

Context Interchange as a Scalable Solution to
Interoperating Amongst Heterogeneous

Dynamic Services
(Web2004/ICIS)

Hongwei Zhu
Stuart E. Madnick

Working Paper CISL# 2004-16

October 2004

Composite Information Systems Laboratory (CISL)
Sloan School of Management, Room E53-320

Massachusetts Institute of Technology
Cambridge, MA 02142

Context Interchange as a Scalable Solution to Interoperating Amongst
Heterogeneous Dynamic Services

Hongwei Zhu

MIT Sloan School of Management
Room E53-336

30 Wadsworth Street, MA, 02142, USA
mrzhu@mit.edu

http://interchange.mit.edu/coin

Stuart E. Madnick
MIT Sloan School of Management

Room E53-320
30 Wadsworth Street, MA, 02142, USA

smadnick@mit.edu
http://interchange.mit.edu/coin

Abstract

Many online services access a large number of autonomous data sources and at the same time need to
meet different user requirements. It is essential for these services to achieve semantic interoperability
among these information exchange entities. In the presence of an increasing number of proprietary
business processes, heterogeneous data standards, and diverse user requirements, it is critical that the
services are implemented using adaptable, extensible, and scalable technology. The Context Interchange
(COIN) approach, inspired by similar goals of the Semantic Web, provides a robust solution. In this
paper, we describe how COIN can be used to implement dynamic online services where semantic
differences are reconciled on the fly. We show that COIN is flexible and scalable by comparing it with
several conventional approaches. With a given ontology, the number of conversions in COIN is quadratic
to the semantic aspect that has the largest number of distinctions. These semantic aspects are modeled as
modifiers in a conceptual ontology; in most cases the number of conversions is linear with the number of
modifiers, which is significantly smaller than traditional hard-wiring middleware approach where the
number of conversion programs is quadratic to the number of sources and data receivers. In the example
scenario in the paper, the COIN approach needs only 5 conversions to be defined while traditional
approaches require 20,000 to 100 million. COIN achieves this scalability by automatically composing all
the comprehensive conversions from a small number of declaratively defined sub-conversions.

Keywords: ontology, semantics, scalability, data integration, heterogeneous sources

1 Introduction
With the connectivity of the Web, enterprises of any size can potentially interact with many other
enterprises and/or consumers anywhere in the world. Information exchange plays a key role in these
interactions. The benefit of this global reach can be realized only when the information is exchanged
efficiently and meaningfully. However, each entity typically has its own proprietary business processes,
data standards, and individual preferences, which makes meaningful information exchange extremely
challenging. Unless you are one of the very few big players in the market, e.g., Wal-Mart in the retail
sector, so you can dictate that all your trading partners conform to your standard, you have to deal with
various standards, interface with multiple processes, and accommodate diverse consumer preferences,
which can also change autonomously over time. The traditional middleware approach that “hard-wires”
all connections between systems obviously is not feasible in this diverse and dynamic environment.

To make the point clear, let us consider a concrete example where a comparison shopping service is
provided globally. Vendors in different countries quote their prices in local currencies. In addition, what
are included in the quoted prices often vary by local conventions and vendor choices. For example, in
most European countries the quoted prices include the Value-Added Tax (VAT), whereas in the U.S. the
quoted prices usually do not include such taxes. Furthermore, the comparison may only make sense to
certain consumers when the price reflects the total cost that includes shipping and handling charges as

well as taxes. Although most prices are given in unit of local currencies, some may use certain scale
factors to trim out trailing zeros simply because it would be too cumbersome otherwise. For example, 1
US dollar is about 1.5 million Turkish liras; imagine how cumbersome it will be if all prices are in unit of
Turkish liras – it is much more practical to quote Turkish prices in thousands or millions of Turkish liras.
Thus a direct comparison between literal values among diverse sources may not make any sense. Such an
online comparison service has to consider the context differences and dynamically transform data from
thousands of online stores around the world into the consumer’s context, e.g., convert prices in other
currencies, different scale factors, and various definitions for price in terms that are appropriate in the
consumer context.

