

A TAXONOMY AND ANALYSIS OF WEB
WRAPPING TECHNOLOGIES

Shin Wee Chuang

Working Paper CISL# 2004-08

June 2004

Composite Information Systems Laboratory (CISL)
Sloan School of Management, Room E53-320

Massachusetts Institute of Technology
Cambridge, MA 02142

 2

A TAXONOMY AND ANALYSIS OF WEB WRAPPING TECHNOLOGIES

by

Shin Wee Chuang

Submitted to the Engineering Systems Division and the Department of Civil and Environmental
Engineering on May 7th, 2004,

in Partial Fulfillment of the Requirements for the Degrees of
Master of Science in Technology and Policy

And
Master of Science in Civil and Environmental Engineering

ABSTRACT

Web wrapping technologies were developed in the 90s in the middle of the dot com boom to
facilitate the extraction of web data. In recent years, the underlying architecture of web wrapping
technologies is also been used for other applications such as information integration between
legacy systems in large enterprises.

Despite the relatively widespread use of this technology, there is currently no uniform way of
characterizing web wrapping toolkits, unlike say, a digital camera which can be described in
terms of the size of its sensor or storage capacity. The focus of this thesis therefore is to develop
a taxonomy or classification scheme that can be used to effectively describe a web wrapping
toolkit in terms of its retrieval, extraction and conversion features. For this purpose, some 20
toolkits are studied and of which, verification tests were performed on 9 of these toolkits where
evaluation copies are available.

The last part of the thesis discusses two policy Acts that are closely related to data extraction.
They are the EU Database Directive and the HR3261 Database and Collection of Information
Misappropriation Act. A comparative analysis between the two Acts was performed and their
respective implications on the database producing industry were examined.

Thesis Supervisor: Stuart Madnick
John Norris Maguire Professor of Information Technology and Professor of Engineering Systems

Thesis Reader: John Williams
Professor of Civil and Environmental Engineering and Engineering Systems

 3

Chapter 1: Introduction

The Internet has come of age since the older days of the ARPANET. Today, the Internet is
ubiquitous and is woven into the fabric of our everyday lives, from checking emails to booking
an exotic holiday. We use the Internet to connect to people from all over the world, for both
work and leisure. We use the Internet to search for research materials that we need for our school
projects. We use the Internet to search for the ideal holiday getaway. We use the Internet to
search for the latest news about sports, entertainment, book reviews, and just about everything.
In fact, the Internet has become the 411 of the modern era that we now live in.

At the same time that the Internet is revolutionizing our personal lives, it is also slowly creeping
into the work place as well. Companies now rely on the Internet to gather information, to
perform market analysis, to source for the cheaper materials and to connect offices in disparate
locations. However, since the Internet is designed primarily for human consumption, such
activities have to be performed manually. This is a costly exercise for such a mundane effort.
Fortunately, the emergence of web wrapping technologies takes away the need for such
repetitive actions to be performed manually. Computer programs are written that automatically
extracts the required data from the Internet, and produce an output format that are deemed fit by
the end-users. No longer is manual browsing of the Internet necessary in order to perform
competitors’ analysis, and even the filling up of online forms can be automated. Web wrapping
toolkits have, in a way, connected the disparate of information in the world-wide-web into a
consolidated, giant “virtual database”.

Not all web wrapping toolkits are capable of performing all the required tasks, however. There is
an abundance of web wrapping toolkits out there that cater to different needs. Some specialize in
converting an input format to a different output format; others are better at handling more
complex web pages such as the ones with embedded javascripts. Still, others are simply excellent
acting as an integration platform to connect disparate data sources, from both internal file
systems and external public web pages. In this thesis, a new taxonomy that is aimed at better
classifying web wrapping toolkits will be described so that readers can have a better
understanding of this technology.

1.1 Outline of the Thesis

The rest of this thesis is organized as follows. Chapter 2 contains a brief technical introduction of
web wrapping technologies and its related applications. The differences between a web wrapping
toolkit and a web wrapper are first discussed. This is then followed by a literature review of the
past methodologies presented by other researchers.

Chapter 3 discusses the taxonomy of web wrapping toolkits. Here, a “bottom up” approach is
introduced in the construction of web wrapping taxonomy. Using a 2-tier system, the individual
attributes used in the classification are first explained before the 2-tier taxonomy, which shows
the comparative features between all the 20 toolkits surveyed, is revealed.

 4

Chapter 4 deals with the analysis of the web wrapping toolkits that are included in this survey. A
brief explanation of the features supported by each toolkit is provided, and as far as possible, a
discussion on the architectural framework of the underlying technology is also provided.

Chapter 5 is a case study that demonstrates how the 2-tier taxonomy is used in practice. The aim
of this chapter is to show how the taxonomy can be used to address a hypothetical question:
“Which toolkit is the best substitute to Cameleon?”

Chapter 6 is a policy discussion on the EU Database Directive and the HR3261 Database and
Collection of Information Misappropriation Act. An introduction to the EU directive as well as
the HR3261 bill is first described, then compared and analyzed. This is followed by a discussion
on the implication of the 2 Acts on the database industry and the greater research community
before a list of recommendations is presented at the end.

Chapter 7 is the conclusion of this thesis where a review of the web wrapping technologies and
related policy implications is briefly described.

 5

Chapter 2: Introduction to Web Wrapping Technologies

The phenomenal growth of the Internet in recent years has altered the way businesses are
conducted throughout corporate America and elsewhere in the world. No longer is a presence in
the world-wide-web considered a luxurious enclave exclusive to the Silicon Valley high-tech
start-ups. Increasingly, more and more traditional brick-and-mortals companies are rushing into
publishing their products and services online. Every day, millions of web pages are uploaded and
updated with new information, and gigabytes of data are being thrown into the ever-expanding
world-wide-web every second. As the amount of online data balloons and the use of the Internet
increases, many organizations begin to rely on the web as an information source to conduct
strategic activities such as competitors’ analysis, market intelligence and data mining, where
analysts are deployed to visit and revisit a certain number of web sites constantly to gather new
information. While the use of the web for data mining-related activities represents a more
efficient shift away from the traditional labor-intensive field-works, a better and more automated
solution to manual web browsing is clearly needed as more and more web sites are used as
information sources.

It is on this pretext that web wrapping technologies were developed. Software developers first
wrote simple programs to extract segments of data from certain web data sources. These
programs, known as web wrappers, automatically searched the Internet to look for relevant
information queried by the users. Over time, more and more sophisticated features and
functionalities are added to create more robust web data extraction products. In fact, the last few
years witness a gradual shift in which web wrapping software are increasingly marketed and
used as integration solutions. The wrappers generated from these products are not only able to
extract information from static HTML web pages, but are also capable of distilling data from
many internal file systems, such as an Excel file or an email attachment. Figure 1 below provides
a graphical illustration of what a modern web wrapping toolkit is capable of doing:

Figure 1: Web Wrapping Tool that extracts internal and external data sources

Source: MIT Open
Courseware

 6

2.1 Web Wrapper and its Application

The emergence of aggregators further accelerated the development of web wrapping
technologies. An aggregator is an online service provider that takes a query from a user,
deciphers the query, sends out web wrappers to various web sites to gather information, and then
returns the “aggregated” data back to the user. A familiar example of an aggregator is
mysimon.com, which sends out web wrappers to query the databases of online merchants, using
a set of input parameters defined by the user. For example, if a user wants to buy an iPod MP3
player, he only needs to type the word “ipod” in the “search” textbox. Mysimon.com will then
display a list of online merchants that sell iPod, along with the price of the product, taxes,
shipping charges and other information. Figure 2 below shows a partial list of online merchants
selling Apple iPod (40GB).

Figure 2: The screen shot of an aggregator

In the remainder of this chapter, a more formal and detailed explanation about web wrapper and
its accompanying technologies will be provided. Then, the various past approaches that have
been taken to categorize or define web wrappers will be discussed.

 7

2.2 Web Wrapper vs. Web Wrapping Toolkits

A Wrapper, by definition, is a specialized computer program that is capable of extracting data
from web pages and transforming them into structure formats. In general, the way it works is by
accepting queries from the users, goes to the web page(s) where the information resides (either
through a direct URL or a set of URLs), extracts the requested information (according to a set of
pre-defined extraction rules) and returns the result in a certain format. A web wrapping toolkit,
on the other hand, is a piece of software that facilitates the generation of web wrappers through
its engine that usually specifies the techniques of extraction, extraction rules, accessible data
types, data transformation algorithm and so on.

As a general rule of thumb, a robust web wrapper is characterized by three main functions:
retrieval, extraction and conversion. To satisfy the retrieval requirement, a web wrapper must at
least be able of accessing a targeted web page through HTTP methods such as GET and POST.
Advanced wrappers are usually capable of handling more sophisticated tasks such as refreshes,
redirections, authentications and interpreting script languages, amongst others. Beyond retrieval,
a web wrapper must also be capable of identifying a certain targeted segment of a web page for
extraction. Finally, the conversion mechanism of the wrapper saves the extracted data into a
structured format, which are then usually exported to other application for further processing.

In the early days of web wrapping, a wrapper needs to be written manually by an expert
programmer using one of the general-purpose programming languages such as Perl or JAVA.
This is however not a trivial task as the programmer has to write a different program for each
website, making this manual approach both time-consuming and error-prone. These hand-written
wrappers also cannot adapt to any changes to the web site layout and structure, and have to be
modified for each new change, resulting in significant maintenance costs. As the number of
sources of interest grows, hand-written wrappers become infeasible. It is therefore imperative
that, aided by advances in artificial intelligence and machine learning, new wrappers that can be
semi-automatically or automatically generated started to appear over the last few years.

Wrappers that are semi-automatically generated differ from their manual counterparts in that the
user usually makes use of a graphical interface to “teach” the wrapper-generating toolkit what
information to extract, and from where. This series of step-by-step demonstration is then
converted into codes that form the basis of a semi-automatically generated wrapper. It is called
semi-automatic because of the need for the user to show the system how to extract the relevant
information, including entering some keywords such as passwords, where applicable. This
approach is far less tedious and error-prone than the manual approach, but the wrappers still need
to be updated for each time there is a structural change to the web sites. It is also not possible for
the system to induce the structure of similar sites, so demonstrations have to be performed for
each new web site that needs to be extracted.

For automatically generated wrappers, machine learning algorithms such as inductive learning
are used. Typically, a set of delimiter-based extraction rules are generated by feeding the toolkit
with training examples. However, this type of wrappers generally returns varying result
depending on the quality of the given training examples and the complexity of the web sites that
are wrapped. For very complex web sites, the automatic approach might prove to be more

 8

expensive than even the manual approach since a large number of training examples have to be
supplied and then supervised.

2.3 Literature Review of past characterization of web wrapping toolkits

There is some literature devoted to the characterization of web data extraction tools, or toolkits.
For example, Kuhlins et al simply divided the toolkits into 2 general categories: commercial and
non-commerical1. Laender et al, on the other hand, categorized these toolkits into ways in which
the wrappers are generated, such as the wrapper development languages, HTML-awareness,
natural language processing, induction, modeling and ontology2. In the same vein, Firat
developed a 3-dimensional matrix in classifying academic toolkits, based primarily on how
mechanism behind wrappers generation3. Having already discussed the 3 ways in which a
wrapper can be generated, in the following section, the other two categorization proposed by
Firat for the categorization of academic toolkits will be discussed. Then, the taxonomy that
Laender proposed will be surveyed.

2.4 Firat’s Matrix

Aykut Firat proposed a 3-dimensional matrix for categorizing web wrapping toolkits. Designed
primarily for the academic toolkits, he concluded that a web wrapping toolkit could be described
in three different ways: 1) how it generates wrappers; 2) whether it treats web pages as document
tree or as a data stream; and 3) whether the specification files (or extraction rules) are declarative
or not. In the following section, we shall discuss about the methodologies used by him.

2.4.1 Document Tree vs. Data Stream

A certain number of web sites today make use of the hierarchical relations between various
HTML elements in crafting out their web pages. Taking advantage of this tree structure, some
toolkits are designed to produce wrappers that parse these web pages, treating the web pages as a
document tree (abbreviated to WAD by Firat), usually using the Document Object Model
(DOM) as a basis for their extraction rules. The DOM is basically “a platform- and language-
neutral interface that will allow program and scripts to dynamically access and update the
content, structure and style of documents.”4 Wrappers built around this structure have several
advantages, including ease of use in writing extraction rules by utilizing the HTML tag
hierarchy. However, such an approach is likely to increase the maintenance cost in the long run
because of the need to constantly update the wrappers with each changing HTML version and
the need to introduce error recovery mechanism for HTML pages that do not conform to this tree
structure.

At the other end of the spectrum, other toolkits ignore the HTML tag hierarchy and treat web
pages as a data stream (abbreviated to WAS by Firat), using regular expressions to define the
extraction rules in most instances. The immediate advantage of adopting this approach is the
expanded ability of these web wrappers to not only extract data from traditional HTML-based
web pages, but also from other text documents including email messages, XML pages and plain

 9

text. The drawback for treating web documents as a data stream is that the extraction rules of
these wrappers are comparatively harder to write, especially if the wrappers are to be manually
generated.

2.4.2 Declarative

In general, a toolkit is considered to be declarative if there is “a clean separation of extraction
rules from the computational behavior of the wrapping engine”3. In the same vein, non-
declarative toolkits usually produce wrappers in which the extraction rules are embedded in the
underlying source codes. In other instances, a completely new language is created, such as
WebL5 by Compaq and WebQL6 by QL2 Solution.

Firat’s Matrix can best be summarized in the table below where he also gave examples of how
the various academic tools fit under this matrix.

Figure 3: Firat’s Matrix

2.5 Laender’s Taxonomy

Laender and Riveriro-Neto proposed a taxonomy to classify web wrapping toolkits based on
toolkits’ respective extraction techniques.2 They divided web wrapping toolkits into six
categories: language for wrapper development, HTML-Aware tools, NLP-based tools, Wrapper
Induction tools, Modeling-based tools and Ontology-based tools. The following section briefly
described the analysis that Laender & co. presented in their paper.

2.5.1 Languages for Wrapper Development

Apart from main stream programming language such as Perl and Java, specially designed
programming languages have been developed to assist programmers in creating web wrappers
more efficiently. As a programming language of its own, this type of web wrapping languages is
usually non-declarative, i.e. their extraction extractions are hidden or embedded into the
languages themselves. Examples of web wrapping languages include Jedi7, TSIMMIS8 and
WebQL6.

