultaneously choose prices to maximize their
profits; consumers make purchasing decisions that maximize utility ux.

This setup reflects the uniqueness of the database and data reuse market. Many databases from
which reusers extract contents are byproducts of business processes. The eBay database is the
byproduct of its online auction business. Data in various accounts are generated by transactions of
business activities. The cost in creating and maintaining these databases is not a decision variable to
be optimized by calculating expected returns on the databases per se. MySimon itself is a reuser of
vendor data; it is also a database creator when its database contents were extracted by Priceman. The
reuse by Priceman is rather serendipitous in that mySimon made its investment decision without ever
imagining its data could have been reused by another reuser. Thus, for the purpose of data reuse

 - 124 -

analysis, the cost of creating the original dataset is a sunk fixed cost instead of an investment in the
sense in Research and Development literature. Similarly, the database features are often designed
without ever thinking of various possible reusers. Therefore, the database locations in the feature
space are not decision variables, either.

In this model, parameter t measures the degree of differentiation of the two databases with re-
spect to consumer preferences; differentiation increases with t. When t is large, the two products are
highly differentiated and the two firms can be two local monopolies. When t is small, the two
products are close substitutes and fierce competition can lower profits to a level where the creator
cannot recover its fixed cost. Our further analysis will be based on this intuition. For the purpose of
analyzing if the creator is willing to allow reuse of its data, we also analyze the monopoly case where
the creator is the only firm in the market.

In the rest of the chapter, unless otherwise noted, profit and social welfare are gross without
counting the fixed cost or transaction cost. Utilitarian social welfare is used, which is the sum of firm
profit and consumer surplus.

Lemma 6.1 In the duopoly case, the market is covered if vt ≤ , and is not fully covered otherwise.
In the monopoly case, the market is covered by creator’s database if 2/vt ≤ , not fully covered
otherwise. Best price, maximum profit, and social welfare vary with the differentiation parameter t in
both cases as summarized in Table 6.1. ■
Table 6.1. Price, profit, and social welfare at different differentiation levels
 T Best price Maximum profit Social welfare

t≤2v/3 tpp == *
1

*
0 2

*
1

*
0

td === πππ 4
td vSW −=

2v/3<t≤v
2

*
1

*
0

tvpp −== 42
*
1

*
0

tvd −=== πππ 4
td vSW −=

Duopoly

v<t
2

*
1

*
0

vpp ==
t

vd
4

2*
1

*
0 === πππ t

vSW d
4

3 2
=

t≤v/2 tvpm −= tvm −=π 2
tm vSW −= Monopoly

v/2<t
2

vmp =
t

vm
4

2
=π t

vSW m
8

3 2
=

Proof. Duopoly, little differentiation (t≤2v/3). In the case of full market coverage, there exists a
location]1,0[~∈x , such at 01,~0,~ ≥= xx uu . Then, the demand for database 0 is x~ and the demand for

database 1 is)~1(x− . Solving profit maximization for both firms with respect to p0 and p1, we obtain

tpp == *
1

*
0 and 2

*
1

*
0

td === πππ . Positive utility constraints at x~ require t≤2v/3. By symmetry, the

social welfare is ∫ −=−5.0
0 4)(2 tvdxtxv .

Duopoly, moderate differentiation (2v/3<t≤v). This is the case that requires careful examination
of corner solutions. To see that 2

*
1

*
0

tvpp −== is the equilibrium, we show that given 21
tvp −= ,

the profit maximizing price for the creator is also 2
tv − , and vice versa. When 21

tvp −= , 01,2
1 =u .

If the creator charges same price, then each firm takes up one half of the market and makes a gross
profit of 42

tv − . We only need to show that any deviation by the creator yields a lower profit. For

any infinitesimal positive value +∈ Rδ , let us first suppose the creator wants to capture more than a

 - 125 -

half of the market by choosing a lower price δ−= 10 pp . With 1,~0,~ xx uu = we can find the creator’s

demand t
tx 2

)(~ δ+= . Therefore, the creator’s profit is t
tpxp 2

)_(
100)(~ δδπ −== . It is easily shown that

042
2

3
0 <−= −

∂
∂

tt
v t δ

δ
π when tv <3

2 because both terms are negative. Now let us suppose that the creator

wants to deviates by charging a higher price δ+= 10 pp ; as a result, it will cover less than a half of

the market. We can derive 020 <−= −
∂
∂

tt
vt δ

δ
π because t≤v.

Duoploy, high differentiation (v<t). Each firm’s demand is up to the location of the marginal
consumer whose utility of purchasing a database is 0. Take the creator, this marginal consumer is

located at t
pvx)(0~ −= . Maximizing profit yields 2

*
0

vp = . Therefore, 2
1

2
)(2~ <== −

t
v

t
v v

x , and

t
v

4
*
0

2=π . By symmetry we obtain the reuser’s price and profit. Social welfare is ∫ =−t
v

t
vdxtxv2 2

0 4
3)(2 .

Monopoly, moderate preference heterogeneity (t≤v/2). Similar to moderately differentiated du-
opoly case, it is better for the monopoly to cover the entire market. Letting 00,1 =u , we derive the

price. Demand is 1. It is straightforward to derive social welfare.
Monopoly, high preference heterogeneity (v/2<t). Similar to highly differentiated duopoly case,

it is better for the monopoly to cover a fraction of the market. Straightforward optimization yields the
results. ■

We graph the result of Lemma 6.1 in Figure 6.2 to help make useful observations; values for
both axes are the factors of the product valuation v.

t (v)

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

π
or

 S
W

 (v
)

0.0

0.2

0.4

0.6

0.8

1.0 πd

πm

SWd

SWm

πd

πm

SWd

SWm

Figure 6.2. Change of profit and social welfare with differentiation factor t.

Corollary 6.1 dm ππ > if vt < , and dm ππ = otherwise. ■

Corollary 6.1 says that when the reuser’s database is not sufficiently differentiated from the crea-
tor’s, the creator makes less profit because of competition from the reuser’s database. When the two
databases are highly differentiated, the creator is not harmed by the reuser. The corollary also implies

 - 126 -

that if the creator is the sole data source and can fully control the access to the data, it will deny
access if a reuser intends to free ride and make a database without sufficient differentiation.

Corollary 6.2 SWd>SWm for all t>0. ■

Corollary 6.2 says that from the social welfare perspective, two differentiated databases are bet-
ter than one database. The implicit assumption for this to hold is that the creator makes a positive net
profit.

6.4.2 Necessity of Database Law

When the creator’s profit is less than its fixed cost, i.e., Fm <π , the database will not be created to
begin with. For market failure analysis, we focus on the case where the creator is self sustainable, i.e.,

Fm ≥π .

In the presence of a free riding reuser, the creator makes a duopoly profit dπ , which is smaller

than monopoly profit mπ when t≤v. Therefore, free riding will cause market failure if md F ππ ≤<

and t≤v. That is, if F falls in the region above the dπ line and below the mπ line in Figure 6.2, free
riding causes market failure, in which case an intervention is necessary. This is often the argument
for having a new database law.

Without a database law, other means that database creators can use to protect their databases
seem to be ineffective in some cases. For example, a creator can use certain non-price predation
strategies, namely by raising rival’s costs (Salop and Scheffman, 1987), to deter entry or at least to
soften competition from the reuser. In the past, creators attempted cost raising strategies such as
blocking the IP addresses used by reuser computers and frequently changing output format to make
data extraction more difficult. This can be modeled by letting the creator choose a technology
investment level T, with which the marginal cost of the reuser becomes)(1 TC . The cost of installing

such anti-extraction technologies is often small enough to be negligible. When T is such that

{ }tvttvTC 32,3),(min)(0 2
3

1 −−≤≤ , the creator profit becomes 22
)(

,0
2

3
1 td

t
td

T

C

=>= + ππ , i.e., the creator

profit is higher than when the technology is not used. The reuser profit is t
tt CC

d
T 2

))((33
2

,1

11 −+
=π ,

which could be greater or less than dπ , depending on the level of)(1 TC . The first two items in the

constraint for)(1 TC ensure that the reuser is not deterred; the third item ensures full coverage of the

market. Obviously, if)(1 TC is very high, the reuser will be deterred. However, anti-extraction

techniques were not very effective in practice54; we suspect that)(1 TC has been too small to have

substantial effect. Therefore, we will assume no anti-extraction is in place in the rest of the analysis.
Regardless of the effectiveness of anti-extraction techniques, they are socially wasteful investment
because they merely help transfer consumer surplus and reuser profit to the creator. A database law

54 eBay tried blocking the IP addresses used by Bidder’s Edge, Bidder’s Edge circumvented this obstacle by
using a pool of IP addresses dynamically.

 - 127 -

that grants the creator the right to license its data to reusers can reduce or eliminate this social
inefficiency. When database creators are also reusers, the cost-raising problem may not arise at all55.

There can be a need for a database law from the reuser’s point of view. Database reusers often
face legal challenges from database creators. For example, reusers often receive legal threat notices56
and sometimes are sued by the creators. The uncertainty of various proposed database bills creates
significant legal risks for the reusers, who are often small but innovative firms. As a result, some
reusers have to exit the market, and certain value-added data reuses cannot occur. In this case, having
a database law that clearly specifies the kinds of legal reuses will help to create and sustain a market
of socially beneficial reuser databases.

6.4.3 Conditions and Choices of Data Reuse Policy

A socially beneficial data reuse policy can correct market failure by restricting certain free riding in
data reuse; the legal certainties it provides also help eliminate or reduce wasteful cost-raising
investment by incumbent database creators. This can be done either by requiring the reuser to pay the
creator for the data or by disallowing data reuse all together. The creator can ask the reuser to pay a
data reuse fee, r, which can be up to the reuser’s profit dπ ; asking a fee r> dπ is equivalent to
disallowing reuse because the reuser would make a negative profit. Negotiating the fee schedule r
and administrating data reuse policy often incur some cost. To model this reality, let us suppose that
when the creator asks for r, it actually gets rα , where]1,0[∈α and it measures transaction effi-

ciency. Thus, in the duopoly case with data reuse policy in place, (dd ππ +) is the best the creator
can get to offset its fixed cost F if it ever allows someone to reuse its data57. Before we develop the
formal analysis, we describe the intuitions by plotting this upper bound condition along with profit
curves in Figure 6.3.

55 In the financial sector, many banks started offering account aggregation service shortly after account
aggregators emerged. That is, banks as database creators, became data reusers, so they had incentives to lower
data reuse cost. As a result, they initiated a standardization project to facilitate aggregation, see “FSTC to
Prototype Next Generation Account Aggregation Framework” at http://www.fstc.org/press/020313.cfm. In this
case, legal intervention is unnecessary.
56 For instance, a few online travel agencies recently sent warning letters to data reusers that allow consumers
to compare prices. See “Cheap-Tickets Sites Try New Tactics” by A. Johnson, Wall Street J., October 26, 2004.
57 We assume there will be no collusive joint profit maximization. A Nash bargaining outcome will be 50/50
split of the reuser profit. For purpose of market failure correction, this outcome can be simulated by setting α
to 0.5, although welfare analysis will be somewhat different.

 - 128 -

t (*v)
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

π
(*

 v
)

0.0

0.2

0.4

0.6

0.8

1.0
πm

πd

πd+πd

A2

A1
A3

A4

A5

Figure 6.3 Change of Profits with Differentiation Factor t.

We mark five areas A1 through A5 in Figure 6.3. The upper-bound (dd ππ +) curve will lower
when α decreases, which enlarges A1 and reduces A2, A3, and A4. There are different implications
when t (the X-axis) and the fixed cost F comparing to profits (the Y-axis) are such that F falls in one
of the areas. If F falls in A1 (i.e., t is between 0 and 0.5*v, and F is below the solid line for monopoly
profit and above the dashed line for sum of duopoly profits), the upper bound (dd ππ +) curve is

below mπ curve, meaning that even if the creator can reap all the profit made by the reuser, it still
cannot cover all its fixed cost. In this case, the existence of a reuser causes an uncorrectable market
failure, so it is better to let the creator be a lawful monopoly.

For 2AF ∈ , market failure can be corrected by asking the reuser to pay for the reuse of the data.

But the creator prefers to be a monopoly. To maximize social welfare, the policy should insist that
the creator license its data to the reuser. When 3AF ∈ , the creator can make more than it would as a

monopoly, thus it is willing to license its data.
For the database to be created to begin with, we have assumed that a monopoly profit is greater

than the required fixed cost (Fm >π). Area A4 shows an interesting scenario. When 4AF ∈ , a

monopolist creator cannot afford to create the database but the database and a variant of it still can be
created so long as the creator and the reuser can share the fixed cost. In this case, the reuser can be
considered as a database creator who incurs a fixed cost F1, where F1<F. When a third party reuses
data from either or both jointly developed databases, the model can be used to analyze various
conditions between this third party (i.e. the reuser) and the creator(s).

