
© 2004 Sajindra Jayasena. All rights reserved 1

 
 
 
 
 
 
 
 

Context Mediation Approach to Improved 
Interoperability amongst Disparate Financial 

Information Services 
 
 
 

Sajindra Kolitha Bandara Jayasena 
 

 

 
 

Working Paper CISL# 2004-10 
 

June 2004 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Composite Information Systems Laboratory (CISL) 
Sloan School of Management, Room E53-320 

Massachusetts Institute of Technology 
Cambridge, MA 02142 

 



© 2004 Sajindra Jayasena. All rights reserved 2

Table of Contents 
TABLE OF CONTENTS..................................................................................................................................... 2 
ABSTRACT .......................................................................................................................................................... 3 
1. INTRODUCTION............................................................................................................................................ 5 
2. BACKGROUND RELATED WORK............................................................................................................ 8 

2.1 FINANCIAL STANDARDS ............................................................................................................................... 8 
2.2 DIFFERENT MEDIATION STRATEGIES ............................................................................................................ 8 
2.3 CURRENT INTEGRATION AND MEDIATION STRATEGIES IN FINANCIAL STANDARDS .................................... 9 
2.4 COIN METADATA MANAGEMENT SYSTEMS.............................................................................................. 10 

3. THE CONTEXT INTERCHANGE (COIN) APPROACH....................................................................... 11 
4. WHY MEDIATION IS AN IMPORTANT FACTOR IN FINANCIAL STANDARDS? ..................... 14 
5. ANALYSIS - ELECTRONIC BILL PRESENTMENT AND PAYMENT DOMAIN........................... 17 

5.1 INTRODUCTION TO THE DOMAIN................................................................................................................ 17 
5.2 A PRACTICAL SCENARIO ............................................................................................................................ 18 
5.3 DOMAIN ONTOLOGY .................................................................................................................................. 20 
5.4 INTERNAL SCHEMA VS. OFX...................................................................................................................... 21 
5.5 INTERNAL SCHEMA VS. IFX ....................................................................................................................... 24 
5.6 SOME INSIGHT TO CONFLICTS ANALYSIS BETWEEN INTERNAL AND SWIFT CONTEXTS............................ 27 
5.7 SWIFT VS. OFX......................................................................................................................................... 28 
5.8 TEMPORAL HETEROGENEITIES ................................................................................................................... 30 

    5.9  HIERARCHICAL SCHEMAS VS. COIN………………………………………………………………………………………..31 

6. COIN METADATA MANAGER................................................................................................................. 33 
6.1 INTRODUCTION ........................................................................................................................................... 33 
6.2 OVERALL ARCHITECTURE.......................................................................................................................... 34 
6. 3 GRAPHICAL DOMAIN ONTOLOGY MODELING ........................................................................................... 36 
6.4 CONTEXTS .................................................................................................................................................. 37 
6.5 METADATA EXTRACTION FOR SOURCE CREATION .................................................................................... 37 
6.6 ELEVATION AXIOMS................................................................................................................................... 41 
6.7 MODIFIER MANAGEMENT .......................................................................................................................... 41 
6.8 ATTRIBUTE MANAGEMENT ........................................................................................................................ 43 
6.9 MULTIPLE ONTOLOGY GENERATION & REPRESENTATION MECHANISMS .................................................. 43 
6.9 PERFORMANCE ENHANCEMENT ................................................................................................................. 45 
6.10 EXTENDIBILITY OF THE FRAMEWORK ...................................................................................................... 45 

7. CONCLUSION AND FUTURE WORK ..................................................................................................... 46 
REFERENCES:.................................................................................................................................................. 48 
ACKNOWLEDGEMENTS............................................................................................................................... 49 
APPENDIX.......................................................................................................................................................... 50 

APPENDIX A: SAMPLE PROLOG FILE FOR EBPP DOMAIN ................................................................................ 50 
APPENDIX B: SAMPLE RDF FILE FOR EBPP GENERATED AUTOMATICALLY FROM COIN METADATA 
MANAGER......................................................................................................................................................... 57 
APPENDIX C: DYNAMIC MODIFIER REPRESENTATION FOR RDF AND PROLOG................................................ 59 
APPENDIX C: DYNAMIC MODIFIER REPRESENTATION FOR RDF AND PROLOG................................................ 60 
APPENDIX C: DYNAMIC MODIFIER REPRESENTATION FOR RDF AND PROLOG................................................ 61 

 



© 2004 Sajindra Jayasena. All rights reserved 3

Context Mediation Approach to Improved Interoperability amongst 
Disparate Financial Information Services 

 
by 
 

Sajindra Kolitha Bandara Jayasena 
 

 
Submitted to the SMA office on 30th June, 2004  
 In Partial Fulfillment of the Requirements for the  

Degree of Master of Science in Computer Science 

Abstract  
There is no entity such as a ‘World Wide Bank’ managing the central database of all possible 
financial activities. Such a concept makes neither technical nor business sense. Each player in the 
financial industry, each bank, stock exchange, government agency, or insurance company operates 
its own financial information system or systems. The systems communicate via intranet, proprietary 
extranets or even the internet. 
 
By its very nature, financial information, like the money that it represents, changes hands. Therefore 
the interoperation of financial information systems is the cornerstone of the financial services they 
support. Furthermore financial information is complex. Naturally these characteristics led to the 
development of standards for the management and interchange of financial information. Yet 
connectivity and standards alone are not the panacea: different groups of players use different 
standards or versions of a standard’s implementation. 
 
I believe that the solution lies in self-documented languages like XML, semantically rich services 
and meta-data as promised by the semantic Web, and a mediation architecture for the documentation, 
identification, and resolution of semantic conflicts arising from the interoperation of heterogeneous 
financial services. 
 
As the first contribution, in this report I present a case study illustrating the nature of the problem and 
the viability of the solution we propose. The case is Electronic Bill Presentment and Payment 
Industry. I would describe and analyze the integration of services using four different formats, the 
IFX, OFX and SWIFT standards, and a proprietary format. To accomplish this integration we use the 
COntext INterchange (COIN) framework. The COIN architecture leverages a model of sources and 
receivers’ contexts in reference to a rich domain model or ontology for the description and resolution 
of semantic heterogeneity. The focus has been on how COIN would facilitate such mediations in 
interoperability between  IFX standard and Internal proprietary system, OFX and standards and a 
Internal proprietary system, SWIFT and a Internal proprietary system and direct mediation between 
OFX and SWIFT covering semantic heterogeneities spanning ontological, contextual and temporal 
conflicts.  
 
Further, the ability to use such a complex system requires a certain level of skill and knowledge on 
underlying implementation mechanism resulting in narrowing down the user segment for COIN. I 
believe that in order to provide these services, a certain level of abstraction needs to be provided to 
the user with a less skill and computer science literacy that would facilitate him to model and create 
the required applications and services for mediating an actual scenario. The best approach is to 
provide with an interface which has a smaller learning curve and familiarity to an already existing 
Human Computer Interaction mechanism like windows, icons, pointers and graphical drawing 
capabilities. As the second contribution in this research I provide a detailed implementation of such a 
graphical modeling and designing tool that acts as the Metadata Management system in COIN, which 
would facilitate in graphically creating, modeling and defining the entire domain under analysis and 
the relevant mediation logic rather than modeling it using in a language like prolog.  
 

 
 



© 2004 Sajindra Jayasena. All rights reserved 4

Keywords: Semantic mediation, Financial Standards, COIN, Metadata Management, 
Semantic Web, Context Interchange, Ontology modeling, prolog, Human computer 
Interface, software design patterns  
 
 
Dissertation Supervisors:  
 
Professor Stuart Madnick, SMA Fellow, 
John Norris Maguire Professor of Information Technology and Leaders for Manufacturing 
Professor of Management Science Sloan School of Management / Massachusetts Institute 
of Technology, Cambridge , USA  
 
Associate professor Tan, Kian Lee, SMA Fellow,  
School of Computing,  
National University of Singapore,  
Singapore.  
 
 
 



© 2004 Sajindra Jayasena. All rights reserved 5

1. Introduction 
Effective and transparent interoperability is vital for the profitability and sustainability of 

the financial Industry. Adhering to a standard hasn’t paid rich dividends due to the fact that multiple 

institutions and geographical segments utilize different standards resulting in sub-optimized catering 

to different standards as well as problems in interoperability. This is made worse since different 

entities interpret the same semantics in different ways. As a trivial example, the now obsolete 

MT100 message in SWIFT [11] was interpreted differently by Financial Institutions. The confusion 

was on the charging option field, where you can only indicate BEN (borne by creditor) or OUR 

(borne by debtor). If no option is identified, the User Handbook says that BEN should be 

understood. But BEN is processed differently by receivers: sometimes all charges are paid by the 

beneficiary; sometimes charges are shared, amounting to confusions and even losses. Therefore it is 

vital to facilitate a transparent and effective mediation/interconnection as well as interpretation 

solution. 

As a more complex example, consider this scenario: A Financial Institution (FI) that is 

involved in Electronic Bill Presentment and Payment Industry operating in a European Union 

Country is faced with multitude of standards like IFX (Interactive Financial Exchange protocol)[10], 

OFX (Open Financial Exchange Protocol)[9] and the world wide inter-bank messaging protocol, 

SWIFT [11]. Making matters worse, the FI may have its own semantics for its internal systems that 

represent the same business domain in a different context. 

The Price and Invoice concepts, in laymen terms would mean “the amount of money, paid 

in return for a product of service”, may be represented in different ways, e.g.,  excluding tax, with 

tax and fees, and even with inter-bank charges, resulting in a ontological heterogeneity due to 

definitional conflict in different contexts [1]. Interoperability of such definitional conflicts is vital in 

distinguishing intra-bank and inter-bank payment across borders. Further, different contextual 

heterogeneities exist on the currency, where in certain contexts like IFX and OFX; it is implicitly 

based on where the funds are directed to. As a result of different Account types and 

BANK/BRANCH code, financial institution would need to maintain complex mappings between 

different contexts. In addition, there can be data level heterogeneities like date formats and 

representations. Some of the conflicts are summarized in table 1. 

One of the main objectives of this research is to analyze how COIN mediation technology 

[2, 3, and 8] could be applied to provide a declarative, transparent yet effective mediation solution 

to the various heterogeneities that exist in these financial standards. 

 

 

 

 



© 2004 Sajindra Jayasena. All rights reserved 6

Table 1.1:  Some conflicts in different standards 
 

Property  Internal Schema OFX  IFX  SWIFT 103/103+ 
Price   1000 FFR  

(French Franc) 
1000 USD + 1000  
* 5%  

1000 USD + 1000  * 
5% 

1000 USD + 1000* 5% + 
10 USD (inter-bank charge 
if outside EU) 

Currency  FFR 
 
(before 2003 – 
FFR and After 
2003 EURO )  

Currency of country 
of incorporation of 
payee bank i.e. USD  

Currency of country of 
incorporation of payee 
bank i.e. USD 

Specified in message – can 
be the payee or payer’s 
currency  

Account types CHK,SVG, 
MNYMRT 

CHECKING, 
SAVINGS 

DDA,SDA  N/A  

Bank and branch 
code 

Internal ID Dependent on the 
country i.e. clearing 
#,sort #  

Dependent on the 
country i.e. clearing 
#,sort # 

BIC / BEI 
(branch ID + bank Id)  

Invoice  Net  Net + fees + tax  Net + fees + tax Included in Amount – N/A  
Due date   23022002 20020223      2002-03-23 030223 

 
In this research I analyze how COIN can be utilized in modeling such complex mediations. 

I have focused on the Electronic Bill Presentment and Payment Industry as the representative 

domain. Analyses have been done on a context focusing how financial institutions would cope with 

such issues. The analysis is broken down mainly to 4 parts. First I will look at how COIN would 

mediate between Inter-bank payment standard like IFX [10] and an internal system of a financial 

systems. Here I would be looking at various semantic heterogeneities that might arise ranging from 

simple data representation heterogeneities into contextual ontological as well as temporal 

heterogeneities. Next analysis would be looking at how OFX [9] and an Internal System would 

interoperate and how COIN can be used to mediate those real-life scenarios. Moving away from 

these two intra-bank standards, I have analysed the interoperability between an internal system of a 

financial system and SWIFT [11] which have different conflicts compared to the previous two 

standards. The next analysis focuses on how COIN would mediate some heterogeneity that would 

arise between intra-bank standards like OFX and SWIFT. A Final analysis has been done on the 

temporal issues that would be faced by institutions and how COIN framework has been extended to 

facilitate this. Further I would be addressing the features that need to be extended in order to support 

more complex mediations. 

 
Having being able to model such complexities and heterogeneities, it requires a substantial 

effort from the modeler in coming up with the domain ontology, Contexts, various data sources, 

modifiers and Conversion functions. Representing the domain ontology, conversions and metadata 

of various data sources spanning from relational databases to text and XML based sources like 

Cameleon [12] in Prolog language is a very much error prone and cumbersome venture. One other 

problem is this would hinder the usage of COIN as a commercial application to model and mediate 

real life scenarios since the domain creator need to have the knowledge on the prolog abduction 

framework, how the constraints logic programming engine works and all the intricate details of the 

core mediation framework. In practice this would not be a viable solution and there is a need to 

abstract and encapsulate these complex structures and provide an easy –to-use interface for the 

mediation framework.   



© 2004 Sajindra Jayasena. All rights reserved 7

  Thus second objective of this research was to build a graphical Metadata management and 

Domain ontology creation application that would alleviate the pain in programming in prolog. The 

user is facilitated with a Graphical modeling environment to define the Domain ontology consisting 

of the model of the domain under scrutiny, different contexts, automatically extract metadata from 

disparate data source (without manually entering  the data source fields, data types and constraints) , 

and define contextual modifier values including both static and dynamic modifiers ,contextual 

Attribute management and Conversion functions, abstracting to a greater extend than the previous 

textual and sub-graphical interfaces [28, 29] and provided a new user experience in modeling in a 

true Graphical environment. The user has been provided with the functionality to generate the 

underlying application file structure including the prolog representation as well as other ontology 

modeling languages like Resource description framework (RDF) [31], RuleML [32], RFML [33] etc 

giving opportunity to differentiate, appreciate and understand different modeling mechanisms. The 

framework facilitates to use the Metadata modeling application in a stand-alone application context 

as well as in a web based application context, with the same look and feel and interface provided in 

both contexts.  

Further I have come up with an extendable framework that is modular, encapsulating and 

abstracting each application layer using software engineering best practices and design patterns. 

This would facilitate future expansion and seamless module addition to the architecture proposed in 

the report. 

 

The organization of the following sections is as follows. First we would be looking at the 

plethora of financial messaging standards that infest the financial world followed by related work in 

mediation technologies and specific work related to interoperability in the financial industry. Then 

we would be looking at the intricate details of the COIN mediation framework. Then I would 

address the importance of mediation of disparate standards from a business perspective. Next, the 

focus would be on the analysis done on how COIN can be applied in one of the critical industries in 

the financial world – The Electronic Bill Presentment and Payment (EBBP) industry – which 

comprises the first major deliverable from this research work. This would be followed by a section 

addressing the implementation details, architecture, design and functionality of the COIN Graphical 

Metadata Manager. In the final section, we summarize and briefly discuss future research. 

 



© 2004 Sajindra Jayasena. All rights reserved 8

2. Background Related work  
2.1 Financial Standards  

The standards addressed herein are involved in business banking, Electronic Bill 

presentment and Payment, Securities and Derivatives, Investments, Economic and Financial 

indicators, straight through processing and other over the counter derivatives. As a whole, financial 

industry is cluttered with numerous protocols and standards that are utilized in different segments in 

the financial industry. Prominent ones are Financial Information Exchange protocol (FIX), 

S.W.I.F.T., Interactive Financial Exchange (IFX) and Open Financial Exchange (OFX). SWIFT is 

the leader in inter bank transactions, but also have gained a significant market holding on Securities 

and derivatives, payments as well as investments and treasury after introducing a set of messages 

for securities and derivatives industry. OFX is the leader in Intra-bank transaction systems followed 

by its successor, IFX. IFX is opting to replace OFX, through its rich and extended messaging 

standards. Both of these standards are widely used in business banking, Electronic Bill presentment 

and Payment, ATM/POS Industry. FIX is the leader in securities and derivatives market, used by 

major stock markets around the world. Most of these protocols use XML as the medium of 

messaging. Non-XML based standards like FIX and S.W.I.F.T have come up with XML versions, 

namely FIXML and ‘SWIFTStandards XML’. In addition to these major players, some of the other 

protocols are RIXML – Research Information exchange and  IRML – Investment research markup , 

focusing on fixed income securities and Derivatives market, MDDL - Market Data Definition and 

REUTERS in economic and industrial indicators, STPML – Straight through processing markup 

language  - a superset protocol to replace FIX,SWIFT ISITC and DTC ID, FinXML – Financial XML 

which focuses on Capital market instruments and straight through processing (STP) and finally 

FpML - Financial products markup language focusing on interest rate swaps, forward rate 

agreements, Foreign Exchange and other over the counter derivatives.  

2.2 Different mediation strategies  
Over the last two decades, there have been several studies focusing on interoperability of 

disparate information sources. 

These approaches have been grouped in the literature as static vs. dynamic [14], global vs. local 

schema [15], and tightly vs. loosely coupled [16, 17] approaches. These groupings can roughly be 

thought of referring to the same distinction characterized in [16] by: 

· Who is responsible for identifying what conflicts exist and how they can be circumvented; and 

· When the conflicts are resolved. 

We will briefly look at these approaches under the categories of tightly and loosely coupled 

approaches.  



© 2004 Sajindra Jayasena. All rights reserved 9

    In tightly coupled approaches, the objective is to insulate the users from data heterogeneity by 

providing a unified view of the data sources, and letting them formulate their queries using that 

global view. A system administrator takes the task of creating a global schema before the system 

can be used. In bottom up approaches the global schema is constructed out of heterogeneous local 

schemas by going through the tedious process of schema integration [18]. In top-down approaches 

global schema is constructed primarily by considering the requirements of a domain, before 

corresponding sources are sought. In tightly coupled approaches, data heterogeneities between 

sources are resolved by mapping conflicting data items to a common view. Early prototypes which 

have been constructed using the tight-coupling approach include Multibase [19], ADDS [20], and 

Mermaid [21]. More recently, the same strategy has been employed for systems adopting object-

oriented data models (e.g. Pegasus [22] based on the IRIS data model), frame-based knowledge 

representation languages (e.g. SIMS [17] using LOOM), as well as logic-based languages (e.g. 

Carnot [23] using CycL, an extension of first-order predicate calculus). 

Loosely coupled approaches object to the feasibility of creating unified views on the grounds that 

building and maintaining a huge global schema would be too costly and too complex. Instead they 

aim to provide users with tools and extended query languages to resolve conflicts themselves. 

Hence, instead of resolving all conflicts a priori, conflict detection and resolution are undertaken by 

receivers themselves, who need only interact with a limited subset of the sources at any one time. 

To facilitate this task, research on this front has focused on the invention of powerful data 

manipulation languages (DMLs) which allow queries on multiple sources to be intermingled with 

operations for data transformations. MRDSM [15] is probably the best-known example of a loosely-

coupled system, in which queries are formulated using the multidatabase language MDSL. Kuhn et 

al [24] have implemented similar functionalities in VIP-MDBS, for which queries and data 

transformations are written in Prolog. They showed that the adoption of a declarative specification 

does in fact increase the expressiveness of the language in terms of allowable data transformations. 

Litwin et al [25] has defined another query language called O*SQL which is largely an object-

oriented extension to MDSL. 

