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Abstract 

 
Many online services access a large number of autonomous data sources and at the same time need to 
meet different user requirements. It is essential for these services to achieve semantic interoperability 
among these information exchange entities. In the presence of an increasing number of proprietary 
business processes, heterogeneous data standards, and diverse user requirements, it is critical that the 
services are implemented using adaptable, extensible, and scalable technology. The Context Interchange 
(COIN) approach, inspired by similar goals of the Semantic Web, provides a robust solution. In this 
paper, we describe how COIN can be used to implement dynamic online services where semantic 
differences are reconciled on the fly. We show that COIN is flexible and scalable by comparing it with 
several conventional approaches. With a given ontology, the number of conversions in COIN is quadratic 
to the semantic aspect that has the largest number of distinctions. These semantic aspects are modeled as 
modifiers in a conceptual ontology; in most cases the number of conversions is linear with the number of 
modifiers, which is significantly smaller than traditional hard-wiring middleware approach where the 
number of conversion programs is quadratic to the number of sources and data receivers. In the example 
scenario in the paper, the COIN approach needs only 5 conversions to be defined while traditional 
approaches require 20,000 to 100 million. COIN achieves this scalability by automatically composing all 
the comprehensive conversions from a small number of declaratively defined sub-conversions. 
 
Keywords: ontology, semantics, scalability, data integration, heterogeneous sources 
 
1  Introduction 
With the connectivity of the Web, enterprises of any size can potentially interact with many other 
enterprises and/or consumers anywhere in the world. Information exchange plays a key role in these 
interactions. The benefit of this global reach can be realized only when the information is exchanged 
efficiently and meaningfully. However, each entity typically has its own proprietary business processes, 
data standards, and individual preferences, which makes meaningful information exchange extremely 
challenging. Unless you are one of the very few big players in the market, e.g., Wal-Mart in the retail 
sector, so you can dictate that all your trading partners conform to your standard, you have to deal with 
various standards, interface with multiple processes, and accommodate diverse consumer preferences, 
which can also change autonomously over time. The traditional middleware approach that “hard-wires” 
all connections between systems obviously is not feasible in this diverse and dynamic environment.   
 
To make the point clear, let us consider a concrete example where a comparison shopping service is 
provided globally. Vendors in different countries quote their prices in local currencies. In addition, what 
are included in the quoted prices often vary by local conventions and vendor choices. For example, in 
most European countries the quoted prices include the Value-Added Tax (VAT), whereas in the U.S. the 
quoted prices usually do not include such taxes. Furthermore, the comparison may only make sense to 
certain consumers when the price reflects the total cost that includes shipping and handling charges as 



 

well as taxes. Although most prices are given in unit of local currencies, some may use certain scale 
factors to trim out trailing zeros simply because it would be too cumbersome otherwise. For example, 1 
US dollar is about 1.5 million Turkish liras; imagine how cumbersome it will be if all prices are in unit of 
Turkish liras – it is much more practical to quote Turkish prices in thousands or millions of Turkish liras. 
Thus a direct comparison between literal values among diverse sources may not make any sense. Such an 
online comparison service has to consider the context differences and dynamically transform data from 
thousands of online stores around the world into the consumer’s context, e.g., convert prices in other 
currencies, different scale factors, and various definitions for price in terms that are appropriate in the 
consumer context.  
 
Any viable solution to this problem has to be adaptable to accommodate changes gracefully, extensible to 
allow easy addition and removal of data sources, and scalable to handle a large number of data sources 
efficiently. Although the Semantic Web [1] has the vision ultimately to address these issues, its 
realization will take some time. There are near term solutions, however. The Context Interchange (COIN) 
approach [2, 6, 7], originated from semantic data integration research over a decade ago, provides 
formalisms of context knowledge representation and a reasoning process that automatically reconciles 
semantic differences like the ones in the online comparison service example. After describing a 
motivating example, we discuss various implementation approaches, including COIN. Then we give an 
analysis of the adaptability, extensibility, and scalability of these approaches, which indicates that COIN 
is a very robust solution to interoperation of heterogeneous services. 
 