Finally, when 5AF ∈ , the cost of creating the database is low and free riding would not cause

market failure. It actually enhances social welfare when 1<α because transferring r to the creator
costs the society r)1(α− .

 - 129 -

Next, we will formalize the above intuitive explanations. To simplify analysis, we let r = dπ , i.e.,
we assume that the creator has the negotiation skills or legal power to ask the reuser to disgorge all
profits from reusing the data. For notational simplicity, we let ddl παπ)1(+=

and dddl SWSW πα)1(−−= , which respectively denote the gross profit of creator and gross social

welfare when the creator licenses its database to the reuser.

Theorem 6.0 (Minimal transaction efficiency) There exists a minimal transaction efficiency α̂ ,
below which having a monopoly is welfare enhancing compared to having a duopoly with a fee

paying reuser. 5.0ˆ =α when 2
vt ≤ ; 2

22

4
863ˆ

t
vttv −+=α when 3

2
2

vv t ≤< ; and },0max{ˆ 2

2

24
43
tvt
vtv

−
−=α when

3
2vt > . ■

Proof. With a fee paying reuser, the social welfare is dddl SWSW πα)1(−−= . Licensing is socially

beneficial only if mdl SWSW ≥ . Using the results in Lemma 6.1, we can solve the inequality and
obtain α̂ . ■

This is a refinement to Corollary 6.2. When free riding causes market failure, data reuse policy
must choose between asking the reuser to pay and disallowing data reuse all together. High transac-
tion costs may out weigh the welfare gain from having a reuser database. When transaction
efficiency is below this threshold, it is better that the creator not license data to the reuser; conversely,
when transaction efficiency is above this threshold, the creator should license its database to the
reuser, subject to the constraint that the creator can make a positive profit with licensing fee from the
reuser.

Theorem 6.1 (A1: Little differentiation, high cost) When 2
vt ≤ and mt tvF πα =−≤<+

2
)1(, legal

protection to the creator’s database should be granted. The existence of a reuser database causes a
market failure even if the reuser pays a licensing fee; it is socially beneficial to let the creator be a
monopoly in the market by disallowing the creation of the reuser database. ■

Proof. In the presence of a reuser database, the creator’s profit is t/2 (see Lemma 6.1) if the reuser is
a free rider, or 2

)1(tα+ if the reuser pays a fee equal to its profit. In both cases, the creator cannot

make a positive net profit, thus the database will not be created and social welfare is 0. Without the
reuser database, the creator earns a monopoly profit tvm −=π , which has been assumed to be

greater than or equal to F; net social welfare is 022 >≥−−=− ttm FvFSW . ■

Theorem 6.2 (A2: Little differentiation, moderate cost) When 2
vt ≤ and 2

)1(
2

tt F α+<≤ , legal

protection to the creator’s database should be granted. The creator is not willing to license its
database to the reuser, but it is socially beneficial to require a compulsory license so long as

5.0ˆ =>αα . If 5.0≤α , it is better to let the creator be a monopoly. ■

Proof. This can be easily proved with Lemma 6.1 and Theorem 6.0. ■

 - 130 -

Theorem 6.3 (A3: Moderate differentiation, moderate cost) When vtv ≤<2 and

},)1min{(4
2 m

t
vdd F ππαπ =+≤< , legal protection of the creator’s database should be granted. The

creator is willing to license its database if αα π
ππ ~)(=≥ −

d

dm . Within the range of differentiation, α~

can be less than or greater than α̂ . If ααα ~ˆ << , compulsory licensing is necessary; if ααα ˆ~ << ,
licensing should be disallowed even though the creator prefers.

Proof. Legal protection is necessary because with free riding the creator cannot make enough profit
to cover its fixed cost. When αα ~≥ , mdd παππ ≥+ , i.e., the creator is better off licensing its
database to the reuser. When ααα ~ˆ << , it is socially beneficial to license but the creator makes less
than monopoly profit, therefore, compulsory licensing is required. When ααα ˆ~ << the creator
prefers to license its database but it is socially wasteful, thus licensing should be disallowed. The
values of α̂ and α~ are presented graphically in Figure 6.4. ■

t (* v)
0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

α

0.0

0.1

0.2

0.3

0.4

0.5

0.6

1.0

α̂ α~

C

C

VM

S

Figure 6.4 Change of minimal transaction efficiency with differentiation factor t.

In Figure 6.4, we see in most cases αα ˆ~ > , meaning that generally transaction efficiency re-
quirement is higher for voluntary licensing than for compulsory licensing. We label each region with
a symbol denoting the socially beneficial policy choice, i.e., C indicates the necessity of compulsory
licensing, V means voluntary licensing by the creator, M represents the case where a monopoly is
better, and S is a special case where the creator wants to license but it is socially wasteful to license
and the creator should be a monopoly.

Theorem 6.4 (A4: Moderate to high differentiation, high cost) When tv <2 and
dm

t
v F παπ)1(4

2 +≤<= , the creator will not create the database, not because of the threat of free

 - 131 -

riding, but because of the high cost. The databases can only be jointly developed by the creator and
the reuser with cost sharing agreement. ■

Proof. It is straightforward that the creator will not create the database because the development cost
is greater than monopoly profit. If the cost is below joint profit discounted with transaction cost, the
creator is willing to participate in joint development to make a positive profit. ■

Theorem 6.5 (A5: Trivial databases) It is socially beneficial NOT to grant legal protection to
databases when 3

vdF ≤≤ π and 1<α . ■

Proof. With low cost of creating the database, there is no market failure without legal protection. For
1<α , dddld SWSWSW πα)1(−−=> . Recall from corollary 6.2 that SWd>SWm. Social welfare

without protection is SWd, it is SWdl or SWm with protection. Therefore, no protection is socially
beneficial. For all t, it is straightforward to show 3)max(vd =π using Lemma 6.1. ■

Corollary 6.3 (A5: Highly differentiated databases) When vt > and 1<α , it is socially beneficial
NOT to grant legal protection to databases. ■

Proof. This is a special case of Theorem 6.5. When vt > , md ππ = , thus free riding of the reuser
has no impact to the creator. When 1<α , it is socially better not to collect a license fee to avoid
transaction cost. ■

Most enacted and proposed database protection bills grant legal protection only to databases that
require substantial expenditure to create and maintain. Theorem 6.5 shows that such provisions are
necessary for enhancing social welfare. We have been using the magnitudes of fixed cost to deter-
mine the socially beneficial policy choices. These magnitudes are not measured in absolute dollar
amount, rather, they are relative to the market value of the database as explicitly shown in Theorem
6.5. Thus, we should not specify an absolute dollar amount threshold for a database to qualify for
legal protection.

From Theorem 6.5, it seems desirable to set a fixed cost threshold F̂ equal to duopoly profit, i.e.,

3
ˆ vdF ≤= π . As we will see next, this can induce excessive investment when an efficient firm can

create the database at a cost slightly lower than F̂ .

Theorem 6.6 (Over investment distortion) Suppose dF π=ˆ , when αα ˆ> and vt ≤ , a creator with

FFF ˆ<< has incentives to over invest to qualify for legal protection, where F is the cost when the

creator produces the database efficiently. The value of F depends on α and t. When α23
2
+≤ vt and

}0,max{ 2
)4(vF t −= +α , or when

)21(22 α+
≤< vv t and }0,max{ 4

)2(2 22

t
vtF −+= α , the creator aggressively

over-invest 2
)1(tα+

 to become a monopoly; when 223
2 vv t ≤<+ α or 3

2
)21(2

vv t ≤<
+ α

, and 2
)1(tF α−= , the

creator only moderately over-invest 2
td =π to become eligible for licensing fee; when vtv ≤<3

2 ,

 - 132 -

2

2

2
)(
tvt

tv
−

−>α , and 4
2)1(tvF −−= α , the creator only over-invest 4

2 tvd −=π to qualify for receiving licens-

ing fee. ■

Proof. When FF ˆ< (i.e., F is in A5 area in Figure 6.3), the reuser can legally free ride, so the
creator’s net profit is Fd −π . The creator has incentive to over-invest to a level in A1, A2, or A3 areas
as long as it can make a higher net profit.

When 2
vt ≤ , the creator has an incentive to over-invest to the minimal level of legal monopoly,

dlπ , if the following conditions hold:







−≥−
−≥−

)2(ˆ
)1(

F
F

dldlm

ddlm

πππ
πππ

where (1) is the condition under which being a lawful monopoly is better than having a free rider; (2)
ensures that being a lawful monopoly is better than having a fee paying reuser. Solving (1) yields

vF t −≥ +
2

)4(α , whose right hand side can be greater than or less than 0; therefore, we have

}0,max{ 2
)4(vF t −= +α . Solving (2) gives α23

2
+≤ vt . With the assumption of 5.0ˆ =>αα , we know that

223
2 vv <+ α . Similarly, the incentive compatible conditions for over-investing to F̂ to only qualify for

receiving licensing fee are:







−<−
−≥−

)4(ˆ
)3(ˆ

F
FF

dldlm

ddl

πππ
ππ

Here, (3) ensures having a fee-paying reuser is better than having a free rider; (4) ensures having a
fee paying reuser is better than being a monopoly. Solving (3) gives FF d =−≥ πα)1(, where

2
td =π ; solving (4) yields α23

2
+> vt .

When 3
2

2
vv t ≤< , these constraints can be solved by plugging in appropriate profit functions.

When 3
2vt > , the monopoly profit is only slightly higher than the duopoly profit; when α is not

too small, mdl ππ > , which gives 2

2

2
)(
tvt

tv
−

−>α . There is no incentive to become a lawful monopoly

because the creator earns a bigger profit when there is a fee paying reuser. ■

Corollary 6.4 Over investment can also occur even if the creator already qualifies for protection but
is subject to compulsory licensing as specified in Theorem 6.2. Specifically, the creator over invests
at the level of 2

)1(tα+ when 2
)1()2(tFFvt αα +<<=−+ , 2

vt ≤ , and 5.0ˆ =>αα .

Proof. The creator over invests if Fdldlm −>− πππ , which gives vtFF −+=>)2(α . The lower

bound for α is necessary from Theorem 6.2. ■

Theorem 6.6 shows that when 5AF ∈ , the unprotected database creator wants to spend more at

F', where 2' AF ∈ or 3' AF ∈ , so that the database now becomes qualified and the creator can earn a

bigger profit. The creator can more aggressively invest at F'' such that 1" AF ∈ , in which case the

 - 133 -

creator becomes a legal monopoly. Corollary 6.4 shows that a creator with 2AF ∈ wants to move to

1A by spending more. These distortions benefit the creators but are socially wasteful.

6.5 Discussion

6.5.1 Summary of Findings

In this spatial competition model, we consider the creator, the reuser, and the society as a whole.
Depending on the condition, the reuser can be a free-rider or a fee paying data reuser, or reuse is
disallowed. As a unique feature of the model, we explicitly consider inefficiencies of policy admini-
stration and abstract it as the transaction efficiency parameter α . This is an improvement over
previous policy research that often ignores this factor, which in effect assumes perfect efficiency of
policy implementation and enforcement.

The model also allows us to clarify several important notions in policy design. The “substantial
expenditure” requirement is not clearly defined in the EU Database Directive and the current U.S.
proposals. We can see from this model that it should not be an absolute value; rather, it should be the
fixed cost relative to the market value of the database product. The minimal cost for qualification
also depends on the degree of differentiation of the reuser database. Another notion is the reduction
of database creation incentives by the free riding of reusers. HR 3261 regards reduced revenue as an
injury which in turn reduces the incentives of creating the database; any revenue reduction due to
competition from the reuser is an offence. Thus the purpose of the proposal is about fairness to
creators, not about social welfare maximization. In the model, the incentives of creating the database
do not completely disappear as long as the creator makes a positive profit.

With this model, we are able to specify socially beneficial policy choices under various condi-
tions determined by the magnitude of fixed cost of database creation (F), the degree of
differentiation between the reuser database and the creator database (t), and the transaction efficiency
(α). Roughly speaking, under the assumptions of this model, no protection should be given if the
database can be created with trivial expenditure or the reuser database is highly differentiated. When
legal protection is granted, it may take various forms, e.g., no reuse with the creator being a legal
monopoly, reuse with compulsory license, and discouragement of voluntary licensing. Reuse should
be disallowed if the reuser database is a close substitute of the creator database and the cost of
creating the database is high. In other words, a legal monopoly is socially desirable in this case. In
the other cases, the transaction efficiency plays an important role of determining if compulsory
licensing is required, or if license is beneficial to the creator but wasteful to the society, thus volun-
tary licensing should be discouraged.

We also discover excessive investment distortions that come with this design of database policy.
Creators with unqualified databases have incentives to over spend in database creation to become
qualified; creators who are asked to license their databases may want to invest excessively to become
a legal monopoly. These distortions occur only when the reuser database has little or moderate
differentiation with the creator database. We are unable to find a mechanism to eliminate the

 - 134 -

distortions at this point. Thus the court is expected to scrutinize cases carefully to identify and
penalize those who purposefully over spend in database creation.