2.3 Current integration and mediation strategies in Financial Standards  
Due to intricacies and inefficiencies that exist in using and integrating multiple standards 

that incurs additional overhead , Financial institutions as well as government organizations have put 

effort in merging different standards or coming up with new super set standards to replace the 

existing diverse standards.  

One example is the effort by FIX, SWIFT, OPEN APPLICATIONS GROUP and THE 

TREASURY WORKSTATION INTEGRATION STANDARDS TEAM (TWIST) to outline a 

framework of cooperation and coordination in the area of the content and use of a core payment 

kernel XML transaction.  



© 2004 Sajindra Jayasena. All rights reserved 10

Also the Organization for the Advancement of Structured Information Standards (OASIS) 

is carrying out research on one XML based super set protocol that would cover all business areas. 

But all these effort are focused on futuristic direction rather than the problem at hand. Even though 

they may lower cost and effort in the long term, the effort migrating the diverse world-wide 

standard to a common standard would be an enormous task. Current business integration efforts like 

the MicrosoftTM BizTalk Server support diverse messaging standards integration through its rich 

messaging and mapping framework, but lack the sophistication in mediating complex ontological 

and contextual heterogeneities in a declarative manner. Thus takes a considerable time and effort in 

mapping diverse context. There is a serious vacuum in such services and products that actually 

perform the mediation in an abstracted and a convenient manner. 

 

2.4 COIN Metadata Management systems  
There haven been some numerous Metadata Management systems being developed 

previously for COIN. The work done in [28] provides a JAVA based semantic modeling approach 

but lacks the detail and user friendliness in modeling them. Also the usage of third party graphical 

libraries might have slowed down the system. Further it lacks the graphical representation capability 

to model the context relationships as well as unable to extract the metadata associated with the 

underlying sources. A more recent work [29] has taken a different approach where the graphical 

modeling has been replaced by a textual interface for creating the semantic types, contexts, sources, 

elevation functions and modifiers. It provides a primitive graphical representation of the semantic 

model after the model has been created using the textual interface. But it does not provide a true 

graphical representation while modeling the domain ontology. Further a major area for errors is 

during the creation of sources where the user has to manually enter the source information including 

column names, types, uniqueness etc. But one major contribution from this work is the effort in 

modeling domain ontology in different representation by the likes of RDF, RuleML, RFML and 

prolog- the native language in COIN’s abduction framework. Further the work provided mechanism 

to transform an ontology represented in one technology to another using XML Style Sheets 

(XSL/XSLT) [29] 

 



© 2004 Sajindra Jayasena. All rights reserved 11

3. The COntext INterchange (COIN) approach  
The COntext INterchange (COIN) framework is neither a tightly coupled or loosely coupled 

system but it’s rather a hybrid system. It is based on a mediator-based approach for achieving 

semantic interoperability among heterogeneous information sources. The approach has been 

detailed in [8]. The overall COIN approach includes not only the mediation infrastructure and 

services, but also wrapping technology and middleware services for accessing source information 

and facilitating the integration of the mediated results into end-users’ applications. The set of 

context mediation services comprises a context mediator, a query optimizer, and a query 

executioner. In this paper we would give an overall view of the mediation framework in COIN.  

 The context mediator is in charge of the identification and resolution of potential semantic conflicts 

induced by a query. This automatic detection and reconciliation of conflicts present in different 

information sources is made possible by general knowledge of the underlying application domain, 

as well as the informational content and implicit assumptions associated with the receivers and 

sources.  

The declarative knowledge is represented in the form of a domain model, different sources, 

a set of elevation axioms, and a set of context theories, respectively. The result of the mediation is a 

mediated query. To retrieve the data from the disparate information sources, the mediated query is 

transformed into a query execution plan, which is optimized, taking into account the topology of the 

network of sources and their capabilities. The plan is then executed to retrieve the data from the 

various sources; results are composed as a message, and sent to the receiver.  

At the center of the mediation is the domain model/ontology, which defines the different elements 

needed to implement the strategy in a given application: The domain model/ontology is a collection 

of rich types (semantic types, attributes, etc.) and relationships (is-a relationship) defining the 

domain of discourse for the integration strategy. This declarative knowledge about the domain is 

represented independent of various information sources and represents the generic concepts 

associated with the domain under consideration which depends on the modeler’s expertise and 

knowledge regarding the specific area. 

Semantic types resemble the different entities in the underlying domain. For example 

Account, Person can be entities in a financial domain. The attributes represents the generic features 

those semantic types can have. i.e. bankBalance, creationDate attributes of Account semantic type. 

Further, attributes can be used to infer relationships between different entities. For example the 

holder attribute of an Account could refer a person semantic type. In some instance the attribute can 

constitute a basic type; either a string or a numeric value represented by the super semantic type, 

basic. 



© 2004 Sajindra Jayasena. All rights reserved 12

Then the different Contexts in the model represent the diverse representations that are being 

resolved. These contexts would encapsulate and segregate different semantical, contextual and 

ontological representations that the underlying data sources contain. 

The mediation framework would be useless without the data sources. All these sources are 

represented using the Source concept where the type of the sources could be any data source 

ranging from a relational table, an XML stream, to a web page. Different wrapper implementations 

including the web aggregator Cameleon [12] provides different interfacing mechanisms to diverse 

sources. 

The sources and the domain model needs to be linked in order to facilitate mediation. This 

is achieved through the definition of Elevation axioms. Its usage is two fold. First, each source is 

elevated to a Context definition, defined earlier. Second, each attribute of the source is elevated to a 

particular semantic object (instances of semantic types) that is represented in the Domain Model. 

This facilitates in bridging the link between the context-independent, ‘generic’ domain model and 

the context dependent sources.  

As the context definitions define the different interpretations of the semantic objects in the 

different sources or from a receiver’s point of view we use a special type of attributes, modifiers, to 

define the context of a data type. For example currency modifier may define the context of objects 

of semantic type moneyAmount, when they are instantiated in a context (i.e., currency = USD).  

Finally, there is a conversion library, which provides conversion functions for each modifier to 

define the resolution of potential conflicts. The conversion functions are defined in First order logic. 

The relevant conversion functions are gathered and composed during mediation to resolve the 

conflicts. No global or exhaustive pair-wise definition of the conflict resolution procedures is 

needed. Both the query to be mediated and the first order logic program are combined into a definite 

logic program (a set of Horn clauses) [26] where the translation of the query is a goal. The 

mediation is performed by an abductive procedure, which infers from the query and the First Order 

Logic programs a reformulation of the initial query in the terms of the component sources. The 

abductive procedure makes use of the integrity constraints in a constraint propagation phase to 

accomplish semantic query optimization. For instance, logically inconsistent rewritten queries are 

rejected, rewritten queries containing redundant information are simplified, and rewritten queries 

are augmented with auxiliary information. The procedure itself is inspired by the abductive logic 

programming framework [27] and can be qualified as an abduction procedure. One of the main 

advantages of the abductive logic-programming framework is the simplicity in which it can be used 

to formally combine and to implement features of query processing, semantic query optimization, 

and constraint programming. COIN framework elegantly addresses data-level heterogeneities 

among data sources expressed in terms of context axioms. Further it resolves certain ontological 

conflicts that exist between different sources and map to a common semantic type in the domain 



© 2004 Sajindra Jayasena. All rights reserved 13

ontology. An example would be, in one source/context the notion of payment would consist of the 

net amount plus tax and relevant fees while in another source it would be just the net amount. 

 
Figure 3.1: Architecture of COIN Mediation System 



© 2004 Sajindra Jayasena. All rights reserved 14

4. Why mediation is an important factor in Financial 
Standards? 

As mentioned earlier Financial Industry is infested with various messaging standards that 

focus on subset of financial domains. For example messaging standards like FIX holds a major 

share of the Securities and derivatives industry where as IFX, OFX have the lion’s share on EBPP 

and intra-bank transactions. In today’s global economy interoperability and sharing of information 

is of prime importance. The need for efficient interoperability is one aspect of addressing the 

problem. In the other hand replacing all the diverse standards with a new global standard would be 

impractical considering the work requiring re-engineering major systems spanning multiple 

continents.  

This has not been helped out with ever changing standards themselves. This requires in changing 

existing systems resulting time, effort and money. The following table summarizes different 

messaging standards that are used currently in financial domain. 

 
Area  Standards  
EBPP  - Interactive Financial Exchange protocol (IFX) 

- Open Financial Exchange protocol  (OFX) 
- S.W.I.F.T. 

Banking  - Interactive Financial Exchange protocol (IFX) 
- Open Financial Exchange protocol (OFX) 
- S.W.I.F.T. 

Investments and 
Investment accounts  

- Interactive Financial Exchange protocol (IFX) 
- Open Financial Exchange protocol (OFX) 

Securities and Stock 
markets  

- Financial Information Exchange protocol  (FIX) and FIXML  
- S.W.I.F.T. 
- Financial products markup language (FpML) 
- Financial XML (FinML) 
- ISO 15022 XML – a super set protocol covering FIXML, FpML etc  

Investment Research  - Research Information exchange ML (RIML) 
- Investment research markup language (IRML) 
- Research Information Exchange Markup Language  (RIXML)  

Market data and 
reporting 

- Reuters  
- Market Data Definition language  (MDDL)  
- Market Data Markup Language  (MDML)  
- Extensible Business Reporting language (XBRL) 

Mortgage Industry  - XML Mortgage Partners Framework 
- Mortgage Bankers Association of America MISMO Standard 

Straight through 
processing  

- Straight through processing markup 
- Financial XML (FinML) 

Table 4.1 different financial standards 
 

Most recently, banks, risk management firms, and insurance companies have been focusing 

on automating business processes and building systems that reduce the time from negotiating a trade 

to settling it to running risk analytics on trade positions. This is referred to as Straight Through 

Processing (STP); according to the Tower Group, the financial services industry will spend over 

$12.2 billion on STP technology through 2005. The current trend in most of the standards bodies is 

to represent their standards using XML or some form of a markup language moving away from 



© 2004 Sajindra Jayasena. All rights reserved 15

proprietary formats like FIX and SWIFT with corresponding XML versions, FIXML and 

SWIFTML. Current constraints on efficiencies in exchanging financial information have also been 

realized by SWIFT, which claims that its biggest priority is to move to XML. In fact, it is planning 

to incorporate FIX and FpML into a new standard referred to as ISO 15022XML. The resultant 

protocol is to leverage FIX Protocol's expertise in the pre-trade/trade execution domain, and Swift's 

post-trade domain expertise to bring together different parts of the trade life cycle and work through 

issues hindering straight-through-processing (STP).  

Over the past 24 months, there has been a huge explosion of XML initiatives and it's 

arguable that this is what has prompted the two organizations to act quickly, before the situation 

spirals out of control. "With so many initiatives currently under way, there is a real danger that the 

standard could lead to the sort of divergence or even fragmentation that the industry has long battled 

to curb," says Alan Line, European co-chair of the FIX Steering Committee. "We believe that ISO 

15022 XML will provide the glue between the pre-trade and post-trade domains. Pursuing a single 

best-of-breed standard is essential for the industry." 

But this would clearly not address the semantic, ontological and temporal heterogeneities but would 

only look at unifying into a common data representation format.  

 

Having such standards inevitability would result in issues in achieving global harmony and 

synergy. It’s not only in financial industry even in electronic commerce various standards have 

hindered the interoperability among business to business entities resulting in incurring heavy costs 

for interoperability [30]. These various standards would span from generic service provision 

frameworks, trading model, Payment models to security models and even mobile commerce 

frameworks. Table 4.2 categorizes various such standards and frameworks.  

 
Sponsor Frameworks, models and Architectures  

Generic Models 
Microsoft  Biztalk Server  - data representation and formatting  
UN/CEFACT and OASIS ebXML  - messaging, semantics, processes and increasingly modeling 
CommerceNet eCo Framework- business processes/sub-processes 
Internet Engineering Task Force  Electronic Commerce Modeling Language (ECML) 
  
OMG Electronic Commerce 
Domain Task Force 

 OMG Electronic Commerce Domain Specifications 

Trading Models 
IETF TRADE Working Group IOTP - Internet Open Trading Protocol 
Open Applications Group Open Applications Group XML Framework 
CommerceNet OBI - Open Buying on the Internet 
RosettaNet RosettaNet 

Payment Models 
VISA and MasterCard SET - Secure Electronic Transaction 
CEN/ISSS TC 224 and 
ISO/TC68/SC6 

Trading and Payment Model in joint report on card-related secure 
commercial and financial transactions 

Security Models 
 IETF PKIX Working Group PKIX 



© 2004 Sajindra Jayasena. All rights reserved 16

CEN/ISSS TC 224 and 
ISO/TC68/SC6 

Security Model in joint report on card-related secure commercial and 
financial transactions 

Mobile Commerce Models 
 Ericsson, Motorola, Nokia, 
Panasonic, Siemens and Sony 

MeT - Mobile electronic Transactions 

Figure 4.2: Different standards used in electronic commerce 
 

The proliferation of architectures is often accompanied by exhortations to converge efforts on 

a single architecture, or to pool resources to develop a common "baseline" or "reference". However, 

in so far as the vast majority of these architectures do not share the same foundations, especially at the 

level of business process and semantic definitions, it is difficult to see how convergence can be 

realized, even on technical grounds alone. 

Generally interoperability has been plagued with formal standardization processors that are slow, 

unresponsive to needs and doesn’t represent the all the interests of the stakeholders.  

If we consider where standards and interoperability would matte in the value chain of providing 

services to clients, it’s all about providing a common interoperable set of specifications. First when a 

standard has been introduced, it needs to be implemented into products by the vendors. But frequent 

changes in standards results in various software versions and re-engineering work from the vendor. 

Then the products need to be bought and used by users, corporate and individual clients for delivering 

and subscribing to a particular service. Changes in one’s standards as well as migrating from one 

standard to another results in business downtimes incurring dissatisfaction and losses.  

In this value chain of transforming standards into services, many parties or intermediaries could be 

involved, including service providers, integrators/aggregators, consultants etc resulting lots of levels 

interoperating together. Change in one level might affect the operation of other levels in a serious 

manner. 

Even a standard like an IFX, OFX being ‘open’ standards is publicly available. But this is 

different from the implementation aspects or the architecture been adhered. Even though the 

standard is open there can be myriad of technical specifications, with different versions and even 

sometimes with different licensing and implementation rights. Lack of interoperability between 

implementations of the same specification as well as lack of continuation between standards of 

different versions is a common problem. This would be worsened with ones individual 

implementations being changed to cater diverse and changing requirements might lead to being 

deviating from standards adhered. Further compliance itself is a malleable term, depending upon the 

compliance criteria, which may not ensure objectivity, neutrality or completeness 
Considering all these it’s not just feasible to fix to a particular standard or replacing all the different 

standards with one ‘global’ standard. It requires intelligent, declarative and efficient mediation 

framework that would provide the required mediation between different standards as well as 

maintaining harmony among different versions of the same standard.  

 



© 2004 Sajindra Jayasena. All rights reserved 17

5. Analysis - Electronic Bill Presentment and Payment 
domain 

5.1 Introduction to the Domain 
In order to demonstrate the usage of the COIN framework’s ability to mediate the diverse 

standards, a subset of the standards, namely ‘Electronic Bill Presentment any Payment – (EBPP) 

‘domain is selected. The EBPP sub domain represents the messaging standards adhered in the 

electronic bill payment industry which is widely been utilized presently by many financial 

institutions .EBPP domain is a rich subset of the financial services messaging frameworks that have 

considerable amount of heterogeneities. The main standards are OFX, IFX for intra-bank payment 

schemes and SWIFT for inter-bank payment and funds transfer.  

The overall functionality can be visualized from Figure 1. The key intermediaries in an EBPP 

scheme are as follows:  

• Biller Payment Provider (BPP) is an agent (usually a financial institution) of the Biller that 
originates and accepts payments on behalf of the Biller. 

• Biller Service Provider (BSP) is an agent of the Biller that provides an electronic bill presentment 
and payment service for the Biller 

• Customer Payment Provider (CPP) is an agent (usually a financial institution) of the Customer 
that originates payments on behalf of the Customer. 

• Customer Service Provider (CSP) is an agent of the Customer that provides an interface directly 
to customers, businesses, or others for bill presentment. A CSP enrolls customers, enables 
presentment, and provides customer care, among other functions. 

• Financial Institution (FI) is an organization that provides branded financial services to customers. 
Financial Institutions develop and market financial services to individual and small business 
customers. They may serve as the processor for their own services or may choose to outsource 
processing. 
 

Both IFX and OFX provide XML based messaging framework for individuals as well as businesses 

in bill payment and presentment electronically. But the most acclaimed inter-bank fund transfer 

framework, SWIFT uses a non XML base messaging protocol and recently went through a major 

restructuring in phasing out one of the most utilized messaged for inter-bank customer fund transfer, 

the M100 and introduced modified versions of MT103 and MT103+.  
 

Internal 1
Context

OFX
context

Customer

IFX
Context

Customer

SWIFT
Intra EU/ Outside EU

Biller

OFX 
Context

Internal 2
context

IFX
Context

Biller service provider
[BSP + BPP ]

Customer service provider
[ CPP + CSP ] 

 
Fig. 5.1. Interfaces in EBPP 

In order to depict the usage of COIN in EBPP mediation, the scenarios were divided into three 
aspects. 
• Mediation between an internal context and OFX context.  
• Mediation between an internal context and IFX context.  



© 2004 Sajindra Jayasena. All rights reserved 18

• Mediation between an internal context and SWIFT context.  
 
The internal context represents the context and the schema associated with a particular Financial 

Institution’s (FI) representation of the business domain. This could be an in-house developed system 

or third-party (off the shelf) system utilized for internal operations of the Financial Institution. The 

IFX, OFX and SWIFT contexts represent the semantics and definitions adopted by IFX, OFX and 

SWIFT messaging frameworks respectively. SWIFT distinguishes intra European Union (EU) fund 

transfer and outside EU fund transfers for accounting for inter-bank charges. 

5.2 A Practical Scenario  
This research would not be useful unless it addresses a real-life scenario. Let’s look at a 

possible scenario involving paying a bill electronically spanning two countries, thus different 

financial systems.  

Let’s assume a Customer in NUS, Singapore uses his savings account in HSBC bank at the 

Atrium@orchad branch (location in Singapore)  to pay a bill of Singapore Dollars 1870 equivalent 

to a German based PCWorld whose corporate account is with the Deutsche Bank in Frankfurt, 

Germany on April 20th 2004. He is using his online banking service of HSBC. HSBC uses OFX for 

the EBPP and Deutsche bank used IFX for the same purpose. Both Banks use S.W.I.F.T as the 

inter-bank fund transfer mechanism. The scenario is depicted in figure 5.2. 

 

customer Biller

OFX 
( Bill Payment )

IFX 
( Bill Presentment )

S.W.I.F.T. 
(inter bank)

customer Biller

OFX 
( Bill Payment )

IFX 
( Bill Presentment )

S.W.I.F.T. 
(inter bank)

 
Figure 5.2: A simplified scenario  

The first step is the OFX representation of the transaction from HSBC’s payment gateway 

system as shown in fig 5.3. Please note that the fields / components in the transactions marked in 

grey are the aspects that have either semantic, ontological or simple data level heterogeneities with 

its adjacent messaging standard ( i.e between HSBC internal system and S.W.I.F.T. ) 

 
 
 

 
Figure 5.3 Step 1: OFX representations in HSBC’s payment gateway 

Then this OFX specific representation needs to be translated to the ontology and representational 

framework of HSBC’s Internal Accounting system. This is required since unless their internet 

payment system would be a closed system without interacting with its banking backbone. Figure 5.3 

denotes that representation.  