2  Motivating Example 
Besides the comparison service example mentioned above, there are many other online services, such as 
comprehensive travel services involving multiple airlines, hotels, and car rental services, that have similar 
needs for interoperating amongst heterogeneous services. In addition, these same requirements can be 
often important to support the on-going updating of multiple data marts in a large organization or among 
multiple organizations as well as Business Intelligence (BI) and Enterprise Information Integration (EII) 
activities.  Also, there is an increasing trend for logistics services and financial services to do Straight-
Through-Processing (STP) whereby the flow of data through multiple systems, including data 
conversions and adjustments, is performed without human intervention.  For consistency, we will 
continue to use the comparison service as our motivating example. 
 
The purpose of an online comparison service is to allow the prices from all contexts to be compared in 
any context chosen by the consumer (i.e., data receiver). Here the term context refers to a set of implicit 
assumptions of various semantic aspects, with which the meaning of data is interpreted. Consider the 
example where a US consumer is interested in a product available online from South Korea and Turkey. 
South Korean vendors quote their prices in thousands of South Korea won (KRW, $1 is about 1000 
KRW), not including taxes, while Turkish vendors quote prices with taxes included in millions of Turkish 
lira (TRL), but the consumer wants the comparison to be in unit of US Dollar (USD) with taxes and 
Shipping and Handling included. Thus the comparison service needs to perform certain conversions to 
meet the consumer’s requirement. A consumer can be from any context and usually requires comparisons 
to be in his context, e.g., a Turkish consumer may want to compare prices in millions of lira with taxes 
included, and similarly a South Korean consumer will want comparison in his own context.  
 
When the number of sources and contexts is small, these conversions can be implemented as conversion 
programs in the middleware. But, a practical service needs to deal with a large number of sources with 
changing standards and requirement. Let us assume that the comparison service covers 100 countries, 
each having its unique currency and each consisting of 100 vendors. Thus, there are a total of 10,000 
sources in this example. For simplicity, let’s assume the consumer chooses his context to be the same as 
one of the sources. Although all vendors in the same country may use the same currency for price, they 
may use different price definitions and scale factors. Table 1 summarizes the potential context differences 



 

in terms of just these four semantic aspects1: currency, scale factor, price definition, and date format (for 
the purpose of finding exchange rate at a given day).  
 

Table 1. Semantic varieties in 10,000 worldwide sources  
Semantic Aspect Number of Distinctions 
Currency  100 different currencies 
Scale factor  4 different scale factors, e.g., 1, 100, 1000, 1000000 
Price definition  3 different definitions, e.g., base price, base+tax, and base+tax+SH 
Date format  3 different formats, e.g., yyyy-mm-dd, mm/dd/yyyy, and dd-mm-yyyy 

 
Thus, there could be 3600 (i.e., 100*4*3*3) different contexts amongst these sources; e.g., one source has 
US dollars for currency, scale factor being 1, price as tax and shipping and handling included, with 
mm/dd/yyyy date format; another source has Turkish liras for currency, scale factor being 1000000, price 
as only tax included, with dd-mm-yyyy date format, etc. The online comparison service needs to 
implement the conversions so that the comparison can be performed for sources in any context.   
 
3  Approaches to Interoperating Heterogeneous Services 
We can view the 10,000 online vendors as 10,000 data sources, each providing price quoting services that 
use different quoting standards; we will use data sources and services interchangeably in the rest of the 
discussion. The comparison service needs to interoperate among them and allow comparisons in all 
quoting standards. This can be implemented in middleware, to which there exist a number of possible 
approaches. 
 
3.1 Hard-wiring approaches 
There are several alternatives to “wire” up these disparate services using conversion programs. They are 
often termed “hardwired” because the conversion programs need to be rewritten or modified if there are 
changes in the underlying services. Three representative approaches are depicted in Figure 1 below. 
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Figure 1. Conventional hard-wiring approaches 

                                                 
1 In even more realistic situations, there can be many more context differences involved, such as lot size (whether 
price is for single unit or price is for packets of 6 or 12) and other context sensitive attributes to the products, such as 
weight and size dimension. 