In this model we assume that the fixed cost incurred by the reuser is negligible compared with
that incurred by the database creator. Thus, the reuser database is a “free” product to the society and
social welfare is generally higher when there are two databases. This result is similar to those from
other intellectual property studies. For example, Yoon (2002) finds that depending on cost distribu-
tion no copyright protection can be socially beneficial. In the presence of demand network
externalities, Takeyama (1994) finds that unauthorized reproduction of any intellectual property is
Pareto improving, i.e., both consumers and the infringed producer, thus the society as a whole,
benefit from unauthorized reproduction. We informally discussed the social welfare effect of
investment that raises the reuser cost; similarly, the expenditure on monitoring data reuse is also
wasteful. This is also true in copyright enforcement; see Chen and Png (2003) for their discussion on
the adverse effect of anti-piracy investment.

6.5.2 Implementation and Implications

The model and the results provide helpful guidelines to specifying and implementing a socially
beneficial database protection policy. This can be illustrated perhaps with critiques to the recent U.S.
proposals, particularly HR 3261.

HR 3261 of 2003 is generally in line with the results here. It takes an appropriate approach with
a focus on competition and the commercial value of databases. The scope of the proposal is confined
by the term of “functional equivalent”, which means that the proposal concerns reuse that produces a
close substitute of the creator’s database. Although it is a bit vague, it does intend to protect non-
trivial databases only.

However, HR 3261 is obviously crude and lacks important compulsory licensing provisions. Our
model has roughly three levels in both the degree of differentiation and the cost of database creation.
This allows for fine tuning of policy choices. HR 3261 takes a more or less binary approach. It thus
misses several opportunities of social welfare maximization. Without compulsory license, sole
source creators will become a lawful monopoly under the proposal, which is harmful to society.
These shortcomings will likely raise constitutionality concerns.

In addition, the three conditions in HR 3261 are essentially a paraphrasing of the misappropria-
tion doctrine established in INS v. AP58 of 1918 and more recently in NBA v. Motorola59 of 1997. In
the former appeal case, International New Service (INS) took factual stories from the Associated
Press’s (AP) bulletins and East Coast newspapers and wired them to its member newspapers on the
West Coast. In the later case, Motorola transcribed NBA playoff scores from broadcast and sent
them to its pager subscribers. Both INS and Motorola were found guilty under the misappropriation
doctrine. The practical question is if it makes sense to codify a well established doctrine and make it
into a statute to regulate data misappropriation only. With its substantial similarity to the misappro-

58 248 US 215 (1918).
59 105 F.3d 841 (1997).

 - 135 -

priation doctrine, HR 3261 would have little impact because without it any data reuse case can be
decided using the doctrine.

With HR 3872 of 2004, injury alone is not an offense that triggers government intervention,
which only comes in when the injury reaches the point where the creator would not create the
database or maintain its quality. Our model clarifies this vague criterion.

HR 1858 prevents duplication of a database, which is an extreme case where t is nearly zero.
With no differentiation, the reuser (now a duplicator) adds little value to the society, i.e.,

md SWSW ≈ , and market failure is highly likely with even a moderate creation fixed cost, thus
database duplication should be disallowed. The proposal also clearly specifies a compulsory licens-
ing requirement for sole source creators. Although HR 1858 would very likely pass constitutional
scrutiny, it has certain drawbacks, e.g., its scope is deemed to be too narrow because it only covers
one extreme case of data reuse.

Overall, the results from the economic model provide useful insights for formulating database
protection policy. By revisiting the two undecided cases described in the introduction section, we can
briefly discuss the implications of a policy suggested by the model.

eBay v. Bidder’s Edge. In the eBay case, the computing resource is not the subject matter of such
a policy, which concerns the data, not the resources that deliver the data. Thus trespass on the
Internet is a different issue out of the scope of this discussion. According to the model, we need to at
least examine the degree of differentiation of the database developed by the reuser Bidder’s Edge. In
terms of searching of bidding data, the reuser database has a much broader coverage; thus, there is
competition from the reuser database. In terms of functionality, eBay’s database allows one to buy
and sell items; the reuser database does not provide any actual auction service. Thus the two data-
bases exhibit significant differentiation. Searching alone does not, in general, reduce eBay’s revenue
from its auction service. In addition, searching and actual auction are two different markets. If we
subscribe to the spin-off theory (Hugenholtz, 2003), the eBay database will not meet the cost
criterion. Therefore, free reuse by Bidder’s Edge should be allowed under our model.

mySimon v. Priceman. In mySimon case, the reuser database is a superset of the creator’s. Both
are in the searchable comparison shopping database market. Free riding by the reuser certainly
reduces creator’s revenue. If the reduction reaches a level that the creator cannot make a positive
profit, which is likely in this case, then the reuser should be asked to pay a fee for using the data or it
is penalized for violating of the database protection policy.

6.5.3 Concluding Remarks

We address a pressing issue in database legislation that needs to find the right balance between
protecting incentives of database creation and preserving enough access to data for value creating
activities. With an extended spatial competition model, we are able to identify a range of conditions
and determine different policy choices under these conditions. From these results, we derive several
guidelines that are useful to law makers when they consider economic factors in database policy
formulation. A better understanding of the economic issues in database legislation provided by our
analysis will be helpful in developing consensus towards international harmonization in database
regulation.

 - 136 -

There are also a number of limitations in our analysis. As discussed earlier, we focus on financial
interests in database contents; other factors concerning societal values of data and data reuse are not
considered. Our economic model considers the competition between the creator and reuser databases.
The model does not capture other effects of data reuse, e.g., network effects of database products. In
addition, the model also ignores factors that are specific to the kind of data being reused, e.g.,
privacy concerns when the reused data is about personal information, and increased price competi-
tion concerns when price data is reused.

In addition to relaxing the limitations identified above, we plan to look into a few other areas in
future research. Out current analysis is based on a horizontal differentiation model; in the future, we
plan to examine data reuse that is vertically differentiated, e.g., the reuser may produce a database of
inferior or superior quality to target a different market. We also need to look at dynamic characteris-
tics. As stressed in Landes and Posner (2003), intellectual property is also the input to intellectual
property creation. With strong protection for database contents, the cost of database creation will
likely rise. In addition, many online databases have characteristics of two-sided markets (Rocket and
Tirole, 2003; Parker and Van Alstyne, 2005), e.g., they target both information seekers as well as
advertisers. Therefore, the modeling techniques for two-sided markets and their interlinked network
effects are worth exploring to derive new insights for policy formulation purposes. Nevertheless, the
current model captures one of the major issues in database legislation and should be helpful to the
formulation of a socially beneficial data reuse policy.

 - 137 -

 “The best way to predict the future is to invent it.”
− Alan Kay

Chapter 7

Conclusion and Future Research

7.1 Conclusion

In this Thesis we have presented our interdisciplinary research on the effective use and reuse of
information from disparate sources. We advance the technology to enable large scale semantic
interoperability; we also analyze the data reuse policy issue that arises from systematic data reuse
activities enabled by such technology.

We developed temporal extensions to the existing COIN framework to enable semantic interop-
erability when heterogeneity exists not only between sources and receivers, but also in different time
periods within a data source. In describing the existing COIN framework, we identified and made
concrete several important concepts that are missing or not well explained in previous COIN work.
For example, for the first time we provided an operational definition for composite conversion and
defined the value method based on composite conversion; the notion of modifier orthogonality was
further clarified. For the temporal extensions, we developed and demonstrated a solution for repre-
senting and reasoning about time-varying semantics in the presence of heterogeneous temporal
entities. Previously, no data conversions were executed in the mediation step. With time-varying
semantics, conversions for ground temporal values need to be executed during mediation so that
inconsistent temporal constraints can be detected for the purposes of semantic query optimization
and of ensuring that an executable plan exists when a source has certain capability limitations.

For the first time, we performed a systematic evaluation on the flexibility and scalability of the
COIN approach. Compared with several traditional approaches, the COIN approach has much
greater flexibility and scalability.

For data reuse policy analysis, we developed an economic model that formalizes the policy in-
struments in one of the latest legislative proposals in the U.S. Our analysis indicates that depending
on the cost level of database creation, the degree of differentiation of the reuser database, and the
efficiency of policy administration, the socially beneficial policy choice can be protecting a legal
monopoly, encouraging competition via compulsory licensing, discouraging voluntary licensing, or

 - 138 -

even allowing free riding. The results provide useful insights for designing and implementing a
socially beneficial database protection policy.

7.2 Future Research

In the process of developing solutions for problems at hand, we identified a number of interesting
issues worth exploring in the future.

The ontology and context descriptions are key components of the COIN framework. It is desir-
able to develop a systematic approach to the management and verification of large ontology and
context definitions. For example, given an ontology and a set of context descriptions, it is useful to
have a way of verifying if all necessary component conversions have been specified; or similarly,
when modifier values are changed, identifying the component conversions that need to be updated.

The query answering mechanism is a two-step linear process: the mediator generates a mediated
query that includes all conversion instructions; the query planner/optimizer/executioner (POE) takes
that mediated query as input and generates an execution plan and executes it to obtain data instances.
The conversion instructions primarily include conversions to the receiver context. For certain queries,
an optimized plan needs instructions on converting to source contexts. We developed a solution in
Chapter 4 for query optimization during the mediation step that generates conversions anticipated by
the POE. Future research should investigate a more general approach, where the POE determines
what data need to be converted to which context and then requests the mediator to generate the
necessary conversion instructions. The POE and the mediator may need to communicate back and
forth multiple times before an optimal plan is generated.

In Chapter 4, we chose to use dynamic modifiers to represent time-varying semantics. An alter-
native approach is to use dynamic context association. When a data field in the source is recycled,
the same data field may map to different ontological concepts in different time periods. In this case,
dynamic elevation (i.e., data field to ontology mapping) will be useful. Thus, future research should
investigate dynamic context association as well as dynamic elevation.

Also in Chapter 4, in representing dynamic modifiers, we assumed that the semantics of tempo-
ral entities is not time-varying. When the assumption does not hold, we propose to use temporal
entities with static semantics in the integration context to describe temporal contexts. The proposed
solution needs further investigation.

The evaluation of the COIN approach in Chapter 5 is based on an analysis that uses the number
of conversions as a proxy. In the future, it will be interesting to have empirical data on things such as
how much time and effort it takes to implement a solution using COIN. Benchmarking comparison
with other emerging solutions will be interesting as well.

For policy research, as mentioned in Chapter 6, we would like to investigate the double-sided
market modeling technique because many data creators and data reusers do have two markets that
have certain network effects.

As seen in Chapter 3, we have demonstrated the capability of the COIN technology using simple
examples in financial and geo-political domains. In addition to further testing the technology with
problems of the size comparable to real application scenarios, it is interesting to test the technology

 - 139 -

in other domains to identify new challenging issues. Possible domains include the integration of GIS
systems, digital libraries, and healthcare systems.

 - 140 -

 - 141 -

Bibliography
Abdennadher, S., Frühwirth, T. and Meuss, H. (1999) "Confluence and Semantics of Constraint

Simplification Rules", Constraint Journal, 4(2), 133-165.

Abiteboul, S., Agrawal, R., Bernstein, P., Carey, M., Ceri, S., Croft, B., DeWitt, D., Franklin, M.,
Molina, H. G., Gawlick, D., Gray, J., Haas, L., Halevy, A., Hellerstein, J., Ioannidis, Y.,
Kersten, M., Pazzani, M., Lesk, M., Maier, D., Naughton, J., Schek, H., Sellis, T., Silber-
schatz, A., Stonebraker, M., Snodgrass, R., Ullman, J., Weikum, G., Widom, J. and Zdonik,
S. (2005) "The Lowell database research self-assessment", Communications of the ACM,
48(5), 111-118.

Alatovic, T. (2002) "Capabilities Aware Planner/Optimizer/Executioner", M.S. Thesis, Department
of EECS, MIT.

Allen, J. F. (1983) "Maintaining Knowledge about Temporal Intervals", Communications of the
ACM, 26(11), 832-843.

Bacchus, F., Tenenberg, J. and Koomen, J. A. (1989) "A Non-Reified Temporal Logic", First
International Conference on Principles of Knowledge Representation and Reasoning, 2-10.

Berbena, R.-P. and Jansenb, W. J. (2005) "Comovementnext term in international equity markets: A
sectoral view", Journal of International Money and Finance, 24(5), 832-857.

Berners-Lee, T., Hendler, J. and Lassila, O. (2001) "The Semantic Web", Scientific American, (May
2001), 34-43.

Bernstein, P. A., Melnik, S., Quix, C. and Petropoulos, M. (2004) "Industrial-Strength Schema
Matching", ACM SIGMOD Record, 33(4), 38-43.