Debit Acct # 004-4356-4356 of acct type =‘SAVINGS’ of routing_transit_no 
=12343565SIN With 1870 SGD and Credit Acct # 4345-6543-9542 of acct-
type=‘CHECKING’ of routing_transit_no =3234-5434_GD_DM on 20040420. 



© 2004 Sajindra Jayasena. All rights reserved 19

 
 

 
Figure 5.4 Step 2: Internal representation in HSBC  

The reader should observe the different meanings for account type, account location 

description, date format payment representation (with and without tax) between step 1 and step 2 as 

shown in fig 5.3 and fig 5.4. These are the different semantic heterogeneities that exist between the 

internal and OFX representations.  

After going through the internal system of HSBC, then to make the inter-bank fund transfer 

to Deutsche bank, HSBC uses S.W.I.F.T System. The representation in S.W.I, F.T would be as in 

figure 5.5.  

 
 
 

Figure 5.5: Step 3: S.W.I.F.T representation 
Observer the differences in date format, source and destination bank Identifiers (that uses 

the ISO Bank Identification Code – BIC), change in currency from Sin$ to Euros and account type 

representation compared to the representation in HSBC’s internal system. The SWIFT gateway 

system has to perform these transformations before actually sending the message to SWIFT system.  

After receiving the SWIFT based representation by Deutsche bank, it needs to be stored in 

Deutsche Bank’s Internal Accounting system. This is represented in figure 4.6: step 4. Observe the 

difference in account code representation (between fig 5.5 and 5.6), bank and bank branch 

Identification differences compared to the SWIFT’s representation and meaning.  

 
 

 
 

Figure 5.6: ste4: Deutsche bank’s internal system representation 
Now let’s assume that the PC World Accountant check the daily transaction using his 

corporate account with Deutsche bank and it has a IFX based internet corporate account 

management system for its corporate clients. Figure 5.7 shows the representation as well as 

heterogeneities between how IFX represent the transnational details and Deutsche bank’s internal 

system.  

 
 
 

Figure 5.7: Step 5: IFX representation 
Observe the differences in the account type code, bank Identification mechanism and date 

format in figure 5.7 which identifies the conflicts between IFX and internal system. By even 

observing this simplified example the reader should be amazed of the heterogeneities that exist in 

different financial systems and accounting systems and the effort required to convert between these. 

Debit Acct # 004-4356-4356 of acct type =‘SVG’ of bankID =1345HSBC and 
Branch_Id=1200012 With 1700 net + 170 tax SGD and Credit Acct # 4345-6543-
9542 of acct-type=‘CHK’ of bank_id=bcl0000 and branch = 100021 on 2004/20/04 
 

Debit Acct # 4345-6543-9542 of acct-type=‘SWIFT.SVG’ of
bank_BIC#=SIN_HSBC_4532 and Credit Acct # 4345-6543-9542 of acct-
type=‘CHK’ of bank_BIC# =GD_DB_0043 on 040420 for a value of 1010 EUR 

Debit Acct # 4345-6543-9542 of acct-type=‘SVG’ of bank_id =HSBC_0012 
and branch_id=2345 and Credit Acct # 4345-6543-9542 of acct-
type=‘CHK’ of bank_id =DB_0043 and branch_id=DB_03234 on 040420 for a
value of 1010 EUR 

Debit Acct # 4345-6543-9542 of acct-type=‘SDA’ of 
bank_BIC#=SIN_HSBC_4532 and Credit Acct # 4345-6543-9542 of acct-
type=‘DDA’ of bank_BIC# =GD_DB_0043 on 2004-04-20 for a value of 1010 
EUR.  



© 2004 Sajindra Jayasena. All rights reserved 20

This would be further aggravated if these standards keep on changing requiring in modifying the 

software systems frequently. The COIN mediation framework’s objective is to mediate such 

heterogeneities in a user transparent, declarative and automated manner.  

5.3 Domain Ontology  
Figure 5.8 represents the context independent, domain ontology for the EBPP domain 

denoting the concepts used by IFX, OFX, SWIFT and financial institution’s own internal schema. 

The semantic types denote the entities and their relationships in the EBPP domain. Further the 

entities that constitute conflicts in the contexts are modeled through modifiers. As an example, the 

paymentAmount can include/exclude various taxes in different contextual representations and in 

SWIFT it would incur an additional inter-bank service charge. These are represented by 

paymentScheme, includesInterBankCharge modifiers respectively. Further all monetary amounts 

would have conflict in different currency usage. This is modeled using the currency modifier for the 

super-semantic type moneyAmount. The paymentAmount inherits from moneyAmount. Therefore it 

would inherit the modifiers and their context dependent values, defined for its super type, 

moneyAmout. The phone number, payment amount, invoice amount, dates, account code and money 

amount has one or more modifiers to represent their semantic heterogeneities. COIN framework’s 

modifier inheritance have been put into use in the is-a relationship of money amount and payment 

amount. Payment amount not only posses two modifiers on its own but would inherit the currency 

modifier of its super semantic type, moneyAmount.  Bankname and personname have been 

extended from Identifier semantic type while bankLoc and branchLoc has been extended 

form location semantic type. The main semantic types are payment, invoice, 

paymentAmount and moneyAmoun. The invoice semantic type represents the invoices 

associated with a payment. In some contexts it includes fees as well as taxes while in other 

contexts not. This is represented using invoiceScheme modifier.  

The mediations that we have focused in this section resemble some actual real life scenarios 

that are faced while attempting heterogeneous systems integration. Following sections addresses 

each one of them separately. 

In order to carry out the analysis we need to model the Sources that would represent the 

data and schema in different contexts. Even though they have semantic, temporal and ontological 

heterogeneities the logical schema of all those data sources would be quite similar. Figure 5.9 

denotes such a relational schema that represents a generic schema on how each context would 

constitute.  



© 2004 Sajindra Jayasena. All rights reserved 21

 
Fig. 5.8. Domain Ontology for EBPP 

5.4 Internal Schema vs. OFX  
First we will look at the mediations attempted between OFX and an internal schema of a financial 

institution. Table 2 summarizes the heterogeneities identified in the two schemas. As denoted in 

COIN’s mediation strategy, the modifiers and relevant conversion functions are the main 

ingredients in facilitating the mediation for a particular heterogeneity exiting between two different 

contexts. As shown in table 2, there are different types of heterogeneities between the two contexts. 

The significant conflicts are payment amount, currency type and Account code reference identifiers. 

They are discussed in the next sections.  

 
Figure 5.9: Generic relational schema for EBPP Domain 



© 2004 Sajindra Jayasena. All rights reserved 22

Table 5.1: conflicts in Internal and OFX contexts 
 

Conflict  Internal Ontology OFX Ontology  Mapped modifier 
( refer ontology) 

Payment amount Net amount without tax Net + tax amount  PaymentScheme  
Account Location 
Identifier –  
BANK reference  

Bank identifier represented 
in the internal scheme  

Bank Identifier depends on 
the Bank’s country of 
Incorporation. 

BankLocType  

Account Location 
Identifier –  
BANK BRANCH 
reference 

Branch identifier of the 
account  

Branch Identifier dependent 
on the bank’s country of 
incorporation. 

BranchLocType  

Payment due date 
format 

European format  US format  DateFormat  
 

Payment due date  
Style 

dd/mm/yyyy 
03/03/2003 

Yyyymmdd 
20030303 

DateStyle  
 

Account type code CHECKING,SAVINGS etc  CHK,SVG etc  AccountCodeScheme  
Currency type  
(Exchange rate) 

“EUR” Currency of country of 
incorporation of payee bank 
 

currency  

Phone number format 415.445.4345 1-415-445-4345 PhoneNumberScheme 
 
Payment amount - The mediation strategy for payment amount is as follows. The mediator needs 

to apply two conversion functions in order to obtain the mediated payment amount, namely the 

currency conversion inherited from the moneyAmount super semantic type, and the tax adjustment 

for the payment. For simplicity let’s assume that in both schemas the currency is denoted in three 

letter ISO 4217 format (i.e. USD, GBR, and EUR etc). 

Assume that the query ‘select AMOUNT FROM PAYMENT’ is called in OFX context; 

First, payment amount is adjusted for the tax inclusion. For simplicity let’s assume that the 
applicable tax is ‘GST’. Then; 
 

Payment OFX = (payment INTERNAL + ∑  GST amount for payment OFX * payment INTERNAL )       

* Exchange Rate (“EUR”, OFF_CUR,DATE_OF_TRANSACTION)                           

(1)

 
In the COIN framework, the mediation formulas are translated into logical expressions of the COIN 

theoretical model [1].Later these expressions are implemented in prolog and evaluated by an 

abduction engine implemented in the same language [13]. The following describes the logical 

representation of the formula (1) for this example.  

The formula below describes a non-commutative mediation of paymentType object depending on its 

modifier paymentScheme, in this case hold the values “noTax” and “withTax”. The Ctxt defines the 

destination context. The conversion in simple terms would be to retrieve the Rate for the tax “GST” 

from the elevated relation ‘OFX_TAX_TYPES_p' which is an elevation mapped to relation 

‘OFX_TAX_TYPES’ under OFX Context (The destination context in this case) and utilizes in the tax 

calculation. The value predicate in the formula defines a value of a particular semantic object under 

a certain context. 

 
cvt(noncommutative,paymentAmt,_O,paymentScheme,Ctxt,"notax",Vs,"withtax",Vt) ⇐ 

value(TaxName,Ctxt,"GST"),'OFX_TAX_TYPES_p'(TaxName,_,Rate), 
value(Rate,Ctxt,RR), 
(Vtemp is RR * Vs), 
(Vt is Vs + Vtemp). 



© 2004 Sajindra Jayasena. All rights reserved 23

Further, this resembles an Equational ontological heterogeneity addressed in [5], which is a clear 

example of differences in the two ontologies for OFX and internal contexts. But the ontological 

conflict has been transformed into a contextual heterogeneity by way of matching the definitional 

equations as in [5]. 

Then, this tax adjusted payment needs to be mediate to the currency of OFX context. This requires 

in a dynamic modifier to extract the currency value depending on the official currency in the 

incorporated country of the payee’s bank as given below.  
 
OFF_CUROFX =  CurrencyOFX (payment)    ⇐   AID = Payee Account of PaymentINTERNAL   

                         BRANCHOFX   ⇐  Branch of Account AIDOFX  
                                        BANKOFX       ⇐   Bank of BRANCHOFX 
                                       COUNTRYOFX  ⇐   country of Incorporation of BANKOFX 
                                       OFF_CUROFX   ⇐  official currency of COUNTRYOFX  

(2) 

The following logical representation describes how the value of modifier currency for 

paymentAmount is obtained for OFX context dynamically through the relationships between 

semantic objects.  
 

modifier(paymentAmt,_O,currency,ofx,M) ⇐   ( attr(_O,paymentRef,Payment), 
attr(Payment,payeeAct,Account), 

                       attr(Account,location,Location), 

                       attr(Location,bank,Bank), 

                       attr(Bank,countryIncorporated,Country), 

                       attr(Country,officialCurrency,M))). 

For example the predicate attr (Payment,payeeAct,Account) defines the attribute relationship 

‘payeeAc’ between the Payment and Account semantic objects. This relation can be mapped to 

underlying relationships in different contexts as shown in the following logical representation. 

attr(Payment,payeeAct,PayeeAcct)⇐     

        ('INTERNAL_PAYMENT_p'(Payment,_,_,_,_,_,PayeeAcct,_).      

attr(Payment,payeeAct,PayeeAcct) ⇐ 

        ('OFX_PAYMENT_p'(Payment,_,_,_,_,_,PayeeAcct,_). 

The two statements correspond to how the attribute relation payeAcct has been elevated to two 

elevation relations with their attributes, mapped in INTERNAL and OFX contexts. 

 
This will ensure that the correct currency would be extracted for the OFX side. But now the current 

exchange rate needs to be applied in order to get the actual value in that currency represented in OF 

from that of internal representation (i.e USD to EURO).  

This is achieved through a conversion function as following. We use an elevation axiom called 

olsen_p that is mapped from a Cameleon [12] data source that extracts the current exchange rate 

from a configured URL . The resultant output of the conversion function would be the converted 

payment amount. 

 



© 2004 Sajindra Jayasena. All rights reserved 24

%% rule for currency conversion-----.  
rule(cvt(commutative,paymentAmt,O,currency,Ctxt,Mvs,Vs,Mvt,Vt), 
(olsen_p(Fc, Tc, Rate, Date), 
 value(Fc, Ctxt, Mvs), 
 value(Tc, Ctxt, Mvt), 
 value(Rate, Ctxt, Rv), 
 currentDate_p(CurDate), 
 value(CurDate, Ctxt, DateValue), 
 value(Date, Ctxt, DateValue), 
 multiply(Vs, Rv, Vt))). 

 
Account type code - This is represented as heterogeneity in enumerated data types in defining the 

account type codes in the three contexts. Table 3 summarizes the enumerated data mapping in the 

three contexts. Since there can be more than two types of financial standards, rather than having 

mappings between each standard , we adopt a ‘Indirect conversion with ontology inference’ strategy 

[13] where we represent the different account types in the ontology itself and providing mapping 

between the context independent ontology’s enumerated type and the context sensitive type codes. 

The context model would then map each security type context construct into its corresponding 

security type ontology construct. 

Therefore usage the above mapping from INTERNAL to OFX would be, 
 
Account_typeOFX ( Account_typeINTERNAL(‘CHK’)) ⇐ONTOLOGY_TYPEINTERNAL = ‘CHKA’ [table INTERNAL ] 
                                                                        ONTOLOGY_TYPENONE      = ’CHKA’ [table Ontology] 
                                                                        ONTOLOGY_TYPEOFX        = ’CHKA’ [table OFX] 
                                                                    OWN_TYPE (‘CHK’)OFX      = ‘CHECKING’ [table OFX] 

(3)

 
Table 5.2: conflicts in Internal and OFX contexts  

Ontology : Account types 
Table Ontology 

ONTOLOGY_TYPE  Description  
CHKA Checking account 
SVGA Savings account 
MNYMRTA Money Market Account 
CRLINEA Credit Line Account 

 

Mapping between Internal and Ontology 
- Table INTERNAL  

ONTOLOGY_TYPE  OWN_TYPE  
CHKA CHK 
SVGA SVG 
MNYMRTA MNYMRT 
CRLINEA CRLINE  

Mapping between OFX and Ontology 
- Table OFX  

ONTOLOGY_TYPE  OWN_TYPE  
CHKA CHECKING 
SVGA SAVINGS 
MNYMRTA MONEYMRKT 
CRLINEA CREDITLINE 

 
Mapping between IFX and Ontology 

- Table IFX 
ONTOLOGY_TYPE  OWN_TYPE  
CHKA DDA 
SVGA SDA 
MNYMRTA MMA 
CRLINEA CDA 

 

5.5 Internal Schema vs. IFX  
After looking at some of the interoperability issues between internal context and OFX, now we 

would delve into the newer standard, IFX, which has more features and detailed representations.  

Table 4 shows the different types of heterogeneities. The conflicts of account type, date format, 

phone number format and currency types are similar to the OFX scenarios. The new conflicts are 

the extended conflicts identified in payment amount and introduction of invoice related conflicts.  
 
 
 
 

Table 5.3: Conflict between Internal and IFX contexts 



© 2004 Sajindra Jayasena. All rights reserved 25

Conflict  Internal Ontology  IFX Ontology  Mapped modifier 
( Refer ontology) 

Payment amount Net amount  
Net + ∑  tax amount + ∑  Fees  

PaymentScheme  

Payment due date 
format 

European format  US format  DateFormat  
 

Payment due date  
Style 

dd/mm/yyyy 
03/03/2003 

Yyyy-mm-dd 
2003-03-03 

DateStyle  
 

Account type code SVG,MNYMRT,CRLINE, 
CHK etc  

SDA,MMA,CCA,DDA etc  AccountCodeScheme  
 

Invoice Amount Net amount  
Net + ∑  tax amount + ∑  Fees 

InvoicePayment-Scheme 

Currency type  
(Exchange rate) 

“GBP” Currency of country of incorporation of 
payee bank 

Currency  

Phone number 
format 

415.445.4345 1-415-4454345 PhoneNumberS-cheme 

 
Both IFX and OFX handle complex business payment transactions for business customers. This 

requires incorporating multiple invoice details attached to the payment aggregates when both the 

biller and customer are business entities. The older OFX provides a basic mechanism of 

incorporating invoice details like invoice discounts, line items in invoices etc. But the newer IFX 

extends this by providing more elaborate aggregates constituting different tax schemes as well as 

fees ( late fees, FoRex fees) etc that are applicable to invoice.  
 

Mediating Invoice Amount  
Each payment can have at least one invoice aggregate that represent the different invoices paid 

through a particular invoice. In an internal schema the invoice amount might be represented as the 

net amount, where the taxes and fees would be aggregated when the bill is presented or invoiced. 

But the IFX context, the Invoice amount constitute of the various taxes and fees that could be added 

to the net amount. 

The mediation between the two invoice amounts represents an Equational ontological conflict (EOC) 

[5] that would be resolved through introduction of a set of modifiers that would match the two 

different definitional equations. Each invoice would have multiple fees .i.e. an invoice would have 

FoRex, late payment fees, import fees as well as multiple taxes like GST, withholding taxes etc  

Therefore the relationship between the two definitional equations for invoice amount would be:  
  
InvoiceAmount IFX  = InvoiceAmount internal +  

∑ ( InvoiceAmount internal  * FeeRateIFX  ) + ∑  (FixedFeeIFX ) +  

∑ ( InvoiceAmount internal  * TaxRateIFX  ) + ∑  (FixedTaxIFX) +   

(4)

The current COIN framework does not facilitate aggregate functionality, where all the applicable 

fees and taxes would not be SUM’ed up dynamically. A workaround strategy is to define modifiers 

for each tax and fee type and associate its applicability with contexts and exhaustively define which 

fees and taxes that could be applicable under a certain context.  

Let’s say we executed the query ‘select INVOICE_AMOUNT from INTERNAL_INVOICE’ 

in IFX context where the relation INTERNAL_INVOICE’ is defined for internal context. Let’s 

take an example where a particular invoice with GST and IMPORT as tax components and LATE 



© 2004 Sajindra Jayasena. All rights reserved 26

FEES and DELIVERY as Fees in addition to the selling price. Therefore in IFX context all these 

needs to be considered in addition to the face value represented in the INTERNAL context.  

Table 5 summarizes the heterogeneities that exist in the two contexts.  

 
Cost component Internal IFX 

GST No Yes       ( percentage) 
Late Fees No Yes       ( fixed amount) 
Import Taxes No Yes       (percentage) 
Delivery Fees No Yes       (Fixed)….. 

Table 5.4: additional fees and taxes in IFX 
 
The COIN mediation framework mediates these ontological conflicts that persist between the two 
formulas which is represented by the following datalog.  
 

answer('V23'):- 
 'IFX_TAX_TYPES'("GST", 'V22', 'V21'), 
 'V20' is 'V19' * 'V21', 
 'IFX_TAX_TYPES'("IMPORT", 'V18', 'V17'), 
 'V16' is 'V19' * 'V16', 
 'V15' is 'V20' + 'V17', 
 'IFX_FEES_TYPES'("LATE", 'V14', 'V13'), 
 'V12' is 'V19' + 'V13', 
 'IFX_INVOICE_FEES'("DELIVERY", 'V11'), 
 'IFX_INVOICE_FEES'("LATE", 'V11'), 
 'IFX_INVOICE_TAXES'("IMPORT", 'V11'), 
 'IFX_INVOICE_TAXES'("GST", 'V11'), 
 'INTERNAL_INVOICE'('V11', 'V10', 'V19', 'V9', 'V8', 'V7', 'V6'), 
 'IFX_FEES_TYPES'("DELIVERY", 'V5', 'V4'), 
 'V3' is 'V19' * 'V4', 
 'V2' is 'V12' + 'V3', 
 'V1' is 'V15' + 'V2', 
 'V23' is 'V19' + 'V1'. 

