

Context Mediation:
Ontology Modeling using Web Ontology Language

(OWL)

Philip Tan Eik Yeow

Working Paper CISL# 2004-11

June 2004

Composite Information Systems Laboratory (CISL)
Sloan School of Management, Room E53-320

Massachusetts Institute of Technology
Cambridge, MA 02142

 2

TABLE OF CONTENTS
TABLE OF CONTENTS...2

ABSTRACT...4

CHAPTER 1 Introduction..5

1.1 Project Motivation ..5

1.2 Thesis Organization ..6

CHAPTER 2 Core Technology and Framework..7

2.1 Context Interchange Framework...7

2.1.1 Context Interchange Example ..7

2.1.2 COIN Ontology Model...9

2.2 Web Ontology Language (OWL) ...10

2.3 Rule Markup Language (RuleML) ...13

2.4 Related Work ..16

CHAPTER 3 Context Interchange in OWL...18

3.1 Approach...18

3.2 OWL and Rule-based Ontology..20

3.3 Notational Conventions ..21

3.4 COIN ontology with OWL and RuleML ..21

3.4.1 Domain Model..22

3.4.2 Source Sets ...25

3.4.3 Context Axioms..28

3.4.4 Elevation Axioms...32

3.5 Design Considerations ..37

3.5.1 Choice of OWL Sublanguage...37

3.5.2 Static Type Checking ...38

 3

3.5.3 Functional Property ..39

3.5.4 RuleML for Rules Modeling ..40

CHAPTER 4 COIN-OWL Implementation Strategy...45

4.1 Ontology Modularization..45

4.2 Ontology Interoperability..46

4.3 OWL Ontology Development Platform..47

4.4 COIN-OWL Protégé Plugin..49

CHAPTER 5 Conclusion ...53

5.1 Future Work ..53

REFERENCES ..55

APPENDIX A COIN-OWL Ontology...57

APPENDIX B RuleML XML Schema (DTD) ..65

 4

Context Mediation:
Ontology Modeling using Web Ontology Language (OWL)

by

Philip Tan Eik Yeow

Submitted to the SMA office on May 17, 2004
In Partial Fulfillment of the Requirements for the
Degree of Master of Science in Computer Science

ABSTRACT
The Context Interchange strategy is a novel approach in solving heterogeneous data source
interoperability problem through context mediation. In the recent implementation, a FOL
language is used in the modeling and implementation of the application ontologies. In this
project, we close the gap between COIN and Semantic Web by adopting the use of W3C
Recommendation for ontology publishing, OWL Web Ontology Language in the strategy
realization. The ontological model in COIN is represented in OWL, by mapping the respective
ontological concepts in COIN to its counterparts. Emerging rule markup language of RuleML
is used for modeling rule-based metadata in the ontology. In conjunction with that, we have
developed a prototype demonstrating the use of this COIN-OWL ontology model.

Keywords:

Context Interchange strategy, Web Ontology Language (OWL), Semantic Web, Ontology
Modeling, RuleML, Context Mediation, Extended Context Interchange (eCOIN), Data
integration, Heterogeneous data source interoperability

Dissertation Supervisors:

1. Prof. Stuart Madnick, SMA Fellow, MIT
2. Assoc. Prof. Tan Kian Lee, SMA Fellow, NUS

 5

CHAPTER 1

Introduction
The Context Interchange strategy [23] is a mediator-based approach for achieving semantic

interoperability among heterogeneous data sources and receivers. Using COINL, a language firstly

introduced in [12], the detection and mediation of data heterogeneity was efficiently realized in a

prototype implementation using the constraint logic programming system ECLiPSe in Prolog [11].

COINL is the lingua franca for the modeling and implementation of the ontology to describe the

disparate and heterogeneous data sources. From the Extended Context Interchange project (eCOIN)

[15], the concrete syntax for knowledge representation and context mediation has evolved from the

proprietary COINL language to using FOL/Prolog.

Of late, a large number of knowledge representations scheme for ontological knowledge has been

proposed by various research groups and bodies. The list goes from general-purpose Resource

Description Framework (RDF) [13] for information representation on the Web, to DARPA Agent

Markup Language (DAML) [1] as extension of RDF aimed at facilitating agent interaction on the

Web, and special-purposed ontology, such as ebXML that aims to “enable enterprises of any size,

in any global region, to conduct business using the Internet” [3]. One recent unifying effort in

creating the ontology language for the Web is the Web Ontology Language (OWL) by the World

Wide Web Consortium [21], which together with RDF, forms the major building blocks for the

Semantic Web [8].

1.1 Project Motivation

With OWL being released as W3C Recommendations, our effort is aimed at bridging the gap

between eCOIN and Semantic Web by adopting the use of OWL for ontology modeling in COIN.

 6

This is inline with our broader vision in heterogeneous data integration effort. The adoption of

OWL in our context interchange framework also opens the door for future interoperability with

other readily available ontology. As pointed out by Kim [19], “development of decentralized and

adaptive ontologies have value in and of themselves, but whose full potential will only be realized

if they are used in combination with other ontologies in the future to enable data sharing”.

1.2 Thesis Organization

Our work on using OWL and RuleML for ontology modeling and implementation of eCOIN for

heterogeneous context mediation is detailed in this thesis. The thesis is organized as follows.

Section 2 highlights the imperative background fundamental of the subject for the understanding

of the paper, together with a review of relevant work. Section 3 describes the detailed design of

ontology modeling in eCOIN using OWL. Section 4 details the implementation strategy and the

prototype developed. And we conclude the paper with a summary and future research direction in

the final section.

 7

CHAPTER 2

Core Technology and Framework

2.1 Context Interchange Framework

Before describing the proposed eCOIN-OWL strategy, it is necessary to provide a summary of the

architecture of a Context Interchange strategy. In particular, the understanding of the Extended

Context Interchange (eCOIN) [15] is imperative to motivate the proposed strategy.

Our work based and extends on the previous work in the Context Interchange effort at MIT,

chiefly on the Extended Context Interchange (eCOIN) implementation. Similar to COIN [12],

eCOIN is a realization of the Context Interchange strategy articulated in [22] in the form of a data

model, reasoning algorithm, and a prototype implementation. However, eCOIN is an improvement

over COIN in terms of semantic representations, context reasoning and mediation, and prototype

implementation.

2.1.1 Context Interchange Example

We believe one of the easiest ways to understand the Context Interchange framework is via

concrete example illustration. Consider we have two financial data sources: Worldscope

(worldscope) and Disclosure Corporate Snapshot (disclosure).

Worldscope provides basic financial information on public companies worldwide, while

Disclosure is a information directory on companies publicly traded on U.S. exchanges.

Worldscope reports all the financial data information in USD, and on the scale factor of 1000,

while disclosure reports the financial data information in the currency of the country of

incorporation of the companies, and on the scale factor of 1.

 8

Using these financial data sources, the users are able to post queries on the public companies of

interest. For example, to retrieve the sales data of Daimler-Benz AG from the worldscope database,

the user may issue the following query:

select WorldcAF.SALES

from WorldcAF

where WorldcAF.COMPANY_NAME = "DAIMLER-BENZ AG";

Using the eCOIN prototype [2], the following results is obtained:

WorldcAF.LATEST_ANNUAL_FINANCIAL_DATE WorldcAF.SALES
12/31/93 56,268,168

On the other hand, to retrieve the data from disclosure, the following query is posted:

select DiscAF.LATEST_ANNUAL_DATA, DiscAF.NET_SALES

from DiscAF

where DiscAF.COMPANY_NAME = "DAIMLER BENZ CORP";

And the following result is retrieved:

DiscAF.LATEST_ANNUAL_DATA DiscAF.NET_SALES
12/31/93 97,737,000,000

Here, we can note the discrepancy in data due to the difference in context of the data sources, both

in the currency and the scale factor used.

In a conventional information system, to perform a join table query between Worldscope and

Disclosure, these context disparities has to be resolved manually and encoded in the SQL query.

Using COIN, these context discrepancies (different company name format, date format, financial

data currency type and scale factor) are mediated automatically and queries such as the follow can

be posted without knowing the actual context:

select WorldcAF.TOTAL_SALES, DiscAF.NET_INCOME

from DiscAF, WorldcAF

where DiscAF.COMPANY_NAME = "DAIMLER-BENZ"

and DiscAF.COMPANY_NAME = WorldcAF.NAME

and WorldcAF.LATEST_ANNUAL_DATA = "12-31-93";

 9

This automated context reasoning and mediation capability is the essence of the Context

Interchange strategy.

2.1.2 COIN Ontology Model

The Context Interchange framework employs a hybrid of loosely- and tightly-coupled approach in

data integration in heterogeneous data environment. The Context Interchange framework was first

formalized by Goh et. al in [16] and further realized by Firat [15]. The Framework comprises three

major components:

- The domain model, which is a collection of rich types, called semantic types. The domain

model provides a lexicon of types, attributes and modifiers to each semantic type. These

semantic types together define the application domain corresponding to the data sources

which are to be integrated.

- The elevation theory, made up of an array of elevation axioms which define the data types

of the data source, and its correspondence with the semantic types in the domain model.

Essentially, this maps the primitive types from the data source to the rich semantic types in

the application domain.

- The context theory comprising declarative statements which either provide for the

assignment of a value to a modifier, or identify a conversion function which can be used as

the basis for converting the values of objects across different contexts.

These three components forms the complete description of the application domain, required for the

context mediation procedure as described in [12].

 10

From the conceptual ontology model, the axioms in the eCOIN framework are realized using logic

programming in Prolog. The collection of axioms present in an instance of this framework

constituted an eCOIN FOL/Prolog program. This is the native language of which eCOIN

framework operates on.

2.2 Web Ontology Language (OWL)

The OWL Web Ontology Language is designed for use by applications that need to process the

content of information instead of just presenting information to humans. OWL facilitates greater

machine interpretability of Web content than that supported by XML, RDF, and RDF Schema

(RDF-S) by providing additional vocabulary along with a formal semantics. OWL has three

increasingly-expressive sublanguages: OWL Lite, OWL DL, and OWL Full.

The Semantic Web is a vision for the future of the Web, in which information is given explicit

meaning, making it easier for machines to automatically process and integrate information

available on the Web. The Semantic Web will build on XML's ability to define customized tagging

schemes and RDF's flexible approach to representing data. The first level above RDF required for

the Semantic Web is an ontology language what can formally describe the meaning of terminology

used in Web documents. If machines are expected to perform useful reasoning tasks on these

documents, the language must go beyond the basic semantics of RDF Schema.

OWL has been designed to meet this need for a Web Ontology Language. OWL is part of the

growing stack of W3C recommendations related to the Semantic Web.

• XML provides a surface syntax for structured documents, but imposes no semantic

constraints on the meaning of these documents.

 11

• XML Schema is a language for restricting the structure of XML documents and also

extends XML with datatypes.

• RDF is a data model for objects ("resources") and relations between them, provides a

simple semantics for this data model, and these data models can be represented in an XML

syntax.

• RDF Schema is a vocabulary for describing properties and classes of RDF resources, with

a semantics for generalization-hierarchies of such properties and classes.

• OWL adds more vocabulary for describing properties and classes: among others, relations

between classes (e.g. disjointness), cardinality (e.g. "exactly one"), equality, richer typing

of properties, characteristics of properties (e.g. symmetry), and enumerated classes.

OWL provides three increasingly expressive sublanguages designed for use by specific

communities of implementers and users.

• OWL Lite supports those users primarily needing a classification hierarchy and simple

constraints. For example, while it supports cardinality constraints, it only permits

cardinality values of 0 or 1. It should be simpler to provide tool support for OWL Lite than

its more expressive relatives, and OWL Lite provides a quick migration path for thesauri

and other taxonomies. Owl Lite also has a lower formal complexity than OWL DL.

• OWL DL supports those users who want the maximum expressiveness while retaining

computational completeness (all conclusions are guaranteed to be computable) and

decidability (all computations will finish in finite time). OWL DL includes all OWL

language constructs, but they can be used only under certain restrictions (for example,

while a class may be a subclass of many classes, a class cannot be an instance of another

class). OWL DL is so named due to its correspondence with description logics, a field of

research that has studied the logics that form the formal foundation of OWL.

 12

• OWL Full is meant for users who want maximum expressiveness and the syntactic

freedom of RDF with no computational guarantees. For example, in OWL Full a class can

be treated simultaneously as a collection of individuals and as an individual in its own

right. OWL Full allows an ontology to augment the meaning of the pre-defined (RDF or

OWL) vocabulary. It is unlikely that any reasoning software will be able to support

complete reasoning for every feature of OWL Full.