2.5.2 HTML-Aware Toolkit

HTML-aware toolkits treat web pages as a document tree, and rely on the underlying HTML
hierarchical structure of the web pages for data extraction. This type of toolkits typically requires

Source: Firat’s PhD
thesis

 10

additional component module to mitigate problems that arise from parsing web pages that do not
conform to the HTML standard. Examples of HTML aware toolkits include XWRAP Elite9 and
Lixto10.

2.5.3 NLP-based Toolkits

Natural language processing (NLP) is a technique for extracting data from free text documents
where there is no structured presentation or layout. NLP-based toolkits make use of techniques
such as filtering and tagging to establish relationship between phrases and sentences elements.
Extraction rules are then derived from studying these relationships. Examples of NLP-based
toolkits include RAPIER11 and WHISK12.

2.5.4 Wrapper Induction Toolkits

Typically, wrappers are automatically generated by feeding training examples to wrapper
induction toolkits, for which delimiter-based extraction rules are derived. Toolkits in this
category make use of the formatting features and hence the structures found on the documents
for data extraction. Examples of this group of toolkits include WIEN13 and STALKER14.

2.5.5 Modeling-based Toolkits

Toolkits in this category create wrappers based on a pre-defined domain model, which specify a
certain desired structure. The wrappers then extract data from web pages which exhibit structure
similar to the domain model, in part or in whole. Examples of this type of toolkits include
NoDoSe15 and Robosuite16.

2.5.6 Ontology-based Toolkits

Ontology-based web wrapping technologies are relatively new compared to most other web
wrapping toolkits. Toolkits of this category make use of application ontology to locate data
constants in the document. These constants are then used to construct objects. Using these
objects, the application ontology can then be used to generate wrappers automatically. The
pioneer effort of this group of toolkits comes from the Data Extraction Group17 in Brigham
Young University.

 11

Chapter 3: Taxonomy of Web Wrapping Toolkits

Most of the taxonomies for web wrapping toolkits discussed so far employ a “top-down”
approach in categorizing these systems. Using a set of pre-defined functional groupings, each
toolkit is pigeon-holed into one or more of these groupings, sorted according to their respective
characteristics. This approach has several merits. It is useful for providing an overarching
framework in understanding the functional aspects of the web wrapping toolkits under study. It is
also useful as a guide in determining the level of expertise required in the generation of
wrappers. Finally, it provides a preliminary assessment of the functional effectiveness of each
toolkit, through the study of such features as web document structure and the degree of
“declarative-ness” of the extraction rules of the toolkits.

In the following section, a different way of categorizing web wrapping toolkits is introduced.
Using a “bottom-up” approach, a two-tier approach into the categorization of web wrapping
technologies was developed. A table was first constructed which listed all the non-trivial features
of each and every toolkit, grouping these features into four layers: general, retrieval, extraction
and conversion. Then, each of these four layers was further “streamlined” to obtain a set of core
features that were considered to best describe the functionality of these toolkits. This
“streamlined” table formed the 2nd-tier taxonomy.

3.1 The 1st-tier “Bottom-Up” Taxonomy

The 1st-tier taxonomy is shown in Table 1 on the following page. It lists most of the important
features of each web wrapping toolkit that were covered so far. As can be seen from the table, it
comprises of four layers: general, retrieval, extraction and conversion. The general layer lists
some of the more general information about the toolkit, such as the degree of automation in
terms of wrapper generation and the types of platform the toolkit supports. The retrieval layer
shows the capabilities of each toolkit in accessing and retrieving web content. For example, it
measures whether a particular toolkit has the ability to handle cookies and gaining entry to
protected web sites. The extraction layer mainly displays the characteristics associated with the
extraction rules of the wrappers, such as whether the wrappers support SQL, web crawling,
scheduled extraction and so on. Finally, the conversion layer measures the mapping/connectivity
features of the toolkits.

 12

Table 1: 1st-tier Taxonomy

 13

While the taxonomy was designed to be as comprehensive and exhaustive as possible, some
information was not available, either because of proprietary information or the lack of product
literature. In cases where explicit information cannot be obtained, derivations were made based
on the behavior of the toolkits that were tested. Sometimes, when a particular product does not
support a feature explicitly, but it provides a way of achieving the same task, it was considered to
be supporting that particular feature. For example, while WebQL studio does not support script
interpretation directly, a developer of WebQL studio has the option to code a WebQL wrapper
that is capable of imitating the functions of scripts. In cases like these, a bracket is used to
indicate that particular attribute as “conditional”. The next section provides a brief description of
its features and its corresponding significance to the taxonomy.

3.1.1 Degree of automation

The degree of automation refers to the ways in which wrappers are generated by their respective
toolkits. As discussed in chapter 2 previously, it could mean whether a programmer is needed to
manually write the codes, or whether the toolkit is able to generate wrappers semi-automatically
through demonstrations, or whether training examples need to be supplied to the toolkit for
wrappers to be generated automatically using machine-learning algorithms or other artificial
intelligence methods.

3.1.2 HTML-Awareness

HTML-awareness is a term used to describe how effective a particular toolkit is in extracting
data from HTML-based web pages. In general, toolkits that make use of the HTML hierarchical
tags in web pages to parsing are said to be more HTML-aware. However, it is not equivalent to
saying that toolkits with a higher degree of HTML awareness are superior to the others. In fact,
due to the relatively small number of web pages that make use of this HTML hierarchical tags
(estimated to be 20% of total web pages on the Internet), the effectiveness of these type of
toolkits are severely curtailed by the need to introduce error-correction mechanism when
wrapping non-HTML compliant web pages.

3.1.3 Platform

Platform refers to which operating system the toolkit supports. For the purpose of this thesis, no
effort is made to distinguish between the variants within a particular operating system, i.e. Win
NT and Win XP are both considered as “Windows”.

3.1.4 GUI

GUI stands for Graphical User Interface, and is almost ubiquitous for all current-generation
toolkits. In the early days of web data extraction, however, most wrappers were generated
through hand-written codes in the command prompt. There are still some legacy systems today
that make use of command lines rather than GUI, although they are fast approaching extinction.

 14

3.1.5 Editor

Editor provides a mean for the user to code a wrapper manually, and is a feature present in most
toolkits that require manual generation of wrappers. Most semi-automatic toolkits, however, also
include this feature into their program. This is to provide users with an additional avenue to wrap
a complex web site, should the extraction of web data through demonstration prove to be too
difficult to accomplish.

3.1.6 HTML headers

A good web wrapping toolkit must be capable of supporting a range of HTML headers. These
HTML headers contain meta-information about the web pages and often also embody such
features as automatic refreshes and redirection, common features found in a web browser. Some
examples of HTML header tags include: <base>, <link>, <meta>, <title>, <style>, and <script>.
The ability to support HTML headers is important to all types of toolkits as this feature
essentially specifies how web pages can be retrieved. The lack of this feature limits the
accessibility of wrappers to certain web pages.

3.1.7 HTTP methods

Like HTML headers, HTTP methods such as GET and POST deal with the retrieval process of a
wrapper. HTTP methods are needed in order for one application, like a web browser or a
wrapper, to talk to another application via the world-wide-web. All web wrapping toolkits need
to have this feature in order to access any web page. Naturally, all the toolkits shown in Table 1
support this feature.

3.1.8 Cookies handling

A cookie is a piece of text that a web server uses to store on a user’s hard disk. It allows a web
site to store information on a user’s machine and to retrieve it later. The ability to handle cookies
effectively will affect the performance of a web wrapper directly. Web wrappers that are not
anointed with cookies handling capability will not be able to access some web sites where
cookies recognition is required. Future wrappers developers should take this into consideration
as the number of web sites built around simple HTML structure begins to dwindle and demand
for cookie-enabled web sites rises.

3.1.9 SSL support

The Secure Socket Layer (SSL) is a technology used to protect web communications. The SSL
security protocol provides data encryption, server authentication, message integrity and other
web security protection measures. Toolkits that support SSL are capable of extracting data from
SSL-protected web sites, such as from online bank accounts.

 15

3.1.10 Script Interpretation

The exact definition of script is often fuzzy, but most people tend to agree that it is a small
program that executes itself on a client’s machine when its associated web document is loaded,
or whenever it is manually activated through clicking. Most scripts are written in either
JavaScript, VBScript or PHP. Scripts provide an interactive experience for the end user of a web
document, but most wrappers nowadays lack the ability to decipher or interpret scripts well
enough. Therefore, from the point of view of a toolkit, the ability to interpret script leads to a
greater number of accessible web sites.

3.1.11 FTP support

Toolkits that offer FTP support are able to navigate not only http sites, but also ftp sites. FTP, of
course, stands for File Transfer Protocol and is the de facto standard used for exchanging and
storing large documents online.

3.1.12 Input format

Input format refers to the type of data format that the wrappers can extract. Most wrappers are
capable of extracting plain text and HTML web pages, while the more advanced wrappers are
able to extract binary files such as JPEG files. As expected, the more input formats that a
wrapper can support, the more value the toolkit has to offer as the input options expand.

3.1.13 SQL Support

SQL stands for Structured Query Language and is an industry-standard language for creating,
updating and querying relational database systems. A toolkit that supports SQL also allows the
users to send queries to the web sites as if they are relational databases. For example, users can
perform a “joins” operation between multiple web sites if a SQL-enabled web wrapping toolkit is
used.

3.1.14 Web Crawling

Web crawling refers to the ability of the wrappers to navigate their ways from one web page
(known as the “source” page) to the other (known as the “target” page), following links and
filling up forms in the process. Web crawling is an important characteristic of web wrappers.
Less robust wrappers are not able to follow links and therefore will never reach the “deep web”,
or web pages that are more than a few clicks away from an originating “source” page. On the
contrary, advanced web wrappers are even able to fill up forms and are widely used to wrap
pages that require a user to enter username and password, such as a web-based email client like
Yahoo Mail.

 16

3.1.15 Scheduled extraction

Scheduled extraction describes the ability of the wrappers to automatically extract data from the
targeted information source on a periodical basis. This feature is especially useful for wrapping
web content that changes very frequently, such as a news site.

3.1.16 On-demand extraction

On-demand extraction works in tandem with scheduled extraction. While scheduled extraction
frees the user from needing to visit the sites regularly for information extraction, on-demand
extraction gives the user the ability to visit a web site and mine for information whenever he
wants. Most wrappers, if not all, have this feature enabled.

3.1.17 NLP Support

Natural Language Processing or NLP-based toolkits are especially suitable for extracting data
from documents where there are a lot of free text content such as advertisement and news
reports. They make use of techniques such as filtering and part-of-speech tagging to derive
extraction rules from phrases and sentences. Because most of the web documents exist in semi-
structured formats, NLP-based toolkits are not widely accepted by the web wrapper community.
Representative examples include RAPIER and WHISK.

3.1.18 Scripting language

Unlike section 3.1.10 where a script is interpreted as a small executable program that runs on a
client’s machine and script interpretation describes the ability of web wrappers to understand
these programs, scripting language refers to the method used by the wrappers in extracting
information from the web. It might involve pattern matching methods such as regular
expressions, or a specialized extraction language such as WebL or ELOG, or a combination of
both. Scripting languages are usually written in the editor to specify the extraction rules. In
general, they are more prevalent in toolkits where wrappers have to be manually generated.

3.1.19 Output Format

Output format refers to the type of output that is transformed by the wrappers. For simplicity,
most toolkits set the default output type to XML, to take advantage of its flexibility to map into
other data formats. Toolkits that offer more than XML make the conversion from HTML text to
other desired formats easier and quicker, whereas toolkits that support singular data output
format such as plain text require additional processing if more sophisticated output format is
required.

3.1.20 API

API stands for application program interface and is defined as a formalized set of software calls
and routines that can be referenced by an application program in order to access supporting
network services. [6] It provides an interface for an application to be linked to the other, usually

 17

via one or more high-level programming languages such as JAVA or C++. Toolkits that support
a wide range of APIs will benefit from other “add-on” features provided by third-party vendors.
The real value of API on a toolkit therefore lies with its extended value-adds.

3.1.21 Database Driver

The ability of the toolkit to integrate and work well with other applications is crucial in the
mapping stage. Toolkits equipped with a wealth of database drivers offer a wider range of
options to connect to other database-compliant software packages, such as Excel. Due to the
popularity of ODBC, toolkits that only support ODBC drivers are often considered to be highly
“connected” since most other software applications are ODBC compliant, if they support
database connectivity. ODBC stands for Open Database Connectivity and is a widely accepted
application programming interface (API) for database access.

3.2 The 2nd-tier Taxonomy

As mentioned previously, the 2nd-tier taxonomy is a “streamlined” version of the first, and a
continuation of our “bottom-up” approach to classifying web wrapping toolkits. In this
taxonomy, a set of core features is selected from each of the four layers in the 1st-tier taxonomy
shown in Table 1. The features in these layers represent the core functionalities that full-scale
web wrapping toolkits usually support. For instance, script interpretation is included in this
taxonomy because a toolkit capable of interpreting script languages are important to the overall
user experience in terms of accessing and retrieving web content. Similarly, a wrapper that is
able to automatically extract information from the web on a periodical basis is important to the
web extraction experience, and represents an approach consistent with the future direction of the
web wrapping technologies. On the other hand, NLP support is excluded in this taxonomy
because it is a feature not widely adopted by most web wrapping toolkits. In Table 2 below, the
“streamlined” 2nd-tier taxonomy is presented. For ease of readership, a number at the bottom of
each column in the table is provided to show the number of features supported by the
corresponding toolkit (out of a total possible of 12). Note that for comparison purposes, two out
of the fourteen parameters are excluded from the final tally (and hence the number 12). They are:
the degree of automation and HTML-Awareness, which are actually properties rather than
features of the toolkits.

 18

Table 2: 2nd-tier Taxonomy

From the table above, 10 out of the 20 toolkits surveyed support a comprehensive range of
features from HTTP methods, cookies handling to database connectivity. For simpler illustration,
some of the granularity indicated in the 1st-tier taxonomy is omitted. Therefore, instead of
specifying the types of database driver a particular toolkit supports, a toolkit is considered as
having database connectivity feature whether it supports ODBC, JDBC, or both.