 

Source-based brute-force hard-wiring (BFS). For any pair of the N individual data sources, implement a 
conversion program to convert from one source to another, and another conversion program for the 
reverse direction.   In Figure 1(a) we show 6 data sources; the conversion programs between them are 
depicted by dotted arrows.2 

 
Brute-force hard-wiring with shared conversions (BFC). Implement a pair of conversion programs only 
between pairs of contexts that are different in at least one semantic aspect.  If source si corresponds to 
context cx and source sj corresponds to context cy, to exchange information between si and sj, use 
conversion program Cxy (or Cyx, depending on the direction of conversion.) It allows multiple sources in 
the same context to share the same conversion programs, thus it has the potential of reducing the number 
of conversion programs. In Figure 1(b) we assume that the 6 data sources only have 3 unique contexts 
(i.e., each context is shared by two sources.)  This latter approach requires the establishment and 
maintenance of records for the correspondences between sources and contexts, which can be a laborious 
task if there are many source contexts. 
 
Clearly, both approaches need to enumerate all combinations, with BFs on the combination of all sources 
and BFc on the combination of all contexts. 
 
Internal standard. There are other hard-wiring approaches that require the adoption of an internal 
standard. Then the comparison service can translate from other standards to this internal standard and vice 
versa, as shown in Figure 1(c). When the data in the underlying sources do not change frequently, the 
Extraction-Transform-Load (ETL) approach can be used; ETL has been widely used in many data 
warehouses and data mart activities. If the data changes frequently, the comparison service can call the 
conversion programs on the fly to fetch fresh data upon request. This is often known as the Global 
Schema (GS) approach because the internal standard can be viewed as the global schema over all data 
sources. 
 
A meaningful comparison takes place first by converting other contexts to the internal standard, then by 
converting from the internal standard to the target context. Although this approach can reduce the number 
of conversion programs needed, it is often impractical to establish and maintain a standard3; in addition, it 
also has shortcomings relative to the more customized conversion programs used in the “brute force” 
approaches described earlier.  For example, if the internal standard for currency was US dollars and the 
source context currency was Korean won and the target context was Turkish lira, this approach converts 
the price from Korean won  to US dollars and then from US dollars to Turkish lira.  The “brute force” 
approaches would convert directly from Korean won to Turkish lira. This situation becomes even more 
burdensome if the source and target contexts were the same (e.g., Korean won).  In the “brute force” 
customized conversion program approach, data would be passed without any transformation whereas the 
internal standard approach would still convert to and from US dollars, which involves extra processing 
and often loses accuracy in data. 
 
All these approaches require the conversions to be pre-programmed, thus lack adaptability to 
accommodate changes. As we will see in a later section, they also lack scalability to handle a large 
number of heterogeneous services and extensibility to the addition of new services. 
 

                                                 
2 In some cases, two sources (e.g., 5 and 6) might have the same context, so no conversion is needed. But it is still 
necessary to manually determine this and be on the alert for changes in the future, so the manual work effort is not 
null even in such cases. 
3 Reaching such enterprise-wide agreement, especially within large diverse organizations, can be extremely difficult 
and time-consuming and is often unsuccessful.  Further discussion of these issues is beyond the scope of this paper. 



 

3.2 The Context Interchange (COIN) Approach 
 
3.2.1 The COIN Framework 
The COIN framework consists of a deductive object-oriented data model for knowledge representation, a 
general purpose mediation service module that detects semantic differences between sources and 
receivers and generates mediated query to reconcile them, and a query processor that optimizes and 
executes the mediated query to retrieve and transform data into user context (see Figure 2).  
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Figure 2. Architecture of COIN System 

 
Knowledge representation consists of three components. An ontology is used to capture common concepts 
and their relationships such as one concept being a property (i.e., attribute) or a sub-concept (i.e., is_a 
relationship) of another. Each concept may have modifiers as a special kind of property to explicitly 
represent the meta-attributes of the concept that can vary by source and receiver. We call the declarative 
specifications of modifier values context. Conversions between contexts are also declaratively defined in 
the context definitions. The semantic mappings establish the correspondence between data elements in the 
sources and the concepts in the ontology. These components are expressed in the object-oriented 
deductive language F-Logic [10], which can be translated into Horn logic expressions that we use 
internally, or Web Ontology Language (OWL) and RuleML intended for the Semantic Web.  
 