OWL Lite uses only some of the OWL language features and has more limitations on the use of

the features than OWL DL or OWL Full. For example, in OWL Lite classes can only be defined in

terms of named superclasses (superclasses cannot be arbitrary expressions), and only certain kinds

of class restrictions can be used. Equivalence between classes and subclass relationships between

classes are also only allowed between named classes, and not between arbitrary class expressions.

Similarly, restrictions in OWL Lite use only named classes. OWL Lite also has a limited notion of

cardinality - the only cardinalities allowed to be explicitly stated are 0 or 1.

As a concrete example of OWL, consider the following ontology in OWL, which states that

GraduateStudents are Students with a degree of either BA or BS

<?xml version="1.0"?>

<rdf:RDF

 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"

 xmlns:owl="http://www.w3.org/2002/07/owl#"

 <owl:Ontology rdf:about=""/>

 <owl:Class rdf:ID="GraduateStudent">

 <rdfs:subClassOf>

 <owl:Restriction>

 <owl:onProperty>

 <owl:ObjectProperty rdf:about="#hasDegree"/>

 </owl:onProperty>

 <owl:someValuesFrom>

 <owl:Class>

 <owl:oneOf rdf:parseType="Collection">

 <Degree rdf:ID="BA"/>

 <Degree rdf:ID="BS"/>

 </owl:oneOf>

 13

 </owl:Class>

 </owl:someValuesFrom>

 </owl:Restriction>

 </rdfs:subClassOf>

 <rdfs:subClassOf rdf:resource="#Student"/>

 </owl:Class>

</rdf:RDF>

Equivalently, the example can be described in a UML class diagram in Figure 2-1.

Figure 2-1: Class diagram for sample OWL ontology

2.3 Rule Markup Language (RuleML)

RuleML Initiative is a collaboration with the objective of providing a basis for an integrated rule-

markup approach that will be beneficial to the committee and the rule community at large. This

shall be achieved by having all participants collaborate in establishing translations between

existing tag sets and in converging on a share rule-markup language. The main goal for RuleML

kernel language is to be utilized as a specification for immediate rule interchange.

Rules can be stated (1) in natural language, (2) in some formal notation, or (3) in a combination of

both. Being in the third, 'semiformal' category, the RuleML Initiative is working towards an XML-

 14

based markup language that permits Web-based rule storage, interchange, retrieval, and

firing/application.

The XML schema definition of RuleML can be viewed as syntactically characterizing certain

semantic expressiveness subclasses of the language. As eCOIN represents the ontological model in

Prolog, which is in the horn-logic family, our use of RuleML is focused on the datalog and

hornlog sublanguage.

Figure 2-2: Hierarchical view of the RuleML sublanguages [9]

These two sublanguages provide a comprehensive language facility in describing rules encoded in

Prolog. The XML concrete syntax of RuleML of these two classes uses the following constructs

for rule representation:

 15

Tag Uses
Datalog
rulebase root element uses ‘imp’ rules and ‘fact’ assertions along with ‘query’ tests as top-

level elements

imp short for ‘implication’, usable on the rulebase top-level and uses a conclusion role
_head followed by a premise role _body

fact fact assertions are usable as degenerate rules on the rulebase top-level

_head _head role is usable within ‘imp’ rules and ‘fact’ assertions; uses an atomic
formula

_body _body role is usable within ‘imp’ rules and ‘query’ tests; uses an atomic formula
and an ‘and’

and an ‘and’ is usable within _body’s to express conjunction

atom atomic formulas are usable within _head’s, _body’s, and ‘and’s

_opr usable within atoms as operator, uses the rel(ation) symbol

ind short for ‘individual’. Individual constant, as in predicate logic

var short for ‘variable’. Logical variable, as in logic programming

rel relation or predicate symbol

Hornlog
cterm complex, compound, or constructor terms are usable within other cterms, tups,

rolis, and atoms; uses _opc ("operator of constructors") role followed by sequence
of five kinds of arguments

_opc c(onstruc)tor symbol; usable within c(onstructor) terms.

ctor constructor

As example of the use of RuleML, consider the following rule:

“The discount for a customer buying a product is 5.0 percent if the customer is premium and the

product is regular.”

Expressed using the RuleML language constructs introduced above, this rule can be encoded as:

<imp>

 16

 <_head>

 <atom>

 <_opr><rel>discount</rel></_opr>

 <var>customer</var>

 <var>product</var>

 <ind>5.0 percent</ind>

 </atom>

 </_head>

 <_body>

 <and>

 <atom>

 <_opr><rel>premium</rel></_opr>

 <var>customer</var>

 </atom>

 <atom>

 <_opr><rel>regular</rel></_opr>

 <var>product</var>

 </atom>

 </and>

 </_body>

</imp>

Or equivalently, the rule can be expressed in Prolog as follows:

discount(Customer, Product, 5.0) :- premium(Customer), regular(Product)

Note that the above rule uses only the datalog sublanguage of RuleML. As the application

ontologies in COIN may involve more complex rules, our design and implementation uses both

the datalog and hornlog sublanguages.

2.4 Related Work

In [20], Lee has presented a XML-based metadata representation for the COIN framework. The

essence of the work lies in modeling and storing of the metadata in RDF format as the base format.

A number of intermediate representations of were proposed: RDF, RuleML, RFML and the native

Prolog representation used in COIN. The core ontological model of COIN in RDF format is

transformed into the aforementioned intermediate representation by applying Extensible Stylesheet

Language Transformation (XSLT) on the fly. Context mediation for heterogeneous data is then

executed using the ontological model encoded in the COIN language. It is worth noting that the

approach proposed in this work primarily deals with a single representation at a time. The

 17

intermediate ontological model is represented in RDF, RuleML or RFML individually, but not as a

combination of the different formats, which is the approach taken in our proposal.

In a related work of eCOIN [15], high-level suggestions of eCOIN to Semantic Web mapping

using OWL is proposed as future works direction. Firat compared and contrasted eCOIN and

OWL in terms of language constructs, and presented a mapping of the domain model from eCOIN

to OWL. In particular, he suggested the domain model compatibility of eCOIN and OWL, where

domain model concepts of Semantic Type and Attribute can be represented trivially as Class and

ObjectProperty respectively in OWL. The ‘is-a’ relationship commonly found in object-relation

framework is translated into subClassOf construct in OWL.

One relevant effort in the Semantic Web/OWL space is Context OWL (C-OWL) [10], a language

whose syntax and semantics have been obtained by extending the OWL syntax and semantics to

allow for the representation of contextual ontologies. However, the extension focused on limited

context mapping using a set of bridge rules that specify the relationship between contexts as one of

the following: equivalent, onto (superset), into (subset), compatible, incompatible. The limited

expressiveness of the language fails to address the contextual differences such as those possible

with COIN.

 18

CHAPTER 3

Context Interchange in OWL

One major perspective the Context Interchange strategy employs is the relational view of the data.

The canonical representation of data source is the relational data model [15]. Semi-structured data,

including information from web pages can be used, but they have to be first converted to relational

sources, for example, using the Cameleon web wrapper engine. This aspect of the strategy is one

distinct area that sets itself apart from the common usage of OWL, where ontology and data are

maintained in the semi-structured format of OWL.

Intuitively, the use of OWL in COIN can be viewed as the meta-ontology layer on top of OWL,

providing an extension to OWL to support context-aware ontology to the current context-oblivious

ontology in OWL.

For convenience and brevity, we refer to this context modeling strategy for COIN using OWL as

COIN-OWL in this text.

3.1 Approach

In eCOIN, the FOL/Prolog program formed by the collection of domain model definitions,

elevation theories and context theories is used to detect and mediate context disparity and

heterogeneity in a query using an abductive procedure defined in [12]. One important principle of

our work is to preserve this constraint programming engine in the COIN framework.

We adopt layered architecture in the adoption of OWL in context interchange framework: (1) the

domain ontology will be modeled in OWL (and its extension or relevant technology), (2) the

 19

ontology will be transformed to eCOIN FOL/Prolog as the native representation of the domain,

and finally, (3) the native program will be taken as input to the abductive engine for context

mediation. The high-level architecture of the approach is illustrated in Figure 3-1.

Figure 3-1: Three-tier approach for Context Interchange ontology modeling using OWL

The OWL ontology model can be viewed as the front-end of the system, where it is the main

interfacing layer to the user of the eCOIN system. In the intermediate layer, the transformation

from OWL to the native FOL/Prolog program will be transparent to the users. The transformation

process is detailed in the later section of the thesis. With the derived program in its native

FOL/Prolog format, the existing mediation engine can be reused in its entirety.

The big win of this approach is that it minimizes re-work: there is little value in reinventing the

wheel, especially when the current functionality of the system provides the total capability

required. At the same time, the abstraction of the middle tier of the architecture shielded the users

from the actual implementation of the COIN context mediator. This componentization fulfills our

aim of adoption of OWL in the framework, yet ensuring minimal impact to the existing COIN

system.

eCOIN
Context Mediation

System

Ontology
Administrator

COIN-
OWL

Ontology

eCOIN
Prolog

Program

Ontology Development and Editing

Automated
Ontology

ConversionContext Mediation and Query Processing

(1) (2)(3)

 20

3.2 OWL and Rule-based Ontology

One major challenge of the adoption of OWL in the ontology model is that the COIN ontology

model encompasses a number of constructs that are not available in OWL. Constructs such as

Domain Model and Elevation Axioms can be represented in OWL rather easily – conceptually,

these constructs describes the relationship among the data types, and can be modeled accordingly

using corresponding constructs in OWL that express relationships among classes.

The problem, however, lies in the modeling of context theory, which is the pivotal component in

the framework for context interchange. The collection of context axioms in a context theory is

used either to provide for the assignment of a value to a modifier, or identify a conversion function,

which can be used as the basis for converting the values of objects across different contexts. Often,

the expressiveness of rules is required to define the conversion of a semantic type in the source

context to a different context.

In our proposed design, axioms requiring such flexibility are encoded in RuleML. RuleML allows

rule-based facts and queries to be expressed in the manner similar to conventional rule language

such as Prolog. The concrete representation of RuleML is XML, which fits seamlessly in our effort

to standardize the ontology representation in eCOIN.

We foresee that RuleML will eventually be accepted as part of the W3C standard for Rule-based

ontology in Semantic Web. The early adoption of such emerging standard promotes

standardization of our effort and allows our work to be re-used by other interested parties in the

Semantic Web and data/context integration space.

 21

3.3 Notational Conventions

A number of namespace prefixes are used in the following sections as defined below. We attempt

to adhere to the namespace prefix used in the OWL Web Ontology Language XML Presentation

Syntax [17] for uniformity and readability. As in the OWL documentations, note that the choice of

the namespace prefix is arbitrary, and not semantically significant.

Prefix Namespace Notes
rdfs “http://www.w3.org/2000/01/rdf-schema#” The namespace of the RDF Schema
owl "http://www.w3.org/2002/07/owl#" The namespace of OWL in

RDF/XML syntax
xsd "http://www.w3.org/2001/XMLSchema#" The namespace of the XML Schema
coin “http://context2.mit.edu/coin#” The namespace of the proposed

COIN-OWL in RDF/XML syntax

3.4 COIN ontology with OWL and RuleML

In this section, we will examine the modeling of the COIN ontology in OWL with respect to

domain model, elevation theory and context theory. Where appropriate, additional categorization

may be introduced to facilitate the presentation of the design. In addition to the abstract model, the

concrete XML representation of the model is presented to illustrate the proposed implementation

of the model. The complete listing of the concrete XML representation of the ontology model is

available from Appendix A.

As a valid OWL ontology of COIN itself, this model can be used as a base OWL ontology to

model disparate data sources for the purpose of data integration by means of context mediation.

The approach for realization of this strategy is to maintain the COIN ontology as an independent

OWL ontology which can be imported into other OWL ontology.

 22

3.4.1 Domain Model

By definition, domain model provides define the taxonomy of the domain in terms of the available

semantic types and modifiers to each semantic types. In addition, the notion of primitive type is

used to represent the data types that are native to the source or receiver context.

OWL uses the facilities of XML Schema Datatypes and a subset of the XML Schema datatypes as

its standard datatypes (or equivalently, its primitive datatypes). On the other hand, the primitive

types in the COIN language consist of string and number. Trivially, the datatypes can be

represented using its counterparts in OWL, namely xsd:string and xsd:int, xsd:float or xsd:double.

