| nfor mation Integration Using
Contextual Knowledge and Ontology Merging

Aykut Firat
Working Paper CISL# 2003-06

August 2003

Composite Information Systems Laboratory (CISL)
Sloan School of Management
Massachusetts Institute of Technology
Cambridge, MA 02142

This page is blank

Information Integration Using
Contextua Knowledge and Ontology Merging

by
Aykut Firat

Composite Information Systems Laboratory (CISL)
Sloan School of Management
Massachusetts I nstitute of Technology
Cambridge, MA 02142

ABSTRACT

With the advances in telecommunications, and the introduction of the Internet, information
systems achieved physical connectivity, but have yet to establish logical connectivity. Lack of
logical connectivity is often inviting disaster as in the case of Mars Orbiter, which was lost
because one team used metric units, the other English while exchanging a critical maneuver data.
In this Thesis, we focus on the two intertwined sub problems of logical connectivity, namely data
extraction and data interpretation in the domain of heterogeneous information systems.

The first chalenge, data extraction, is about making it possible to easily exchange data
among semi-structured and structured information systems. We describe the design ad
implementation of a general purpose, regular expression based Caméléon wrapper engine with an
integrated capabilities-aware planner/optimizer/executioner.

The second challenge, data interpretation, deals with the existence of heterogeneous contexts,
whereby each source of information and potential receiver of that information may operate with a
different context, leading to large-scde semantic heterogeneity. We extend the existing
formalization of the COIN framework with new logical formalisms and features to handle larger
set of heterogeneities between data sources. This extension, named Extended Context Interchange
(ECOIN), is motivated by our analysis of financial information systems that indicates that there
are three fundamental types of heterogenetties in data sources. contextual, ontological, and
tempord.

While COIN framework was able to dea with the contextual heterogeneities, ECOIN
framework expands the scope to include ontological heterogeneities as well. In particular, we are
able to ded with equationa ontological conflicts (EOC), which refer to the heterogeneity in the
way data items are calculated from other data items in terms of definitional equations. ECOIN
provides a context-based solution to the EOC problem based on a novel approach that integrates
abductive reasoning and symbolic equation solving techniques in a unified framework.

Furthermore, we address the merging of independently built ECOIN applications, which
involves merging disparate ontologies and contextual knowledge. The relationship between
ECOIN and the Semantic Web is also discussed.

Finaly, we demonstrate the feasibility and features of our integration approach with a
prototype implementation that provides mediated access to heterogeneous information systems.

Acknowledgements
Work reported herein has been supported, in part, by DuWayne Peterson Fellowship,
PriceWaterHouseCoopers, Maerrill Lynch, the Singapore-MIT Alliance (SMA), MITRE
Corporation, Maaysia University of Science and Technology (MUST), the MIT Center for
eBusiness, Motorola, and Suruga Bank.

TABLE OF CONTENTS

CHAPTER L bbb b b bbb bbb s 7
INTRODUCTION ..ot b bbb bbb 7
1.1 SUMMARY OF CONTRIBUTIONS ...t ssssse e sessssssssesssessesessssssssessssssssesssesssnessens 9
L2THESISOUTLINE ..ot et n s 11
CHAPTER 2.ttt e e e 14
DATA EXTRACTION. .ttt s 14
21LITERATURE REVIBW ...t s s 14
2.2 CAMELEON WRAPPER ENGINE......ccoooiiismrritissessssissasssssssnees 19

2.4 SAMPLE APPLICATIONS ...ttt bbbt bbbttt 26
2.4. 1 PERSONAL INVESTOR WIZARD........cortuturtueetueetisessinessissasssssesssssssssssssssss st ssssssssssssssssssssssssssssssssessssssssssssens 27
2.4.2 AIRFARE A GGREGATIONuuiururtetreresseeesesessssesessssesssssessssssssessssssssesssssesssssssessesssssssssssssesssssssssssssssssesssssnssnss 27

2.5 DISCUSSION & CONCLUSION......oiiiteetrerereeerereseeetsesessssesesessssssesessssssssesssssssssssssssssssssssesssssssssssssssssesssssnssnss 27

(O o N e I oS TT 32

DATA INTERPRETATION ..ottt ettt sttt et s s 32

3.1DIMENSIONS OF SEMANTIC HETEROGENEITY ...ooiiiirteirirereeisireresis e sesssssesessss e ssees 32
3.1.1 CONTEXTUAL HETEROGENEITY ...cuttiuceiueereusereesensesesstsesstsessssesssssssssssessssessssssessesssssssssssassssassssasssssssssssssssens A
3.1.2 ONTOLOGICAL HETEROGENEITY ..coiuiuiueereueerterenserensisesstsesssseasssssssssssessssesssssssssesessssessssssssssssssssssssssssssssssns 36

Equational Ontological CONfliCtS (EOC).......couemiiicieriieieeenee s ssessssessssssssessssssssesessssssessssssssesssssnss 37
3.1.3 TEMPORAL HETEROGENEITY ...cucututuiueereusereesestisesstsessisessssessssessssssssssssessssesssens 37
3.1.40N THE RELATIONSHIPBETWEEN CONTEXTUAL AND ONTOLOGICAL HETEROGENEITIES........ccoveneen. 39
.1 ARELATED WORKututiuttuetetseessesesessesesess e essssessbsess b sese b sese bbbttt b e s e s bbb bbbt 40

3.2 MAJOR APPROACHES TO ACHIEVING INTEROPERABILITY
3.2. L TIGHTLY COUPLED APPROACHES.......cetrureueurereresreetsesessssssssesssssssessssssssssssssessssssssssssssssesssssnsssssssssssssssssnssnss
3.2.2LOO0SELY COUPLED APPROACHES........csnerueererenreetreresssesesesasssesenssnsees
3.2.3 SHORT -COMINGS OF EXISTING APPROACHES.......ccstrererererererereseseresenes

CHAPTER 4.ttt bbb

CONTEXT INTERCHANGE STRATEGY ..ot reeseseeeeseeeeees

4.1 COIN STRATEGY BY EXAMPLE ...t
4.1.1 AIR FARE SCENARIO.....cturituremterensireasinsestssasssssssssssessssessssessssssssssssssssesns
4.1.2 CORPORATE HOUSEHOLDING SCENARIO.....ccuriuteuieereeesessesessssesssssssssssessssssssssessssssssssssssessssessssssssssssssssnes

4.2 STRUCTURAL ELEMENTS OF COIN FRAMEWORK ..ottt 53
4.2. 1 DOMAIN MODEL (G) .uueueutreueertueeteeetesessesessssessssesessessssessessssessssessssssesssessssssssssssssassssssssssssssessssessssssssssnssssnes
4.2.2 SOURCE SET ((S) cerueueuereereueereseestsesstseestsesssssessssesessesessessssessssessssssstsssssessssessssessssessssasssssssessssessessssessssssssssnssssnes
4.2.3ELEVATION AXIOMS (IM) ooiuiiieetieetieensesese s bsese s ses sttt bbbttt
4.2 4 CONTEXT SET (C) cvueuerreurereereseresenessinesessssessesesssssssessssssessssesssssssssssessssesns

4.2.5CONTEXT ASSIGNMENTS (?)

4.3 QUERY ANSWERING IN THE COIN FRAMEW ORK ...t 58

4.3.1OVERVIEW OF ABDUCTION IN COINoiuicietieieeeiseeeeetseseesessssssssessessesssssssssesssssssssasssssesssssssssssssssssessasssssens 59
4.4 ECOIN COMPARED TO COIN cooieeeteeetese et eestesets st estsssassestsesssssssssssastssssssssssessessssasssssasssssssssasssssensans 59

4.4.1 REPRESENTATIONAL DIFFERENCES

4.4.2 REASONING DIFFERENCES.......cioiitceeeieee e iee st se st ess s sas e s s snsnns

4.4.3PROTOTYPE DIFFERENCES.......coiitititieiiiststeistsessessses e ssstsssas et ssssssasssestsssssssssssassssssassssssstesssssssssssssssssessssssssens
(o1 N I =12 T YT 61
EXTENDED CONTEXT INTERCHANGE ...ttt ettt bs bbbt 61
LN L0\ I =G I 61

5.1LITIGHTLY COUPLED CONTEXTS.ceiiiiiieisisiisisisesesssssesssns 62

5.1.2LOO0OSELY COUPLED CONTEXTS...costiiiietsisiisesisesessans 63
5.3LOGIC PROGRAMMING ...ttt s s s s s s s 67
5.4 ECOIN KNOWLEDGE REPRESENTATION. ... sssns 68

5.4. 1 BASIC CONCEPTS . ..ot ittetetteeteetseetetesssssestsessssssasssssestassssssasssasessssasssssestssssassasssssesssesssssssssssssessesssssessssssessasssssens 68

5.4, 2 DECLARATIONScitititeetetseeeestsestetesssssetstssssssasssssestassssssasseesesetasssesestssesassassessenssessesessssssssessesssssetsessensasssssens 69

5.4.3CONTEXT

5.4.4 SOURCES AND CONSTRAINTS.....uiittitetiieteeeiessesessssssssssssestessssssssssestssssssssssstasssssssssssssssssessssssssassssssesssssssens 74

5.4.5MAPPINGS (ELEVATION AXIOMS).cucueuiueereererreresserensesessssesssssssssssssssssesssssssssssssssssssssessssssssssssssssssssnsesnssssssns 76

5.4.6 ONTOLOGY

CONVET SION FUNCEIONS.......uciitciises ettt ettt st ettt e se b e st s b e as et bese s sesbe s st ebeassesbesnsnanas 80

5.4.7 ECOIN FRAMEWORK ...cvritieisieesiseststetstsestssss st stss st ssssssssstssasssssssssssssssssssssssasses 81
(OF U I = T T 82
QUERY ANSWERING IN ECOIN ...oiiiicterreeeeesesie st ssss et sssss s sssss et ssssssssesessssssesssssassesssssssens 82
6.1 EQUATIONAL ONTOLOGICAL CONFLICTS ..ttt sesssassessssssssens 82
6.2 ABDUCTIVE LOGIC PROGRAMMING ...t 84
6.3 CONSTRAINT LOGIC PROGRAMMING ... oteeeeeeeeeteetetsseeststsssst st sesssssssstssesassasssssasssnssesnassessanees 85

6.3.1 CONSTRAINT HANDLING RULES.......cottrtetiteteiseeestsessessessesessstssssssestssssessasssssesssssssssssssssssessessssssssssssensasssssens

6.3.2 DECLARATIVE SEMANTICS OF CHR
6.3.3 OPERATIONAL SEMANTICS OF CHR

6.3.4 SOUNDNESS AND COMPLETENESS.....c.cetrtrertrerereresesesesesssesesesssesesssssesessseses
6.4 ABDUCTIVE CONSTRAINT LOGIC PROGRAMMING ..o 89
6.5 QUERY ANSWERING WITH ACLP ..ot st 90

6.5.1 NAIVE TO WELL DEFINED QUERY TRANSFORMATIONccuiuiirirtriresesesesesesssesessssssssssssssssssssssssssssssssssssssnenes 91

6.5.2ECOIN TO ACLP TRANSFORMATIONctrttsiresesesesesesssesesssssesesssssesssssssessnsnes 92

6.5.3SYMBOLIC EQUATION SOLVING CONSTRAINTS....ccrtrererererereresesesesesssesesesesssesessssssssssssssssssssssssssssssssssssssnsnes 93

6.5.4IMPLEMENTATION ISSUES

6.5.5A COMPARISON WITHMRDSM ..ot ss s 9%
6.6 ILLUSTRATIVE EXAMPLE ...t e nnns 97
(O 1 el I TSR PTSTTN 103
ONTOLOGY AND CONTEXT MERGING IN ECOIN ... 103
7.1 LITERATURE REVIEW ON INTEGRATING ONTOLOGIES.......ricscereeeeens 103
7.2 EXAMPLE MERGING SCENARIO ...t 105

7.2.1 CAR RENTAL SCENARIO....c.ectrtrteuierireesesesessasesesesteesessssssesessssasessssssansssssesessssssesessssssssensssssessnsssssasssessesasenses 105

7.2.2MERGING AIRFARE AND CAR RENTAL...ctitttriieeeieeseeeesesesesssssssessssssssssssssssssssssssssssssssssssssnsssssnsnes 108
7.3 KNOWLEDGE REPRESENTATION FOR MERGING......coecrreee e 110

7. 3.1 NOTATION AND A SSUMPTIONS.....civivireriseseeeeesessestasssssesstssssessesssssessssssssssssssssessesssssestssssessasssssesssssssssssasses
7.3.2DECLARATIONS.....ceoeveuee
7.3.3CONTEXT weovreierrresiseeeens
7.3 A ONTOLOGY ..ooreiieieiresteeieesese st st ts s ss s e s st s st sas et s asbs s se st e s s st ssesesnenns
7.3.5REST OF THE CONCEPTS.

CONVErSION FUNCLIONS.......eciiieciiesececcess s sn s s sn b

Elevations.......
Constraints

ECOINM FFAMEWOTKo.euvieeirierireeseeesesesess st iseee ettt s st sess s s bbb sesssssssssens

7 A MERGING PROCEDURE ...ttt ses st sss st ssssse s snssssssssessssnees 115
(O o o G TP 119
THE ECOIN PROTOTY PE....oioiiestesssesisesessssesssssssssssssssssssesssns 119
B.L CLIENT PROGCESSEScoertirrtreeireneeressesessessssessssessessessssessssesanes 119

8.1. 1 APPLICATION CREATION. ...ccuturueueetereseeressesessesessesesssssssssessssessssessessssessssssssssssssssessssessssessssasssssssssssssssssesssees 119

8.1.2 QUERY FORMULATIONcuttiuiiueetereseeressesessesessesessssessssesessessssessessssessssesssssssssssessssessssessssasassssssssssssssessssees 122
8.2 MEDIATOR PROCESSES.ccsitrtirtirriritsstssssssessessessssssssssssssssssssssessessesssssssssssssssssssssssssessessessssssssssssssssnes 123

8.2. 1 THE ABDUCTION ENGINE.....critriuriererrernesnessessessessesssssssssessesssssssssssssssssssssssssessessesssssssssssssssssssssassessessesssssnes 123

8.2.2 QUERY PROCESSORcuuureseeseessesesssssessssssesssssssssssssssassessessssssssssssssssssssssssssssassessesssssssssssssssssssssassessessesssssnes 128
8.3 SERVER PROCESSEScoosmiiinrinsineinetsetsetsssssss s sssssssssssssssssssssssssessesssssssssssssssssssssssssessessessssssssssssssssssnes 129
CHAPTER 9.ttt ettt sttt s s s8££t 130
ECOIN AND THE SEMANTIC WEBcviririeireereseisetsetsstsstssissse s sssss sttt ssssssessessssssssssssssssssssssessns 130
Q.1 THE SEMANTIC WEBooiiriiireireisetsetsetsete s ses st sss st sssssssnees 130
9.2THE SEMANTIC WEB AND RELATIONAL DATABASES ... sesese e ssssesnees 132
9.3THE SEMANTIC WEB AND ONTOLOGIES.cosierreerreeerreresisesisessssssessssessssesssssssssssssssssssssessssesnes 135
9.4 THE SEMANTIC WEB AND CONTEXT ..otritrerererseneeeenseeessesesesesesessssesssssssssssssssssessssssssssssssssessssesnes 136
95 THE SEMANTIC WEB AND RULES ..ottt s sess s ssssssssssssssssesssssanes 137
9.6 THE SEMANTIC WEB AND LOGIC PROGRAMMING ...ooovoiirrireeireeireeeneeseseesesesessesess e ssseeeees 138
0.7 FUTURE WORK ...ttt sttt st sse s ssss sttt st essessesssssssssssssssssssssssessessesssssssssssssssssssanes 138
L0 o e I 0O OO 139
CONCLUSION ...oiriririseiretsstssesssssseesesssssssssssss sttt sssessessessssssssssssssssssssssessessessssssssssssssssssssssassessessessssssssssssssssnes 139
L10.1 FUTURE WORK ...ttt sttt ssssssessessssse sttt b sttt essessssssssesssssssassassessassessessessesssssssssssssassassans 140
REFERENCES........oooititieineieiieee ettt sttt ssse s st bbbt b st s bbbttt ees 141

“And the whole earth was of one language, and of one speech... Therefore is the name of it called Babel;
because the Lord did there confound the language of all the earth...”
Genesis 11:1-9

Chapter 1

| ntroduction

In the Biblical story of the Tower of Babel, mankind starts to build a city and a tower
to stay centralized forgetting the command of God on replenishing the earth. Then, God
prevents their endeavor and confuses their speech by introducing multiplicity of
languages. Unable to communicate, they terminate the construction and spread all over
the earth. Today, thanks to the advances in transportation and information systems, the
world has turned into a global village, and we are somewhat able to communicate with
each other despite the diversity of our languages and cultures.

A similar story is unfolding in the genesis of computers, in which the confusion of
languages aready happened, and information systems with multiple languages and
assumptions are spread across organizations, and countries. With the advances in
telecommunications, and the introduction of the Internet, information systems achieved
physical connectivity!, but have yet to establish logical connectivity?. Lack of logical
connectivity is often inviting disaster as in the case of Mars Orbiter, which was lost
because one team used metric units, the other English while exchanging a critical
maneuver data>. Even the ominous events of September 11, could perhaps be prevented,
had there been connectivity between the databases of various government agencies
including airport security, FBI, and CIA®.

This problem of attaining logical connectivity among computer systems is
traditionally known as achieving semantic interoperability among autonomous and
heterogeneous systems. In this Thes's, we focus on the two intertwined sub problems of
logical connectivity, namely data extraction and data interpretation, in the domain of
heterogeneous information systems.

1 The ability to exchange bits and bytes

2 The ahility to exchange meaningful information

3 Mars Climate Orbiter Team Finds Likely Cause Of Loss, by Douglas Isbell, Mary Hardin, Joan
Underwood, http://mars.jpl.nasa.gov/msp98/news/mco990930.html, September 1999.

4 Joint | nquiry into Intelligence Community Activities before and after the Terrorist Attacks of September
11, 2001, by The House Permanent Select Committee On Intelligence And The Senate Select Committee
On Intelligence, December 2002.

The first challenge, data extraction, is about making it possible to easily exchange
data among semi-structured and structured information systems. Web sites, for example,
contain huge amounts of data, yet operational systems cannot easily use them because of
the heterogeneity in the protocols used to reach and extract data (e.g. SQL vs. http). As
described in this Thesis wrappers can be used to overcome this problem, by providing an
artificial (and usually third-party) interface to the data sources.

The second challenge, data interpretation, deals with the existence of heterogeneous
contexts, whereby each source of information and potential receiver of that information
may operate with a different context, leading to large-scale semantic heterogeneity. A
context is the collection of implicit assumptions about the context definition (i.e.,
meaning) and context characteristics (i.e., quality) of the information. As a smple
example, whereas most US universities grade on a 4.0 scae, MIT uses a 5.0 scade.
Another typical example might be the extraction of price information from the Web: but
is the price in Dollars or Yen (if dollars, is it US dollars or Hong Kong dollars), does it
include taxes, does it include shipping, how current isit, - and most importantly does that
match the receiver's assumptions? With the globa reach of the Internet, contexts of data
sources are no longer obvious to their users. they have to be declared and exchanged
together with the data, and be reconciled whenever a conflict exists. The Context
Interchange (COIN) group at MIT has investigated the existence of and reasons behind
various forms of context challenges and developed a strategy, and theory for representing
context knowledge, and a context mediation engine for mitigating the problem.

COIN strategy was inspired from earlier work reported in [Siegel and M adnick, 1991,
Sciore et al., 1994], and later studied by Cheng Hian Goh in his Ph.D. thesis [Goh 1997],
which introduced the formal definition of a COIN framework. COIN strategy rests on the
notions of context that allows users to furnish a logical specification of how data are
interpreted in sources and receivers, and conversion functions, that specifies how
conflicts, when detected, should be resolved. This approach is fundamentaly different
from classical integration strategies, as it does not insist onusers or system administrators
to determine what conflicts exist a priori between any two systems.

While Goh's study was an important first step towards solving the problem of
interoperability among heterogeneous systems, it also left out a number of important
topics and problems. First, and foremost, there was not a clear definition of concepts such
as context, conversion function, and ontology. Second, the COIN framework was unable
to deal with many types of heterogeneities that surfaced after working with severa
industry information-providers in attempting to apply the COIN technology to the “red
world” problems encountered by them. COIN framework, for example, was silent on
equational ontological conflicts (EOC) that refer to the heterogeneity in the way data
items are calculated from other dataitemsin terms of definitional equations. Third, Goh’'s
study did not address merging independently developed, ontology based COIN
applications. Finally, there have been significant developments in the recently emerging
Semantic Web research, many of which have important implications for database
integration. There is a need to explain the relationship between the COIN strategy and
Semantic Web efforts and to exploit the synergies between them.

1.1 Summary of Contributions

The primary objective of this Thesis is to provide approaches and theory --coupled
with a robust and flexible software platform:- to the data extraction and interpretation
problems, thereby contributing to the solution of the semantic interoperability among
autonomous and heter ogeneous systems problem.

In the data extraction part of this Thesis, we introduce a technology and infrastructure
to support the effective flow of information among sources and services on the web and
their interconnection with legacy systems that were designed to operate with traditional
relational databases. This technology, named Caméléon [Firat et. a 2000], is designed to
work as a relational front-end to semi-structured data sources as well as traditional
relational databases. It can extract data from web pages using declarative specification
files that define extraction rules. We use regular expressions in defining extraction rules,
that segment and iteratively extract attribute data values. The users can then issue SQL
gueries and treat web sites as if they were traditional databases. This allows software that
can open connections to Web, (e.g. Excel, Visual Basic, etc.), as well as traditional user
application software to directly query the Web. As a separate application, using a post-
processor, this technology has also been used to generate XML-tagged pages from
"legacy" HTML Web sites,

The rest of the contributions are in the data interpretation part of this Thesis. First, we
extend the existing formalization of the COIN framework with new formalisms and
features to handle larger set of heterogeneities between data sources. This extension,
which will be referred to as Extended Context Interchange (ECOIN) framework from
now on, is motivated by our analysis of financial information systems that indicates that
there are three fundamental types of heterogeneities in data sources. contextual,
ontological, and temporal.

ECOIN framework transforms ontological heterogeneities (i.e. differences in the
definitions) into contextual heterogeneities, thus builds on top of the existing COIN
model. In particular, we are able to reason with equational ontological conflicts by
extending the reasoning engine with symbolic equation solving capabilities. Consider for
example, financial concepts such as “profits after taxes” and “profits before taxes’ that
are ontologically distinct but have interdependences that can be expressed as equations,
such as “profits after taxes = profits before taxes — taxes’. Such conflicts in accounting
methods are quite widespread not only between different countries, but also within the
same country [Firat et al. 02]. For example, The Wall Street Journal and S&P use
different methods to calculate the P/E Ratios for the Standard & Poor's 500-stock index.
The Wall Street Journal divides the combined market capitalization of the 500 companies
currently in the index by their most recently reported four quarters of earnings, while
S& P updates earnings statistics for the index just once a quarter and doesn't evise
earnings from previously reported quarters to account for additions or deletions to the
index.® Therefore, this extension by itself covers awide range of problems.

® Movi ng Target: What's the P/E Ratio? Well, Depends on What |s Meant by Earnings--- Terms Like
“Operating”, “Core”, “Pro Forma” Catch Fire, Leave Investors Muddled --- “ Earnings Before Bad Stuff',
Jonathan Weil, Wall Street Journal, Aug 21, 2001.

ECOIN provides a context-based solution to the EOC problem by making the context
of the data items of each source explicit (i.e., how they are derived from other data items)
and adjusting their values to different contexts by recalculating them when necessary
using the contextual knowledge — including the definitional equations associated with
each context. Equational ontological conflicts are not handled by making changes to the
ontology, for example by introducing new types and defining equationa relationships
between their values. Making changes in ontologies is likely to be a time-consuming and
difficult process, and is better avoided as much as possible. Furthermore, in many cases,
such an approach would result in an explosion of new ontology types to handle all of the
possible variations. In ECOIN framework we use modifiers, a special type of attributes
that collectively define the context of a data source, to specify the implicit aspects of an
ontological term. We claim that ECOIN approach is an elegant and low cost way to
represent equational ontological conflicts.

Second, query mediation in ECOIN, is a novel approach that integrates abductive
reasoning and symbolic equation solving techniques in a unified framework. We build
on top of the abductive inference approach of COIN framework with the addition of
symbolic equation solving capabilities by using constraint logic programming techniques.
Our combination of symbolic equation solving with abductive reasoning constitutes an
interesting example for the emerging work under the name abductive constraint logic
programming (ACLP) [Kakas et. al 2000]. We think of symbolic equation solving axioms
as constraints to be satisfied by the abducted equational answers. Similar to how integrity
constraints behave in COIN query processing, equational constraints simplify, combine
and transform the abducted equational answers. In addition consistency checks for
equations can sometimes prune query branches and demonstrate what is traditionally
known as semantic query optimization.

Our choice of solving equations symbolically as opposed to transforming the data at
run time is consistent with query processing in COIN framework, which constructs the
intensional answers as opposed to extensional answer sthat would be obtained during run
time. ECOIN, like COIN, accepts a naive query (i.e. query with the assumption that no
conflicts exist between source and receiver contexts) and rewrites it into a mediated
query (i.e. query with all conflicts between sources and receivers reconciled) with the
extra processing capability of equations that originate from the conversion functions used
to transform query terms from one context to another.

Third, we address the merging of independently built ECOIN applications, so that
gueries covering multiple applications can be answered. From the user point of view, it is
usually more advantageous to merge aready existing applications with their
accompanying ontologies, instead of creating a new application with a broader ontology
from scratch. The challenge of merging multiple applications lies in the existence of
modeling differences between independently developed ontologies and the emergence of
new contextual conflicts because of using different applications together. We adopt a
virtual context centered approach to merging ECOIN applications. We call it virtual
because we do not create a materialized application from the applications to be merged.
Instead, we create an application with articulation axioms defining the relationships
between the context definitions, and related ontology elements. We call it context
centered, because the motivation behind the merging is to achieve the exchange of
contexts between different applications. Since our goal is to be able to answer queries

10

that cover multiple applications, it is sufficient to relate context definitions between
applications rather than linking all ontology elements. In order to avoid the cluttering of
articulation axioms, we adopt a hierarchical approach based on merging two applications
at atime. The merger application becomes an independent application by itself, and the
user need not be aware of the fact that it is a virtual application created by merging other
applications. This approach with its ssimplicity and requirement of minimal articulation
axioms constitutes a powerful approach to merging independently developed ECOIN
applications for query answering purposes.