Any viable solution to this problem has to be adaptable to accommodate changes gracefully, extensible to
allow easy addition and removal of data sources, and scalable to handle a large number of data sources
efficiently. Although the Semantic Web [1] has the vision ultimately to address these issues, its
realization will take some time. There are near term solutions, however. The Context Interchange (COIN)
approach [2, 6, 7], originated from semantic data integration research over a decade ago, provides
formalisms of context knowledge representation and a reasoning process that automatically reconciles
semantic differences like the ones in the online comparison service example. After describing a
motivating example, we discuss various implementation approaches, including COIN. Then we give an
analysis of the adaptability, extensibility, and scalability of these approaches, which indicates that COIN
is a very robust solution to interoperation of heterogeneous services.

2 Motivating Example
Besides the comparison service example mentioned above, there are many other online services, such as
comprehensive travel services involving multiple airlines, hotels, and car rental services, that have similar
needs for interoperating amongst heterogeneous services. In addition, these same requirements can be
often important to support the on-going updating of multiple data marts in a large organization or among
multiple organizations as well as Business Intelligence (BI) and Enterprise Information Integration (EII)
activities. Also, there is an increasing trend for logistics services and financial services to do Straight-
Through-Processing (STP) whereby the flow of data through multiple systems, including data
conversions and adjustments, is performed without human intervention. For consistency, we will
continue to use the comparison service as our motivating example.

The purpose of an online comparison service is to allow the prices from all contexts to be compared in
any context chosen by the consumer (i.e., data receiver). Here the term context refers to a set of implicit
assumptions of various semantic aspects, with which the meaning of data is interpreted. Consider the
example where a US consumer is interested in a product available online from South Korea and Turkey.
South Korean vendors quote their prices in thousands of South Korea won (KRW, $1 is about 1000
KRW), not including taxes, while Turkish vendors quote prices with taxes included in millions of Turkish
lira (TRL), but the consumer wants the comparison to be in unit of US Dollar (USD) with taxes and
Shipping and Handling included. Thus the comparison service needs to perform certain conversions to
meet the consumer’s requirement. A consumer can be from any context and usually requires comparisons
to be in his context, e.g., a Turkish consumer may want to compare prices in millions of lira with taxes
included, and similarly a South Korean consumer will want comparison in his own context.

When the number of sources and contexts is small, these conversions can be implemented as conversion
programs in the middleware. But, a practical service needs to deal with a large number of sources with
changing standards and requirement. Let us assume that the comparison service covers 100 countries,
each having its unique currency and each consisting of 100 vendors. Thus, there are a total of 10,000
sources in this example. For simplicity, let’s assume the consumer chooses his context to be the same as
one of the sources. Although all vendors in the same country may use the same currency for price, they
may use different price definitions and scale factors. Table 1 summarizes the potential context differences

in terms of just these four semantic aspects1: currency, scale factor, price definition, and date format (for
the purpose of finding exchange rate at a given day).

Table 1. Semantic varieties in 10,000 worldwide sources
Semantic Aspect Number of Distinctions
Currency 100 different currencies
Scale factor 4 different scale factors, e.g., 1, 100, 1000, 1000000
Price definition 3 different definitions, e.g., base price, base+tax, and base+tax+SH
Date format 3 different formats, e.g., yyyy-mm-dd, mm/dd/yyyy, and dd-mm-yyyy

Thus, there could be 3600 (i.e., 100*4*3*3) different contexts amongst these sources; e.g., one source has
US dollars for currency, scale factor being 1, price as tax and shipping and handling included, with
mm/dd/yyyy date format; another source has Turkish liras for currency, scale factor being 1000000, price
as only tax included, with dd-mm-yyyy date format, etc. The online comparison service needs to
implement the conversions so that the comparison can be performed for sources in any context.

3 Approaches to Interoperating Heterogeneous Services
We can view the 10,000 online vendors as 10,000 data sources, each providing price quoting services that
use different quoting standards; we will use data sources and services interchangeably in the rest of the
discussion. The comparison service needs to interoperate among them and allow comparisons in all
quoting standards. This can be implemented in middleware, to which there exist a number of possible
approaches.

3.1 Hard-wiring approaches
There are several alternatives to “wire” up these disparate services using conversion programs. They are
often termed “hardwired” because the conversion programs need to be rewritten or modified if there are
changes in the underlying services. Three representative approaches are depicted in Figure 1 below.