Figure 3-2 shows the class diagram of the components in the COIN-OWL domain model. We will

inspect the design of each of the classes in details subsequently.

Figure 3-2: Class diagram of the Domain Model in COIN-OWL

Semantic Type

Types may be related in an abstraction hierarchy where properties of a type are inherited. For rich

semantic type in the COIN framework, the basic type is the universal parent of which all semantic

type is derived from. We proposed the use of class element for the modeling of a semantic type as

it provides the construct for sub-classing, allowing inheritance of semantic type where needed.

 23

Each semantic type is associated by attributes and modifiers which are modeled as ObjectProperty

of the semantic type.

 <owl:Class rdf:ID="SemanticType" />

 <owl:ObjectProperty rdf:ID="Modifiers">

 <rdfs:domain rdf:resource="#SemanticType"/>

 <rdfs:range rdf:resource="#Modifier"/>

 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:ID="Attributes">

 <rdfs:domain rdf:resource="#SemanticType"/>

 <rdfs:range rdf:resource="#Attribute"/>

 </owl:ObjectProperty>

As the running example in throughout this section, we have a semantic type called

companyFinancials that represents the financial information of a company. This can be represented

using the following proposed OWL constructs:

<coin:SemanticType rdf:ID="companyFinancials">

</coin:SemanticType>

Attribute

Each semantic type may contain one or more attributes, which describe the state of a semantic

object1 or the relationship between semantic types. Attribute is modeled as a class, and attached to

semantic type as ObjectProperty.

<owl:Class rdf:ID="Attribute" />

 <owl:DatatypeProperty rdf:ID="AttributeName">

 <rdf:type rdf:resource="&owl;FunctionalProperty" />

 <rdfs:domain rdf:resource="#Attribute"/>

 <rdfs:range rdf:resource="&xsd;string"/>

 </owl:DatatypeProperty>

 <owl:ObjectProperty rdf:ID="AttributeFrom">

 <rdf:type rdf:resource="&owl;FunctionalProperty" />

 <rdfs:domain rdf:resource="#Attribute"/>

 <rdfs:range rdf:resource="#SemanticType"/>

 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:ID="AttributeTo">

 <rdf:type rdf:resource="&owl;FunctionalProperty" />

 <rdfs:domain rdf:resource="#Attribute"/>

 <rdfs:range rdf:resource="#SemanticType"/>

 </owl:ObjectProperty>

1 Instances of semantic types are called semantic objects

 24

The companyFinancials semantic type has two attributes, namely company and fyEnding. To

model this in COIN-OWL semantics:

<coin:SemanticType rdf:ID="companyFinancials">

 <coin:Attributes>

 <coin:Attribute rdf:ID="att_company">

 <coin:AttributeTo rdf:resource="#companyName"/>

 <coin:AttributeFrom rdf:resource="#companyFinancials"/>

 <coin:AttributeName rdf:datatype="&xsd;string">company</coin:AttributeName>

 </coin:Attribute>

 <coin:Attribute rdf:ID="att_fyEnding">

 <coin:AttributeTo rdf:resource="#date"/>

 <coin:AttributeFrom rdf:resource="#companyFinancials"/>

 <coin:AttributeName rdf:datatype="&xsd;string">fyEnding</coin:AttributeName>

 </coin:Attribute>

 </coin:Attributes>

</coin:SemanticType>

Modifier

Similarly, each semantic type may be modified by one or more modifiers. Each modifier in turns

relates the semantic type to another semantic type.

 <owl:Class rdf:ID="Modifier"/>

 <owl:DatatypeProperty rdf:ID="ModifierName">

 <rdf:type rdf:resource="&owl;FunctionalProperty" />

 <rdfs:domain rdf:resource="#Modifier"/>

 <rdfs:range rdf:resource="&xsd;string"/>

 </owl:DatatypeProperty>

 <owl:ObjectProperty rdf:ID="ModifierFrom">

 <rdf:type rdf:resource="&owl;FunctionalProperty" />

 <rdfs:domain rdf:resource="#Modifier"/>

 <rdfs:range rdf:resource="#SemanticType"/>

 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:ID="ModifierTo">

 <rdf:type rdf:resource="&owl;FunctionalProperty" />

 <rdfs:domain rdf:resource="#Modifier"/>

 <rdfs:range rdf:resource="#SemanticType"/>

 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:ID="ModifierValues">

 <rdfs:range rdf:resource="#ModifierValue"/>

 <rdfs:domain rdf:resource="#Modifier"/>

 </owl:ObjectProperty>

companyFinancial semantic type is modified by two modifiers, scaleFactor and currency, which

augment the companyFinancial semantic type to the scale factor (semantic type of basic) and the

 25

currency (semantic type of currencyType) in which the financial data is stored. Using COIN-OWL,

this information is represented as:

<coin:Modifier rdf:ID="mod_scaleFactor">

 <coin:ModifierName rdf:datatype="&xsd;string">scaleFactor</coin:ModifierName>

 <coin:ModifierTo rdf:resource="#basic"/>

 <coin:ModifierFrom rdf:resource="#companyFinancials"/>

</coin:Modifier>

<coin:Modifier rdf:ID="mod_currency">

 <coin:ModifierName rdf:datatype="&xsd;string">currency</coin:ModifierName>

 <coin:ModifierTo rdf:resource="#currencyType"/>

 <coin:ModifierFrom rdf:resource="#companyFinancials"/>

</coin:Modifier>

<coin:SemanticType rdf:ID="companyFinancials">

 <coin:Modifiers rdf:resource=”#mod_scaleFactor”></coin:Modifiers>

 <coin:Modifiers rdf:resource=”#mod_currency”></coin:Modifiers>

</coin:SemanticType>

From these two examples of attributes and modifiers, we can see that references to other

classes/objects can be made by either instantiating the classes directly within the parent class (as

with attributes) or instantiating the classes outside of the parent class, and linked to the parent class

using the rdf:resource construct. Note that both ways create semantically equivalent and

syntactically well-formed OWL ontology document. This difference in concrete representation of

the domain is usually caused by ontology tools that generate concrete ontology automatically, and

should not be of an ontology administrator’s concern.

3.4.2 Source Sets

A COIN concept not available in OWL is the intensional description of the data sources, as OWL

is used as the descriptive language only for semi-structured data on the Web. COIN, on the other

hand, is designed to deal with a wide range of data sources, which makes the declarative

description of the data sources indispensable for data integration and context mediation.

 26

Figure 3-3: Class diagram of the Source Sets in COIN-OWL

Relation

For this purpose, we introduce the notion of a Relation class in the model. Conceptually, this

construct is really part of the auxiliary ontology of an ontology – the facility describes the various

data sources that consume the core ontology. This piece of information is used in the COIN query

optimization and execution engine.

 <owl:Class rdf:ID="Relation" />

 <owl:DatatypeProperty rdf:ID="DataSource">

 <rdf:type rdf:resource="&owl;FunctionalProperty" />

 <rdfs:domain rdf:resource="#Relation"/>

 <rdfs:range rdf:resource="&xsd;string"/>

 </owl:DatatypeProperty>

 <owl:DatatypeProperty rdf:ID="RelationName">

 <rdf:type rdf:resource="&owl;FunctionalProperty" />

 <rdfs:domain rdf:resource="#Relation"/>

 <rdfs:range rdf:resource="&xsd;string"/>

 </owl:DatatypeProperty>

 <owl:DatatypeProperty rdf:ID="Type">

 <rdf:type rdf:resource="&owl;FunctionalProperty" />

 <rdfs:domain rdf:resource="#Relation"/>

 <rdfs:range rdf:resource="&xsd;string"/>

 </owl:DatatypeProperty>

 <owl:DatatypeProperty rdf:ID="Bindings">

 <rdfs:domain rdf:resource="#Relation"/>

 <rdfs:range rdf:resource="&xsd;string"/>

 </owl:DatatypeProperty>

 <owl:DatatypeProperty rdf:ID="Operators">

 <rdf:type rdf:resource="&owl;FunctionalProperty" />

 <rdfs:domain rdf:resource="#Relation"/>

 <rdfs:range rdf:resource="&xsd;string"/>

 </owl:DatatypeProperty>

 27

 <owl:ObjectProperty rdf:ID="Columns">

 <rdfs:range rdf:resource="#Column"/>

 <rdfs:domain rdf:resource="#Relation"/>

 </owl:ObjectProperty>

Column

Following the relational data model, each relation consists of one or more columns. As each

column is unique to its associated relation, we have a one-to-one relationship between Column and

Relation class. Using OWL’s Inverse Functional Property, we create an AssociatedRelation

property on the Column class to relate each column to the relation it belongs to.

Note that using an ontology editor supporting OWL, we will not need to fill this field. The

AssociatedRelation property is simply the inverse of Relation class’ Columns property. This is one

of the many OWL rich language feature set that we leveraged on.

The concrete OWL/RDF syntax of the Column class is presented below.

 <owl:Class rdf:ID="Column" />

 <owl:Class rdf:ID="Column" />

 <owl:DatatypeProperty rdf:ID="ColumnName">

 <rdf:type rdf:resource="&owl;FunctionalProperty" />

 <rdfs:domain rdf:resource="#Column"/>

 <rdfs:range rdf:resource="&xsd;string"/>

 </owl:DatatypeProperty>

 <owl:DatatypeProperty rdf:ID="DataType">

 <rdf:type rdf:resource="&owl;FunctionalProperty" />

 <rdfs:domain rdf:resource="#Column"/>

 <rdfs:range rdf:resource="&xsd;string"/>

 </owl:DatatypeProperty>

 <owl:DatatypeProperty rdf:ID="ColumnIndex">

 <rdf:type rdf:resource="&owl;FunctionalProperty" />

 <rdfs:domain rdf:resource="#Column"/>

 <rdfs:range rdf:resource="&xsd;int"/>

 </owl:DatatypeProperty>

 <owl:ObjectProperty rdf:ID="AssociatedRelation">

 <rdfs:domain rdf:resource="#Column"/>

 <owl:inverseOf rdf:resource="#Columns" />

 </owl:ObjectProperty>

 28

To model a relation and the columns making up of the relation, we instantiate the coin:Relation

class, and subsequently the coin:Columns. For example, the lookup table relation countryIncorp

stores the company name and the country the company is incorporated in the COMPANY_NAME and

COUNTRY columns respectively:

<coin:Relation rdf:ID="rel_countryIncorp">

 <coin:Type rdf:datatype="&xsd;string">e</coin:Type>

 <coin:RelationName rdf:datatype="&xsd;string">countryIncorp</coin:RelationName>

 <coin:Bindings rdf:datatype="&xsd;string">0,0</coin:Bindings>

 <coin:DataSource rdf:datatype="&xsd;string">view</coin:DataSource>

 <coin:Columns>

 <coin:Column rdf:ID="col_countryIncorp_COMPANYNAME">

 <coin:ColumnIndex rdf:datatype="&xsd;int">1</coin:ColumnIndex>

 <coin:ColumnName rdf:datatype="&xsd;string">COMPANY_NAME</coin:ColumnName>

 <coin:AssociatedRelation rdf:resource="#rel_countryIncorp"/>

 <coin:DataType rdf:datatype="&xsd;string">string</coin:DataType>

 </coin:Column>

 </coin:Columns>

 <coin:Columns>

 <coin:Column rdf:ID="col_countryIncorp_COUNTRY">

 <coin:ColumnName rdf:datatype="&xsd;string">COUNTRY</coin:ColumnName>

 <coin:ColumnIndex rdf:datatype="&xsd;int">2</coin:ColumnIndex>

 <coin:AssociatedRelation rdf:resource="#rel_countryIncorp"/>

 <coin:DataType rdf:datatype="&xsd;string">string</coin:DataType>

 </coin:Column>

 </coin:Columns>

</coin:Relation>

Constraints

Another concept contained in the source set is constraint. Constraints, consisting of integrity

constraints and general constraints, are used as:

• key constraints that express the keys of a primitive relation

• foreign key constraints constraining the links between relations

• general constraints that may involve semantic conflicts

Implemented using Constraint Handling Rules (CHR), these constraints are used for query

optimization in the query processing phase. In our current work, the constraints are not modeled in

OWL. Instead, the rules are represented at its native format of CHR.

 29

3.4.3 Context Axioms

One core prevailing concept in COIN is the notion of context differential and the ability to

interoperate among contexts through context mediation. The fundamental component to context

axioms is the definition of context itself.

Context

Context is simply modeled as an OWL class. The only property pertinent for the class is name of

the context, stored in the ContextName property.