Fourth, we initiate the process of finding a mapping between the ECOIN framework
and the Semantic Web. As pointed in [Manola 2002], much of the Semantic Web
research activity is taking place in areas somewhat separated from the traditional database
and information systems communities. One of the main reasons of this separation is the
insufficient articulation of the relevance of heterogeneous database research to Semantic
Web research. One of our aimsin this Thesis is to explain how COIN strategy is relevant
to Semantic Web. To make this relevance concrete, we discuss mappings from our
internal representation of ECOIN framework to Semantic Web languages such as RDF,
RDFS, and OWL.

Finaly, we remark that ECOIN framework has been redlized in an actual prototype
implementation demonstrating the feasibility and features of our approach. This
prototype provides mediated access to traditional databases, as well as semi- structured
web sites, and web services, aeates and maintains metadata (e.g. ontologies, context
descriptions) that are used in ECOIN through graphical interfaces, and supports merging
multiple applications.

1.2 Thesis Outline

The rest of this Thesis is organized as follows. Chapter 2 is a self-contained study of
data extraction in which we describe the Caméléon approach to the interoperability of
Web sources and traditional relational databases. This chapter aims to provide a flavor of
infrastructural issues that have to be dedt with before going into higher level issues
related to data interpretation in the following chapters. The chapter starts with an analysis
of different approaches to data extraction and compares our approach with the existing
approaches in the literature. Then, the architecture of Caméléon and the structure of
declarative spec files that describes schema and extraction rules are explained in detail.
We provide an airfare aggregation example to illustrate the advanced features of
Caméléon web wrapper engine. Finally, we discuss the architecture and features of next
generation data extraction tools based on the latest developments (e.g. XML and Web
Services).

Chapter 3 delves into the data interpretation aspects of information integration by
first categorizing the dimensions of data heterogeneity as contextual, ontological, and
temporal based on a case study we conducted in a financial setting. Then we provide a
literature survey on data heterogeneities and major approaches to achieving semantic
interoperability among autonomous and heterogeneous systems. The objective of this
chapter is to familiarize the reader with existing approaches to information integration,
which will hopefully lead to a better understanding of the subtleties of our approach
described in the following chapters.

11

Our aim in Chapter 4 is to explain what has already been done within the COIN
group, and what new contributions we are offering with this Thesis. We provide a
comprehensive summary of the COIN approach for readers who may choose to skip the
eloguent but detailed presentation in [Goh 97]. We use illustrative examples to explain
the features of the existing COIN approach, and to underscore the differences between
ECOIN and COIN. We end the chapter with a comparison of ECOIN and COIN to
highlight our contributions that extends and complements the previous approach in our
group.

Chapter 5 is devoted to explaining the core concepts of ECOIN approach, and laying
out the complete ECOIN data model. We aim to convey the philosophy behind the
central constructs of ECOIN such as context and ontology by summarizing insightful
works from the literature. We then position these concepts in the formal ECOIN data
model, which culminates in the description of ECOIN framework. ECOIN framework
specifies a template that can be used to integrate autonomous and heterogeneous data
sources. Our formal description of the ECOIN data model is aided by examples, and
intuitive explanations. The reader interested in implementing the ECOIN approach will
hopefully find forma statements precise enough, whereas the reader who is interested in
a high level understanding may generate the big picture from intuitive explanations and
examples.

Chapter 6 focuses on query answering in the presence of equational ontological
conflicts using abductive constraint logic programming (ACLP), which is the primary
difference between ECOIN and COIN. We first clarify what we mean by equational
ontological conflicts and then present the theoretica foundations of abductive and
constraint logic programming paradigms. Our aim in this chapter is to describe how
ACLP provides an elegant way for query mediation in the ECOIN framework. In
particular, we focus on the representation of a simultaneous symbolic equation solver in
constraint logic programming which integrates nicely with the abductive logic
programming framework aready employed in the COIN framework. We proceed to
explain the building blocks of symbolic equation solving using constraint handling rules
and its interaction with abductive inference during query processing. The chapter ends
with an example that illustrates how a sample query involving equational ontological
conflicts is mediated. The materia in this chapter is crucia for readers who are interested
in building an inference engine that can mediate SQL queries with the help of metadata
from the ECOIN framework.

In Chapter 7, we consider how one could proceed to merge multiple ECOIN
applications, which involves merging disparate ontologies and contexts. We begin with a
review of ontology merging, and schema integration literature to provide the relevant
background in this area. Next, we extend our airfare example from Chapter 4 with a car
rental application and illustrate the concept of merging using these two applications.
After algorithmically explaining how virtual context centered merging works, we
formally describe the incremental elements of our merging framework. Our primary aim
in this chapter is to demonstrate the extendibility of our integration approach with context
driven merging, which is low cost and scalable.

In Chapter 8 we present the ECOIN prototype that demonstrates the feasibility of
ideas described in previous chapters. While the chapter describes al three processes--the
client, mediation and server processes- that make up the prototype, it focuses on the

12

implementation of mediation, particularly the abduction agorithm. Abduction is
explained with a step by step evaluation of a query sub-section. The treatment of client
and server processes is brief and refers readers to detailed works of several master
students.

We discuss the relationship between ECOIN and Semantic Web in Chapter 9 and
explore mappings between the two frameworks. In particular, we consider the
relationships between ontologies, and the representation of context on the Semantic Web.
We end this chapter by mentioning future directions for research that relates ECOIN and
the Semantic Web.

Finally, we conclude in Chapter 10 by pointing out some promising research areas to
pursue in the future.

13

Chapter 2
Data Extraction

With the advent of the Internet, the volume of online data has skyrocketed. Yet,
much of these data are structured primarily for human consumption, and it is difficult for
computer programs to gather, and operate on data that do not have a well-defined and
agreed-upon structure designed for machines. Luckily, it is possible to discover some
level of structure by analyzing the data prepared for human consumption. Data extraction
is about artificially imposing a well-defined structure over semi-structured data
[Abiteboul 97]), therefore enabling the exchange of data anong heterogeneous types of
information systems (e.g. SQL vs. http).

In this part of this Thesis, we introduce a technology and infrastructure to support the
effective flow of information among the sources and services on the Web and their
interconnection with legacy systems that were designed to operate with traditional
relational databases. This technology, named Caméléon, is designed to work as a
relational front-end to semi-structured data sources. It extracts data from web pages using
declarative specification files (spec file for short) that define extraction rules expressed in
regular expressions. The users can then issue SQL queries to Camééon and treat web
stes as if they are traditional databases. This allows ODBC-compliant package software,
such as Excel, Visua Basic, etc., as well as traditional user application software to
directly query the Web. As a separate application, using a post-processor, this technology
has also been used to generate XML-tagged pages from "legacy” HTML Web sites.

We start with a review of literature related to data extraction. Our aim is to provide
the necessary background to ensure the smooth flow of ideas in this Thesis, while aiding
the reader to understand where and how this work differs from similar studies. Then, we
go into the details of Caméléon wrapper engine design and implementation.

2.1 Literature Review

During the first boom years of the Internet, especially with the emergence of
aggregators [Madnick and Siegel 02], there has been a proliferation of data extraction
technologies, often-called Web wrappers (or wrappers for short)®, to absorb Web data

6 Also called “ screen scrapers’ based on similarity to technologies of the 1980’s and 1990's

14

into the information food chain. These wrappers, developed both by industry and
academia (see [Firat et. a 00] for alist), either support rich query languages such as SQL
or OQL ([Roth & Schwarz 97], [Abiteboul 97]) to query the web sources, or emphasize
conversions from HTML to XML (eg. XWRAP [Liu et. a 99], W4F [Sahuguent &
Azavant 99]), thus making the aggregation of Web sources easier.

A typical web wrapper responds to some type of query by retrieving a web page,
applying extraction rules specified in a specification file corresponding to the query, and
presenting the extracted data in a structured format. The problem of creating a wrapper is
defined more precisely in [Laender et. al 2002], as follows:

“ Given a Web page S containing a set of implicit objects, determine a mapping W that
postulates a data repository R with the objects in S. The mapping W must also be capable
of recognizing and extracting data from any other page S similar to S”
Wrappers retrieve web pages by using a web client, whose capabilities have grest
practl cal importance. A comprehensive web client supports:

http methods such as get and post,

responses to standard HTML headers such as automatic refreshes and redirections,

automatic cookie handling,

secure socket layer (SSL),

authentication,

certificates, and

interpreting script languages such as JavaScript.

Ideally, it would be best to employ http clients used in browsers such as Internet
Explorer and Netscape. They are not, however, aways exposed to the public completely,
or their use is not convenient in every programming environment. Mozilla, .NET and
Java libraries are some popular choices, which may be turned into comprehensive clients
with some extra programming.

Wrappers treat Web pages either as a document tree or as a data stream. Wrapper
engines like W4F [Sahuguent & Azavant 99], and Lixto [Baumgartner et. a 01] parse
Web pages using Document Object Model (DOM)” into a tree, and the extraction rules
are expressed primarily in terms of the DOM. Other wrapper engines such as TSIMMIS
[Garcia=Molina et. a 95] and Caméléon [Firat et. al 2000] ignore the HTML tagbased
hierarchy and treat Web pages as a sequence of characters. Extraction rules in this
category are usualy expressed in terms of regular expressions. Advantages and
disadvantages of these two approaches are shown in Table 2.1 ard Table 2.2 below.

In the Web pages as a document tree (WAD) approach, HTML pages are parsed into a
document tree, and the hierarchical relations between different HTML elements are
preserved. In WAD approach, it is easy to construct extraction rules by using the DOM.
For example, one can refer to the contents of first row of the first table in an html
document with “ doc.table][0] .tr[O] .text” . The maor disadvantage of this approach is that
more than 80% of the HTML pages do not conform to the HTML standard, and extra
tools such as HTML Tidy? are needed [Sahuguent & Azavant 99] to mitigate the
problem. In addition, when HTML and DOM are extended with new elements, parsers
have to be updated, thus increasing the maintenance cost of systems built this way.

" http://www.w3.0rg/DOM/
8 http://www.w3.org/Peopl e/Raggett/tidy/

15

Finally, we should mention that parsing HTML pages is an expensive operation, which
may affect the performance adversely.

ADVANTAGES DISADVANTAGES

Easy rule construction: Irregularity:

Extraction rules are easy to construct by L ess than 20% of the pages are conforming
utilizing the HTML tag hierarchy. to the HTML standards; therefore HTML
Conciserules: parsers need error recovery mechanisms.
Allows powerful yet concise extraction Currency:

rules by the using the DOM modd. Parser has to be updated with changing
Preservation of Hierarchy: HTML versions.

Associations among hierarchical elements Perfor mance:
(i.e. column name and column elements) Parsing HTML into atree is expensive.
are possible.

Table 2.1. Advantages and Disadvantages of Web Pages As A Document Tree Approach

ADVANTAGES DISADVANTAGES

Generality: Independent of HTML, thus Complexity: Regular Expressions are harder
not affected by the Web languages. It to form and understand by regular users
would work just fine with XML or compared to HTML as a document tree

anything else. approach.
Granularity: Matching with any level of No-nesting: In order to be efficient regular-
granularity is possible. expression pattern matching does not

Performance: Regular Expression pattern backtrack.

matching is dSgnificantly faster than Limited Association: Hard to associate

parsing. hierarchica relations, i.e. inferring column
elements from the column name or number.

Table 2.2 Advantages and Disadvantages of Web Pages As A Data Stream Approach

In the Web pages as a document tree (WAD) approach, HTML pages are parsed into a
document tree, and the hierarchical relations between different HTML elements are
preserved. In WAD approach, it is easy to construct extraction rules by using the DOM.
For example, one can refer to the contents of first row of the first table in an html
document with “ doc.table[0] .tr[O] .text” . The major disadvantage of this approach is that
more than 80% of the HTML pages do not conform to the HTML standard, and extra
tools such asHTML Tidy are needed [Sahuguent & Azavant 99] to mitigate the problem.
In addition, when HTML and DOM are extended with new elements, parsers have to be
updated, thus increasing the maintenance cost of systems built this way. Finaly, we
should mention that parsing HTML pages is an expensive operation, which may affect
the performance adversely.

The Web pages as a data stream (WAS) approach treat Web pages as a sequence of
characters. Wrappers can be generated not only for HTML pages, but also for other text
data sources including XML pages, and e mail documents. Mostly, regular expressions
are used in specifying extraction patterns, which increases the power of pattern
gpecification. Unlike the pure DOM model approach whose granularity is limited by the
granularity of HTML elements, regular expressions can be used to specify patterns at any

16

level of granularity. For example, while one cannot express the “first two digitsin bold in
the first row of the first table” using DOM, it is possible to express the same thing with
regular expressions as “.*?<table>.* ?<tr>.*?(\d\d).* ?>". Regular expressions
based pattern matching is fast, but expressions are difficult to form and understand for
beginners.

Wrappers can aso be classified into three categories based on how their specification
files are generated: manual, semi-automatic and automatic. A brief survey on this
classification with additional pointers can be found in [Tatbul et. a 2000]. In the manua
approach (e.g. Jedi [Huck et. a 98]), users create genera extraction rules by anayzing a
representative set of web pages, and they are responsible for updating the specification
files when necessary. In automatic generation, users first have to annotate a number of
training examples through a visual interface (e.g. SoftMealy [Hsu and Dung 98]).
Machine learning algorithms, such as inductive learning, are then applied to generate the
specification files (e.g. Wien [Kushmerick et. al 97], Stalker [Mudlea et. a 99]). Semi-
automatic approaches do not use any nmechine-learning algorithms but try to make the
spec file creation easier through mappings between the visual and text or DOM views, by
making suggestions on patterns that need to be approved or modified by the user.
Manual approaches are known to be tedious, time-consuming and require some level of
expertise concerning the wrapper language. In addition, when web sites change, updating
of specification files have to be done manually as well. Given the state of the art in
automatic wrapper creation, however, manua and semi-automatic approaches are
currently better suited for creating robust wrappers than the automatic approach. The
maintenance costs of current automatic approaches are also comparable to manual and
semi-automatic approaches, since in the automatic approach the user has to annotate new
training samples when the wrapped web pages are modified. In fact, as noted by
[Knoblock et al. 00], it is unredistic to assume that a user is willing and has the skills to
browse a large number of documents in order to identify a set of informative training
examples. While new approaches are being suggested that require a small number of
training samples [Knoblock et al. 00], their applicability is limited to smpler Web pages
that do not contain various sorts of exceptions. On difficult web pages the lack of
informative examples would lead to low accuracy.

A third grouping can be made on whether the wrappers are declarative or not. In this
context, declarative means that there is a clean separation of extraction rules from the
computational behavior of the wrapping engine. Non-declarative wrapper engines mix
extraction rules with a programming language (e.g. W4F with Java) or offer a
programming language of their own (e.g. Compag's WebL). Figure 2.1 shows an
example of a nondeclarative W4F specification file created for CIA fact book. In
declarative wrapper engines, extraction rules are separated from the computation logic
and do not require any compilation of the rules into executable code. In Figure 2.2, we
show such an example, a logical description of the data to be extracted from an eBay
page for the Lixto wrapper engine.

In Table 2.3, we map the existing academic wrapper engines into the three meta-
categories we discussed above: whether the wrappers are declarative or not; whether they
view Web pages as a document (WAD) or as a data stream (WAS), and whether the
wrapper creation is manual, semi-automatic or automatic.

17

SCHEMA({ String capital;}
EXTRACTION_RULEY{
capital = html.body.p[i].b[0] ->pcdata] 1] .txt
where html.body.p[i].b[0].txt =~ "Nationa capita";
}
RETRIEVAL_RULEY{
getCountry(String ciaCode){
METHOD: GET ;
URL.: "http://www.odci.gov/cia/publications/factbook/$ciaCode$.html";

}

}
JAVA CODE{
public static void main(String argy[])
throws Exceptiorf
CIA_Country country = CIA_Country.getCountry("fr");
System.out.printin(country);
}
}

Fig. 2.1. W4F Extraction Rules for CIA Fact book (attribute Capital)

ebaydocument(S, X) - getDocument(S = $1, X).

tableseq(S, X) - ebaydocument(_,),
subsg(S, (*.body.*.center, []), (.table, []), (table, []), X),
before(S, X, (*.tr, [(elementtext, Current, substr)]), 0,0, _,),
after(S, X, (*.img, [(src, spacer.gif, substr)]), 0, 0,_, _).

record(S, X) - tableseg(_,S), subdem(S, .table, X)

itemdes(S, X) = record(_, S), subdem(S, (*.td. * .content, [(href, , substr)], X)

price(S, X) - record(_, S), subdem(S, (* .td, [(elementtext, \var[Y]._, regvar)]), X),
isCurrency(Y).

bids(S, X) = record(_, S), subdem(S, *.td, X), before(S, X, .td, 0, 30, Y,),
price(_, Y)

date(S, X) = record(, S), subelem(S, *.td, X), notafter(S, X, .td, 100)

currency(S, X) - price(_, S), subtext(S, nvar[Y], X), isCurrency(Y)

pricewc(s, X) = price(_, S), subtext(S, [0 _ 9] +H\.[0 _ 9]+, X).

Fig. 2.2 Elog Extraction Rules for aa single eBay page
(adopted from [Baumgartner at. a 01])

Declarative Non-Declar ative

WAD WAS WAD WAS
Manual Mobig(Tsmmis) Jedi Araneus, WebL
Semi-automatic NoDoSe Caméléon WA4F
Automatic Lixto WIEN, Stalker XWrap

Table 2.3. Classification of Web wrapper projects’
Commercial wrapper engines are not as easily analyzable as the academic ones as
they usually require purchase of the system. For that reason, we will only provide alist of
these wrapper enginesin Table 2.4.

® This list primarily covers systems whose source codes were availablefor testing

18

Company Tool
AT&T Whirl
Connotate Technologies vTag
Crystal Software TextPipe
Data Junction Content Extractor
Extradata Technologies Unwwwrap
Fetch Technologies AgentBuilder
firstRain firstRain Studio
IBM Garlic, Intelligent Miner
ltemField ParserStudio
Kapow Technologies RoboSuite
Knowmadic WebActivity Integration Suite
Lencom Software Visual Web Task

Lixto Visua Wrapper,

Lixto Lixto Transformation Server
Loton Tech WebDataKit
Orsus Solution UnoStudio
QL2 Software WebQL
(Formerly: Caesius Software) (Web Query Language)
Republica X-Fetch Wrapper
Sagent ETL
ShueTech Mine The Web
Temis Group Online Miner, Insight Discoverer
Extractor
Thunderstone Webinator
WebM ethods Integration Platform
XSB Xrover
Yodlee Yodlee

Table 2.4 Commercial Wrapper Products'®

2.2 Caméléon Wrapper Engine

Data extraction research in the COIN group dates back to 1996 and earlier. The first
wrapper engine, Generic Screen Scraper (GSS) was developed in Perl using regular
expressions and finite state automata [Qu 96]. Later Jakobisiak implemented a wrapper
generator with minor changes and constructed a multidatabase browser to provide a
single query interface to heterogeneous sources [Jakobisiak 96]. Then came Grenouille
[Bressan & Bonnet 97] with a dightly different approach. In Grenouille regular
expressions applied to the whole page and were defined for atuple. Later Grenouille was
converted from Perl to Java keeping the same design [Ambrose 98].

10 part of the table is adopted from http://www.wifo.uni-mannheim.de/~kuhlins/wrappertool s/

19

In 2000 we developed Camééon in Java based on a new design, which will be
explained in detail in this section. Finaly, in 2003, we moved from Java to C# taking
advantage of the tools provided in .NET library and made some minor changes to the
Caméléon engine. From a design and implementation perspective, Caméléon, is superior
to all previous efforts in our group, and was in fact licensed out by MIT to a technology
start up.

2.2.1 Caméléon Architecture

Caméléon is a wrapper engine with a dual personality. To web serversit is like any
other Internet browser; to its users it is like a relational database system with some
restrictions. There are two major components that make Caméléon a virtual relational
database: the relational query front-end, and the core data extraction engine. Relational
front-end consists of a planner, optimizer, and an executioner (POE), which brings major
performance improvements with the parallel execution of multiple Web queries. We will
leave the details of POE to [Alatovic 02], and suffice it to say here that it takes an SQL
guery, creates a plan considering the capability declarations of the sources, optimizes the
plan based on cost characteristics, and then executes sub-queries using the core
Caméléon. In this section we focus on the design and implementation of the core engine.

The core of Caméléon is composed of the query handler, extraction, and retrieval
modules as shown in Figure 2.3. Based on input queries in SQL and interaction with a
registry** the query handler determines which spec file needs to be retrieved and where it
should look for those files, which attributes need to be extracted, and how to display the
output. The Query handler module uses a spec-parser to validate and parse a spec file. In
the Java version of Caméléon, we implemented the spec-parser using a compiler-
compiler language (i.e. javacc and jjtree), and in C# implementation we shifted to XML-
based spec-files, thus utilized the built-in XML parser and X-Path expressions.

The scope of the extraction module is limited to applying extraction rules to a data
stream. As we mentioned before, some wrapper engines treat Web data as a document
tree and utilize specia-purpose parsers coupled with cleaning tools like Tidy at this stage.
Since Caméléon treats web data as a sequence of characters, its extraction module is
simpler and only responsible for executing regular expression patterns against web data.
In the Java version, we utilized a third party regular expression engine (OroMatcher) to
implement this module, whereas in the C# version we adopted the .NET library for
regular expressions.

The retrieval module is perhaps the most important module of a wrapper engine, as its
capabilities constrain the range of Web pages a wrapper can fetch. In Camééon, the
retrieval module deals with get and post methods, authentication, redirection, cookies,
and SSL, therefore maximizing the range of accessible Web pages. In the Java version we
utilized a third party web client (HTTPClient) with some modifications, whereas in the
C# version we employ the built-in .NET web client with some extensions. Retrieval
module is also responsible for interpreting script languages such as Java Script, which
may be essential in retrieving a Web page (e.g. when a cookie is set through a Java
Script). The C# version capitalizes on the language independence feature of .NET and
directly invokes the Microsoft script interpreters to emulate the essential script operations

1 Registry is acollection of metadata, analogous to the catal og table of traditional database systems.

20

Relational

SQL | FrontEnd !
Data ! PI anner :
i Optimizer !
' Executioner |
Output in Simple SQL
Desired Format| |Query & Output
Format
Core _
E Retrieval J . I— Query : :‘.‘~~_. ______ -—-E
: Extraction Handling —'—: : Registry !
' —l |_ ! e _.o-
: Regular : !
| Web Client Esgressi on Spec File !
i Engine Parsing i
———— —
Web Spec Files
v v

Figure 2.3. Caméléon Architecture

in web pages. Furthermore, the retrieval module is able to follow a number of pre-
requisite web pages, (eg. to obtain a link, to store cookies, supply authentication
information, etc.), before arriving to the desired page.

2.2.2 Caméléon Spec File Structure

One of the important properties of a desirable wrapper engine is the ssimplicity and
expressiveness of its specification language. Logic based specification languages such as
Elog are highly expressive but they are not easy to understand. In Caméléon spec files,
we aimed to balance expressiveness with simplicity. Having wrapped hundreds of web
sites in the past years, we believe that Caméléon spec file language is easy to learn, and
its expressiveness is satisfactory for the vast magjority of cases.

Each Caméléon spec file can be thought of as a reation or table in the virtual
database of Web. Patterns in a Caméléon spec file are based on the simple idea of first
segmenting a Web page, then applying a pattern to extract the data values within that
region. Consider, for example, the following example pattern specification to extract
“Coordinates’ attribute from the cia fact book web page:

<ATTRIBUTE name="Coordinates' type="String">
<BEGIN>Geographic\s* coordinates</BEGIN>

<PATTERN><td[">]* ><font[*>]* >\s* ([\0-\377]* ?)\s* <</PATTERN>
<END></tr></END>

21

</ATTRIBUTE>"

The specification above is given in terms of XML, which is used in the .NET version
of Camééon, and starts with the attribute tag specifying the name (Coordinates) and type
(String) of the attribute to extract. The following begin and end tags identify a sub region
in the page. This region is the segment between the indexes of the pattern matches after
applying the begin and end patterns to the page sequentially--end pattern applying after
the index of begin pattern match. The pattern specified in the pattern declaration applies
to this region as many times as possible, and the part of the pattern match designated by
the enclosing parentheses is saved as an attribute value. The notion of regions makes it
easier to create patterns by limiting their scope. Complex regular expressions are applied
only to asmall portion of the page, whichincreases the efficiency of the extraction.

One problem with the above approach of extracting attribute values independently is
identifying the tuples after all data is extracted (i.e. how should the attribute values be
merged to obtain the records). We make two assumptions in the pattern specification that
solves this tuple identification problem. First, we assume that the pattern matches will be
ordered, i.e. if two attributes have equal number of extracted data values then the i value
of attributes will be merged to obtain the i record. This makes tuple identification trivial
when the match numbers across attributes are equal. Second, we assume that the j™ (index
starting at 0) data value of an attribute with k data valuesis calculated asj modulo k. This
provides a match up when the extracted data value numbers for attributes are different.

In Figure 2.4, we present a complete spec file for yahoo travel Web site. Some of the
features shown in Figure 2.4 are explained in detall in the following subsection that
summarizes the features of Caméléon spec files. As seen in Figure 2.4, we express spec
files using XML to benefit from the availability of XML parsing tools. A spec file starts
with arelation name declaration that will be used to refer to the data elements defined by
that spec file. Then one or more source declarations with their attribute extraction rules
are defined. In Figure 2.4 we show some of the advanced features of a spec file such as
using the post method, parameter replacement, prefix and suffixes. These and other
features of Caméléon are explained next.

Spec Files

1. Disjunction

Sometimes it is not possible to discover a single pattern that would match the desired
data across al similar pages. In these types of cases we alow digunctive patterns to
specify multiple patterns. The following is an example of such a situation in which two
digunctive patterns are specified for a single attribute.

<ATTRIBUTE name="LastTrade" type="String">
<BEGIN><![CDATA[L ast\s* Trade]]></BEGIN>

<END><![CDATA[</T R>]]></END>

<PATTERN><![CDATA[\s* (.* ?)\s*<FONT\s* SI ZE=1>(.* ?)</[FONT >]]></PATTERN>
<PATTERN><!/[CDATA[\s* (\d+)\s*]]></PATTERN>

</ATTRIBUTE>

12 The pattern specification is simplified by excluding Cdata elements.

22

Post method
Source” value="YG"/>

<PARAM name="module" value="tripsrch"/>
<PARAM name=".intl" value="us"/>

<PARAM name=".src" value="trv" />

<PARAM name=".service" value="YHOE" />
<PARAM name=".tcycgi" value="airgcobrand.ctl"/>
<PARAM name=".smls" value="Y"/>

<PARAM name=".resform" value="Y ahooFlightsR"/>
<PARAM name="trip_option" value="roundtrp"/>

<PARAM name="num_count" value="9" Parameter
<PARAM name:"dep_arp_cd_l" valyg Repl mernents
<PARAM name="dep_dt_mn_1" va .