The core component in the mediation service module is the COIN mediator implemented in abductive 
constraint logic programming [9], where constraints are concurrently solved using Constraint Handling 
Rules (CHR) [5]. It takes a user query and produces a set of mediated queries (MQs) that resolve 
semantic differences. This happens by first translating the user query into a Datalog query and using the 
encoded knowledge to derive the MQs that incorporate necessary conversions from source contexts to 
receiver context. The query processor optimizes the MQs using a simple cost model and the information 
on source capabilities, obtains the data, performs the conversions, and returns final datasets to the user.  
 
Within the COIN framework, the users are not burdened by the diverse and changing semantics in data 
sources, all of which are captured in the knowledge representation component and are automatically taken 
into account by the mediator. Adding or removing a data source is accomplished by adding and removing 
declarations in the knowledge base, which does not affect the mediator and the query processor at all. 
There are other ontology based approaches with varying capabilities [11], detailed discussion of which is 
out of the scope of this paper. 

  



 

3.2.2  Online Comparison Service Using COIN 
The COIN approach achieves flexibility and scalability by declaratively defining the conversions for each 
individual modifier and automatically composing the overall conversion program at run time. We will use 
the comparison shopping example to demonstrate the COIN approach.  
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Figure 3. Excerpt of Ontology and Context for Dynamic Comparison Service 

 
Figure 3 shows an excerpt of the ontology on the left, and an intuitive context description of three 
example contexts on the right. Here price is a sub-concept of monetaryValue, which has a temporalEntity 
attribute to allow for time dependent currency conversions. By inheritance in the data model, price has all 
attributes and modifiers that its parent monetaryValue has.   
 
Although we show the syntax in F-Logic that is used internal to COIN in the following discussion, a 
typical data administrator4 would use the user-friendly graphical front-end (as depicted in top right of 
Figure 2). We call the collection of these formulas as the knowledge base. For example, the following 
formula in the knowledge base states that in context_a, the currency for monetaryValue is KRW: 
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In COIN, conversions are not defined between sources, but only on individual modifiers between 
different modifier values. In the example, conversions are defined for converting between different 
currencies, scale factors, date formats, and notions of price. In some cases, a general-purpose conversion 
can be used between any arbitrary modifier values, i.e., variables are used in lieu of constants in 
conversion specification. For example, the following function can convert from an arbitrary currency Cf 
in context C1 to another arbitrary currency Ct in context C2 by using an external service called olsen5: 
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Specifications and conversions for other modifiers can be expressed similarly. 
 
When a consumer with a known context performs a comparison, the mediator intercepts the query, 
compares the context differences between the involved sources and the consumer, and automatically 
composes a comprehensive conversion using the conversions defined for relevant modifiers. That is, the 
conversions are composed dynamically according to the consumer context and the data sources accessed6.  
 

                                                 
4 Note that actual users need never see any of this – they merely issue queries and get the results returned to them in 
their context.  It is the data administrators that define the individual contexts. 
5 Olsen is actually a web service at www.oanda.com that provides the exchange rate between any two currencies for 
any date.  Using the Cameleon web wrapping technology, we are able to treat olsen as if it were a relational database.  
6 Generated conversion programs could be saved for re-use, if desired. 



 

The key features of COIN approach can be illustrated using the following demonstration. In addition to 
the three contexts shown in Figure 3, let us consider two other contexts: 

context_e 
currency: ‘TRL’;  scaleFactor:1000 
kind:base+tax;    format: yyyy-mm-dd 

context_f 
currency: ‘USD’;     scaleFactor:1 
kind:base+tax; format: mm/dd/yyyy  

 
where for context_e one can think of a source in Turkey that uses scale factor and date format that are 
different from that of context_b, and for context_f one can think of an American, just arriving in Turkey, 
is subject to local tax but is used to comparing in unit of USD and with a date format commonly used in 
the U.S.  
 
To simplify explication, we show how queries from different receivers to one data source are mediated by 
COIN to reconcile semantic differences. The source is src_turkey(Product, Vendor, QuoteDate, Price), 
which subscribes to context_b and lists vendor prices by product and quote date.  
 