 <owl:Class rdf:ID="Context"/>

 <owl:DatatypeProperty rdf:ID="ContextName">

 <rdf:type rdf:resource="&owl;FunctionalProperty" />

 <rdfs:domain rdf:resource="#Context"/>

 <rdfs:range rdf:resource="&xsd;string"/>

 </owl:DatatypeProperty>

In our running example, we have different contexts for different relations, due to the source of the

data. For example, the data from worldscope can be modeled as having its own context,

worldscope:

<coin:Context rdf:ID="context_worldscope">

 <coin:ContextName rdf:datatype="&xsd;string">worldscope</coin:ContextName>

</coin:Context>

Modifier Values

The interpretation of a semantic object value that is decorated by modifiers may vary according to

the values taken by the modifier. The value of the modifier is determined by prior domain

knowledge, dependent on the context of the domain. This value can either be a static literal

(number or string), or dynamically obtained from other attributes. This hierarchical structure

translates to the need of modeling a parent ModifierValue class, with two subclasses

ModifierStaticValue and ModifierDynamicValue.

 <owl:Class rdf:ID="ModifierValue" />

 <owl:Class rdf:ID="ModifierStaticValue">

 <rdfs:subClassOf rdf:resource="#ModifierValue" />

 </owl:Class>

 <owl:Class rdf:ID="ModifierDynamicValue">

 <rdfs:subClassOf rdf:resource="#ModifierValue" />

 30

 </owl:Class>

Ideally, in a strict object modeling framework, the ModifierValue class should be an abstract class,

in which no object can be instantiated from this parent class. Instead, all modifier values can only

either be a ModifierStaticValue or ModifierDynamicValue object.

To illustrate this, consider the currency modifier for semantic type companyFinancials. All

financial data are expressed in USD in the worldscope context:

<coin:Modifier rdf:ID="mod_currency">

 <coin:ModifierValues>

 <coin:ModifierStaticValue rdf:ID="modval_currency_worldscope">

 <coin:ModifierContext rdf:resource="#context_worldscope"/>

 <coin:ModifierSemanticType rdf:resource="#companyFinancials"/>

 <coin:ModifierStringValue rdf:datatype="&xsd;string">USD</coin:ModifierStringValue>

 <coin:ModifierObject rdf:resource="#mod_currency"/>

 </coin:ModifierStaticValue>

</coin:ModifierValues>

In the datastream context, however, the financial data are stored based on the location of

incorporation of the companies. This requires a cross-reference to other attributes to retrieve the

required information. Using our COIN-OWL ontology model, this can be modeled as:

<coin:ModifierValues>

 <coin:ModifierDynamicValue rdf:ID="modval_currency_disclosure">

 <coin:ModifierContext rdf:resource="context_disclosure"/>

 <coin:ModifierSemanticType rdf:resource="companyFinancials"/>

 <coin:ModifierDynamicValues rdf:resource="att_countryIncorp"/>

 <coin:ModifierDynamicValues rdf:resource="att_officialCurrency"/>

 <coin:ModifierDynamicValues rdf:resource="att_company"/>

 <coin:ModifierObject rdf:resource="mod_currency"/>

 </coin:ModifierDynamicValue>

</coin:ModifierValues>

In English, this means that the value of the currency modifier for companyFinancials semantic

type in the datastream context is retrieved from the values of countryIncorp, officialCurrency and

company attributes.

 31

Conversion Functions

A more complex construct available in COIN is the conversion function. In essence, conversion

functions enable interoperability of semantic objects across different contexts. This is achieved by

defining generic conversion rules for each semantic type that may yield different value under

different contexts.

This requirement calls for a language facility that is both flexible and supports rule-based data.

However, OWL lacks the ability to model rules in an extensible manner. Therefore, we

recommend the use of RuleML for conversion functions modeling.

As an example, consider the simple conversion function in eCOIN’s Prolog representation, that

converts the month in words into numeric value (and vice versa):

rule(month("Jan", 01), (true)).

This rule can be represented using RuleML as follows:

 <fact>

 <_head>

 <atom>

 <cterm>

 <_opc><ctor>rule</ctor></_opc>

 <cterm>

 <_opc><ctor>month</ctor></_opc>

 <ind>Jan</ind>

 <ind>01</ind>

 </cterm>

 <ind>true</ind>

 </cterm>

 </atom>

 </_head>

 </fact>

For the complete concrete syntax of RuleML used, readers are referred to the earlier section of 2.3

Rule Markup Language (RuleML).

 32

The figure below shows the relationship among the classes participating in the context axioms.

Figure 3-4: Class diagram of Context Axioms in COIN-OWL

3.4.4 Elevation Axioms

Elevation axioms are used to describe the functional relationship between data sources and domain

model. Intuitively, the elevation axioms can be viewed as the mapping of the primitive relation to

its semantic relation. At the lower level, each column and data cell are mapped to their semantic

counter part via skolemization2.

Skolemization

Skolemization is done as part of the primitive to semantic relation elevation process. This however,

is a low level process for context mediation and resolution, and should be abstracted from the

ontology editor/administrator at the application level.

Relation Elevation

For this reason, we propose a more intuitive view of the elevation process by introducing

SemanticRelation and SemanticColumn classes in COIN-OWL. Intuitively, a primitive relation is

2 In logic programming, skolemization is the process of removing existential quatifiers by existantial instantiation.

 33

elevated (or mapped) to a semantic relation by mapping each of the columns to a semantic type.

SemanticRelation class essentially represents the semantic relation elevated from the primitive

relation, and contains the semantic mapping between the primitive column and its semantic type in

its original context.

 <owl:Class rdf:ID="SemanticRelation"/>

 <owl:ObjectProperty rdf:ID="ElevationContext">

 <rdf:type rdf:resource="&owl;FunctionalProperty" />

 <rdfs:domain rdf:resource="#SemanticRelation"/>

 <rdfs:range rdf:resource="#Context"/>

 </owl:ObjectProperty>

 <owl:Class rdf:ID="SemanticColumn" />

 <owl:ObjectProperty rdf:ID="SourceColumn">

 <rdf:type rdf:resource="&owl;FunctionalProperty" />

 <rdfs:domain rdf:resource="#SemanticColumn"/>

 <rdfs:range rdf:resource="#Column"/>

 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:ID="TargetSemanticType">

 <rdf:type rdf:resource="&owl;FunctionalProperty" />

 <rdfs:domain rdf:resource="#SemanticColumn"/>

 <rdfs:range rdf:resource="#SemanticType"/>

 </owl:ObjectProperty>

Attribute Elevation

Each semantic type is decorated with one or more attributes. The attributes may refer to the same

semantic relation of the domain (simple attribute) or from other relations (complex attribute).

Attribute elevation provides the mapping between the attribute of a semantic column and the

referring semantic column.

To model the hierarchical difference between the simple and complex attributes, we leverage on

the inheritance facility of OWL by using a SemanticAttribute class, and a specialized

ComplexSemanticAttribute classes to model each type of the attributes. The difference between

SimpleAttribute and ComplexSemanticAttribute lies in the need for a construct to express the

relationship between two or more relations involved in the join definition.

 <owl:Class rdf:ID="SemanticAttribute" />

 <owl:ObjectProperty rdf:ID="SourceSemanticColumn">

 <rdf:type rdf:resource="&owl;FunctionalProperty" />

 34

 <rdfs:domain rdf:resource="#SemanticAttribute"/>

 <rdfs:range rdf:resource="#SemanticColumn"/>

 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:ID="TargetSemanticColumn">

 <rdf:type rdf:resource="&owl;FunctionalProperty" />

 <rdfs:domain rdf:resource="#SemanticAttribute"/>

 <rdfs:range rdf:resource="#SemanticColumn"/>

 </owl:ObjectProperty>

 <owl:Class rdf:ID="ComplexSemanticAttribute">

 <rdfs:subClassOf rdf:resource="#SemanticAttribute" />

 </owl:Class>

 <owl:ObjectProperty rdf:ID="JoinValues">

 <rdf:type rdf:resource="&owl;FunctionalProperty" />

 <rdfs:domain rdf:resource="#ComplexSemanticAttribute"/>

 <rdfs:range rdf:resource="#SemanticRelation"/>

 </owl:ObjectProperty>

Figure 3-5: Class diagram of the Elevation Axioms in COIN-OWL

3.4.5 Summary of COIN-OWL Ontology Model

In this section, we revisit the artifacts introduced in the COIN-OWL ontology model from the

previous sub-sections.

-ElevationContext : Context
-SourceRelation : Relation
-SemanticColumns : SemanticColumn

SemanticRelation

-SourceColumn : Column
-TargetSemanticType : SemanticType
-AssociatedSemanticRelation : SemanticRelation

SemanticColumn

-JoinSourceSemanticColumn : SemanticColumn
-JoinValueContext : Context

JoinValue

-JoinTargetSemanticColumn : SemanticColumn
JoinValueColumn

-JoinTargetString
JoinValueLiteral

-SourceSemanticColumn : SemanticColumn
-TargetSemanticColumn : SemanticColumn
-SourceAttribute : Attribute

SemanticAttribute

-JoinValues : JoinValue
ComplexSemanticAttribute

1 *

1

*

 35

The following table summarizes the various OWL constructs used in the COIN-OWL ontology

model.

COIN Concepts OWL/RuleML Artifacts Notes
Domain Model
Semantic Type coin:SemanticType
Attribute coin:Attribute
Modifier coin:Modifier
Source Sets
Relation coin:Relation
 coin:Column coin:Column artifact has

been introduced as a
structured solution to the
source set model. A
coin:Relation consists of one
or more coin:Columns.

Constraints - Constraints are used in query
optimization, and not
implemented in the current
release of the work. Instead,
the constraints can be coded
directly in the constraint
handling rules (CHR) file.

Context Axioms
Context coin:Context
Modifier value
assignments

coin:ModifierValues,
coin:ModifierStaticValue,
coin:ModifierDynamicValue

Conversion functions RuleML rules
Elevation Axioms
Relation elevation coin:SemanticRelation
 coin:SemanticAttribute,

coin:ComplexSemanticAttribute

Table 3-1: Summary of COIN-OWL ontology model

As recapitulation, the complete ontology model of eCOIN is presented in Figure 3-6 Complete

UML class diagram of COIN-OWL model.

 36

Figure 3-6 Complete UML class diagram of COIN-OWL model

 37

3.5 Design Considerations

The objective of the project is to adopt emerging W3C standards as the data exchange standard in

the Context Interchange project while reusing the established context mediation strategy in the

project. This means that the proposed model in OWL must be able to translate to FOL/Prolog for

actual context mediation and query execution process. This guiding principal is crucial in ensuring

the practicality of the proposed model.

In terms of ontology modeling, OWL provides a wider range of language constructs as compared

to Prolog. With good understanding of the Context Interchange framework and the language

features of OWL, a number of standard OWL constructs are employed in the design to implement

some functional requirements that were previously unable to implement in eCOIN.

3.5.1 Choice of OWL Sublanguage

As introduced in the earlier section, OWL is classified into three language family: OWL Lite,

OWL DL and OWL Full. The OWL sub-language used in our design is OWL Lite, as this family

of language is sufficiently expressive to represent the COIN ontology model.

With our three-tier architecture, the actual reasoning and context mediation is performed at the

backend (see Figure 3-1). This essentially means that the computation guarantee of OWL Lite and

OWL DL is not required. In other words, we have the liberty to use any of these three classes of

OWL sublanguages.

However, OWL Lite contains the language contructs that are rich enough for this purpose. One

reason for not pushing to use the upper language family of OWL DL and OWL Full is to preserve

the computability of the ontology for future. This allows the reasoning and context mediation,

 38

should there be a need in the future, to be performed directly at the OWL level without having to

first translate the OWL ontology to the native eCOIN Prolog application.

3.5.2 OWL Ontology and Data

As part of the design direction and the operation model of COIN, we have a slightly different

usage adoption of OWL. In the standard usage of OWL for ontology modeling, the ontology and

data are both stored in OWL. Depending on the generality of the taxanomy definition, the ontology

and data may co-exist on the same OWL document. In other cases, the ontology is defined and

stored in a central OWL ontolog library, and referenced in the OWL data document using external

namespace reference.

An example the such usage is the OWL Wine ontology (http://www.w3.org/TR/2002/WD-owl-

guide-20021104/wine.owl), where both the ontology definition and the individual instantiation (i.e.

actual data) are stored in the same OWL document.