(a) BFS approach

(b) BFC approach

1 2

6

5 4

3

1 2

6

5 4

3

1 2

6

5 4

3Internal
standard

1 2

6

5 4

3Internal
standard

(c) Internal standard approach

1 2

65 43

context_b
currency: ‘TRL’; scaleFactor:1e6
kind:base+tax; format: dd-mm-yyyy

context_a
currency: ‘KRW’; scaleFactor:1000
kind: base; format: yyyy-mm-dd

context_c
currency: ‘USD’; scaleFactor:1
kind:base+tax+SH; format: mm/dd/yyyy

1 2

65 43

context_b
currency: ‘TRL’; scaleFactor:1e6
kind:base+tax; format: dd-mm-yyyy

context_a
currency: ‘KRW’; scaleFactor:1000
kind: base; format: yyyy-mm-dd

context_c
currency: ‘USD’; scaleFactor:1
kind:base+tax+SH; format: mm/dd/yyyy

Figure 1. Conventional hard-wiring approaches

1 In even more realistic situations, there can be many more context differences involved, such as lot size (whether
price is for single unit or price is for packets of 6 or 12) and other context sensitive attributes to the products, such as
weight and size dimension.

Source-based brute-force hard-wiring (BFS). For any pair of the N individual data sources, implement a
conversion program to convert from one source to another, and another conversion program for the
reverse direction. In Figure 1(a) we show 6 data sources; the conversion programs between them are
depicted by dotted arrows.2

Brute-force hard-wiring with shared conversions (BFC). Implement a pair of conversion programs only
between pairs of contexts that are different in at least one semantic aspect. If source si corresponds to
context cx and source sj corresponds to context cy, to exchange information between si and sj, use
conversion program Cxy (or Cyx, depending on the direction of conversion.) It allows multiple sources in
the same context to share the same conversion programs, thus it has the potential of reducing the number
of conversion programs. In Figure 1(b) we assume that the 6 data sources only have 3 unique contexts
(i.e., each context is shared by two sources.) This latter approach requires the establishment and
maintenance of records for the correspondences between sources and contexts, which can be a laborious
task if there are many source contexts.

Clearly, both approaches need to enumerate all combinations, with BFs on the combination of all sources
and BFc on the combination of all contexts.

Internal standard. There are other hard-wiring approaches that require the adoption of an internal
standard. Then the comparison service can translate from other standards to this internal standard and vice
versa, as shown in Figure 1(c). When the data in the underlying sources do not change frequently, the
Extraction-Transform-Load (ETL) approach can be used; ETL has been widely used in many data
warehouses and data mart activities. If the data changes frequently, the comparison service can call the
conversion programs on the fly to fetch fresh data upon request. This is often known as the Global
Schema (GS) approach because the internal standard can be viewed as the global schema over all data
sources.

A meaningful comparison takes place first by converting other contexts to the internal standard, then by
converting from the internal standard to the target context. Although this approach can reduce the number
of conversion programs needed, it is often impractical to establish and maintain a standard3; in addition, it
also has shortcomings relative to the more customized conversion programs used in the “brute force”
approaches described earlier. For example, if the internal standard for currency was US dollars and the
source context currency was Korean won and the target context was Turkish lira, this approach converts
the price from Korean won to US dollars and then from US dollars to Turkish lira. The “brute force”
approaches would convert directly from Korean won to Turkish lira. This situation becomes even more
burdensome if the source and target contexts were the same (e.g., Korean won). In the “brute force”
customized conversion program approach, data would be passed without any transformation whereas the
internal standard approach would still convert to and from US dollars, which involves extra processing
and often loses accuracy in data.

All these approaches require the conversions to be pre-programmed, thus lack adaptability to
accommodate changes. As we will see in a later section, they also lack scalability to handle a large
number of heterogeneous services and extensibility to the addition of new services.

2 In some cases, two sources (e.g., 5 and 6) might have the same context, so no conversion is needed. But it is still
necessary to manually determine this and be on the alert for changes in the future, so the manual work effort is not
null even in such cases.
3 Reaching such enterprise-wide agreement, especially within large diverse organizations, can be extremely difficult
and time-consuming and is often unsuccessful. Further discussion of these issues is beyond the scope of this paper.

3.2 The Context Interchange (COIN) Approach

3.2.1 The COIN Framework
The COIN framework consists of a deductive object-oriented data model for knowledge representation, a
general purpose mediation service module that detects semantic differences between sources and
receivers and generates mediated query to reconcile them, and a query processor that optimizes and
executes the mediated query to retrieve and transform data into user context (see Figure 2).