When the receiver context is the same as the source context, COIN determines that there is no semantic 
difference and will not perform any conversion. Figure 4 is the screen shot of the demo for this case; the 
Stage section in the middles allows us to step through the process of how a receiver query in the SQL box 
is transformed and executed by COIN. The empty Conflict Detection table indicates that there is no 
semantic difference; after Execution stage, data meaningful to the receiver is returned, which is shown at 
the bottom of Figure 4.7 
 

No semantic differences

Meaningful data returned

 
 

Figure 4. COIN Demo for the Case that Has No Semantic Difference 
 
The conversions composed by COIN are made efficient by not including any sub-conversions that are not 
relevant to the user query. For example, conext_e is different from context_b in scale factor and date 
format. The conversion program implemented by hardwiring approaches would have code for reconciling 
both semantic differences. In contrast, when the query does not ask for QuoteDate, the conversion 
composed by COIN only contains the sub-conversion for scale factor; see Figure 5(a). Obviously, if the 
receiver also requests QuoteDate information, sub-conversions for both semantic aspects are included in 
the composed conversion, as shown in Figure 5(b). The mediated queries are shown in Datalog. Also note 
that the specification and the sub-conversion for scale factor of price is correctly inherited from its parent 
type monetaryValue in the ontology. 
                                                 
7 This is the same as the actual data values in the data source, since there were no conversions performed. 



 

(a) Select Vendor, Price From src_turkey Where Product=“Samsung SyncMaster 173P”;

(b) Select Vendor, QuoteDate, Price From src_turkey Where Product=“Samsung SyncMaster 173P”;

Conversion for scale factor

Conversion for date formatConversion for scale factor  
Figure 5. COIN only Introduces Relevant Conversions 

 
COIN also dynamically detects and reconciles semantic differences between the auxiliary sources 
introduced by sub-conversions and the receiver. There are three semantic differences between context_b 
and context_f – currency, scale factor, and date format. When the receiver chooses not to retrieve 
QuoteDate, date format conversion is still included in the composed conversion (see Figure 6; the 
mediated query in Datalog is overlaid in the middle). This is because in the sub-conversion for currency 
we use the olsen data service, whose date format is different from the source; COIN detects this 
difference and automatically introduces appropriate sub-conversion datexform. 
 

Introduced because 
of context difference 
in auxiliary source

 
Figure 6. Reconciliation of Semantic Difference Introduced in Sub-Conversion 

 
Finally, in Figure 7, we show the mediated query in both Datalog and SQL when a receiver in context_a 
queries for vendor prices and quote date from src_turkey. Note that 18% VAT included in the source is 
correctly removed because the receiver wants base price; two date format conversions are included, one 
for the receiver, the other for the auxiliary source olsen; currency and scale factor are also converted into 
the receiver context. 
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Figure 7. Mediated Query in Datalog and SQL for Receiver in context_a 

 
4  Analysis of Adaptability,  Extensibility, and Scalability  
 
4.1 Adaptability and Extensibility Analysis 
Adaptibility refers to the capability of accommodating changes, such as semantic changes within a data 
source (e.g., when a French company charges its prices from French Francs to Euros). Extensibility refers 
to the capability of adding or removing data sources with minimal effort. We use the term flexibility to 
collectively refer to the two properties. 
 
The BFS approach has the least flexibility. With N sources, a change in any source would affect 2(N-1) 
conversion programs, i.e., N-1 conversion programs converting from the changing source to the other 
sources and vice versa. Adding or removing a source has similar effects.  
 
This problem is somewhat reduced in the other hard-wiring approaches. With BFC, if a source changes its 
context to coincide with another existing context, only the mapping needs to be updated; if it changes to 
new context, 2(n-1) conversion programs need to be updated,. Adding or removing a source also has 
similar effects. The ETL and GS internal standard approaches are better because of their hub-and-spoke 
architecture. But both require re-programming to handle changes, which can be tedious and error-prone. 
All hard-wiring approaches require the reconciliation of all semantic differences to be pre-determined and 
implemented in conversion programs. As a result, they lack flexibility.  
 