Besen, S. and Raskind, L. (1991) "An Introduction to the Law and Economics of Intellectual
Property", Journal of Economic Perspectives, 5(1), 3-27.

Bettini, C., Wang, X. S. and Jajodia, S. (1998) "Temporal Semantic Assumptions and Their Use in
Databases", IEEE Transactions on Knowledge and Data Engineering, 10(2), 277-296.

Bettini, C., Jajodia, S. and Wang, X. S. (2000) Time Granularities in Databases, Data Mining, and
Temporal Reasoning, Springer.

Bilke, A. and Naumann, F. (2005) "Schema Matching using Duplicates", International Conference
on Data Engineering (ICDE), Japan.

Bratko, I. (2001) Proglog Programming for Artificial Intelligence, 3rd Ed., Addison-Wesley.

Bruijn, J. d., Martín-Recuerda, F., Manov, D. and Ehrig, M. (2005) "State-of-the-art survey on
Ontology Merging and Aligning", SEKT (Semantically Enabled Knowledge Technology)

Bry, F. and Spranger, S. (2004) "Towards a Multi-Calendar Temporal Type System for (Semantic)
Web Query Languages", 2nd International Workshop on Principles and Practice of Seman-
tic Web Reasoning (PPSWR'04), St. Malo, France, 102-117.

Buchanan, J., M. and Yoon, Y. J. (2000) "SYMMETRIC TRAGEDIES: COMMONS AND
ANTICOMMONS", Journal of Law and Economics,, 43(1), 1-43.

Bunge, M. (1974a) Semantics I: Sense and Reference, D. Reidel Publishing Company, Boston.

Bunge, M. (1974b) Semantic II: Interpretation and Truth, D. Reidel Publishing Company, Boston.

Bunge, M. (1977) Ontology I: The Furniture of the World, D. Reidel Publishing Company, Boston.

 - 142 -

Bunge, M. (1979) Ontology II: A World of Systems, D. Reidel Publishing Company, Boston.

Buvač, S. (1996) "Quantificational Logic of Context", AAAI'96, Menlo Park, California, 600-606.

Ceri, S., Gottlob, G. and Tanca, L. (1989) "What You Always Wanted to Know About Datalog (And
Never Dared to Ask)", IEEE Transactions on Knowledge and Data Engineering, 1(1), 146-
166.

Colsten, C. (2001) "Sui Generis Database Right: Ripe for Review?" The Journal of Information, Law
and Technology, 2001(3).

Chen, Y., Png, I. (2003) Information Goods Pricing and Copyright Enforcement: Welfare Analysis.
Information Systems Research 14(1) 107-123.

Clark, K. (1978) "Negation as Failure", In Logic and Data Bases (Eds, Gallaire, H. and Minker, J.),
Plenum, pp. 292-322.

Cox, P. T. and Pietrzykowski, T. (1986) "Causes of Events: Their Computation and Application",
8th International Conference on Automated Deduction, Oxford, England, July 27 - August 1,
1986.

Das, A. K. and Musen, M. A. (2001) "A Formal Method to Resolve Temporal Mismatches in
Clinical Databases", AMIA Annual Symposium.

Date, C. J., Darwen, H. and Lorentzos, N. A. (2003) Temporal Data and the Relational Model: A
Detailed Investigation into the Application of Interval Relation Theory to the Problem of
Temporal Database Management, Morgan Kaufmann Publishers.

Decker, H. (1996) "An extension of SLD by abduction and integrity maintenance for view updating
in deductive databases", Joint International Conference and Symposium on Logic Program-
ming, 157-169.

Denecker, M. and Kakas, A. C. (2002) "Abduction in Logic Programming", In Computational Logic:
Logic Programming and Beyond, Essays in Honour of Robert A. Kowalski, Part I, Vol.
LNCS 2407 (Eds, Kakas, A. C. and Sadri, F.), Springer Verlag, pp. 402-436.

Doughty, D. (2004) "The Achilles’ Heel of Service-Oriented Architectures", Business Integration
Journal, (September), 44-47.

Dyerson, C. (1994) "Temporal Indeterminacy", Department of Computer Science, University of
Arizona.

Eiter, T., Gottlob, G. and Leone, N. (1997) "Abduction from Logic Programs: Semantic and Com-
plexity", Theoretical Computer Science, 189, 129-177.

El-Khatib, H. T., Williams, M. H., MacKinnon, L. M. and Marwick, D. H. (2000) "A framework and
test-suite for assessing approaches to resolving heterogeneity in distributed databases", In-
formation & Software Technology, 42(7), 505-515.

Eshghi, K. and Kowalski, R. A. (1989) "Abduction Compared with Negation by Failure", 6th
International Conference on Logic Programming, Lisbon, 234-255.

Firat, A., Madnick, S. E. and Siegel, M. D. (2000) "The Cameleon Web Wrapper Engine", Workshop
on Technologies for E-Services (TES'00), Cairo, Egypt.

Firat, A., Madnick, S. E. and Grosof, B. (2002) "Financial Information Integration in the Presence of
Equational Ontological Conflicts", 12th Workshop on Information Technology and Systems
(WITS), Barcelona, Spain.

Firat, A. (2003) "Information Integration using Contextual Knowledge and Ontology Merging", PhD

 - 143 -

Thesis, Sloan School of Management, MIT.

Frühwirth, T. (1996) "Temporal Annotated Constraint Logic Programming", Journal of Symbolic
Computation, 22, 555-583.

Frühwirth, T. (1998) "Theory and Practice of Constraint Handling Rules", Journal of Logic Pro-
gramming, 37(1-3), 95-138.

Frühwirth, T. and Abdennadher, S. (2003) Essentials of Constraint Programming, Springer Verlag.

Gallaher, M. P., O’Connor, A. C., Dettbarn, J. L. and Gilday, L. T. (2004) "Cost Analysis of Inade-
quate Interoperability in the U.S. Capital Facilities Industry", GCR 04-867, NIST

Galton, A. (1990) "A Critical Examination of Allen's Theory of Action and Time", Artificial Intelli-
gence, 42(2-3), 159-188.

Garcia-Molina, H., Hammer, J., Ireland, K., Papakonstantinou, Y., Ullman, J. and Widom., J. (1995)
"Integrating and Accessing Heterogeneous Information Sources in TSIMMIS", AAAI Sym-
posium on Information Gathering, Stanford, California, 61-64.

Goh, C. H. (1997) "Representing and Reasoning about Semantic Conflicts in Heterogeneous Infor-
mation Systems", Ph.D. Thesis, Sloan School of Management, MIT.

Goh, C. H., Bressan, S., Madnick, S. and Siegel, M. (1999) "Context Interchange: New Features and
Formalisms for the Intelligent Integration of Information", ACM TOIS, 17(3), 270-293.

Gruber, T. R. (1993) "A Translation Approach to Portable Ontology Specifications", Knowledge
Acquisition, 5(2), 199-220.

Guarino, N. (1997) "Understanding, building, and using ontologies", International Journal of
Human-Computer Studies, 46(2/3), 293-310.

Guha, R. V. (1995) "Contexts: a formalization and some applications", Stanford University

Guha, R. and McCarthy, J. (2003) "Varieties of Contexts", CONTEXT 2003, 164-177.

Guha, R., McCool, R. and Fikes, R. (2004) "Contexts for the Semantic Web", ISWC'04 (LNCS 3298),
Japan, 32-46.

Halevy, A. Y. (2001) "Answering Queries using Views: A Survey", VLDB Journal, 10(4), 270-294.

Halpern, J. Y. and Shoham, Y. (1986) "A Propositional Modal Logic of Time Intervals", Symposium
on Logic in Computer Science, 279-292.

Hayes, P. J. (1996) "A Catalog of Temporal Theories", UIUC-BI-AI-96-01, University of Illinois

Heald, P. J. (2001) "The Extraction/Duplication Dichotomy: Constitutional Line Drawing in the
Database Debate", Ohio State Law Journal, 62, 933-944.

Heimonen, K. (2002) "Stock Market Integration: Evidence on Price Integration and Return Conver-
gence", Applied Financial Economics, 12(6), 415-429.

Heller, M. A. and Eisenberg, R. (1998) "Can Patents Deter Innovation? The Anticommons in
Biomedical Research", Science, 280, 698-701.

Heller, M. A. (1998) "The tragedy of the Anticommons: Property in the Transition from Marx to
Markets", Harvard Law Review, 111, 621-688.

Hernandez, M. A., Miller, R. J., Haas, L. M., Yan, L., Ho, C. T. H. and Tian, X. (2001) "Clio: A
Semi-Automatic Tool For Schema Mapping", ACM SIGMOD.

Hobbs, J. R. (2002) "A DAML Ontology of Time", LREC 2002 (Workshop on Annotation Standards

 - 144 -

for Temporal Information in Natural Language, Las Palmas, Canary Islands, Spain, May 27,
2002.

Hobbs, J. R. and Pan, F. (2004) "An Ontology of Time for the Semantic Web", ACM Transactions
on Asian Language Processing (TALIP), 3(1), 66-85.

Hotelling, H. (1929) "Stability in Competition", Economic Journal, 39, 41-57.

Hugenholtz, P. B. (2001) "The New Database Right: Early Case Law from Europe", Nighth Annual
Conference on International IP Law and Policy, New York, April 19-20, 2001.

Hugenholtz, P. B. (2003) "Program Schedules, Event Data and Telephone Subscriber Listings under
the Database Directive: The "Spin-Off" Doctrine in the Netherlands and elsewhere in
Europe", 11th Annual Conference on International Law & Policy, New York, April 24-25,
2003.

Imielinski, T. (1987) "Intelligent Query Answering in Rule Based Systems", Journal of Logic
Programming, 4(3), 229-257.

ISO (2000) "ISO 8601: Data elements and interchange formats - Information interchange - Repre-
sentation of dates and times".

Jaffar, J. and Maher, M. J. (1994) "Constraint Logic Programming: A Survey", Journal of Logic
Programming, 19/20, 503-581.

Jensen, C. S. and Snodgrass, R. T. (1996) "Semantics of Time-Varying Information", Information
Systems, 21(4), 311-352.

Kakas, A. C., Kowalski, R. A. and Toni, F. (1993) "Abductive Logic Programming", Journal of
Logic and Computation, 2(6), 719-770.

Kakas, A. C. and Mancarella, P. (1993) "Constructive Abduction in Logic Programming", University
of Pisa

Kakas, A. C., Michael, A. and Mourlas, C. (2000) "ACLP: Abductive Constraint Logic Program-
ming", Journal of Logic Programming, 44(1-3), 129-177.

Kamp, J. A. W. (1968) "Tense Logic and the Theory of Linear Order", Ph.D. Thesis, University of
California (UCLA).

Kashyap, V. and Sheth, A. P. (1996) "Semantic and Schematic Similarities Between Database
Objects: A Context-Based Approach", VLDB Journal, 5(4), 276-304.

Kashyap, V. and Sheth, A. P. (2000) Information Brokering Across Heterogeneous Digital Data : A
Metadata-based Approach, Springer.

Kiffer, M., Laussen, G. and Wu, J. (1995) "Logic Foundations of Object-Oriented and Frame-based
Languages", J. ACM, 42(4), 741-843.

Koboldt, C. (1997) "The EU-Directive on the legal protection of databases and the incentives to
update: An economic analysis", International Review of Law and Economics, 17(1), 127-138.

Koubarakis, M. (1994) "Foundations of Temporal Constraint Databases", Ph.D. Thesis, Department
of Electrical and Computer Engineering, National Technical University of Athens.

Kowalski, R. A. and Sergot, M. J. (1986) "A Logic-based Calculus of Events", New Generation of
Computing, 1(4), 67-95.

Landes, W. M. and Posner, R. A. (2003) The Economic Structure of Intellectual Property Law,
Belknap Press.

 - 145 -

Lee, J. (1996) "Integration Information from Disparate Contexts: A Theory of Semantic Interopera-
bility", PhD Thesis, Sloan School of Management, MIT.

Lenzerini, M. (2001) "Data Integration Is Harder than You Thought", CoopIS, 22-26.

Linn, A. (2000) "History of Database Protection: Legal Issues of Concern to the Scientific Commu-
nity",

Lipton, J. (2003) "Private Rights and Public Policies: Reconceptualizing Property in Databases",
Berkeley Technology Law Journal, 18(Summer).

Lopez, I. F. V., Snodgrass, R. T. and Moon, B. (2005) "Spatiotemporal Aggregate Computation: A
Survey", IEEE Transactions on Knowledge and Data Engineering, 17(2), 271-286.

Lloyd, J. W. (1987) Foundations of Logic Programming, 2, Springer-Verlag.

Madhavan, J., Bernstein, P. A., Doan, A. and Alon Halevy (2005) "Corpus-Based Schema Match-
ing", 21st International Conference on Data Engineering (ICDE'05), Tokyo, Japan, 57-68.