On the other hand, COIN utilize the application ontology in a slightly different manner. The

COIN-OWL ontology model describes the context semantics of the data sources. Modeled in

OWL, this ontology is then used by the context mediation engine to resolve context disparities

among the data sources.

While the COIN ontology is modeled in OWL, the actual data may not neccesarily be stored in

OWL. This is because by design, COIN is architected to solve the heterogeneous data source

interoperability problem. This means that the data dealt by COIN will be from disparate data

sources, comprising traditional relational databases or semi-structured data sources such as the

World Wide Web or even OWL.

 39

3.5.3 Static Type Checking

One of the biggest differences between modeling the ontology in eCOIN and COIN-OWL is the

strongly enforced typing facility in OWL. In OWL, all ObjectProperty and DataProperty requires

the formal definition of the range of the property, i.e. the type of object that can be specified in

property.

As an example, in eCOIN, we model semantic types and modifiers using the following constructs:

rule(semanticType(companyName), (true)).

rule(semanticType(companyFinancials), (true)).

rule(modifiers(companyFinancials, [scaleFactor, currency]), (true)).

Here, it is possible for someone to accidentally put companyName as the modifier for

companyFinancials:

rule(semanticType(companyName), (true)).

rule(semanticType(companyFinancials), (true)).

rule(modifiers(companyFinancials, [companyName]), (true)).

However, as all classes are strongly typed in OWL, the following ontology will yield an error

when validated against the COIN ontology:

<coin:SemanticType rdf:ID="companyName" />

<coin:SemanticType rdf:ID="companyFinancials">

 <coin:Modifiers rdf:resource=”#companyName”>

</coin:SemanticType>

3.5.4 Functional Property

In all flavors of OWL (OWL Lite, OWL DL and OWL Full), a property P of object X can be

tagged as functional such that for objects Y and Z, X.P=Y and X.P=Z implies Y=Z. property P of

object X is denoted as X.P.

 40

In other words, object X can functionally determine Y in X.P=Y. Using this language feature, we can

enforce a many-to-one relationship between classes. Given the wide array of language features in

OWL, this is particularly useful in enforcing syntactically and semantically correct COIN ontology:

 <owl:Class rdf:ID="Context"/>

 <owl:DatatypeProperty rdf:ID="ContextName">

 <rdf:type rdf:resource="&owl;FunctionalProperty" />

 <rdfs:domain rdf:resource="#Context"/>

 <rdfs:range rdf:resource="&xsd;string"/>

 </owl:DatatypeProperty>

The use of FunctionalProperty here constraints that a context may have only one name.

As an additional note, such requirements can also be enfored using the owl:cardinality construct.

However, it is worth noting that the use of this construct depends on the sublanguage family of

OWL. Cardinality expressions with values limited to 0 or 1 are part of OWL Lite. This permits the

user to indicate 'at least one', 'no more than one', and 'exactly one'. Positive integer values other

than 0 and 1 are permitted in OWL DL. owl:maxCardinality can be used to specify an upper bound.

owl:minCardinality can be used to specify a lower bound. In combination, the two can be used to

limit the property's cardinality to a numeric interval.

3.5.5 RuleML for Rules Modeling

In the previous work in [20], RDF was used to model the COIN ontology model. However, the

work was unable to address the need for an more extensible framework in rules representation. In

particulars, conversion rules were encoded as raw string in the RDF document:

<coin:Ont_ModifierConversionFunction>

convfunc|rule(cvt(companyFinancials, O, currency, Ctxt, Mvs, Vs, Mvt, Vt), (attr(O,

fyEnding, FyDate), value(FyDate, Ctxt, DateValue), olsen_p(Fc, Tc, Rate, TxnDate),

value(Fc, Ctxt, Mvs), value(Tc, Ctxt, Mvt), value(TxnDate, Ctxt, DateValue),

value(Rate, Ctxt, Rv), Vt is Vs * Rv)).

 ...

 rule(month("Oct", 10), (true)).

 rule(month("Dec", 12), true)). |companyFinancials|currency

</coin:Ont_ModifierConversionFunction>

 41

These rules were then extracted programmatically from the RDF document and used in context

mediation. In comparison, the adoption of RuleML for rules modeling provided a cleaner method

for this purpose. In COIN-OWL, these rules are stored as RuleML:

<rulebase>

 <!-- rule(month("Apr", 04), (true)). -->

 <fact>

 <_head>

 <atom>

 <cterm>

 <_opc><ctor>rule</ctor></_opc>

 <cterm>

 <_opc><ctor>month</ctor></_opc>

 <ind>Apr</ind>

 <ind>04</ind>

 </cterm>

 <ind>true</ind>

 </cterm>

 </atom>

 </_head>

 </fact>

<!-- rule(cvt(companyFinancials, _O, scaleFactor, Ctxt, Mvs, Vs, Mvt, Vt),

 (Ratio is Mvs / Mvt, Vt is Vs * Ratio)). -->

 <fact>

 <_head>

 <atom>

 <cterm>

 <_opc><ctor>rule</ctor></_opc>

 <cterm>

 <_opc><ctor>cvt</ctor></_opc>

 <ind>companyFinancials</ind>

 <var>_O</var>

 <ind>scaleFactor</ind>

 <var>Ctxt</var>

 <var>Mvs</var>

 <var>Vs</var>

 <var>Mvt</var>

 <var>Vt</var>

 </cterm>

 <cterm>

 <_opc><ctor/></_opc>

 <var>Ratio is Mvs / Mvt</var>

 <var>Vt is Vs * Ratio</var>

 </cterm>

 </cterm>

 </atom>

 </_head>

 </fact>

</rulebase>

 42

While this format may look more elaborate, this mode of representation adheres to the publicly

accepted RuleML language constructs, and thus allow re-use and interchange of rules easily.

3.5.6 Reasoning in OWL and RuleML

A list of currently available resoning engine is available from [7]. As of now, the reasoning

engines for OWL mainly focus on taxanomy classification, consistency checking, and limited

query answering based on OWL ontology. This is partially due to the fact that OWL has limited

support for rule based expressions, different from the capability provided by RuleML for rules

modeling.

On the other hand, we believe that with the stabilization of RuleML, more powerful inference and

query answering engine will be available. This may open the door for context mediation and query

processing directly at the RuleML level, consolidating the three tier structure of the design (Figure

3-1) into a single implementation platform.

However, this require the entire COIN ontology to be in a single cohesive OWL/RuleML

document for the reasoning to take place. A possible technology for this is the Semantic Web Rule

Language (SWRL), which is a language proposal based on a combination of OWL DL and OWL

Lite sublanguages of the OWL Web Ontology Language (OWL) with the Unary/Binary Datalog

RuleML sublanguages of the Rule Markup Language (RuleML). One of the ongoing work of the

Pellet OWL Reasoner [4] is the support for rules reasoning for SWRL.

3.5.7 Semantic Web Rule Language (SWRL)

We noted that in parallel with the development of RuleML, a number of relevant emerging

standards have been branched from RuleML, including RuleML Lite and Semantic Web Rule

Language (SWRL). RuleML Lite adopts an integrated concrete syntax of XML and RDF,

expanding the language construct available in modeling rules. This opens up possibility of a tighter

 43

integration between the conversion rules in RuleML and the core ontology in OWL. One

possibility is to refer to the entities modeled in the OWL ontology using rdf:resource or href

attributes, instead of treating the same entity in both documents as individual and disjoint entities

in each of the document.

SWRL has been considered but not implemented in the project as the modeling language is still in

its infancy stage. SWRL is the result of an effort to integrate RuleML into OWL, and hence holds

a more holistic view of rules and ontology in the Semantic Web, compared to the use of OWL and

RuleML separately.

An example of this can be drawn from the SWRL Language Specification Proposal [18]. In

section 5, example 5.1-2, which formulate the rule hasUncle, asserting that if x1 hasParent x2, x2

hasSibling x3, and x3 hasSex male, then x1 hasUncle x3:

<ruleml:imp>

 <ruleml:_rlab ruleml:href="#example2"/>

 <ruleml:_body>

 <swrlx:individualPropertyAtom swrlx:property="hasParent">

 <ruleml:var>x1</ruleml:var>

 <ruleml:var>x2</ruleml:var>

 </swrlx:individualPropertyAtom>

 <swrlx:individualPropertyAtom swrlx:property="hasSibling">

 <ruleml:var>x2</ruleml:var>

 <ruleml:var>x3</ruleml:var>

 </swrlx:individualPropertyAtom>

 <swrlx:individualPropertyAtom swrlx:property="hasSex">

 <ruleml:var>x3</ruleml:var>

 <owlx:Individual owlx:name="#male" />

 </swrlx:individualPropertyAtom>

 </ruleml:_body>

 <ruleml:_head>

 <swrlx:individualPropertyAtom swrlx:property="hasUncle">

 <ruleml:var>x1</ruleml:var>

 <ruleml:var>x3</ruleml:var>

 </swrlx:individualPropertyAtom>

 </ruleml:_head>

</ruleml:imp>

 44

From the example, we note that the OWL ontology and RuleML rules are all modeled in one

cohesive SWRL document. The highlighted rules fragment that expresses x3 hasSex male refers to

the OWL class male seamlessly using the owlx:Individual construct:

 <swrlx:individualPropertyAtom swrlx:property="hasSex">

 <ruleml:var>x3</ruleml:var>

 <owlx:Individual owlx:name="#male" />

 </swrlx:individualPropertyAtom>

In RuleML 0.8, the RuleML version used in the COIN-OWL ontology model, such language

facility is not available. To refer to an individual defined in the OWL ontology, there is no other

ways but to initialize a new individual in the RuleML rules document, hence creating a slight gap

between the OWL ontology and RuleML rules.

 45

CHAPTER 4

COIN-OWL Implementation Strategy

Following from the design in the previous section, the next step is to devise an implementation

strategy for context mediation in OWL. In this section, we outline our recommendations for the

implementation of context mediation, and conclude with our work on a prototype developed as a

reference implementation for the COIN-OWL model.

4.1 Ontology Modularization

COIN-OWL schema

To encourage reusability, the COIN-OWL model schema should be maintained on a centralized

repository. Using the import facility in OWL, the model schema can then be referenced from the

application ontology using the owl:imports construct. Assuming the COIN-OWL model is stored

on http://context2.mit.edu/coin.owl, the model can be imported as:

 <owl:Ontology rdf:about="file:/C:/application.owl">

 <owl:imports rdf:resource="http://context2.mit.edu/coin.owl"/>

 </owl:Ontology>

We recommend using the xmlns:coin namespace as the reference namespace for COIN

applications.

OWL Ontology

Upon importing the central COIN-OWL model, the application domain ontology can be developed

and stored in application specific ontology file. Using the xmlns:coin namespace, the classes in

COIN-OWL model can be instantiated in the application simply by prefixing the COIN-OWL

classes with coin:. For example, to create the company attribute, we can simply refer the Attribute

class using the following constructs:

 46

 <coin:Attribute rdf:ID="att_company">

 <coin:AttributeName rdf:datatype="&xsd;string">company</coin:AttributeName>

 </coin:Attribute>

Rules

Rules such as conversion functions, modifier values assignment and other auxiliary rules are

proposed to be modeled using RuleML. One drawback with this option is that RuleML is yet a

unified element of Semantic Web/OWL. For this reason, the various RuleML constructs and its

concrete syntax are not part of the OWL syntax.

The implementation option is to model and represent these rules in a separate RuleML document,

and pass the unification functionality of the OWL ontology and RuleML rules to the application

layer. This is addressed in the prototype developed, detailed in section 4.4 COIN-OWL Protégé

Plugin.

4.2 Ontology Interoperability

The Context Interchange strategy is designed to solve the age-old problem of data integration. The

emergence of standard ontology language such as OWL has however, created a similar problem at

the ontology level. In fact, W3C recognizes the existence of such problem – “We want simple

assertions about class membership to have broad and useful implications. …It will be challenging

to merge a collection of ontologies.” [24].

OWL provides a number of standard language constructs that aims at solving a subset of this

problem. Ontology mapping constructs such as equivalentClass, equivalentProperty, sameAs,

differentFrom and AllDifferent only allows ontology context consolidation at a very limited level.

These language constructs are only useful if the consolidation effort requires only disambiguation

 47

between ontology. In other words, we can use these facility to tell that a human in ontology A is

the same as person in ontology B, but if they are different, we will not be able to tell how different

these two classes are, needless to say consolidating these two classes to enable interoperability

between the two ontologies.