In contrast, the ontology and context based COIN approach overcomes this problem. COIN has several 
distinctive features: 

• It only requires that the individual contexts and individual conversions between a modifier’s 
values (e.g., how to convert between currencies) be described declaratively in the knowledge 
base. Thus it is flexible to accommodate changes because updating the knowledge base is 
much simpler than rewriting conversion programs (e.g., it is merely necessary to indicate that a 
source now reports in Euros instead of French Francs).   

• The customized conversion between any pair of sources (as many conversion programs as are 
needed) is composed automatically by the mediator using conversions of the relevant modifiers.  

• COIN is able to compose all the conversion in BFS, but without the burden of someone having 
to manually create and keep up-to-date all the pair-wise conversion programs.  

• The COIN approach also avoids the multiple or unnecessary conversions that arise from the 
internal standard approaches since the conversion programs that it generates only includes the 



 

minimally required conversions, including no conversions for certain (or all) modifiers, if that 
is appropriate. 

 
As we will see from the next section, the COIN approach significantly reduces the number of pre-defined 
conversions so that it can scale well when a large number of sources need to exchange information. 
 
4.2  Scalability Analysis 
In order to accomplish meaningful price comparison, pair-wise exchange of information amongst data 
sources is essential, i.e., price in any sources can be compared with that in any other sources, and vice 
versa. Again, using the service analogy, every service needs to understand the data from all other services, 
which is achieved by performing conversions between the different standards used by heterogeneous 
services. Our scalability analysis will be focused on the number of conversions needed in each approach. 
 
Theorem 1 - Scalability of BFS. With N data sources, the number of conversions for BFS is O(N2). 
 

Proof: Each source needs to perform translations with the other N-1 sources; there are N sources, thus a 
total of N(N-1) translations need to be in place to ensure pair-wise information exchange, which is O(N2).  
 
Theorem 2 - Scalability of BFC. With n distinct contexts among N data sources, the number of 
conversions for BFC is O(n2). 
 

Proof: similar to proof for Theorem 1.    
 
Note the number of conversions for BFC is quadratic with the number of distinct contexts, not the number 
of sources. So when multiple sources share the same context, the conversions can be shared.  
 
Theorem 3 - Scalability of ETL and GS Internal Standards. With N data sources, the number of 
conversions for ETL or GS is O(N). 
 

Proof: For each source there is a conversion to the internal standard and another conversion from the 
internal standard to the source. There are N sources, so the total number of conversions is 2N = O(N).  
 
Theorem 4 - Scalability of COIN. With N data sources and an ontology that has m modifiers with each 
having ni unique values, ],1[ mi∈ , the number of conversions for COIN is )( 2

kmnO , where 
]},1[|max{ minn ik ∈= ; when m is fixed, the number of conversions defined in COIN is )( 2
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Proof: As seen earlier, conversions in COIN are defined for each modifier, not between pair-wise sources. 
Thus the number of conversions depends only on the variety of contexts, i.e., number of modifiers in the 
ontology and the number of distinct values of each modifier. In worst case, the number of conversions to 
be defined is ∑ −

=

m

i
ii nn

1
)1( , where ni is the number of unique values of the ith modifier in the ontology, 

which is not to be confused with the number of sources; m is the number of modifiers. This is because in 
worst case for each modifier, we need to write a conversion from a value to all the other values and vice 
versa, so the total number of conversions for the ith modifier is ni(ni-1).  Let nk=max(n1, …, nm). When 
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However, in this example, and in many practical cases, the conversion functions can be parameterized to 
convert between all values of a modifier. For instance, the currency conversion given in Section 3 can 
convert between any two currencies using the external relation olsen. The conversion functions for scale 
factors and date formats are also of this nature. Thus, only 3 of these parameterized conversion functions 
are necessary for converting between contexts that differ in currency, scale factor, and/or date format. The 
COIN approach can take advantage of these general functions because the overall conversion program 



 

between any two contexts is automatically generated. The hard-wiring approaches can not benefit from 
this because all the pair-wise conversions still need to be programmed, even if most of the programs 
merely make calls to general functions using different parameters.    
 