<PARAM name="dep_dt_dy 1" vaflle="#Day1#"/> (input from query)

<PARAM name="arr_arp_cd_1" value="#Destination#"/>

<PARAM name="adult Jo_ax__cnt" value="1
<PARAM name="num_cnx" value="1"/>
<PARAM name=" finished" value="Search"/>

</POST>
<ATTRIBUTE nam4 pe="String" link="true">
<BEGI Alhttp-equiv="refresh"]]></BEGIN>

<ENDA<![CDATA['>]]></END>
<PAYTERN><![CDATA[url="([""]*)"]]></PATT ERN>

</ATTRIBU]E> Parameter Replacement

</SOURCE> . .
(input from extraction)
<SOURCE URI Regular
. . expression
<ATTRIBUTE name="Price" type="Sitingm= atterns for
<BEGIN><![CDATL] View\s* Results\s* by \s* Airline[[D</BEGIN> p e
identifying the
<END><![CDATAKb></div></td>) > boundaries of a
regior
<PATTERN><![CDATA|EUSD\s* \d+)\s*})|></PATTERN>
</ATTRIBUTE> Pattern for
<ATTRIBUTE name="Airline" type="String"> extractior
IX><![CDATA[<img]
src=http://rg.travel ocity.com.edgesuite.net/logos] | ></PREFI X > Prefix and
<SUFFIX><![CDATA[>]]></SUFFIX> suffix to be
<BEGIN><![CDATA[Views* Results\s* by\s* Airline]|></BEGIN> attached to
the result

<END><![CDATA[/b></div>/td>]]></END>
<PATTERN><![CDATA[<img src=http://rg.travel ocity.com.edgesuite.net/logos([\0-
\377]* ?)\s* border=0\s* alt="Airline Logo">]]></PATTERN>
</ATTRIBUTE>
</SOURCE>
</RELATION>

Figure 2.4 Caméléon Spec-File for Yahoo Travel

23

We should note, however, that these digunctive patterns are not mutually exclusive and
occasionally special care must be taken to construct patterns whose intersections are
empty. Otherwise the same item will be matched multiple times and repeated in the
output.

2. Conjunction

In spec files it is possible o define conjunctive patterns, by simply denoting them
with enclosing parentheses. The semantics of conjunctive patterns in Camééon
corresponds to the concatenation of pattern matches. The first pattern element in the
example above that extracts stock prices has such a case with two groups of enclosing
parentheses, the first one matching the whole part of the last trade value, the second one
the fractional part. The matched elements are then concatenated to form a single price
value. This feature is very wseful, when data to be extracted is not atomic, and separated
by unwanted tags.

3. Multi-page transitions

When wrapping web pages, we sometimes need to traverse multiple pages to locate
the page we want to extract information from. This situation occurs when the URLSs are
created dynamically (e.g. a session ID is assigned for each access to the page), or a
cookie needs to be established before you can go to the desired page, or there isno simple
way of deducing the desired URL without visiting a particular page, or the data is spread
through multiple pages. To handle these kinds of cases Caméléon has a feature that lets
us wrap multiple pages for arelation.

In Figure 2.4 for example the link to the second page is extracted from the first web
page. We need to perform this step in this case because there is no simple way of
deducing in advance what the link is supposed to be. Then the link is supplied to the next
source element, which takes us to the page where we want to extract the values of price
and airline.

4. Parameter Replacement

Parameter replacement is the use of input or extracted attribute values within the
subsequent elements in the spec file. In the multiple page traversal case, we have seen
one example of this. The value of attribute “Link” was used in the next source element. It
is also possible to supply any extracted or input attribute value within the attribute
definitions. Consider for instance the following SQL query to the Yahoo Travel Web site:

Sdlect Airline, Price from yahootravel where Departure=" BOS’ and Degtination=" SFO”
and Month1="5" and Dayl= “ 19" and Month2= “ 6" and Day2= “1"

When this query is executed, the input attribute values specified after the where clause
replace the same name attributes enclosed between # signs in the post parameters as
shown in Figure 2.4.

5. Get, Post Methods & Authentication

Camééon spec files support both get and post methods when connecting to Web
pages. A post example is shown in Figure 24. Method attribute of the post tag
determines which method is to be used.

Most web pages perform authentication through forms. In connecting to those Web
pages, get or post methods with parameter replacement can be used for authentication

24

purposes. In some other pages, however, the authentication is done through pop-up
password windows. We handle these kinds of cases with the following scheme: (The
username and password values have to be inputted within the SQL query, since they are
coded as references in this spec file)
<SOURCE URI=" http://game.etrade.com/cgi-bin/cgitrade/TransHistory ">
<AUTHENTICATION>

<Realm>E* Trade Player (game)</Realm>

<Username>#usernamet</Username>

<Password>#password#</Password>
</AUTHENTICATION>

6. Custom Cookies

In Caméléon cookie handling is automatic as long as the cookies ae set through
headers. In some cases, cookies can be set in a non-standard way for example using
Javascript API. To handle these cases we allow custom cookie setting as shown in
example below (custom cookies used are: jscript=1;path=/)

<SOURCE URI="http://www.expedia.com/pub/agent.dl|">

<COOKIE name="jscript">1</COOKIE>

<COOKIE name="path">/</COOKIE>

7. JavaScript I nterpretation

JavaScript is used frequently in Web pages in creating the html document on the
client side. In most cases, JavaScript does not pose a problem in wrapping Web pages,
because it is usualy used for cosmetic reasons. In some cases, however, not being able to
interpret JavaScript may block the wrapper engine in getting to a desired page. One real
example is the Expedia Web site, which requires interpreting JavaScript code and
supplying the result as a post parameter. Caméléon spec files allow the interpretation of
JavaScripts as shown in the following example.

<SOURCE URI="http://www.expedia.com/pub/agent.dl|">

<JSCRIPT name="Time">

var d; d = new Date(); print(d.getTime());

</JSCRIPT>
In this example, the output of the JavaScript snippet is assigned to the Time attribute. We
should note that the JavaScript code to be interpreted does not have to be static, and
parameter replacement can be used in JScript tags as well.

8. Prefix and Suffixes

Figure 2.4 shows an example of prefix and suffix declarations. With these constructs
it is possible to add static text before and after the extracted data values. The extraction
engine returns the corcatenation of prefix, pattern match and the suffix. By using
parameter replacement feature, it also becomes possible to glue multiple extractions
together.

9. Delays

Finally, we should mention another useful feature in spec file creation: delays. Thisis
used when the wrapper engine requests data from a Web site, but has to wait a certain
amount of time before getting an answer. We cover this case by specifying a delay
element in the source declarations specifying the waiting time in terms of milliseconds.
We show an example below:

25

<SOURCE URI="http://www.gixo.com/#Link#' DELAY ="65000">
More details on writing spec files can be found in Camééon user manual. [Firat et. al.
03].

2.3 IWrap: Instant Wrapper Generator

IWrap was our first effort in semi-automatic wrapper generation, with the objective of
automatically creating spec files with some minimal user input. We designed a
WY SIWY G interface as shown in Figure 2.5, allowing users to highlight sample data
items and request auto generation of spec files. Please refer to the figure for the following
operational description of 1\Wrap.

In IWrap, the users first enter the URL of the page they want to wrap. The URL in
most cases will include input parameters such as ticker symbols, search texts, etc. Page
name and the input attributes are automatically inserted into the input table. Input table
also contains the relation attribute, the method used in connecting to the page (GET or
POST), which are expected from the user.

In the output table the user provides regiona identifiers (i.e. BEGIN and END), and
then highlights the text to be extracted with an associated identifier (i.e. the attribute
name). It is also possible to highlight the extraction candidate using the source code pane
when information to be extracted is hidden in an HTML tag.

When the user supplies all the information and clicks on the auto wrap button, the
spec file creation begins with system messages explaining the progress in the messages
window. If the creation is successful the user can immediately start issuing SQL queries
to the wrapper engine.

In IWrap we did not adopt a learning algorithm, because we decided that annotating
training data would be more costly than manual creation. Instead, we experimented with
creating regular expression péterns from a single example page. Our initial results were
promising for simple Web sites, but needed better success rates for more difficult ones.
The operational details of IWrap with the algorithms used in generating the regular
expressions are provided in [Firat et. al 1999].

2.4 Sample Applications

We wrapped numerous web sites using Caméléon and made some of them available
online for demonstration. The samples can be reached from our demo Web site'®. We
have also developed demonstration applications that aggregate data from multiple web
pages and present them in a unified interface. Illustrative examples include:

Summarization and reorganization of seminar information by date from multiple

separate departmental and local universities online calendars

Comparison of interest rates offered by various online Japanese banks

Aggregation of personal financial information from all of your online banking,

brokerage, and credit card accounts.

Aggregation of air fare, hotel and car rental prices from popular online sources

Aggregation of entertainment sources such as TV programs, events in a town, dating

Stes, etc.

13 Currently at http://context2.mit.edu/

26

Aggregation of educational sources such as online paper repositories and university
web sites
Below, we give more detail on two of these applicatiors.

2.4.1 Personal Investor Wizard

Persona Investor Wizard (PIW), aggregates data from ten different web sources
including cnn, fox, yahoo, quicken, fortune and edgar. PIW continuously scrolls daily
headlines (extracted from FoxNews and CNNfn), lets users view companies in a selected
industry (obtained from yahoo), and display the competitors of selected companies (taken
from quicken). A snapshot of this screen is shown in Figure 2.6. If the user wants to
compare a set of companies, PIW displays in a secord screen the profile info for each
company (extracted from yahoo), the analyst recommendations (extracted from quicken),
financial figures (extracted from edgar-online), and recent news (extracted from fortune).
A snapshot of this screen is shown in Figure 2.7.

We built PIW using Java Server Pages (jsp) and simply embedded SQL queriesin the
jSp page. It is important to note that once the spec file for a web site is set up, it can be
used by many applications and the developer of any of these applications merely views
the web site as atraditional relational database. Development time of PIW, therefore, was
quite short.

Because Caméléon accepts SQL queries and has a Java Servlet version, it is also very
easy to cal it from other applications. The Java version of PIW, an example of this
flexibility, is also available in our web site for download

2.4.2 Airfare Aggregation

Airfare aggregation application displays price and airline information from nine
different airline and aggregator sites given departure and destination locations and dates.
We show snapshots from this application in Figure 2.8. This application was built very
easily by embedding SQL queriesin an ASP.NET application. These SQL queries were
sent to the Caméléon wrapper engine as if it was a relational database system, which
returned results as data sets.

In addition, the airfare application can send complex queries against the relational
front end, to search intervals rather than fixed dates. The ability of a wrapper engine to
handle complex queries with its relational capabilities frees the application developer
from having to go through the planning

2.5 Discussion & Conclusion

Caméléon wrapper engine is unique in combining data extraction with traditional
database techniques, thus allowing @sy interoperability between semi-structured and
structured data sources. The core wrapper engine is able to provide arobust infrastructure
for web automation as defined in [Allen 97]. Specifically:

It has full interaction with HTML forms, i.e. it supports both get and post methods;

It handles both HTTP Authentication and Cookies;

Both ondemand and scheduled extraction of targeted web data are possible as

demonstrated by PIW Java version;

It facilitates aggregation of data from a number of web sources;

27

It can extract data across multiple web sites through chaining;
It is very easy to integrate with traditional application development languages and
environments as it provides a SQL interface to web pages.
Our declarative way of specifying extraction rules provides a clean framework for
managing change in both the locations and structures of Web documents.
It can, however, be improved in a number of ways with additional research. Some of the
areas that need more work are:
- Increasing the expressiveness of spec files (e.g. handling non-deterministic multiple
page traversals)
Improving the semi-automatic wrapper creation work with learning approaches
using minimal examples.
Creating monitoring tools, that would auto update spec files if possible, or at least
detect the need to update spec files.

From here on, in this Thesis, we will assume that web sources can be viewed as

databases through the use of data extraction technologies such as Camé éon, and focus on
the problems related to data interpretation in the coming chapters.

28

Egjhulomalic Wiapper Generator

ME e

URL|hﬂp:I.l'www.quicken.cnmJiwestmentsrsnapshutr?symhnHBM

HTML
Profile Company Information 1=
Fundamentals
new!
Financial
Staterments
SEC Filings
Rate &
Discuss
new!
Where is. .7 |
ADD Input ADD Output
Mame Value I Marme Yalue
. oy LA ko T ATy T T aTT =
Relation Company |.— Mame Intl Bus. Machines
Method GET Telephone {914) 448-1800
Fage hittp Shawewe, quicken.comiinvest... Industry Comps. Hard.
symhbal 1BM = || Sector Technalogy -
Remove Input Remove Output
Clear All AutoWWrap
| ges

Match: Technalagy
Spec file creation successfull

Chesking pattern: =Sector SFONT>=TD=ig*<TD=<FONTIe*BIZE= A1 FACE="Arial">=B=1s*{1 8017 Ne* /B> </FINT >/

E%Aulumalic Wrapper Generator

URL|htlp:I.l‘www.quicken.cnmfirmes‘tmentsfsnapshutr?symhnHBM

IT MOION—TOL IF o TLCLLL

<TD><E>

Comps. Hard.

< ABx< fFONT< /T

<TD=3tatus:<,/FONT-</TD>
<TD»<FONT 3IZE=Z FACE="Arial"=<E>

Active

< fB< S FONT-< /T

< /TR

<TR WALIGN=TOP BGCOLOR=#f£fffff:-

<TD><E>»

<TD>=3&F Industry:</FONT-<{/TD>

<TD>Asset Class:</TD>

D

1]

Large Cap
ADD Input ADD Output
Mame Value | Mame Value
- e T LI T GO Lo
Relation Company L— Header Company Infarmation
Method GET Mame Intl Bus. Machines
Page http: S uicken comfinvest. Telephone {914y 499-1900
symbol 1B = || Industry Comps. Hard. |~
Remove Input Remove Output
Clear All AutowWrap
Messages

Checking pattern: =Sector =/FONT==TD=15*=TD=<FONTIs*SIZE= s FACE="Aral"==B=15"({1 80})15 =B = =/FONT==/

Watch: Technaology
Spec file creation successiull

Figure 2.5. IWrap Snapshots

29

Perzonal Investor Wizard - Microsoft Internet Explorer

J File Edit “iew Favorites Toolz Help

Peisonal lnvestor Wizand
S ———
BMYY must help soften Rover fallout-UK's Byers
EU Mot Budging on Trade Round Proposals
FAA tn "White Glnve' Test Alaska Air — Paner

Enter Part of a Find Tick Select an Industry Description and
Company Mame: M | CamputerHardware =1 Usaze
Instructions

Use +in place of spaces

IMatching Company List Selected Company List Competitor List

1o In
[DELL COMPUTER CORP.DELL]
[COMPAL COMPUTER CORP.CPO]

[]
[MICROMN ELECTROMICS INCMLUEI]

1
[Aura Systems Inc., AURA]

[Auspes Systems, Inc., A5F] [BITWISE DESIGNS INCBTWS]
[Bitwize Degigns. Inc., BTWS] [PAR&VANT [MCFYAT]

[Blue ‘wave Systems, Inc., BwSI] [HERTZ TECHWOLOGY GROUF HERZ]
[Boundless Corporation, BMD]

[C5P Inc., CSPI)

[Capital Azsociates, Call]
[Cerplex Group, Inc.. CPL]
[Cobal Metwaorks, Inc., COBT]
[Cale Computer Corp., COLY]

:I<:|:,_l ;I_I rI<_|_I ;I_I _I<_|_|_I _>l_I
Add| Clear Remove Competitors | Getlnf0| Add | Clear

Connection to http://biz.yahoo.com/ ta get [Company, Ticker] is completed ;I
Connecting to Quicken to get competitars
1 bo Quicken to get competi completed

J File Edit “iew Favortes Toolz Help

» Address: 1 Infinite Loop Cuperting,CA 95014 o g"c'"iB””:?
= Employees: B350 % H"f:jz
m YWebsite: httpofwww.applecom = Sc;I:U
= Industry: Computer Hardware " S:: el
= rongSell: ;I
f)‘:‘;"“""l FERIODTYFE ‘FISCALYEAR ‘PERIODSTART ‘PERIODEND ‘CASH ‘SECUR_ITIES |RE,CEIVABLES ‘ALLOWANCES ‘INVENTORY CAS
|AAPL [VEAR |SEP-35-1999 [Hull |SEP-25-1999 1,326 1,900 740 62 20 4,283
DELL [VEAR [an-20-1900 [Hul [1an-29-1900 520 [2,661 [2.124 20 273 6,33
[crg 12M08 |DEC-31-1909 [Hull |DEC-31-1909 2,666 636 |6.007 222 2,002 13,3
| | »
N

4 Mews
: {1 aapl
LELL
@ (03£16/00 6:10 pm) - BusinessCre ditlT3A com Appoints Senator Larry Pressler and David Jones to Board of Directors
@ (031600 4:42 pam) - A Full-Powrer Rally
@ (031600 1:29 pim) - A Standstill on the Matkets
@ (021600 1:26 pm) - Cole Computer Corporation To Enter Berver Market Usitng Its Strategic Alliatice With The Iwill Corporation _ILI
»

Figure 2.7. Personal Investor Wizard - Comparison Screen

30

p:,.-",.-"hern1ann—|"ive.miI:.Edu,.-"Mal:ri:-:,.-"airfarE.asp:-:-f.gg,"- licrosc

Edit Wiew Favorites Tools Help

255 I@j http:/fhermann-Five . mit. edu/Matrix airfare. aspx

Mega Air Fare Aggregator

Departure Destination

|BOS |SFo

£ Tlay 2003 > = June 2003 =
sun Mon Tue Wed Thu Fri Sat Sun Won Tue Wed Thu Fr Sat
27 28 28 30 1 Z 3 25 26 27 28 29 30 31
g: J. .8 W @ man d o2 & 4.5 6
11 12 13 1+ 13 1e 1718 3 18 11 12 13 14
18 13 20 21 22 23 24 15 16 17 18 15 20 21
25 26 27 28 28 0 31 22 23 24 25 26 27 28
L2 3 4 5 & 7|28 30 1 2 3 4 5

Flexibility Tnterval(-H-) |0 Flexibility Tnterval(-+-) [0

Preserve trip duration W

Find Prices

Choose sources to aggregate

™ gixo (slow)
™ hotwire

W orhitz

W expedia

W northwest
W yahoo

W travelocity
W united

V¥ itn

Eesults (Elapsed time: 28 seconds)

S30/03 677103
SE0/03 65103

SE0/03 65103

SE0/03 65103

provider price aitline hnktobuy date1 date2
orbitz 246 Delta Air Lines 1575 Buy
expedia 246 Delta Buy
vahoo 246 ﬁ' Buy
AirLines
itn 25650 A Delta AirLines Buy

northwest 337 00 Northwest Awlines Buy
uited 50650 Tnited Ailines 776 Buy
united 55950 Tnited Ailines 527 Buy

530003 677103
53003 67703
530003 67703

Figure 2.8 Air Fare Aggregation Screen Shots

31

"England and Americaare two countries separated by the same language.”

George Bernard Shaw.

Chapter 3
Data I nterpretation

In the previous chapter, we focused on data extraction, an effort to reconcile technical
and interface heterogeneities [Busse et. a 99] among information systems. Many
information systems cannot communicate meaningfully, however, even when these
syntactical heterogeneities are eliminated. Real challenges of achieving interoperability
among autonomous and heterogeneous systems lie in dealing with issues related with
interpretation of data.

Data interpretation involves combining data with contextual knowledge that
collectively determine the frame of meaning for that data. Consider, for example, phone
numbers, which are often exchanged without the area code, and amost aways without
the country code. Without the contextual knowledge which determines the area codes
from gpatia information, the frame of meaning for phone numbers may be too broad to
be useful (it may belong to hundreds of users in different area codes), and even worse,
may be misunderstood (could be taken as a number within the interpreter’s area) if
contextual borders are trespassed.

When data originating from different contexts are brought together, many
heterogeneities are observed. In this chapter, we provide a classification of semantic
heterogeneities we observed in a financial case study in which we examined data
collected from various sources. Our primary objective in this chapter is to familiarize the
reader with existing approaches to dealing with these heterogeneities in information
integration, which will hopefully lead to a better understanding of the subtleties of our
approach described in the following chapters.

3.1 Dimensions of Semantic Heter ogeneity

In our past information integration research projects, we were often puzzled by seemingly
contradictory data within one database or across multiple databases. In one of these
projects, we examined Primark’s Worldscope, DataStream and Disclosure databases and
data definition manuals as well as Security Exchange Commission (SEC) Company

32

Filings and severa other web-based financial sources** to have a deeper understanding of
the reasons behind semantic heterogeneities.

We compared “Net Sales”, “ Net Income” , “ Total Assets’, “ Number of Employees’,
and “ Five-Year Growth in Earnings per Share’ accounting data items for a given
company across these data sources and found significant variations. In Table 3.1,
variations between Disclosure and Worldscope databases range from 4 to 92 percent for
these five accounting data items for the same set of companies.

ACCOUNTING DATA ITEMS % OF VARIATIONS
Net Sales 20

Net Income 20

Total Assets 4

Number of Employees 40

Five-Year Earnings Growth per Share 92

Table 3.1. Variations between Disclosure and Worldscope databases

We reviewed our findings with Primark representatives to discover that variations
could be attributed to different reporting standards, namely data item definitions and
representations, used by different databases. Different types of users prefer to view
company financial datain different ways depending on their job functions as illustrated in

Figure 3.1.
é
Anadyst

SEC Filing
i e Auditors, Regulators ::,4
I - & Investors U,
% o >k”4; 7
/ ﬁ 3 v h ((hu :/*/,ﬁ/
A Foass
‘h‘”[‘ﬂ - ﬁ NSNS

Analyst
Company Reports

o

Pro-forma

Figure 3.1 Different people need different forms of data

14 Including Hoovers, Y ahoo, Market Guide, Money Central, and Corporate Information

33

As seen in the figure, a company may provide data to public through:
official filings (e.g. to Security Exchange Commission (SEC) using Generaly
Accepted Accounting Principles (GAAP));
pro-forma press releases as a management interpretation of financia results; or
the use of local accounting principles (e.g. using UK GAAP)

Furthermore analysts may process these statements and rel ease processed and aggregated
data in yet other formsto allow for meaningful performance analysis.

When we tried to integrate data sources adopting different views of data, we noticed
several semantic heterogeneities. Below, we elaborate on three dimensions of semantic
heterogeneity: contextual, ontological and temporal. The relationship between these
heterogeneity types are illustrated in Figures 3.5 and 3.6, and explained in the following
subsections

Before going into the details we should briefly explain what we mean by the terms we
will frequently use in the next sub sections: primarily, the terms intensional and
extensional. By intensional we refer to abstract descriptions which identify concepts
without enumerating its members. Extensional is the antonym of intensional, and refers to
enumerative descriptions of concepts with its physical members. For example, as shown
in Figure 3.2, the physical collection of records in a database relation is known as the
extensiona relation, where as the schema of a relation is known as the intensional
relation. We will delay the formal definition of ontology to Chapter 5, and suffice it to
say that an ontology is a collection of intensional descriptions.

Intensional Relation

r1(A, 20,000)
ri(B, 10,000) Extensional Relation

r1(Z, 15,000)

Figure 3.2 Intensional vs. Extensional Relations

3.1.1 Contextual Heterogeneity

Often times, an intensional description is not specific enough to determine the exact
form of its extension. Consider for instance the following intensional description of a
concept called “price’: “the amount as of money, asked for o given exchange for
something else without the inclusion of tax” . This definition leaves out “price” attributes
such as currency, and scale allowing disparate adoptions of currency and scale for price
entities in data sources and receivers. This is illustrated in Figure 3.3, with the multiple

34

mappings of the intensional relation rl(Product, Price) to extensiona relations with
different currencies and scale factors.

' r1(A, 20,0000 | | ri(A, 20) L1 rl(A, 18)
' r1(B, 10,000) |1 ri(B, 10) i1 11(B, 9) !
T(Z,15000) 1 irZ15) in@z1ss) i
t currency: USD ¥ ¥ currency: USD } ! currency: EUR |
" b i 11 scaler 1000 h

n oscae 1 h " scale: 1000 i

Figure 3.3 Multiple Extensions of an Intensional Relation

These are heterogeneities that [Batini et al. 86] refers to as the two or more not identical
representations of the same concept. In information systems, we observe this type of
variations when entity type definitions corresponding to the same rea world entity are
flexible enough to alow data sources and/or receivers choose their own representation.
We show an example in Figure 3.4, in which the sales numbers of FIAT, an Italian motor
company, are represented differently in Worldscope and Market Guide data sources.

Market Guide

/ \

Currency: Local Currency: USD
Scale Factor: 1000 Scale Factor: Millions

Figure 3.4 Contextual Heterogeneity in Worldscope and Market Guide Data Sources

35

3.1.2 Ontological Heter ogeneity

Ontological heterogeneity is the heterogeneity in the intensona description of
concepts that are somewhat related. For example, if we define another price concept,
“price (+tax)” as* the amount as of money, asked for or given in exchange for something
else with the inclusion of tax” , this would constitute an ontological heterogeneity with the
concept “price (nominal)” described in the previous section because there is a definitional
conflicts concerning the inclusion or exclusion of tax in the price. As shown in Figure
3.5, the price amounts 21,000 USD and 17K EUR exhibit ontological heterogeneity
because they belong to extensions of different intensional descriptions.

Ontology B

Ontology A o _______.

Ontological
Heterogeneity

Intensional Domain’
/

/7 7

4 / N Extensional Domain
/ / AN
/
/ / \ \
» \
\g
20,000 21,000

18K

Source 1 I P Source3d _________
ITTmTmm T T T Source 2
currency: USD currency: EUR

scale: deduced from abbreviation

i format: numbers
! scae 1

1 1
1 1

1
. format: number+ abbreviation '
1 1
: |

Contextual
Heterogeneity

Figure 3.5 Contextual and Ontological Heterogeneities

In information systems, we observe this type of heterogeneity, when databases differ on
entity type definitions. For example, the majority of definitional variations in financial

36

information systems could be attributed to the incluson or exclusion of various
accounting items such as “Depreciation and Amortization” , “ Excise Taxes’, “ Earnings
from Equity Interests’, and “ Other Revenue” from the financial data items. Similarly,
variations in “Total number of Employees’ could be attributed to inclusion or exclusion
of “Temporary Employees’, “Employees of Subsidiaries’ as well as the time of
reporting. In addition, some of the variations in ‘5-Year Earnings Growth per Share”
numbers could be attributed to the lack of accounting for fluctuations in foreign currency.

Equational Ontological Conflicts (EOC)

Despite having differing definitions, entities can usually be related to each other when
one or more entities uniquely determine the value of one or more other entities. For
example, for certain companies, the “Pretax Income” can be derived from “Pretax
Profit” and “ Assoc. Pretax Profit” attributes in another, as shown below:

“Worldscope. Pretax Income’ = “ Datastream. Pre-tax Profit” —“Datastream.
Assoc. Pre-tax Profit”

We label the heterogeneity in the way data items are calculated from other dataitems in
terms of definitional equations as equational ontological conflicts. We show more
examples of EOC in Table 3.2 below.