 
Then the following shows the mediated SQL query automatically generated by the COIN mediation 
framework considering all the conflicts associated between internal and IFX contexts: 
 

Select (internal_invoice.INVOICE_AMOUNT +  (((internal_invoice.INVOICE_AMOUNT * 
ifx_tax_types.AMOUNT) + ifx_tax_types2.AMOUNT) + ((internal_invoice.INVOICE_AMOUNT + 
ifx_fees_types.AMOUNT) + (internal_invoice.INVOICE_AMOUNT * ifx_fees_types2.AMOUNT)))) 
        from   (select 'GST', TYPE, AMOUNT from ifx_tax_types 
        where  TAX_NAME='GST') ifx_tax_types, 
       (select 'IMPORT', TYPE, AMOUNT from ifx_tax_types 
        where  TAX_NAME='IMPORT') ifx_tax_types2, 
       (select 'LATE', TYPE, AMOUNT from ifx_fees_types 
        where  FEES_NAME='LATE') ifx_fees_types, 
       (select 'DELIVERY', INVOICE_NO from ifx_invoice_fees       
        where  FEE_NAME='DELIVERY') ifx_invoice_fees, 
       (select 'LATE', INVOICE_NO  from ifx_invoice_fees 
        where  FEE_NAME='LATE') ifx_invoice_fees2, 
       (select 'IMPORT', INVOICE_NO from ifx_invoice_taxes         
        where  TAX_NAME='IMPORT') ifx_invoice_taxes, 
       (select 'GST', INVOICE_NO from   ifx_invoice_taxes         
        where  TAX_NAME='GST') ifx_invoice_taxes2, 
       (select INVOICE_NO, PAYMENT_ID, INVOICE_AMOUNT, DESCR, INVOICE_DATE, 
        DISCOUNT_RATE, DISCOUNT_DESC      
        from   internal_invoice) internal_invoice, 
       (select 'DELIVERY', TYPE, AMOUNT from   ifx_fees_types 
        where  FEES_NAME='DELIVERY') ifx_fees_types2 
        where  ifx_invoice_fees.INVOICE_NO = ifx_invoice_fees2.INVOICE_NO 
        and    ifx_invoice_fees2.INVOICE_NO = ifx_invoice_taxes.INVOICE_NO 
        and    ifx_invoice_taxes.INVOICE_NO = ifx_invoice_taxes2.INVOICE_NO 



© 2004 Sajindra Jayasena. All rights reserved 27

        and    ifx_invoice_taxes2.INVOICE_NO = internal_invoice.INVOICE_NO 
 
Some readers may have so far considered that identifying and resolving semantic heterogeneity is a 

small matter of handling date formats, currency exchange, and other accounting conventions.  We 

observe now that the net effect and accumulation of such small matters makes the programmer’s 

task impossible. A programmer not equipped with the COIN mediation system must devise and type 

the above query. A programmer using the COIN mediation system can type the original query: 

‘select INVOICE_AMOUNT from INTERNAL_INVOICE’ in IFX context and rely on COIN to 

automatically mediate the query. The application gains in clarity of design and code, as well as in 

scalability. The sharing of domain knowledge, context descriptions, and conversion functions 

improve the knowledge independence of the programs and their maintainability. 

5.6 Some insight to conflicts analysis between internal and SWIFT contexts 
The SWIFT protocol is mainly involved in inter-bank cross border transactions. It uses globally 

unique identifiers for bank code like BIC, BEI. For e.g. the BIC code comprise of concatenation of 

bank code, country code and location code (defined by ISO 9362), compared to just a bank code 

representation used in internal schema. This peculiar heterogeneity requires in a non-commutative 

building up of a composite bank identifier when mediating from internal to SWIFT context. 

Following represents a logical formula for the mediation for the concatenation. The predicate 

notations were discussed in a previous example. 

cvt(noncommutative,bankLoc,O,idType,Ctxt,"single",Vs,"composite",Vt) ⇐  

 ('SWIFT_BANK_BCI_p'(BANK, LOC, COUNTRY), 

  value(BANK,Ctxt,Vs),   

  value(LOC,Ctxt,Locc), 

  value(COUNTRY,Ctxt,Countryc), 

(Vtemp is Vs + Locc), 

(Vt is Vtemp + Countryc))). 

Usage of sub contexts  
Under SWIFT context, depending on whether the transaction is between financial institutions inside 

the EU or outside, a bank handling fee is credited to the payment amount. This can be modeled 

using the sub context concept of COIN. A sub context would derive all the super context based 

modifier values while having specialized modifier values for extended features. The following 

logical formulas denote how this can be modeled in COIN. 

is_a(swift_intraEU,swift) 

is_a(swift_outsideEU,swift) 

Then a query like ‘select amount from payment’ in outsideEU context called on a relation 

defined for internal context would be resolved by adding the handling charges on top of the 

local applicable tax (inherited from SWIFT context) as denoted in the following mediated 



© 2004 Sajindra Jayasena. All rights reserved 28

datalog. Observe the usage of SWIFT_CHARGE_TYPES elevated relation to obtain the 

charges.  

 
answer('V15'):- 

 'INTERNAL_PAYMENT'('V14', 'V13', 'V12', 'V11', 'V10', 'V9', 'V8', 'V7'), 

 'TAX_TYPES'("GST", 'V6', 'V5'), 

 'V4' is 'V5' * 'V12', 

 'V3' is 'V12' + 'V4', 

 'SWIFT_CHARGE_TYPES'("outsideEU", 'V2', 'V1'), 

 'V15' is 'V1' + 'V3'. 

Following shows the corresponding mediated SQL query 
select 
(swift_charge_types.AMOUNT+(internal_payment.AMOUNT_NET+(ofx_tax_types.AMOUNT*
internal_payment.AMOUNT_NET))) 
from   (select PAYMENT_ID, FROM_ACCT_ID, AMOUNT_NET, GST_PERCENT, 
OTHER_TAX_PERCENT, PAYEE_ID, PAYEE_ACCOUNT, DUE_DATE 

        from   internal_payment) internal_payment, 
       (select 'GST', TYPE, AMOUNT 
        from   ofx_tax_types 
        where  TAX_NAME='GST') ofx_tax_types, 
       (select 'outsideEU', TYPE, AMOUNT 
        from   swift_charge_types 
        where  TAX_NAME='outsideEU') swift_charge_types 

 

Note that although datalog and prolog representations and used internally within COIN and shown 

in this paper, the actual COIN system provides a user-friendly interface so that a user need not know 

anything about these internal representations. 

Confusion in Interpretation 
Before the introduction of its new message set, SWIFT MT 103 series, the already obsolete SWIFT 

MT 100 message was interpreted in different ways by the vendors. Since SWIFT deals mainly with 

inter-bank transactions, this aggravate to a bigger issue. The charging option field of a MT 100 

message was interpreted differently by vendors, when it was not mentioned in a message. Vendors 

treated in three different ways.  

1. Borne by the beneficiary  
2. Share the charges.  
3. And even sometimes by the creditor.  
The resultant would be that the wrong party would have paid while the other party benefiting from 

the transaction and sometimes double accounting and paying the intermediary twice.  

This in fact is a major reason for SWIFT to change the older version with a newer and more robust 

set of messages.  

5.7 SWIFT vs. OFX 
As we have seen, SWIFT use ISO defined Bank Identification Code (BIC). But in OFX the usage of 

bank identification number is quite dependent on the country of usage. The From bank and To bank 



© 2004 Sajindra Jayasena. All rights reserved 29

identification in a payment message depends on the standards adhered in one country. Table 6 

summarizes some examples.  

 
Country  Interpretation 
BEL Bank code 

CAN Routing and transit number 
CHE Clearing number 
DEU Bankleitzahl 
ESP Entidad 
FRA Banque 
GBR Sort code 
ITA ABI 
NLD Not used (field contents ignored) 
USA Routing and transit number 

Table 5.5: Account location identification differences 
 

Therefore in an instance where there is a direct interaction between SWIFT and OFX, depending on 

the country of usage, a particular mapping needs to be applied. In order to model such relationship 

sub contexts needs to be defined for each country under OFX sub contexts as shown in fig 5.10. 

 

is_a(ofx_USA,ofx)    

is_a(ofx_GBR,ofx) 

is_a(ofx_CAN,ofx) 

 
Fig. 5.10 

Then a conversion function for a bank identification code between ofx_USA and swift would 
look like the following.  

cvt(commutative,bankLoc,O,idType,Ctxt,"ofx_USA",Vs,"swift",Vt) ⇐  

 ('SWIFT_BANK_BCI_p'(BANK, LOC, COUNTRY), 

            ('OFX_USA__BANKID_p'(OFX_ID, SWIFT_LOC), 

  value(OFX_ID,Ctxt,Vs), 

value(BANK,Ctxt,BID), 

value(SWIFT_LOC,Ctxt,BID),   

  value(LOC,Ctxt,Locc), 

  value(COUNTRY,Ctxt,Countryc), 

(Vtemp is BID + Locc), 

(Vt is Vtemp + Countryc))). 

Here the country specific bank identification # (In this case the Bank routing and transit number 

used in ofx_USA context is mapped to a bank ID using the mapping elevation 

‘OFX_USA__BANKID_p'. Then the corresponding SWIFT elevation 'SWIFT_BANK_BCI_p' 

is used to map and compose the SWIFT based composite bank location identifier composing 

location and country details. 



© 2004 Sajindra Jayasena. All rights reserved 30

5.8 Temporal Heterogeneities  
For now we looked at ontological and contextual heterogeneities. But there might be scenarios 

where there are such conflicts depending on temporal issues as given in table 7. There has been 

some work in progress carried on resolving temporal issues [34]. 

 
Property  Internal Schema  OFX  IFX  SWIFT 103/103+ 
Price   Net  Net + tax of 5% on and 

before 2000 , 
Net + tax of 2% after  
2000 
 

Net + tax of 5% on and 
before 2000 , 
Net + tax of 2% after  
2000 

 

(Net + tax of 5% on and 
before 2000 , 
Net + tax of 2% after 
2000) + inter-bank 
charges. 

Currency   FFR on and before 
2000, 
EUR after 2000. 

Currency of country of 
incorporation of payee 
bank  

Currency of country of 
incorporation of payee 
bank  

Explicitly mentioned- ISO 
4217 
 

Table 5.6: temporal heterogeneities 
Scenario 1: temporal conflict in payment  
Before January 1st 2004, in the internal context the payment amount was represented as the net 

amount without any tax component. 

But in for OFX schema it needed to be represented as: 
 

 Payment
OFX
 = + (VAT% before 2004)* Payment

INTERNAL
 + defence_tax

OFX
%  

 
Scenario 2: change in Currency  
Before December 1st 2003, all payments of the internal schema was represented in Deutsche Marks 

(DM) .But after the introduction of Euro, all the monetary amounts were represents using EURO. 

Since the OFX schema represents moneyAmounts using currency of incorporated country of the 

payee’s bank, on the due date of the payment, the currency value needs to be denominated from DM 

to respective currency before December 31st 2003 and from EUROs after that. 
 

If ( dueDate < 12-01-2003 ){ 
    

moneyAmount
OFX  

 = moneyAmount
internal 

* 
ExchangeRate(currency

PAYEE_BANK_INCORPORATIO_COUNTRY
,currency 

DM
)   

} 
else{ 

moneyAmount
OFX  

 = moneyAmount
internal 

* 
ExchangeRate(currency

PAYEE_BANK_INCORPORATIO_COUNTRY
,currency

EURO
) 

} 
 

Before introducing temporal modifiers, such a currency modifier would be represented in COIN as 
following.  
 
rule(modifier(paymentAmt,_O,currency,internal,M),(cste(currency,M,internal,"FR"))
). 
 
But when temporal modifiers been included to the framework the additional predicate called 
containObj was incorporated. The following code denotes how the temporal heterogeneity is 
modeled using the same currency modifier.  
 

%% - before 2004 
modifier(paymentAmt,O,currency,internal,M):-containObj([bottom, 2003], O), 
cste(currency, M, internal, "DM"). 
 
%% after 2004 
modifier(paymentAmt,O,currency,internal,M):-containObj([2004, top],O), 

   cste(currency, M, internal, "EUR").



© 2004 Sajindra Jayasena. All rights reserved 31

5.9. Hierarchical schemas Vs. COIN  
AS explained in chapter 3, COIN is modeled and designed for mediating between relational data 

sources. The mediation framework uses an abduction framework to resolve conflicts among 

relational sources. To a certain extend this has been deviated by using Cameleon [12] where the 

hierarchical markup structure of HTML was mapped a relational schema. This has certain 

limitations where it can’t handle other generic markup language structures as well as cannot be used 

directly with the mediation framework.  But in the context of mediating financial standards that 

constitute of complex hierarchical data structures in XML and other mark-up languages, COIN 

lacks in directly interfacing with them. Figure 5.11 depicts a possible interaction between the 

relational mediation framework and the XML message standards. Therefore in order facilitate direct 

interaction and mediation among these disparate standards the following need to be incorporated. 

1. Translation from hierarchical representation to relational model and vice versa.  

2. In addition to handling semantic heterogeneities, there is a need to mediate between the 

different hierarchical mappings with each other. There can be two ways of addressing this issue.  

a. Each hierarchical structure (for e.g. the invoice sub tree and likewise of an IFX, OFX 

message) could be mapped to a set of semantic types in the corresponding Domain ontology. 

This would be scalable when the number of standards increases. But the representational 

mapping in the domain ontology should be very much flexible in handling various intricate 

conflicts among the representation mechanism. This would be much more complex and 

dynamic compared to the domain ontology reference mechanisms addressed in previous 

financial mediation case studies involving enumerated data types as in [13]. 

b. Each standard would be having a mapping to each other standard that it directly 

communicates. This would grow in an uncontrollable manner if the set of standards increase 

or there are frequent modifications and version changes in standards resulting in changing 

all the dependent mappings.  

 

 
Fig. 5.11: COIN and hierarchical models 

 
One strategy in facilitating the interaction is to extend the current Cameleon architecture to facilitate 

complex hierarchical models. But the current Cameleon model only handles HTML to relational 

mapping but not the reverse. Therefore the following extensions need to be incorporated into 

Cameleon.  



© 2004 Sajindra Jayasena. All rights reserved 32

1. More generic markup language modeling (i.e. XML) and transformation functionality rather 
than only handling HTML.  

2. Modeling more complex hierarchical structures as in actual financial messages involving 
EBPP.  

3. Transformation from a relational domain model /mediation framework to a hierarchical 
model.  

4. This would definitely involve in some performance bottlenecks that need to be addressed 
separately.  

 
A more ambitious approach would be in replacing the relational model based mediation /abduction 

framework with an all new semantic web related methodology like W3C’s emerging OWL [35]. 

This would alleviate the need for the two transformation layers as shown in the above figure. Even 

though this would result in lesser complexity it requires additional mediation and abduction 

framework built on a methodology which is still in its infancy compared to the well tested and 

proved relational model. Further if COIN needs to mediate relational as well as hierarchical data 

sources, interoperability and combined abduction /mediation would not be feasible unless relational 

data sources were mapped back to hierarchical representation and vice versa. Therefore careful 

consideration should be given in adopting such a strategy.  

  



© 2004 Sajindra Jayasena. All rights reserved 33

6. COIN Metadata Manager 

6.1 Introduction  
Context Mediation Framework is a complex piece of software that requires understanding on the 

modeling and representation of the domain ontology and the declarative conversion functions that 

constitute the crux of a mediation application. Writing the mediation code in prolog based language 

running up to several pages without the help of a application template or modeling paradigm is a 

mere nightmare for the application developer. Therefore the aim of this User centric graphical 

COIN Metadata manager is to alleviate the trouble in understanding complex prolog code and give 

the freedom to model the required Domain focusing on the business domain rather than worrying 

about how to code in prolog. The previous work done in this area [28, 29] have been focused on 

web based textual interfaces that are naïve and difficult to model and understand. The focus of this 

effort is to provide a user friendly graphical modeling methodology to the COIN user. The 

application is divided into two parts.  

1. The Web based (JAVA Applet) graphical modeling tool.  
2. The stand-alone graphical modeling tool.  

Figure 6.1 denotes the overall architecture of this tool from the user interface up to the application 

code generation. As depicted the framework supports in modeling the domain ontology sources, 

contexts, elevation axioms, and attribute and modifier definitions as well as generate the 

corresponding prolog application file for the application under consideration.  
 

XSL Translation layer

XSL Style sheets

RDF Spec

Re

Model Access Layer
( spec file – XML,RDF, 

relational tables
RDF Ontology 

manager
XML Access 

Manager

Relational 
source access 

manager

RFML HTML
prolog)

HTML
prolog) Prolog

Access Delegate layer Servlet DelegateJAVA call Delegate

Browser based JAVA 
Applet DeskTop application

HTTP ( multiple MIME 
types)

HTTPWrapper

AccessDelegate
AccessDelegate

Same 
Front end 
Code base

 
Fig 6.1 Overall Architecture  



© 2004 Sajindra Jayasena. All rights reserved 34

6.2 Overall Architecture  
The overall architecture basically comprises of four modules. The classes associated in each layer is 
denoted in class diagram in fig 6.2  
1. Application and java Applet loaders. 

This module is responsible in loading the main Metadata manager screens in Applet and Stand-

Alone contexts. Specifically in the applet context, the Loader ensures to load the application as 

a singleton without requiring re-fetching of the code base for each application load. 

In Standalone context, the AppLoader would provide the option for the user to select the 

application to model. This will load the main Metadata Manager. In comparison the 

AppletLoader is linked with the existing web based textual Interface. The applet loaded in a 

particular application would be loading the Metadata Manger dynamically from the HTTP 

Session context represented in the web server.  
 

2. User Interface modeling modules comprising the web based and stand-alone graphical 
modules. 
Both Applet based as well as Application based system uses the same UI model and classes. But 

depending on the context the respective loader would configure the properties of how to fetch 

data. The Graphical Interface provides the following features.  

i. Graphically model the semantic types, attributes and modifiers of the Domain under 
consideration providing a drag and draw/ aligning feature.  

ii. Define and graphically display the context hierarchy.  
iii. Extract Metadata from relational data bases and XML/TEXT data source like 

Cameleon to create sources for the application.  
iv. Model Elevation axioms for the sources created in step (iii). 
v. Define context based dynamic and static modifiers.  

vi. Contextual Attribute definition. 
 
3. Resource connection layer.  

Comprising of the class AccessDelegat, this acts as the delegate for backend communication. 

This is implemented in line with the Delegate / Controller Design pattern used in software 

engineering design practices. The AccessDelegate hides and abstracts the backend resource 

access mechanism to the front end code, namely the graphical Interfaces.  

If the application is running under Stand-alone context, the access Delegate directly accesses 

the back end resource access code running in the same JAVA virtual machine.  

But if it’s running in Applet Context, the AccessDelegate used a wrapper class called 

HTTPWrapper to connect to a JAVA Servlet running in COIN Application server sending 

HTTP GET and HTTP POST requests to get and send data respectively, where in turn the 

Servlet would use the backend resource access code running in its virtual machine. Refer figure 

6.2. The back end Servlet ServletDelegate delegates the resource access to resource access layer 

classes. All this is different strategies are transparent to the application user in both contexts. 