COIN
Mediator

Executioner

Optimizer

Receivers/
User Apps

Conversion
Libraries

Mediated query/
explication

User query

Data in user context

Data sources

Knowledge Representation - F-Logic based data model

Ontology – define types and relationships
Context definitions – define source and receiver contexts by

specifying modifier values
Mappings – assigning correspondence between data elements

and the types in ontology

Mediation service

Graphic/Web-based
modeling tool

w
ra

pp
er

w
ra

pp
er

Figure 2. Architecture of COIN System

Knowledge representation consists of three components. An ontology is used to capture common concepts
and their relationships such as one concept being a property (i.e., attribute) or a sub-concept (i.e., is_a
relationship) of another. Each concept may have modifiers as a special kind of property to explicitly
represent the meta-attributes of the concept that can vary by source and receiver. We call the declarative
specifications of modifier values context. Conversions between contexts are also declaratively defined in
the context definitions. The semantic mappings establish the correspondence between data elements in the
sources and the concepts in the ontology. These components are expressed in the object-oriented
deductive language F-Logic [10], which can be translated into Horn logic expressions that we use
internally, or Web Ontology Language (OWL) and RuleML intended for the Semantic Web.

The core component in the mediation service module is the COIN mediator implemented in abductive
constraint logic programming [9], where constraints are concurrently solved using Constraint Handling
Rules (CHR) [5]. It takes a user query and produces a set of mediated queries (MQs) that resolve
semantic differences. This happens by first translating the user query into a Datalog query and using the
encoded knowledge to derive the MQs that incorporate necessary conversions from source contexts to
receiver context. The query processor optimizes the MQs using a simple cost model and the information
on source capabilities, obtains the data, performs the conversions, and returns final datasets to the user.

Within the COIN framework, the users are not burdened by the diverse and changing semantics in data
sources, all of which are captured in the knowledge representation component and are automatically taken
into account by the mediator. Adding or removing a data source is accomplished by adding and removing
declarations in the knowledge base, which does not affect the mediator and the query processor at all.
There are other ontology based approaches with varying capabilities [11], detailed discussion of which is
out of the scope of this paper.

3.2.2 Online Comparison Service Using COIN
The COIN approach achieves flexibility and scalability by declaratively defining the conversions for each
individual modifier and automatically composing the overall conversion program at run time. We will use
the comparison shopping example to demonstrate the COIN approach.

monetaryValue

price

temporalEntity basic

kind

currency

is_a relationship
attribute
modifier

Legend
is_a relationship
attribute
modifier

Legend

context_a
currency: ‘KRW’; scaleFactor:1000
kind: base; format: yyyy-mm-dd
context_b
currency: ‘TRL’; scaleFactor:1e6
kind:base+tax; format: dd-mm-yyyy
context_c
currency: ‘USD’; scaleFactor:1
kind:base+tax+SH; format: mm/dd/yyyy

format

scaleFactor

organization

taxRate

Figure 3. Excerpt of Ontology and Context for Dynamic Comparison Service

Figure 3 shows an excerpt of the ontology on the left, and an intuitive context description of three
example contexts on the right. Here price is a sub-concept of monetaryValue, which has a temporalEntity
attribute to allow for time dependent currency conversions. By inheritance in the data model, price has all
attributes and modifiers that its parent monetaryValue has.

Although we show the syntax in F-Logic that is used internal to COIN in the following discussion, a
typical data administrator4 would use the user-friendly graphical front-end (as depicted in top right of
Figure 2). We call the collection of these formulas as the knowledge base. For example, the following
formula in the knowledge base states that in context_a, the currency for monetaryValue is KRW:

].'')_([])_([
|::

KRWacontextvalueYYacontextcurrencyX
basicYluemonetaryVaX

→∧→
−∃∀

In COIN, conversions are not defined between sources, but only on individual modifiers between
different modifier values. In the example, conversions are defined for converting between different
currencies, scale factors, date formats, and notions of price. In some cases, a general-purpose conversion
can be used between any arbitrary modifier values, i.e., variables are used in lieu of constants in
conversion specification. For example, the following function can convert from an arbitrary currency Cf
in context C1 to another arbitrary currency Ct in context C2 by using an external service called olsen5:

.*])2([),,,_(

][])2([])1([
],1@)2,([

|:

222
ruvrCvalueRDTBCACDRBAolsen

TtempAttrxCCcurrencyxCCcurrencyx
vuCCcurrencycvtx

luemonetaryVax

CC

t

C

f

tf

=∧→∧=∧=∧=∧
∧→∧→∧→

←→
−

Specifications and conversions for other modifiers can be expressed similarly.