Source A Source B
of customers=# of end_customers+ # of # of customers = # of end_customers + # of
distributors prospective customers
Profit = Net Sales— Cost of Goods Profit = Net Sales— Cost of Goods —
Depreciation
P/E Ratio = Price/ Earnings(last 4 Qtr) P/E Ratio = Price/ [Earnings(last 3 Qtr)

+Earnings(next quarter)]

Price = Nominal Price + Shipping Price = Nominal Price + Shipping + Tax

Table 3.2 Example Equational Ontological Conflicts
3.1.3 Temporal Heter ogeneity

As shown in Figure 3.6, tempora heterogeneities are orthogonal to both contextual
and ontological heterogeneities and arise because of changes in the intensional or
extensional descriptions of concepts over time. In Figure 3.6, Ontology B shifts from one
intensional definition of price to another, and the extensional object represented by the
21,000 USD shifts to a different currency, scale factor and format by becoming 17K
EUR The first shift is the combination of ontological and temporal heterogeneities,

37

Ontology B Ontology B

Temporal/Ontological
Heterogeneity

Intensional Domain

Temporal/Contextual
Heterogeneity

Figure 3.6 Tempora Heterogeneity

whereas the second one is a combination of contextual and temporal heterogeneities.

In information systems, temporal variations arise when entity values or definitions
belong to periods that exhibit contextual or ontological heterogeneities. Definitions of
data terms, for example, may change over time as seen in the example below. The three-
way dependency between the Worldscope, Disclosure, and SEC databases for Exxon is
different before and after 1996.

For Exxon after 1996:
“ Worldscope. Revenues’ = “ Disclosure. Net Sales’ —* SEC. Earnings from Equity
Interests and Other Revenue” —* SEC. Excise Taxes’

For Exxon before 1996:
“Worldscope. Revenues’ = “ Disclosure. Net Sales’ — “ SEC. Excise Taxes”’

Temporal heterogeneity should not be mixed with contextua or ontological
heterogeneities involving temporal concepts across information sources. For example,
two souces reporting financial numbers quarterly vs. annually may have contextual
heterogeneity, but a single source shifting from quarterly to annual reporting at a certain
year is said to have a temporal heterogeneity. Temporal heterogeneity is about temporal
changes in the intensional or extensional descriptions of data sources.

38

3.1.4 On the Relationship between Contextual and
Ontological Heterogeneities

The primary distinction between ontological and contextual heterogeneitiesis that the
former refers to heterogeneity in explicit knowledge (i.e. ontological definitions), whereas
the latter refers to heterogeneity in implicit knowledge (i.e. contextual knowledge). This
distinction between ontologica and contextual heterogeneities is aso a mode of
connection between them, allowing us to transform one to another by making knowledge
implicit or explicit.

If we could make everything explicit in an ontology --which may be neither possible
nor desirable-- by defining every term with uttermost detail (e.g. price in USD with a
scale factor of 1 including tax...), there would not remain anything implicit about data
once they are mapped to the ontological terms. In such a case, al conflicts would be
ontologica in nature and no contextual heterogeneity would exist (see Figure 3.7)

——

ri(Product, Pricey) r1(Product, Prices)

r1(Product, Price;)

' Price;=Pricein Price; = Pricein Prices=Pricein
' USD scale 1 | | USDscalel000 | | EURscale1000 !
ialeltutelelelels i Ittt i | L e | '
.......... S EOSSER SRS E——
' r1(A, 20,000) 1 rL(A, 20) 1 TL(A, 18) :
' r1(B,10,000) | i ri(B,10) .1 1B, 9) |
' r1(Z, 15,000) |1 rl(Z, 15) | ri(Z, 13.5) |

Figure 3.7 Extreme Example for Ontological Heterogeneity

The other extreme would be mapping all data to “thing” (i.e. the most basic term in an
ontology) in the ontology and treating the rest as contextual knowledge. In such a case,
we could only talk about contextual heterogeneity, since no definitional heterogeneity
exists at the ontological level.

When we integrate data sources with their respective ontologies (we will accept
schemas as ontologies here) by using a shared ontology, we can decide how much to
make explicit in the ontology. Take for example price (nominal) and price(+tax)
ontological heterogeneity between two data sources. This heterogeneity may be treated as
a contextual heterogeneity, by adopting a more general definition of price that subsumes
both concepts, and by leaving their difference to be articulated as part of the contextual
knowledge. In fact, this is the approach we take in this Thesis. we treat ontological
heterogeneities as contextual heterogeneities by using relatively generic knowledge in the
ontologies, and relatively particular knowledge in contexts.

39

3.1.4 Related Work

There have been severa attempts in the literature to classify data heterogeneities
[Kim & Seo 91, Kashyap & Sheth 96, Goh 97, Busse et. a 99]. Almost al of these
attempts are primarily from the database perspective, as evidenced by maor focus on
schematic conflicts. Kashyap and Sheth, for example, classify everything under
schematic conflicts (corresponding to ontological heterogeneity in our classification), and
view @nflicts such as scaling and units as schematic conflicts pertaining to domain
definitions. Kim and Seo have the additional category of data conflicts, in which they
draw attention to the heterogeneity in the quality of data (e.g. incorrect, obsolete data) as
well as different representations of the same data (e.g. unit and scale differences), which
corresponds to contextual heterogeneities in our framework. In [Goh 97], Goh talks
about naming, scaling & units, and confounding conflicts. Confounding conflicts, which
is particularly interesting, refers to those arising from the confounding of concepts, which
are in actual fact distinct (e.g. latest trade price as of now vs. latest trade price with a 20
minute delay). We would categorize confounding conflicts under ontological conflicts in
our framework.

It is beyond the scope of this Thesis to come up with a synthesis of all semantic
heterogeneities in great detail. Our classification of semantic heterogeneities in section
3.1 isbased on a practical concern that affects the design of our integration framework.
We knew, for instance, how to handle contextual heterogeneities using the COIN
framework [Goh 97], but did not have a way to handle ontological heterogeneities. In this
Thesis, we transform ontological heterogeneities into contextual heterogeneities as
described in the preceding sub section and use an extended version of the COIN
framework, ECOIN, to reason with them. Handling tempora heterogeneities will require
further enhancements and is left as future work.

3.2 Major Approachesto Achieving Interoperability

Over the last two decades there have been several studies on database integration
under a variety of titles such as multidatabase systems, heterogeneous database systems,
and federated information systems [Busse et. a 99]. These approaches have been grouped
in the literature as static vs. dynamic [Kuhn et. a 91], global vs. local schema [Litwin and
Abddllatif 87], and tightly vs. loosely coupled [Goh 97, Arens and Knoblock 96]
approaches. These groupings can roughly be thought of referring to the same distinction
characterized in [Goh 97] by:

who is responsible for identifying what conflicts exist and how they can be
circumvented; and
when the conflicts are resolved.

In the following subsections, we analyze these approaches under the headings of
tightly and loosely coupled approaches with the exception of our predecessor system
COIN, which adopts a unique, and in some ways a hybrid approach. In Table 3.3, we
provide a grouping of some of the existing prototype systems according to this criterion
[partialy adopted from Goh 97].

40

Tightly Coupled L oosely-coupled

Systems Systems
L ogic-based Information Manifold [Levy 98] VIP-MDBMS [Kuhn and Ludwig 88]
Data Model InfoMaster [Duschka and Genesereth 97]

HERMES [Subrahmanian et al. 00]
Carnot [Collet et al. 91]

Object- DISCO [Tomasic et. a 98] TSIMMIS[Garcia-Molinaet al. 95]
Oriented SIMS [Arens and Knoblock 96] O*SQL [Litwin 92]

Data Model Pegasus [Ahmed et al. 91]

Functional Multibase [Landers and Rosenberg 82]

Data Model

Relational ADDS [Breitbart and Tieman 84] MRDSM [Litwin and Abdellatif 87]
Data Model Mermaid [Templeton et al. 87]

Garlic [Carey et. a 95]

Table 3.3 A Categorization of Existing Prototypes
3.2.1 Tightly Coupled Approaches

In tightly coupled approaches, the objective is to insulate the users from data
heterogeneity by providing a unified view of the data sources, and letting them formulate
their queries using that globa view. A system administrator takes the task of creating a
global schema before the system can be used. In bottom up approaches the globa schema
is constructed out of heterogeneous local schemas by going through the tedious process
of schema integration [Batini et a. 86]. In top-down approaches global schema is
constructed primarily by considering the requirements of a domain, before corresponding
sources are sought.

Virtualy al data integration systems in this category can be viewed as atriple (G, S,
M) [Lenzerini 03], where G is the global schema, S is the source set, and M is the
mapping between G and S as illustrated in Figure 3.8 The primary challenge of these
integration systems is to rewrite a user query expressed over the global schema (q(A',B")
in the figure), in terms of queries spanning the source set (g(A) & q(B) in the figure) by
using the mappings between them. Mappings in these systems can be expressed in two
ways:. loca as view (LAV) or global as view (GAV). In LAV each source is described
through the globa schema (A - A'"), whereas in GAV, global schemais expressed using
the sources (A" = A). A concrete example is given in Table 3.4. In this example, the
global schema consists of three predicates {car(C), price(C,P), model(C,M)} and there
are two sources {s1(C,P), s2(C,M)} reporting the prices and models of cars respectively.
The problem of rewriting queries posed on the globa schema in terms of the local
sources has been coined as answering queries using views in the literature [Halevy 00],
and studied extensively [Pottinger and Levy 01]. Research in this area focuses more on
the mechanics of answering queries using views problem than identifying and conquering
challenging semantic issues.

41

Structured Sources (S) Semi-Structured Sources S

Figure 3.8 Tightly Coupled Approaches

Globa AsView Local As View
car(C) = s1(C). s1(C, P) = car(C), price(C, P).
car(C) -~ s2(C). s2(C, M) = car(C), model(C,M).

price(C,P) = s1(C,P).
model(C,M) = s2(C,M).

Table 3.4 GAV vs. LAV

In tightly coupled approaches, data heterogeneities between sources are resolved by
mapping conflicting data items to a common view. In the Pegasus system, for example,
supertypes and functions are used for this purpose. To circumvent a conflict between two
data types a supertype, and a function that acts on the instances of the supertype is
created. The function provides a mapping between the data in conflicting sources and the
canonical form adopted by the global schema. An ontological heterogeneity example in
which two data sources have conflicting price definitions is shown below:

42

CREATE SUPERTYPE trip of tripl, trip2;

CREATE FUNCTION price (trip xX) =

Real r AS

IF trip1(x) THEN airfare(x) + servicecost(x) + shippingcost(x)
ELSE if trip2(x) THEN airfare(x) + tax(x)

ELSE ERROR;

In this example, the trip supertype subsumes tripl and trip2 types, and imposes a standard
price definition by using a function to map conflicting data values to this standard
definition.

3.2.2 Loosely Coupled Approaches

Loosely coupled approaches object to the feasibility of creating unified views on the
grounds that building and maintaining a global schema would be too costly. Instead they
am to provide users with tools and extended query languages to resolve conflicts
themselves as illustrated in Figure 3.9. The approach relies on the assumption that data
with the same meaning usually have the same or similar names, which can be identified
by the users easily [Kuhn et al. 91]. Furthermore, the user is assumed to understand and
resolve conflicts with the provided tools. One of the best representatives of this approach
is the MRDSM system that introduces the concept of dynamic attributes to deal with
conflicts between data sources [Litwin and Abdellatif 87]. A dynamic attribute is a virtual
column with a dynamically assigned value by using arithmetic operators, functions and/or
gueries. The example we have given in the tightly coupled case, would be expressed in
the loosely coupled case as follows (assuming that the data sources are Orbitz and
Travelocity and the user wants to see the final prices (including taxes, service and
shipping charges) of tickets from both databases):

USE (orbitz o) (travelocity t)

D-COLUMN HOLD (t.price)

t.price = t.airfare + t.shippingcost + t.servicecost

D-COLUMN HOLD (o.price)

0.price = o.airfare + o.tax

SELECT airline, price FROM orbitz WHERE Destination= “BOS” and
Arrival= “IST” and Ddate= “8/1/03" and Adate = “9/1/03"

UNION

SELECT airline, price FROM travelocity WHERE Destination= “BOS” and
Arrival = “IST” and Ddate= “8/1/03" and Adate = “9/1/03"

In the above MSQL (a variant of SQL used in MRDSM) D-COLUMN declaration
denotes dynamic columns followed by the arithmetic expression that defines the value of
the virtual column. Later, these virtual columns can be remembered and used in the

43

Users are supplied with a powerful data
manipulation language with stored or built
in functions to formulate queries over loca

data sources.
| (a(A, /
7 ‘/
s 7
/7 7
/2 Ve
///l(r(A,B))
, A)
: _ aA) oB)
: D 5 -
a @ 5
i " — ~—
\ - Y
. Structured Sources Semi-Structured Sources

N
~ - -’

Figure 3.9 Loosely Coupled Approaches

standard SQL statements. Thus, when the SQL query against Travelocity (t) is executed
the system automatically adjusts the value of price according to the pre-specified
formula. Note that airfare definitions between Travelocity and Orbitz are different, as the
latter includes shipping and service costs but excludes the tax.

As opposed to the tight coupling approach, loose coupling alows users to get the data in
more than one view with the provision of appropriate mappings. This makes the loosaly-
coupled approaches more flexible compared to tightly-coupled ones. Unlike the tightly
coupled approaches, however, the user, not the system administrator, has the burden of
writing mapping functions in every query constructed.

One of the interesting aspects of MSQL is that it attempts to apply a limited form of
symbolic and numeric manipulation techniques to automatically invert and simplify
equations specified in dynamic attribute declarations [Litwin and Vigier 87]. For
example, a dynamic column could contain the following formula:

2*balance’ + 2*balance— 24 = 0
and the system would determine that the balance is 4 or -5 by making calls to Macsyma
equation solver with the above equation. (A method for choosing one of the solutions is
explained in [Litwin and Vigier 87]) In Chapter 6, we explain how this approach
compares with the approach we adopted in solving equational ontological conflicts

3.2.3 Short-comings of Existing Approaches

While both tightly-coupled and loosaly-coupled approaches offer solutions to
semantic interoperability among autonomous and heterogeneous data sources, they also
pose significant problems.

The fundamental problem with tightly coupled approaches is that it lacks flexibility in
providing multiple views of data sources. As we have discussed early in this chapter,
different people may want to view data sources in different ways. In tightly coupled
approaches user views can only be constructed manually by a system administrator. In
loosely coupled approaches, users can construct their own views, making the system
more flexible and responsive, but they have to understand the conflicts between their
views and those of data sources. In our ECOIN approach, we combine the best of these
two worlds, and allow the automatic construction of multiple views with the help of
declarative data semantics and a mediator that automatically detects and reconciles
conflicts between data sources and receivers. Compared to |oosely-coupled approaches,
our approach lessens the burden of the user.

In tightly-coupled systems the detection and reconciliation of data conflicts are not
optionally visible to the user. Semantic conversions are buried inside the wrappers and
not easily inspectable. Loosely-coupled approaches provide some level of transparency as
the users define the semantic conversions themselves, but there is no system service that
optionally provides a list of the detected and resolved conflicts between the data sources
and user views. In ECOIN, conflict detection and resolution is optionally visible to the
user with the provision of an intensional answer in addition to an extensional answer.
This will be explained in more detail in the coming chapters.

Finaly, in adopting a tightly coupled approach, system developers face the
complexities of building and maintaining a global schema. Tightly coupled approaches
suffer from the scalability problem, as it becomes more and more difficult to maintain a
schema with large number of sources.

ECOIN combines the best aspects of both tightly and loosely coupled approaches and
provides a hybrid approach. In the coming chapters we explain the details of our
approach.

45

Chapter 4
Context Interchange Strategy

In the previous chapter we explained various approaches to achieving semantic
interoperability among heterogeneous information systems. In this chapter, we describe
the Context Interchange (COIN) strategy, which is the foundation of our approach to
achieving semantic interoperability among autonomous and heterogeneous systems.

COIN strategy, first articulated in [Siegel and Madnick 91, Sciore et al. 94], and later
founded on aformal conceptual basisin [Goh 97] has the basic tenets that

the detection and reconciliation of semantic conflicts are system services which
are provided by a Context Mediator; and should be optionally visible to the users,
and,

the provision of sucha mediation service requires only that the data sources and
receivers (i.e. users) furnish alogical (declarative) specification of how data are
interpreted in their contexts, and how conflicts when detected, should be
resolved, but not what conflicts exists a priori between any two systems.

These novel ideas signify an important departure from the existing tightly and loosely
coupled approaches to semantic interoperability. Unlike tightly coupled systems (e.g.
Pegasus [Ahmed et al. 91]), COIN strategy does not burden system administrators with a
priori detection and reconciliation of semantic conflicts, but only requires the creation of
a shared ontology that enables the declaration of conflicting data semantics; and the
provision of conversion functions that will be used when these conflicts are automatically
detected.

COIN strategy aso differs from the loosely coupled systems (e.g. MRDSM [Litwin
and Abdellatif 87]) in which the user is responsible for identifying and resolving conflicts
before issuing queries. This responsibility is shifted to the context mediator in the COIN
strategy. Instead, the receivers (i.e. users) and data sources are assigned the lesser
responsibility of furnishing a declarative specification of how they interpret data.

COIN strategy was materialized through the description of a data model, reasoning
algorithm and a prototype (collectively called COIN) in [Goh 97]. Both the data model
and the reasoning agorithm were, however, silent on several aspects of the COIN
strategy. In particular, the case of dealing with ontological heterogeneities was not
thoroughly examined. Our work in this Thesis provides an extended formal re-

46

conceptualization of COIN strategy (ECOIN) which improves the COIN data model,
reasoning algorithm, and system prototype.

We start this chapter with two examples that illustrate the features of COIN strategy
from the user perspective. We, then, continue to explain the structural elements of COIN
from the system perspective, and aso provide an overview of the reasoning algorithm.
Finally, we compare ECOIN with COIN, and outline the new features introduced by our
work that paves the way for a more detailed account of ECOIN in following chapters.

4.1 COIN Strategy by Example
4.1.1 Air Fare Scenario

In Chapter 2, we mentioned that with the use of Camééon wrapper engine airfare
providers on the Web could be treated as if they were databases. Consider now the
slightly dramatized scenario shown in Figure 4.1. A price sensitive Turkish student is
looking for a round trip airfare from Boston to Istanbul, first leg on June 1% and second
on August 8" 2003 from Y ahoo travel site. The contexts of the data sources and the user
(i.e. the way they interpret data) are shown in the figure. First the user wants to know
which airlines are available for histrip and formulates his SQL query as follows:

QL. SELECT Airline FROM Y ahoo
WHERE DepDate = “01/06/03” and ArrDate= “01/08/03”
and DepCity= “Boston” and ArrCity= “Istanbul”;
Without any mediation, this query would return an empty answer, because Y ahoo expects

city codes instead of city names and dates in American format. If this query was
submitted to COIN, however, the query would be rewritten into the following mediated

query:
MQ1: SELECT Airline
FROM yahoo,
(select Airport from cityAirport where city= “Boston”) depCode,
(select Airport from cityAirport where city=“Istanbul™) arrCode,
WHERE DepDate = “06/01/03" and ArrDate="08/01/03" and
DepCity= depCode.Airport and ArrCity= arrCode.Airport;

and the system would return the following result set:

Airline

British Airways

Lufthansa

47

Context of Yahoo

Price means one way nominal price
Ticket shipping cost is $20

Service fee of $5 is charged

Date is expressed in American style

Departure and Destination times are expressed
asthree |etter airport codes

Currency isUS dollar

‘o -

Price Tax DepDate ArrDate
DepCity CxnCountry ArrCity

i
L}
q
I
1
i

e

toCur exchangeRate date

Gy
1
City Airport
Boston BOS

| stanbul IST

Context of User

Price means round-trip final price
(including taxes, ticket shipment, and visa fees)

Date is expressed in European style

Departure and Destination times are expressed
as city names

Currency isUS Dollar

Direct air transit feeis applied if the plane has a
connecting flight from Great Britain

Round trip price istwice the one-way
price/tax/visa fees

Query

SELECT Price FROM yahoo

WHERE DepartureDate = “01/06/03" and ArrivalDate= “01/08/03"
and DepartureCity=“Boston” and Arrival City=“Istanbul”;