Madhavan, J., Bernstein, P. A. and Rahm, E. (2001) "Generic Schema Matching with Cupid", 27th
International Conference on Very Large Data Bases (VLDB), 49--58.

Madnick, S. E. and Siegel, M. D. (2002) "Seize the Opportunity: Exploiting Web Aggregation",
MISQ Executive, 1(1), 35-46.

Maiocchi, R. and Pernici, B. (1991) "Temporal Data Management Systems: A Comparative View",
IEEE Transactions on Knowledge and Data Engineering, 3(4), 504-524.

Marriott, K. and Stuckey, P. J. (1998) Programming with constraints: an introduction, MIT Press.

Maurer, S. M. and Scotchmer, S. (1999) "Database Protection: Is it Broken and Should We Fix it?"
Science, 284(May), 1129-1130.

Maurer, S. M. (2001) "Intellectual Property Law and Policy Issues in Interdisciplinary and Intersec-
toral Data Applications", Data for Science and Society.

McCarthy, J. and Hayes, P. J. (1969) "Some Philosophical Problems from the Standpoint of Artifi-
cial Intelligence", In Machine Intelligence (Eds, Meltzer, B. and Mitchie, D.), Edinburgh
University Press, pp. 463-502.

McCarthy, J. (1987) "Generality in Artificial Intelligence", Communications of the ACM, 30(12),
1030-1035.

McCarthy, J., Buvač, S. (1997) "Formalizing Context (Expanded Notes)", In Computing natural
language (Eds, Aliseda, A., van Glabbeek, R. and Westerstahl, D.), Sanford University.

McDermott, D. V. (1982) "A Temporal Logic for Reasoning about Processes and Plans", Cognitive
Science, 6, 101-155.

Miller, R., Hernandez, M., Haas, L., Yan, L., Ho, C., Fagin, R. and Popa, L. (2001) "The Clio
Project: Managing Heterogeneity", SIGMOD Record, 30(1), 78-83.

Miller, R., Malloy, M. A. and Masek, E. (2003) "Transforming Tactical Messaging: Exploiting Web
Information Standards for Interoperability", Inercom, 44(1), 50-51.

Nadel, M. S. (2000) "The Consumer Production Selection Process in an Internet Age: Obstacles to
Maximum Effectiveness and Policy Options", Harvard Journal of Law & Technology, 14(1).

Naiman, C. F. and Ouskel, A. M. (1995) "A classification of semantic conflicts in heterogeneous
database systems", Journal of Organizational Computing, 5(2), 167-193.

National Research Council (2002) Making the Nation Safer: The Role of Science and Technology in

 - 146 -

Countering Terrorism, The National Academies Press.

Nayak, P. (1994) "Representing Multiple Theories", AAAI'94, Menlo Park, California, 1154-1160.

Nogueira, V. B., Abreu, S. and David, G. (2004) "Towards Temporal Reasoning in Constraint
Contextual Logic Programming", MultiCPL'04 (3rd Internationl Workshop on Multipara-
digm Constraint Programming Languages, Saint-Malo, France, Sep. 6-10, 2004.

Özsoyoglu, G. and Snodgrass, R. T. (1995) "Temporal and Real-Time Databases: A Survey", IEEE
Transactions on Knowledge and Data Engineering, 7(4), 513-532.

O'Rourke, M. A. (2000) "Shaping Competition on the Internet: Who Owns Product and Pricing
Information?" Vanderbilt Law Review, 53(6), 1965-2006.

Parker, G. G. and Van Alstyne, M. (2005) "Two-Sided Network Effects: A Theory of Information
Product Design", Management Science, (forthcoming).

Pierce, C. S. (1903) "Abduction and induction." In Philosophical writings of Pierce (Ed, Buchler, J.),
(1955) Dover Publications, Inc, New York, pp. 150-156.

Rahm, E. and Bernstein, P. A. (2001) "A Survey of Approaches to Automatic Schema Matching",
VLDB Journal, 10(4), 334-350.

Ram, S. and Park, J. (2004) "Semantic Conflict Resolution Ontology (SCROL): An Ontology for
Detecting and Resolving Data and Schema-Level Semantic Conflict", IEEE Transactions on
Knowledge and Data Engineering, 16(2), 189-202.

Reichgelt, H. (1989) "A Comparison of First order and Modal Logics of Time", In Logic-Based
Knowledge Representation (Eds, Jackson, P., Reichgelt, H. and van Harmelen, F.), MIT
Press, Cambridge, pp. 143-176.

Reichman, J. H. and Samuelson, P. (1997) "Intellectual Property Rights in Data?" Vanderbilt Law
Review, 50, 52-166.

Reichman, J. H. and Uhlir, P. F. (1999) "Database Protection at the Crossroads: Recent Develop-
ments and Their Impact on Science and Technology", Berkeley Technology Law Journal,
14(Sping), 793-838.

Rochet, J.-C. and Tirole, J. (2003) "Platform Competition in Two-Sided Markets", Journal of the
European Economic Association, 1(4), 990-1029.

Roddick, J. F. (1995) "A survey of schema versioning issues for database systems", Information and
Software Technology, 37(7), 383-393.

Rosenthal, A., Seligman, L., Renner, S. and Manola, F. (2001) "Data Integration Needs an Industrial
Revolution", International Workshop on Foundations of Models for Information Integration
(FMII-2001), Viterbo, Italy, September.

Rosenthal, A., Seligman, L. and Renner, S. (2004) "From Semantic Integration to Semantics Man-
agement: Case Studies and a Way Forward", ACM SIGMOD Record, 33(4), 44-50.

Ruse, H. G. (2001) "Electronic Aents and the Legal Protection of Non-creative Databases", Interna-
tional Journal of Law and Information Technology, 3(3), 295-326.

Salop, S. C. (1979) "Monopolistic Competition with Outside Goods", The Bell Journal of Economics,
10(1), 141-156.

Salop, S.C., Scheffman, D.T. (1987) “Cost-Raising Strategies”. J. Industrial Economics 36(1)
19-34

Samuelson, P. (1996) "Legal Protection for Database Contents", Communications of the ACM,

 - 147 -

39(12), 17-23.

Sanks, T. M. (1998) "Database Protection: National and International Attempts to Provide Legal
Protection for Databases", Florida State University Law Review, 25, 991-1016.

Schmalensee, R. and Thisse, J. F. (1988) "Perceptual Maps and the Optimal Location of New
Products: An Integrative Essay", International Journal of Research in Marketing, 5, 225-249.

Scotchmer, S. (1991) "Standing on the Shoulders of Giants: Cumulative Research and the Patent
Law", Journal of Economic Perspectives, 5(1), 29-41.

Seligman, L., Rosenthal, A., Lehner, P. and Smith, A. (2002) "Data Integration: Where Does the
Time Go?" IEEE Bulletin of the Technical Committee on Data Engineering, 25(3), 3-10.

Shahar, Y. (1994) "A Knowledge-Based Method for Temporal Abstraction of Clinical Data", Ph.D.
Thesis, The Program in Medical Information Sciences, Stanford University.

Shanahan, M. (1989) "Prediction is deduction but explanation is abduction", International Joint
Conference on Artificial Intelligence, 1055-1060.

Shapiro, C. and Varian, H. R. (1998) Information Rules: A Strategic Guide to the Network Economy,
Harvard Business School Press.

Shoham, Y. (1987) "Temporal Logics in AI: Semantical and Ontological Considerations", Artificial
Intelligence, 33(1), 89-104.

Snodgrass, R. T. and Ahn, I. (1985) "A Taxonomy of Time in Databases", ACM SIGMOD, Austin,
TX, 236-246.

Snodgrass, R. T. (Ed.) (1995) The TSQL2 Temporal Query Language, Kluwer Academic Publishers.

Soo, M. D. and Snodgrass, R. T. (1995) "Mixed Calendar Query Language Support for Temporal
Constants", University of Arizona

Sterling, L. and Shapiro, E. (1994) The Art of Prolog: Advanced Programming Techniques, 2nd, The
MIT Press.

Tabuchi, H. (2002) "International Protection of Non-Original Databases: Studies on the Economic
Impact of the Intellectual Property Protection of Non-Original Databases", CODATA 2002,
Montreal, Canada, Sept. 29 - Oct. 3, 2002.

Takeyama, L. N. (1994) "The Welfare Implications of Unauthorized Reproduction of Intellectual
Property in the Presence of Demand Network Externalities", The Journal of Industrial Eco-
nomics, 22(2), 155-166.

Tirole, J. (1988) The Theory of Industrial Organization, The MIT Press, Cambridge, MA, USA.

Uschold, M. (2003) "Where are the semantics in the semantic web?" AI Magazine, 24(3), 25-36.

Ventrone, V. and Heiler, S. (1991) "Semantic heterogeneity as a result of domain evolution",
SIGMOD Record, 20(4), 16-20.

Wache, H., Vögele, T., Visser, U., H. Stuckenschmidt, Schuster, G., Neumann, H. and Hübner, S.
(2001) "Ontology-Based Integration of Information - A Survey of Existing Approaches",
IJCAI-01 Workshop: Ontologies and Information Sharing, Seattle, WA, 108-117.

Wand, Y., Storey, V. C. and Weber, R. (1999) "An ontological analysis of the relationship construct
in conceptual modeling", ACM Transactions on Database Systems (TODS), 24(4), 494-528.

Wand, Y. and Weber, R. (1988) "An Ontological Analysis of Some Fundamental Information
Systems Concepts", ICIS, Minneapolis, Minnesota.

 - 148 -

Yerneni, R. (2001) "Mediated Query Processing over Autonomous Data Sources", Ph.D. Thesis,
Department of Computer Science, Stanford University.

Yoon, K. (2002) "The Optimal Level of Copyright Protection", Information Economics and Policy,
14, 327-348.

Zhou, Q. and Fikes, R. (2000) "A Reusable Time Ontology", KSL-00-01, Stanford University

Zhu, H., Madnick, S. E. and Siegel, M. D. (2002a) "The Interplay of Web Aggregation and Regula-
tions", 3rd International Conference on Law and Technology, Cambridge, MA, USA,
November 6-7.

Zhu, H., Madnick, S. and Siegel, M. (2002b) "Global Comparison Aggregation Services", 1st
Workshop on E-Business, Barcelona, Spain.

 - 149 -

Appendix: Source Code of the COIN Mediator

The COIN mediator is implemented using Prolog and CHR. Many people in the past contributed to
the implementation of the mediator. Goh (1997) and Firat (2003) provide brief overviews to the
implementation, but they did not include the source code in their theses.

For the convenience of future researchers who want to study the implementation, below we list
the source code of the ACLP procedure (described in Chapter 4). It comes in two files: (1) “ad-
budct.pl”, which is the Prolog code for the “abductive reasoning” part of ACLP; and (2)
“constraint.chr”, which is the CHR code for the “constraint handling” part of ACLP. In addition to
the rules for solving general constraints (e.g., transitivity rules for “<” constraint in domains of real
number and time), the CHR code also contains certain application/source specific rules (e.g., key
constraints and capability constraints in a data source).

There are two versions of “abduction.pl” files. We show the version used this Thesis. The other
version is from Firat (2003), which includes significant amount of extra code for dealing with
ontology and application merging. The CHR code listed here also includes the CHR rules developed
by Firat (2003) for symbolic equation solving.

In addition to the code of the ACLP procedure, the implementation also includes code that parses
a SQL query into a Datalog query, translates a naïve Datalog query to a well-formed COIN query,
and constructs a mediated Datalog query from the constraint stores of the ACLP procedure. Code for
these for these features is not included here.

abduct.pl
/**
* *
* Abduction Engine *
* *
* From Cheng Goh by Stephane Bressan 09/15/96 *
* Modified by Aykut FIRAT, Harry Zhu *
* *
**/

:- module_interface(abduct).

:- export abduct2all/4.
:- export get_conflict_list2/1.

:- begin_module(abduct2).
:- local reference(conflict_list).
:- local reference(module), reference(context).
:- local variable(conflict_list_var).

abducible_relation(RName, Arity):- query_import_relation(_, RName, Arity).

query_import_relation(ISName, RName, Arity) :-
 getval(module,Application),
 call(rule(relation(ISName, RName,i,List, _),_),Application), length(List, Arity).

query_import_relation(ISName, RName, Arity) :-
 getval(module,Application),
 call(rule(relation(ISName, RName,ie,List, _),_),Application), length(List, Arity).

compiled_clause(H:-B):-
 getval(module,Application),
 call(rule(H, B), Application).

abduct2all(Query, Context, Answers, Module):-

 - 150 -

 setval(module,Module),setval(context, Context),
 findall(Answer, abduct(Query, Answer), Answers).

abduct(':-'(Head, Goal), ':-'(Head,LDG)):-
 abductively_prove(Goal, LDG).

abduct([Head| Goal], [Head|LDG]):-
 abductively_prove(Goal, LDG).

abductively_prove(Goal, DG) :-
 sub_abductively_prove(Goal), getval(module,A),post_constraint('?do'(A)),
 abducted_list(DG).