Although initiated nearly a decade ago, the Context Interchange strategy is still relevant at solving

this problem, including the ontology disparity problem with OWL/Semantic Web. eCOIN

application can be created in the COIN-OWL model based on the OWL ontology definition of the

domain, using the same conventional process of eCOIN. The only requirement of the system is its

relational view of the data sources, which require all data source be represented in relational data

model. This however, can be solved easily by either using Cameleon or similar web wrapping

engine.

4.3 OWL Ontology Development Platform

There is a wide array of ontology editors in the ontology modeling/knowledge representation

community, although a fair number of these older generations of ontology editors are yet to

support the W3C recommended OWL. For a sufficiently comprehensive list of generic ontology

editors used in the industry and academic institutions, we refer the readers to the survey done by

Denny [14] and OntoWeb [14]. Among these, editors that supports OWL include Protégé with

OWL Plugin [6] and pOWL [5].

One OWL ontology editor that is becoming the de-facto Semantic Web ontology editor is the

Protégé Editor. Protégé is an open-source development environment for ontology and knowledge-

base system developed by Stanford Medical Informatics at the Stanford University School of

 48

Medicine. Protégé OWL Plugin supports the editing and development of ontology using OWL.

Protégé OWL Plugin enables an ontology administrator to:

• Load and save OWL and RDF ontologies

• Edit and visualize OWL classes and their properties

• Define logical class characteristics as OWL expressions

• Execute reasoners such as description logic classifiers

• Edit OWL individuals for Semantic Web markup

The open and extensible architecture of Protégé allows rapid development of Protégé plugins for

additional feature sets, such as visual editor for OWL and ontology visual diagram. Figure 4-1

shows a screen capture of the editor’s user interface.

Figure 4-1: Protégé Ontology Editor with OWL Plugin

 49

4.4 COIN-OWL Protégé Plugin

Building on Protégé’s open application architecture, we have developed a COIN-OWL protégé

plugin, functioning as a reference implementation for the COIN-OWL model. The Protégé plugin

take as input the eCOIN application ontology file, written in OWL format, and a RuleML rules file

containing application rules, and output a eCOIN Prolog program. This corresponds to step (2) in

our approach in Context Interchange in OWL in section 3.1.

There are several viable approaches to achieving this. As OWL and RuleML are both XML

documents, we can employ the eXtensible Stylesheet Language Transformation (XSLT)

technology to transform both document into a Prolog program, much like [20]. One important

prerequisite for this solution is that the XML documents must adhere to the predetermined format

and layout. However, this is not guaranteed if the well-formed XML document (OWL and

RuleML) may contain undetermined positional layout, as is the case with using Protégé as the

OWL development environment.

Our approach is to leverage on the OWL application programming interface avail to us from

Protégé OWL plugin. This allows us to correctly extracts the ontology information from the

application OWL ontology, process and translate it to the eCOIN Prolog format in a precise

manner.

As for the transformation of RuleML, we currently adopt the first approach presented, using XSLT

technology. This is due to the fact that the RuleML XML syntax is realized in XML, not RDF.

This imposes a more rigid structure on the rules and ensures that the document adheres to the

format/layout required by the XSL stylesheet. Figure 4-3 shows the screen capture of the

developed prototype.

 50

It is worth noting that the developed XSL stylesheet for RuleML to Prolog transformation (see

Appendix B) can be used independently as an individual component to translate RuleML into

Prolog codes.

To use the COIN-OWL Plugin, the application/ontology administrator will use Protégé OWL

Plugin to create the application ontology. This is done using the Individuals tab as shown on

Figure 4-2.

Figure 4-2 Creating OWL class instances using the Individuals tab

As Protégé does not currently support the editing of RuleML rules, we have included a simple

editor interface for the creation of RuleML conversion rules for the COIN ontology (see Figure

4-3). This feature is accessible from the COIN-OWL tab. The ontology administrator can enter the

RuleML conversion functions on the RuleML editor area under the RuleML Conversion Functions

 51

tab. Automated conversion function of RuleML rules to Prolog representation can be performed by

pressing the “Transform” button.

Figure 4-3: RuleML tab on the COIN-OWL Protégé Plugin

 52

Figure 4-4 Conversion of OWL ontology and RuleML into eCOIN Prolog ontology

The final eCOIN Prolog ontology can be generated from the COIN-OWL ontology and the

RuleML conversion rules from the eCOIN Prolog View tab. This complete Prolog ontology can

then be fetched into the eCOIN system for context mediation without the need for any change on

the existing system.

 53

CHAPTER 5

Conclusion

In summary, we have presented an ontology model in OWL for the Context Interchange strategy

through this project in our effort of adopting the recommended technology by W3C. The COIN-

OWL ontology model design is built on the building blocks of the OWL Lite sublanguage family

and the Rule Markup Language, which are used to model the core ontology and the rule-based

metadata in COIN respectively.

Follow up on that, we put forth the implementation strategy on the use of the COIN-OWL model,

and wrapped up our work with a fully working prototype for the COIN-OWL model. The

prototype is built as an plugin extension to the Protégé OWL ontology editor, with support to

RuleML editing and automated conversion from COIN-OWL ontology to eCOIN Prolog ontology

for immediate use in the eCOIN implementation prototype.

With the growing adoption of OWL and the gradual realization of the Semantic Web vision, this

work is instrumental in bridging the gap between COIN and Semantic Web. With the COIN-OWL

model, it is hopeful that COIN will be able to reach a larger spectrum of audiences, and hence

bringing even more contribution to the database/Semantic Web community in the area of

heterogeneous data interoperability.

5.1 Future Work

The completion of this project also opens up several other research issues, which we hope to

explore in the future. In this section, we highlight some of the interesting and promising research

areas.

 54

We noted that in parallel with the development of RuleML, a number of relevant emerging

standards have been branched from RuleML, including RuleML Lite and Semantic Web Rule

Language (SWRL). As these standards mature, in particular SWRL, which combines OWL and

RuleML, such standards promise a more cohesive rule-based ontology model. A simple example

illustrating this is given in Section 3.5.7. One reservation on SWRL, however, is that it is based on

the RuleML datalog sublanguage, where as the minimum requirement for our current

implementation requires the hornlog sublanguage family for total compatibility with Prolog.

Another interesting research area is the use of COIN in ontology interoperability and sharing. With

growing adoption of OWL, we can expect disparate ontologies being developed. It is possible that

a good number of these ontology will have overlapping domain definition, and the classic problem

of data integration will be re-surfaced on the arena of OWL ontology in Semantic Web. As such,

we envisage that COIN strategy can be leveraged at the meta-ontology level to solve the ontology

interoperability problem.

 55

REFERENCES

[1] ʺThe DARPA Agent Markup Language.ʺ http://www.daml.org.
[2] ʺeCOIN Demo for TASC Financial Example.ʺ

http://interchange.mit.edu:8080/gcms_v4/Demo.jsp?app_id=2&qindex=0.
[3] ʺElectronic Business using eXtensible Markup Language (ebXML).ʺ

http://www.ebxml.org.
[4] ʺPellet OWL Reasoner.ʺ http://www.mindswap.org/2003/pellet/index.shtml.
[5] ʺpOWL - Semantic Web Development Plattform.ʺ http://powl.sourceforge.net/.
[6] ʺProtégé OWL Plugin - Ontology Editor for the Semantic Web.ʺ
[7] ʺOWL Implementations,ʺ 2003. http://www.w3.org/2001/sw/WebOnt/impls.
[8] T. Berners-Lee, J. Hendler, and O. Lassila, ʺThe Semantic Web,ʺ in Scientific

American, vol. 5, 2001, pp. 34-43.
[9] H. Boley, ʺThe Rule Markup Language: RDF-XML Data Model, XML Schema

Hierarchy, and XSL Transformations,ʺ In Proceedings of the 14th International
Conference of Applications of Prolog, 2001.

[10] P. Bouquet, F. Giunchiglia, F. v. Harmelen, L. Serafini, and H. Stuckenschmidt,
ʺC-OWL: Contextualizing Ontologies,ʺ In Proceedings of the Second International
Semantic Web Conference, 2003.

[11] S. Bressan, K. Fynn, C. H. Goh, S. E. Madnick, T. Pena, and M. D. Siegel,
ʺOverview of a Prolog Implementation of the COntext INterchange Mediator,ʺ In
Proceedings of the 5th International Conference and Exhibition on The Practical
Applications of Prolog., 1997.

[12] S. Bressan, C. H. Goh, T. Lee, S. E. Madnick, and M. Siegel, ʺA Procedure for
Mediation of Queries to Sources in Disparate Contexts,ʺ In Proceedings of the
International Logic Programming Symposium, Port Jefferson, N.Y., 1997.

[13] D. Brickley and R. V. Guha, ʺRDF Vocabulary Description Language 1.0: RDF
Schema. W3C Recommendation,ʺ 1999. http://www.w3.org/TR/rdf-schema/.

[14] M. Danny, ʺOntology Building: A Survey of Editing Tools,ʺ 2002.
http://www.xml.com/pub/a/2002/11/06/ontologies.html.

[15] A. Firat, ʺInformation Integration Using Contextual Knowledge and Ontology
Merging,ʺ Ph.D. Thesis, Massachusetts Institute of Technology, Sloan School of
Management, 2003.

[16] C. H. Goh, S. Bressan, S. Madnick, and M. Siegel, ʺContext Interchange: New
Features and Formalisms for the Intelligent Integration of Information,ʺ ACM
Transactions on Information Systems, vol. 17, pp. 270-293, 1999.

[17] M. Hori, J. Euzenat, and P. F. Patel-Schneider, ʺOWL Web Ontology Language
XML Presentation Syntax,ʺ W3C Note 11 June 2003, 2003.
http://www.w3.org/TR/owl-xmlsyntax/.

[18] I. Horrocks, P. F. Patel-Schneider, H. Boley, S. Tabet, B. Grosof, and M. Dean,
ʺSWRL: A Semantic Web Rule Language Combining OWL and RuleML,ʺ 2004.
http://www.daml.org/2004/04/swrl/.

 56

[19] H. Kim, ʺPredicting How Ontologies for the semantic Web Will Evolve,ʺ
Communications of the ACM, vol. 45, pp. 48-54, 2002.

[20] P. W. Lee, ʺMetadata Representation and Management for Context Mediation,ʺ
Master Thesis, Massachusetts Institute of Technology, Sloan School of
Management, 2003.

[21] D. L. McGuinness and F. v. Harmelen, ʺOWL Web Ontology Language
Overview,ʺ W3C Proposed Recommendation 15 December 2003, 2003.
http://www.w3.org/TR/2003/PR-owl-features-20031215/.

[22] S. Michael and S. E. Madnick, ʺA Metadata Approach to Resolving Semantic
Conflicts,ʺ In Proceedings of the 17th Conference on Very Large Data Bases, 1991.

[23] M. Siegel and S. E. Madnick, ʺA Metadata Approach to Resolving Semantic
Conflicts,ʺ In Proceedings of the 17th Conference on Very Large Data Bases, 1991.

[24] M. K. Smith, C. Welty, and D. L. McGuinness, ʺOWL Web Ontology Language
Guide,ʺ 2003. http://www.w3.org/TR/2003/PR-owl-guide-20031215.