Context of VisaFees

Currency isBritish £

~~~~~~~~~~~

! Visfees !
I
VType VisaFee
Tro—at i

Figure 4.1 Airfare Example Scenario

48



This is an example of mediation in the case of contextual heterogeneities. The date
and city name entities were represented differently in the source and user contexts, and
the mediation engine detected and reconciled these conflicts. In the mediated query MQL,
we see examples of dynamic and static conversions. Date conflicts were resolved
statically by converting the data values into the source context before the query is issued
(e.g. 01/06/03 in Q1 became 06/01/03 in MQ1). City name conflicts, however, were
resolved dynamicaly, with the help of cityAirport table, which is used to convert
between city names and airport codes. Dynamic conversions are performed during query
execution.

COIN prototype successfully deals with contextual heterogeneities as exampled here.
It would not, however, be able to process ontological heterogeneities such as the
conflicting definitions of price entity as shown in Figure 4.1 (price has conflicting
definitions in yahoo and user contexts).

Despite knowing this limitation of COIN, let us assume that the user wants to learn
the prices in addition to airlines and formulates the new query Q2 as follows:

Q2.  SELECT Airline, Price FROM Y ahoo
WHERE DepDate = “01/06/03” and ArrDate= “01/08/03"
and DepCity= “Boston” and ArrCity= “Istanbul”;

When this query is submitted to the COIN prototype, it returns the following result set*®:

Airline Price
British Airways 495
Lufthansa 525

This result set, however, is not semantically correct, because it fails to address the
ontological conflicts concerning the term price. Yahoo reports prices as one-way and
does not include extra costs such as taxes, shipment cost of the paper ticket, service fee,
and any possible visa fee. The user, however, is expecting to see the final price of around
trip ticket including all kinds of costs.

In this case, our price sengtive friend would make a mistake by choosing British
Airways over Lufthansa, because flying over Great Britain with British Airways would
cost him atransit visa fee of £27, which would be more than the $30 difference.

If query Q2 were to be submitted to ECOIN system, it would first be rewritten into
the following mediated query:

MQ2: SELECT Airline, 2* (PricetTax+ VisaFee* exchangeRate) + 25
FROM yahoo, visafees, currencyconvert,
(select Airport from cityAirport where city= “Boston”) depCode,
(select Airport from cityAirport where city= “Istanbul™) arrCode,
WHERE DepDate = “06/01/03” and ArrDate="08/01/03" and

15 Since it does not have the capability to deal with equational ontological conflicts [see Chapter 6]

49



DepCity= depCode.Airport and ArrCity= arrCode.Airport

and CxnCountry= “Great Britain”;

UNION

SELECT Airline, 2* (PricetTax) +25

FROM yahoo, visafees,

(select Airport from cityAirport where city= “Boston”) depCode,
(select Airport from cityAirport where city=“Istanbul”) arrCode,
WHERE DepDate = “06/01/03” and ArrDate="08/01/03" and
DepCity= depCode.Airport and ArrCity= arrCode.Airport

and CxnCountry <> “Great Britain”;

and then would return the following answer, which is adjusted to reflect the user
expectations:

Airline Price
British Airways 1198
Lufthansa 1176

In the above mediated query MQ?2, in addition to date and city name conflicts, the
ontological price conflict is also resolved. The mediated query is a union of two queries
because the price calculation depends on whether Great Britain, which imposes a transit
visa fee for our user®, is part of the flight or not. The first sub query in MQ2 corresponds
to the case of having a connecting flight from Great Britain, thus adds the visa fee,
adjusted in terms of currency, to the price along with tax, shipping and service fees. The
price is then converted into a round trip price based on the contextual information
provided by the user as shown in Figure 4.1. Note that the system aggregated the service
fee and shipping cost by ssimplifying the arithmetic expression and simply added 25 to the
price value.

As we will explain in more detail in the coming chapters, this capability of dealing
with equational ontological conflicts is an important feature introduced by ECOIN
through the use of symbolic equation solving techniques. Below we continue with
another scenario that illustrates the issue of ontological heterogeneity in a corporate
accounting setting.

4.1.2 Corporate Householding Scenario

In today’s rapidly evolving business environment, corporate group structures and the
relationships between corporate entities are becoming more and more complex and
difficult to understand. For legal purposes the corporate definition may include its
branches, divisons, subsidiaries, and for tax purposes it may not. Interpretations of
corporate structures depend on the context. In Figure 4.2, we illustrate such an example,

16 See user context definition in Figure 4.1

50



in which the user interprets the financials of a company as the sum of financias of itsalf,
its subsidiaries, branches and divisions. The data sources, however, report financials of a
company by excluding subsidiaries: as the sum of financias of itself, branches and
divisions. The user in Figure 4.2, poses the following naive query:

Q3.  SELECT Revenue FROM Financias
WHERE CorporateEntity = “I1BM”;

Context of FinancialsDB Context of User
Financials of a corporate entity is the sum of financials Financials of a corporate entity is the sum of
of itself, branches, and divisons not including financials of itself, its subsidiaries, branches
subsidiaries. and divisions.
Query
CorporateEntity Revenue SELECT Revenue FROM Financiads
IBM 77,966,000 WHERE CorporateEntity =“1BM”;
IBM Global Services 36,360,000
Lotus Development 970,000 (@@=,
IBM Far East Holdings 550,000 =)
International Information Products 1,200,000 }Q :/x
IBM International Treasury Services 500,000 (ot /
General Motors 177,828,100 A7
Hughes Electronics 8,934,900 -~ A4

Electronic Data Systems 21,502,000

< —
RelationsDB

ChildEntity ParentEntity Relationship % Ownership
L otus Development IBM Subsidiary 100
IBM Far East HoldingsB. V. IBM Subsidiary 100
International Information Products IBM Far East HoldingsB. V. Subsidiary 80
IBM Global Services IBM Divison 100
IBM Enterprise Investment IBM Divison 100
IBM Software IBM Divison 100
IBM Hardware IBM Divison 100
IBM Global Financing IBM Divison 100
IBM Germany IBM Branch 100
IBM France IBM Branch 100
IBM Finland IBM Branch 100
IBM Denmark IBM Branch 100
IBM Switzerland IBM Branch 100
IBM International Treasury Services IBM Germany Subsidiary 33
IBM International Treasury Services IBM France Subsidiary 14
IBM International Treasury Services IBM Finland Subsidiary 10
IBM International Treasury Services IBM Denmark Subsidiary 18
IBM International Treasury Services IBM Switzerland Subsidiary 25

Figure 4.2 Corporate Householding Example Scenario

51



The financials database would then return the following result set:

Revenue
77,966,000

This result above, however, is brought without paying any attention to the user context. If
the same query were posed against the ECOIN mediation engine, the following mediated
guery would be executed:

MQ3:

SELECT ri1.Revenue + r..Revenue + 0.8 * r3.Revenue + rs.Revenuet rs.Revenue

FROM (select Revenue from r where CorporateEntity=“IBM”) rq,

(select Revenue from r where CorporateEntity= “L otus Development™) ro,

(select Revenue from r where CorporateEntity= “International Information Products’) rs,
(select Revenue from r where CorporateEntity= “IBM Far East holdings’) ra,

(select Revenue from r where CorporateEntity="1BM International Treasury Services”) rs

with the following result:

Revenue
116,756,000

The above-mediated query sums up the revenues of IBM, its subsidiaries, and the
subsidiaries of its branches and divisions. This sum is constructed recursively by
adjusting the financials of each corporate entity whether it is a corporate, branch, division
or a subsidiary. The relationship and percentage of ownership information is obtained
from Relationsdb, and the relevant part of the relationship tree is shownin Figure 4.3.
Legend
S Subsidiary, B: Branch
Number s correspond to percentages

IBM
Far East

(S, 80)
International Information IBM Internationa
Products Treasury Services

52




In these two examples, we explained how context mediation operates from the user
perspective The users (i.e. data providers and receivers) smply provide a declarative
specification of how data are interpreted in sources and receivers, and a context mediator
performs the reconciliations of conflicts. Next we explain how context mediation works
from the system per spective

4.2 Structural Elements of COIN Framework

In Chapter 3, we referred to Lenzerini’s formalization of data integration systems as a
triple (G, S, M) where
G was the global schema, domain model, or ontology
S was the source set, and
M was the mapping between G and S [Lenzerini 03],
Using this notation, COIN framework can be roughly thought of as a quintuple (G, S, M,
C, W), where the additional two elements C and 1 are defined as follows:
C is the context multi-set, and
M isamapping that assigns a context to each source.
In Figure 4.4, we show the interaction between the elements of COIN framework. In this
figure the domain model G, context set C, and the source set S are shown in rectangles
with rounded edges.

/CONTEXT SET (CN 4 DOMAIN MODEL (G) "\

| 9=

4

/

/ 5 ! MAPRING (M)
: i I

RN i N VI Semantic Relations

) at(C3,C2)

I Integrity | —
|\ Constraints
_______ Cc2 yyy YYY 1Yy
KSOURCE SE Extensional Relations /

Figure 4.4 COIN Framework as quintuple (G, S, M, C, W)

As shown in figure, mapping M (called elevation axioms in COIN), maps extensional
relations from the source set to semantic relations with the use of semantic types and
attribute relations from the domain model. Context multi-set contains labeled sets of

53



context rules based on a framework defined in the domain model. Each labeled context
set is assigned to a source according to their data semantics by function p.Below we
explain each element in more detail to clarify the structural elements of COIN.

4.2.1 Domain Model (G)

COIN has an object centric view of the world: it models information units as objects
with unique and immutable object-ids. The domain model identifies object types (called
semantic types) in a generaization hierarchy using the is-a relationship; some of the
properties of objects using attributes and modifiers and methods using conversion
functions. While the domain model in COIN has a less elaborate collection of constructs
than ontology languages such as Semantic Web's OWL classes [McGuinness and Van
Harmelen 03], it nevertheless qualifies as an ontology language. In the rest of this Thesis,
we will use domain model and ontology interchangeably.

As opposed to primitive types (e.g. strings, integers, and reals), semantic types in
COIN are more abstract, and less implementation-oriented. Examples of semantic types
in the form of rectangles with rounded edges can be seen in Figure 4.5, which depicts an
ontology corresponding to the air fare example we provided in the beginning of this
chapter. Instances of semantic types are called semantic objects (shown as circles within
semantic relations in Figure 4.4), and their properties are represented by attributes and
modifiers. Is-a relation defines the subtype-supertype relationship between semantic
types.

Attributes define the state of an object or the relationship (similar to relationships in
entity-relationship data modeling) between objects. For example, an object of atrip type
would have a destination and origin city by definition, and this relationship is captured by
the appropriate attributes as shown in Figure 4.5. Note that attributes are represented by
solid arrows and their predictable names are omitted in Figure 4.5. Modifiers are special
type of attributes used to capture sources of variations that affect the interpretation of a
semantic object value'”. They are shown with dashed arrows in Figure 4.4. For example,
moneyAmount semantic type has a currency modifier, which is a source of variation for
the values of its objects. Depending on the value of currency, moneyAmount objects may
take different values. In GOIN, modifiers are assumed to be independent of each other
(i.e. orthogonal). This assumption simplifies the agorithm design permitting unordered
application of conversion functions, which are defined per modifier. When there are
dependent modifiers (i.e. conversion functions defined for those modifiers cannot be
applied in any order), they have to be modeled as a single modifier.

Unlike primitive objects, semantic objects have values in a specified context. These
values may be different depending on the modifier values, but they have to be
semantically equivalent. This equivalency is established with the use of conversion
functions that may also be viewed as method definitions for semantic objects. Conversion
functions of a semantic object are defined per modifier, and are used to transform object
values from one context to another. This is briefly illustrated in Figure 4.4, with the
depiction of conversion function .. In the figure, feyt is shown in the domain model box
to denote the method definitions, and also in the source set box to illustrate the
conversion of values from one context to another. For example, a currency conversion

17 Semantic object values are of primitive types, and correspond to values used in extensional relations.

54



function defined as a method of the semantic type moneyAmount and parameterized on
its currency modifier values could be used to convert the values of moneyAmount objects

from one context to another.

destination _origi departureDate |returnDate stopOver

@eler —[ airport ]—[ date ] l price ]__tyr_)e___ fquD—é
= —

‘format : rlcoverage
| -----{ coverage | [ 0]
format

citizenghip --»| airportName —[m

Is{In

timeZone

serviceFee

| country )i v |

e TTTTT (ee e lre e ire e ireireire e ireiretoatoeiant

dateType [ duration ][ airline ][ onTimeProbability

: visaFees  {--f--eemmieeg | :
! Isa N S VIR T tetalntataiei et 1 :
: Fereeeeeee-e31 . MONEyAmount :

E Attribute . .
: currency ! [ durationTvpe ]

: Modifier __,
: currency  f--------- >[ currencySymbol ]

Figure 4.5 Airfare Ontology Diagram

Finaly, we should mention that domain model language alows non-monotonic
inheritance (i.e. inheritance with overriding) between semantic types. Conversion
functions, attribute and modifier values can be polymorphicaly defined using this
feature. For example, a conversion function defined for moneyAmount would apply to
objects of its subtype (e.g. price). Similarly, modifier values defined for moneyAmount’s
currency modifier would be inherited by the objects of price unless they are explicitly
overridden with its own definition of modifier values.

4.2.2 Sour ce Set (S)

In COIN the canonical representation chosen for convenience is the relational dbta
model. For that reason, the source set in COIN corresponds to a set of databases with
their relations as shown in Figure 4.4 as extensional relations. Semi-structured data
sources can aso be used, but they have to be first converted into relational sources, for
example, with the use of Caméléon wrapper engine. Domain and integrity constraints of

55



these relations are al so represented within the source set as shown in Figure 4.4, and used
for semantic optimization purposes. If for example, airfare provider yahoo did not sell
tickets when the flight date was not in the current year, this integrity constraint could be
used to return an empty answer to the following query when posed before year 2004

Q4.  SELECT Airline, Price FROM Y ahoo
WHERE DepDate = “01/06/04" and ArrDate= “01/08/04”
and DepCity= “Boston” and ArrCity= “Istanbul”;

4.2.3 Elevation Axioms (M)

Elevation axioms are used to relate sources and the domain model. Each primitive
relation (i.e. ordinary database relations) in the source set is elevated to a semantic
relation. This is accomplished by mapping each primitive object (i.e. data cells) in the
primitive relation to a semantic object in the semantic relation. Skolem'® functions are
used to assign unigue object ids to each semantic object. The skolem function has the
following genera structure:

fsolem(X )= skolem(Semantic_Type(X), X , Context(X), Column_Order (X), Primitive_Relation(X))

For example the primitive price object of type number from the primitive relation Y ahoo
shown in Figure 4.1, would be assigned the following unique object id:

fsoem(Price)= skolem(price, Price, c_yahoo, 3, yahoo(l,A,Price, T,D,AD,DC,CC,AC))

wherel,A, Price,T,D,AD,DC,CC, and AC arelogical variables correspond to the physical
values of the yahoo relation.

Semantic relation Y ahoo would then be constructed in COIN with the combination of
each semantic object derived from a primitive relation as follows:

yahoo?(fxolem(ID) fsatem(Air1ing), fyaem(Price), fagen(Tax), fxaem(DepDate), fyoen{ArrDate), fxaen{DepCity),
faolem(CXNCountry), faoiem(ArrCity))

4.2.4 Context Set (C)

As we mentioned in the domain model section modifiers are specia attributes that
affect the interpretation of a semantic object value. The domain model in COIN defines
what types of modifiers apply to which semantic types. Context set is a multi- set, which
contains sets of rules that determine the values of modifiers in a particular context. For
example, the modifier values for context of Yahoo (refer to Figure 4.1) based on the
ontology from Figure 4.4 is shown in Table 4.1. The table shows the semantic types with
their modifiers, and modifier values. Note that modifier values can be described via a

18 Skolem functions are used to transform existentially qualified logical variables into universally qualified
ones. Refer to [Goh 97] for more details.

56



variety of ways, but they must come from a shared domain that data sources and receivers
agree.

Semantic Type Modifier Value
Price Type Nominal
Coverage One Way
Date Format American
MoneyAmount Currency uSsb
Currency Format 3 character
Duration type hours

Table 4.1 Extensional Context of Y ahoo

The table corresponds to the extensional context of yahoo for it is a collection of physical
values. Intensional context of yahoo is the labeled set of rules in the context multi- set that
describe the context with logical expressions. For example the modifier values for price
in the yahoo context (c_yahoo is used as the identifier) would be defined as:

modifier(price, Object, type, ¢_yahoo, Modifier) -
cste(priceType, Modifier, ¢_yahoo, "nomina").

modifier(price, Object, coverage, ¢c_yahoo, Modifier) -
cste(coverage, Modifier, c_yahoo, "one-way").

These definitions above correspond to static modifier declarations whose values are
constant (i.e. “nominal” and “one-way”). It is also possible to define modifiers whose
values are variables. Below is an example of a dynamic modifier declaration for the
currency modifier of moneyAmount semantic type:

modifier(moneyAmount, Object, currency, c_intl, Modifier) -
attr(Object, provider, Provider),
attr(Provider, locatedin, Country),
attr(Country, officialCurrency, Modifier).

In this modifier declaration the value of currency modifier is obtained by finding the
provider from the price object, the country from the provider object, and finally finding
the official currency from the country object. Note that modifiers themselves are
semantic objects, therefore may have their own modifiers. An example of thisis shown in
Figure 4.5 and Table 4.1, in which the currency type has a modifier called format.

4.2.5 Context Assignments ()

Contexts labeled in the context set are assigned to relations with the mapping . In the
elevation axioms section we have shown how the sources and the ontology are linked

57



with the construction of semantic objects. Context assignments are done during the
semantic object construction as seen in the example we repeat below:

faoiem(X )= skolem(Semantic_Type(X), X!° , Context(X), Column_Order(X), Primitive_Relation(X))

For example, c_yahoo context identifier is assigned to the price data cell from the yahoo
primitive relation as follows:

fsaem(Price)= skolem(price, Price, c_yahoo, 3, yahoo(l,A,Price, T,D,AD,DC,CC,AC))

With this mapping structure data cells within a single relation can be assigned different
context identifiers.

4.3 Query Answering in the COIN Framework

Queries in COIN are formulated in SQL in a receiver context?®?, and refer to

individual database schemas and/or views. SQL queries input by users are trandated into
clausal form (i.e. Datalog, which is the logical equivalent of SQL) in COIN. For example
query Q2 would be translated into CQ2 shown below in Datalog like notatior’?:

(Naive query) NQ2: = answer(Airline,Price)

answer(Airline,Price) -
yahoo(_,Airline, Price, _, “01/06/03”, “01/08/03” , “Boston”, _, “Istanbul”).
Context: c_user

This query is named as a naive query, because the direct execution of it would ignore
potential semantic conflicts and would most likely return inaccurate answers. Therefore,
this query is converted into a well-formed®® query, through steps explained in [Goh 97].
This well-formed query refers to semantic relations instead of primitive relations, and
therefore uses the value(X, C, Y) notation to refer to the primitive value Y of semantic
object X in context C. The example query, NQ2, can be written as awell formed query as
follows:

(Well formed query) WQ2: - answer(VAirline,VPrice)
answer(VAirlineVPrice) -
yahoo®_2* Airlineg Pricet _, DDate¢ ADate¢, DCityg _, ACitys),
value(Priceq c_user, VPrice)?,
value(AirlineGc_user, VAirline),
value(DDate¢c_user, “01/06/03"),

19 Thisvalue refers to primitive relation

20 Can also be called user or query context

21| jke data sources, users have their own contexts defined by modifier value assignments

22 For easier readability we will use Datalog style instead of the style adopted in [Goh 97].

2 Thisname is adopted taken from [Goh 97].

24 inlogic programming corresponds to anonymous variables whose names are not needed.
5 Read as “the value of semantic object Price¢in context c_user is Price”.

58



value(ADategc_user, “01/08/03")
value(DCity§ c_user, “Boston”)
value(ACity§ c_user, “Istanbul”).

The above well formed query incorporates the receiver context, and rewrites the naive
guery using the semantic relations corresponding to primitive relations(yahoo¢vs. yahoo).
Because the objects of semantic relations are semantic objects, they are mapped to their
primitive values in the user context (c_user) through the use of value predicate.

Thiswell formed query then needs to be rewritten into a mediated query to obtain the
intensional answer to the origina query. Abductive reasoning is chosen here for it
provides the desired intensional answer, as opposed to the extensional answer that would
be obtained from deductive reasoning. Next, we explain the details of abductive
reasoning from operational point of view.

4.3.1 Overview of Abduction in COIN

Like induction, and deduction, abduction is an inference technique used in logic. It is
a form of hypothetical reasoning that offers explanatory facts from observed ones and a
set of rules [Denecker and Kakas 02]. In the smplest case, given the rule *Y implies X”,
and the observation X, abduction infers Y as a possible explanation of X.

An abductive programming framework, consists of a set of rules known as the theory
(eg. {“Y implies X"}), possible explanations known as abducibles (e.g. Y) and integrity
constraints (e.g. Y must be integer) Given a query Q, the abductive reasoning task is to
find a set of explanations from the set of abducibles such that they are consistent with the
theory and integrity constraints.

In order to use abductive reasoning, COIN framework (G, S, M, C, W) is first
converted into an abductive framework by constructing the

- theory from the union of domain modd G, mappings M, context set C, and

context mappings W, which constitute a set of rules;

integrity constraints from the integrity constraints defined in the source set S; and
abducibles from extensional predicates (e.g. yahoo relation) and built in
predicates that is admitted by the query language (e.g. +, >, €tc.)

Then given awell formed clausal query Q, abductive reasoning algorithm progresses
to find a set of extensiona and built in predicates as an answer. The details of how
abductive reasoning works can be found in [Denecker and Kakas 02]. The end result of
abduction in COIN is a mediated query expressed only using the extensional relations,
and built-in features that are admitted by SQL. It is also considered as the intensional
answer to the query issued by the user, for it expresses the answer in terms of predicates
not with a set of facts. This intensional answer can then be optimized, and executed
against the sources to retrieve extensional answers.

4.4 ECOIN compared to COIN

As we explained in this chapter COIN is a realization of the Context Interchange
strategy first articulated in [Siegel and Madnick 91, Sciore et a. 94] in the form of a data
model, reasoning algorithm, and a prototype implementation. ECOIN is another

59



realization of the same strategy, with differences in representation, reasoning and the
prototype. Below we analyze these differences one by one.

4.4.1 Representational Differences

ECOIN improves COIN by providing a solution for representing and reasoning with
equational ontological heterogeneities. We introduce a conceptua transformation of
ontological heterogeneities into contextual heterogeneities by using loosely defined
terminology in the shared ontology. Y et, the way ontological conflicts are represented in
ECOIN is not unlike the way contextua heterogeneities are represented in COIN.
Representational differences between the two can be found in the way conversion
functions are represented in ECOIN. Unlike COIN, conversion functions in ECOIN
constitute a bidirectional graph. Combined with the new reasoning capabilities, this new
representation considerably cuts down the need to define new conversion functions.

In ECOIN, we address the merging of disparate applications which is nonexistent in
COIN. We define a completely new and backward compatible representation of merging
axioms, which allows scalable construction of ECOIN applications.

4.4.2 Reasoning Differences

The major novelties introduced by ECOIN are in the reasoning agorithm and
prototype implementation. ECOIN introduces a symbolic equation solver encoded using
a declarative custom constraint definition language called Constraint Handling Rules
(CHR). We combine abductive and constraint logic programming to intertwine query
mediation with symbolic equation solving, which is essential in reasoning with equational
ontological conflicts. ECOIN aso provides the functionality to operate on the conversion
graph with the integration of Dijkstra’s scalable shortest path algorithm into the reasoning
process.

Furthermore, the reasoning algorithm is expanded to deal with the new demands of
merging disparate ECOIN applications. This expanded reasoning agorithm is a first
attempt in dealing with virtual applications that do not physically contain ECOIN axioms,
but links other applications using the ECOIN merging framework.

4.4.3 Prototype Differences

ECOIN offers numerous improvements over the prototype implementation of COIN.
First, it actually implements many of the missing features of COIN prototype such as
inheritance between semantic types, context identifiers, and modifiers. Second, ECOIN
prototype implementation is more modular compared to COIN, as it has a cleaner
separation between different system components. This makes it easier to understand and
build on top of the ECOIN prototype for future students working on the project. The
query optimizer and execution engine of ECOIN is built on a new capability based
optimizer, and has been more reliable compared to COIN optimizer and execution
engine. Furthermore, ECOIN offers graphica metadata management, application
building and merging tools for end users.

In the coming chapters we provide a detailed account of the features of ECOIN.

60



Chapter 5
Extended COntext |Nterchange

Extended Context Interchange (ECOIN) provides a knowledge representation
framework and a reasoning platform for integrating heterogeneous information systems.
In this chapter, we describe the ECOIN knowledge representation framework in detail.
Before doing that we find it useful to provide background on some of the key concepts
behind the ECOIN representation framework, namely, context, ontology and logic
programming.

5.1 Context

With the globalization of information over the internet, recognizing the role of
context in achieving semantic interoperability among heterogeneous and autonomous
systems has become an important endeavor. In this section we provide an overview of
studies on context that can be found in the literature of philosophy, and artificial
intelligence (Al), including knowledge representation, natural language processing, and
intelligent information retrieval.

According to Collins Cobuild English Language Dictionary the context of something
consists of “the ideas, situations, events, or information that relate to it and make it
possible to understand it fully” [Akman 02]. In [Sperber & Wilson 86], context is defined
as “the set of premises used in interpreting an utterance, a psychological construct, a
subset of the hearer’s assumptions about the world”. In [McCarthy 93], no definition of
context is offered, for they are viewed as rich objects that cannot be completely described
[Guha 91].

In the field of philosophy, study of context goes back to 1898 to philosopher Charles
Peirce, who describes making meta level assertions about nested propositions® aswell as
the rules of inference for importing and exporting information into and out of the contexts
[Sowa 97]. Another philosopher Mario Bunge provides a formal definition of context in
[Bunge 74] as follows:

28 Thisis known asreification in the Al community.

61