 19

Chapter 4: Analysis of Web Wrapping Toolkits

Using the set of parameters from the taxonomy, a comparative study was performed to analyze
the 20 toolkits that were studied. In this chapter, an explanation to the software architecture
behind each of the toolkit that will be presented, including how the toolkit operates where
appropriate. A description of the toolkits with respect to the taxonomy will also be given,
including comparison with other toolkits that are included in the taxonomy. In the following
section, toolkits that have been tested are underlined.

4.1 AgentBuilder18

AgentBuilder is a semi-automatic web-wrapping toolkit that supports a comprehensive range of
features and functionalities including cookies, SSL, deep web links, HTML text and other data
types such as image files. Like most other toolkits, AgentBuilder attempts to differentiate itself
from competition by focusing on its proprietary extraction algorithm. According to Fetch
Technologies, the maker of AgentBuilder, the extraction rules that underpinned AgentBuilder are
based on “landmarks” or “a group of consecutive tokens”. These landmarks are then used by the
web wrappers to locate the start and end of fields within a given page. Using a hierarchical
induction algorithm, AgentBuilder is able to parse a given web page into a document tree,
breaking down complex web pages into small segments and hence allowing wrappers to perform
the extraction tasks more efficiently.

The most promising aspect of this toolkit, however, lies in its mapping/mediation layer. Using a
machine-learning approach, AgentBuilder is able to address the many problems associated with
record linkage. Record linkage is a fundamentally issue that arises in the integration of multiple
data sources, across different platforms. For example, connecting two databases causes a record
linkage problem if one of the databases uses the American way of recording date
(month/day/year) whereas the other employs the European convention of day/month/year. By
automating the recognition of these differences using machine-learning algorithms, AgentBuilder
is able to reconcile and correct these differences automatically without the need for further
manual programming. This is of particular relevance to web wrapping solutions where data from
disparate sources often have to be combined and integrated in order to produce a coherent output.

All in all, AgentBuilder has a comprehensive range of extraction features, with a rather unique
mediation feature through its machine-learning approach to record linkage problems. By
converting all output data into XML, AgentBuilder also offers an added flexibility for users to
customize their eventual display options.

4.2 Cameleon3

The latest version of Cameleon was developed in C#, taking advantage of the extensive .NET
library. As such, it renders Cameleon a Windows-based software, although its predecessor,
which was written in JAVA, was capable of running in multiple platforms.

 20

Cameleon supports almost all of the features that a comprehensive web client utilizes. For
example, it is able to handle such functions as SSL, cookies, authentication, HTML headers,
HTTP methods and script interpretation (including javascript). It takes in input in both text and
binary formats, and therefore is capable of covering a large range of data types. As a WAS-based
web wrapping toolkit, Cameleon does not rely on the underlying HTML hierarchical tags for
data extraction. Instead, it makes use of regular expressions in formulating the extraction rules,
which ultimately determines the behavior of its wrappers. The SQL support it provides renders a
web effectively a relational database, and hence allowing users to directly query the web using
normal SQL expressions. Apart from not supporting natural language processing, Cameleon is
otherwise robust enough to handle web crawling and FTP access, in addition to scheduled and
on-demand extraction of its wrappers (although scheduled extraction is not part of the core
Cameleon package). It provides a XML output format, a range of APIs that include JAVA and
.NET and an ODBC driver that allows for extended database connectivity with other software
applications.

In terms of the architecture, Cameleon is made up of three core modules that include a query
handler, an extraction and a retrieval module, as illustrated in Figure 4.1 below. To access
Cameleon, a user typically sends SQL queries through the graphical relational front end of
Cameleon, or more commonly, through HTTP. Together with the Planner Optimizer Executioner
(POE), the relational front end allows common SQL operations such as “joins” to be performed
between different web pages and databases. The queries sent by the users are then handled by the
query handler that first looks into the registry to determine which wrapper needs to be retrieved
and which attributes in the wrapper are relevant. The wrapper is then passed on to the extraction
module in which extraction rules to data streams are applied. Finally, the modified wrapper
passes through the retrieval module where real web data extraction takes place. Here, Cameleon
makes use of the embedded web client in the .NET library that supports a wide range of features
such as authentication and cookies handling as mentioned before.

 21

Figure 4: The Architecture of Cameleon

4.3 ContentMaster19

ContentMaster continues the trend in industry towards automating generation of web wrappers
by providing a point-and-click visual interface through its ContentMaster studio module. This
visual environment not only guides a user in creating web wrappers, but also provides the option
for the user to define bi-directional data transformation between different kinds of data formats.
For example, ContentMaster can be used to build a parser that transforms data from a certain
data source into XML, and a serializer that does the exact opposite, i.e. converting XML into a
source data. It is worth noting, however, that the source data converted from XML needs not be
the same as the original data format from which that XML is converted.

Essentially, ContentMaster comprises of two separate modules: ContentMaster studio and
ContentMaster engine. As discussed above, the studio module automates the creation of scripts
to allow for bi-directional data transformation. These scripts are then moved to the service
repository where the format and conversion templates (i.e. the wrappers) are stored. At run time,
these scripts or wrappers are executed by the ContentMaster engine which also allows for the
scripts to be embedded in major EAI or MOM platforms. Figure 5 shows the architecture of
ContentMaster, including a parsing engine at the top that supplies text-based documents to
ContentMaster studio.

Source: MIT Sloan

 22

Figure 5: ContentMaster’s architecture

Apart from its data transformation capability, ContentMaster also offers a powerful retrieval
layer. It meets all the requirements under that category in Table 1, which means the wrappers it
generates can be used to automatically log on to web sites, process scripting languages, access
secured web pages, handle cookies and extract data from dynamically generated web pages. It is
however unclear if ContentMaster offers the capability to allow a user to query the web directly
via a SQL interface. Nevertheless, the inclusion of an editor allows a user to define and write a
wrapper from scratch and thus providing possible opportunities to offer similar query
capabilities. As a strong propellant of data transformation and connectivity, it is no surprise to
find that ContentMaster also offers one of the more complete range of APIs including JAVA,
.NET and COM interfaces.

4.4 DB2 Information Integrator for Content20

DB2 Information Integrator for Content, abbreviated to IIC, is an integration platform developed
by IBM. Unlike most of the toolkits we have discussed so far, IIC is primarily an integration
platform that connects disparate data sources within a large enterprise. For example, it is ideal
for connecting a variety of content severs or data sources such as, say, an Access Database and
an IBM DB2 system.

DB2 Information Integrator for Content is made up primarily of about 5 core modules that allow
a user to access this technology through a portal or a simple web browser such as Internet
Explorer or Netscape Navigator. The overall architecture of IIC is depicted in the following
diagram below:

Source: Itemfield
www.itemfield.com

 23

Figure 6: Architecture for DB2 Information Integrator for Content

As shown in Figure 6 above, IIC is accessible through a portal or a web browser, which in turn is
linked to the following modules:

1. The federated server – this module allows users to access diverse content and data
sources, and it includes intelligent text and image queries across multiple repositories.

2. Extended Search server – this sever is responsible for conducting federated queries that
run on both internal file system and the Internet.

3. Information mining toolkit – this module provides an integrated and organized access to
documents scattered across various content servers or data sources.

4. Advanced workflow – the primary function of this module is to manage the content
lifecycle.

5. Connectors – the various connectors are used to link the backbone architecture to other
data sources of interest so that the backbone modules mentioned above can access the
underlying data sources transparently.

The IIC is one of the most expensive solutions in the market, and it is therefore not surprising to
find that it contains most of the features commonly found in a web wrapping toolkit. For
example, it supports many of the major features such as SSL, cookies, script interpretation, SQL
support and so on. However, it remains as an integration platform to connect disparate data
sources from legacy systems, and as such, places less emphasis on web data extraction (from
Figure 1, only one connector is linked to the Internet). This is evident from its lack of an editor
that would allow users to write customized wrappers to extract content from the Internet.
Nevertheless, IIC is outstanding in terms of its database connectivity features. It has wide
support for many database applications including DB2, Oracle, Sybase, MS SQL Server,
Informix and many other ODBC and JDBC compliant packages.

Source: IBM
www.ibm.com

 24

4.5 Integration Platform21

WebMethods Integration Platform provides an infrastructure onto which organizations can use to
connect heterogeneous data sources that reside on disparate systems. It is able to integrate J2EE,
.NET and legacy systems, thereby making possible the linking of business processes, enterprise
systems, databases, workflows and web services.

Integration Platform is equipped with an impressive portfolio of integration modules that
together support web services, J2EE and .NET integration, legacy systems and adapters. This
provides a scalable XML-based environment that enables the integration of enterprise
applications between two parties through the Internet. One classics example in which such
integration platform will come in useful is in the area of e-procurement or electronic data
interchange (EDI) in which 2 or more parties have to communicate with one another through a
common channel. Integration Platform provides such a channel to facilitate the transfer of
information between these parties through its XML-based environment. The architecture of such
an integration platform among trading partners can be illustrated in Figure 7 below:

Figure 7: Rapid Integration based on open standards

Source: WebMethods
www.webmethods.com

 25

As an integration technology-focused solution, it is perhaps no surprise that WebMethods
Integration Platform also comes with ODBC and JDBC database drivers, which, together allow
this toolkit to link up with database systems such as Oracle, SQL server, Informix, Sybase and
DB2. Its API is also comprehensive enough to handle applications written in C/C++, COM,
JAVA/J2EE, EJB and of course, .NET. Through its XML-based output format, WebMehthods
Integration Platform is able to offer additional flexibility in terms of the eventual output formats.
In terms of the extraction features, this toolkit provides enough functionality for effective
extraction. This includes the support for SQL, web crawling, FTP and scheduled extraction. The
combined benefits of this range of extraction is the ability on the part of the user to generate
wrappers that can take in queries from the user and navigate deep into the web from a given
URL, treating the Internet as if it is one giant relational database.

4.6 Mine the Web22

As the name suggests, Mine the Web or MTW parses the web to retrieve information, before
storing the retrieved content into a pre-selected database defined by the user. Mine the Web is
one of the few commercial web wrapping toolkits that relies purely on manual generation of
wrappers, or spiders, that are then used for web data extraction. Running on both Windows and
Mac OS platforms, MTW uses a proprietary scripting language known as Spider Scripting
Language for wrappers generation. While this spider scripting language does not necessarily
make use of the underlying HTML tag hierarchy for data extraction, it depends heavily on
HTML tags for identifying the exact location of the data. Below is a small excerpt of a wrapper
using the Spider Scripting Language:

1. startafter:
2. width=180 height=34></td></tr>|
3. endat:
4. <tr align=right><td align=left nowrap>|

Notice that the program specifies where the extraction is supposed to start at line one and where
it should stop at line 3. At lines 2 and 4, related HTML source codes of the web page are
supplied. It is therefore implicit that the wrappers hence generated are not likely to work well on
other type of data sources that do not make use of the HTML tags. For example, these wrappers
are not able to extract data from say, a Word document or a PDF file.

Although MTW does not provide an ODBC or equivalent database driver, it is able to store the
extracted data into tabular formats and into databases, making later retrieval quick and easy.
However, its lack of support for SQL also means that unlike other competing toolkits, the user
cannot interactively query the web as if it is a huge relational database. MTW also comes out
light in terms of its retrieval functional layer. Despite of its manual nature of generating web
wrappers, MTW still does not support many of the more advanced features. For example, it is
not able to access SSL-protected web sites nor is it able to handle cookies or interpret scripting
languages embedded in a web site. Nevertheless, for most simple display of real-time
information on a web page, MTW is considered to be adequate.

 26

4.7 NQL23

NQL stands for Network Query Language and, as the name suggests, is a SQL-like scripting
language that is used to create connected applications such as web wrappers, or more commonly
known as robots or intelligent agents. NQL the toolkit comes with a version that includes a
browser recorder to guide a user in creating web wrappers using a visual environment. However,
for the most part, NQL is considered a manual web wrapping toolkit where the wrappers are
manually generated using the proprietary Network Query Language.

As with most manual web wrapping toolkits, NQL is expected to be powerful because the
wrappers it generates often contain a high degree of customization that a developer or a user can
harness through creative coding. And indeed, NQL does come with a generous host of features
not commonly found in other toolkits. For example, NQL is equipped with artificial intelligence
capabilities that includes neural networking, Bayesian inference, pattern matching and fuzzy
logic – essential ingredients to creating robust web wrappers capable of extracting data from free
text, semi-structured and structured data sources. With these features, NQL becomes one of the
few commercial web wrapping toolkits that offers natural language processing capabilities.
These artificial intelligence features, along with other building blocks of NQL such as the usual
retrieval, extraction and mapping functions, can be entirely written using its own scripting
language, also called Network Query Language, or NQL.

NQL the toolkit supports both ODBC and JDBC database drivers, allowing for a wider reach of
database connectivity with other software applications. It also comes bundled with an API and is
capable of converting extracted data of varying formats into XML, which can then be exported
into other data formats easily. By offering a scheduled extraction function, web wrappers created
using NQL can be made to perform “silent” extraction behind the scene, freeing the user from
having to execute the wrappers constantly.

4.8 Robosuite16

Robosuite is one of the more complete solutions that were surveyed. It acts as a middleware
between a client application and the source data from the web by providing a non-intrusive
environment for a user to access, gather and mediate web data. Its architecture is based on a
central server design in which an integration application, called RoboServer, is responsible for
processing requests from client applications before executing the wrappers, called robots in this
case. Through its extensive APIs, Robosute provides multiple interfaces for various third-party
applications to interact with it. The simplified architecture diagram for Robosuite is provided
below in Figure 8.

 27

Figure 8: How Robosuite works

4.8.1 Robosuite’s Architecture

The robots in Robosuite are the web wrappers and they are primarily responsible for executing
the commands from the RoboServer, which passes a set of objects to the robots as input. An
object is a collection of attributes, and each attribute is associated with an attribute name and
sometimes a single attribute value. The following example perhaps best captured what an object
is:

“Each news object has attributes with attribute names such as headline, body text, date, author,
etc., and each outputted news object will have different attribute values for each attribute (unless,
of course, the same news object is outputted more than once!). An outputted object is called a
returned object.”24

There are many functions that an object can take on, but most of the times, they are used as data
carriers, usually as input to a robot in the form of input objects, or alternatively as output from a
robot in the form of output objects or database output objects. Objects are organized into domain
models where each domain model is used exclusively to model a particular real-world event,
such as news. The application that is used to create and hold these domain models in Robosuite
is known as the ModelMaker. Figure 9 explains the relationship between objects, robots and the
rest of the applications in Robosuite. According to this diagram, ModelMaker is used to create
object model that comprises of a number of objects. These objects are then used by the
RoboMaker as input to create robots. Although not shown in the diagram, objects can also be
used as data carrier carrying the output from the robots.