 57

APPENDIX A

COIN-OWL Ontology
<?xml version="1.0"?>

<!DOCTYPE rdf:RDF [

 <!ENTITY owl "http://www.w3.org/2002/07/owl#" >

 <!ENTITY xsd "http://www.w3.org/2001/XMLSchema#" >

]>

<rdf:RDF

 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema#"

 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"

 xmlns=""

 xmlns:owl="http://www.w3.org/2002/07/owl#"

 xml:base="">

 <owl:Ontology rdf:about="">

 <rdfs:comment>COIN Ontology</rdfs:comment>

 </owl:Ontology>

 <!--

 Context Axioms, consists of:

 1. Context class that models a context,

 2. ModifierValue, ModifierStaticValue and ModifierDynamicValue that represent

valueObject for the modifiers

 -->

 <owl:Class rdf:ID="Context"/>

 <owl:DatatypeProperty rdf:ID="ContextName">

 <rdf:type rdf:resource="&owl;FunctionalProperty" />

 <rdfs:domain rdf:resource="#Context"/>

 <rdfs:range rdf:resource="&xsd;string"/>

 </owl:DatatypeProperty>

 <owl:Class rdf:ID="Attribute" />

 <owl:DatatypeProperty rdf:ID="AttributeName">

 <rdf:type rdf:resource="&owl;FunctionalProperty" />

 <rdfs:domain rdf:resource="#Attribute"/>

 <rdfs:range rdf:resource="&xsd;string"/>

 </owl:DatatypeProperty>

 <owl:ObjectProperty rdf:ID="AttributeFrom">

 <rdf:type rdf:resource="&owl;FunctionalProperty" />

 <rdfs:domain rdf:resource="#Attribute"/>

 <rdfs:range rdf:resource="#SemanticType"/>

 <owl:inverseOf rdf:resource="#Attributes" />

 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:ID="AttributeTo">

 <rdf:type rdf:resource="&owl;FunctionalProperty" />

 <rdfs:domain rdf:resource="#Attribute"/>

 <rdfs:range rdf:resource="#SemanticType"/>

 58

 </owl:ObjectProperty>

 <owl:Class rdf:ID="Modifier"/>

 <owl:DatatypeProperty rdf:ID="ModifierName">

 <rdf:type rdf:resource="&owl;FunctionalProperty" />

 <rdfs:domain rdf:resource="#Modifier"/>

 <rdfs:range rdf:resource="&xsd;string"/>

 </owl:DatatypeProperty>

 <owl:ObjectProperty rdf:ID="ModifierValues">

 <rdfs:range rdf:resource="#ModifierValue"/>

 <rdfs:domain rdf:resource="#Modifier"/>

 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:ID="ModifierFrom">

 <rdf:type rdf:resource="&owl;FunctionalProperty" />

 <rdfs:domain rdf:resource="#Modifier"/>

 <rdfs:range rdf:resource="#SemanticType"/>

 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:ID="ModifierTo">

 <rdf:type rdf:resource="&owl;FunctionalProperty" />

 <rdfs:domain rdf:resource="#Modifier"/>

 <rdfs:range rdf:resource="#SemanticType"/>

 </owl:ObjectProperty>

 <owl:Class rdf:ID="SemanticType" />

 <owl:ObjectProperty rdf:ID="Modifiers">

 <rdfs:domain rdf:resource="#SemanticType"/>

 <rdfs:range rdf:resource="#Modifier"/>

 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:ID="Attributes">

 <rdfs:domain rdf:resource="#SemanticType"/>

 <rdfs:range rdf:resource="#Attribute"/>

 </owl:ObjectProperty>

 <owl:Class rdf:ID="Relation" />

 <owl:DatatypeProperty rdf:ID="DataSource">

 <rdf:type rdf:resource="&owl;FunctionalProperty" />

 <rdfs:domain rdf:resource="#Relation"/>

 <rdfs:range rdf:resource="&xsd;string"/>

 </owl:DatatypeProperty>

 <owl:DatatypeProperty rdf:ID="RelationName">

 <rdf:type rdf:resource="&owl;FunctionalProperty" />

 <rdfs:domain rdf:resource="#Relation"/>

 <rdfs:range rdf:resource="&xsd;string"/>

 </owl:DatatypeProperty>

 <owl:DatatypeProperty rdf:ID="Type">

 <rdf:type rdf:resource="&owl;FunctionalProperty" />

 <rdfs:domain rdf:resource="#Relation"/>

 <rdfs:range rdf:resource="&xsd;string"/>

 </owl:DatatypeProperty>

 <owl:DatatypeProperty rdf:ID="Bindings">

 <rdfs:domain rdf:resource="#Relation"/>

 <rdfs:range rdf:resource="&xsd;string"/>

 </owl:DatatypeProperty>

 59

 <owl:DatatypeProperty rdf:ID="UnsupportedOperators">

 <rdf:type rdf:resource="&owl;FunctionalProperty" />

 <rdfs:domain rdf:resource="#Relation"/>

 <rdfs:range rdf:resource="&xsd;string"/>

 </owl:DatatypeProperty>

 <owl:ObjectProperty rdf:ID="Columns">

 <rdfs:range rdf:resource="#Column"/>

 <rdfs:domain rdf:resource="#Relation"/>

 </owl:ObjectProperty>

 <owl:Class rdf:ID="Column" />

 <owl:DatatypeProperty rdf:ID="ColumnName">

 <rdf:type rdf:resource="&owl;FunctionalProperty" />

 <rdfs:domain rdf:resource="#Column"/>

 <rdfs:range rdf:resource="&xsd;string"/>

 </owl:DatatypeProperty>

 <owl:DatatypeProperty rdf:ID="DataType">

 <rdf:type rdf:resource="&owl;FunctionalProperty" />

 <rdfs:domain rdf:resource="#Column"/>

 <rdfs:range rdf:resource="&xsd;string"/>

 </owl:DatatypeProperty>

 <owl:DatatypeProperty rdf:ID="ColumnIndex">

 <rdf:type rdf:resource="&owl;FunctionalProperty" />

 <rdfs:domain rdf:resource="#Column"/>

 <rdfs:range rdf:resource="&xsd;int"/>

 </owl:DatatypeProperty>

 <owl:ObjectProperty rdf:ID="AssociatedRelation">

 <rdfs:domain rdf:resource="#Column"/>

 <owl:inverseOf rdf:resource="#Columns" />

 </owl:ObjectProperty>

 <owl:Class rdf:ID="ModifierValue" />

 <owl:Class rdf:ID="ModifierStaticValue">

 <rdfs:subClassOf rdf:resource="#ModifierValue" />

 </owl:Class>

 <owl:Class rdf:ID="ModifierDynamicValue">

 <rdfs:subClassOf rdf:resource="#ModifierValue" />

 </owl:Class>

 <!-- common properties at parent class: ModifierValue-->

 <owl:ObjectProperty rdf:ID="ModifierSemanticType">

 <rdf:type rdf:resource="&owl;FunctionalProperty" />

 <rdfs:domain rdf:resource="#ModifierValue"/>

 <rdfs:range rdf:resource="#SemanticType"/>

 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:ID="ModifierContext">

 <rdf:type rdf:resource="&owl;FunctionalProperty" />

 <rdfs:domain rdf:resource="#ModifierValue"/>

 <rdfs:range rdf:resource="#Context"/>

 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:ID="ModifierObject">

 <rdf:type rdf:resource="&owl;FunctionalProperty" />

 60

 <rdfs:domain rdf:resource="#ModifierValue"/>

 <rdfs:range rdf:resource="#Modifier"/>

 <owl:inverseOf rdf:resource="#ModifierValues" />

 </owl:ObjectProperty>

 <owl:DatatypeProperty rdf:ID="ModifierStringValue">

 <rdf:type rdf:resource="&owl;FunctionalProperty" />

 <rdfs:domain rdf:resource="#ModifierStaticValue"/>

 <rdfs:range rdf:resource="&xsd;string"/>

 </owl:DatatypeProperty>

 <owl:DatatypeProperty rdf:ID="ModifierNumericValue">

 <rdf:type rdf:resource="&owl;FunctionalProperty" />

 <rdfs:domain rdf:resource="#ModifierStaticValue"/>

 <rdfs:range rdf:resource="&xsd;float"/>

 </owl:DatatypeProperty>

 <owl:ObjectProperty rdf:ID="ModifierDynamicValues">

 <rdfs:domain rdf:resource="#ModifierDynamicValue"/>

 <rdfs:range rdf:resource="#Attribute"/>

 </owl:ObjectProperty>

 <!--

 Elevation Theory

 Formal mappings between the sources and the shared ontology

 -->

 <owl:Class rdf:ID="SemanticRelation"/>

 <owl:ObjectProperty rdf:ID="ElevationContext">

 <rdf:type rdf:resource="&owl;FunctionalProperty" />

 <rdfs:domain rdf:resource="#SemanticRelation"/>

 <rdfs:range rdf:resource="#Context"/>

 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:ID="SourceRelation">

 <rdf:type rdf:resource="&owl;FunctionalProperty" />

 <rdfs:domain rdf:resource="#SemanticRelation"/>

 <rdfs:range rdf:resource="#Relation"/>

 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:ID="SemanticColumns">

 <rdfs:domain rdf:resource="#SemanticRelation"/>

 <rdfs:range rdf:resource="#SemanticColumn"/>

 </owl:ObjectProperty>

 <owl:Class rdf:ID="SemanticColumn" />

 <owl:ObjectProperty rdf:ID="SourceColumn">

 <rdf:type rdf:resource="&owl;FunctionalProperty" />

 <rdfs:domain rdf:resource="#SemanticColumn"/>

 <rdfs:range rdf:resource="#Column"/>

 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:ID="TargetSemanticType">

 <rdf:type rdf:resource="&owl;FunctionalProperty" />

 <rdfs:domain rdf:resource="#SemanticColumn"/>

 <rdfs:range rdf:resource="#SemanticType"/>

 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:ID="AssociatedSemanticRelation">

 61

 <rdf:type rdf:resource="&owl;FunctionalProperty" />

 <rdfs:domain rdf:resource="#SemanticColumn"/>

 <rdfs:range rdf:resource="#SemanticRelation"/>

 <owl:inverseOf rdf:resource="#SemanticColumns" />

 </owl:ObjectProperty>

 <!-- Join Value -->

 <owl:Class rdf:ID="JoinValue" />

 <owl:Class rdf:ID="JoinValueColumn">

 <rdfs:subClassOf rdf:resource="#JoinValue" />

 </owl:Class>

 <owl:Class rdf:ID="JoinValueLiteral">

 <rdfs:subClassOf rdf:resource="#JoinValue" />

 </owl:Class>

 <owl:ObjectProperty rdf:ID="JoinSourceSemanticColumn">

 <rdf:type rdf:resource="&owl;FunctionalProperty" />

 <rdfs:domain rdf:resource="#JoinValue"/>

 <rdfs:range rdf:resource="#SemanticColumn"/>

 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:ID="JoinValueContext">

 <rdf:type rdf:resource="&owl;FunctionalProperty" />

 <rdfs:domain rdf:resource="#JoinValue"/>

 <rdfs:range rdf:resource="#Context"/>

 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:ID="JoinTargetSemanticColumn">

 <rdf:type rdf:resource="&owl;FunctionalProperty" />

 <rdfs:domain rdf:resource="#JoinValueColumn"/>

 <rdfs:range rdf:resource="#SemanticColumn"/>

 </owl:ObjectProperty>

 <owl:DatatypeProperty rdf:ID="JoinTargetString">

 <rdf:type rdf:resource="&owl;FunctionalProperty" />

 <rdfs:domain rdf:resource="#JoinValueLiteral"/>

 <rdfs:range rdf:resource="&xsd;string"/>

 </owl:DatatypeProperty>

 <!-- Semantic Attribute -->

 <owl:Class rdf:ID="SemanticAttribute" />

 <owl:Class rdf:ID="ComplexSemanticAttribute">

 <rdfs:subClassOf rdf:resource="#SemanticAttribute" />

 </owl:Class>

 <owl:ObjectProperty rdf:ID="SourceAttribute">

 <rdf:type rdf:resource="&owl;FunctionalProperty" />

 <rdfs:domain rdf:resource="#SemanticAttribute"/>

 <rdfs:range rdf:resource="#Attribute"/>

 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:ID="SourceSemanticColumn">

 <rdf:type rdf:resource="&owl;FunctionalProperty" />

 <rdfs:domain rdf:resource="#SemanticAttribute"/>

 <rdfs:range rdf:resource="#SemanticColumn"/>

 </owl:ObjectProperty>

 62

 <owl:ObjectProperty rdf:ID="TargetSemanticColumn">

 <rdf:type rdf:resource="&owl;FunctionalProperty" />

 <rdfs:domain rdf:resource="#SemanticAttribute"/>

 <rdfs:range rdf:resource="#SemanticColumn"/>

 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:ID="JoinValues">

 <rdfs:domain rdf:resource="#ComplexSemanticAttribute"/>

 <rdfs:range rdf:resource="#JoinValue"/>

 </owl:ObjectProperty>

</rdf:RDF>

 63

APPENDIX B

Extensible Stylesheet (XSL) for RuleML to Prolog

Transformation
<?xml version="1.0" encoding="ISO-8859-1" ?>

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" exclude-result-prefixes="rdf

coin" version="1.0">

<xsl:output method="text" indent="no" media-type="string"/>

<xsl:variable name="LOWERCASE" select="'abcdefghijklmnopqrstuvwxyz0123456789'" />

<xsl:variable name="UPPERCASE" select="'ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789'" />

<xsl:template match="rulebase">

 <xsl:apply-templates select="fact" />

 <xsl:apply-templates select="imp" />

 <xsl:text>
</xsl:text>

</xsl:template>

<xsl:template match="imp">

 <xsl:apply-templates select="_head" />.