The following code snippet shows how the access delegate calls ‘generateApplication function, 



© 2004 Sajindra Jayasena. All rights reserved 35

through the HTTPWrapper or a direct JAVA call depending on the application context 

(Standalone or Applet).  

 
public void generateApplication(String application,HashMap poss){ 
    if( clientType.equals(Constants.CLIENT_APP)) { 
      rdfm.generateApplication(application,poss); 
    } 
    else if(clientType.equals(Constants.CLIENT_BROWSER) ){ 
       System.out.println(" ogign to generate " + application   ); 

HttpWrapper.putResource(HttpWrapper.baseurl + "?" +     
Constants.request + "=" + Constants.GEN_APP + 
"&" + Constants.application  + "=" + application,poss); 

} 

 
Correspondingly, the following code segment shows how the HTTPServlet submits results back to 

the Servlet that intern would use the resource access classes to update the back ed data structures. 

 
public static void putResource(String url,Object value){ 
    Object ret = null; 
    URL studentDBservlet = null; 
    URLConnection servletConnection = null; 
     
    try{ 
      studentDBservlet = new URL( url ); 
    } 
    catch(MalformedURLException  e){ 
      System.out.println(" malformed URL" + e.getMessage() ); 
    } 
    try{ 
     servletConnection = studentDBservlet.openConnection(); 

servletConnection.setRequestProperty ("Content-Type", "application/octet-
stream"); 
servletConnection.setDoInput(true); 
servletConnection.setDoOutput(true); 

 
ObjectOutputStream outputToServlet = new  
ObjectOutputStream(servletConnection.getOutputStream()); 

 
     outputToServlet.writeObject(value); 
     outputToServlet.flush();……………… 

 
4. Resource and Data access layer.  

The main interface that is exposed by this layer is the RDFManager class. This is developed 

inline with Manager Design pattern where it delegates and dispatches the request to the relevant 

sub modules but keeps them transparent to the invoker and facilitates in adding different 

modules to the resource access APIs yet making it transparent. 

This layer is responsible in providing the following services.  

i. Load Domain Ontology, source, elevation and context information for RDF files  
( RDFManager, RDFWriter ) 

      These sub modules extract and loads the Domain ontology and the relevant ontological 
information to a memory hierarchy to be served to the Metadata manager interfaces. 
The loading is done from the RDF Files pertaining to the schema.  

ii. Generates the RDF application files after application has been modified.  
(RDFManager, RDFWriter)  

iii. Generates RuleML, RFML , prolog files form the generated application (RDFManager , 
XSLTransformer, PrologGenerator) 

iv. Extracts metadata from Relational as well as XML/TEXT data sources (RDFManager , 
DBMetaDataExtractor ) 

v. Provides the system properties and configuration data for defining resource parameters, 
folder and file paths. For more information refer 6.2.  

 
 



© 2004 Sajindra Jayasena. All rights reserved 36

JAVA is used as the main programming language and uses JAVA 2D Graphics, JAVA Swing, 

JAVA Servlet and JSP API, JAVA net and Applet programming, RDF, XML and XSL API. 

6. 3 Graphical Domain Ontology modeling  
One of the main deliverables of the project is the graphical modeling of the Domain ontology. It 

provides a user friendly way if visualizing the domain including the semantic types, their modifiers, 

Attributes and Relations (is-a, modifier, attribute) among them as shown in figure 6.3. The user 

points and clicks to create semantic types and even delete/ modify them. As the user prefers he can 

place the objects by dragging them to the appropriate positions. This is modeled inline with 

professional modeling tools like MS Visio where the user is given the option to lay out the ontology 

or design. The positional information and rendering data is stored transparently when the Ontology 

files are generated. Therefore when the application is reloaded the previously stored positional 

information would be used to reconstruct the Ontology Layout on screen. 

User can modify /add and delete the attributes and modifiers for each semantic type. Saving a 

Semantic Type with its super semantic type, attributes and modifiers would perform the following 

actions.  

1. Semantic type would be added to the domain ontology data structures.  
2. New semantic type would be added to the display context on the clicked location with the 

attributed and modifiers and their Domain and range given inside the semantic type.  
3. The Domains of the attributes and modifiers as well as the super semantic type would be 

linked with different notations.  
Then the user can modify the semantic type(s) as well as dragging to appropriate place in the 

drawing pane.  

The following small code segment shows how a Semantic Type is added and rendered in the 

Graphical panes.  
 

public  void drawSemancitType(int X,int Y,SemanticType sc){ 
  // Graphical renderer for semantic type  
  semanticTypeRenderer renderer = new semanticTypeRenderer(sc.semanticName ); 
  renderer.semantictype = sc; 
  HashMap attributes = sc.attributes ; 
  if(sc.attributes .size() > 0){ 
    Iterator itr = attributes.values() .iterator() ; 
    // add the attribute  
    while(itr.hasNext() ){ 
      renderer.addAttribute((Attribute)itr.next() ); 
    } 
  } 
  Insets insets = DrawingPanel.getInsets(); 
  Dimension size = renderer.getPreferredSize(); 
   semanticTypeRenderMap.put(sc.semanticName , renderer) ; 
 
 // add to the drawing pane … 
  DrawingPanel.add(renderer)  ; 
     System.out.println(renderer.semantictype.attributes .size()); 
renderer.setPreferredSize(new Dimension(getWidth(sc) + 10,20 + 20  
*renderer.semantictype.attributes .size() )) ; 
  // set bounds for the palen object for semantic type 
  renderer.setBounds( X + insets.left,Y + 10 + insets.top, 
renderer.getPreferredSize().width, renderer.getPreferredSize().height); 

 

And part of the rendering section called asynchronously for repainting the drawing context. 
 
     Iterator itr = semanticTypeMap.values() .iterator(); 
     SemanticType type = null; 
     while( itr.hasNext() ){ 



© 2004 Sajindra Jayasena. All rights reserved 37

         type = (SemanticType)itr.next(); // for all semantic types  
 
         if(semanticTypeRenderMap.containsKey(type.semanticName) ){ 

renderer =  (semanticTypeRenderer)semanticTypeRenderMap.get(type.semanticName ); 
              
            renderer.show() ; 
            // draw the lines for relationships    
            drawLinesForSemanticType(type,gr); 

6.4 Contexts  
The COIN framework mediates the heterogeneities between different contexts. For example in the 

financial standards addressed previously, the different standards were represented in different 

contexts. The context hierarchy might grow down to several levels where the sub contexts would 

inherit all the modifiers and conversion functions from its super contexts. Modeling contexts is a 

vital part of the Metadata Manager. Figure 6.4 denotes how the Metadata Manager graphically 

models the contexts with their relationship with the super contexts. When a context is created and 

given the super context type, the context is automatically inserted to the correct position in the 

graphical context model, making the required relationships. 

This model can be used in order to visualize the static modifiers created for each context in the 

modifier management sub module. It enables the application modeler to view the relationships 

between the contexts as well as the contextual values they hold. 

6.5 Metadata Extraction for Source creation 
In previous efforts in modeling the Domain Ontology, the user has to manually enter the relation 

name, column names, data types etc when he wants to create a SOURCE for the application. This is 

one error-prone area where user can enter wrong information and would be difficult to debug. 

Therefore this Metadata Manager provides a Interface for the following meta data extraction.  

1. logs in to the schema of a required database Server ( This can be Oracle, MS SQL , MySQL , 

Sybase like commercial databases – where depending on the user selection the database access 

drivers would be loaded dynamically ) and extract the table and view Metadata comprises of the 

following  

a. Relation type ( tables , views etc ) 
b. Column names of each relation  
c. Database specific Column types (i.e NUMBER, VARCHAR etc in Oracle).  
d. Column properties – Part of Primary Key, Uniqueness, Nullable etc  

Further the user can give a table/view filter string to filter out the table/view names that he want to 

view for adding relations to the COIN while narrowing   down the search in a large schema. Refer 

fig 6.7.  

 



© 2004 Sajindra Jayasena. All rights reserved 38

 
Fig 6.2. Overall Class Diagram showing the main classes 

 

The following code segment shows how the schema Metadata was extracted from a given schema in 

Oracle.  

 
if( dataBaseType.equals(Constants.ORACLE ) ){ 
    dmd = (OracleDatabaseMetaData)con.getMetaData(); 
    if( dmd == null){ 
      System.out.println(" no meta data available"); 
      return relations ; 
    } 
    else{ 
      ResultSet rs = dmd.getSchemas(); // schema abstraction  
      ResultSet rs1 = null; 
      if (schema != null){ // always need a schema 



© 2004 Sajindra Jayasena. All rights reserved 39

      while (rs.next()) { 
 
      if(schema.equalsIgnoreCase(rs.getString(1))){ 
        // get tables for the given schema(s) 
        rs1 = dmd.getTables(null, rs.getString(1), "%", null); 
        while (rs1.next()) { 

relations.put(new String(rs1.getString(3)) , new String(rs1.getString(4)));   
// add name and type of relation.  

…………………… 

And the following shows a condensed version of how Metadata for a particular selected relation is 
extracted.  
 
  public Vector getTableColumnMetaData(String tableName){ 
   Vector columns = new Vector(); 
 
   if (dataBaseType.equals(Constants.ORACLE) ){ 
   try{ 
    ResultSet rs =  dmd.getColumns(null,schema.toUpperCase(),tableName,"%"); 
    while(rs.next() ){  // get each column.  
     if (rs.getString(18).equals("NO") ){ 
        isNull = rs.getString(18); 
     } 
     else{ 
        isNull = "YES"; 
     } 
     columns.add(new ColumnData(rs.getString(4),rs.getString(6),isNull) ); 
    }…… 
 

2. When the user is using the stand-alone system, he can select a Cameleon spec file and extract 

the spec name and columns of the web source defined in the spec file. The applet based system 

can only be used if the Applet is signed with a digital certificate that is trusted by the host 

system since generally an Applet runs in a san boxed environment in its virtual machine. 

For either of the source types, the user can define the respective COIN data types for each 

column and their uniqueness in COIN’s context, namely STRING or NUMBER. Also user can 

define which columns need to be added to the COIN relation.  

3. If the user is unable to connect to the database servers or Cameleon Spec folder, user can select 

manual option and create a relation and relation type, column names, their types and primary 

key associativity. 

 

As shown in the architecture for the Meta data access layer in fig 6.5, Relational Source Access 

Manager module is responsible for extracting metadata from different databases while the 

XML/TEXT data access Manager extracts XML or Cameleon spec file metadata. The Metadata 

Filter layer is responsible in filtering the data as per the selected schema and table name filters 

specified by the user. 
 



© 2004 Sajindra Jayasena. All rights reserved 40

 
Fig 6.3. Domain ontology in Metadata Manager 

 
 

 
Fig 6.4. Context Hierarchy  

 
 

 
Fig 6.5. Metadata Access  

Ontology Tree  Graphical model  



© 2004 Sajindra Jayasena. All rights reserved 41

 
Fig. 6.6 Selecting a source  

 

 
 
 
 

 
Fig 6.7. Extracted metadata for a relational table 

6.6 Elevation Axioms  
After creating the resource, the next step is to define the elevations of those resources to particular 

contexts. This mapping can be done in a manner where the user can select an existing COIN relation 

and a context, and define the columns applicable to the Elevation. For each column in the elevation 

axiom, the user can define the COIN semantic type mapping for elevation and whether he wishes to 

add the column to an elevation as shown in fig. 6.8. The user has been facilitated with viewing the 

corresponding column properties of the resource while creating the elevations resulting is lesser 

errors. Also quick context switching between the elevation creation and Ontology model would help 

in deciding on the appropriate semantic type for an elevated column.  

6.7 Modifier Management  
One of the core features of the COIN framework is, defining modifiers for different contexts. 

Modifiers can be defined statically as well as dynamically. Static modifies are easy to define. For 

e.g. the following code segment denotes a statically defined for currency modifier for paymentAmt 

in internal context. 

 

Selected relation: The columns, data types, is 
NULL, selectable COIN data type, select PK cols 
and check   columns to add to COIN  

Relation names and type (view, table)  

Source Type  

Database type  

Table Filter  



© 2004 Sajindra Jayasena. All rights reserved 42

 
Fig 6.8: Elevation Axioms creation 

 
 
rule(modifier(paymentAmt,_O,currency,internal,M),(cste(currency,M,interna
l,"GBP"))). 
 
But defining a dynamic modifier is tricky using prolog. A simple dynamic modifier for the same 
paymentAmt for OFX context would be as following.  
 
rule(modifier(paymentAmt,_O,currency,ofx,M),( attr(_O,paymentRef,Payment)
,attr(Payment,payeeAct,Account), 
attr(Account,location,Location), 
attr(Location,bank,Bank),                                          
attr(Bank,countryIncorporated,Country),                                             
attr(Country,officialCurrency,M))). 
 
Defining such modifiers spanning several attribute relations manually might results in errors. To 

facilitate dynamic modifier creation, functionality was added to the Metadata Manager to define the 

modifiers graphically. Figure 5.9 depicts how a dynamic modifier is modeled. The paymentAmount 

is the semantic type and corresponding modifier value is the basic semantic type mapped to the 

currency attribute of Country semantic type.  

The graphical structure shows how the relationship propagates from paymentAmount, payment, 

account, branchLoc, bankLoc, country semantic types and attribute relationships. 

 

 
Fig6.9: Dynamic modifier creation 



© 2004 Sajindra Jayasena. All rights reserved 43

6.8 Attribute Management  
Another aspect of the creating an application in COIN is to create and define Attributes and the 

relevant mapping in a context. In some instances, an attribute relation might span across multiple 

relations propagated through the referential integrities. Creating such attributes using prolog would 

be error prone and painstaking. The Attribute management module facilitates in creating and 

defining the attribute relations in a graphical and tabular manner.  

For e.g if the currency relationship in the EBPP domain might differ in different contexts. In OFX 

context the currency attribute would like the following:  
 
rule(attr(Country,officialCurrency,Currency), 
                     
('COUNTRY_CURRENCY_p'(X,Currency),'OFX_BANK_p'(_,_,Country), 
value(Country,ofx,U),value(X,ofx,U))). 

 
But using the graphical metadata manager this could be mapped to three types of relationships as 

given in the table below. 
Fig 6.1: Attribute Mapping types 

Type  Example  
Map to DOMAIN  Country attribute of  'OFX_BANK_p' 
Map to RANGE  Currency attribute of  ('COUNTRY_CURRENCY_p' 
Map ELEVTION X attribute of 'COUNTRY_CURRENCY_p' = Country attribute of  

'OFX_BANK_p' 
 
Using these three mapping a tabular representation can be envisioned by the user while viewing the 

automatic graphical model generated by the metadata Manager. The Map to DOMAIN can be used 

to map the Semantic type of the Domain of the attribute to a elevated column while ‘Map to 

RANGE’ can be used to map a elevated column to the Range of the attribute. Any referential 

relationship can be modeled through ‘Map to ELEVATION’ mapping. The graphical representation 

for the above prolog based attribute definition would look like as in fig 6.10. This representation can 

be modeled to any extension by using the above three types of mappings.  

 
Fig 6.10: graphical Attribute modeling 

6.9 Multiple Ontology generation & representation mechanisms 
The main mechanism of storing the domain ontology is W3C’s Resource description framework 

(RDF). Back end RDFManager creates the required source, ontology and context files for the 

application. Then these can be translated into multiple formats including RuleML[REF] , RFML  

[REF] as well as non markup language like prolog. We use XML Style sheets (XSL / XSLT) to 

convert the RDF to different formats as shown in figure 6.5. The final transformation step translates 



© 2004 Sajindra Jayasena. All rights reserved 44

the HTML based prolog file to a plain prolog file that would be deployed automatically in the 

application space of COIN. 

The interfacing between a stored application and the user interface is done through RDF files rather 

than the end result of prolog files. This is due to couple of reasons.  

1. The Metadata manager is modeled using Object Oriented Technologies. The ontological 
components and definitions are modeled using classes. 

2. Resource description Framework is quite a rich language in modeling ontologies even 
though there are richer definitions like DAML+ OIL,OWL {REFER}. RDF provides a 
similar concept to an OOP’s class, attribute and Object definitions.  

3. It’s easy to model and map between an Object oriented framework and a RDF Schema 
through transformation between Objects and XML based hierarchy.  

4. Complex XML parsing and modeling APIs can be utilized in manipulating (adding, 
modifying and deleting) RDF elements which are XML Elements and attributes.  

5. Using Extensible Style Sheets (XSL, XSLT) it is easy to transform one markup language 
based model to another. Therefore facilitates interoperability among different schema 
modeling mechanisms.  

6. Relative to prolog, the hierarchical modeling capability in RDF like in any other markup 
base languages makes modeling and programming easy while providing easy 
transformation to other formats using existing tools.  

But since the COIN Abduction and mediation engine relies on a prolog based application, The 

Application Generation generates the prolog based application file as the final step. As an example 

refer figure 6.11. For a small representative comparison on how a semantic type is modeled in RDF 

and Prolog in the Application generation routines.  

 

Fig 6.11: RDF Vs Prolog  
 

The following code segment shows the high level invocation of the XSL/XSLT transformations and 

prolog file generation. The transformation is handled by a Factory class that uses the XSL/XSTL 

style sheet to carry out the transformation.  

 
public void tranaformDoc(String application ){ 
 try{ 
   TransformerFactory tFactory = TransformerFactory.newInstance(); 
 
   // 1. RDF to ruleML 

Transformer transformer = tFactory.newTransformer(new 
StreamSource(RDFManager.xslbase + RDFManager.rdf2ruleml )); 
File in = new File(RDFManager.resouceBase + "application" + application + ".rdf"); 

       // transform  
transformer.transform(new StreamSource(in), new StreamResult(new 
FileOutputStream(RDFManager.ruleMLresouceBase + "application" + application + 
".ruleml"))); 

 
  // 2. ruleml to rfml 

transformer = tFactory.newTransformer(new StreamSource(RDFManager.xslbase + 
RDFManager.ruleml2rfml  )); 
in = new File(RDFManager.ruleMLresouceBase + "application" + application + ".ruleml"); 

     // transform  



© 2004 Sajindra Jayasena. All rights reserved 45

transformer.transform(new StreamSource(in), new StreamResult(new 
FileOutputStream(RDFManager.rfmlresouceBase + "application" + application + ".rfml"))); 
 

  // 3. rfml to prolog html 
 

transformer = tFactory.newTransformer(new StreamSource(RDFManager.xslbase + 
RDFManager.rfml2htmlprolog  )); 
in = new File(RDFManager.rfmlresouceBase + "application" + application + ".rfml"); 

     // transform  
transformer.transform(new StreamSource(in), new StreamResult(new 
FileOutputStream(RDFManager.prologHTMLresouceBase + "application" + application + 
".html"))); 

      
  // 4. prologhtml to prolog 
// special class for generating non markup based prolog from a Markup based representation 
     prologGenerator gen = new prologGenerator(); 

gen.parseHTMLtoProlog(application,RDFManager.prologHTMLresouceBase + "application" + 
application + ".html"); 
………………………………………………… 

6.9 Performance Enhancement  
Since the Metadata modeler constitutes a significant code base and needs to be downloaded, the 

following performance enhancements are utilized.  

The Metadata Application is loaded as a Singleton into the browser JAVA virtual Machine. 

Therefore the code base would only be downloaded to the browser once during a session and stored 

in the virtual machine sandbox. As and when user selects different applications to manage, the 

AppletLoader calls the loadApplication of the metadata application to invoke a HTTP get to extract 

the Domain Ontology from the Resource access layer running in a Web/JAVA Servlet Server. This 

would refresh the graphical interfaces and data structures with the data from the new application. 

 

6.10 Extendibility of the framework  
The architecture and design was done in a manner that would facilitate extension and adaptation. 

Several key decisions were taken in making the system modular and less coupling with the rest of 

the framework. This would facilitate in extending the Metadata manager to incorporate more 

functionality without worrying about the interdependencies and couplings.  