When a consumer with a known context performs a comparison, the mediator intercepts the query,
compares the context differences between the involved sources and the consumer, and automatically
composes a comprehensive conversion using the conversions defined for relevant modifiers. That is, the
conversions are composed dynamically according to the consumer context and the data sources accessed6.

4 Note that actual users need never see any of this – they merely issue queries and get the results returned to them in
their context. It is the data administrators that define the individual contexts.
5 Olsen is actually a web service at www.oanda.com that provides the exchange rate between any two currencies for
any date. Using the Cameleon web wrapping technology, we are able to treat olsen as if it were a relational database.
6 Generated conversion programs could be saved for re-use, if desired.

The key features of COIN approach can be illustrated using the following demonstration. In addition to
the three contexts shown in Figure 3, let us consider two other contexts:

context_e
currency: ‘TRL’; scaleFactor:1000
kind:base+tax; format: yyyy-mm-dd

context_f
currency: ‘USD’; scaleFactor:1
kind:base+tax; format: mm/dd/yyyy

where for context_e one can think of a source in Turkey that uses scale factor and date format that are
different from that of context_b, and for context_f one can think of an American, just arriving in Turkey,
is subject to local tax but is used to comparing in unit of USD and with a date format commonly used in
the U.S.

To simplify explication, we show how queries from different receivers to one data source are mediated by
COIN to reconcile semantic differences. The source is src_turkey(Product, Vendor, QuoteDate, Price),
which subscribes to context_b and lists vendor prices by product and quote date.

When the receiver context is the same as the source context, COIN determines that there is no semantic
difference and will not perform any conversion. Figure 4 is the screen shot of the demo for this case; the
Stage section in the middles allows us to step through the process of how a receiver query in the SQL box
is transformed and executed by COIN. The empty Conflict Detection table indicates that there is no
semantic difference; after Execution stage, data meaningful to the receiver is returned, which is shown at
the bottom of Figure 4.7

No semantic differences

Meaningful data returned

Figure 4. COIN Demo for the Case that Has No Semantic Difference

The conversions composed by COIN are made efficient by not including any sub-conversions that are not
relevant to the user query. For example, conext_e is different from context_b in scale factor and date
format. The conversion program implemented by hardwiring approaches would have code for reconciling
both semantic differences. In contrast, when the query does not ask for QuoteDate, the conversion
composed by COIN only contains the sub-conversion for scale factor; see Figure 5(a). Obviously, if the
receiver also requests QuoteDate information, sub-conversions for both semantic aspects are included in
the composed conversion, as shown in Figure 5(b). The mediated queries are shown in Datalog. Also note
that the specification and the sub-conversion for scale factor of price is correctly inherited from its parent
type monetaryValue in the ontology.

7 This is the same as the actual data values in the data source, since there were no conversions performed.

(a) Select Vendor, Price From src_turkey Where Product=“Samsung SyncMaster 173P”;

(b) Select Vendor, QuoteDate, Price From src_turkey Where Product=“Samsung SyncMaster 173P”;

Conversion for scale factor

Conversion for date formatConversion for scale factor
Figure 5. COIN only Introduces Relevant Conversions

COIN also dynamically detects and reconciles semantic differences between the auxiliary sources
introduced by sub-conversions and the receiver. There are three semantic differences between context_b
and context_f – currency, scale factor, and date format. When the receiver chooses not to retrieve
QuoteDate, date format conversion is still included in the composed conversion (see Figure 6; the
mediated query in Datalog is overlaid in the middle). This is because in the sub-conversion for currency
we use the olsen data service, whose date format is different from the source; COIN detects this
difference and automatically introduces appropriate sub-conversion datexform.

Introduced because
of context difference
in auxiliary source

Figure 6. Reconciliation of Semantic Difference Introduced in Sub-Conversion

Finally, in Figure 7, we show the mediated query in both Datalog and SQL when a receiver in context_a
queries for vendor prices and quote date from src_turkey. Note that 18% VAT included in the source is
correctly removed because the receiver wants base price; two date format conversions are included, one
for the receiver, the other for the auxiliary source olsen; currency and scale factor are also converted into
the receiver context.