% some builtins are not abducted
% and will be evaluated directly.

builtin(Lit):-
 functor(Lit, P, Ar),builtin(P, Ar).
builtin(atomic,1).
builtin(number,1).
builtin(string,1).
builtin(=..,2).
builtin(cste,4).
builtin(ground,1).
builtin(var,1).
builtin(fail,0).
builtin(containObj,2). %% for temporal context
builtin(contains, 2).
builtin(begins, 2).
builtin(ends, 2).

%%%%%%
% constraints are abducted
constraint(~=, 2, neq).
constraint(is, 2, eq).
constraint(==, 2, seq).
constraint(<, 2, lss).
constraint(>, 2, grt).
constraint(=<, 2, leq).
constraint(>=, 2, geq).
constraint(<>, 2, neq).
constraint(plus, 3, sum).
constraint(minus,3, sub).
constraint(fplus,3, fsum).
constraint(fminus,3, fsub).
constraint(multiply, 3, mul).
constraint(divide, 3, div).
constraint(fmultiply, 3, fmul).
constraint(fdivide, 3, fdiv).
constraint(datecvt, 4, datecvt).

% and so are all edb predicates

abducible(Lit, LLit) :-
 functor(Lit, R, A),
 constraint(R,A, RR),!,
 Lit =.. [R|Arg],
 LLit =.. [RR|Arg].

abducible(Lit, '?'(Lit)) :-
 functor(Lit, R, A),
 abducible_relation(R,A).

%
sub_abductively_prove(true):-!. % success

sub_abductively_prove((H,T)) :-!, % subgoals
 sub_abductively_prove(H),
 sub_abductively_prove(T).

sub_abductively_prove([]):-!.

 - 151 -

sub_abductively_prove([H|R]) :-!, % subgoals
 sub_abductively_prove(H),
 sub_abductively_prove(R).

sub_abductively_prove('='(X,Y)) :-!, % equality
 X = Y.

sub_abductively_prove(not('='(X,Y))) :-!, % inequality 2
 X~=Y.
sub_abductively_prove(not('is'(X,Y))) :-!, % inequality 3
 X~=Y.

/* predicates that need to be called directly
all_modifiers, attr, cvt, modifier, value, context,
*/
sub_abductively_prove(all_modifiers(X,Y)) :-!, % Prolog to value
 all_modifiers(X,Y).
sub_abductively_prove(attr(X,Y,Z)) :- !, % Prolog to value
 attr(X,Y,Z).
sub_abductively_prove(cvt(X0,X1,X2,X3,X4,X5,X6,X7,X8)) :- !, % Prolog to value
 cvt(X0, X1,X2,X3,X4,X5,X6,X7,X8).

sub_abductively_prove(modifier(S,O,M,C,SM)) :- !,
 modifier(S,O,M,C,SM).

sub_abductively_prove(value(X,Y,Z)) :- !, % Prolog to value
 value(X,Y,Z).

sub_abductively_prove(if(X,Y,Z)) :- !, %%% HZ: for part-of problem.
 (sub_abductively_prove(X) ->
 sub_abductively_prove(Y);sub_abductively_prove(Z)).

sub_abductively_prove(context(X,Y)) :- !, % Prolog to value
 context(X,Y).

%% other literals

sub_abductively_prove(Lit) :- % builtin
 builtin(Lit), !,
 call(Lit).

sub_abductively_prove(Lit) :- % abduction in constraint store
 abducible(Lit, L1), !,
 post_constraint(L1).

sub_abductively_prove(Lit) :- % resolution
 compiled_clause(Lit :- Body),
 sub_abductively_prove(Body).

sub_abductively_prove({Lit}) :-
 call((Lit)).

%% more predicates to be directly called. For temporal
sub_abductively_prove(containObj(X,Y)):-
 containObj(X,Y).
sub_abductively_prove(contains(X,Y)) :-
 contains(X,Y).
sub_abductively_prove(begins(X,Y)) :-
 begins(X,Y).
sub_abductively_prove(ends(X,Y)) :-
 ends(X,Y).
sub_abductively_prove(sourcePos(O,P)):- sourcePos(O,P).
sub_abductively_prove(arg(I,T,E)):-arg(I,T,E).

/* constraint store (in module mystore) */

post_constraint(Lit) :- call(Lit, mystore). %true.

abducted_list([C|L]):- in_store(C),
 abducted_list(L),!.

 - 152 -

abducted_list([]).

in_store(C):- call(chr_get_constraint(CC), mystore), reformat(CC, C).

reformat(round(X,Y,Z), Z is round(X,Y)).
reformat('?'(Y), Y).
reformat(lss(X, Y), X < Y).
reformat(leq(X, Y), X =< Y).
reformat(geq(X, Y), X >= Y).
reformat(grt(X, Y), X > Y).
reformat(neq(X, Y), '<>'(X, Y)).
reformat(eq(X, Y), X is Y).
reformat(seq(X,Y), '=='(X, Y)).
reformat(sum(X,Y,Z), Z is X + Y).
reformat(sub(X,Y,Z), Z is X - Y).
reformat(fsum(X,Y,Z), Z is X + Y).
reformat(fsub(X,Y,Z), Z is X - Y).
reformat(mul(X,Y,Z), Z is X * Y).
reformat(div(X,Y,Z), Z is X / Y).
reformat(fmul(X,Y,Z), Z is X * Y).
reformat(fdiv(X,Y,Z), Z is X / Y).
reformat(tle(X,Y), X =< Y).
reformat(tls(X,Y), X < Y).
reformat(datecvt(A,B,C,D),L):- B \==D, L = datecvt(A,B,C,D).

/* builtin context axioms */

cste(S, skolem(S, V, C, 1, cste(V)), C, V).
cste(_).

context(skolem(_, _, C, _, _), C).

isa(skolem(S, _Vsrc, _Csrc, _Pos, _Tuple), S).
isa(cste(S,_,_,_), S).

all_modifiers(basic,[]).
all_modifiers(S,L) :-
 sub_abductively_prove(modifiers(S,L1)),
 sub_abductively_prove(is_a(S,S1)),
 all_modifiers(S1,L2), union(L2,L1,L). % ToDo: code for ordering modifers

attr(X,Y,Z) :- compiled_clause(attr(X,Y,Z):-H), sub_abductively_prove(H).
attr(skolem(T,V1,V2,V3,V4),M,L):- sub_abductively_prove(is_a(T,P)),
attr(skolem(P,V1,V2,V3,V4),M,L).

cvt(X0,X1,X2,X3,X4,X5,X6,X7,X8):-
 compiled_clause(cvt(X0,X1,X2,X3,X4,X5,X6,X7,X8):-H), sub_abductively_prove(H).
cvt(X0,X1,X2,X3,X4,X7,X8,X5,X6):-
 compiled_clause(cvt(commutative,X1,X2,X3,X4,X5,X6,X7,X8):-H),
sub_abductively_prove(H).
cvt(X0,X1,X2,X3,X4,X5,X6,X7,X8):-
 sub_abductively_prove(is_a(X1,P)), cvt(X0,P,X2,X3,X4,X5,X6,X7,X8).

sourceCtxt(skolem(_S, _Vsrc, Csrc, _Pos, _Tuple), Csrc).

sourceValue(skolem(_S, Vsrc, _Csrc, _Pos, _Tuple), Vsrc).
sourceValue(cste(_S,_O,_C,V),V).

sourcePos(skolem(_S,_Vsrc,_Csrc,Pos,_Tuple),Pos).

value(skolem(_S, Vsrc, _Csrc, _Pos, _Tuple), none, Vsrc):-!, post_constraint('?df'(none)).
%value(skolem(_S, Vsrc, Csrc, _Pos, _Tuple), Csrc, Vsrc):-!.
value(cste(S, O, C,V),Ctxt,Val):- !,cste(S, O, C, V), value(O, Ctxt, Val).

value(O, Ctgt, Vtgt):-
 isa(O, S),
 sourceValue(O, Vsrc),
 sub_abductively_prove(all_modifiers(S, L)),
 allcvts(S, O, Vsrc, L, Ctgt, Vtgt).

 - 153 -

modifier(S,O,M,C,SM) :- compiled_clause(modifier(S,O,M,C,SM):-B), sub_abductively_prove(B).
modifier(S,O,M,C,SM) :- sub_abductively_prove(is_a(C,CP)), modifier(S,O,M,CP,SM).
modifier(S,O,M,C,SM) :- sub_abductively_prove(is_a(S,SP)), modifier(SP,O,M,C,SM).

%% buit-in temporal context axioms
containObj(Int, O) :- sub_abductively_prove((
 attr(O, tempAttribute, T), contains(Int,T))).
begins(T1,[T1,T2]).
ends(T2,[T1,T2]).
contains(Int, Point):-
 begins(T1,Int), ends(T2, Int),getval(context, C),
 sub_abductively_prove((value(T1, C, T1v), value(T2, C, T2v),value(Point,C,Pv),
 Pv =< T2v, T1v =<Pv)).

%%%%%

allcvts(_S, _O, V, [], _Ctgt, V):- !.
allcvts(S, O, V, [M|L], Ctgt, NV):-
 precvt(S, O, V, M, Ctgt, IV),
 allcvts(S, O, IV, L, Ctgt, NV).

precvt(S, O, V, M, Ctgt , IV) :-
 sourceCtxt(O, Csrc),
 sub_abductively_prove((modifier(S, O,M,Csrc,M1),
 modifier(S, O,M,Ctgt,M2),
 value(M1, Ctgt, MV1),
 value(M2, Ctgt, MV2),'<>'(MV1,MV2))),
 ((var(MV1);var(MV2)) ->
 subprecvt(S, O, M, Ctgt, MV1, V, MV2, IV);
 subprecvt(S, O, M, Ctgt, MV1, V, MV2, IV)). %,!).%%

precvt(S, O, V, M, Ctgt , V):-
 sourceCtxt(O, Csrc),
 sub_abductively_prove((modifier(S, O,M,Csrc,M1),
 modifier(S, O,M,Ctgt,M2),
 value(M1,Ctgt,MV1),ground(MV1), value(M2,Ctgt,MV1)
 %)),(M==dateformat -> (sub-
precvt(S,O,M,Ctgt,MV1,V,MV1,V),post_constraint('?df'(MV1)))),!.
)),(M==dateformat -> (subprecvt(S,O,M,Ctgt,MV1,V,MV1,V))),!.
precvt(S, O, V, M, Ctgt , V):-
 sourceCtxt(O, Csrc),
 sub_abductively_prove((modifier(S, O,M,Csrc,M1),
 modifier(S, O,M,Ctgt,M2),
 value(M2,Ctgt,MV2),ground(MV2), value(M1,Ctgt,MV2)
 %)),!.
)),(M==dateformat -> (subprecvt(S,O,M,Ctgt,MV2,V,MV2,V))),!.

precvt(S, O, V, M, Ctgt , V):-
 sourceCtxt(O, Csrc),
 sub_abductively_prove((modifier(S, O,M,Csrc,M1),
 modifier(S, O,M,Ctgt,M2),
 value(M2,Csrc,MV2),ground(MV2), value(M1,Csrc,MV2)
)),!.
 %)),(M==dateformat -> (subprecvt(S,O,M,Ctgt,MV2,V,MV2,V))),!.

precvt(S, O, V, M, Ctgt , V):-
 sourceCtxt(O, Csrc),
 sub_abductively_prove((modifier(S, O,M,Csrc,M1),
 modifier(S, O,M,Ctgt,M2),
 value(M1,Csrc,MV1), ground(MV1), value(M2,Csrc,MV1)
)),!.
 %)),(M==dateformat -> (subprecvt(S,O,M,Ctgt,MV1,V,MV1,V))),!.