Source: Kapow TeTechnologies
www.kapow.com

 28

Figure 9: Relationship between the modules in RoboSuite.

Using the objects created in ModelMaker, robots are then generated inside RoboMaker. The
following diagram depicts the relationship between the ModelMaker and the RoboMaker, plus
additional elements of Robosuite. Figure 10 shows an example of a web-clipping robot. Note that
the boxes at the top indicate the various steps taken by the robot whereas the clip browser
window shows the source of the web data.

Figure 10: The RoboMaker

Source: Kapow TeTechnologies
www.kapow.com

 29

The two key features of Robosuite are its data collection and web clipping capabilities. In
Robosuite, web clipping means gathering small segments (or “clips”) of web pages from
different sources into one single page. Using ModelMaker to create a domain model and then an
object, a user can proceed to create one or more robots using RoboMaker. These robots are then
sent out on a periodical basis or on an on-demand basis to collect information from those web
sites predefined by the users. Because these robots do not make use of the underlying HTML
hierarchy structure to parse web document into a tree, it is able to extract and collect data from
more sources. The range of web sources for which these robots can extract data from expands
further with its added capabilities to handle HTML headers, cookies and SSL, on top of its
ability to interpret script languages such as javascripts.

Apart from a rather robust retrieval functional layer, Robosuite also provides a range of features
to its extraction layer. For example, its support for SQL allows a user to query the web as if it is
one giant database. Its web crawling feature allows the robots to venture further into deeper web
in search of more accurate information. And just in case some web pages are to complex for the
user to use the visual graphical environment for data extraction, Robosuite comes with an editor
that allows him to manually code the robots using regular expressions. However, Robosuite falls
short in its ability to handle natural language processing. Its ability to handle ftp sites is also
limited to the ones with a html interface, and the robots are not yet robust enough to download
files from ftp sides. Nevertheless, Robosuite again scores high in the mapping layer, possessing
an ODBC database driver, JAVA and .Net APIs, and a XML output format. These features allow
Robosuite a high degree of connectivity with many other third-party applications.

4.9 SearchExtract25

In comparison to most commercial web wrapping toolkits, SearchExtract is a streamlined cousin
of its competitors. This is mainly because of its almost exclusive focus on tabular data extraction.
SearchExtract does a pretty decent job in extracting web data that are hierarchical in nature, i.e.
table, lists, etc. However, it is not able to extend this extraction function to other web data
formats, making it rather limited in terms of its reach for web data. On top of that, it lacks the
ability to parse through multiple pages, and does not support ODBC or other major database
driver. This is in spite of its rather comprehensive retrieval layer which covers most of the major
features such as support SSL and cookies handling.

SearchExtract does not offer support for SQL, which means that users are unable to send queries
to the web via this toolkit. It also does not seem to have the ability to run the wrappers on a pre-
defined schedule. SearchExtract does however offers some degree of customization in that it
provides an editor in which user can manually generate a wrapper using some of the more
common scripting languages. These scripting languages include Perl, VBScript and Jscript.

In short, Search Extract is a simple tool ideal for extracting static HTML data that are presented
in an organized manner, such as a table or a list.

 30

4.10 The Easy Bee26

The Easy Bee is a simple web wrapping toolkit in which its wrappers are entirely created through
its visual interface. This toolkit has an architecture that makes use of a domain model, which is
then used as the base for creating wrappers for data extraction in the world-wide-web. However,
to avoid using too much technical jargons, Altercept, the maker of The Easy Bee, decided to use
a naturalist metaphor to disguise the technicality. Thus, the domain model is known as the
“Honeycomb” where the “Bees” or wrappers “live”.

Using The Easy Bee proves to be “easy” indeed. To generate a wrapper (bee), a user simply
needs to create a “hive” first where the future “bee” will live. To do this, he goes to the left-pane
of the application known as the “Honeycomb”, right-click on the sample honeycomb and selects
“New Honeycomb” as shown in the Figure 11. A new Honeycomb will then appear and user can
then add multiple “bees” or wrappers by selecting “New Honeybee” from the menu. After that, a
user only needs to complete 3 easy steps in generating a fully functional bee. These steps are
listed below:

1. Navigation – user enters the URL of the originating web page and navigates to the
desired page.

2. Extraction – user selects a segment of the web page in which he wants to extract using a
“point-and-click” method. Further refinement can be made via a selection parameter

3. Schedule – user decides when the bee will start to “fly” or extract. The current selection
dictates that the bee can either fly at logon, at regular interval or on demand.

Figure 11: Creating a Honeycomb

 31

The Easy Bee also provides a very practical function through its “private bee” and locks. It
automatically recognizes and assigns a lock to a bee, making it a “private bee” whenever a login
session is executed during the navigation step. For example, if a user wants to create a bee for his
Yahoo Mail account, he would have to enter his username and password during the navigation
step. The Easy Bee captures this login information, recognizes it, and automatically makes the
bee created a “private bee”. To access a private bee, user needs to supply a global password to
unlock the bee. This global password is universal and can be used to unlock all the bees
contained within the toolkit. In a way, this feature is most akin to online account aggregation
service such as Yodlee, where a user only needs to remember one global password to assess his
other password-protected accounts, if he has previously nominated these accounts. Figures 12
and 13 show how access control to the private bee is governed by a global password:

Despite the easy-to-use interface, The Easy Bee falls short on several fronts. First, it does not
have as comprehensive a range of features as the other commercial web wrapping toolkits. For
example, in terms of the retrieval layer, The Easy Bee does not support script interpretation. It
has no SQL interface and does not allow a user to treat the web as a relational database by
sending queries. While it offers a OLEDB/ODBC database driver, it has yet to be fully
implemented, and the HTML-based output format that it supports limits its ability to easily
transform the data for other uses.

Figure 12: Password-protected Yahoo Mail is a “Private Bee”

 32

Figure 13: Unlocking a private bee requires entering a global password

4.11 Visual Web Task27

Visual Web Task provides a simple user interface that essentially functions as a WAD-oriented
parser. It makes use of the underlying HTML tag hierarchy to create a set of extraction rules
based on training examples provided directly by the user. As a commercial web wrapping tool,
VWT comes with a host of features including a rather robust retrieval functional layer that is able
to handle cookies, SSL and interpret scripts. However, it does not support HTML headers such
as refreshes and redirection.

It is possible to construct a simple SQL interface using VWT, for web pages that support several
attributes that can be altered. For example, a Yahoo home page contains several parameters for
customization, allowing a user to specify the number of results per page or to choose which
“national” Yahoo site to access. Using VWT, one can create a user interface that allows a user to
query say, only the Yahoo Australian site and to limit the number of search results to 30 per
page. A screen short of such an interface can be found below in Figure 14.

 33

Figure 14: A simple VWT SQL interface.

Visual Web Task provides an easy-to-learn graphical environment that allows a user to capture
WAD web documents with relative ease. It begins by asking a user to enter a new file name for
the wrapper that VWT is about to generate. Then, the wizard leads the user to the navigation
model where he is supposed to guide the wizard to a destination web page by supplying all the
relevant information including a URL, username and passwords, if applicable, or any other
actions that will lead to the eventual web page. A snapshot of this process is shown below in
Figure 15.

 34

Figure 15: The navigation model. VWT records a user filling in a required URL, and selects an item from the drop-

down menu and fills in a text box.

After coming through the navigation model stage, VWT asks the user to select the information
that needs to be extracted and displayed. Following on previous “JAVA books” example, the
first item on the list (known as the ROW) is selected, leaving VWT to automatically generate a
set of extraction rules that will ultimately capture the list of results. The left pane on Figure 16
shows the process in which each step is being captured. Users can also make use of the
COLUMN section on the left pane to divide the row into columns using HTML tags, allowing
say, the title of the book to be separated from the descriptions. If according to plan, this added
feature allows the user to generate different columns in which one will display the title of the
book and the other will contain the description of the book. It is found, however, that this feature
is more effective in showcasing the text of the items captured on one side, and the underlying
URL of the text on the other side.

 35

Figure 16: A user selects the first item from the list meant for extraction

Similarly, to activate VWT to capture the rest of the list on subsequent pages, users can click on
the ‘next page’ or ‘more results’ buttons under the NEXT PAGE ACTION section. By clicking
‘yes’ to the pop-up dialog box, VWT will automatically generate the extraction rules for this
action. This is shown in Figure 17.

 36

Figure 17: VWT asks user to extract from multiple pages

For output, VWT allows the user to choose between two modes: a comma delimited text/XML
file or a database file. To this end, the wrapper generation process is mostly complete. With a
push of a button, VWT will open up a new window and start to execute the wrapper program.
Figure 18(a) below shows how the status of the wrapper in extracting web data whereas Figure
18(b) shows the preview results with the URL on one side and the title on the other.

 37

Figure 18 (a) & (b): (a) shows the task status of the extraction while (b) shows the preview result of URL and the

corresponding text value.

4.12 Visual Wrapper10

Visual Wrapper is a software component of the extended family of Lixto Suite, and is
responsible for navigating the world-wide-web for data extraction. Through a graphical user
interface, a user feeds one or more training examples to Visual Wrapper which then effectively
guide the toolkit into creating wrappers that mimic the actions/procedures of the training
examples. In other words, Visual Wrapper records the actions of the training examples, and
transforms these actions into web wrappers (written in its proprietary scripting language Elog)
which ultimately are used for web data extraction purposes.

To understand how Visual Wrapper works, one needs to look at its underlying architecture.
Figure 19 is a diagrammatic representation of how Visual Wrapper interacts with other
component modules in its creation and execution of wrappers. Through the Lixto Visual
Wrapper Designer, a set of matched instances are derived from a given set of sample web
documents which contain pre-labeled patterns and pattern instances defined by the user. After
that, the Designer translates this set of matched instances, otherwise known as extraction rules,
into an Elog wrapper program. Once a wrapper is created, the Lixto Visual Wrapper Executor
takes over and begins to execute this wrapper on other similarly structured web pages. The
extracted data are then translated into XML and an XML companion of the respective web
page(s) is generated.

 38

Figure 19: Interaction within and outside Visual Wrapper

Visual Wrapper is robust in terms of its retrieval capabilities. It is able to handle HTML headers,
HTTP methods, cookies, SSL, authentication and even script interpretation. It supports web
crawling, allowing the wrappers to go into many layer beyond the original starting page, given
by the user. It has a SQL interface that effectively transforms the web into one giant database by
allowing users to send queries directly. Apart from that, it also offers support for a range of APIs,
ODBC and JDBC database drivers and an XML-based output format which can be transported
into other formats for alternate uses.

4.13 vTag28

VTag is marketed as a web content mining and integration solution. It is able to extract data from
the Internet, intranets and extranets, and has the ability to support more advanced retrieval
features such as cookies, SSL and scripting languages. Its robust web crawling features allow a
wrapper to log on automatically, fill in form and searches deeper into the web by following
multiple links. Its adoption of XML also means vTag provides additional flexibility in terms of
delivery options. In fact, a vTag’s user is able to specify how the data is to be transmitted,
whether it is through cell phone, hand-held devices or the more traditional PC applications.

This toolkit differentiates itself through its extensive use of XML-related services, and its range
of delivery options. However, despite the seeming complicated offers, the underlying
architecture is rather straightforward. Using an information agent repository which is essentially
the web wrapping engine where the wrappers are stored and created, vTag sends out these
wrappers to various locations, including HTML web pages, files, documents, email messages
and databases to retrieve relevant data. Upon retrieving the data from the wrappers, the wrapping
engine then converts the data into XML. From here, instant web services are enabled through a
series of add-on features that include WSDL and UDDI which support the publication web
services to the wider community on the Internet. The architecture can be succinctly summarized
in Figure 20 below:

Source: Lixto
www.lixto.com

 39

Figure 20: vTag’s architecture

4.14 WebDataKit29

WebDataKit comprises of three core modules: a customized SQL for HTML and XML data
sources, a customizable search engine kernel and a JAVA API known as WDBC, or
WebDataBaseConnectivity (a dialect of JDBC). It does not support as many features as most
other commercial web wrapping toolkits, and features such as support for SSL and cookies
handling are believed to be absent. At the same time, its almost exclusive focus on data
extraction from HTML-based web pages means WebDataKit is not ideal for integrating disparate
data sources within internal file systems. By not offering regular expression or similar pattern
matching algorithms, WebDataKit also limits itself to parsing web pages that are written based
on the HTML tags.

One of the major extraction features that WebDataKit supports is the ability to query live web
pages using modified SQL queries designed for querying HTML and XML pages. Its WDBC
adapter allows a user to treat the web as a relational database as though he is querying database
tables using JDBC, an API that provides database connectivity in a heterogeneous environment
between different databases running on different platforms. The simplicity of this toolkit means
that WebDataKit does not have an extensive mapping or mediation features for post-extraction
activities. Its text-based only output also implies that WebDataKit is unable to offer a wide range
of delivery options nor is it feasible for it to perform multiple data transformations.

4.15 Webinator30

Written in Texis’s Web Script language called Vortex, Webinator is a web walking and indexing
solution that affords a web site administrator with an interface to collect HTML and other
documents. It consists primarily of three Vortex scripts and each of them serves a different
function including an administrative interface, a site walker and indexer and lastly, a search
function.

Source: Cannotate Technologies
www.cannotate.com

 40

Webinator is a self-contained web wrapping toolkit with a comprehensive range of features
supporting its retrieval, extraction and mapping functional layers. Apart from its support for SSL,
cookies, scripts interpretation and HTML headers, Webinator also provides support for meta data
and proxy servers, in addition to its ability to index many web sites into a single database.
Equipped with an SQL interface, Webinator also allows a user to treat the web as a relational
database for which he can send queries directly.