1. Access Delegate Framework – An Access delegate design pattern was utilized to access the 
backend data for the GUI engine. The two access methods, HTTP and direct java object call 
were encapsulated behind the access Delegator, and exposed a well defined set of interface 
methods to load application properties and create application objects. This would ensure that 
any type of access mechanism can be incorporated with the same graphical engine without 
changing the interface and vice versa.  

2. Data Access object (DAO) framework – The data access mechanisms for RDF , 
RuleML ,RFML and prolog were encapsulated with in separate manager classes that exposed 
APIs for accessing and modifying the file contests. This provides a file representation-
independent mechanism for interfacing with the application files.  

3. Dynamic resource factory – The metadata extraction module is dynamic in the sense that it 
would extract the required metadata in a data source dependent manner, yet encapsulate those 
differences to the user. The user only has to select the database source and login details and the 
table filtering strings. The underlying implementation would dynamically load the drivers and 
extract the metadata for the given database instance. This would be true for both relational 
sources as well as textual /XML based repositories.  

 
 
 



© 2004 Sajindra Jayasena. All rights reserved 46

7. Conclusion and Future work  
I identified different contextual, ontological and temporal heterogeneities that exist in different 

financial messaging standards. I showed that indeed mediation between these is not a trivial task, 

yet a critical and important to the globalization of the financial industry. Further I show that the best 

answer is to have a mediation service that provides automatic and a transparent mediation without 

engineering new standards. 

I have shown that the approach in COIN is capable of mediating the different heterogeneities that 

exist in different financial standards and internal contexts of Financial Institutions. My approach in 

modeling a business domain and mapping different contextual representations and values through a 

declarative manner proves extensibility, flexibility and the user-friendliness in the COIN framework. 

One aspect we haven’t totally explored is how temporal conflicts are handled and mediates in COIN. 

Current work done [34] addresses how semantic conflicts are mediated in the presence of temporal 

heterogeneities. This could be applied in the analysis of temporal issues arising among different 

financial standards as well as among different versions.   

We are looking at how to extend the current COIN technology in handling of aggregates (i.e. SUM, 

AVG, COUNT, etc.). In another aspect we are delving into understand more complex scenarios and 

issues faced by financial institutions in using different standards that would enable us to further 

extend the scope of the COIN framework and technology. Also the current abduction framework 

does not handle non-orthogonal modifier modeling. This refers to in prioritizing the order in which 

a set of modifiers that can be applied to a semantic type. Consider a small example of mediating a 

payment amount from USD to EURO. And in the destination context (EURO), an additional fixed 

fee of 10EURO need to be added to come up with the final payment amount. But if the conversion 

functions apply this addition to the USD amount and then perform the conversion, the result would 

be wrong. Current COIN framework cannot prioritize such modifier applicability for the moment. 

So this opens up another avenue for research.  

Further, COIN mediation framework is based on a relational model. But financial standards uses 

hierarchical structures like XML. Thus in order to mediate between such sources an additional layer 

of translation/abstraction is needed that would map from the hierarchical structures to a relational 

model and vice versa. One aspect would be to extend a framework like HTTP Wrapper Cameleon 

[12] to support more generic and complex hierarchical structure representations. This would 

facilitate in utilizing the same COIN abduction engine for mediating relational sources as well as 

hierarchical sources/models.  

While collecting and analyzing conflicts in standards, I was faced with great difficulties in finding 

the correct, appropriate examples and scenarios. Even after consulting with US and Singapore based 

institutions, companies and forums it was difficult to gather the required information. If this type of 

research to be fully successful a significant assistance is required for the industry.  



© 2004 Sajindra Jayasena. All rights reserved 47

In the Graphical Metadata Management frontier I managed to develop a System that provides a true 

user friendly, easy to learn graphical modeling tool to define the domain ontology as well the 

context hierarchies. The graphical modeling approach differs from previous efforts where by 

providing a relatively similar look and feel represented by modern modeling tools like Rational 

Rose and Microsoft Visio software. Further the user has been provided with a tool to log in and 

extract metadata related to different sources comprising relational databases, Text and XML files. 

These relive the user in looking at a particular schema and manually enter the source details. Further 

the application provides an option to generate the underlying application through the interface and 

deploy on the COIN abduction framework reducing several steps in configuration. I managed to 

extend the system to run as a stand alone application as well as a web based model providing the 

same features and look-and-feel. 

Further work is carried out in order to facilitate the creation of Conversion functions for the 

underlying modifiers and elevations. This would make the Graphical Metadata manager a fully 

fledged interface for managing and creating applications for COIN, making it feasible to be used in 

commercial ventures.  

 



© 2004 Sajindra Jayasena. All rights reserved 48

References: 
[1] A.Firat .”Information Integration using Contextual Knowledge and Ontology Merging”, PhD Thesis, MIT,2003 
[2] C.H. Goh, S.Bressan.S.Madnick,M.Siegel, ”Context Interchange :New Features and Formalisms for the Intelligent 

Integration of Information”, ACM TOIS, vol. 17,pp 270-293,1999. 
[3] A.Bressan , C.H. Goh, “Answering Queries In Context”,  Proceedings of  “Flexible Query Answering Systems”. Third 

International Conference, FQAS, 1998, Roskild,Denmark. 
[4] S.Madnick,A.Moulton,M.Siegel, “Semantic Interoperability in the Fixed Income Securities Industry: A Knowledge 

Representation Architecture for dynamic integration of Web-based information”, HICSS,Hawai,2003 
[5] S.Madnick, A.Firat, B.Grosof, “Knowledge Integration to overcome Ontological Heterogeneity: Challenges from 

Financial Information Systems”,pp. 183-194,ICIS,Barcelona,Spain, 2002  
[6] S.Madnick,A.Moulton,M.Siegel, “Context Interchange Mediation for Semantic Interoperability and Dynamic 

Integration of Autonomous Information Sources in the Fixed Income Securities Industry”, (WITS), Barcelona, Spain, 
December 14-15, 2002, pp.61-66 

[7] S.Madnick,S. Bressan, C.H. Goh, T. Lee, and M. Siegel “A Procedure for Mediation of Queries to Sources in 
Disparate Context”, Proceedings of the International Logic Programming Symposium, October 1997 

[8] S.Madnick, S. Bressan, C. Goh, N. Levina, A. Shah, M. Siegel ,“Context Knowledge Representation and Reasoning in 
the Context Interchange System” , Applied Intelligence: The International Journal of Artificial Intelligence, Neutral 
Networks, and Complex Problem-Solving Technologies, Vol 12, Number 2, September 2000, pp. 165-179 

 [9] Open Financial Exchange Specification OFX 2.0.2, Open Financial Exchange, http://www.ofx.net/ofx/de_spec.asp 
[10]Interactive Financial Exchange –IFX version 1.5, IFX Forum, Inc, 

http://www.ifxforum.org/ifxforum.org/standards/standard.cfm 
[11] Society for Worldwide Interbank Financial Telecommunication (S.W.I.F.T), Standard Release 2003, 

http://www.swift.com/index.cfm?item_id=5029 
[12] S.Madnick, A. Firat and M. Siegel, “The Caméléon Web Wrapper Engine”, Proceedings of the VLDB2000 Workshop 

on Technologies for E-Services, September 14-15, 2000 
[13] S.Madnick, A. Moulton and M. Siegel “Semantic Interoperability in the Securities Industry: Context Interchange 

Mediation of Semantic Differences in Enumerated Data Types”, Proceedings of the Second International Workshop on 
Electronic Business Hubs:  XML, Metadata, Ontologies, and Business Knowledge on the Web (WEBH2002), Aix En 
Provence, France, September 6, 2002 

[14] Kuhn, E., Puntigam, F., Elmagarmid A. (1991). Multidatabase Transaction and Query Processing in Logic, Database 
Transaction Models for Advanced Applications, Morgan Kaufmann Publishers. 

[15] Litwin, W., Abdellatif, A. (1987), “An overview of the multi-database manipulation language MDSL”. Proceedings 
of the IEEE, 75(5):621-632. 

[16] Goh, C. H. (1997), “Representing and Reasoning about Semantic Conflicts in Heterogeneous Information Systems, 
MIT Ph.D. Thesis. 

[17] Arens, Y., Knoblock, C., Shen, W. (1996). Query Reformulation for Dynamic Information Integration. Journal of 
Intelligent Information Systems 6(2/3): 99-130. 

[18] Batini, C., Lenzerini, M., Navathe, S. B. (1986) “A Comparative Analysis of Methodologies for Database Schema 
Integration”, ACM Computing Surveys 18(4): 323-364. 

[19] Landers, T., Rosenberg, R (1982) “An Overview of MULTIBASE”, International Symposium on Distributed Data 
Bases”, 153-184 

[20] Breitbart, Y., Tieman.L. (1984), “ADDS - Heterogeneous Distributed Database System”, Proceedings of the Third 
International Seminar on Distributed Data Sharing Systems, 7- 24. 

[21] Scheuermann, P., Elmagarmid, A. K., Garcia-Molina, H., Manola, F., McLeod, D.,Rosenthal, A., Templeton, M. 
(1990), “Report on the Workshop on Heterogeneous Database Systems” held at Northwestern University, Evanston, 
Illinois, December 11-13, 

[22] Ahmed, R., De Smedt, P., Du, W., Kent, W., Ketabchi, M., Litwin, W.,, Rafii,A.,,Shan, M. (1991).” The Pegasus 
Heterogeneous Multidatabase System”. IEEE Computer 24(12): 19-27. 

[23] Collet, C., Huhns, M. N., Shen, W. (1991), “Resource Integration using a large knowledge base in Carnot”, IEE 
Computer, 24(12):55-63. 

[24] Kuhn, E., Ludwig, T. (1988), “VIP-MDBS: a logic multidatabase system”, Proceedings of the first international 
symposium on Databases in parallel and distributed systems, p.190-201, December 05-07, Austin, Texas, USA. 

[25] Litwin, W. (1992). “O*SQL: A language for object oriented multidatabase interoperability”. In Proceedings of the  
Conference on IFIP WG2.6 Database Semantics and Interoperable Database Systems (DE-5) (Lorne, Victoria, 
Australia), D. K. Hsiao, E. J. Neuhold, and R. Sacks-Davis, Eds. North-Holland Publishing Co., Amsterdam, The 
Netherlands, 119-138. 

[26] Baral, C., Gelfond, M. (1994). "Logic Programming and Knowledge Representation", Journal of Logic Programming, 
19,20:73-148. 

[27] Kakas, A. C., Michael, A. (1995). “Integrating abductive and constraint logic programming”, To appear in Proc. 
International Logic Programming Conference 

[28] Graphical Metadata Management for the Context Mediation System - Usman Y. Mobin, Masters Thesis, 
Massachusetts Institute of Technology, 2002  

[29] Metadata Representation and Management for Context Mediation – Philip Lee - Masters Thesis, Massachusetts 
Institute of Technology, 2003. 

[30] Interoperability and Business Models for e-commerce, Man-Sze Li, IC Focus Ltd, 42 Clifton Road,  



© 2004 Sajindra Jayasena. All rights reserved 49

      London N8 8JA, United Kingdom. 
[31] Resource description Framework (RDF)  - http://www.w3.org/RDF/ 
[32] The Rule Markup Language: RDF-XML Data Model, XML Schema Hierarchy, and XSL 
Transformations, Harold Boley,  Invited Talk, INAP2001, Tokyo, October 2001. 
[33] Relational-Functional Markup Language (RFML) – Harold Boley, Markup Languages for functional 
logic programming, DFKI Gmbh  
[34] Effective Data Integration in the Presence of Temporal Semantic Conflicts – working paper- Hongwei 
Zhu, Stuart E. Madnick, Michael D. Siegel- MIT Sloan School of Management. 
[35] W3C OWL Web ontology language – Overview - http://www.w3.org/TR/2003/CR-owl-features-
20030818 
 
 

Acknowledgements  
The author wishes to thank the following people whose help was immensely valuable for the 
completion of the research work.  

• Professor Stuart Madnick, as the thesis supervisor – for his thoughtful and constructive 
advice on the direction, scope and guidance provided in carrying out the research as well as 
timely advice, and communication carried out with the author even with a significant time 
zone difference and virtual presence. 

• Associate professor Tan, Kian Lee – as the NUS supervisor – for advising on the project 
requirements, guidelines and expectations and helping out on Singaporean side affairs 
related to project  

• Dr. Stephane Bressan, for his advice, encouragement and help for carrying out the research 
and guidance provided in paper publishing and making contacts from local personal related 
to the research.  

• Harry Hzu, Aykut Firat, Allen Moulton and Philip Lee, All from the context mediation 
group at Sloan School, MIT for providing help on COIN internals, existing systems as well 
for reviewing documents and presentations.  

 

 



© 2004 Sajindra Jayasena. All rights reserved 50

Appendix  
Appendix A: Sample prolog file for EBPP Domain  
 
 
 
 
 
 

:- module_interface(application604). 
:- export rule/2. 
:- begin_module(application604). 
:- dynamic rule/2. 
rule(is_a(accountCode,basic),(true)). 
rule(is_a(accountCodeScheme,basic),(true)). 
rule(is_a(currency,basic),(true)). 
rule(is_a(moneyAmount,basic),(true)). 
rule(is_a(identifier,basic),(true)). 
rule(is_a(personname,identifier),(true)). 
rule(is_a(bankname,identifier),(true)). 
rule(is_a(location,basic),(true)). 
rule(is_a(bankLoc,basic),(true)). 
rule(is_a(branchLoc,location),(true)). 
rule(is_a(customer,basic),(true)). 
rule(is_a(payee,basic),(true)). 
rule(is_a(phoneNumber,basic),(true)). 
%rule(is_a(numberScheme,basic),(true)). 
rule(is_a(phoneNumberScheme,basic),(true)). 
rule(is_a(account,basic),(true)). 
rule(is_a(date,basic),(true)). 
rule(is_a(dateFormat,basic),(true)). 
rule(is_a(payment,basic),(true)). 
rule(is_a(paymentAmt,basic),(true)). 
rule(is_a(dateStyle,basic),(true)). 
rule(is_a(exchangeRate, basic), (true)). 
rule(is_a(paymentScheme, basic), (true)). 
rule(is_a(countryName,basic), (true)). 
rule(is_a(invoiceAmount,basic), (true)). 
 
rule(attributes(basic,[]),(true)). 
rule(attributes(accountCode,[]),(true)). 
rule(attributes(accountCodeScheme,[]),(true)). 
rule(attributes(currency,[]),(true)). 
rule(attributes(moneyAmount,[]),(true)). 
rule(attributes(identifier,[]),(true)). 
rule(attributes(personname,[]),(true)). 
rule(attributes(bankname,[]),(true)). 
rule(attributes(location,[locName]),(true)). 
rule(attributes(bankLoc,[bankName,countryIncorporated]),(true)). 
rule(attributes(branchLoc,[bank,branchName]),(true)). 
rule(attributes(customer,[name,phone]),(true)). 
rule(attributes(payee,[name,phone]),(true)). 
rule(attributes(phoneNumber,[]),(true)). 
rule(attributes(phoneNumberScheme,[]),(true)). 
rule(attributes(account,[type,customer,balance,location]),(true)). 
rule(attributes(date,[]),(true)). 
rule(attributes(dateFormat,[]),(true)). 
rule(attributes(payment,[fromAccount,payee,payeeAct,dueDate]),(true)). 
rule(attributes(paymentAmt,[paymentRef]),(true)). 
rule(attributes(dateStyle,[]),(true)). 
rule(attributes(exchangeRate, [txnDate, fromCur, toCur]), (true)). 
rule(attributes(paymentScheme,[]),(true)). 
rule(attributes(countryName,[officialCurrency]),(true)). 
rule(attributes(invoiceAmount,[invoiceRef]),(true)).



© 2004 Sajindra Jayasena. All rights reserved 51

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

rule(modifiers(basic,[]),(true)). 
rule(modifiers(accountCode,[scheme]),(true)). 
rule(modifiers(accountCodeScheme,[]),(true)). 
rule(modifiers(currency,[]),(true)). 
%rule(modifiers(moneyAmount,[]),(true)). 
rule(modifiers(identifier,[]),(true)). 
rule(modifiers(personname,[]),(true)). 
rule(modifiers(bankname,[]),(true)). 
rule(modifiers(location,[locationType]),(true)). 
rule(modifiers(bankLoc,[idType]),(true)). 
rule(modifiers(branchLoc,[]),(true)). 
rule(modifiers(customer,[]),(true)). 
rule(modifiers(payee,[]),(true)). 
rule(modifiers(phoneNumber,[numberScheme]),(true)). 
%rule(modifiers(numberScheme,[]),(true)). 
rule(modifiers(phoneNumberScheme,[]),(true)). 
rule(modifiers(account,[]),(true)). 
rule(modifiers(date,[format,style]),(true)). 
rule(modifiers(dateFormat,[]),(true)). 
rule(modifiers(payment,[]),(true)). 
rule(modifiers(paymentAmt,[paymentScheme,currency,includeBankCharges]),(true)). 
rule(modifiers(dateStyle,[]),(true)). 
rule(modifiers(exchangeRate, []), (true)). 
rule(modifiers(paymentScheme,[]),(true)). 
rule(modifiers(countryName,[]),(true)). 
rule(modifiers(invoiceAmount,[invoiceScheme]),(true)). 
 
rule(relation(oracle,'INTERNAL_PAYEE',ie,[['PAYEE_ID',number],['NAME',string],['PHONE',string]],
cap([[1,0,0]],[])),(true)). 
rule(relation(oracle,'INTERNAL_CUSTOMER',ie,[['CUST_ID',number],['NAME',string],['PHONE',strin
g]],cap([[1,0,0]],[])),(true)). 
rule(relation(oracle,'INTERNAL_BANK',ie,[['BANK_NAME',string],['COUNTRY',string],['BANK_ID',
number]],cap([[0,0,1]],[])),(true)). 
rule(relation(oracle,'INTERNAL_BANK_BRANCH',ie,[['BRANCH_ID',number],['BANK_ID',number],[
'BRANCH_NAME',string]],cap([[1,0,0]],[])),(true)). 
rule(relation(oracle,'INTERNAL_ACCOUNT_TYPE',ie,[['ACCOUNT_CODE',string],['DESCRIPTION',
string]],cap([[1,0]],[])),(true)). 
rule(relation(oracle,'INTERNAL_ACCOUNT_DETAILS',ie,[['ACCOUNT_ID',string],['CUSTOMER_I
D',number],['BRANCH_BANK_ID',number],['ACCOUNT_TYPE',string],['NET_BALANCE',number]],
cap([[1,0,0,0,0]],[])),(true)). 
rule(relation(oracle,'INTERNAL_PAYMENT',ie,[['PAYMENT_ID',number],['FROM_ACCT_ID',numbe
r],['AMOUNT_NET',number],['GST_PERCENT',number],['OTHER_TAX_PERCENT',number],['PAYE
E_ID',number],['PAYEE_ACCOUNT',number],['DUE_DATE',string]],cap([[1,0,0,0,0,0,0,0]],[])),(true)). 
rule(relation(oracle,'OFX_PAYEE',ie,[['PAYEE_ID',number],['NAME',string],['PHONE',string]],cap([[1,
0,0]],[])),(true)). 
rule(relation(oracle,'OFX_CUSTOMER',ie,[['CUST_ID',number],['NAME',string],['PHONE',string]],cap(
[[1,0,0]],[])),(true)). 
rule(relation(oracle,'OFX_BANK',ie,[['BANK_NAME',string],['BANK_ID',number],['COUNTRY',string
]],cap([[0,1,0]],[])),(true)). 
rule(relation(oracle,'OFX_ACCOUNT_TYPE',ie,[['ACCOUNT_CODE',string],['DESCRIPTION',string]]
,cap([[1,0]],[])),(true)). 
rule(relation(oracle,'OFX_ACCOUNT_DETAILS',ie,[['ACCOUNT_ID',string],['CUSTOMER_ID',numb
er],['ACCOUNT_TYPE',string],['BALANCE',number],['BRANCH_BANK_ID',number]],cap([[1,0,0,0,0]
],[])),(true)). 
rule(relation(oracle,'OFX_PAYMENT',ie,[['PAYMENT_ID 
',number],['FROM_ACCT_ID',string],['AMOUNT_NET',number],['GST_PERCENT',number],['OTHER
_TAX_PERCENT',number],['PAYEE_ID',number],['PAYEE_ACCOUNT',string],['DUE_DATE',string]]
,cap([[1,0,0,0,0,0,0,0]],[])),(true)). 
 ([[1,0]],[])),(true)). 
 