Date format for receiver

Price definition – remove tax
Scale factor

Date format for auxiliary source olsen
Currency

Figure 7. Mediated Query in Datalog and SQL for Receiver in context_a

4 Analysis of Adaptability, Extensibility, and Scalability

4.1 Adaptability and Extensibility Analysis
Adaptibility refers to the capability of accommodating changes, such as semantic changes within a data
source (e.g., when a French company charges its prices from French Francs to Euros). Extensibility refers
to the capability of adding or removing data sources with minimal effort. We use the term flexibility to
collectively refer to the two properties.

The BFS approach has the least flexibility. With N sources, a change in any source would affect 2(N-1)
conversion programs, i.e., N-1 conversion programs converting from the changing source to the other
sources and vice versa. Adding or removing a source has similar effects.

This problem is somewhat reduced in the other hard-wiring approaches. With BFC, if a source changes its
context to coincide with another existing context, only the mapping needs to be updated; if it changes to
new context, 2(n-1) conversion programs need to be updated,. Adding or removing a source also has
similar effects. The ETL and GS internal standard approaches are better because of their hub-and-spoke
architecture. But both require re-programming to handle changes, which can be tedious and error-prone.
All hard-wiring approaches require the reconciliation of all semantic differences to be pre-determined and
implemented in conversion programs. As a result, they lack flexibility.

In contrast, the ontology and context based COIN approach overcomes this problem. COIN has several
distinctive features:

• It only requires that the individual contexts and individual conversions between a modifier’s
values (e.g., how to convert between currencies) be described declaratively in the knowledge
base. Thus it is flexible to accommodate changes because updating the knowledge base is
much simpler than rewriting conversion programs (e.g., it is merely necessary to indicate that a
source now reports in Euros instead of French Francs).

• The customized conversion between any pair of sources (as many conversion programs as are
needed) is composed automatically by the mediator using conversions of the relevant modifiers.

• COIN is able to compose all the conversion in BFS, but without the burden of someone having
to manually create and keep up-to-date all the pair-wise conversion programs.

• The COIN approach also avoids the multiple or unnecessary conversions that arise from the
internal standard approaches since the conversion programs that it generates only includes the

minimally required conversions, including no conversions for certain (or all) modifiers, if that
is appropriate.

As we will see from the next section, the COIN approach significantly reduces the number of pre-defined
conversions so that it can scale well when a large number of sources need to exchange information.

4.2 Scalability Analysis
In order to accomplish meaningful price comparison, pair-wise exchange of information amongst data
sources is essential, i.e., price in any sources can be compared with that in any other sources, and vice
versa. Again, using the service analogy, every service needs to understand the data from all other services,
which is achieved by performing conversions between the different standards used by heterogeneous
services. Our scalability analysis will be focused on the number of conversions needed in each approach.

Theorem 1 - Scalability of BFS. With N data sources, the number of conversions for BFS is O(N2).

Proof: Each source needs to perform translations with the other N-1 sources; there are N sources, thus a
total of N(N-1) translations need to be in place to ensure pair-wise information exchange, which is O(N2).

Theorem 2 - Scalability of BFC. With n distinct contexts among N data sources, the number of
conversions for BFC is O(n2).

Proof: similar to proof for Theorem 1.

Note the number of conversions for BFC is quadratic with the number of distinct contexts, not the number
of sources. So when multiple sources share the same context, the conversions can be shared.

Theorem 3 - Scalability of ETL and GS Internal Standards. With N data sources, the number of
conversions for ETL or GS is O(N).

Proof: For each source there is a conversion to the internal standard and another conversion from the
internal standard to the source. There are N sources, so the total number of conversions is 2N = O(N).

Theorem 4 - Scalability of COIN. With N data sources and an ontology that has m modifiers with each
having ni unique values,],1[mi∈ , the number of conversions for COIN is)(2

kmnO , where
]},1[|max{ minn ik ∈= ; when m is fixed, the number of conversions defined in COIN is)(2

knO

Proof: As seen earlier, conversions in COIN are defined for each modifier, not between pair-wise sources.
Thus the number of conversions depends only on the variety of contexts, i.e., number of modifiers in the
ontology and the number of distinct values of each modifier. In worst case, the number of conversions to
be defined is ∑ −

=

m

i
ii nn

1
)1(, where ni is the number of unique values of the ith modifier in the ontology,

which is not to be confused with the number of sources; m is the number of modifiers. This is because in
worst case for each modifier, we need to write a conversion from a value to all the other values and vice
versa, so the total number of conversions for the ith modifier is ni(ni-1). Let nk=max(n1, …, nm). When
both m and nk approach infinity,)()1(2

1
k

m

i
ii mnOnn =∑ −

=
; for ∞→=∑ −∀

=
kk

m

i
ii nnOnnm as),()1(, 2

1
.