Perhaps the most unique feature of this toolkit, however, is Vortex’s ability to support many
pattern-matching formats. Among the many formats that Webinator supports include natural
language, logic, regular expressions, quantities, fuzzy patterns, relevance rankings and proximity
controls. This is perhaps not too surprising given that the wrappers created using Webinator have
to be manually generated. Such manual writing of codes allow users to introduce custom features
to the wrappers, allowing data extraction to perform according to a different set of extraction
rules, and hence the support for different extraction techniques.

Webinator comes in 5 different versions, with the more expensive ones offering a greater
selection of support features, including Java plug-ins and multiple document formats.

4.16 WebQL Studio6

A dialect of SQL, WebQL is a programming language that provides a set of SQL-like syntax to
tackle data extraction and data integration problems, with a focus on the Internet. A flow
diagram of WebQL studio that illustrates the high-level functions of this toolkit is provided
below in Figure 21.

Figure 21: Flow Diagram for WebQL Studio

As with any other manual web wrapping toolkit, WebQL studio is capable handling a huge
variety of tasks, subject to the skills of the developers. For example, it has support for many
retrieval features such as HTML headers, HTTP methods, cookies handling, authentication, SSL
support and so on. Although there is no inherent feature that would allow WebQL to

Source: QL2 Solutions
www.ql2.com

 41

automatically recognize and interpret script language found in some web pages, one can easily
program WebQL to directly mimic the function of script, allowing a wrapper thus generated to
function as if it is able to interpret script languages. Despite the fact that WebQL is a
programming language in its own right, it employs extensive use of regular expressions to
specify its extraction rules, making WebQL studio essentially a WAS toolkit.

Apart from providing SQL support, WebQL also has a web crawling ability that extends into
navigating deep web links and filling forms. It is capable of accessing FTP sites and has the
ability to schedule a wrapper for extraction at specific time and at regular intervals. In terms of
its mapping layer, WebQL produces output in XML (and other formats such as .doc and .pdf). It
also supports a rather large range of APIs that include COM, C++, JAVA, .NET and a few
others, in addition to having a ODBC database driver.

To indicate how WebQL studio actually works, we provide a simple example for which this
toolkit is asked to generate a wrapper that crawls through Google to display URLs associated
with the submitted query “JAVA”. Figure 22 below shows the actual line of codes needed to
type in by a user.

Figure 22: WebQL codes

WebQL studio provides a generous range of tools that aid in the execution of wrappers like this.
By pressing the “run” button, WebQL studio takes the user to the next window that display the
run-time environment including the list of URL captured. There is also a section that outlines the
activities undertaken by the wrapper. Both of these events can be seen as captured in the screen
shot below. Note that WebQL only returns 5 pages of the Google search result because it is
indicated that the depth of search is to be limited to only 5 levels, as shown in Figure 23 on the
following page.

 42

Figure 23: Execution of a WebQL code

4.17 WIEN13

Developed by University College of Dublin in Ireland, WIEN generates wrappers automatically
using machine-learning algorithms. It is targeted at web pages that contain organized data
structure, for example, a list of results returned by a search engine. Often, such a web page
contains lists of items organized in a systematic order, allowing a user to easily mark the text on
the web page according to his requirement. These marked texts are then used as training example
to feed into another program called HLRT wrapper inductor that, like most wrapper induction
tools, generates delimiter-based extraction rules based on the examples provided. The extraction
rules are then refined further as each new training example is added. Subsequent web pages that
need to be extracted can then make use of an existing set of extraction rules provided these web
pages have similar document structure as the training examples.

Given the current state of artificial intelligence, it is no surprise to find that web wrapping
engines that make use of machine learning algorithm to automatically generate web wrappers are
rather limited in terms of the types of web pages that they can wrap and the amount of
information that they can be expected to extract. As such, WIEN is short of the many features
that are available in other web wrapping tools including SSL and script interpretation ability.
This is due partly to the fact that such features usually do not exist in simple WAD-type HTML
web pages. Apart from these apparent limitations, there is also no SQL support for WIEN.

 43

Coupled with the lack of web crawling ability and the lack of API, WIEN’s functions are limited
to parsing multiple web pages that share the same structure as its training sets. The text output
that it generates also means it cannot be manipulated to other format as easily as XML, limiting
its ability to usefully mediate the extracted data.

4.18 WinTask31

The range of tasks that WinTask is capable of extends beyond web data extraction. However, for
the purpose of this thesis, we shall focus on its web extraction features.
WinTask provides a user friendly interface that makes the automation of mundane web data
extraction. Through a recorder, user of this toolkit has to provide a training example whenever he
wants to generate a wrapper to perform a specific task. For example, if a user wants to automate
the extraction of his email account, he needs to supply the username and password of his
account, and performs how he retrieves his email manually. Then, his actions would be captured
and replayed by a wrapper whenever this wrapper is asked to run. The range of activities that the
user can undertake is pretty big, and includes most of the functions that a normal web browser
can support, such as to fill in forms, deep web link, authenticate users and download files.

WinTask uses a scripting language that is similar to Visual Basic, known as WinTask
Programming Language (WPL). However, users of this toolkit does not need to know how to
develop using this scripting language as most of the actions can be captured using the recorder,
which would then translate the actions into line-by-line codes. In the rare event that a user needs
to code a wrapper by hand, coding in WPL proves to be rather easy to pick up, with
approximately slightly over 100 syntaxes for use. However, most of the time, users only have to
become familiar with a few of them, such as WriteHTML, SelectHTMLItem and
ClickHTMLElement. Figure 24 shows the codes behind the wrappers generated using WinTask,
which is tasked to display a list of JAVA related books from the Amazon.com web site.

 44

Figure 24: A Piece of code written using WinTask Programming Language

In terms of its retrieval layer, WinTask handles most of the common features, with support
extended to SSL, cookies handling and HTML headers. However, as with most of the web
wrapping technologies in its range, WinTask does not have the capability to interpret script
language such as Javascript. This is most notably demonstrated by its inability to wrap an
Expedia.com web site properly. Figure 25 shows the error message that we encountered when we
tried to wrap an Expedia web site using WinTask.

 45

Figure 25: Error Message for failing to interpret script on Expedia website

In many ways, WinTask is perhaps very similar to The Easy Bee that was mentioned earlier on.
Like The Easy Bee, WinTask does not come with an SQL interface that would allow a user to
query the web directly. Instead, individual wrappers have to be generated for each possible query
“action”, although the trouble of doing that is negated by the ease of wrapper generation.
Similarly, it follows The Easy Bee format by only allowing for text or HTML-based output
formats. However, unlike The Easy Bee, WinTask offers support for FTP and is able to
download files through its wrappers. It also comes bundled with a ODBC database driver useful
for connecting with other software packages, in addition to its API support that include a COM
interface.

4.19 XWRAP Elite9

XWRAP Elite is a web-based wrapper application that specializes in extracting data objects from
WAD web pages. According to XWRAP own lingua, this toolkit works best on web sources
which are “data objects rich”, or one where the objects/elements follow a certain structure. A
typical example is the search result page generated through a search engine such as Google or

 46

Yahoo. XWRAP Elite generates wrappers as JAVA classes and transforms HTML document
into XML format.

The extraction algorithm of this toolkit relies heavily on heuristics methods, and hence the
accuracy of extraction increases as the number of objects goes up. As such, XWRAP Elite is
particularly useful in wrapping search results. On the other hand, precisely because of the
emphasis on heuristics, this toolkit is not ideal for unstructured web pages where repetitive data
objects are usually a lot more limited. Unlike most commercial tools, XWRAP Elite does not use
a comprehensive web client for its retrieval layer, and is therefore ill-equipped to handles such
features as cookies and SSL, in addition to interpreting script languages. It also does not offer an
option for scheduled extraction, making this tool unsuitable for repetitive extraction activities
such as keeping track of a stock quote.

The next two figures illustrate how XWRAP Elite works. Figure 26 below shows the web page
that is to be captured whereas Figure 27 on the following page illustrates the way in which
XWRAP Elite makes use of the underlying HTML hierarchy to parse the results from this Yahoo
search into a document tree.

Figure 26: The “source” web page that will be captured by XWRAP Elite

 47

Figure 27: XWRAP Elite uses a WAD approach

Despite its relatively disappointing retrieval functions, XWRAP Elite does bring out a certain
number of advanced features, including support of a query interface that makes use of XML-
Wrapper Query Language (XML-WQL) for accepting application query requests. More
importantly, it is one of the most user-friendly tools that are being tested in this survey. The
online walkthrough example provides enough guidance to build a wrapper in 9 simple steps, as
shown below at the top of the screen shot in Figure 28.

 48

Figure 28: Screen shot showing XWRAP Elite can wrap a web page in 9 simple steps, producing 3 JAVA codes in

the process.

4. 20 XRover32

The XRover suite consists of two core modules, the XRover Agent Manager that allows a user to
manage and execute agent tasks; and the XRover Site Mapper that is used to create agents (or
web wrappers) to parse the web for information.

In effect, the XRover Agent Manager is the primary interface between a user and the world-
wide-web as it is used to coordinate the execution of the wrappers including such functions as
add, delete and scheduling. It can also be used for other mapping functions such as specifying
how the extracted data are to be stored and the input and output formats of the wrappers. The
Agent Manager is also responsible for the retrieval layer of the toolkit including such functions
as support for cookies, HTTP and HTTPS protocols, authentication, redirection handling and
script interpretation. Through the Agent Manager, a user also enjoys a certain degree of freedom
in customizing the output of the data. For example, he can adjust the parameters to strip out the
accompanying HTML tags and remove white space, from the raw data extracted from other web
sources. With a ODBC driver, Agent Manager also affords the user to write to other ODBC-
compliant software such as Excel, on top of the XML files that it normally generates. The Agent
Manager also has a built-in web crawling capability that will allow the wrappers to navigate the
world-wide-wide through a single URL, on a on-demand or scheduled basis.

On the other hand, XRover Site Mapper is an agent or wrapper generating device. It is designed
to allow a user to generate wrappers using a set of training examples. Like most other semi-
automatic wrapper generation toolkits, XRover comes bundled with an editor that can be used
for hand-coding the wrappers for cases whereby the targeted web sites are too complex. To use

 49

this editor, however, a user needs to be proficient with regular expressions and the Prolog
language, a scripting language developed by XSB.

 50

Chapter 5: Application of the 2-Tier Taxonomy – A Case Study

The aim of the 2-tier taxonomy system is to enable a manager, a developer or anyone who needs
to find a suitable web wrapping toolkit to do so in an organized and systematic manner. For
instance, by using the 2nd-tier taxonomy, a beginner looking for a simple toolkit would probably
be inclined to check out some of the semi-automatic toolkits and avoid the manual ones.
Similarly, an expert programmer looking for a solution to create highly customized wrappers for
complex web pages may want to spend more time evaluating one of the ten toolkits with a “12”
rating.

While it is possible to use either the 1st-tier or the 2nd-tier taxonomy independently, a more
desirable approach is to first use the 2nd-tier taxonomy as a filter before zooming in to the more
detailed 1st-tier taxonomy. To illustrate how this is done, consider this hypothetical question:
“What is the best substitute for Cameleon?”

5.1 Step One: How to Use the 2nd-Tier Taxonomy

As briefly described above, the 2nd-tier taxonomy can be used independently or it can be used as
a filter for answering questions such as “What is the best substitute for Cameleon?” where more
detailed analysis is often needed. In this case, the 2nd-tier taxonomy provides a high-level
summary of the characteristics of Cameleon. By reading it, a reader is able to immediately gain a
basic understanding of the capabilities of Cameleon. For example, he will know that Cameleon
offers SQL support – a “joins” operation between multiple web sites is possible under Cameleon.
He will also know Cameleon contains at least one database driver so database connectivity is not
a concern, despite the fact that he has yet to know what types of database drivers are supported.

The most useful feature of the 2nd-tier taxonomy, however, lies in its ability to allow users to
compare a number of web wrapping toolkits. In this case, a user of this taxonomy will quickly
discover that there are 9 other comparable toolkits to Cameleon, as these 9 toolkits support the
same features as Cameleon. However, only 5 of the 9 toolkits use the same extraction method as
Cameleon. This can be derived by looking at the HTML-awareness row in the taxonomy.
Cameleon treats web pages as a sequence of characters and therefore does not rely on the
underlying HTML hierarchy to parse web pages into a document tree, and hence is not HTML-
aware. Similarly, Integration Platform, NQL, vTag, WebQL and Robosuite are also not HTML-
aware. These 5 toolkits are therefore selected as potential candidates to substitute Cameleon. On
the other hand, the remaining toolkits like AgentBuilder, ContentMaster, Visual Wrapper and
Webinator all make use of the HTML tags for data extraction and are therefore excluded. Table
3 on the following page is a duplicate of the 2nd-tier taxonomy showing the selected toolkits in a
darker shade.

 51

Table 3: The 5 selected toolkits and Cameleon are darkened.

It is also tempting to conclude just from Table 3 that WebQL should be the most ideal candidate
to replace Cameleon since both toolkits rely on manual generation of web wrappers. To allow for
meaningful comparison, however, all 5 toolkits will be used in the next round of examination
using the 1st-tier taxonomy.

5.2 Step Two: How to Use the 1st-Tier Taxonomy

The next logical step in answering the question “What is the best substitute for Cameleon?” is to
examine at deeper level of granularity each of the 5 selected toolkits. This is done by examining
their respective features and functionalities using the 1st-tier taxonomy. For ease of readership,
the original 1st-tier taxonomy is reproduced showing only the 5 selected toolkits and Cameleon in
Table 4 on the following page.

Since 14 out of the 21 features/functionalities are already included in the 2nd-tier taxonomy,
comparison at this level will therefore focus on the remaining features, including the platform
supported, GUI , Editor, FTP support, input format, NLP support and types of scripting
languages. Using a simple Process-of-Elimination (POE), Integration Platform and vTag are
deemed inappropriate substitutes for Cameleon because of their lack of support for editor and
scripting languages, and hence their inability to generate web wrappers manually. As a result,

 52

only 3 toolkits: NQL, RoboSuite and WebQL are left as potential candidates to replace
Cameleon.