%%%%%%%%%%%%%%

%precvt(S, O, V, M, C , V). %hz commented out

subprecvt(S, O, M, Ctgt, MV1, V, MV2, IV):-
 %sub_abductively_prove(('<>'(MV1,MV2),cvt(X0,S, O, M, Ctgt, MV1, V, MV2, IV))),!,
 sub_abductively_prove(cvt(X0,S, O, M, Ctgt, MV1, V, MV2, IV)),!,
 sourceCtxt(O, Csrc),

 - 154 -

 get_tuple(O,T),
 getConvFunc(M,CF),
 post_constraint('$'([S,V,T,M,Csrc,MV1,Ctgt,MV2,CF])).

subprecvt(S, O, M, Ctgt, MV1, Vs, MV2, Vt):-
 getval(module,Application),
 call(path(MV1, MV2, P, _D,Application,S,M), dijkstra),
 serially_prove(P, S, O, M, Vs, Vt),!,%%hz add !
 sourceCtxt(O, Csrc),
 get_tuple(O,T),
 getConvFunc(M,CF),
 post_constraint('$'([S,Vs,T,M,Csrc,MV1,Ctgt,MV2,CF])).

serially_prove([X|[]], S, O, M, Vs, Vs).

serially_prove([MV1,MV2|Rest], S, O, M, Vs, Vt) :- subprecvt(S, O, M, Ctgt, MV1, Vs, MV2,
IV),
 serially_prove([MV2|Rest], S, O, M, IV, Vt).

get_conflict_list2([C|L]):- in_store2(C),
 get_conflict_list2(L),!.
get_conflict_list2([]).

in_store2(C):- call(chr_get_constraint(CC), mystore), reformat2(CC, C).

reformat2('$'(Y), (Y)).

getConvFunc(M, CF) :- compiled_clause(cvt(_,_, _, M, _, _, _, _, _):-CF),!.
getConvFunc(M,none):- writeln("none").
get_tuple(skolem(_S, Vsrc, _Csrc, _Pos, T),T).

contraint.chr
% Basic INEQUALITIES for abduction
% Based on MInmax from thom fruehwirth & Pascal Brisset ECRC
% compile with lib(chr)
%handler abduction.

option(already_in_store, on).
option(already_in_heads, off).
option(check_guard_bindings, off).

:- import(date_time).
:- local reference(dateformat).

operator(700, xfx, lss).
operator(700, xfx, grt).
operator(700, xfx, neq).
operator(700, xfx, geq).
operator(700, xfx, leq).
operator(700, xfx, eq).
operator(700, fx, '?').
operator(700, fx, '$').
operator(700, xfx, seq).

constraints (leq)/2, (lss)/2, (neq)/2, (eq)/2, (seq)/2,('$')/1, ('?')/1, (sum)/3, (sub)/3,
(bound)/1, (fsum)/3, (fsub)/3, (fdsub)/6, (fdsum)/6, (fdmul)/6, (fddiv)/6, (div)/3 , (mul)/3,
(fmul)/3, (fdiv)/3, (round)/3, (datecvt)/4, ('?df')/1, (ftemp)/4, geq/2,grt/2, '?do'/1.

X geq Y <=> Y leq X.
X grt Y <=> Y lss X.

'?df'(F) <=>setval(dateformat,F).

/* tle <==>leq */

reflexivity @ X leq X <=> true.
antisymmetry @ X leq Y, Y leq X <=> X=Y.

 - 155 -

transitivity @ X leq Y, Y leq Z ==> X \== Y, Y \== Z, X \== Z | X leq Z.
top_axiom @ X leq Y <=> Y==top | true.
bottom_axiom @ Y leq X <=> Y==bottom | true.

%% subsumption rules tighten the constraints
tle_subsumption @ X leq N \ X leq M <=> number(N), number(M), N<M | true.
tle_subsumption_2 @ M leq X \ N leq X <=> number(N), number(M), N<M | true.
tle_conflict @ M leq X, X leq N <=> number(N), number(M), N<M |fail.

tle_subsumption @ X leq N \ X leq M <=> string(N), string(M), tr(tls2,N,M) | true.
tle_subsumption_2 @ M leq X \ N leq X <=> string(N), string(M), tr(tls2,N,M) | true.
tle_conflict @ M leq X, X leq N <=> string(N), string(M), tr(tls2,N,M) | fail.

tle_builtin @ X leq Y <=> number(X),number(Y) | X =< Y.
tle_builtin2 @X leq Y <=> string(X), string(Y) | tr(tle2, X,Y).

/* tls */
irreflexivity @ X lss X <=> fail.
top_axiom @ X lss Y <=> Y==top | true.
bottom_axiom @ Y lss X <=> Y==bottom | true.

transitivity @ X lss Y, Y lss Z ==> X \== Y, Y \== Z | X lss Z.
transitivity @ X leq Y, Y lss Z ==> X \== Y, Y \== Z | X lss Z.
transitivity @ X lss Y, Y leq Z ==> X \== Y, Y \== Z | X lss Z.

subsumption @ X lss Y \ X leq Y <=> true.

subsumption @ X lss N \ X lss M <=> number(N), number(M) | N@<M.
subsumption @ M lss X \ N lss X <=> number(N), number(M) | N@<M.
tls_conflict @ M lss X, X lss N <=> number(N), number(M), N<M |fail.

tls_subsumption @ X lss N \ X lss M <=> string(N), string(M), tr(tls2,N,M) | true.
tls_subsumption_2 @ M lss X \ N lss X <=> string(N), string(M), tr(tls2,N,M) | true.
tls_conflict @ M lss X, X lss N <=> string(N), string(M), tr(tls2,N,M) | fail.

subsumption @ X leq N \ X lss M <=> number(N), number(M) | N@<M.
subsumption @ M leq X \ N lss X <=> number(N), number(M) | N@<M.
subsumption @ X lss N \ X leq M <=> number(N), number(M) | N@<M.
subsumption @ M lss X \ N leq X <=> number(N), number(M) | N@<M.
subsumption @ X leq N \ X lss M <=> string(N), string(M) | tr(tls2,N,M).
subsumption @ M leq X \ N lss X <=> string(N), string(M) | tr(tls2,N,M).
subsumption @ X lss N \ X leq M <=> string(N), string(M) | tr(tls2,N,M).
subsumption @ M lss X \ N leq X <=> string(N), string(M) | tr(tls2,N,M).

datecvt(D1,F1,D2,F2) <=> ground(D1),ground(F1),ground(F2),nonground(D2),
 date_string(D,F1,D1),date_string(D,F2,D2), setval(dateformat, F2)|true.
datecvt(D1,F1,D2,F2) <=> ground(D2),ground(F1),ground(F2),nonground(D1),
 date_string(D,F2,D2),date_string(D,F1,D1), setval(dateformat, F2)|true.
datecvt(D1,F1,D2,F2) ==>string(F2) | setval(dateformat, F2).

datecvt(D1,F1,D2,F2), datecvt(D1,F1,D,F2) ==>D2=D.
datecvt(D1,F1,D2,F2), datecvt(D,F1,D2,F2) ==> D1=D.

tls2(A,B) :- A @< B.

teq2([H1|T1], [H2|T2]) :- H1 == H2, !, teq2(T1,T2).
teq2([],_) :-!.
teq2(_,[]).

tle2(X,Y) :- tls2(X,Y),!; teq2(X,Y).

tr(R,N,M) :- getval(dateformat, F),string(F),
 date_string(DN, F, N), date_string(DM, F, M),
 DN =.. [R1|D1], DM =.. [R2|D2],
 Re=..[R,D1,D2],Re.

tr(R,N,F1, M,F2) :- string(F1), string(F2),
 date_string(DN, F1, N), date_string(DM, F2, M),
 DN =.. [R1|D1], DM =.. [R2|D2],
 Re=..[R,D1,D2],Re.

 - 156 -

/*** end of temporal ***/

/* neq */

built_in @ X neq Y <=> X ~= Y | true.
 % can be replaced by ground(X),ground(Y) | X \= Y.
irreflexivity@ X neq X <=> fail.

subsumption @ X neq Y \ Y neq X <=> true.
subsumption @ X lss Y \ X neq Y <=> true.
subsumption @ X lss Y \ Y neq X <=> true.

simplification @ X neq Y, X leq Y <=> X lss Y.
simplification @ Y neq X, X leq Y <=> X lss Y.

/* eq */

equations @ X eq Y <=> ground(X), var(Y) |Y is X.
equations @ X eq Y <=> var(X), ground(Y)| X is Y.
equations @ X eq Y <=> var(X), var(Y) | Y = X.
equations @ X eq Y <=> ground(X), ground(Y)| ZY is Y, ZX is X, ZX = ZY.
/* new addition*/
equations @ X eq Y, Z eq Y ==> X = Z.

/* string equations */

sequations @ X seq Y <=> ground(X), ground(Y)| ZY = Y, ZX = X, ZX = ZY.

sequations @ X seq X <=> true.

simplification @ X neq Y, X leq Y <=> X lss Y.
simplification @ Y neq X, X leq Y <=> X lss Y.

sum_ground @ sum(X,Y,Z) <=> ground(X), ground(Y) | Z is X + Y, bound(Z).
sum_ground @ sum(X,Y,Z) <=> ground(X), ground(Z) | Y is Z - X, bound(Y).
sum_ground @ sum(X,Y,Z) <=> ground(Y), ground(Z) | X is Z - Y, bound(X).

sum_identity @ sum(0,Y,Z) <=> nonground(Z), nonground(Y) | Z = Y.
sum_identity @ sum(X,0,Z) <=> nonground(Z), nonground(X) | Z = X.

sum_equality @ sum(X,Y,Z), sum(X,A,Z) ==> nonground(Y), nonground(A) | Y = A.
sum_equality @ sum(A,Y,Z), sum(X,Y,Z) ==> nonground(X), nonground(A) | X = A.
sum_equality @ sum(X,Y,A), sum(X,Y,Z) ==> nonground(Z), nonground(A) | Z = A.

sum_equality @ sum(X,Y,Z), sum(X,A,Z) ==> nonground(Y), ground(A) | Y is A.
sum_equality @ sum(A,Y,Z), sum(X,Y,Z) ==> nonground(X), ground(A) | X is A.
sum_equality @ sum(X,Y,A), sum(X,Y,Z) ==> nonground(Z), ground(A) | Z is A.

sum_binding @ sum(X,Y,Z), bound(X) ==> fdsum(X,Y,Z,X,0,0).
sum_binding @ sum(X,Y,Z), bound(Y) ==> fdsum(X,Y,Z,0,Y,0).
sum_binding @ sum(X,Y,Z), bound(Z) ==> fdsum(X,Y,Z,0,0,Z).

sum_symbolic @ fdsum(X,Y,Z,X,0,0), fdsum(X,Y,Z,0,Y,0) <=> fsum(X,Y,Z), bound(Z).
sum_symbolic @ fdsum(X,Y,Z,X,0,0), fdsum(X,Y,Z,0,0,Z) <=> fsub(Z,X,Y), bound(Y).
sum_symbolic @ fdsum(X,Y,Z,0,Y,0), fdsum(X,Y,Z,0,0,Z) <=> fsub(Z,Y,X), bound(X).

sum_elimination @ fsum(X,Y,Z), sum(X,Y,Z) <=> fsum(X,Y,Z).
sum_elimination @ sum(X,Y,Z), sum(X,Y,Z) <=> sum(X,Y,Z).
sum_elimination @ fsum(X,Y,Z), fsum(X,Y,Z) <=> fsum(X,Y,Z).

sum_transformation @ sum(X,Y,Z), bound(Z) <=> sub(Z,Y,X), bound(Z).

/* Subtraction Axioms*/

sub_ground @ sub(X,Y,Z) <=> ground(X), ground(Y) | Z is X - Y, bound(Z).
sub_ground @ sub(X,Y,Z) <=> ground(X), ground(Z) | Y is Z + X, bound(Y).

 - 157 -

sub_ground @ sub(X,Y,Z) <=> ground(Y), ground(Z) | X is Z + Y, bound(X).

sub_identity @ sub(X,0,Z) <=> nonground(Z), nonground(X) | Z = X.
sub_identity @ sub(X,Y,0) <=> nonground(Y), nonground(X) | X = Y.

sub_equality @ sub(X,Y,Z), sub(X,A,Z) ==> nonground(A), nonground(Y)| A = Y.
sub_equality @ sub(A,Y,Z), sub(X,Y,Z) ==> nonground(A), nonground(X)| A = X.
sub_equality @ sub(X,Y,A), sub(X,Y,Z) ==> nonground(A), nonground(Z)| A = Z.

sub_equality @ sub(X,Y,Z), sub(X,A,Z) ==> nonground(A), ground(Y)| A is Y.
sub_equality @ sub(A,Y,Z), sub(X,Y,Z) ==> nonground(A), ground(X)| A is X.
sub_equality @ sub(X,Y,A), sub(X,Y,Z) ==> nonground(A), ground(Z)| A is Z.

sub_binding @ sub(X,Y,Z), bound(X) ==> fdsub(X,Y,Z,X,0,0).
sub_binding @ sub(X,Y,Z), bound(Y) ==> fdsub(X,Y,Z,0,Y,0).
sub_binding @ sub(X,Y,Z), bound(Z) ==> fdsub(X,Y,Z,0,0,Z).

sub_elimination @ fsub(X,Y,Z), sub(X,Y,Z) <=> fsub(X,Y,Z).
sub_elimination @ sub(X,Y,Z), sub(X,Y,Z) <=> sub(X,Y,Z).
sub_elimination @ fsub(X,Y,Z), fsub(X,Y,Z) <=> fsub(X,Y,Z).

sub_transformation @ sub(X,Y,Z), bound(Z) <=> sum(Y,Z,X), bound(Z).

sub_symbolic @ fdsub(X,Y,Z,X,0,0), fdsub(X,Y,Z,0,Y,0) <=> fsub(X,Y,Z), bound(Z).
sub_symbolic @ fdsub(X,Y,Z,X,0,0), fdsub(X,Y,Z,0,0,Z) <=> fsub(X,Z,Y), bound(Y).
sub_symbolic @ fdsub(X,Y,Z,0,Y,0), fdsub(X,Y,Z,0,0,Z) <=> fsum(Z,Y,X), bound(X).