However, in this example, and in many practical cases, the conversion functions can be parameterized to
convert between all values of a modifier. For instance, the currency conversion given in Section 3 can
convert between any two currencies using the external relation olsen. The conversion functions for scale
factors and date formats are also of this nature. Thus, only 3 of these parameterized conversion functions
are necessary for converting between contexts that differ in currency, scale factor, and/or date format. The
COIN approach can take advantage of these general functions because the overall conversion program

between any two contexts is automatically generated. The hard-wiring approaches can not benefit from
this because all the pair-wise conversions still need to be programmed, even if most of the programs
merely make calls to general functions using different parameters.

In worst case, the COIN approach needs 6 conversions for the three price definitions, e.g., from base price
to price with taxes, and vice versa, and the conversion between the other two pairs. We observe that these
conversions are based on a set of simple equations, e.g., add tax to base price to yield tax included price.
Most of the conversion functions are invertible, e.g., the inverse of the former function is obtained by
subtracting tax from tax included price to yield base price. When multiple equations exist for conversions
between different modifier values, COIN composes the conversions using its symbolic equations solver
[3, 4] to reduce the number of conversion declarations needed. In the example, we have three definitions
for price: (A) base price, (B) tax included price, and (C) tax and shipping & handling included price. This
is modeled by using a modifier that has three unique values for price concept in the ontology. With
known equational relationships among the three price definitions, and two conversions (1) from
base_price to base_price+tax (i.e., A to B), (2) from base_price+tax to base_price + tax + shipping &
handling (i.e., B to C), the COIN mediator can compute the other four conversions automatically (A to C
and the three inverses). Thus the number of conversion definitions for a modifier can be reduced from
n(n-1) to n-1, where n is the number of unique values of the modifier. For price in the example, n=3, so
we only need 2 conversions. Thus we have the following corollary:

Corollary 1 – Scalability of COIN. When conversions can be parameterized, COIN requires m
conversions. Otherwise, if the conversions are invertible functions, COIN needs ∑ −

=

m

i
in

1
)1(conversions.

Furthermore, declaring the contexts can be simplified since contexts can be inherited with optional
overriding in COIN. This significantly reduces the number of necessary declarations. For example, we
can define a context k for a country because most vendors in the same country share the same context. If a
vendor in the country differs from the other vendors only with regard to price definition, we can define its
context as k’ and specify the price definition for the vendor; by declaring k’ as a sub-context of k, k’
inherits all the other context definitions context k. This keeps the size of the knowledge base compact
while the number of sources grows. As we mentioned earlier, subtypes in the ontology inherit the
modifiers and the conversion definitions of their parent types, which also helps keep the number of
conversion definitions small.

Table 2 summarizes the complexity of different approaches in terms of the number of conversions that
need to be specified. Even in the worst case, the COIN approach requires several orders of magnitude less
conversions than the brute-force approaches. In most practical cases, the actual number is far less than all
the hard-wiring approaches.

Table 2. Number of conversions to achieve semantic interoperability among 10,000 sources
Approach General case In the example
BFS N(N-1), N:= number of sources and receivers ~100 million
BFC n(n-1), n:= number of unique contexts ~ 13 million
ETL/GS 2N, N:= number of sources and receivers 20,000
COIN 1) Worst case: ∑ −

=

m

i
ii nn

1
)1(, ni:= number of unique values

of ith modifier, m := number of modifiers in ontology
2) ∑ −

=

m

i
in

1
)1(, when equational relationships exist

3) m, if all conversions can be parameterized

1) worst: ~10,000
2) actual number: 5 (3 general
conversions plus 2 for price)

We have implemented the COIN approach in a global comparison aggregator that accesses sources from a
half dozen countries [12]. When we later extended it to over a dozen countries, we only needed to update

the knowledge base with assertions regarding the countries to be added and no new conversions were
needed. The extended prototype application accesses over 100 data sources worldwide. This demonstrates
the flexibility of the COIN approach. In [8], we discuss the use of COIN for Straight-Through-Processing
in financial services.