 Company MIT Sloan WebMethods
NQL
Tech

Kapow
Tech Cannotate QL2 Software

 Tool Cameleon
Integration
Platform NQL

RoboSui
te vTag WebQL

 General
1 Degree of Automation Manual Semi Semi Semi Semi Manual
2 HTML-Awareness no (no) no no no no

3 Platform Windows
(Windows,
Unix) Windows

Windows
, Linux web-based

Windows,
Solaris, Linux

4 GUI (yes) yes yes yes yes yes
5 Editor yes (no) yes yes no yes

 Retrieval Features
6 HTML Headers yes yes yes yes yes yes
7 HTTP Methods yes yes yes yes yes yes
8 Cookies Handling yes (yes) yes yes yes yes
9 SSL Support yes (yes) yes yes yes yes
10 Script Interpretation yes (yes) yes yes yes (yes)
11 FTP Support yes yes yes (yes) (yes) yes

12 Input Format
text &
binary text & binary

text &
binary

text &
binary text & binary text & binary

 Extraction Features
13 SQL Support yes yes yes yes yes yes
14 Web Crawling yes yes yes yes yes yes
15 Scheduled Extraction yes yes yes yes yes yes
16 On-deamand Extraction yes yes yes yes yes yes
17 NLP Support no no yes no no (no)

18 Scripting Language
regular
expression NQL

regular
expressi
on WebQL

 Conversion Features
19 Output Format XML XML XML XML XML XML

20 API JAVA, .Net yes yes
JAVA,
.Net yes

COM,
JAVA,.NET, C++

21 Database Driver (ODBC) ODBC, JDBC
ODBC,
JDBC ODBC (ODBC) ODBC

Table 4: A replicate of the 1st-tier taxonomy showing the 5 selected toolkits and Cameleon

5.3 Step 3: Analysis of Final Candidates

At this stage, the 3 final candidates, NQL, RoboSuite and WebQL are deemed to be comparable
if not equivalent to Cameleon in terms of features and functionalities. As such, the next step is to
examine the other features of each of these 3 toolkits that are not covered by the taxonomy. This

 53

is achieved by analyzing the toolkits in greater details. This step is necessary to ensure the
eventual “winning” candidate does not contain other limitations that might compromise its
features relative to Cameleon. In the following section, an analysis of NQL, RoboSuite and
WebQL will be presented.

5.3.1 NQL

Although classified as a semi-automatic web wrapping toolkit because of the presence of a
browser recorder that allows wrappers to be generated using training examples, NQL was in fact
developed as a manual toolkit based on the Network Query Language, also abbreviated to NQL.
The Network Query Language is a dialect of SQL and is used primarily to create connected
applications such as bots, intelligent agents, middleware and web applications. It can therefore be
considered as a kind of shorthand for Internet and network programming.

The most obvious difference between NQL and Cameleon is the artificial intelligence
capabilities that are embedded into the NQL toolkit. Using neural networking, Bayesian
inference, pattern matching and fuzzy logic, a NQL toolkit allows users to extract data from free
text, or documents that contain no apparent structure such as email messages. For instance, NQL
supports a number of neural networks including Adaline networks, back propagation network,
Kohonen networks and Bi-directional associative memory (BAM) networks. As an illustration,
the Adaline network, shown in Figure 29 (which in turns shows 5 input nodes and 1 output
nodes) below is trained using training examples in which input and output data sets are fed into
the network repeatedly until it adjusts the weights between nodes to reduce the error rate and
ultimately becomes a generalized system capable of processing new input values.

Figure 29: Adeline network with 5 nodes

Source: NQL
www.nql.com

 54

At the same time, it is interesting to note that regular expression is used as part of the pattern
matching package within NQL. This is similar to Cameleon, which uses regular expressions as
part of its scripting language package. Therefore, it is possible for a user experienced in using
regular expressions in Cameleon to migrate to the NQL environment with relatively few
difficulties. In this regard, Cameleon acts as a subset of NQL. It is therefore reasonable to
conclude that NQL is a suitable substitute for Cameleon based on the similarity of the scripting
language, the degree of automation and other attributes described in the 2nd-tier taxonomy.

Verdict: Accepted

5.3.2. RoboSuite

According to Table 4, there is no apparent difference between Cameleon and RoboSuite, apart
from the degree of automation of wrapper generation. Although RoboSuite is considered as a
semi-automatic web wrapping toolkit, like NQL, it also comes with an editor where wrappers
can be manually generated. However, as described in section 4.8.1, RoboSuite has a rather
different underlying architecture compared to most other web wrapping toolkits, including
Cameleon. This might pose a problem to the users already familiar with Cameleon’s architecture
and make the conversion to RoboSuite more problematic.

RoboSuite is made up of several application modules such as ModelMaker, RoboMaker,
RoboServer and RoboManager. Each of these modules has a specific function and only two
modules, ModelMaker and RoboMaker are involved in wrapper generation. ModelMaker, by
definition, is “an application for modeling the objects used by a robot, such as the objects that the
robot extracts and the objects that it accepts as input objects.” It is also used to create domain
models which in turn are used to define one or more objects. For example, a domain model
designed to model airline information will define objects that are relevant to this information
such as ticket prices and names of airports. On the other hand, RoboMaker provides a graphical
user interface for users to create and debug wrapper in a semi-automatic way. While an editor is
also provided for users to code the wrapper manually, this editor is part of the RoboMaker. This
means a user is only able to make incremental changes to a wrapper created using training
examples. In other words, unlike NQL, there is no separate editor where users can manually code
a wrapper from beginning to end.

The biggest problem for using RoboSuite as a replacement for Cameleon therefore lies in the
architectural difference. Users of Cameleon are not exposed to the domain model concept so
migrating from Cameleon to Robosuite might not be hassle-free, even if both toolkits utilize
regular expressions as part of their scripting language packages. RoboSuite’s semi-automatic
wrapper generation method also makes it a less ideal candidate to replace Cameleon compared to
NQL.

Verdict: Rejected

 55

5.3.3: WebQL Studio

WebQL Studio is a toolkit built around a proprietary scripting language called WebQL.
Essentially, WebQL is a dialect of SQL and is targeted towards data extraction on the web.
Someone who is familiar with SQL, such as a Cameleon user, will be able to easily switch over
to WebQL with little training. For example, assuming a user wants to retrieve all the data in a
database table using SQL, the query will be:

 select * from TABLE

where TABLE refers to the database table from which the data is to be retrived.

In WebQL, the user can enter the following query if he is retrieving data from a file system:

 select * from TABLE@DATABASE

where DATABASE refers to the database which contains the table.

On the other hand, if he wishes to directly query a web site, the query in WebQL becomes:

 Select * from http://www.aaa.com

where the website http://www.aaa.com is any web site that he wishes to extract data from.

Of course, there are more noticeable difference that the one shown above. For example, consider
the following SQL query (adapted from QL2):

 select TABLE1.ID, TABLE1.XXX, TABLE2.XXX
 from TABLE1, TABLE2
 where TABLE1.ID=TABLE2.ID

In WebQL, the same query is written as:

 select as TABLE1 *
 From TABLE1@DATABASE
 join
 select *
 from TABLE2@DATABASE
 where TABLE1.ID=TABLE2.ID

Like NQL and Cameleon, WebQL also makes extensive use of regular expressions in its
scripting language package. This means someone who is familiar in using regular expressions to
code a wrapper in Cameleon will have a relatively less steep learning curve when he migrates to
the WebQL environment.

 56

As mentioned before, WebQL studio is the only toolkit that matches Cameleon exactly in Step
One. This means that unlike NQL, WebQL studio does not come bundled with a browser
recorder where a wrapper can be semi-automatically generated by feeding it with training
examples. Instead, the effective use of WebQL studio depends largely on the skill level of the
developers or users of this toolkit, who might be familiar with the WebQL scripting language
and regular expressions. Both toolkits also support a range of features such as web crawling, SSL
support, script interpretation and output format.

Although WebQL studio and Cameleon are identical in many aspects, subtle differences do exist.
For example, WebQL studio supports a wider range of APIs compared to Cameleon. WebQL
studio also comes with a number of “value-added” features such as anonymization which allows
a web wrapper written in WebQL to hide its identity. This feature works in tandem with the
WebQL Identity Protection Services. This service works by routing the page requests (or
wrappers) sent by a user through a third party hosts, thereby protecting the identity of the
requester. Other features in WebQL studio includes automatic page request throttling, error
trapping and reporting, and graphical data-flow monitor.

From the above discussion, WebQL studio is considered as an ideal substitute for Cameleon.
This is based on the similarities of features and functionalities between the two toolkits. Unlike
NQL which is a superset for Cameleon, WebQL is more like a “peer”, albeit one that is equipped
with more “peripheral” features.

Verdict: Accepted

5.4 Conclusion

The 2-tier taxonomy provides a quick and effective way to help anyone to choose an appropriate
web wrapping toolkit. In answering the question “What is the best substitute for Cameleon?” the
2nd-tier taxonomy is used to filter out a large number of incomparable toolkits quickly, while the
1st-tier taxonomy is deployed to extract only the most likely candidates. From the above
discussion, out of the 3 toolkits that are selected from the 2-tier taxonomy, 2 of them are
eventually considered as ideal substitutes to Cameleon. While not exactly perfect, it
demonstrates the effectiveness of the 2-tier taxonomy to evaluate different web wrapping
toolkits.

In addition, the eventual “winners”, NQL and WebQL show a close resemblance to Cameleon
not only in terms of features and functionalities, but also in terms of scripting language structure.
The later properties qualify NQL and WebQL to be the “best substitutes” to Cameleon, from
mere “substitutes”.

 57

Chapter 6: Policy Analysis of Database Protection

One of the key benefits of the emergence of web wrapping technologies is the integration of
information from disparate sources, including the world-wide-web. Web wrapping technologies
bring together information in a consolidated and coherent manner from web sites or other data
sources which otherwise exist individually and independently from one another. By linking these
disparate data sources together, web wrapping technologies effectively create a giant relational
“virtual database” from the world-wide-web, allowing users to send queries directly to the web.

However, such a facilitation to extract data more efficiently and effectively from various web or
non-web data sources creates a problem in terms of the ownership of this “virtual database”.
Many web sites which welcome manual browsing by ordinary consumers tend to reject the
notion of having spiders or robots (i.e. wrappers) preying on their web servers. Companies grow
uncomfortable with computerized wrappers that extract data from their digitized databases
systematically and periodically, especially when these databases are compiled with much
investment in terms of finances and efforts. As a result, there have been a plethora of court cases
in recent years challenging the legality of data extraction through the use of web wrappers. The
more well-known cases include eBay vs. Bidder’s Edge, Ticketmaster vs. Tickets.com and
mySimon vs. Priceman.

6.1 Current Legal Mechanism for Database Protection

Traditionally, the protection of databases generally falls under the realm of copyright act. Patents
and trademarks are irrelevant whereas trade secrets are not applicable for databases that are
already in the public domain, like publicly accessible web sites. As such, databases are often
interpreted as “compilation” in accordance to the copyright law, which defines a compilation as
“a work formed by the collection and assembling of preexisting materials or of data…”33

To evoke the use of copyright protection, database makers have to make sure their products
exhibit a certain degree of “originality” in order to qualify as “original works of authorship”.
This means certain level of originality or creativity has to be shown in the selection and
arrangement of the data. The principle behind this requirement is best illustrated by the landmark
case of Feist Publications vs. Rural Telephone Co. in 1991. In that case, phone directory
publisher Feist took published its own directory which contained some 8000 records from the
phone directory of another company, Rural Telephone Co. The case was decided in favor of
Feist because the Supreme Court found that the alphabetical listings of Rural’s directory was
entirely obvious, and did not constitute a copyright protection based on the “originality” and
“creativity” criteria. In a way, it is difficult for databases to be accorded copyright protection
given the relatively few ways of compiling and arranging the content of a database.

Another lesser known legal mechanism used by companies for filing database protection is the
“trespass to chattel” rule. Essentially, trespass to chattel allows a property owner (including
intellectual property) to ward off unwanted outside interference with their property. However, in
order to use this law the owner of the property has to provide evidence that suggests the intruder

 58

is engaged in intentional intermeddling with the chattel, and that there are some cognizable harm
done to the chattel, be it physical condition, quality or value34. In the context of web wrapping,
the web sites in which the wrappers extract information from can be considered as the chattel
whereas the wrappers are seen as the intruders.

The application of the trespass to chattel law to the web wrapping arena is however, ambiguous.
Several recent cases that used the trespass to chattel principle were rather contradictory. For
example, in the eBay vs. Bidder’s Edge case, eBay used the principle to argue that the wrappers
sent by Bidder’s Edge was an unwelcome intrusion to its web server and that eBay had to spend
additional resources to guard against such an intrusion to its chattel, thereby inflicting financial
harm to itself. EBay further contended that while the Bidder’s Edge’s wrappers had not yet
caused significant harm to its web servers in terms of tying up the server’s resources, eBay might
attract a lot more other unlicensed wrappers in the future that could severely compromise its
severs’ performance if Bidder’s Edge went unpunished. The court eventually granted a
preliminary injunction to stop Bidder’s Edge from sending wrappers to eBay’s server. Although
Bidder’s Edge appealed against the sentence, the two parties soon settled out of court, leaving
this ruling intact. The statue of the trespass to chattel law as applied to the world-wide-web is
further complicated by another development in the Ticketmaster vs. Tickets.com case. The court
rejected Ticketmaster’s claims that Tickets.com intruded its web site because “it is hard to see
how entering a publicly available web site could be called a trespass, since all are invited to
enter.”35

6.2 The European Database Directive

It is against this backdrop of flimsy legal protection for databases in the Internet era that the
European Database Directive was enacted in 1996. Based on a sui generis doctrine (Latin for “of
its own kind”), the EU Database Directive defines a database as “a collection of independent
works, data or materials arranged in a systematic or methodical way and individually accessible
by electronic or other means.”36 And since a database can contain any type of information
including text, images and music clips, these data formats in both electronic and print versions,
are also covered under the directive.

Under the EU Database Directive, a database maker who has expended substantial investment in
the compilations can prevent unauthorized “extraction” and “utilization” of all or a “substantial
part” of the database by a third party, for a period of 15 years measured from the completion of
the database. To prevent users from circumventing the “substantiality” requirement, the directive
states that “repeated and systematic extractions of insubstantial parts” are not allowed. However,
to enjoy this sui generis protection, a database maker must establish that data extraction or re-
utilization by a third party “conflicts with the normal exploitation of the database,” undermines
the “normal or potential market” or “unreasonably prejudice the legitimate rights of the rights
holder.”36

Perhaps the most controversial aspect of the EU Database Directive lies in its requirement that
the database makers must be nationals of the European Union, or have established habitual

 59

residence in the EU, in order to qualify for its protection. This means that while a European
database maker can sue anybody for unauthorized data extraction within the EU, his American
counterpart will enjoy no such protection if his database is similarly compromised in the EU. The
only way for this American database maker to enjoy this sui generis right is for the US to pass
similar database protection legislation. This is because according to the EU directive, the sui
generis rights can be extended to other countries with similar database protection framework.