In worst case, the COIN approach needs 6 conversions for the three price definitions, e.g., from base price 
to price with taxes, and vice versa, and the conversion between the other two pairs. We observe that these 
conversions are based on a set of simple equations, e.g., add tax to base price to yield tax included price. 
Most of the conversion functions are invertible, e.g., the inverse of the former function is obtained by 
subtracting tax from tax included price to yield base price. When multiple equations exist for conversions 
between different modifier values, COIN composes the conversions using its symbolic equations solver 
[3, 4] to reduce the number of conversion declarations needed. In the example, we have three definitions 
for price: (A) base price, (B) tax included price, and (C) tax and shipping & handling included price. This 
is modeled by using a modifier that has three unique values for price concept in the ontology. With 
known equational relationships among the three price definitions, and two conversions (1) from 
base_price to base_price+tax (i.e., A to B), (2) from base_price+tax to base_price + tax + shipping & 
handling (i.e., B to C), the COIN mediator can compute the other four conversions automatically (A to C 
and the three inverses). Thus the number of conversion definitions for a modifier can be reduced from 
n(n-1) to n-1, where n is the number of unique values of the modifier. For price in the example, n=3, so 
we only need 2 conversions.  Thus we have the following corollary: 
 
Corollary 1 – Scalability of COIN. When conversions can be parameterized, COIN requires m 
conversions. Otherwise, if the conversions are invertible functions, COIN needs ∑ −

=

m

i
in

1
)1(  conversions.  

Furthermore, declaring the contexts can be simplified since contexts can be inherited with optional 
overriding in COIN. This significantly reduces the number of necessary declarations. For example, we 
can define a context k for a country because most vendors in the same country share the same context. If a 
vendor in the country differs from the other vendors only with regard to price definition, we can define its 
context as k’ and specify the price definition for the vendor; by declaring k’ as a sub-context of k, k’ 
inherits all the other context definitions context k. This keeps the size of the knowledge base compact 
while the number of sources grows. As we mentioned earlier, subtypes in the ontology inherit the 
modifiers and the conversion definitions of their parent types, which also helps keep the number of 
conversion definitions small. 
 
Table 2 summarizes the complexity of different approaches in terms of the number of conversions that 
need to be specified. Even in the worst case, the COIN approach requires several orders of magnitude less 
conversions than the brute-force approaches. In most practical cases, the actual number is far less than all 
the hard-wiring approaches. 
 

Table 2. Number of conversions to achieve semantic interoperability among 10,000 sources 
Approach General case In the example 
BFS N(N-1), N:= number of sources and receivers ~100 million 
BFC n(n-1), n:= number of unique contexts ~ 13 million 
ETL/GS 2N, N:= number of sources and receivers 20,000 
COIN 1) Worst case: ∑ −

=

m

i
ii nn

1
)1( , ni:= number of unique values 

of ith modifier, m := number of modifiers in ontology 
2) ∑ −

=

m

i
in

1
)1( , when equational relationships exist 

3) m, if all conversions can be parameterized 

1) worst: ~10,000 
2) actual number: 5 (3 general 
conversions plus 2 for price) 

 
We have implemented the COIN approach in a global comparison aggregator that accesses sources from a 
half dozen countries [12]. When we later extended it to over a dozen countries, we only needed to update 



 

the knowledge base with assertions regarding the countries to be added and no new conversions were 
needed. The extended prototype application accesses over 100 data sources worldwide. This demonstrates 
the flexibility of the COIN approach. In [8], we discuss the use of COIN for Straight-Through-Processing 
in financial services.  
 
Recent research [13, 14] extended COIN to represent and reason about semantic changes over time. For 
example, when comparing historic stock prices in different exchanges, some of them changed reporting 
currency. With the formalism and the mediation engine, these temporal changes can be captured and the 
semantic differences at different times (in addition to between different sources) can be automatically 
recognized and reconciled at run time. With these advanced features and its flexibility and scalability, 
COIN is ideal for implementing dynamic online services. 
 
5  Conclusion 
Dynamic online services interact with versatile and evolving business processes and data sources, at the 
same time need to meet various user requirements.  The technology must be flexible and scalable in 
reconciling semantic differences amongst these information exchange entities. In this paper, we described 
the COIN approach to this challenge. Our analysis shows that the COIN approach can efficiently handle 
large number of semantic conflicts and is flexible and scalable to meet the evolving requirements. 
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