© 2004 Sajindra Jayasena. All rights reserved 52

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

rule(relation(oracle,'CODE_MAP_INTERNAL_OFX',ie,[['INTERNAL_CODE',string],['OFX_CODE',str
ing]],cap([[0,0]],[])),(true)). 
rule(relation(oracle,'ONTOLOGY_ACCOUNT_TYPES',ie,[['ONTO_CODE',string],['DESCR',string]],ca
p([[1,0]],[])),(true)). 
rule(relation(oracle,'CODE_MAP_ONTOLOGY_INTERNAL',ie,[['INTERNAL_CODE',string],['ONTO
LOGY_CODE',string]],cap([[1,1]],[])),(true)). 
rule(relation(oracle,'CODE_MAP_ONTOLOGY_OFX',ie,[['OFX_CODE',string],['ONTOLOGY_CODE',
string]],cap([[1,1]],[])),(true)). 
rule(relation(oracle,'COUNTRY_CURRENCY',ie,[['COUNTRY',string],['CURRENCY',string]],cap([[0,0
]],[])),(true)). 
rule(relation(oracle,'OFX_BANK_BRANCH',ie,[['BRANCH_ID',number],['BANK_ID',number],['BRAN
CH_NAME',string]],cap([[1,0,0]],[])),(true)). 
rule(relation(oracle,'OFX_TAX_TYPES',ie,[['TAX_NAME',string],['TYPE',string],['AMOUNT',number]
],cap([[1,0,0]],[])),(true)). 
rule(relation(oracle,'SWIFT_BANK_BCI',ie,[['BANK_ID',number],['LOCAITON_CODE',string],['COU
NTRY_CODE',string]],cap([[1,0,0]],[])),(true)). 
rule(relation(oracle,'SWIFT_CHARGE_TYPES',ie,[['TAX_NAME',string],['TYPE',string],['AMOUNT',n
umber]],cap([[1,0,0]],[])),(true)). 
rule(relation(oracle,'IFX_TAX_TYPES',ie,[['TAX_NAME',string],['TYPE',string],['AMOUNT',number]],
cap([[1,0,0]],[])),(true)). 
rule(relation(oracle,'IFX_FEES_TYPES',ie,[['FEES_NAME',string],['TYPE',string],['AMOUNT',number]
],cap([[1,0,0]],[])),(true)). 
rule(relation(oracle,'IFX_INVOICE_FEES',ie,[['FEE_NAME',string],['INVOICE_NO',number]],cap([[1,1
]],[])),(true)). 
rule(relation(oracle,'IFX_INVOICE_TAXES',ie,[['TAX_NAME',string],['INVOICE_NO',number]],cap([[
1,1]],[])),(true)). 
rule(relation(oracle,'INTERNAL_INVOICE',ie,[['INVOICE_NO',string],['PAYMENT_ID',string],['INVO
ICE_AMOUNT',number],['DESCR',string],['INVOICE_DATE',string],['DISCOUNT_RATE',number],['
DISCOUNT_DESC',string]],cap([[1,0,0,0,0,0,0]],[])),(true)). 
 
 
rule(relation(cameleon, 
  olsen, 
  ie, 
  [['Exchanged', string],  
   ['Expressed', string], 
   ['Rate', real], 
   ['Date', string]], 
   cap([[0, 0, 0, 0]], 
       [])), (true)). 
 
%% elevations  
rule('INTERNAL_PAYEE_p'(skolem(payee,_PAYEE_ID,internal,1,'INTERNAL_PAYEE'(_PAYEE_ID
,_NAME,_PHONE)),skolem(personname,_NAME,internal,2,'INTERNAL_PAYEE'(_PAYEE_ID,_NAM
E,_PHONE)),skolem(phoneNumber,_PHONE,internal,3,'INTERNAL_PAYEE'(_PAYEE_ID,_NAME,_
PHONE))),('INTERNAL_PAYEE'(_PAYEE_ID,_NAME,_PHONE))). 
rule('INTERNAL_CUSTOMER_p'(skolem(customer,_CUST_ID,internal,1,'INTERNAL_CUSTOMER'(
_CUST_ID,_NAME,_PHONE)),skolem(personname,_NAME,internal,2,'INTERNAL_CUSTOMER'(_C
UST_ID,_NAME,_PHONE)),skolem(phoneNumber,_PHONE,internal,3,'INTERNAL_CUSTOMER'(_C
UST_ID,_NAME,_PHONE))),('INTERNAL_CUSTOMER'(_CUST_ID,_NAME,_PHONE))). 
rule('INTERNAL_BANK_p'(skolem(basic,_BANK_NAME,internal,1,'INTERNAL_BANK'(_BANK_N
AME,_COUNTRY,_BANK_ID)),skolem(countryName,_COUNTRY,internal,2,'INTERNAL_BANK'(_
BANK_NAME,_COUNTRY,_BANK_ID)),skolem(bankLoc,_BANK_ID,internal,3,'INTERNAL_BAN
K'(_BANK_NAME,_COUNTRY,_BANK_ID))),('INTERNAL_BANK'(_BANK_NAME,_COUNTRY,_
BANK_ID))). 
rule('INTERNAL_BANK_BRANCH_p'(skolem(branchLoc,_BRANCH_ID,internal,1,'INTERNAL_BA
NK_BRANCH'(_BRANCH_ID,_BANK_ID,_BRANCH_NAME)),skolem(bankLoc,_BANK_ID,internal
,2,'INTERNAL_BANK_BRANCH'(_BRANCH_ID,_BANK_ID,_BRANCH_NAME)),skolem(basic,_B
RANCH_NAME,internal,3,'INTERNAL_BANK_BRANCH'(_BRANCH_ID,_BANK_ID,_BRANCH_N
AME))),('INTERNAL_BANK_BRANCH'(_BRANCH_ID,_BANK_ID,_BRANCH_NAME))). 



© 2004 Sajindra Jayasena. All rights reserved 53

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

rule(is_a(internal,basic),(true)). 
rule(is_a(ofx,basic),(true)). 
rule(is_a(olsen_context, basic), (true)). 
rule(is_a(ifx, basic), (true)). 
rule(is_a(none, basic), (true)). 
rule(is_a(swift,basic),(true)). 
rule(is_a(swift_intraEU,swift),(true)). 
rule(is_a(swift_outsideEU,swift),(true)). 
rule(contexts([internal,ofx,olsen_context,ifx,none,swift,swift_intraEU,swift_outsideEU]),(true)). 
rule(context(internal), (true)). 
rule(context(ofx), (true)). 
rule(context(olsen_context), (true)). 
rule(context(ifx), (true)). 
rule(context(none), (true)). 
rule(context(swift), (true)). 
rule(context(swift_intraEU), (true)). 
rule(context(swift_outsideEU), (true)). 
 
%% modifiers  
%% for payment mode description  
rule(modifier(paymentAmt,_O,paymentScheme,internal,M),(cste(basic,M,internal,"notax"))). 
rule(modifier(paymentAmt,_O,paymentScheme,ofx,M),(cste(basic,M,ofx,"withtax"))). 
rule(modifier(paymentAmt,_O,paymentScheme,swift,M),(cste(basic,M,swift,"withtax"))). 
rule(modifier(paymentAmt,_O,paymentScheme,swift_intraEU,M),(cste(basic,M,swift_intraEU,"withtax")
)). 
rule(modifier(paymentAmt,_O,paymentScheme,swift_outsideEU,M),(cste(basic,M,swift_outsideEU,"wit
htax"))). 
 
%% includeBankCharges  
rule(modifier(paymentAmt,_O,includeBankCharges,internal,M),(cste(basic,M,internal,"no"))). 
rule(modifier(paymentAmt,_O,includeBankCharges,ofx,M),(cste(basic,M,ofx,"no"))). 
rule(modifier(paymentAmt,_O,includeBankCharges,swift,M),(cste(basic,M,swift,"no"))). 
rule(modifier(paymentAmt,_O,includeBankCharges,swift_intraEU,M),(cste(basic,M,swift_intraEU,"no")
)). 
rule(modifier(paymentAmt,_O,includeBankCharges,swift_outsideEU,M),(cste(basic,M,swift_outsideEU,
"yes"))). 
 
%% for currency type.for the moment hard coded to EUR and US$ 
rule(modifier(paymentAmt,_O,currency,internal,M),(cste(currency,M,internal,"GBP"))). 
 
rule(modifier(paymentAmt,_O,currency,ofx,M),( attr(_O,paymentRef,Payment),attr(Payment,payeeAct,A
ccount), 
attr(Account,location,Location),attr(Location,bank,Bank),attr(Bank,countryIncorporated,Country), 
attr(Country,officialCurrency,M))). 
 
%%for phone number scheme 
rule(modifier(phoneNumber,_O,numberScheme,internal,M),(cste(phoneNumberScheme,M,internal,"DO
TSCHEME"))). 
rule(modifier(phoneNumber,_O,numberScheme,ofx,M),(cste(phoneNumberScheme,M,ofx,"HYPENSCH
EME"))). 
 
%% modifier for account code  
rule(modifier(accountCode,_O,scheme,internal,M),(cste(accountCodeScheme,M,internal,"internal"))). 
rule(modifier(accountCode,_O,scheme,ofx,M),(cste(accountCodeScheme,M,ofx,"ofx"))). 
rule(modifier(accountCode,_O,scheme,ifx,M),(cste(accountCodeScheme,M,ifx,"ifx"))). 
 
%% date format i.e US and UK  
rule(modifier(date,_O,format,internal,M),(cste(dateFormat,M,internal,"US"))). 
rule(modifier(date,_O,format,ofx,M),(cste(dateFormat,M,ofx,"UK"))). 



© 2004 Sajindra Jayasena. All rights reserved 54
 

%% date style  
rule(modifier(date,_O,style,internal,M),(cste(dateStyle,M,internal,"dashUK"))). 
rule(modifier(date,_O,style,ofx,M),(cste(dateStyle,M,ofx,"nodashUS"))). 
 
%% the account location. 
%rule(modifier(location,_O,locationType,internal,M),(cste(basic,M,internal,"branch"))). 
%rule(modifier(location,_O,locationType,ofx,M),(cste(basic,M,ofx,"bank"))). 
 
rule(modifier(bankLoc,_O,idType,internal,M),(cste(basic,M,internal,"single"))). 
rule(modifier(bankLoc,_O,idType,ofx,M),(cste(basic,M,ofx,"composite"))). 
rule(modifier(bankLoc,_O,idType,swift,M),(cste(basic,M,swift,"composite"))). 
 
% invoice scheme  
rule(modifier(invoiceAmount,_O,invoiceScheme,internal,M),(cste(basic,M,internal,"nominal"))). 
rule(modifier(invoiceAmount,_O,invoiceScheme,ofx,M),(cste(basic,M,ofx,"nominaltaxfees"))). 
rule(modifier(invoiceAmount,_O,invoiceScheme,ifx,M),(cste(basic,M,ifx,"nominaltaxfees"))). 
 
%% the attr definitions. ---------------------------------------------------------- 
%% for exchange rate semantic type.  
rule(attr(X, txnDate, Y), (olsen_p(_6313, _6314, X, Y))). 
rule(attr(X, fromCur, Y), (olsen_p(_6351, Y, X, _6354))). 
rule(attr(X, toCur, Y), (olsen_p(Y, _6390, X, _6392))). 
 
%% attribute for payment and payment amount ----- 
%rule(attr(PaymentAmt,paymentRef,Payment),('INTERNAL_PAYMENT_p'(Payment,_,PaymentAmt,_,
_,_,_,_))). 
%rule(attr(PaymentAmt,paymentRef,Payment),('OFX_PAYMENT_p'(Payment,_,PaymentAmt,_,_,_,_,_)
)). 
 
%attrib for bank(location) and name relation - internal and ofx.-------------- 
rule(attr(BankLoc,bankName,BankName),('INTERNAL_BANK_p'(BankName,_,BankLoc))). 
rule(attr(BankLoc,bankName,BankName),('OFX_BANK_p'(BankName,BankLoc,_))). 
 
%attrib for branch and name-----------. 
rule(attr(BranchLoc,branchName,BranchName),('INTERNAL_BANK_BRANCH_p'(BranchLoc,_,Branc
hName))). 
rule(attr(BranchLoc,branchName,BranchName),('OFX_BANK_BRANCH_p'(BranchLoc,_,BranchName)
)). 
 
%%atrib for branch , bank relation.----------------- 
rule(attr(BranchLoc,bank,BankLoc),('INTERNAL_BANK_BRANCH_p'(BranchLoc,BankLoc,_))). 
rule(attr(BranchLoc,bank,BankLoc),('OFX_BANK_BRANCH_p'(BranchLoc,BankLoc,_))). 
 
%%attr for location for account -- for internal and OFX-------------- 
rule(attr(Account,location,Branch),('INTERNAL_ACCOUNT_DETAILS_p'(Account,_,Branch,_,_))). 
rule(attr(Account,location,Branch),('OFX_ACCOUNT_DETAILS_p'(Account,_,_,_,Branch))). 
 
%% payee account relationship  
rule(attr(Payment,payeeAct,PayeeAcct),('INTERNAL_PAYMENT_p'(Payment,_,_,_,_,_,PayeeAcct,_))). 
rule(attr(Payment,payeeAct,PayeeAcct),('OFX_PAYMENT_p'(Payment,_,_,_,_,_,PayeeAcct,_))). 
 
%%  country of bank  
rule(attr(Bank,countryIncorporated,Country),('INTERNAL_BANK_p'(_,Country,Bank))). 
rule(attr(Bank,countryIncorporated,Country),('OFX_BANK_p'(_,Bank,Country))). 
%% currency of country  
 
rule(attr(Country,officialCurrency,Currency),('COUNTRY_CURRENCY_p'(X,Currency),'INTERNAL_
BANK_p'(_,Country,_), value(Country,internal,U),value(X,internal,U))). 
rule(attr(Country,officialCurrency,Currency),('COUNTRY_CURRENCY_p'(X,Currency),'OFX_BANK_
p'(_,_,Country), value(Country,ofx,U),value(X,ofx,U))). 



© 2004 Sajindra Jayasena. All rights reserved 55

 
 
 
 
 

%rule(attr(Country,officialCurrency,Currency),('INTERNAL_COUNTRY_CURRENCY_p'(Country,Cur
rency))). 
%rule(attr(Country,officialCurrency,Currency),('OFX_COUNTRY_CURRENCY_p'(Country,Currency))
). 
 
%% invoice ref of invoice amount  
rule(attr(InvAmt,invoiceRef,Invoice),('INTERNAL_INVOICE_p'(Invoice,_,InvAmt,_,_,_,_))). 
 
%% for bank charge inclusion/exclusion 
rule(cvt(noncommutative,paymentAmt,_O,includeBankCharges,Ctxt,"no",Vs,"yes",Vt), 
     (value(FeeName,Ctxt,"outsideEU"),'SWIFT_CHARGE_TYPES_p'(FeeName,_,Rate), 
     value(Rate,Ctxt,RR), 
      (Vt is RR + Vs))). 
 
%% for payment amount i,e tax and without tax  
rule(cvt(noncommutative,paymentAmt,_O,paymentScheme,Ctxt,"notax",Vs,"withtax",Vt), 
     (value(TaxName,Ctxt,"GST"),'OFX_TAX_TYPES_p'(TaxName,_,Rate), 
     value(Rate,Ctxt,RR), 
      (Vtemp is RR * Vs), 
      (Vt is Vs + Vtemp))). 
 
%conversion for invoice scheme for addition of fees and invices 
%%% WORKING !!!!  
rule(cvt(noncommutative,invoiceAmount,_O,invoiceScheme,Ctxt,"nominal",Vs,"nominaltaxfees",Vt),  
     (attr(_O,invoiceRef,INVOIC_ID),value(INVOIC_ID,Ctxt,ID), 
      value(TaxName1,Ctxt,"GST"), 
'IFX_INVOICE_TAXES_p'(TaxName2,ID2), value(TaxName2,Ctxt,"GST"), 
     value(ID2,Ctxt,ID),         
      'IFX_TAX_TYPES_p'(TaxName1,_,TRate1),value(TRate1,Ctxt,TR1),  
      (VtT1 is   Vs * TR1), 
      % second tax ----------------- 
      value(TaxName3,Ctxt,"IMPORT"), 
      'IFX_INVOICE_TAXES_p'(TaxName4,ID3),      
      value(TaxName4,Ctxt,"IMPORT"),value(ID3,Ctxt,ID),         
     'IFX_TAX_TYPES_p'(TaxName3,_,TRate2),value(TRate2,Ctxt,TR2),  
      (VtT2 is   Vs * VtT2), 
      (TOT_TAX is VtT1 + TR2),       
      % now the fees ----------- 
       value(FeeName1,Ctxt,"LATE"),'IFX_INVOICE_FEES_p'(FeeName2,ID4),      
       value(FeeName2,Ctxt,"LATE"),value(ID4,Ctxt,ID),                    
'IFX_FEES_TYPES_p'(FeeName1,_,FRate1),value(FRate1,Ctxt,FR1),   
     (VtF1 is   Vs + FR1), 
% second fee   
     value(FeeName3,Ctxt,"DELIVERY"),'IFX_INVOICE_FEES_p'(FeeName4,ID5),      
     value(FeeName4,Ctxt,"DELIVERY"),value(ID5,Ctxt,ID),         
'IFX_FEES_TYPES_p'(FeeName3,_,FRate2),value(FRate2,Ctxt,FR2),  
   (VtF2 is   Vs * FR2),  (TOT_FEES is VtF1 + VtF2),   (Vtemp is TOT_TAX + TOT_FEES), 
 (Vt is Vs + Vtemp))). 
 
rule(cvt(commutative,accountCode,_O,scheme,Ctxt,Mvs,Vs,Mvt,Vt), (code_map(Vs,Mvs,Mvt,Vt,Ctxt))).
 
%% ofx and internal  
rule(code_map(Val,"internal","ofx",V,Ctxt), ( 'CODE_MAP_ONTOLOGY_INTERNAL'(Val,ONTO), 
                                         'ONTOLOGY_ACCOUNT_TYPES'(ONTO,_), 
                                         'CODE_MAP_ONTOLOGY_OFX'(V,ONTO))). 
                                         
rule(code_map(Val,"ofx","internal",V,Ctxt), ( 'CODE_MAP_ONTOLOGY_OFX'(Val,ONTO), 
                                         'ONTOLOGY_ACCOUNT_TYPES'(ONTO,_), 
                                         'CODE_MAP_ONTOLOGY_INTERNAL'(V,ONTO))). 