The EU Database Directive also contains several clauses that further define the scope of
protection extended to original makers of databases. For example, it explicitly excludes
subcontractors from the definition of “database maker”. This means EU companies are able to
stake their claims as the “database maker” even if they outsource the making of databases to a
third country such as India or China. However, the Directive does not specify the rights of the
employees with regards to the databases that they create. Instead, it defers to the national laws of
the member states in governing the “work-made-for-hire” aspect of the database creation.

6.3 HR3261 Database and Collection of Information Misappropriation Act

As a direct response to the EU Database Directive, several congressmen in the US had lobbied
for similar database protection bills to be passed, culminating to the current HR3261 bill
introduced in October 2003. While the bill is still being debated at the time of writing, the
preliminary draft sheds some light on the future of the direction of database protection
environment in the US.

The HR3261 Database and Collection of Information Misappropriation Act defines a database as
“a collection of a large number of discrete items of information produced for the purpose of
bringing such discrete items of information together in one place or through one source so that
persons may access them.”37 Under this definition, several items are excluded from this Act
including:

1. An original work of authorship that is neither a compilation nor a collective work.
2. A collection of information that are used primarily for digital communication such as

routing and forwarding.
3. Audio and video programming.
4. Directory of domain name registrants, unless it is properly maintained to ensure integrity,

accuracy and is fully accessible by the public.

Section 3 of the HR3261 contains the clauses of prohibition against misappropriation of
databases. It prohibits anyone from making available in commerce a “quantitative substantial
part” of the database without the database maker’s authorization, if all of the conditions below
are satisfied:

1. the database was generated, gathered, or maintained through a substantial expenditure of
financial resources or time;

2. the unauthorized making available in commerce occurs in a time-sensitive manner;

 60

3. the making available inflicts injury on the original database or its related service offerings
by serving as the functional equivalent in the same market as the database in a manner
that causes the displacement or disruption of revenues; and

4. the ability of others to “free ride” on the efforts of the original database maker would
reduce the incentive to produce the product or threaten its existence.

At the same time, section 4 of this Act contains a list of permitted acts that include:

1. independently generated or gathered information;
2. acts of making available in commerce by nonprofit educational, scientific or research

institutions, provided these acts are reasonable under the circumstances, taking into
account the customary practices associated with such uses of such database by nonprofit
educational, scientific, or research institutions;

3. hyperlinking of online locations;
4. news reporting, unless the information is time-sensitive and has been gathered by a news

reporting entity, and making available in commerce the information serves as direct
competition,

Like the EU Database Directive, HR3261 is based on the sui generis doctrine. Sections 3 and 4
combine to give a rather large scope of fair-use exemptions, the major sticking point surrounding
past debates of similar bills. By establishing a high threshold (section 3) for which a database
maker needs to satisfy before taking legal actions against the defendants, the Act prevents
database makers from embarking of costly litigation proceedings against nonprofit educational
bodies and research institutions, probably by far the largest users of databases.

In the following sections, we will examine the similarities and differences between HR3261 and
the EU Database Directive.

6.4 Comparative Analysis of the EU Database Directive and HR3261

As pioneers of the sui generis database protection doctrine, both the EU Database Directive and
the HR3261 (if passed into law) have significant influence on the future direction of the
database-producing industry. Their respective success and failure will determine whether or not
more innovative and valuable databases will be created, or if the entire industry will be saddled
with ‘anti-commons’ problems where the many rights of exclusion held by different individuals
mean no useful databases can be created without incurring substantial loyalty and license fees.
To better understand the effects of these two Acts, we need to examine the implications of each
of them, and compare the similarities and differences between them.

6.4.1 Definition for Database

The EU Database Directive defines a database as “a collection of independent works, data or
other materials arranged in a systematic or methodical way and individually accessible by
electronic or other means.”36 On the other hand, HR 3261 states that a ‘database’ means “a
collection of a large number of discrete items of information produced for the purpose of

 61

bringing such discrete items of information together in one place or through one source so that
persons may access them.”37

There is little variation between the definitions of database under each Act. Both Acts ascertain
the conventional understanding that a database is made up of discrete elements that can be
accessed individually. Both Acts also define database very broadly, and as Lipton would argue,
they followed a copyright structure in which the creator is given broad rights with some limited
“fair use” exceptions carved out of those rights. The only trivial point that sets the two Acts apart
in database definition is that HR3261 states explicitly that a database is a collection of items of
information. However, while the EU Directive makes no mention of such a point, it is not
expected that charges against non-information items will be filed under this sui generis law in
either continent.

6.4.2 Scope of Protection

The EU Directive and HR3261 differ in approaches with regard to the scope of protection
accorded to database makers. The EU Directive takes a more pro-active approach by drafting a
listing of restricted that prohibits unauthorized legal entity from the following:

a. temporary or permanent reproduction by any means and in any form, in whole or in part
b. translation, adaptation, arrangement and any other alteration
c. any form of distribution to the public of the database or of the copies thereof
d. any communication, display or performance to the public
e. any combination of the above

On the other hand, HR3261 puts the responsibility of database protection squarely on the
database makers or owners. As discussed previously, a database maker has to be able to
demonstrate that unauthorized extractions of his compilations result in several conditions
detrimental to his business. Instead of dictating what kinds of actions should or should not be
carried out, HR3261 chooses to focus on the seriousness of consequences that befall on the
original database makers in situation whereby should unauthorized extractions occur. This
introduces a certain degree of flexibility allowing this Act to remain relevant in the face of future
technological changes associated with database creation or extraction. On the flip side, the lack
of clearly stated restricted acts means ambiguity is likely to creep in, potentially subject HR3261
to different interpretations by different parties or courts.

HR3261 appears to be a step ahead of the EU Directive in terms of the scope of database
protection. Its emphasis on the “harm inflicted” on the database makers displaces the need for the
Act to be updated with advancing technological changes. However, at this nascent stage of sui
generis database protection, an explicit listing of restricted acts will help clear up the confusion.
For example, selling a translated version of an original database in the same geographical market
is likely to invite much controversy including the definition of market, and if translated copies
that are sold to a different group cause a displacement of revenues. This is especially of concern
to the US where the demography of the population is more diverse and different ethnic
communities speaking different languages often live in the same physical environment.

 62

6.4.3 Exceptions to Protection

As with traditional copyright laws, the sui generis EU Directive and HR3261 also contain a list
of permissible acts under which extractions become lawful. The EU Directive does not explicitly
contain a list of permitted acts per se, but provide a set of guidelines for member states to draft
their own exceptions. These guidelines suggest that the use of a protected database be allowed
for:

a. the reproduction of a non-electronic database for private use
b. illustration of teaching or scientific research unrelated to commercial purposes
c. the purpose of public security for the purpose of an administrative or judicial procedure
d. other circumstances which are authorized under traditional national IP laws

Similar to the EU Directive, HR3261 contains a list of permitted acts that measure the intent of
the users. For example, it allows for the generation of an identical database provided that the
content of the second database is independently gathered or generated, without reference to the
original database. It allows for hyperlinking and non-time-sensitive news reporting. HR3261 also
contains a clause that differs somewhat from the EU Directive. Instead of limiting the use of
original databases for non-commercial teaching or scientific research, it allows for non-profit
educational, scientific or research institutions to profit from the use of such databases.

Both the EU Directive and HR3261 clearly spelled out what could or could not be done with
respect to permissible acts. This follows the traditional copyright approach in which a broad
categorization of rights is granted to the originator, only for these rights to be limited by detail-
specific exceptions. The major difference that stems from this category is the clause in HR3261
that allows for non-profit educational and research institutions to utilize original databases for
commercial purposes. However, the HR3261 Act veers into ambiguity yet again when it
mentions these exceptions will be determined by courts for which “the making available in
commerce of the information in the database is reasonable under the circumstances, taking into
consideration the customary practices associated with such uses of such database by non-profit
educational, scientific or research institutions and other factors that the courts determines
relevant.”

6.4.4 Term of Protection

Databases protected by the EU Directive enjoy a 15 years protection. Additionally, any
substantial changes subsequent to the creation of the original database automatically renews the
term of protection to another 15 years. The kinds of permissible changes include additions,
deletion, edition or an accumulation contextual alteration. This means that dynamic databases
that are updated periodically will enjoy infinite protection while static databases will be granted a
protection of 15 years only. However, it is expected that database makers will attempt to
substantially modify their databases at least once during the 15 years period, rendering most
databases created under the EU Directive subjects of infinite protection. Only the databases that
have no true commercial values will be left to expire.

 63

HR3261 is totally silent about the term of protection, inviting a number of speculations. One of
them is that this Act can be interpreted as affording the database makers infinite protection,
whether the database a dynamic or static. If this is indeed the case, HR3261 is actually a step
backward with respect to the EU Directive. This is because by granting infinite protection to
database makers, this Act takes away the incentive for the database makers to properly maintain
their products. It is also unprecedented in the in the intellectual property jurisdiction domain
where every form of protection is granted a “life expectancy” so that these products help spur
further innovation and brings more societal welfare.

6.4.5 Relations to other Laws

The EU Directive is straightforward in saying that the sui generis database protection law does
not affect the other traditional laws including copyright, patents, trade secrets, trade marks, data
protection and privacy, confidentiality, access to public documents, laws on restrictive practices
and the law of contract, amongst others.

HR3261 is unambiguous in its recognition of other rights. It contains a near-identical clause
recognizing that the rights of other laws such as copyright patents are not affected.
It also recognizes the Communications Act of 1934 and the Securities Act of 1933. However, it
overrides state laws including State statue, rule, regulation or common law doctrine.

The following table is a summary of the differences between the EU Directive and HR3261 as
discussed above.

 Parameters EU Directive HR3261
1 Definition of Database a collection of independent works, data

or other materials arranged in a
systematic or methodical way and
individually accessible by electronic or
other means.

a collection of a large number of
discrete items of information produced
for the purpose of bringing such
discrete items of information together
in one place or through one source so
that persons may access them

2 Scope of Protection i) temporary or permanent reproduction
by any means and in any form, in
whole or in part
ii) translation, adaptation, arrangement
and any other alteration
iii) any form of distribution to the
public of the database or of the copies
thereof
iv) any communication, display or
performance to the public
v) any combination of the above

Owners/makers have to demonstrate:
i) the database was generated, gathered,
or maintained through a substantial
expenditure of financial resources or
time;
ii) the unauthorized making available in
commerce occurs in a time-sensitive
manner;
iii)the making available inflicts injury
on the original database or its related
service offerings by serving as the
functional equivalent in the same
market as the database in a manner that
causes the displacement or disruption
of revenues; and
iv) the ability of others to “free ride” on
the efforts of the original database
maker would reduce the incentive to
produce the product or threaten its
existence

 64

3 Exceptions to Protection i) the reproduction of a non-electronic
database for private use
illustration of teaching or scientific
ii) research unrelated to commercial
purposes
iii) the purpose of public security for
the purpose of an administrative or
judicial procedure
iv) other circumstances which are
authorized under traditional national IP
laws

i) Independently generated or gathered
information
ii) Acts of making available in
commerce by nonprofit educational,
scientific or research institutions
iii) Hyperlinking
iv) News reporting (non-time-sensitive)

4 Term of Protection 15 years Not Specified
5 Relations to other laws Other rights not affected i) Other rights not affected

ii) State laws over-ridden

Table 5: Comparative Analysis of EU Directive and HR3261

5.5 Implications of HR3261

The HR3261 and the EU Database Directive each takes a different approach in defining the level
of protection afforded to the makers of databases. For example, while the EU Directive explicitly
states what specific arts are to be restricted, HR3261 is more concerned about the seriousness of
the consequences brought about by an act of extraction, never mind in what way. For example,
the EU Directives prohibits unauthorized users from temporary or permanent reproduction by
any means and in any form of the original database, HR3261 only goes as far as implying such
arts will be allowed so long as the unauthorized users do not cause harm to the original database
makers in terms of displacement of revenue, sales, licenses, advertising, etc. Alternatively,
extraction of this nature will also be allowed if the database is not generated or maintained
through a substantial expenditure of financial resources or time.

Although the approaches taken by each of these Acts differ, their collective implications on the
database industry are beyond doubt. Despite the good intention of this act to promote an
accelerated growth of database creation, many academia and lawyers remain critical on its long-
term effects on the whole industry. In what follows, we will present a list of common
critiques34,35 on the implications of these database protection measures, with particular emphasis
on the HR3261.

1. Duplication of work

By making the content of a database copyrightable, a second comer would be fearful of breaking
the laws by making use of preexisting materials. He would have to go back to the original source
to extract the data that he needs. Thus, instead of expending his effort and resources into creating
more value-added features or services, a considerable amount of his investment might go into
reproducing the same piece of information, especially when the licensing cost is prohibitive. This
runs counter-intuitive to most traditional norms where the use of preexisting data in generating
new products or services is strongly favored. This is especially true in the world of academia.

 65

2. Monopoly of data by the first compiler

It is also possible that the first compiler might abuse this right granted upon him. Drawing on the
Feist example, Rural staunchly refused to license the content of its database to Feist because by
doing so, Rural is able to maintain its lucrative yellow pages advertisement revenue. By forcing
Feist to go back to the original source which requires very substantial effort and resources (in
this case, Feist would have to spend much more than Rural because of Rural’s unique position as
the service provider), Rural was able to effectively monopolize the local telephone directory
market. This would result in a form of market failure because a product would have to be
produced at a considerable higher cost than necessary. The likely result of that would be a higher
advertising cost if Feist’s directory went to the market, or a higher advertising costs for Rural’s
yellow pages since it would be able to extract rent through its monopolistic position. The
repercussion effect, one would imagine, is an overall welfare reduction to society as higher
advertising costs translates to higher retail prices – a suboptimal equilibrium.