</xsl:template>

<xsl:template match="fact">

 <xsl:apply-templates select="_head" />.

</xsl:template>

<xsl:template match="_head">

 <xsl:apply-templates select="atom" />

</xsl:template>

<xsl:template match="atom">

 <xsl:apply-templates select="cterm" />

</xsl:template>

<xsl:template match="cterm">

 <xsl:for-each select="child::*">

 <xsl:variable name="curEl" select="name()"/>

 <xsl:apply-templates select="." />

 <!--<xsl:value-of select="$curEl" />-->

 <xsl:if test="$curEl != '_opc'">

 <xsl:if test="position() < last()-1">, </xsl:if><xsl:if

test="position()=last()-1">, </xsl:if>

 </xsl:if>

 </xsl:for-each>)</xsl:template>

<xsl:template match="_opc">

 <xsl:variable name="data" select="ctor" />

 <xsl:choose>

 64

 <xsl:when test="string-length($data)=0">(</xsl:when>

 <xsl:when test="starts-with($data, translate(substring(.,1,1), $LOWERCASE,

$UPPERCASE))">'<xsl:value-of select="$data"/>'(</xsl:when>

 <xsl:otherwise><xsl:value-of select="$data"/>(</xsl:otherwise>

 </xsl:choose>

</xsl:template>

<xsl:template match="var"><xsl:value-of select="." /></xsl:template>

<xsl:template match="ind">

 <!-- if starts with upper case, we need to enclose within quotes -->

 <xsl:variable name="data" select="." />

 <xsl:choose>

 <xsl:when test="starts-with($data, translate(substring(.,1,1), $LOWERCASE,

$UPPERCASE))">"<xsl:value-of select="$data"/>"</xsl:when>

 <xsl:otherwise><xsl:value-of select="$data"/></xsl:otherwise>

 </xsl:choose>

</xsl:template>

</xsl:stylesheet>

 65

APPENDIX C

RuleML XML Schema (DTD)
Horn-Logic RuleML Sublanguage

<!-- An XML DTD for a Datalog RuleML Sublanguage -->

<!-- Last Modification: 2002-04-01 -->

<!-- ENTITY Declarations -->

<!-- in this ruleml-datalog.dtd, parameter entities set two *.module switches to

INCLUDE -->

<!ENTITY % datalog.module "INCLUDE">

<!ENTITY % datalog-and-hornlog.module "INCLUDE">

<!-- hence all conditional sections "<![%*.module;[" . . . "]]>" activate their content;

-->

<!-- in a stand-alone use of the current DTD "<![%*.module;[" and "]]>" are thus no-ops

-->

<!-- ENTITY and ATTLIST Declarations only for upward compatibility with XML Schema -->

<!-- URI-valued (CDATA) attributes optionally specify an XML Schema on 'rulebase' root

-->

<!ENTITY % URI "CDATA">

<!ATTLIST rulebase xsi:noNamespaceSchemaLocation %URI; #IMPLIED>

<!ATTLIST rulebase xmlns:xsi %URI; #IMPLIED>

<!-- ELEMENT and ATTLIST Declarations -->

<!-- 'rulebase' root element uses 'imp' rules and 'fact' assertions along with 'query'

tests as top-level elements -->

<!-- It has an optional label. -->

<!-- direction attribute indicates the intended direction of imp inferencing; -->

<!-- it is a preliminary design choice and has a 'neutral' default value -->

<!ELEMENT rulebase (((_rbaselab, (imp | fact | query)*) | ((imp | fact | query)+,

_rbaselab?))?) >

<!ATTLIST rulebase direction (forward | backward | bidirectional) "bidirectional">

<!-- 'imp' is short for "implication"; it is a kind of rule -->

<!-- 'imp' rules are usable on the rulebase top-level -->

<!-- 'imp' element uses a conclusion role _head followed by a premise role _body, or

equivalently -->

<!-- (since roles constitute unordered elements), uses a premise role _body followed by

a conclusion role _head -->

<!-- "<imp>_head _body</imp>" stands for "_head is implied by _body", i.e., "_head is

true is implied by _body is true", or equivalently, -->

<!-- "<imp>_body _head</imp>" stands for "_body implies _head", i.e., "_body is true

implies _head is true" -->

 66

<!-- rule label is a handle for the imp: for various uses, including prioritization -->

<!ELEMENT imp ((_rlab, ((_head, _body) | (_body, _head))) |

 (_head, ((_rlab, _body) | (_body, _rlab?))) |

 (_body, ((_rlab, _head) | (_head, _rlab?)))) >

<!-- 'fact' assertions are usable as degenerate rules on the rulebase top-level -->

<!-- 'fact' element uses just a conclusion role _head -->

<!-- "<fact>_head</fact>" stands for "_head is implied by true", i.e., "_head is true"

-->

<!-- "_rlab" is a handle for the fact: for various uses, including editing -->

<!-- NOTE: for now, fact is not required to be ground -->

<!-- FUTURE DESIGN: perhaps require fact to be ground;

 note that any requirement of groundedness of fact's must be enforced beyond the

DTD validation -->

<!ELEMENT fact ((_rlab, _head) | (_head, _rlab?)) >

<!-- 'query' elements are usable as degenerate rules on the rulebase top-level -->

<!-- 'query' element uses just a premise role _body -->

<!-- "<query>_body</query>" stands for "false is implied by _body", i.e., "_body cannot

be proved", which is to be refuted by generating the bindings for free variables in

_body -->

<!-- "_rlab" is a handle for the query: for various uses, including editing -->

<!ELEMENT query ((_rlab, _body) | (_body, _rlab?)) >

<![%datalog-and-hornlog.module;[

<!-- _head role is usable within 'imp' rules and 'fact' assertions -->

<!-- _body role is usable within 'imp' rules and 'query' tests -->

<!-- _head uses an atomic formula -->

<!-- _body uses an atomic formula or an 'and' -->

<!ELEMENT _head (atom)>

<!ELEMENT _body (atom | and)>

<!-- an 'and' is usable within _body's -->

<!-- 'and' uses zero or more atomic formulas -->

<!-- "<and>atom</and>" is equivalent to "atom"-->

<!-- "<and></and>" is equivalent to "true"-->

<!ELEMENT and (atom*)>

]]>

<![%datalog.module;[

<!-- "_rbaselab" is is short for "rulebase label"; must be ind(ividual);

 this allows naming of an entire individual rulebase in a fashion that is

accessible

 within the knowledge representation; -->

<!-- e.g., this can help for representing prioritization between rulebases, or perhaps

 to enable forward inferencing of selected rulebase(s) -->

<!ELEMENT _rbaselab (ind)>

<!-- "_rlab" is short for "rule label"; must be ind(ividual);

 67

 this allows naming of a rule (either imp or fact) in a fashion that is accessible

 within the knowledge representation; -->

<!-- e.g., this can help for representing prioritization between rules -->

<!-- NOTE: rule labels are not required to be unique within a rulebase -->

<!ELEMENT _rlab (ind)>

<!-- atomic formulas are usable within _head's, _body's, and 'and's -->

<!-- atom element uses an: -->

<!-- _opr ("operator of relations") role followed by a sequence of zero or more

arguments, or similarly -->

<!-- (since roles constitute unordered elements, and the zero-argument case must not

cause ambiguity), -->

<!-- a sequence of one or more arguments followed by an _opr role -->

<!-- the arguments may be ind(ividual)s or var(iable)s -->

<!ELEMENT atom ((_opr, (ind | var)*) | ((ind | var)+, _opr))>

]]>

<!-- _opr is usable within atoms -->

<!-- _opr uses rel(ation) symbol -->

<!ELEMENT _opr (rel)>

<!-- there is one kind of fixed argument -->

<!-- individual constant, as in predicate logic -->

<!ELEMENT ind (#PCDATA)>

<!-- there is one kind of variable argument -->

<!-- logical variable, as in logic programming -->

<!ELEMENT var (#PCDATA)>

<!-- there are only fixed (first-order) relations -->

<!-- relation or predicate symbol -->

<!ELEMENT rel (#PCDATA)>

Horn-Logic RuleML Sublanguage

<!-- An XML DTD for a Horn-Logic RuleML Sublanguage -->

<!-- Last Modification: 2001-07-10 -->

<!-- ENTITY Declarations -->

<!ENTITY % datalog-and-hornlog.module "INCLUDE">

<!ENTITY % datalog.module "IGNORE">

<!ENTITY % datalog SYSTEM "ruleml-datalog.dtd">

%datalog;

<!-- ELEMENT Declarations -->

<!-- complex, compound, or constructor terms are usable within other cterms, tups,

rolis, and atoms -->

<!-- cterm element uses _opc ("operator of constructors") role followed by sequence of

five kinds of arguments, -->

<!-- or vice versa, much like atoms (explained below) -->

 68

<!ELEMENT cterm ((_opc, (ind | var | cterm | tup | roli)*) | ((ind | var | cterm | tup

| roli)+, _opc))>

<!-- _opc is usable within c(onstructor)terms -->

<!-- _opc uses c(onstruc)tor symbol -->

<!ELEMENT _opc (ctor)>

<!-- constructors -->

<!ELEMENT ctor (#PCDATA)>

<!-- NOTICE: tups and rolis are still very preliminary -->

<!-- n-tuples are usable within other tups, rolis, cterms, and atoms -->

<!-- tup element uses sequence of five kinds of arguments -->

<!ELEMENT tup ((ind | var | cterm | tup | roli)*)>

<!-- "roli" is short for "role list" -->

<!-- sequence is not (syntactically) significant among its children, i.e., it is

sequence-free -->

<!ELEMENT roli ((_arv)*)>

<!ELEMENT _arv ((arole, (ind | var | cterm | tup | roli)) | ((ind | var | cterm | tup |

roli), arole)) >

<!ELEMENT arole (#PCDATA)>

<!-- "_rbaselab" is is short for "rulebase label"; may be ind(ividual) or

c(onstructor)term;

 this allows naming of an entire individual rulebase in a fashion that is

accessible

 within the knowledge representation; -->

<!-- e.g., this can help for representing prioritization between rulebases, or perhaps

 to enable forward inferencing of selected rulebase(s) -->

<!-- SYNTACTIC REQUIREMENT BEYOND DTD: for now, must be GROUND (e.g., if cterm) -->

<!-- FUTURE DESIGN: might permit to be non-ground;

 e.g., to instantiate a personal messaging agent to the particular user;

 but that would require that coincidence of variable names be significant ACROSS

rules,

 and there are expressively simpler ways to achieve the same effect -->

<!ELEMENT _rbaselab (ind | cterm)>

<!-- "_rlab" is short for "rule label"; may be ind(ividual) or c(onstructor)term;

 this allows naming of a rule (either imp or fact) in a fashion that is accessible

 within the knowledge representation; -->

<!-- e.g., this can help for representing prioritization between rules -->

<!-- NOTE: rule labels are not required to be unique within a rulebase -->

<!-- SYNTACTIC REQUIREMENT BEYOND DTD: any logical variables (var elements)

appearing within the rule label (i.e., within _rlab's cterm child) must also appear

within

the rule body and/or head -->

<!-- FUTURE DESIGN: probably will want to permit even stronger restrictions on the

appearance of variables, e.g.,

"must appear within both the rule head and body" or

"must appear within the rule body but not in any literal which has negation-as-failure,

 69

nor in any literal which can sensed" in OLP or CLP or SLP or SCLP -->

<!-- NOTE: rule label is not required to be ground; semantically, instantiating

the rule label's logical variables corresponds to instantiating the (rest of the)

rule's variables. For example, if the rule says "Mortal(?x) if Man(?x)", and

the rule label is "SocraticSyllogism(?x)", then "SocraticSyllogism(Joe)"

corresponds semantically to the rule label for "Mortal(Joe) if Man(Joe)".

 -->

<!ELEMENT _rlab (ind | cterm) >

<!-- atomic formulas are usable within _head's, _body's, and 'and's -->

<!-- atom element uses an: -->

<!-- _opr ("operator of relations") role followed by a sequence of zero or more

arguments, or similarly -->

<!-- (since roles constitute unordered elements, and the zero-argument case must not

cause ambiguity), -->

<!-- a sequence of one or more arguments followed by an _opr role -->

<!-- the arguments may be ind(ividual)s, var(iable)s, c(onstructor)terms, (n-)tup(le)s,

or ro(le)li(st)s -->

<!ELEMENT atom ((_opr, (ind | var | cterm | tup | roli)*) | ((ind | var | cterm | tup |

roli)+, _opr))>