© 2004 Sajindra Jayasena. All rights reserved 56

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

%% rule for currency conversion-----.  
rule(cvt(commutative,paymentAmt,O,currency,Ctxt,Mvs,Vs,Mvt,Vt), 
(olsen_p(Fc, Tc, Rate, Date), 
 value(Fc, Ctxt, Mvs), 
 value(Tc, Ctxt, Mvt), 
 value(Rate, Ctxt, Rv), 
 currentDate_p(CurDate), 
 value(CurDate, Ctxt, DateValue), 
 value(Date, Ctxt, DateValue), 
 multiply(Vs, Rv, Vt))). 
 
 
%% supplementary rules to get the date from system and match Exchange rate with olsen's date format. 
 
rule(currentDate(Date), ({date(D), substring(D, 5, 3, Month), substring(D, 9, 2, Day), substring(D, 23, 2, 
Year)}, month(Month, NumMonth), {concat_string([NumMonth, /, Day, /, Year], Date)})). 
rule(month("Jan", 01), (true)). 
rule(month("Feb", 02), (true)). 
rule(month("Mar", 03), (true)). 
rule(month("Apr", 04), (true)). 
rule(month("May", 05), (true)). 
rule(month("Jun", 06), (true)).  
rule(month("Jul", 07), (true)). 
rule(month("Aug", 08), (true)). 
rule(month("Sep", 09), (true)). 
rule(month("Oct", 10), (true)). 
rule(month("Nov", 11), (true)). 
rule(month("Dec", 12), (true)). 
 
rule(currentDate_p( 
 skolem(date, V, Ctxt, 1, currentDate(V))), 
 (currentDate(V))). 
 
 
rule(cvt(date,O,style,Ctxt,"dashUK",Vs,"nodashUS",Vt), 
(substring(Vs,1,2,Date),substring(Vs,4,2,Month),substring(Vs,6,4,Year), 
concat_string([Year,Month,Date],Vt))). 
 
% other way  
rule(cvt(date,O,style,Ctxt,"nodashUS",Vs,"dashUK",Vt), 
(substring(Vs,1,4,Year),substring(Vs,5,2,Month),substring(Vs,7,2,Date), 
concat_string([Date, / , Month, / , Year],Vt))). 
 
 
% ---------------- BIC conversion ----------- 
%conversion for composite (BIC ) and simple bank ID  
rule(cvt(noncommutative,bankLoc,O,idType,Ctxt,"single",Vs,"composite",Vt), 
 ('SWIFT_BANK_BCI_p'(BANK,LOC,COUNTRY), 
  value(BANK,Ctxt,Vs),   
  value(LOC,Ctxt,Locc), 
  value(COUNTRY,Ctxt,Countryc), 
    (Vtemp is Vs + Locc), 
    (Vt is Vtemp + Countryc))). 
 
%------------ end BIC conversion ---------------- 



© 2004 Sajindra Jayasena. All rights reserved 57

Appendix B: Sample RDF file for EBPP generated automatically from COIN 
Metadata Manager  
 
 <?xml version="1.0" encoding="UTF-8" ?>  

 <rdf:RDF xmlns:coin="http://localhost/appEditor/apps/rdf/coin_schema#" 
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"> 
 <coin:Ont_SemanticType rdf:ID="dateStyle"> 
  <coin:Ont_SemanticTypeName>dateStyle</coin:Ont_SemanticTypeName>  
  <coin:Ont_SemanticTypeParent rdf:resource="#basic" />  
  </coin:Ont_SemanticType> 
 <coin:Ont_SemanticType rdf:ID="currency"> 
  <coin:Ont_SemanticTypeName>currency</coin:Ont_SemanticTypeName>  
  <coin:Ont_SemanticTypeParent rdf:resource="#basic" />  
  </coin:Ont_SemanticType> 
 <coin:Ont_SemanticType rdf:ID="branchLoc"> 
  <coin:Ont_SemanticTypeName>branchLoc</coin:Ont_SemanticTypeName>  
  <coin:Ont_SemanticTypeParent rdf:resource="#location" />  
  </coin:Ont_SemanticType> 
 <coin:Ont_SemanticType rdf:ID="date"> 
  <coin:Ont_SemanticTypeName>date</coin:Ont_SemanticTypeName>  
  <coin:Ont_SemanticTypeParent rdf:resource="#basic" />  
  </coin:Ont_SemanticType> 
 <coin:Ont_SemanticType rdf:ID="invoiceAmount"> 
  <coin:Ont_SemanticTypeName>invoiceAmount</coin:Ont_SemanticTypeName>  
  <coin:Ont_SemanticTypeParent rdf:resource="#basic" />  
  </coin:Ont_SemanticType> 
 <coin:Ont_SemanticType rdf:ID="location"> 
  <coin:Ont_SemanticTypeName>location</coin:Ont_SemanticTypeName>  
  <coin:Ont_SemanticTypeParent rdf:resource="#basic" />  
  </coin:Ont_SemanticType> 
 <coin:Ont_SemanticType rdf:ID="bankLoc"> 
  <coin:Ont_SemanticTypeName>bankLoc</coin:Ont_SemanticTypeName>  
  <coin:Ont_SemanticTypeParent rdf:resource="#location" />  
  </coin:Ont_SemanticType> 
 <coin:Ont_SemanticType rdf:ID="payee"> 
  <coin:Ont_SemanticTypeName>payee</coin:Ont_SemanticTypeName>  
  <coin:Ont_SemanticTypeParent rdf:resource="#personName" />  
  </coin:Ont_SemanticType> 
 <coin:Ont_SemanticType rdf:ID="personName"> 
  <coin:Ont_SemanticTypeName>personName</coin:Ont_SemanticTypeName>  
  <coin:Ont_SemanticTypeParent rdf:resource="#basic" /> 
</coin:Ont_SemanticType> 
 <coin:Ont_SemanticType rdf:ID="accountCode"> 
  <coin:Ont_SemanticTypeName>accountCode</coin:Ont_SemanticTypeName>  
  <coin:Ont_SemanticTypeParent rdf:resource="#basic" />  
  </coin:Ont_SemanticType> 
 <coin:Ont_SemanticType rdf:ID="basic"> 
  <coin:Ont_SemanticTypeName>basic</coin:Ont_SemanticTypeName>  
  </coin:Ont_SemanticType> 
 <coin:Ont_SemanticType rdf:ID="accountCodeScheme"> 
  <coin:Ont_SemanticTypeName>accountCodeScheme</coin:Ont_SemanticTypeName>  
  <coin:Ont_SemanticTypeParent rdf:resource="#basic" />  
  </coin:Ont_SemanticType> 
 <coin:Ont_SemanticType rdf:ID="account"> 
  <coin:Ont_SemanticTypeName>account</coin:Ont_SemanticTypeName>  
  <coin:Ont_SemanticTypeParent rdf:resource="#basic" />  
  </coin:Ont_SemanticType> 



© 2004 Sajindra Jayasena. All rights reserved 58

 
 
 
 
 

 <coin:Ont_SemanticType rdf:ID="paymentScheme"> 
  <coin:Ont_SemanticTypeName>paymentScheme</coin:Ont_SemanticTypeName>  
  <coin:Ont_SemanticTypeParent rdf:resource="#basic" />  
  </coin:Ont_SemanticType> 
 <coin:Ont_SemanticType rdf:ID="dateFormat"> 
  <coin:Ont_SemanticTypeName>dateFormat</coin:Ont_SemanticTypeName>  
  <coin:Ont_SemanticTypeParent rdf:resource="#basic" />  
  </coin:Ont_SemanticType> 
 <coin:Ont_SemanticType rdf:ID="includeBankCharge"> 
  <coin:Ont_SemanticTypeName>includeBankCharge</coin:Ont_SemanticTypeName>  
  <coin:Ont_SemanticTypeParent rdf:resource="#basic" />  
  </coin:Ont_SemanticType> 
 <coin:Ont_SemanticType rdf:ID="customer"> 
  <coin:Ont_SemanticTypeName>customer</coin:Ont_SemanticTypeName>  
  <coin:Ont_SemanticTypeParent rdf:resource="#personName" />  
  </coin:Ont_SemanticType> 
 <coin:Ont_SemanticType rdf:ID="moneyAmount"> 
  <coin:Ont_SemanticTypeName>moneyAmount</coin:Ont_SemanticTypeName>  
  <coin:Ont_SemanticTypeParent rdf:resource="#basic" />  
  </coin:Ont_SemanticType> 
 <coin:Ont_SemanticType rdf:ID="invoice"> 
  <coin:Ont_SemanticTypeName>invoice</coin:Ont_SemanticTypeName>  
  <coin:Ont_SemanticTypeParent rdf:resource="#basic" />  
  </coin:Ont_SemanticType> 
 <coin:Ont_SemanticType rdf:ID="payment"> 
  <coin:Ont_SemanticTypeName>payment</coin:Ont_SemanticTypeName>  
  <coin:Ont_SemanticTypeParent rdf:resource="#basic" />  
  </coin:Ont_SemanticType> 
 <coin:Ont_SemanticType rdf:ID="country"> 
  <coin:Ont_SemanticTypeName>country</coin:Ont_SemanticTypeName>  
  <coin:Ont_SemanticTypeParent rdf:resource="#basic" />  
  </coin:Ont_SemanticType> 
 <coin:Ont_SemanticType rdf:ID="paymentAmount"> 
  <coin:Ont_SemanticTypeName>paymentAmount</coin:Ont_SemanticTypeName>  
  <coin:Ont_SemanticTypeParent rdf:resource="#basic" />  
  </coin:Ont_SemanticType> 
 <coin:Ont_SemanticType rdf:ID="phoneNumberScheme"> 
  <coin:Ont_SemanticTypeName>phoneNumberScheme</coin:Ont_SemanticTypeName>  
  <coin:Ont_SemanticTypeParent rdf:resource="#basic" />  
  </coin:Ont_SemanticType> 
 <coin:Ont_SemanticType rdf:ID="invoiceScheme"> 
  <coin:Ont_SemanticTypeName>invoiceScheme</coin:Ont_SemanticTypeName>  
  <coin:Ont_SemanticTypeParent rdf:resource="#basic" />  
  </coin:Ont_SemanticType> 
 <coin:Ont_SemanticType rdf:ID="phoneNumber"> 
  <coin:Ont_SemanticTypeName>phoneNumber</coin:Ont_SemanticTypeName>  
  <coin:Ont_SemanticTypeParent rdf:resource="#basic" />  
  </coin:Ont_SemanticType> 
 <coin:Ont_Attribute rdf:ID="bank"> 
  <coin:Ont_AttributeName>bank</coin:Ont_AttributeName>  
  <coin:Ont_AttributeFrom rdf:resource="#branchLoc" />  
  <coin:Ont_AttributeTo rdf:resource="#bankLoc" />  
  </coin:Ont_Attribute> 
 <coin:Ont_Attribute rdf:ID="incorporation"> 
  <coin:Ont_AttributeName>incorporation</coin:Ont_AttributeName>  
  <coin:Ont_AttributeFrom rdf:resource="#bankLoc" />  
  <coin:Ont_AttributeTo rdf:resource="#country" />  
  </coin:Ont_Attribute> 



© 2004 Sajindra Jayasena. All rights reserved 59

 <coin:Ont_Attribute rdf:ID="code"> 
  <coin:Ont_AttributeName>code</coin:Ont_AttributeName>  
  <coin:Ont_AttributeFrom rdf:resource="#account" />  
  <coin:Ont_AttributeTo rdf:resource="#accountCode" />  
  </coin:Ont_Attribute> 
 <coin:Ont_Attribute rdf:ID="payee"> 
  <coin:Ont_AttributeName>payee</coin:Ont_AttributeName>  
  <coin:Ont_AttributeFrom rdf:resource="#account" />  
  <coin:Ont_AttributeTo rdf:resource="#payee" />  
  </coin:Ont_Attribute> 
 <coin:Ont_Attribute rdf:ID="loc"> 
  <coin:Ont_AttributeName>loc</coin:Ont_AttributeName>  
  <coin:Ont_AttributeFrom rdf:resource="#account" />  
  <coin:Ont_AttributeTo rdf:resource="#branchLoc" />  
  </coin:Ont_Attribute> 
 <coin:Ont_Attribute rdf:ID="phone"> 
  <coin:Ont_AttributeName>phone</coin:Ont_AttributeName>  
  <coin:Ont_AttributeFrom rdf:resource="#customer" />  
  <coin:Ont_AttributeTo rdf:resource="#phoneNumber" />  
  </coin:Ont_Attribute> 
 <coin:Ont_Attribute rdf:ID="amount"> 
  <coin:Ont_AttributeName>amount</coin:Ont_AttributeName>  
  <coin:Ont_AttributeFrom rdf:resource="#invoice" />  
  <coin:Ont_AttributeTo rdf:resource="#invoiceAmount" />  
  </coin:Ont_Attribute> 
 <coin:Ont_Attribute rdf:ID="paymentAmount"> 
  <coin:Ont_AttributeName>paymentAmount</coin:Ont_AttributeName>  
  <coin:Ont_AttributeFrom rdf:resource="#payment" />  
  <coin:Ont_AttributeTo rdf:resource="#paymentAmount" />  
  </coin:Ont_Attribute> 
 <coin:Ont_Attribute rdf:ID="payeeAcount"> 
  <coin:Ont_AttributeName>payeeAcount</coin:Ont_AttributeName>  
  <coin:Ont_AttributeFrom rdf:resource="#payment" />  
  <coin:Ont_AttributeTo rdf:resource="#account" />  
  </coin:Ont_Attribute> 
 <coin:Ont_Attribute rdf:ID="currency"> 
  <coin:Ont_AttributeName>currency</coin:Ont_AttributeName>  
  <coin:Ont_AttributeFrom rdf:resource="#country" />  
  <coin:Ont_AttributeTo rdf:resource="#basic" />  
  </coin:Ont_Attribute> 
 <coin:Ont_Attribute rdf:ID="payRef"> 
  <coin:Ont_AttributeName>payRef</coin:Ont_AttributeName>  
  <coin:Ont_AttributeFrom rdf:resource="#paymentAmount" />  
  <coin:Ont_AttributeTo rdf:resource="#payment" />  
  </coin:Ont_Attribute> 
 <coin:Ont_Modifier rdf:ID="style"> 
  <coin:Ont_ModifierName>style</coin:Ont_ModifierName>  
  <coin:Ont_ModifierFrom rdf:resource="#date" />  
  <coin:Ont_ModifierTo rdf:resource="#dateStyle" />  
  </coin:Ont_Modifier> 
 <coin:Ont_Modifier rdf:ID="format"> 
  <coin:Ont_ModifierName>format</coin:Ont_ModifierName>  
  <coin:Ont_ModifierFrom rdf:resource="#date" />  
  <coin:Ont_ModifierTo rdf:resource="#dateFormat" />  
  </coin:Ont_Modifier> 
 <coin:Ont_Modifier rdf:ID="scheme"> 
  <coin:Ont_ModifierName>scheme</coin:Ont_ModifierName>  
  <coin:Ont_ModifierFrom rdf:resource="#invoiceAmount" />  
  <coin:Ont_ModifierTo rdf:resource="#invoiceScheme" />  
  </coin:Ont_Modifier> 



© 2004 Sajindra Jayasena. All rights reserved 60

 <coin:Ont_Modifier rdf:ID="code"> 
  <coin:Ont_ModifierName>code</coin:Ont_ModifierName>  
  <coin:Ont_ModifierFrom rdf:resource="#accountCode" />  
  <coin:Ont_ModifierTo rdf:resource="#accountCodeScheme" />  
  </coin:Ont_Modifier> 
 <coin:Ont_Modifier rdf:ID="<name>"> 
  <coin:Ont_ModifierName><name></coin:Ont_ModifierName>  
  <coin:Ont_ModifierFrom rdf:resource="#moneyAmount" />  
  <coin:Ont_ModifierTo rdf:resource="#currency" />  
  </coin:Ont_Modifier> 
 <coin:Ont_Modifier rdf:ID="payScheme"> 
  <coin:Ont_ModifierName>payScheme</coin:Ont_ModifierName>  
  <coin:Ont_ModifierFrom rdf:resource="#paymentAmount" />  
  <coin:Ont_ModifierTo rdf:resource="#paymentScheme" />  
  </coin:Ont_Modifier> 
 <coin:Ont_Modifier rdf:ID="currency"> 
  <coin:Ont_ModifierName>currency</coin:Ont_ModifierName>  
  <coin:Ont_ModifierFrom rdf:resource="#paymentAmount" />  
  <coin:Ont_ModifierTo rdf:resource="#currency" />  
  </coin:Ont_Modifier> 
 <coin:Ont_Modifier rdf:ID="bankChargeScheme"> 
  <coin:Ont_ModifierName>bankChargeScheme</coin:Ont_ModifierName>  
  <coin:Ont_ModifierFrom rdf:resource="#paymentAmount" />  
  <coin:Ont_ModifierTo rdf:resource="#includeBankCharge" />  
  </coin:Ont_Modifier> 
 <coin:Ont_Modifier rdf:ID="scheme"> 
  <coin:Ont_ModifierName>scheme</coin:Ont_ModifierName>  
  <coin:Ont_ModifierFrom rdf:resource="#phoneNumber" />  
  <coin:Ont_ModifierTo rdf:resource="#phoneNumberScheme" />  
  </coin:Ont Modifier> 



© 2004 Sajindra Jayasena. All rights reserved 61

Appendix C: Dynamic modifier representation for RDF and Prolog  
 
 RDF  

  <coin:Ont_DynamicModifierValue rdf:ID="currency"> 
    <coin:Ont_ModifierName>currency</coin:Ont_ModifierName> 
    <coin:Ont_ModifierFrom rdf:resource="#paymentAmount" /> 
    <coin:Ont_DynamicModifierContext rdf:resource="#OFX" /> 
    <coin:Ont_ModifierResolveSteps > 
     <coin:Ont_ModifierResolveStep > 
         <coin:Ont_StepAttributeDomain rdf:resource="#paymentAmount" />      
      <coin:Ont_StepAttributeName rdf:resource="#paymentRef" />  
     </coin:Ont_ModifierResolveStep > 
     <coin:Ont_ModifierResolveStep > 
  <coin:Ont_StepAttributeDomain rdf:resource="#payment" />       
  <coin:Ont_StepAttributeName rdf:resource="#payeeAct" />    
     </coin:Ont_ModifierResolveStep > 
     <coin:Ont_ModifierResolveStep > 
  <coin:Ont_StepAttributeDomain rdf:resource="#account" />       
  <coin:Ont_StepAttributeName rdf:resource="#location" />   
     </coin:Ont_ModifierResolveStep > 
     <coin:Ont_ModifierResolveStep > 
      <coin:Ont_StepAttributeDomain rdf:resource="#branchLoc" />  
  <coin:Ont_StepAttributeName rdf:resource="#banklLoc" />    
     </coin:Ont_ModifierResolveStep >    
     <coin:Ont_ModifierResolveStep > 
      <coin:Ont_StepAttributeDomain rdf:resource="#bank" />  
  <coin:Ont_StepAttributeName rdf:resource="#incorpporatedCountry" /  
     </coin:Ont_ModifierResolveStep >  
     <coin:Ont_ModifierResolveStep > 
      <coin:Ont_StepAttributeDomain rdf:resource="#country" />  
  <coin:Ont_StepAttributeName rdf:resource="#officialCurrency" />    
     </coin:Ont_ModifierResolveStep >       
    </coin:Ont_ModifierResolveSteps > 
  </coin:Ont_DynamicModifierValue>

PROLOG 
 
rule(modifier(paymentAmt,_O,currency,ofx,M),( attr(_O,paymentRef,Payment),attr(Payment,pa
yeeAct,Account), 
                                             attr(Account,location,Location), 
                                             attr(Location,bank,Bank), 
                                             attr(Bank,countryIncorporated,Country), 
                                             attr(Country,officialCurrency,M))).