3. Loss of creativity in database design

Under copyright laws, a database needs to exhibit certain qualities of “creativity” or “originality”
in order for it to receive protection. Under this sui generis doctrine, almost any database will be
eligible for legal protection so long as a “substantial” amount of efforts or financial resources
have been expended in generating the database. The likely result of this is that manufacturer will
dispense away with adding more “intellectual sparks” in creating databases. This means the
databases so created will tend to be of lower quality because of the lack of interest or incentive to
make them either easily accessible or other associated benefits that come with a more creative
arrangement of databases. This point is especially detrimental for databases that reside on the
web (and for which web wrappers prey on) because a poorly arranged database means users (or
software agents) will find it harder to navigate around to extract useful information, not to
mention the hidden costs in assessing a plethora of poorly designed databases, such as additional
time and effort wasted.

There are many more arguments pertaining to the negative impacts that a sui generis protection
on database will bring about, but the most compelling ones centered on the potential loss of
intellectual creativity and a possible stiffening of the knowledge as preexisting or factual
materials become increasingly harder to access. On the other hand, several optimistic views are
being raised about the positive effects that such legislation may bring about, including:

1. More knowledge creation through more investment on database

Because the sui generis doctrine is based on economic ground, legal protection afforded to the
content of databases is likely to bring about an increased level of investment into data
compilation. This is likely to stimulate knowledge creation as more data or information becomes
more widely available. However, an increase level of knowledge creation is only likely when the
costs of acquiring the data/information are not prohibitive. Given that the HR 3261 Act states
that “substantial” investment has to be made before a certain database is afforded protection, the
licensing cost is generally thought to be rather significant. If this is indeed the case, the

 66

prohibitive costs will actually deter people from using the database and precious resources might
be “wasted” as independent research on data collection is carried out to avoid the hefty licensing
fee. The result of that is an overall decrease in investment in new knowledge generation as the
legal forces act counter to the free exchange or sharing of available data/information.

2. Better protection for American databases with respect to EU Directive

HR 3261 is a direct response to the EU Directive on Database introduced in 1996. One of the
clauses in the EU directive that worries many American lawmakers is that foreign database is not
protected at the same level as the European databases in Europe unless the host nations adopt a
similar level of domestic protection. This effectively means that unless the U.S. (and other
countries) adopts a similar measure as the EU directive, databases maintained, owned or
operated by U.S. citizens will not be receive this sui generis protection in Europe. At the same
time, anyone (including U.S. citizens) who are found to have “inflicted an injury” on a European
database will be subjected to the more stringent database laws. As such, the EU directive
essentially creates an adverse selection phenomenon where people countries will vie to introduce
yet tougher laws on database protection in order to best serve the interest of their citizens.
Interestingly, HR3261 is not perceived as more stringent than the EU directive. However, it
probably has to do with the strong opposition from the scientific and research communities here
lobbying against strong measures to curb free use of database rather than as a direct consequence
of market forces.

Whether it is to increase knowledge creation by awarding database compilers or to better protect
the owner of American databases, HR 3261 faces many challenges if pass into laws. Recent
statistics suggest that the European experience with database protection is not at all smooth
sailing as the number of databases created surges initially before plummeting as the protective
measures hinder further progress. No substantial database can be created without having to rely
on preexisting data sitting somewhere in other databases.

5.5 Recommendations

The HR3261 is a step in the right direction in achieving the delicate balance between over-
protection of database makers and under-utilization of the same databases which may
inadvertently result in anti-commons problem. In the following section, we provide a list of
recommendation that supplements the existing database protection framework, with particular
references to web aggregation services, the main subject of contention for database
misappropriation claims and a heavy user of web wrapping technologies.

Recommendation 1: Engaging “authorized” Aggregators

While most web sites see web spiders as unwanted intrusion, there are many instances where
web mining by an aggregator can actually bring more good than harm. For example, a consumer
electronic store (such as PC Mall) selling the Apple iPod probably wants an aggregator such as
mySimon.com to actively mine its database so that it can reach a larger pool of customers

 67

through these “sales” channels. In this case, formal agreements can be struck between PC Mall
and mySimon.com so that it is able to obtain accurately updated price information directly from
PC Mall, perhaps through a different servers independent from the one where the store customers
use. This creates some sort of an electronic data interchange, or EDI where only authorized web
aggregators have access to. If PC Mall is able to devise a strategy to price discriminate such that
mySimon.com users may enjoy a higher discounted price compared to other non-authorized
aggregator, such an arrangement will be beneficial to both parties. This is because mySimon.com
will be able to help PC Mall expands its reach to potential customers while preferential discounts
from PC Mall will make mySimon.com more attractive than its competitors. By directing
mySimon’s and other “authorized” aggregators’ traffic to a different server, PC Mall will be able
to ensure the service level of its main servers where its customers use.

Recommendation 2: Re-emphasize more on common laws such as contract law

Apart from copyrights, contract laws are also used to resolve disputes arising from data
appropriation in cyberspace. By tying a user to a “click-wrap” license agreement, an aggregatee
will be able to exercise greater control in determining who will be allowed to access the
information and in what ways. However, for such license to be binding, the web site must be able
to demonstrate that the user is aware of the license and that the user must be able to accept it in
some way, as illustrated in the precedent-setting Specht et al. v. Netscape Communications case.
This kind of arrangement is particularly relevant to account aggregation should the aggregatee
chooses not to let its customers to share their account information.

The flip side of this arrangement is that sometimes these aggregatees do not want to upset their
customers. While the terms and conditions set forth in the license agreement might be legally
binding, most aggregatees chose not to pursue legal actions against their customers for fear of
upsetting them. For example, most airlines have some sort of clauses in their license agreements
that prohibit members of their frequent flyer programs from disclosing account information to
third parties. However, not many of them diligently enforce these clauses when their customers
choose to disclose their account information to third-party aggregators such as Maxmiles, for
fear that these upset customers might decide not to fly with them anymore. Despite its limitations
in this regards, contract laws are still very effective in ensuring the content of the databases are
not exploited commercially by “rogue” users such as Michael Zeidenberg.

Recommendation 3: Use of subscription based premium content

Where the database or compilation is the result of substantial capital investment, database
manufacturers have the tendency to limit access in order to extract “rent” from users accessing
the databases that they created. One of the possible solution is to follow a common industry
practice by collating these “premium” data into a secured site and limit its access through
subscription, much like what the Wall Street Journal is doing with its online content, i.e. users
only get to read WSJ’s articles when they are given a password after subscribing. Access to these
premium database or information can be further protected through a “click-wrap” license
agreement, binding users from making duplicate copies.

 68

The use of subscription based premium content sends out two signals: one is that it signifies the
value of these databases therein contained; the other being it is an explicit declaration that the
content is not for free public access and therefore not “all are invited to see”. This arrangement is
likely to separate genuine and serious compilations works from the likes of online catalogs since
market economics will dictate the true values of the content of these databases, i.e. nobody is
likely to pay to view an online catalog whereas the listed prices of a range of blue chip stocks
over the past 20 years are likely to generate substantial interest and buying activities.

6.6 Conclusion and the Future of the Database Protection

The main drawback of HR3261 is its ambiguity. We feel that HR3261 leaves too much
unanswered questions that are of great concerned to a lot of stakeholders in this database
producing industry. For instance, it does not address the term of protection. In contrast to the EU
Database Directive, HR3261 also looks light in terms of details. As a new bill that built on a sui
generis doctrine, we expect the bill to be more straightforward and clear-cut, with specific details
that address the concerns of the stakeholders. The resistance and critique for this bill is unlikely
to go away so long as key questions remain unanswered and some parts of the bill appear
equivocal. It is therefore important for the bill to state what is to be done and what is not to be
done, especially at early stages. In that regard, a model that is similar to the EU Directive where
much details are given is probably more preferable in this nascent stage.

However, by emphasizing on the intent of the “extractors” of the databases rather than the actual
physical actions taken by extractors, HR3261 has taken a step in the right direction. The fact that
HR3261 does not impose a residency requirement and therefore raises the bar even further is a
welcome relief. We expect that in the future a new sui generis right for database protection will
be enacted throughout the world, much like the other traditional intellectual property protection
measures like copyrights and patents. Time will allow this sui generis doctrine to find an
equilibrium point in the law books that is both consistent with the current legal framework and
acceptable by the educational and research community at large.

 69

Chapter 7: Conclusion

In this thesis, a total of 20 commercial and academic web wrapping toolkits were studied, their
architecture described, and their features analyzed and compared, using a two-tier taxonomy.
Legal/policy developments related to web wrapping technologies were also discussed, with
particular emphasis on the EU Database Directive by the European parliament and the HR3261
bill by the United States Congress.

The 1st-tier taxonomy used a “bottom-up” approach by breaking down each of the 20 toolkits
under study into its respective functional features, such as the degree of automation of web
wrapper creation and the support for SQL. Of the 20 toolkits, an overwhelming 14 of them made
use of some sort of semi-automatic approach for wrappers creation, indicating the use of such
technologies is gradually transferred from skilled programmers to the general public. The
presence of powerful web wrapping toolkits such as Lixto’s Visual Wrapper and Kapow’s
Robosuite further confirms the trend towards automation.

On the other hand, manual web wrapping toolkits remain powerful and provide the greatest
degree of flexibility to allow developers to customize the wrappers to extract from complex web
pages or documents. Cameleon and WebQL are the representative toolkits in this category. It
was also perhaps worth noting that other semi-automatic web wrapping toolkits sometimes also
offered the same degree of flexibility, but such flexibility could only be achieved by manual
coding in the editor. The sole automatic toolkit in this study, WIEN, was an academic toolkit and
at the moment, supported limited features due to its heavy reliance on the developing induction
algorithm.

The 2nd-tier taxonomy shed further light on the state of the art of the current web wrapping
technologies. With 8 out of 14 semi-automatic toolkits supporting all of the 12 selected features,
it was testimonial that web wrapping technologies had come of age to be adopted by mass
consumers. At the same time, 2 out of 5 manual web wrapping toolkits supported only 6 core
features. While the price differential might play a role here, this phenomenon nevertheless
suggested future manual toolkits might be more specialized in certain niche areas, such as
extracting from free text.

The last part of the thesis was a comparative analysis between the EU Database Directive and the
HR3261, both of which dealt with the intellectual protection mechanism used to protect
“substantially invested” databases that were the subjects of unauthorized extraction. From the
analysis, it was found that HR3261 was still fraught with ambiguity, with many details and
questions left unanswered. Nevertheless, it represented a new break-through compared to its
predecessors by focusing on the extent of injury inflicted on the database owners by
unauthorized extractors. HR3261 also deserved credit in that by electing not to impose a
residency requirement, it would not be drawn into a vicious cycle of raising the bar for database
protection, as intended by the EU Directive. With further modification to its list of permitted and
prohibited acts, this bill represented a model that was workable and potentially acceptable by the
research and educational community at large.

 70

Reference:

1. Stefan Kuhlins and Ross Tredwell, “ Toolkits for Generating Wrappers – A survey of
Software Toolkits for Automated Data Extraction from Web sites”, Net.ObjectsDays
2002

2. Alberto H.F. Laender et al, “A Brief Survey of Web Data Extraction Tools”, ACM
SIGMO Record, 2002, p.84-93

3. Aykut Firat, “Information Integration Using Contextual Knowledge and Ontology”, MIT
Sloan PhD thesis, 2003

4. W3C, http://www.w3.org/DOM/
5. Compaq Corp., http://www.research.compaq.com/SRC/WebL/index.html
6. QL2 Software, http://www.ql2.com/index.php
7. German National Research Center for Information Technology,

http://www.ipsi.fraunhofer.de/oasys/projects/jedi/
8. Stanford University, http://www-db.stanford.edu/tsimmis/tsimmis.html
9. Georgia Institute of Technology, http://www.cc.gatech.edu/projects/disl/XWRAPElite/
10. Lixto Software, http://www.lixto.com/
11. Califf, M.E. and Mooney, R.J., “Relational Learning of Pattern Match Rules for

Information Extraction”, In Proceedings of the Sixteenth National Conference on
Artificial Intelligence and Eleventh Conference on Innovative Applications of Artificial
Intelligence (Orlando, FL, 1999), p.328-334

12. Soderland, A., and Azavant, F. “Learning information Extraction Rules for semi-
structured and free text”, Machine learning 34, 1-3 (1999), p.233-272

13. University College Dublin,
http://www.cs.ucd.ie/staff/nick/home/research/wrappers/wien/

14. I. Muslea, S. Minton and C. Knoblock, “Hierarchical wrapper induction for
semistructured information sources”, Autonomous Agents and Multi-agents Systems 4, ½
(2001), p.93-114

15. B. Adelberg, “A Tool for Semi-Automatically Extracting Structured and Semi-Structured
data from text documents”, in Proceedings of the ACM SIGMOD International
Conference on Management of Data (Seattle, WA, 1998), p.283-294

16. Kapow Technologies, http://www.kapowtech.com/
17. Brigham Young University, http://www.deg.byu.edu/
18. Fetch Technologies, http://www.fetch.com/
19. ItemField, http://www.itemfield.com/
20. IBM, http://www-306.ibm.com/software/data/eip/features_infomining.html
21. WebMethods, http://www.webmethods.com/
22. ShueTech, http://shuetech.com/minetheweb/
23. NQL Technologies Inc., http://www.nqltech.com/2004/index.asp
24. Kapow Technologies, “Robosuite Technical White paper”, http://www.kapowtech.com/
25. ExtraData Technologies, http://www.extradata.com/
26. Altercept, http://www.altercept.com/
27. Lencome Software, http://www.lencom.com/
28. Cannotate Technologies, http://www.connotate.com/default.asp
29. Loton Tech, http://www.lotontech.com/
30. Thunderstone, http://www.thunderstone.com/texis/site/pages/Home.html

 71

31. WinTask, http://www.wintask.com/
32. XSB Inc., http://www.xsb.com/index.html
33. Copyright Office, http://www.copyright.gov/register/tx-compilations.html
34. P. Samuelson, “Legal Protection for Database Contents”, Communication of the ACM,

December 1996, Vol 39, No.12
35. H. Zhu, S. Madnick and M. Siegel, “The Interplay of Web Aggregation and Regulation”,

2003
36. THE EUROPEAN PARLIAMENT AND THE COUNCIL OF THE EUROPEAN

UNION, http://europa.eu.int/ISPO/infosoc/legreg/docs/969ec.html
37. 108th Congress, http://www.haledorr.com/files/upload/data_collections_act_2003.pdf