Recent research [13, 14] extended COIN to represent and reason about semantic changes over time. For
example, when comparing historic stock prices in different exchanges, some of them changed reporting
currency. With the formalism and the mediation engine, these temporal changes can be captured and the
semantic differences at different times (in addition to between different sources) can be automatically
recognized and reconciled at run time. With these advanced features and its flexibility and scalability,
COIN is ideal for implementing dynamic online services.

5 Conclusion
Dynamic online services interact with versatile and evolving business processes and data sources, at the
same time need to meet various user requirements. The technology must be flexible and scalable in
reconciling semantic differences amongst these information exchange entities. In this paper, we described
the COIN approach to this challenge. Our analysis shows that the COIN approach can efficiently handle
large number of semantic conflicts and is flexible and scalable to meet the evolving requirements.

Acknowledgements: This work has been supported, in part, by MITRE Corp., the MIT-MUST project,
the Singapore-MIT Alliance, and Suruga Bank.

References
1. T. Berners-Lee, J Hendler, O. Lassila, "The Semantic Web", Scientific American, 284(5), 34-43, May 2001.
2. S. Bressan, C. Goh, N. Levina, S. Madnick, A. Shah, M. Siegel, "Context Knowledge Representation and

Reasoning in the Context Interchange System", Applied Intelligence: The International Journal of Artificial
Intelligence, Neutral Networks, and Complex Problem-Solving Technologies, 12(2), pp. 165-179, 2000.

3. A. Firat, S.E. Madnick, B. Grosof, "Financial Information Integration In the Presence of Equational Ontological
Conflicts", Proceedings of the Workshop on Information Technology and Systems (WITS), Barcelona, Spain,
December 14-15, 2002, pp. 211-216.

4. A. Firat, "Information Integration using Contextual Knowledge and Ontology Merging," PhD Thesis, MIT, 2003.
5. T. Frühwirth, "Theory and Practice of Constraint Handling Rules," J. of Logic Programming, 37, 95-138, 1998.
6. C.H. Goh, "Representing and Reasoning about Semantic Conflicts in Heterogeneous Information Systems", PhD

Thesis, MIT, 1997.
7. C.H. Goh, S. Bressan, S. Madnick, M. Siegel, "Context Interchange: New Features and Formalisms for the

Intelligent Integration of Information", ACM Trans. on Information Systems (TOIS), 13(3), 270-293, July 1999.
8. S. Jayasena, S. Bressan, S. Madnick, "Financial Information Mediation: A case study of standards integration for

Electronic Bill Presentment and Payment using the COIN mediation technology," Proceedings of the VLDB
Workshop on Technologies for E-Services, Toronto, Canada, August 30 - September 1, 2004 .

9. A.C. Kakas, A. Michael, and C. Mourlas, "ACLP: Integrating Abduction and Constraint Solving," Journal of
Logic Programming, 44, pp. 129-177, 2000.

10. M. Kiffer, G. Laussen, J. Wu, "Logic Foundations of Object-Oriented and Frame-based Languages", J. ACM,
42(4), pp. 741-843, 1995.

11. H. Wache, T. Vogele, U. Visser, H. Stuckenschmidt, G. Schuster, H. Neumann, S. Hubner, "Ontology-Based
Integration of Information – A Survey of Existing Approaches", Proceedings of the IJCAI-01 Workshop on
Ontologies and Information Sharing, Seattle, USA, 4 –5 August, 2001.

12. H. Zhu, S.E. Madnick, M.D. Siegel, "Global Comparison Aggregation Services", WEB 2002, Barcelona, Spain.
13. H. Zhu, S.E. Madnick, M.D. Siegel, "Reasoning about Temporal Context using Ontology and Abductive

Constraint Logic Programming", Proceedings of Principles and Practice of Semantic Web Reasoning
(PPSWR’04), pp90-101, St. Malo, France, September 2004.

14. H. Zhu, S.E. Madnick, M.D. Siegel, "Effective Data Integration in the Presence of Temporal Semantic Conflicts",
Proceedings of 11th International Symposium on Temporal Representation and Reasoning (TIME 2004), pp109-
114, Normandie, France, July 1-3, 2004.