/* Multiplication Axioms */
mul_ground @ mul(X,Y,Z) <=> ground(X), ground(Y) | Z is X * Y, bound(Z).
mul_ground @ mul(X,Y,Z) <=> ground(X), ground(Z), X~=0 | Y is Z / X, bound(Y).
mul_ground @ mul(X,Y,Z) <=> ground(Y), ground(Z), Y ~=0 | X is Z / Y, bound(X).

mul_ground @ mul(X,Y,Z) <=> ground(X), ground(Y) | Z is X * Y, bound(Z).
mul_ground @ mul(0,Y,Z) <=> nonground(Z) | Z is 0, bound(Z).
mul_ground @ mul(X,0,Z) <=> nonground(Z) | Z is 0, bound(Z).

mul_identity @ mul(1,Y,Z) <=> nonground(Z), nonground(Y) | Z=Y.
mul_identity @ mul(X,1,Z) <=> nonground(Z), nonground(X) | Z=X.

mul_equality @ mul(X,Y,Z), mul(X,A,Z) ==> nonground(A), nonground(Y)| A = Y.
mul_equality @ mul(A,Y,Z), mul(X,Y,Z) ==> nonground(A), nonground(X)| A = X.
mul_equality @ mul(X,Y,A), mul(X,Y,Z) ==> nonground(A), nonground(Z)| A = Z.

mul_equality @ mul(X,Y,Z), mul(X,A,Z) ==> nonground(A), ground(Y)| A is Y.
mul_equality @ mul(A,Y,Z), mul(X,Y,Z) ==> nonground(A), ground(X)| A is X.
mul_equality @ mul(X,Y,A), mul(X,Y,Z) ==> nonground(A), ground(Z)| A is Z.

mul_binding @ mul(X,Y,Z), bound(X) ==> fdmul(X,Y,Z,X,0,0).
mul_binding @ mul(X,Y,Z), bound(Y) ==> fdmul(X,Y,Z,0,Y,0).
mul_binding @ mul(X,Y,Z), bound(Z) ==> fdmul(X,Y,Z,0,0,Z).

mul_symbolic @ fdmul(X,Y,Z,X,0,0), fdmul(X,Y,Z,0,Y,0) <=> fmul(X,Y,Z), bound(Z).
mul_symbolic @ fdmul(X,Y,Z,X,0,0), fdmul(X,Y,Z,0,0,Z) <=> fdiv(Z,X,Y), bound(Y).
mul_symbolic @ fdmul(X,Y,Z,0,Y,0), fdmul(X,Y,Z,0,0,Z) <=> fdiv(Z,Y,X), bound(X).

mul_transformation @ mul(X,Y,Z), bound(Z) <=> div(Z,Y,X), bound(Z).

mul_elimination @ mul(X,Y,Z), mul(X,Y,Z) <=> mul(X,Y,Z).
mul_elimination @ fmul(X,Y,Z), fmul(X,Y,Z) <=> fmul(X,Y,Z).
mul_elimination @ fmul(X,Y,Z), mul(X,Y,Z) <=> fmul(X,Y,Z).

/* Division Axioms*/
div_ground @ div(X,Y,Z) <=> ground(X), ground(Y), Y ~=0 | Z is X / Y.
div_ground @ div(X,Y,Z) <=> ground(X), ground(Z) | Y is Z * X.
div_ground @ div(X,Y,Z) <=> ground(Y), ground(Z) | X is Z * Y.
div_ground @ div(0,Y,Z) <=> nonground(Z) | Z is 0.
div_ground @ div(X,0,Z) <=> true.

div_identity @ div(X,1,Z) <=> nonground(Z) | Z=X.

 - 158 -

div_identity @ div(X,Y,1) <=> nonground(Y) | Y=X.

div_identity @ div(X,1.0,Z) <=> nonground(Z) | Z=X.
div_identity @ div(X,Y,1.0) <=> nonground(Y) | Y=X.

div_equality @ div(X,Y,Z), div(X,A,Z) ==> nonground(A), nonground(Y)| A = Y.
div_equality @ div(A,Y,Z), div(X,Y,Z) ==> nonground(A), nonground(X)| A = X.
div_equality @ div(X,Y,A), div(X,Y,Z) ==> nonground(A), nonground(Z)| A = Z.

div_equality @ div(X,Y,Z), div(X,A,Z) ==> nonground(A), ground(Y)| A is Y.
div_equality @ div(A,Y,Z), div(X,Y,Z) ==> nonground(A), ground(X)| A is X.
div_equality @ div(X,Y,A), div(X,Y,Z) ==> nonground(A), ground(Z)| A is Z.

div_binding @ div(X,Y,Z), bound(X) ==> fddiv(X,Y,Z,X,0,0).
div_binding @ div(X,Y,Z), bound(Y) ==> fddiv(X,Y,Z,0,Y,0).
div_binding @ div(X,Y,Z), bound(Z) ==> fddiv(X,Y,Z,0,0,Z).

div_symbolic @ fddiv(X,Y,Z,X,0,0), fddiv(X,Y,Z,0,Y,0) <=> fdiv(X,Y,Z), bound(Z).
div_symbolic @ fddiv(X,Y,Z,X,0,0), fddiv(X,Y,Z,0,0,Z) <=> fdiv(X,Z,Y), bound(Y).
div_symbolic @ fddiv(X,Y,Z,0,Y,0), fddiv(X,Y,Z,0,0,Z) <=> fmul(Z,Y,X), bound(X).

div_transformation @ div(X,Y,Z), bound(Z) <=> mul(Y,Z,X), bound(Z).
div_elimination @ div(X,Y,Z), div(X,Y,Z) <=> div(X,Y,Z).
div_elimination @ fdiv(X,Y,Z), div(X,Y,Z) <=> fdiv(X,Y,Z).
div_elimination @ fdiv(X,Y,Z), fdiv(X,Y,Z) <=> fdiv(X,Y,Z).

mul_sub_to_div_sum @ mul(X,A,Y), sub(B,Y,X) <=> div(B,N,X), sum(1,A,N).
mul_sum_to_div_sum @ mul(X,A,Y), sum(B,Y,X) <=> div(B,N,X), sub(1,A,N).
div_sub_to_mul_sum_div @ div(X,A,Y), sub(B,Y,X) <=> mul(A,B,N1), sum(1,A,N2), div(N1,N2,X).
div_sum_to_mul_sub_div @ div(X,A,Y), sum(B,Y,X) <=> mul(A,B,N1), sub(1,A,N2), div(N1,N2,X).

%% integrity constraints for gAggregate
hzshopper_ic1 @ '?'hzshopper(A,B1), '?'hzshopper(A,B2)
 ==> B1=B2.

hzg @ '?'hzshopper(A,B) ==> bound(A), bound(B).

'?''YHFrankfurt'(Q,P,T,M1,D1,Y1,M2,D2,Y2),'?''YHFrankfurt'(Q,P2,T,M1,D1,Y1,M2,D2,Y2) ==>
P=P2.

y1 @ '?''YHFrankfurt'(Q,P,T,M1,D1,Y1,M2,D2,Y2) , '?do'(application501) ==>
 ftemp(['YHFrankfurt',Q,P,T,M1,D1,Y1,M2,D2,Y2],0,0,0).
y2 @ datecvt(Q,F1,A,F2) \ ftemp(['YHFrankfurt',Q,P,T,M1,D1,Y1,M2,D2,Y2],0,0,0)
<=>string(F2)|
 ftemp(['YHFrankfurt',Q,P,T,M1,D1,Y1,M2,D2,Y2],[Q,F1,A,F2],1,0).
y3 @ ftemp(['YHFrankfurt',Q,P,T,M1,D1,Y1,M2,D2,Y2],[Q,F1,A,F2],1,0) \A leq B <=> string(B) |
 datecvt(C,F1,B,F2), get_month(C,F1,M2),get_day(C,F1,D2),get_year(C,F1,Y2).
 %'?''YHFrankfurt'(Q,P,T,M1,D1,Y1,M2,D2,Y2).

y4 @ ftemp(['YHFrankfurt',Q,P,T,M1,D1,Y1,M2,D2,Y2],[Q,F1,A,F2],1,0) \B leq A <=> string(B) |
 datecvt(C,F1,B,F2), get_month(C,F1,M1),get_day(C,F1,D1),get_year(C,F1,Y1).

y5 @ ftemp(['YHFrankfurt',Q,P,T,M1,D1,Y1,M2,D2,Y2],[Q,F1,A,F2],1,0) <=> A==B, string(B) |
 chr_get_constraint('?''YHFrankfurt'(Q,P,T,M1,D1,Y1,M2,D2,Y2)),
 datecvt(C,F1,B,F2), get_month(C,F1,M3),get_day(C,F1,D3),get_year(C,F1,Y3),
 '?''YHFrankfurt'(Q3,P,T,M3,D3,Y3,M3,D3,Y3).

'?''YHParis'(Q,P,T,M1,D1,Y1,M2,D2,Y2),
 '?''YHParis'(Q,P2,T,M1,D1,Y1,M2,D2,Y2) ==> P=P2.

y1 @ '?''YHParis'(Q,P,T,M1,D1,Y1,M2,D2,Y2) , '?do'(application501) ==>
 ftemp(['YHParis',Q,P,T,M1,D1,Y1,M2,D2,Y2],0,0,0).
y2 @ datecvt(Q,F1,A,F2) \ ftemp(['YHParis',Q,P,T,M1,D1,Y1,M2,D2,Y2],0,0,0) <=>
 ftemp(['YHParis',Q,P,T,M1,D1,Y1,M2,D2,Y2],[Q,F1,A,F2],1,0).
y3 @ ftemp(['YHParis',Q,P,T,M1,D1,Y1,M2,D2,Y2],[Q,F1,A,F2],1,0) \A leq B <=> string(B) |
 datecvt(C,F1,B,F2), get_month(C,F1,M2),get_day(C,F1,D2),get_year(C,F1,Y2).

y4 @ ftemp(['YHParis',Q,P,T,M1,D1,Y1,M2,D2,Y2],[Q,F1,A,F2],1,0) \B leq A <=> string(B) |
 datecvt(C,F1,B,F2), get_month(C,F1,M1),get_day(C,F1,D1),get_year(C,F1,Y1).

 - 159 -

'?''YHParis'(Q,P,T,M1,D1,Y1,M2,D2,Y2),
 '?''YHParis'(Q,P2,T,M1,D1,Y1,M2,D2,Y2) ==> P=P2.

y1 @ '?''YHNYSE'(Q,P,T,M1,D1,Y1,M2,D2,Y2) , '?do'(application501) ==>
 ftemp(['YHNYSE',Q,P,T,M1,D1,Y1,M2,D2,Y2],0,0,0).
y2 @ datecvt(Q,F1,A,F2) \ ftemp(['YHNYSE',Q,P,T,M1,D1,Y1,M2,D2,Y2],0,0,0) <=>
 ftemp(['YHNYSE',Q,P,T,M1,D1,Y1,M2,D2,Y2],[Q,F1,A,F2],1,0).
y3 @ ftemp(['YHNYSE',Q,P,T,M1,D1,Y1,M2,D2,Y2],[Q,F1,A,F2],1,0) \A leq B <=> string(B) |
 datecvt(C,F1,B,F2), get_month(C,F1,M2),get_day(C,F1,D2),get_year(C,F1,Y2).

y4 @ ftemp(['YHNYSE',Q,P,T,M1,D1,Y1,M2,D2,Y2],[Q,F1,A,F2],1,0) \B leq A <=> string(B) |
 datecvt(C,F1,B,F2), get_month(C,F1,M1),get_day(C,F1,D1),get_year(C,F1,Y1).

join_ @ ftemp([R1,Q1,P1,T1,M11,D11,Y11,M12,D12,Y12],[Q1,F1,A,Fr],1,0),
 ftemp([R2,Q2,P2,T2,M21,D21,Y21,M22,D22,Y22],[Q2,F2,B,Fr],1,0) ==>
 R1 \== R2,A==B, atom_string(R1,R1S), atom_string(R2,R2S),
 joinable(R1S, R2S)|
 M11=M21,D11=D21,Y11=Y21,M12=M22,D12=D22,Y12=Y22.

joinable(R1, R2) :-
member(R1, ["YHNYSE", "YHFrankfurt", "YHParis"]),
member(R2, ["YHNYSE", "YHFrankfurt", "YHParis"]).