“DEFINITION 2.10 The ordered triple C=<S,P,D> is called a (conceptual) context (or
frame) iff Sis a set of statements in which only the predicate family P occur and the
reference class of every Pin P isincluded in the universe or domain D I W.”

This definition defines context as a set of statements constructed by using a set of
designated predicates and a domain those predicates draw upon. Consider for instance
the conceptualization of the price of an airfare with the predicate set P={price, currency,
scalefactor}, and domain D ={ DairtareiD, Dorices Deurrency, Dscalefacto Which corresponds to
domains used in the predicate declarations (e.9. Qurrency = {USD, EUR, ..., JPY}. The
context as defined by Bunge in this case would correspond to a set of equations that can
only be constructed with a designated set of predicates and their domains. One example
would be:

C = <{currency(LH421, USD), scalefactor(LH421, 1),...}, {price, currency, scalefactor},
{LH421,LH422, NW030,..., 0,0.01,0.02,..., USD, EUR,...ITL,1,1000}>

where S describes the currency and scalefactor of each airfare, P is the set of predicates
that can be used in S, and D is the domain of the predicate declarations. This definition
constitutes the basis of context representation in [Lee 96].

In Al, the main motivation for studying formal contexts is to resolve the ‘problem of
generality’ [McCarthy 87]. Although computers can beat the best human player in chess,
they lack the ability to generalize specialized knowledge. Thus, the study of context in Al
concentrates on finding a unified formal framework for representing and reasoning with
context. This may be quite challenging (and even arguably unproductive [Hirst 00]),
given that context is used for different purposes in different sub fields of Al. In
knowledge representation and reasoning, for example, context is thought of as an agent’s
partial representation of the world, whereas in natural language processing, context is
conceived of as acollection of features of the location in which an agent produces a
linguistic expression and is therefore assumed to be related to the state of the world
[Bouquet et. a. 01]. Along the same lines, Akman, drawing from literary theory and
social sciences, views context as a social construct and asserts that interpretation is
possible only within shared contexts [Akman and Surav 97].

The formalization efforts of context are categorized into two groups by [Bouquet and
Serafini 03]: the Propositional Logic of Context (PLC) [Buvac and Mason 93] and Local
Models Semantics (LMS) [Ghidini and Giunchiglia 01]. The comparison of these two
approaches is analogous to that of tight vs. loose coupling approaches in database
integration and we find it useful to explain each in more detail.

5.1.1 Tightly Coupled Contexts

PLC is an example of this approach, which was also called “divide and conquer” in
[Bouquet et. al. 01]. We call this approach tightly coupled because of the existence of a
unique global vocabulary that ties all the contexts together. McCarthy’s efforts fall under
this category, and so does the approach used in CYC [Lenat et a., 1990; Guha, 1991], as
a way of partitioning a globa theory of the world with two levels of nesting: micro-
theories and the default outer level.

62



In this approach axioms and statements are true only in a context. This is expressed
by amodality’’ called ist(c,p)%2. For example,

Co: ist(context-of (“ Sherlock Holmes stories’), “Holmes is a detective”).
means that the statement “Holmes is a detective” is true in the context of Sherlock
Holmes stories. The preceding co denotes that this statement is asserted in an outer
context, thus points out to the nested composition of context dependent statements.
Formulas between contexts can be related together with the use of lifting axioms.

In [Buvac 98], one of the best representatives of this approach, an example of
reasoning with Navy and General Electric (GE) databases is given. In this example,
databases differ on the definition of engine prices, which include assortment of spare
parts and warranty in the Navy database, in addition to GE’s reported plain engine price.
Contexts defined in this example are Cge, Cnay COrresponding to the GE and navy
databases and cps, the problem solving context. The details of this example, (i.e. the query
posed in the problem solving context, the existing facts expressed in their own context,
and lifting axioms that define translations between different contexts) are shown in Table
5.1

Query

Cps. 1St(Cravy, Price(FX-22-engine, $3611K))

Facts

ist(cee, price(FX-22-engine, $3600K)).

ist(cae, price(FX-22-engine-fanblades, $5K)).

ist(cee, price(FX-22-engine-two- year-warranty, $6K)).

ISt(Cravy, SPares(FX-22-engine,FX-22-engine-fan-blades)).

ISt(Cavy, Warranty(FX-22-engine FX-22-engine-two- year-warranty)).

Lifting axioms

vaue®(ceg, price(x)) = GE-price(x)

value(Cnavy, Price(x)) = GE-price(x) + GE-price(spares(Cnavy, X)) +
GE-price(warranty(Cnavy, X))

Table 5.1 Navy and Genera Electric Integration Example
5.1.2 Loosely Coupled Contexts

LMS is an example of this approach, which was also called “ compose and conquer”

in [Bouquet et. al. 01]. We call this approach loosely coupled because there is no such a
thing as a global theory of the world, but only many local theories. Unlike the tightly
coupled approach, contextsin loosely coupled approach are autonomous theories with no
predefined common vocabulary. Relations between contexts, are established on a peer-to
peer basis, as a collection of constraints on what can (or cannot) be true in a context given
that there is some relation with what holds in another context. This is depicted in Figure
5.1, with each rectangle corresponding to local theories with different contexts and dotted
arrows establish the links between their contexts.

27 The classification of propositions on the basis of whether they assert or deny the possibility,
impossibility, contingency, or necessity of their content.

28 Read as“pistruein context ¢’

2 value(c,t) is afunction which returns the value of term t in context ¢

63



F C12

cl P

56

23 c17 sfsd
foor

1 R fgre

Figure 5.1 Loosely coupled contexts (adopted from [ Bouquet et. al. 01])

This approach has been used in [Ghidini and Serafini 98, 00], in integrating
information systems. They provide an example that integrates the databases of four fruit
sellers with different contexts. Conflict resolution between contexts is done pair wise for
each database, since they do not subscribe to a common global theory. In the example,
one of the sellers (1) provides fruit prices without including taxes, the other denoted as
the mediator (m) considers prices with taxes (7% percent). This conflict is resolved by
defining a view constraint as following:

1: has-price(x,y) ® m:$ythas-price(x,yd U y¢=y +(0.07*y)

This view constraint establishes the link between differing price definitions of source 1
and mediator m.

While loosely coupled approach to modeling contexts offers more flexibility in
dealing with contextual disparities among data sources, it suffers from the scalability
issues since constraints that relate context of each source should be defined on a peer to
peer basis. This requires each source to know about al other sources, which may be quite
costly. Tightly coupled approach to modeling contexts, on the other hand, enables one to
relate contexts of sources (i.e. by using lifting axioms) more generally with the power of
a shared language, but it suffers from the flexibility issues as the language evolution has
to be coordinated between sources.

5.2 Ontology

In recent years, the study of ontology, with its roots in philosophy, has become
intertwined with the development of artificial intelligence and of information systems
science [Smith and Belty 01]. Although the term ontology assumes a different meaning in
philosophy (i.e. the metaphysical study of the nature of being and existence), in computer
science it corresponds roughly to an “agreement about a shared, formal, explicit and

64



partia account of a conceptualization” [Gruber 93, Guarino and Guiretta 95, Ushold and
Gruninger 96, Spyns et. a 02]. Ontologies can range from simple glossaries or relational
database schemata to a hierarchy of concepts related by subsumption relationships to
formal logical theories that specify relations and constraints between terms as well as
inference rules.

In information integration, ontologies are increasingly being used as a unifying
framework for trandating between different models of heterogeneous data sources to
achieve semantic interoperability. Information integration projects such as SIMS [Ariens
et. a 96], CARNOT [Collet et. a 91], InfoSleuth [Woelk and Tomlinson 94],
OBSERVER [Mena et. a 96], Information Manifold[Levy et. a 95], COIN[Goh 97] are
all ontology-based approaches [Wache et. a 01]. A detailed study of ontologies in
information systems can be found in [Smith 03] and [Guarino 98].

Among various studies found in the literature we find Guarino’s in depth study
insightful and most relevant to this Thesis. In [Guarino 98], an ontology is defined as
follows and illustrated in Figure 5.2:

Modédls of language L

Figure 5.2. Ontology as a coarse specification of a conceptualization

“An ontology is a logical theory accounting for the intended meaning of a formal
vocabulary, i.e. its ontologica commitment to a particular conceptudization®™ of the
world. The intended models®! of a logica language using such a vocabulary are

30 4 set of informal rulesthat constrain the structure of a piece of reality
31 A model is an interpretation (i.e., an assignment of truth values to symbols) of a set of sentences such
that each sentenceis“true”.

65



constrained by its ontologica commitment. An ontology indirectly reflects this
commitment (and the underlying conceptualization) by approximating these intended
models.”

The formal details of this description are beyond the scope of this Thesis, and can be
found in [Guarino 98]. Intuitively, however, this definition underlines an important
property of ontologies that they are imprecise specifications of conceptualizations;
therefore they aso admit unintended models of a language depending on how fine-
grained they are specified. In Figure 5.2, an ontology is shown to restrict the models of a
language, yet this restriction is not precise enough to exactly correspond to the intended
models of the conceptualization it specifies. In Figure 5.3, we give an example involving
multiple conceptualizations and one ontology to approximate the intended models of both
conceptualizations.

Conceptualization Conceptualization
C1 Cc2

———”’

price
\.

price (nominal) price(+tax) i

E Ontology O '

Figure 5.3. Ontology as a coarse specification of a conceptualization

The ontology in this example has to be less restrictive than either of the
conceptualizations, since it has to be able to specify both. For example, even though the
two conceptualizations may have different definitions for price (nominal vs. including
tax) in their intended models, the ontology created to approximate these
conceptualizations may instead adopt a more genera definition of price that subsumes
both variations as specia cases. We further advance this idea, and suggest that he
variations can be represented using contexts, as will be explained in more detail in
coming chapters.

66



5.3 Logic Programming

Logic programming, developed in the early 1970s, is a declarative method of
knowledge representation and programming based on first-order logic [Kowalski 1974].
A genera logic program can be viewed as a collection of rules (or clauses) of the form
[Baral and Gelfond 94]:

Ao— A, ..., Am, ot Amst ..., NOt Ap
Each A isaliteral (or atom) in the form pi(as, ..., an), where pj is a predicate symbol and
ajareterms. Not is alogical connective called negation as failure in [Clark 78], A is the
head (or conclusion), the right hand side of the rule is the body (or premise). In the
special case of body being empty, the head is also called afact.

Rules or literals that do not contain any variables are called ground. The set of all
ground literas in the language of a logic program is called its Herbrand base. The set of
al possible terms that the theory can make assertions about are called its Herbrand
universe. An interpretation is an assignment of literals to truth values. A model of alogic
program is an interpretation, which satisfies all of its rules.

General logic programs that do not have negative literals are called definite programs,
aso known as, Datalog. Database relations can be defined in two ways in Datalog:
extensional database (EDB) relation is the set of ground facts often stored in a database,
whereas intensional database (IDB) relations are defined by logical rules. In the
relational model all relations are EDBs and view definitions are analogous to IDBs.

The semantics of alogic program depends on how they define the satisfiability of the
rules. The meaning of a Datalog program is defined in three ways in [Uliman 91]. Proof
theoretic interpretation is the set of facts that can be derived from the rules in a logic
program (i.e. forward chaining). The model theoretic interpretation corresponds to
finding an assignment of truth values to al variables that makes al rules true. The
computational interpretation is about designing an agorithm for executing rules to
determine whether a predicate is true or false. For definite logic programs al of these
interpretations coincide with one another.

The semantics of a general logic program, however, is complicated by the
interpretation of negation [Apt and Bol 94]. Namely, how does one evaluate “not Q"?
One of the first attempts for the interpretation of negation is Clark's Completion
Semantics, which, informally stating, replaces the implications by equivalences [Clark
78, Lloyd 84]. In negation as finite failure, not Q is a consequence of a program if Q
finitely falls [Clark 78]. Finally, using the closed world assumption, not Q is a
consequence of a program if Q cannot be proven. The relationships between these
interpretations are examined in detail in [Apt 90].

Due to some inadequacies of the above stated approaches to negation, other
approaches have been suggested. Perfect model semantics, for example, is defined for
stratified programs (i.e. programs which can be decomposed into different layers), where
predicates defined in a given layer cannot depend negatively on predicates defined in
lower layers [Castro and Warren 00]. Stable model semantics and well founded semantics
try to extend the perfect model semantics to general logic programs, the first one taking a
possible worlds approach by assigning a set of models to a program, the latter by
assigning a unique three-valued interpretation to each program.

67



In logic programming languages such as Prolog, definite logic programs extended
with negation, built-in predicates (i.e. =, <, and so on), and function symbols are allowed.
Inclusion of built-in predicates and functions require that a logic program is safe (i.e.
derives afinite set of answers), which is easily verified using a safety criteria discussed in
[Ullman 91]. Queries can be evaluated bottom up or top-down, by inferring new facts
from the existing facts or recursively transforming a goal into a series of subgoals thet
terminate in a fact. Detailed analysis of query evaluation techniques can be found in
[Dantsin et. a. 01].

ECOIN data model is based on Datalog with negation extended with built-in
predicates and function symbols. We explain the details of ECOIN next.

5.4 ECOIN Knowledge Representation

In this section we formally introduce knowledge representation in ECOIN, which is
built on top of COIN. For completeness, definitions which are inherited unchanged from
COIN will be stated here as well.

ECOIN usesfirst order logic (FOL) as the language of representation, departing from
COIN’suse of F-Logic and Gulog inspired language (COINL) [Goh 97]. We choose FOL
for a number of reasons. First, (FOL) has been around longer than both FLogic and
Gulog, and is better understood theoretically. Second, FOL can be used both for
knowledge representation and programming, alowing us to easily make the transition
from theory to implementation. Furthermore, this choice was influenced by the
experience and familiarity of our research group members with FOL compared to the
COINL.

As mentioned in the previous section, it is difficult to come up with an all-
encompassing definition for context and ontology, for they may have different definitions
depending on the purpose. The definitions in this section are given for the purpose of
formalizing ECOIN, and do not intend to provide generalized definitions.

Our dtructure of introducing knowledge representation in ECOIN will be by
providing the syntax and semantics of its language, which will culminate in the
construction of an ECOIN framework. Definitions will be followed by informal
restatements when need be, and also by examples to clarify the meaning. This framework
introduced in this chapter is further extended in the Chapter 7, with nerging related
constructs.

5.4.1 Basic Concepts

In this section we provide the definitions of basic constructs used in ECOIN.
Definition (Constructs)
- A sourceisaset of predicates intensionally describing database relations.

A context identifier is a unique constant.
A primitive type is a data type with a materialized domain in native sources.
Instances of primitive types are called primitive objects. The value of a primitive
object is equivalent to itself (i.e. object identifier and value are the same).
A semantic type is a conceptual data type without a materialized domain. A
semantic object is an instance of a semantic type. The value of a semantic object

is obtained by a function | :.C" So® Po, where So is the domain of semantic

68



objects (identifiers), C isaset of context identifiers and Po is a set of primitive
objects.

An attribute specifies a property of a semantic type, and can be viewed as a
function | : S® S, where Sisthe set of semantic types.

A modifier m is a designated attribute. The decision to designate a certain
attribute as a modifier depends on whether that attribute is implicitly specified in
some sources as contextual knowledge and if the value of that attribute
functionally determines the value of a

Examples:
- An example source would be the yahoo database shown in the airfare example,

with yahoo, cityAirport, crcyconvert relations.
An example context identifier would be ¢_yahoo asin the airfare example.
An example of a primitive type in SQL would be varchar, real, and integer. Their
values such as “ Smith”, 2.1, 1 would be examples of primitive objects.
An example of a semantic type would be the concept of number independent of
its representation. Similarly, number two without any specific representation
would be an example of a semantic object. The object identifier of a semantic
object will be described later. The value of the semantic object “number two” in
context ¢_yahoo would be 2.
Example attributes would be the price property of semantic type product, and
currency attribute of semantic type price. (Note that price is used both as a
property and semantic type identifier in this example, which is legitimate in
ECOIN)
An example modifier would be the currency attribute of price semantic type. The
currency modifier of price could take different values (e.g. USD, EUR) in
different contexts, which would affect the value of semantic price objects.

5.4.2 Declar ations

This section contains basic declaration syntax used in the ECOIN framework. In
definitions below t,t' are semantic types; t, i€ are semantic objects, a is an attribute
symbol; m is a modifier name; c is a context identifier; t,, t¢, mvs mv are primitive
objects; Ly, ..., Lpare atoms or user defined literals.

Definition (Declarations) A declaration is defined as follows
A sub-type relationship (t isasub-typeof t'):
is at,t")

In this case, t,t' can also be context identifiers.
Attributes of a semantic typet :

attributes(t ,[aq,...an)])
Modifiers of a semantic typet :

modifiers(t,[m,...,m]):
A source relation:

relation(D,R,A,S)

69



where D is the database identifier, R is the relation name, A specifies if the
relation is abducible, Sisthe schemaof R asa set of pairsin the form of
[primitive object, primitive type].
An attribute atom:
atribute(t,atd - L, ..., Ln.

A modifier atom:

modifier(t,t,m,c,td - Ly, ..., Ln.
A value function | :So” C® Po where Sp is a set of semantic objects, Po is aset of
primitive objects and C is a set of context identifiers:

value(t, c, tp)
Examples:
- is_a(product, basic): basic is a supertype of product (or product is a subtype of
basic).

is a(price, monetary value): monetary value is a supertype of price.
is_a(c_yahoo, c_usa): ¢c_yahoo context is a subtype of ¢_usa context
attributes(product, [country, price]): semantic type product has the attributes
country and price.
modifiers(price, [currency, type]): semantic type price has the modifiers currency
and type(specifies whether the price is nominal or includes tax etc.).
Relation: relation(yahooDB, cityAirport, i, [[city,string],[airport, string]]).
where yahooDB is the database name, cityAirport is arelation in this database, i
denotes that the relation is abducible, (e would denote that the relation is not
abducible -- eg. aview--), city and airport of type string are the column names of
the cityAirport relation.
Simple attribute declaration:

attribute(Product, price, Price) = r¢(Product, Price).
where r¢ isa semantic relation, price is the attribute name, Product and Price are
semantic objects
This declaration defines how the price attribute of semantic object Product can be
obtained from the semantic relation rG. We cal it smple since it involves only
one semantic relation.
Complex attribute declarations with semantic joins:

attribute(Product, country, Country) = r¢(Producty, Price),

ré(Product,, Country), value(Product, ¢, Product),
value(Producty, ¢, Product,), value(Product,, ¢, Product).

whererg, r¢ aresemantic relations, Product;, Product, Country are semantic
objects, Product, is a primitive object, ¢ is a context identifier.
This declaration means that the country attribute of a product can be obtained by
joining two semantic relations r¢ and ré on the Product; and Product, semantic
objects. Vaue functions are used to enforce that the join objects (i.e. Product; and
Producty) and the object under consideration (i.e. Product) have the same
primitive values in the same context.

Static Modifier:
modifier(price, Price, currency, c_usa, M) =

70



cste(currency Type, M, ¢_usa “USD”).
where cste is a utility function that builds a semantic object from static values. The
required inputs for this function are the type of the modifier object (currencyType),
the modifier identifier (M), context in which the modifier value is being declared
(c_usa), and the static value of the modifier in that context (“*USD”).

Dynamic Modifier:
modifier(price, Price, currency, c_world, M) -

attribute(Price, product, Product),

attribute(Product, country, Country),

attribute(Country, official Currency, M).
In this example, the modifier represerted by the semantic object M, is being assigned
a semantic object directly (as opposed to building one through the use of cste
function) by using the attribute functions. Given the semantic object Price, first its
product® attribute is obtained

5.4.3 Context

This section contains context related definitions. Most of these definitions
computationally specify how to construct the definitional elements from the declarations
in the previous section.

Definition (Context Frame of a Semantic Type)

Lett be asemantic type, the context frame of t, M(t), is defined as a set as follows:
M(basic) = A

i=1.n, m T M(t) - modifiers(t,[my,...,m]).

mi M(t) - is at,t) mi M(ts).

Informally, the context frame of a semantic type is recursively defined as the union of its
modifier set and its parent context frame. The context frame of semantic type basic
congtitutes the base case, and has empty context frame.

Intuitively, the context frame of a semantic type corresponds to its logical®® modifier set.

Example:
The context frame of semantic type price is{type, coverage, currency} (see
Figure 5.5)

Definition (Extensional Context of a Semantic Object)

Let t be a semantic object of typet, the extensional context c of object t, Cg(t, ©), is
defined as a set as follows:

Ce(t,basic) = A

{mt} T Ce(t,c)= mi M(t), modifier(t, t, m, ¢, t'),valuet,cty).

{mi} 1 Ce(to) -~ is alce) {mt} I Ce(te), {mt} T Ce(to).

32 While this may seem like a counter intuitive attribute function, each data cell is uniquely represented in .
With that in mind, it becomes reasonable to see a price data cell referring to its product.
33 Referring not only to physical, but also to inferable items.

71



Informally, given a context c the extensional context of a semantic object is the set of
modifier, value tyoles in that context. Modifiers are obtained from the context frame of
its semantic type. Modifier values are derived from modifier declarations for the semantic
object in context ¢, or any of its supertypes, the sub context values overriding the parent
Ones.

Intuitively, the extensional context of a semantic type is its context frame appended
with modifier values.

Example:
Extensional context for the objects of semantic type Price in yahoo context is as follows:
{<type, “nomina” >, <coverage, “one-way” >, <currency, “USD” >}

Definition (Intensional Context of a Semantic Object)
Let t be a semantic object of typet, t¢be a semantic object, the intensional context c of
object t, Ci(t, ), isdefined as a set as follows:
Ci(t,basic) = £
(modifier( **,t,m,c,t) = Ly, ...,Ln)T Ci(t,c)~ mi M(t).
(modifier(,t, m, s t') = Ly, ...,Lo) T Ci(t,0) = is a(c,cy)
(modifier(,t, m, s t) = Ly, ...,Lo) T Ci(t,c),
(modifier( ,t,m,c, t) = Ly, ...,Ln) T Ci(t,0).

Informally, intensional context ¢ of a semantic object t is recursively defined as the
union of its modifier atoms corresponding to the context frame of its semantic type, and
the intensional context csof t, where cs is a supert-type of context c. Sub context modifier
atoms override super type modifier atoms.

Intuitively, the intensional context of a semantic object is the logical set of modifier
atom declarations.

Definition (Semantic Object Set of a Primitive Relation)
Let r be arelation in source s, let tj¢be the elevation® of t;, the semantic object set of this
relation So(r) is defined as follows:

t¢l So(r) - reation(s,r, ,S), [t,ti]T S

Informally, semantic object set of a relation are those obtained during elevation. See
mapping definitions for more detail.

Intuitively, the semantic doject set of a primitive relation is the set of semantic objects
corresponding to columnsin arelation.

Example: The semantic object set of the cityairport relation from the airfare exampleis
{ CityGAirport¢ as shown in Figure 5.5.

Definition (Context Identifier Set of a Primitive Relation)
The context identifier set of a primitive relation r, CI(r), is the set of context identifiers
used in elevating r to semantic relation r¢

Example: The context identifiers of the cityairport relation from the airfare example is
{c_us} asshown in Figure 5.5.

34 means“any” in logic programming.

35 Refer to mapping definitions.

72



Definition (Context of a Relation)

Extensional and intensional contexts of arelation r, denoted by Cg(r), C(r) are defined as
follows:

{temMv T Ce(n)= tT So(r),cT CI(r), {m} T Ce(t, ©).

Ci() EC(t,o)= tT So(r),cT CI(r), Cit, ©).

where So(r) is the semantic object set of primitive relationr.

Informally, the extensional/intensional context of a relation r is the union of its
extensional/intensional contexts defined for the semantic objects and context identifiers
of that relation.

Intuitively, extensional/intensional context of a relation is the union of the
extensional/intensional contexts of its semantic types.

Example: The extensional context of cityAirport relationis

{< Airport¢ c_us, format, “arportname”>}

The intensional context of cityAirport relation is

{modifier(airport, Object, format, c_ us, Modifier) =
cste(airportName, Modifier, c_ us, “airportname”).}

Definition (Context of a Source)

Extensional and intensional context ¢ of a source s, denoted by Cg(s), Ci(s) is defined as
follows:

Ce(s) E Ce(r) - reation(s, r, ).

Ci(s) E C/(r) ~ relation(s, 1, ).

Thisis smply the union of contexts of relations that are included in a source.

Definition (Context Referred by Identifier)

Extensiona and intensional context referred by an identifier ¢, Cg(c), Ci(c) is defined as
follows:

{t.mwv 1 Ce(c)~ {mV} T Ce(t, ).

Ci(o) E Ci(t,o) = Ci(t, 0.

where t is of semantic typet.

Informally, the extensional context referred by acontext identifier c is the set of
semantic type, modifier, and modifier value triples where the modifier and its value are
obtained from the extensional context definitions referring to context identifier c.
Similarly, intensional context referred by a context identifier ¢ subsumes all the
intensional context elements referring to context identifier c.

Intuitively, context referred by identifiers is the set of al context definitions with the
same (logical) identifier.

Example: Extensional context of c_usis as follows:
{< airport, format, “airportname’>, < moneyAmount, currency, “USD”>, <
currency, format, “ 3char” >}

Intensional contexts from the airfare example are shown in Figure 5.4.

Definition (Context Frame of an Ontology)
Context frame of an ontology O, is a set defined over the semantic types S of an ontology
as follows:

73



{t, C(t)}1 C(O)-~ C(t),C(t)* A& tT S.

Intuitively, context frame of an ontology is a collection of all of non-empty context
frames of its semantic types.

Example: Context frame of the airfare ontology is as follows:

{

{moneyAmount, { currency}},

{currency, {format}},

{airport, {format} },

{price, { currency, coverage, type}},

{date, {format}}

}

Definition (Extensional Context of an Ontology)

Let S be the set of sources that subscribe® to an ontology O, the extensional context of
an ontology is defined as follows:

Ce(0) E Ce(s) - Ce(9),s1 S.

Informally, this is equivalent to the union of extensional source contexts that
subscribe to the ontology.

5.4.4 Sour ces and Constraints

This section contains definitions relevant to sources and their constraints.

Definition (Relations of a source)
Relation set of asource s, R(S) is defined as
relation(s, R,_,S) 1 R(s) - relation(s, R, _, S).

Example

R(yahooDB) = { relation(yahooDB, yahoo, I, [[...,...]....]) , relation(yahooDB,
cityAirport, i, [[city,string],[airport, string]])}

Definition (Integrity Constraints of a relation)

Integrity constraints of arelation r, SC(r), is a collection of
key constraints that express the keys of a primitive relation
foreign key constraints constraining the links between relations

36 Refer to mapping definitions.

74



C_uscontext
modifier(moneyAmount, Object, currency, c_us, Modifier) -

Modifier = skolem(currency, “USD” , c_us, 1, congtant("USD")).
modifier(currency, Object, format, c_us, Modifier) -

Modifier = skolem(currencySymboal, “3char” , c_us, 1, constant("3char")).
modifier(airport, Object, format, c_ us, Modifier) -

Modifier = skolem(airportName, “airportname” , ¢ _ us, 1, constant("airportname")).
C_uk context
modifier(moneyAmount, Object, currency, c¢_us, Modifier) =

Modifier = skolem(currency, “£” , ¢_us, 1, constant("£")).
modifier(currency, Object, format, c_uk, Modifier) =

Modifier = skolem(currencySymbol, “I1char” , c_uk, 1, constant("1char")).
c_yahoo context
modifier(price, Object, type, ¢_yahoo, Modifier) -

Modifier = skolem(priceType, “nominad” , ¢_yahoo, 1, constant("nomina™)).
modifier(price, Object, coverage, ¢c_yahoo, Modifier) -

Modifier = skolem(priceType, “oneway” , ¢c_yahoo, 1, constant("oneway")).
modifier(airport, Object, format, c_yahoo, Modifier) -

Modifier = skolem(airportName, “3ltrCode” , ¢_yahoo, 1, constant("3ItrCode")).
modifier(date, Object, dateformat, ¢c_yahoo, Modifier) -

Modifier = skolem(dateType, “American” , ¢_yahoo, 1, constant("American")).
C_user context
modifier(price, Object, type, ¢c_user, Modifier) -

Modifier = skolem(priceType, “final’ , ¢_user, 1, congtant("final")).
modifier(price, Object, coverage, ¢c_user, Modifier) -

Modifier = skolem(priceType, “roundtrip” , ¢_user, 1, constant("roundtrip")).
modifier(date, Object, dateformat, c_user, Modifier) -

Modifier = skolem(dateType, “European’ , c_user, 1, constant("European’)).
modifier(airport, Object, format, c_ user, Modifier) -

Modifier = skolem(airportName, “cityname” , ¢_ user, 1, congtant("'cityname™)).

Figure 5.4 Intensional Context Declarations for the Airfare Example

75




genera constraints that may involve semantic conflicts
These constraints are expressed as constraint rules.

Example:

Key constraint for the crcyconvert relation
crcyconvert(FromCur, ToCur, ExchangeRate;, Date), crcyconvert(FromCur, ToCur, ExchangeRate;,
Date) ® ExchangeRate; = ExchangeRate;.
General constraint for the yahoo relation
yahoo(ID,Airline, Price, Tax, DepDate, ArrDate, DepCity, CxnCountry, ArrCity),
DepDate> ArrDate® invalid.

Definition (Integrity Constraints of a source)
Integrity constraints of a source s, SC(9), is defined as
SC(s) E SC(r) - relation(s,r,S) T R(9

Informally, thisis the union of integrity constraints of each relation that belongs to
sourcess.

5.4.5 Mappings (Elevation Axioms)

This section contains definitions related to mappings between the sources and the
shared ontology.

Definition (Mappings or Elevations)
Given that t; is of primitive type t; in rdation r(ts,..., t,), which isin context c, is
elevated to a semantic object t'; of typet’; with the following skolem function:
ti = skolem(t', ti, C i, r(ta,..., tn))

Given that t,...,t, are of primitivetypests,...,tn, andt'y, ...,t'y are of semantic
typest'y, ...,t'n fromontology O, then the sourceri(ty, ..., ty) in context c is said to
elevate to the semantic relation ri'(t'y, ...,t'n), if " j =1..n, tj elevatesto t'j.

Elevation of i, E(r;), isequal to { r'(t's, ...,th) = ri(ty,..., tn), t1=...,t'j = skolem(t ',
tj, Cj, ri(ts,..., tn)),...}

ri is said to subscribe to ontology O.

Informally, each semantic object corresponds to a cell in primitive relations. Because
the cell is being disintegrated from its tuple, skolem®’ function is used to uniquely
identify cells with the addition of context and semantic type mapping. Skolem function
can also be thought of as an oid.

Intuitively, mappings specify how primitive relations are elevated to semantic
relations.

Example:
Elevation of a primitive relation to a semantic relation:
rG(te,t¢) - rl(ty, t), t¢ = skolem(product, t1, ¢ 1 1, r(ts, t2)),
t¢ = skolem(price, to, € 11, 2, r(ty, 12)).

37 Skolem functions are used to convert existentially qualified variables into auniversal qualified state.

76



Elevation rules between sources and the ontology for the airfare example are
shown below in Figure 5.5.

Definition (Elevations of a Source)

Elevation set of a source s, E(s), is defined as follows:

el E@s), = el E®), nl R(S).

yahoo®{IDGAIrlineg Price; Taxt, DepDatet; ArrDatet; DepCity¢; CxnCountry ¢ ArrCity@ —
yahoo(ID,Airline,Price, Tax, DepDate, ArrDate,DepCity,CxnCountry, ArrCity),
ID¢= skolem(flightI D, 1D, ¢_yahoo, 1, yahoo(ID,..., ArrCity)),
Airline¢=skolem(airline, Airline, c_yahoo, 2, yahoo(ID,Airline,..., ArrCity)),
Price¢=skolem(price, Price, c_yahoo, 3, yahoo(ID,Airline,Price,..., ArrCity)),
Tax¢=skolem(tax, Tax, c_yahoo, 4, yahoo(ID,...,Price,Tax,..., ArrCity)),
DepDate¢-skolem(date, DepDate, ¢_yahoo, 5, yahoo(ID,...,Tax, DepDate, ..., ArrCity)),
ArrDate¢=skolem(date, ArrDate, c_yahoo, 6, yahoo(ID,... ,DepDate, ArrDate,..., ArrCity)),
DepCity¢=skolem(airport, DepCity, c_yahoo, 7, yahoo(ID,...,ArrDate, DepCity,..., ArrCity)),
CxnCountry ¢=skolem(country, CxnCountry, ¢_yahoo, 8, yahoo(ID,...,CxnCountry, ArrCity)),
ArrCity¢=skolem(airport, ArrCity, ¢c_yahoo, 9, yahoo(ID,...,CxnCountry, ArrCity)).

creyconvert@FromCurg ToCurg; ExchangeRated Dated) -
crcyconvert(FromCur, ToCur, ExchangeRate, Date),
FromCur¢= skolem(currency, FromCur, ¢_yahoo, 1, crcyconvert(FromCur, ..., Date)),
ToCur¢= skolem(currency, ToCur, c_yahoo, 2, crcyconvert(FromCur, ToCur, ..., Date)),
ExchangeRate¢= skolem(basic, ExchangeRate, c_yahoo, 3, crcyconvert(..., ExchangeRate,...)),
Date¢= skolem(date, Date, c_yahoo, 4, crcyconvert(FromCur, ToCur, ..., Date)).

cityAirportCity¢ Airport® -
cityAirport(City, Airport),
City¢= skolem(basic, City, c_us, 1, cityAirport(City, Airport)),
Airport¢= skolem(airport, Airport, c_us, 2, cityAirport(City, Airport)).

visaFeesq(VisaTyped VisaFeed) -
visaFees(VisaType, VisaFee),
VisaTypet¢= skolem(basic, VisaType, c_uk, 1, visaFees(VisaType, VisaFee)),
VisaFeet= skolem(visaFee, VisaFee, c_uk, 2, visaFees(VisaType, VisaFeg)).

Figure 5.5 Elevation Rules for AirFare Example

5.4.6 Ontology

Definition (Attributes of a Type)

Lett be asemantic type, the attributes of t, A(t), is defined as a set as follows:
A(basic) = A&

i=1..m, a1 A(t)- attribute(t, [a, ...,am]).

al A(t)- is at,ty al Afty).

Informally, attributes of a type are the union of its direct attributes, and any of its
supertypes.

77



Definition (Ontology in ECOIN framework)

The ontology O in ECOIN framework isTE CEH E AE M, where
T isaset of semantic types E {basic}
Cisaset of context identifiers E {basic}
H isaset of clauses defining the sub-type relationships
0 between semantic typesin T, and
0 between context identifiersin C
A isthe set of declarationsof al A(t),t 1T T
M isthe set of declarationsof mT M(t), tT T

Example:
The ontology graphically depicted in Figure 5.6 is expressed in Figure 5.7.

destination _ origi departureDate |returnDate stopOver [
= o 2
traveler —[ airport ] —[ date ] price L. fIigD—g
! ﬁpriceType
format : 5coverage :

femm - Pi coverage ID

provider

IsqIn

timeZone

format

L country J v |

dateType [ duration ][ airline ][ onTimeProbability I
sa visaFees ] :

e :
¢ Attribute ____

currency | [ durationType ]

Modifier __
H currency  p--------- >[ currencySymbol ]

Figure 5.6 Airfare Ontology Diagram (Revisited)

78



semantic_types([trip, airport, traveler, airport, date, price, flight, timeZone,
priceType, coverage, flightlD, month, day, year, airportName, provider,
paperFee, serviceFee, country, dateType, duration, airline, onTimeProbability,
visaFees, moneyAmount, currency, durationType, currencySymbol, tax, basic]).

contexts([c_yahoo, c_user, ¢c_uk, c_ug]).

Is_a(price, moneyAmount).
is_a(paperFee, moneyAmount).
is_a(serviceFee, moneyAmount).
Is_a(visaFees, moneyAmount).

is_a(c_yahoo, c_us).
Is a(Cc_user, c_us).

attribute(trip, destination, airport).
attribute(trip, origin, airport).

attribute(trip, traveler, traveler).
attribute(trip, departuredate, date).
attribute(trip, returndate, date).
attribute(trip, price, price).

attribute(trip, flight, flight).

attribute(trip, isin, country).
attribute(flight, stopOver, airport).
attribute(flight, flightID, flightID).
attribute(flight, duration, duration).
attribute(flight, airline, airline).
attribute(flight, onTimeP, onTimeProbability).
attribute(country, official Currency, currency).
attribute(country, visaFees, visaFees).
attribute(traveler, citizenship, country).
attribute(provider, isin, country).
attribute(provider, paperFee, paperFee).
attribute(provider, serviceFee, serviceFee).
attribute(date, day, day).

attribute(date, month, month).
attribute(date, year, year).

attribute(price, tax, tax)

modifier(moneyAmount, currency, currency).
modifier(currency, format, currencySymbol).
modifier(duration, type, durationType).
modifier(date, dateFormat, dateType).
modifier(price, type, priceType).
modifier(price, coverage, coverage).
modifier(airport, format, airportName).

Figure 5.7 ECOIN Airfare Ontology




Conversion Functions

Definition (Conversion function)

A conversion function for an ontology O isamapping | : S P M" C" My(m)" My(m) ® P

where
- Sisadomain of semantic objectsin O

Pisadomain of primitive objects

M is adomain of modifier namesin O

C isadomain of context identifiersin O

My (m) is a domain of modifier values for modifier m defined as follows:

vl My(m)- <t c, m 1 Cg(O)

Example: The conversion function for modifier currency is as follows:
t¢ =, (t, tp, currency, ¢, MVs, MVy) =
t, * value(exchange(vaue (MVs, ©), value ' (MV;,C)),0)
where exchange and value are external functions.
This conversion function converts the value t, of semantic object t to value t¢ given the
source and target modifier values MVsand MV (e.g. USD and EUR).

Definition (Commutative Conversion Function)
A conversion function is called commutative if

v=] (XY,zp0q, N« y= (X,v,z,pr,0Q)

Intuitively, commutative conversion functions are those that are symmetric with
respect to { source value, source modifier value} and {target value, target modifier value}
pairs.

Example: The conversion function for modifier currency is commutative if
exchange(x,y) = 1/ exchange(y,x) --which istrue for currency conversion--, as derived below:
v = y* value(exchange(value™(q,p), value™(r,p)).p)

y = v * value(exchange(vaue™(r,p), value™(a,p)).p)

value(exchange(value™(q,p), value™(r,p)),p) = 1/ valug(exchange(vaue™(r,p), vaue™(a,p)).p)
exchange(value™(q,p), value™(r,p)) = 1/ exchange(value™'(r,p), vaue™(a,p)))

Definition (Representation of a Conversion Function)
A conversion function | (X, Y, z, p, , ) iSsrepresented as
cvt (property, X,¥,z,p, Q. N~ L, ..., Ln.
where Ly, ..., Ly are atoms or user defined literals, property is commutative if | is.

Example: The conversion function for modifier currency is represented as.
cvt (commutetive, t, t,, currency, MV s, MV, t,¢) -
exchangeRated Currencys, Currency,, Rate),
value(Currencyy, ¢, MVy),
value(Currencys, ¢, MV,),
vaue(Rate, ¢, Ratey),

80



multiply(t, ,Ratep, t,9.
In the above example, conversion function is specified using the semantic relation
exchangeRateq value functions, and an arithmetic operator multiply.

Definition (Conversion Functions of an Ontology)
Conversion functions of an ontology, CF, is defined as follows:
L(x,y,mp,qrl CFa <t,C(t)>I C(O),<m,t'>T C(t)

Informally, this corresponds to the set of conversion functions defined for all
modifiersin an ontology.

5.4.7 ECOIN Framework

Definition The ECOIN framework isSE O E EE CE CFE CS where
S, the source set, isR(s1) E R(S) ...E R(s) where s isasource symbol.
Oisan ontology,
E, the elevation set, isE(s)) E E(S) ...E E(s)
C, the context st, is C(c1)E Ci(c2)...E Ci(c,) whereg isacontext symbol.
CS, the conversion functions,
IC, the set of integrity constraints, is IC(s;) E I1C(s) ...E 1C(s)

Definition An ECOIN application is an instance of the ECOIN framework.

This completes the forma specification of knowledge representation in ECOIN.
Applications using the representation framework detailed in this section, can take
advantage of the reasoning facilities we provide to achieve semantic interoperability
among heterogeneous and autonomous sources. In the next section, we will focus on the
reasoning framework by considering query answering in ECOIN, with a particular
emphasis on equational ontology constraints.

81



Chapter 6
Query Answering in ECOIN

We have grouped data heterogeneities into three categories in Chapter 3: contextual,
ontological, and temporal. Query answering techniques in COIN framework, as briefly
explained Chapter 4, successfully handle a subset of contextual heterogeneities using
abductive reasoning. Equational antological heterogeneities (EOC), on the other hand,
even when they are transformed and represented as contextual heterogeneities, require a
reasoning technique that intertwines abductive reasoning with symbolic equation solving.

In this chapter, we describe an extended reasoning approach that encodes symbolic
equation solving through the use of constraint handling rules (CHR) [Frihwirth 98], a
high-level language extension of constraint logic programming (CLP) for writing custom
congtraint solvers. This extension, coupled with abductive reasoning provides an elegant
and powerful solution to the problem of detecting and resolving EOC.

In this section, we, first, describe EOC in more detail by providing examples from
financial information systems. Then, we explain ECOIN approach to resolving EOC,
which is based on abductive constraint logic programming, a combination of abduction
and constraint solving techniques [Kakas 00].

6.1 Equational Ontological Conflicts

In Chapter 3, we referred to a financial case study conducted in Primark and
summarized our findings concerning different types of heterogeneities in financial
information systems. In that study, we found that many data items are derived from other
simpler data items. For example, Price Earnings Ratio is calculated by dividing price per
share by earnings per share.  However, this definition is subject to multiple
interpretations, as it does not specify whether the earnings are “trailing”* or “forward”>°,
or more importantly what is included in the earnings. In fact, when we collected Price
Earnings Ratios for a specific company, Daimler-Benz, from several financial sources on
the same day the numbers differed significantly, because of the differences in the
interpretation of earnings (see Table 6.1.) A closer examination reveas that these

38 Trailing eamings are earnings in the last 12 months.
39 Forward earnings are based on future earning estimates.

82



variations are not caused by erroneous reporting, but attributable to definitional
differences among data sources.

SOURCE P/E RATIO

ABC 116
Bloomberg 557
DBC 19.19

MarketGuide | 7.46

Table 6.1 Key Financials for Daimler-Benz (from [Madnick 01]).

Financial concepts such as “Revenues’, “Expenses’ and “Profits’ are ontologically
distinct but have interdependences that can be expressed as equations, such as “Profit =
Revenues — Expenses” We refer to the heterogeneity in the way data items are
caculated from other data items in terms of definitional equations, as eguational
ontological conflicts Such conflicts in accounting methods are quite widespread not only
between different countries, but also within the same country. For example, The Wall
Sreet Journal and S&P use different methods to calculate the P/E Ratios for the
Sandard & Poor's 500-stock index. The Wall Street Journal divides the combined
market capitalization of the 500 companies currently in the index by their most recently
reported four quarters of earnings, while S& P updates earnings statistics for the index
just once a quarter and doesn't revise earnings from previously reported quarters to
account for additions or deletions to the index*°.

As long as the context used by each source of financial datais known, there is nothing
wrong with a multiplicity of calculation methods — i.e., of equationa ontologies. Y et,
problems occur once companies financial numbers, crunched by analysts, enter a vast
information food chain, where they are repeated, often without explanation, in hundreds
of news sources, and end up being used out of context. This becomes even more
challenging when there is the need to combine or compare data obtained from multiple
sources with differing contexts.

In ECOIN, equational ontological conflicts are not handled by introducing new types
in the ontology and defining equational relationships at the ontological level. Introducing
new types is likely to be a time-consuming and difficult process, and is better avoided.
Furthermore, in many cases, such an approach would result in an explosion of new
ontology types to handle al of the possible variations. We adopt our context-based
solution to this problem by making the context of the data items of each source explicit
(i.e., how they are derived from other data items) and adjusting their values to different
contexts by recalculating them when necessary using the context information — including
the definitional equations associated with each context.

Consider the airfare example we described in Chapter 4. Although the ontology
corresponding to the airfare example has a single concept called price, it assumes
different meanings in different contexts as shown in Figure 6.1. Definitional differences
between different price elements are expressed by using the type modifier. Conversion
functions are then used to define the relationships, or in this specific case equations,

40 Moving Target: What's the P/E Ratio? Well, Depends on What Is Meant by Earnings--- Terms Like
“Operating,' "Core,' "Pro Forma Catch Fire, Leave Investors Muddled --- "Earnings Before Bad Stuff’,
Jonathan Weil, Wall Street Journal, Aug 21, 2001.

83



between different modifier values. In conversion libraries, it is enough for rew additions
simply to establish a connection to the network of conversion functions, and then our
system automatically takes care of combining, inverting and simplifying them through
the use of Dijkstra’ s shortest path algorithm and the use of Constraint Handling Rules.

Conversion Rules

=

-~ Axioms of Mathematical

Operatorsin CHR \
Nominal div(X A'Y), sub(B,Y, X <=>
H ground(A), A~=-1| mul (A B, N1),
Price sum(1, A, N2), div(NL, N2, X).

. Constraint Store /

~_

Figure 6.1. Equational Conflict Handling in ECOIN

Contexts

Below we explain the details of query answering in ECOIN framework by first providing
background on abductive constraint logic programming.

6.2 Abductive L ogic Programming

The notion of abduction was first introduced by philosopher Peirce [Peirce 1903] as
another form of synthetic inference, deriving the facts from rules and results. This is
different both from deduction, which derives the results from rules and facts and
induction, which derives the rules from resultsand facts. Abductive derivations are
possible explanations that are consistent with the observed facts and the rules. In that
sense, abductive explanations are hypothetical, as those explanations may later have to be
retracted when new facts are available.

Abductive logic programming (ALP) is an extension of alogic programming (LP) to
perform abduction. It isincreasingly being used in many complex Al problems such asin
problems of diagnosis, planning and scheduling, natural language understanding,
database updates, and information integration [Goh 97]. In al of these applications the
required goals to be solved are seen as observations to be explained by abduction (e.g. a
mediated query in information integration is viewed as an explanation of the intended

user query).

84



An abductive logic programming framework is defined as a triple (T, A, 1C)
consisting of a logical program T, a set of abducible predicates A, and a set of classical
logic formulas IC, called the integrity constraints [Denecker and Kakas 01]. Given a
guery Q, its abductive explanation is equivalent to finding a set of abducible predicates
AT A such that:

1. TE A entails Q (i.etheory and abducibles entails the query)
2. TE A satisfiesIC
3. TE A isconsistent

In general, the set of abducibles, A, are ground. If non-ground abducibles such as A=
{$X a(X)} are alowed the corresponding framework is known as constructive abduction
[Kakas and Manceralla 93]. The integrity checking of such abducible hypotheses can
naturally be understood in constraint logic programming terms, which we explain next.

6.3 Constraint L ogic Programming

Constraint logic programming (CLP) is an extension of ordinary LP, with constraint
predicates, that are checked for satisfiability and simplified by means of a constraint
solver. Like LP, a CLP program needs to search a database of facts, but it can use
constraints to rule out many possible outcomes and prune away large parts of the search
tree. In CLP the unification agorithm is augmented by a dedicated solver applying
constraint-solving algorithms from other branches of computing such as the simplex
method from Operations Research. As a result CLP programs, in general, are more
concise and efficient than ordinary LP. Compare for example, the CLP and LP versions*!
of the N queens problem® shown in Table 6.2 below:

In CLP, a congtraint is like any other logic predicate and when called is posted to the
constraint store. Several types of constraints can be declared using CLP, including:

- Arithmetic Constraints

€g. X#=Y (Xisnotequalto Y) .

Membership Constraints

€0. Board[1..N :: 1..N (=each elenment of the board array nust be
an element of {1,.,N}) ,

Propositional Constraints

€0.P #/\ Q (= True if the constraints P and Q are both true)
Combinatorial Constraints

€g.all _different(Variables) (= True if the variables do not have
i dentical val ues)

User-Defined Constraints

e.g. prime number constraints using constraint handling rules

primes(l) <=> true.

primes(N) <=> N> 1] Mis N-1, prine(N), prinme(M.

prime(l), prine(Jd) <=>0is Jnod | | prine(l).

“1 Both programs are in Sicstus prolog.
“2 Place N chess queensinaN’ N board such that they do not attack each other

85



CLP Formulation
(from Eclipse Manual)

LP formulation
(from Craft of Prolog)

queens_arrays(N, Board) :-
dim(Board, [N]),
Board[1..N] :: 1..N,

(for(1,1,N), param(Board,N) do
(for(J,1+1,N), param(Board,|) do
Board[I] #\= Board[J],

Board[1] #\= Board[J] +JI,

Board[1] #\= Board[J]+|-J
)
)

Board =.. [_|Varg],
labeling(Vars).

queens(N, Queens) :-
length(Queens, N),
board(Queens, Board, O, N, _, ),
gueens(Board, 0, Queens).
board([1, [1, N, N, _, ).
board([_|Queeng], [Col-Vars|Board], Col0, N,
[LIVR], VC) :-
Col is Col0+1,
functor(Vars, f, N),
constraints(N, Vars, VR, VC),
board(Queens, Board, Cal, N, VR, [_[VC]).
constraints(0, , , ):- L
constraints(N, Row, [R|Rs], [C|Cq]) -
arg(N, Row, R-C),
MisN-1,
constraints(M, Row, Rs, Cs).
queens([], _, [1)-
queens([C|Cs], Row0, [Row-Col|Solution]) :-
Row is Row0+1,
select(Col-Vars, [C|Cs], Board),
arg(Row, Vars, RowRow),
queens(Board, Row, Solution).
select(X, [X|R], R).
select(X, [H[T], [HIR]) -
select(X, T, R).

Table 6.2 N Queens formulation in CLP and LP

Enumeration predicates check satisfiability of the constraints by instantiating

variables through specific algorithms, such as branch and bound in the case of
maxi m ze( Goal , X) (i.e. find the solution of Goal that maximizes X) or the more generd
| abel i ng(Options, Variables) inwhich aset of search options can be specified. In
the N-Queens example shown in Table 6.1, the default labeling is used, which instantiates
variables starting from the smallest element in its feasible set.
A constraint solver supports some of the basic operations such as satisfaction,
simplification, propagation, normalization, entailment, and optimization. While
constraint solvers were in the beginning black box systems, languages such as constraint
handling rules (CHR) now allow users write their own constraint solvers in a high level
language [Fruhwirth 98]. It has been used to construct a wide range of solvers including
terminological and temporal reasoning. Next we provide more details on CHR.

6.3.1 Constraint Handling Rules

The theory of constraint handling rules (CHR), including its implementation, was
proposed by Frihwirth. In this section we provide a summary of the syntax and semantics

86



of CHR and some important theoretica results concerning its soundness and
completeness by referring to [Fruhwirth 98].
Syntax of CHR
Definition: (CHR Program)
A CHR program is afinite set of CHR. There are three kinds of CHR.
A simplification CHR is of the form:
H1,..., H <=>G,..., q | B4, ..., By,
apropagation CHR is of the form
H]_,..., H ==>G,,..., q | B4, ..., By,
asimpagation CHR is of the form
Hly..., H\ H1+1’..., Hi <=> Gy,..., Gj | By, ..., Bk,
withi >0, j® 0; k 3 0,1 > 0 and where the multi-head H; ..., H is anonempty sequence
of CHR congtraints, the guard Gy,..., G is asequence of built-in constraints, and the body
B4, ..., Bk isasegquence of built-in and CHR constraints.
Above, asimpagation rule is an abbreviation for the following simplification rule:
Hi..., H, His1 ..., H <=>Gq,..., Gj | Hi ..., H, By, ..., Bk
therefore will be dealt as simplification from now on.
Below is an example set of CHR for simplification, propagation and the use of guards:
reflexivity @ X =< Y <=> X=Y |true.
antisymmetry @ X=<Y, Y=<X <=> X=Y.
trangitivity @ X=<Y, Y=<Z ==> X=<Z,

Thefirst rule replaces X=<Y with true (an empty sequence) provided that X=Y. Thus
whenever the constraint solver encounters the constraint X=<X it is simplified to true.
The second rule means that whenever we find X=<Y, as well as Y=<X in the current
constraint we can replace it with the logically equivalent X=Y. Finally, the transitivity
adds the new redundant constraint, X=<Z, to the store whenever it encounters both X=<Y
and Y=<Z in the current constraint. This new constraint although redundant may activate
other rules in the constraint store and achieve useful simplifications.

6.3.2 Declar ative Semantics of CHR

One of the distinguishing features of CHR compared to an LP language, such as
Prolog is the allowance of multiple heads in the clauses. While joint reductions of
multiple atoms are analogous to production rules of expert system languages such as
OPS5, the similarity is merely syntactical. Rules in production rules like systems involve
non-monotonicity, e.g. state changes caused by actions or method calls, as opposed to
declarative constraint solving.

Declarative meaning of a CHR program is defined as follows:

Definition (Declarative meaning)

Declaratively, a smplification CHR is alogica equivalence if the guard is satisfied:

"X @Y (GU..UG)® (HLU..UHi« $z(ByU...UBy))

A propagation CHR is an implication if the guard is satisfied:

"X ($y (G;LUU GJ))® (H1 U U Hi ® $Z(B;|_ U U Bk))

where x denote the sequence of global variables occurring in the head atoms Hy, ... , H,
Yy (2) arethe local variables occurring in the guard G, ..., G (body By, ..., Bk) of arule.

For example the reflexivity constraint:

87



reflexivity @ X =<Y <=> X=Y |true.
is equivalent to:
"XY (X=Y)® (X =<Y « true).

6.3.3 Operational Semantics of CHR

Operationally CHR programs can be thought of as a state transition system with the

state defined as:

Definition: (State)

A state is an annotated tuple <F, E, D>,

where F is a conjunction of CHR and built-in constraints (e.g. =, true, false) constituting
the goa store (ak.a the query), E is a conjunction of CHR constraints, and D is a
conjunction of built-in constraints called the constraint stores (both), and v is a sequence
of variables.

Initial state consists of a goal F and empty constraint stores. <F, true, true>,, final
state is ether of the form <F,Efase>, (called failed) or <trueE,D>, (caled successful
answer) with no computation step possible anymore.

In the trangition logic, F are the constraints that remain to be solved, and D and E are
the congtraints that have been accumulated and simplified so far. The am of the
computation is to arrive at a state that contains no more goals. Of the four transition
types, one solves built-in constraints, one introduces CHR constraints into their store, and
the remaining two apply simplification and propagation CHRs. All transitions leave the
annotation v unchanged.

Definition: (Transitions)

Let P be a CHR program for the CHR constraints and CT*® be a buiilt-in constraint theory
which determines the meaning of built-in constraints. The transition relation - for CHR
is as follows. All variables in states stand for conjunctions of constraints. x denotes the
program variables occurring in the multi head H.

Solve: (Updates the constraint store D with a new constraint C from the goal store.)
<CUF, E, D>, ~+ <F, E, D¢,

if Cisabuilt-in constraint and CTE (CU D) « D¢

Introduce: (Transports a CHR constraint H from the goal store into the CHR constraint
store)

<HUF, E, D>, - <F,H UE, D&,

if HisaCHR constraint

Simplify: (A simplification rule (H <=> G | B) applying to a CHR constraint H¢removes
H¢from the CHR congtraints store, adds B to the goal store and adds the equation H=H¢
to the built-in constraint store)

<F, HCU E, D>, ' <B UF, E, H = H¢U D>,

if (H<=>G|B)inPandCTED® $x(H=H¢U G)

Propagate: (A propagation rule (H ==> G | B) applying to a CHR constraint Htadds B to
the goal store and adds the equation H=Hg¢to the built-in constraint store)

<F, H¢U E, D>, +' <B U F, H¢U E, H = H¢U D>,

if (H==>G|B)inPandCTED® $x(H=H¢U G)

3 at least including { =, true, false}

88



An example transition simulation concerning the reflexivity, antisymmetry, and
transitivity CHR rules with the goal A £B U C £A UB £ C is shown below (v=[A,B,C]
will not be shown):

Transition State

Initial <A£BUCEAUB E C, true, true>
Introduce (x3) <true, A £B UC£AUB £ Ctrue>
Propagate (Transitivity) <CEB,A£EBUCE£AUBECtrue>

| ntroduce <true AEBUCEAUBECUCEB true>
Simplify (Antisymmetry) <B=C,A £B U C £ A true>

Solve <trueA£B UCEA, B=C>

Simplify (Antisymmetry) <A=B, true,B=C>

Solve <true,true, A=B U B=C>

Table 6.2 Example transitions in CHR
6.3.4 Soundness and Completeness

The soundness and completeness of CHR programs are established for terminating
programs, which trivialy follow from the following Lemma:
Lemma Let P be a CHR program and G be a goal. If C is the logical reading of a state
appearing in a computation of G, then
P,CTE" (C« G)
where " F denotes the universal closure of a formulaF.
Theorem (Soundness) Let P be a CHR program and G be agoal. If G has a computation
with answer C then P,
PCTE" (C« G)
Theorem (Completeness) Let P be a CHR program and G be a goal with at least one
finite computation and C be a conjunction of constraints. If P, CT " (C « G), then G
has a computation with answer C¢such that
P,CTE" (C« C¢
While the soundness results can be extended to negated goals (failed computations),
the completeness result can only be extended under special conditions. In ECOIN, we are
dealing with CHR rules for solving linear arithmetic equations. In [Frihwirth 99], the
termination of constraints for solving linear polynomia equations is established, which
implies their soundness and compl eteness.

6.4 Abductive Constraint L ogic Programming

The integration of abductive logic programming with constraint logic programming
has been pursued based on the view that they can be both understood within the same
conceptual framework of hypothetical reasoning. In both frameworks, an answer to a
guery is constructed from specia predicates (i.e. abducible predicates in ALP; constraint
predicates in CLP) which are constrained either by integrity constraints in the case of
ALP or by means of a constraint theory in CLP. For example, the reflexivity, transitivity
and antisymmetry constraints shown before can also be seen as integrity constraints for
the abducible inequality predicates. ACLP aims to unify the treatment of abducibles and
constraints.

89



While in [Kowaski 92] integrity constraints are used both for abducible and
constraint predicates, the opposite approach is taken in [Burchert 94] and abduction
without integrity constraints is treated as a special case of constrained resolution. In
[Kakas and Michael 95] the hybrid approach is pursued, in which the central notions of
the two frameworks are combined, so that abduction and constraint handling cooperate to
solve a common goa. Typicaly, the goal is reduced first by abduction to abducible
hypotheses whose integrity checking reduces this further to a set of constraints to be
satisfied in CLP. Findlly, in [Kakas 00] an extension of this framework is given, which
makes it possible to compute abductive solutions by interfacing constraint solving to
abduction. In this case, constraint solver not only solves the final constraint store
generated by the abductive reduction but also dynamically affects this abductive search
for asolution.

From a formal point of view, ACLP can be seen as an extension of the ALP
framework that supports constructive abduction alowing the abducible hypotheses to
take the o non-ground form of $X (A(X), C(X)) where A is a conjunction of abducible
atoms and C is a set of constraints defined over the CLP (arithmetic) domain [Kakas et al.
98]. An ACLP framework can be defined as follows:

Definition (ACLP Framework)
An abductive CLP (or ACLP) theory isatriple (P, A, IC) where
P isaconstraint logic program.
A isaset of abducible predicates different from the constraint predicates.
IC: is a set of closed first order formulae (Integrity Constraints) over the
combined language of CLP and P.
Next we explain how we utilize the ACLP framework in dealing with equational
ontological conflicts

6.5 Query Answering with ACLP

Queries in ECOIN are handled similar to the COIN as shown in Figure 6.3, with the
exception that the ALP framework in COIN is replaced with ACLP framework in
ECOIN. Abduction is now supported by constraint solving capabilities of CLP. In
particular CHR is used to express a set of arithmetic constraints whose computational
meaning is equivalent to a simultaneous symbolic equation solver. The solver can
simplify, invert, and combine equations constructed using arithmetic operators addition,
subtraction, division, and multiplication. Its capabilities may easily be extended to more
complicated operators (such as integral, square root) but we will limit our discussion to
four basic arithmetic operators that may be used to define polynomial equations. We
should note that symbolic equation solving in ECOIN produces intensional answers as
opposed to extensional answers as in systems like MRDSM [Litwin and Vigier 86]. This
difference is crucial in our choice of using CHR instead of a generic symbolic equation
solver such as Maple or Macsyma. We provide a comparison of ECOIN with MRDSM
after explaining the details of our CHR based solver. Before going into the symbolic
capabilities of ECOIN, however, we will explain how a naive user is query is trandated
into a well defined query and how the ECOIN framework can be transformed to an
ACLP framework.

90



6.5.1 Naiveto Well Defined Query Transformation

As shown in Figure 6.2, users formulate their queries in SQL, which is then trivially
converted into its naive Datalog equivaent. This naive query, however, does not
correspond to the intentions of the user; and needs to be converted into a well-formed

guery. Below we show the naive query corresponding to the airfare example:

answer(Airline,Price) -

yahoo(l,Airline, Price, T, “01/06/03", “01/08/03" , “Boston”, C, “Istanbul”).

Context: c_user

The transformation of a naive query into a well defined query is accomplished with the

following definition:

7 Naive SQL—
Mediated —
SQL
Result

[ Query Optimizer J !

Execitioner !
I
System Perspective

Naive Datalog EE—
Mediated Datal og 1

Ontology !
Elevation Set

Context Set

Conversion Functions

i CHR Symbolic i
\ Equation Solving
i Constraints

ECOIN Framework

——  Well Defined Datalog

+F» Integrity Constraints

"~ »Abducibles

Clarks FEQ

Constraints

N7

ACLP Framework

Figure 6.2 ECOIN Query Answering

Definition (Naive to well-defined query transformation)

Let <Q, c> be a naive query in an ECOIN framework F, where ¢ denotes the context
from which the query originates. The well-formed query Q' corresponding to <Q, ¢c> is

obtained by the following transformations:

replace al references to extensional relations with the corresponding semantic

relations with different variables for data elements; and

value atoms that map those variables to data elements in extensional relations,

for example,

yahoo(l,Airline, Price, T, “01/06/03", “01/08/03” , “Boston”, C, “Istanbul”).

isreplaced by

91



yahooG{Xl, X2, X3, X4, Xs, Xg, X7, Xg, Xg).
value(Xy, ¢, 1),

value(X2, c, Airline),

value(X3, ¢, Price),

value(X4,c, T),

value(X5, c, “01/06/03"),

value(X6, ¢, “01/08/03"),

value(X7, ¢, “Boston”),

value(X8, c, C),

valug(X9, ¢, “Istanbul™).

Eliminate unnecessary value atoms (i.e. those ones whose third argument is
non-ground and not referred by any other query element except the originating
relation.

Thisway the original query

answer(Airline,Price) -

yahoo(l,Airline, Price, T, “01/06/03", “01/08/03" , “Boston”, C, “Istanbul”).

Context: c_user

would be transformed into:

answer(Airline,Price) -

yahootl(Xl, X2, X3, X4, Xs, Xg, X7, Xg, Xg).

value(X2, c, Airline),

value(X3, ¢, Price),

value(X5, c, “01/06/03"),

value(X6, c, “01/08/03"),

value(X7, c, “Boston™),

value(X9, ¢, “Istanbul”).

6.5.2 ECOIN to ACLP Transformation

In order to apply ACLP reasoning techniques for mediating a well formed user query,
we need to establish the relationship between an ECOIN framework and ACLP
framework.

Definition (Transformation)
AnECOIN framework Fe={S E O E E E C ECF E CS}canbemappedtoa
correﬁpondlng ACLP framework F A given by <P,I ,A> where

P is the Datalod' trand ation of the set of clausesin F g except CS;

| consists of the integrity constraints defined in CS, augmented with Clark’s
Free Equality Axioms, and symbolic eguation solving constraintsin CHR; and
A consists of non-ground and ground extensional predicates defined in S, the
built-in predicates corresponding to arithmetic and relational (comparison)
operators, and the system predicate which provides the interface for system
cals.

Note that this transformation is very similar to COIN to ALP transformation, with the
exception that | includes symbolic ejuation lving constraints which is explained

92



6.5.3 Symbolic Equation Solving Constraints

Equation solving in ECOIN is necessitated by the existence of conversion functions
that convert values between different contexts. As we explained in Chapter 5, ECOIN
conversion functions form a network among themselves, and functions denoted as
commutative correspond to the bidirectional arrows in Figure 6.3. Before conversion
functions between any two contexts are applied, we find the shortest path in the
conversion function network by using Dijkstra’s shortest path algorithm. Shortest path
between two context nodes is calculated by assigning costs to each arc in the network.
Currently the costs corresponding to each arc is assumed to be equal, thus the shortest
path in the network is the path(s) with the least number of arcs. A random tie bresker is
used when more than one path exists.

In order to use the symbolic equation solving capabilities, arithmetic operations in
conversion functions are built using basic arithmetic constraint predicates. The definition
of abasic arithmetic constraint predicate is as follows:

Figure 6.3 A conversion function network for modifier m

Definition (Basic Arithmetic Constraint Predicate)
A basc arithmetic constraint predicate is a predicate of arity 3 corresponding to
arithmetic operators{ +, -, *, \}. The third variable is called the result variable.
Example:
sum(Xy, X2, X3) isabasic arithmetic constraint predicate corresponding to:
X3 = X1+ Xy. X3 istheresult variable.
Note that by using basic arithmetic predicates, polynomial conversion functions of
arbitrary complexity can be constructed. For example:
L (x,y,2) =Xy +2/2-10
can be constructed by the following combination of basic arithmetic predicates:
mul (X, X,Ry), mul(Ry,Y, Ry), div(Z,2,Rs), sum(R2, R3, Ry), sub(R4,10, F).

93



While applying ACLP n ECOIN, arithmetic predicates along with other predicates is
reduced first by constructive abduction to abducible hypotheses, which are further
reduced by the application of integrity constraints. Final abducible hypotheses of the non
ground form $X (A(X)) are then constrained by the application of integrity and symbolic
equation solving constraints.
Before providing a definition of symbolic eguation solving constraints, we have to
explain the notion of intensional and extensional boundness, which is defined as follows:
Definition (Intensional and extensional boundness)
- A variableis bound if it is intensionally or extensionally bound.
A variable that references a data element in an extensona relation is
intensionally bound.
A variable that references a ground atom is called extensionally bound.
A variable X that is functionally dependent on a set of variables S (shown as
S® X) is intensionally bound if all elements of S are bound.
Examples:
In yahoo(X1, X2, X3, X4, Xs5, X6, X7, Xg, Xo) €ach X; (i=1..9) is intensionally
bound.
In { X3= 500, X4=50} X3, and X, are extensionally bound
In {X3 = 500, X4=50, X109 = X3+ X4} X0 IS intensionally bound for {X3, X4}
® X0 and X3, X4 are bound.
We can now provide a definition of ECOIN symbolic equation solving constraints as
follows:
Definition (Symbolic Equation Solving Constraint Rules for Arithmetic Predicates)
Symbolic equation solving constraint theory for arithmetic predicates, SCT(A), isa CHR
program defined for a set of arithmetic predicates A corresponding to arithmetic
operators {+, -, *, /}. SCT(A) reduces a given goa store G, (pIl G ® pl A), to a
constraint store G¢(pl G¢® pl A) such that
" pi(Viz, Viz, Via) T GG Vi1, Viz, Viz isbound if such areduction exists.
Example:
Suppose { X4,X2} are intensionally bound then SCT ({ sum,mul,div,sub}) would
reduce
G ={sum(X1, Xz, X3), mul(X3, .15, X4) } to G¢={sub(X3, X2, X1), div(Xy, .15, X3) }
where {X4, .15} ® X3 U {Xz, X2} ® X; establishes feasibility.
Note that the main requirement of a symbolic equation solver is to ensure that all
arithmetic predicates are bound. Thisis established by a set of CHR rules as follows:
1. Ifavariableisground it isalso bound
Example:
sum(X,Y,Z) ==> ground(X) | bound(X).
sum(X,Y,Z) ==> ground(Y) | bound(Y).
sum(X,Y,Z) ==> ground(Z) | bound(Z).

2. If avariable is functionally determined by ground values, it is bound and its
value can be calculated

Example:

div(X,Y,Z) <=> ground(X), ground(Y’), nonground(Z), Y ~=0| Z isX / Y, bound(Z).

94



div(X,Y,Z) <=> ground(X), ground(Z), nonground(Y), Z~=0, X ~=0 | Y isZ* X,
bound(Y).

div(X,Y,Z) <=> ground(Y), ground(Z), nonground(X),Y ~=0 | X isZ * Y, bound(X).
div(0,Y,Z) <=> nonground(Z), Y ~=0| Z is 0, bound(2).

div(X,Y,0) <=> nonground(X), Y ~=0| X is 0, bound(X).

div(X,0,2) <=> fdse.

3. Ifaresult variable isfunctionally deter mined by bound values, it is also bound
Example:
sum(X,Y,Z), bound(X), bound(Y) ==> bound(Z).

4. I|dentity element constraints

Example:

mul(1,Y,Z) <=> nonground(Z), nonground(Y) | Z=Y.

mul(X,1,Z) <=> nonground(Z), nonground(X) | Z=X.

Note that the assignment here is by reference not by value as in the case of “is”.

5. Arithmeticintegrity constraints

Example:

sub(A,Y,Z), sub(X,Y,Z) ==> nonground(X), nonground(A) | X = A.
sub(X,Y,Z), sub(X,A,Z) ==> nonground(Y), nonground(A) | Y = A.
sub(X,Y,A), sub(X,Y,Z) ==> nonground(Z), nonground(A) | Z = A.

6. If aresult variablein a predicateis bound ssimplify that predicate with itsinverse
Examples:

sum(X,Y,Z), bound(Z) <=> sub(Z,Y,X), bound(Z).

sub(X,Y,Z), bound(z) <=> sum(Y,Z,X), bound(Z).

mul(X,Y,Z), bound(Z) <=> Y~=0]|div(Z,Y,X), bound(Z).

div(X,Y,2), bound(Z) <=> Y~=0|mul(Y,Z,X), bound(2).

Note that because of the previous set of constraints al ground predicates are eliminated
from the store, while the values of their variables are propagated.

7. If a result variable in a predicate is bound, and there is another bound variable
simplify that predicate with its inverse and dedare the remaining variable
bound

Examples:

sum(X,Y,Z), bound(X), bound(Z) <=> sub(Z,X,Y), bound(X), bound(Y), bound(Z).

sum(X,Y,Z), bound(Y), bound(Z) <=> sub(Z,Y,X), bound(X), bound(Y), bound(2).

8. Interaction constraints

Examples:

mul(X,A,Y), sub(B,Y ,X) <=> A~=-1]div(B,N,X), sum(1,A,N).

mul(X,A,Y), sum(B,Y ,X) <=> A~=-1|div(B,N,X), sub(1,A,N).

div(X,A,Y), sub(B,Y,X) <=>A~=-1| mul(A,B,N1), sum(1,A,N2), div(N1,N2X).

95



div(X,A,Y), sum(B,Y,X) <=> A~=-1|mul(A,B,N1), sub(1,A,N2), div(NL,N2,X).

9. Miscellaneous Simplification Constraints
Example:
mul(X1,C,Z1), mul(X2,C,Z2) <=>sum(X1, Xz, X), sum(Zs, Z», Z), mul(X,C,2).

6.5.4 Implementation | ssues

While the theory of CHR alows more than two head constraints in constraint
declarations, the implementations of CHR limit head constraints to two constraints for
efficiency reasons. This limitation required us to find a way to transform rules that
needed more than two head constraints.

Consider the example constraint given above in the third group of constraints:
sum(X,Y,Z), bound(X), bound(Y) ==> bound(Z).
In our implementation, we transform this constraint into a two headed constraint in two
stages with the introduction of a dummy constraint.
sum(X,Y,Z), bound(X) ==> fdsum(X,Y,Z,X,0,0).
sum(X,Y,Z), bound(Y) ==> fdsum(X,Y,Z,0,Y,0).
fdsum(X,Y,Z,X,0,0), fdsum(X,Y,Z,0,Y,0) ==> bound(2).

In addition, the semantics of CHR implementations b not match the theory exactly,
therefore our implementation uses dummy constraints to avoid looping in some cases.
The complete code of our implementation is provided in Appendix .

6.5.5 A Comparison with MRDSM

In MRDSM [Litwin and Vigier &], the issue of symbolic equation solving arises
when dealing with update mappings. The update mapping problem is defined as follows:
Let d = | (&, ...,an) be the retrieval dynamic value obtained from the actual source
atributes ay, ...,an. Let d¢be the update value for d. Find the values a4, ...,a¢, such that d¢=
(at, ...,a6).

Litwin investigates two particular problems of inversion computing, and the choice of
one inversion among several, (when the mapping is many to one) combining numerical
and %/mbolic methods. MRDSM uses the following set of arithmetic operators {+, -, *, \,
**144 in the computation of its retrieval mappings.

Their solution for inversion computing is based on calling the generic symbolic equation
solver Macsyma with

solve({! (ad, ...,a4) - d¢= 0}, { a®, ...,ah }).

which calculates the values of &, ...,a¢ if | (X1, ...,%,) IS bijective. When Macsyma
cannot solve the equation by itself, Bairstow numerica calculation method is used as a
helper to Macsyma.

As seen from the above discussion, although symbolic equation solving is used in
MRDSM, it is used to caculate ground values of the unknowns. Namely an extensional
solution is sought through the combination of symbolic and numeric methods. In the case
of ECOIN, however, symbolic equation solving is used to find an intensional solution.

44 %% js the exponent

96



This is a crucial difference, which separates the two problems apart. In fact, the ECOIN
symbolic equation solver is a superset of the MRDSM solver, for extensional answersin
ECOIN can be computed after the mediated query is processed by the query executioner.
Finding an intensional solution, however, cannot be accomplished in MRDSM.

In addition, symbolic equation solving in ECOIN is performed for multiple equations.
Thisis aso different fromMRDSM, which handles one equation at atime.

Although generic symbolic equation solvers such as Macsyma, Matlab and Maple can
be used to solve simultaneous equations, as in the following Maple example:
solve({3*x + 4*y = 7, 5*x + 3*y = 11}, {x,y}); theinterface to their solvers
have to be structured: the equations and variables to solve for has to be supplied at once.
This is not easy to accomplishin a query mediation setting, where the variables to solve
the equation for may not be easily identified, given the interaction between different
guery constructs. Furthermore, in ACLP abduction and constraint solving interfaceswith
each other very nicely, which is very difficult to achieve with an external symbolic
solver.

Finally, our approach to the choice of inversion in many-to-one mappings is through
the declaration of two separate functions -- since a many to one mapping cannot be
commutative-- , which clearly identifies which mapping is to be used.

6.6 Illustrative Example

Consider the airfare example we have given in Chapter 4. Suppose the conversion

functions shown in Figure 6.4 are defined for the type modifier of semantic type price .
cvt(comutative, price, O type, Ctxt, "nomnal", Vs, "nom nal +t axes",
attr(Q tax, T),
val ue(T, Ctxt, Tv),
sum( Vs, Tv, Vt).
cvt(comutative, price, O type, Ctxt, "nom nal +t axes", Vs,
"nom nal +t axes+vi saFees", Vt) =
attr (O provider, Pr),
attr(Pr, visaFee, Vf),
val ue(Vf, Ctxt, Vfv),
sum(Vs, Vfv, Vt).
cvt(comutative, price, O type, Ctxt,
"nom nal +t axes+vi saFees+servi ceFees", Vs, "nom nal +t axes+vi saFees", Vt)
attr (O, provider, Pr),
attr(Pr, serviceFee, Sf),
val ue(sf, Cxt, Sfv),
sub(Vs, Sfv, Vt).
cvt(comutative, price, O type, Cxt, "final", Vs,
"nom nal +t axes+vi saFees+servi ceFees", Wt) =
attr (O provider, Pr),
attr(Pr, paperFee, Pf),
val ue(Pf, Ctxt, Pfv),
sub(Vs, Pfv, Vt).
cvt(comutative, price, O coverage, Ctxt, "roundtrip", Vs, "oneway",
Vt) =
context (O, Cs),
nmodi fier(price, O coverage, Cixt, M),
val ue(Ms, Ctxt, “final”),

97



attr (O provider, Pr),

attr(Pr, paperFee, Pf),

attr(Pr, serviceFee, Sf),

val ue(Pf, Ctxt, Pfv),

val ue(sf, Ctxt, Sfv),

sunm( Sfv, Pfv, SPv),

sub(Vs, SPv, Vt1),

div(vtli, 2,Vt2),

sum( Vt 2, SPv, Vt).
cvt(comutative, price, O coverage, Ctxt, "roundtrip", Vs, "oneway",
Vt) -

context (O, Cs),

nodi fier(price, O coverage, Ctxt, M),

val ue(Ms, Ctxt, “nom nal +t axes+vi saFees+servi ceFees”),

attr (O provider, Pr),

attr(Pr, serviceFee, Sf),

val ue(sf, Cxt, Sfv),

sub(Vs, Sfv, Vt1l),

div(vtli, 2,Vt2),

sum( vt 2, Sfv, Vt).
cvt(comutative, price, O coverage, Ctxt, "roundtrip", Vs, "oneway",
Vt) -

div(Vs, 2, Vt).

Figure 6.4 Conversion Functions for Modifier type

These functions correspond a network shown in Figure 6.5. The arcs roughly show
which arithmetic predicates are used to do the conversion from one modifier value to
another. Note that the coverage and type modifiers of price are not completely
orthogonal, and order dependent. Namely, the type modifier has precedence over the
coverage modifier. ECOIN system relies on the order of specification of modifiers to deal
with this case. The other approach would be to combine the type and coverage modifiers
into a single modifier, but this would almost double the number of conversion functions
needed to do conversion.

Consider now the following user query we have introduced in Chapter 4:

Q2: SELECT Airline, Price FROM Y ahoo
WHERE DepDate = “01/06/03” and ArrDate= “01/08/03”
and DepCity= “Boston” and ArrCity=“Istanbul”;

This query is converted to the following well formed query again introduced in Chapter
4:
WFQ2: answer(VAirling,VPrice) =

yahood&_,Airlineg Price¢ _, DDate¢ ADate¢, DCity¢ _, ACityd,

value(Priceg ¢_user, VPrice)®,

value(Airlinegc_user, VAirline),

value(DDate¢c_user, “01/06/03"),

value(ADategc_user, “01/08/03")

value(DCity, ¢ _user, “Boston”)

%5 Read as “the value of semantic object Price¢in context c_user is Price”.

98



value(ACity, c_user, “Istanbul”).

sub(F, VF,

nominal+tax+visaFe
e

nominal+tax+serviceFee

sum(NT, S, NTS) Sum(NT, V, NTV)

roundtrip div(RT, 2, O oneway

Figure 6.5 A conversion function network for modifier type and coverage

After this query goes through the abduction reasoning as n [Goh 97], the following
constraint predicates are posted to the constraint store:
{{ answer(VAirlineVPrice),
yahoo(l,V Airline, Price T, “06/01/03”, “08/01/03", Airports, “ Great Britain”, Airporty),
visafees(“ Transit, UK, Turkey”, VF),
cityAirport(“Boston”, Airporty),
cityAirport(“Istanbul”, Airporty),
currencyconvert(*GBP’,”USD”, ExchangeRate, “05/01/03"),
sum(Price, T, PT),
mul (ExchangeRate,VF,VFA),
sum(PT,VFA,PTV),
sub(PTVS,5,PTV),
sub(Final, 20, PTVS),
sum(20,5,SP),
sub(Final, SP, FSP),
div(RT,2,FSP),
sum(RT,SP,VPrice).
H answer(VAirline,VPrice),
yahoo(l,V Airline, Price T, “06/01/03”, “08/01/03", Airport;, Cxn, Airport,),
Cxn <> “Great Britan”,
cityAirport(“Boston”, Airporty),
cityAirport(“Istanbul”, Airporty),
sum(Price, T, PT),
sum(PT,0,PTV),

99



sub(PTVS,5,PTV),
sub(Final, 20, PTVYS),
sum(20,5,SP),
sub(Final, SP, FWOP),
div(RT,2,FWOP),
sum(RT,SP,VPrice).

}

}

Note that because there are two subsets of abducibles, the mediated query will be a union
of these. Let'sconsider the first set of abducibles and the CHR rules together:

sum(Price, T, PT),

mul (ExchangeRate,VF,VFA),

sum(PT,VFA,PTV),

sub(PTVS,5,PTV),

sub(Final, 20, PTVS),

sum(20,5,SP),

sub(Final, SP, FSP),

div(RT,2,FSP),

sum(RT,SP,VPrice).

In processing the above set of constraints, the following CHR rules are used:
Rule 1: If avariableisground it isalso bound

sub(Final,20,PTVS) ==> ground(20) | bound(20).

sub(PTVS,5,PTV) ==> ground(5) | bound(5).

div(RT,2,FWOP) ==> ground(2) | bound(2).

Rule 2: If avariableisfunctionally determined by ground values, it isbound and its
value can be calculated

sum(20,5,SP), bound(20), bound(5) <=> SP is 25.

Rule 3 : If a result variable is functionally determined by bound values, it is also
bound

sum(Price, T, PT), bound(Price), bound(T) ==> bound(PT).

T and Price are from the yahoo relation; therefore are intensionally bound.

mul (ExchangeRate,VF,VFA), bound(ExchangeRate), bound(VF) ==> bound(VFA).
ExchangeRate and VF are from the currencyconvert, and visaFees relations, therefore
are intensionally bound.

sum(PT,VFA,PTV), bound(PT), bound(VFA) ==> bound(PTV).

Rule 6: If a result variable in a predicate is bound smplify that predicate with its
inverse

sub(PTVS,5,PTV), bound(PTV) <=> sum(PTV,5,PTVS), bound(PTVS).

sub(Final, 20, PTVS), bound(PTVS) <=> sum(PTVS,20,Final), bound(Final).

Rule 3 : If a result variable is functionally determined by bound values, it isalso

bound
sub(Final, 25, FSP), bound(Final), bound(25) ==> bound(FSP).

100



Rule 6: If a result variable in a predicate is bound smplify that predicate with its
inverse
div(RT,2,FSP), bound(FSP) <=> mul (FSP,2,RT), bound(RT).

Rule 3 If a reault variable is functionally determined by bound values, it is also
bound
sum(RT,25,VPrice), bound(RT), bound(25) ==> bound(V Price).

At this stage since al variables are bound we can stop. The following set of arithmetic
predicates
sum(Price, T, PT),
mul (ExchangeRate,VF,VFA),
sum(PT,VFA,PTV),
sum(PTV ,5,PTVYS),
sub(PTVS, 20, Final),
sub(Final, 25, FSP),
mul(FSP,2,RT),
sum(RT,25,VPrice).
can be used to construct:
VPrice = (Price +Tax + ExchangeRate* VisaFee+ 5+ 20-25) * 2+ 25
Further simplifications can be done by using more simplification constraints. For
example we can have the following propagation
sum(PTV,5,PTVS), sum(PTV S, 20, Fina) ==> sum(PTV,25,Final).
by using:
Rule 9. Miscellaneous Simplification Constraints
sum(X,Y,Z), sum(Z,A,B) ==> ground(Y), ground(A), nonground(X), nonground(B) |
CisY + A, sum(X, C, B).
The choice of smplification vs. propagation is important here, because before we can use
a smplification we have to make sure that Z is not referred by any other constraint
predicate. This would require using another constraint such as notreferred(X) to keep
track of variable referrals. In that case the above propagation rule could be written as a
simplification:
sum(X,Y,Z), sum(Z,A,B), notreferred(Z) <=> ground(Y), ground(A), nonground(X),
nonground(B) [CisY + A, sum(X, C, B).
Furthermore we can have the following simplification:
sum(PTV,25,Final), sub(Final, 25, FSP) <=> FSP=PTV, sum(PTV,25,Final).
by usng
Rule 5: Arithmetic integrity constraints
sum(X,A,Y), sub(Y, A, Z) <=> X=Z, sum(X,A,Y) or
sum(X,A,Y), sub(Y, A, Z) <=> X=Z, sub(Y ,A,X)
Finaly we end up with the following set of abducibles:
{
{ answer(VAirline,VPrice),
yahoo(l,VAirline, Price T, “06/01/03”, “08/01/03", Airporty, “ Great Britain”, Airporty),
visafees(“ Transit, UK, Turkey”, VF),

101



cityAirport(“Boston”, Airporty),

cityAirport(“Istanbul”, Airporty),
currencyconvert(*GBP’,”USD”, ExchangeRate, “05/01/03"),
sum(Price, T, PT),

mul (ExchangeRate,VF,VFA),

sum(PT,VFA,PTV),

mul(PTV,2,RT),

sum(RT,25,VPrice).

{ answer(VAirline, VPrice),

yahoo(l,VAirline, Price T, “06/01/03", “08/01/03", Airport;, Cxn, Airporty),

Cxn <> “Great Britain”,
cityAirport(“Boston”, Airporty),
cityAirport(“Istanbul”, Airporty),
sum(Price, T, PT),
mul(PT,2,RT),
sum(RT,25,VPrice).

}

}
which trandates to the mediated query we have shown in Chapter 4:

MQ2: SELECT Airline, 2* (PricetTax+ VisaFee* exchangeRate) + 25
FROM yahoo, visafees, currencyconvert,
(select Airport from cityAirport where city= “Boston”) depCode,
(select Airport from cityAirport where city=“Istanbul™) arrCode,
WHERE DepDate = “06/01/03" and ArrDate= “08/01/03" and
DepCity= depCode.Airport and ArrCity= arrCode.Airport
and CxnCountry= “Great Britain” and fromCur="GBP’
and toCur="USD"” and date= “5/01/03";
UNION
SELECT Airline, 2* (PricetTax) +25
FROM yahoo, visafees,
(select Airport from cityAirport where city= “Boston”) depCode,
(select Airport from cityAirport where city=“Istanbul”) arrCode,
WHERE DepDate = “06/01/03” and ArrDate="08/01/03" and
DepCity= depCode.Airport and ArrCity= arrCode.Airport
and CxnCountry <> “Great Britain”;

102



Chapter 7
Ontology and Context Merging in ECOIN

With the ECOIN framework users can create applications that integrate disparate data
sources. Many of these applications are domain specific and can offer more value if they
can be used together. Consider for example using the ECOIN airfare application we have
presented in Chapter 4, together with a car rental application to plan an integrated travel
schedule. Often times, however, these applications are developed by disparate users with
diverse backgrounds, therefore cannot be immediately integrated.

Integrating disparate ECOIN applications is challenging because it involves
integrating disparate ontologies as well as context frames defined by them. It requires an
understanding of the semantics of application ontologies and their context frames.
Furthermore, extensions to the ontologies and context frames may be necessary to
address the semantic conflicts emerging in the merged applications. For example, while
the currency may not be part of the ontology and/or context frame in two applications
focusing solely on US or European sources, it has to be made explicit when the
applications are merged. Thus the context frame of the new ontology has to have a
currency modifier.

We adopt a two at a time virtual merging approach to integrate disparate ECOIN
applications. The merger application does not physically contain the applications it
merges, but only axioms that are needed to align and extend them. Unlike ontology
merging approaches in the literature, our approach is context driven and primarily
requires context frames of ontologies to be merged.

We start this chapter by providing a brief literature review on integrating ontologies.
Then, we explain the basics of our merging process with the example scenario of creating
a travel application from the airfare application of Chapter 4 and newly introduced car
rental example. Finally, we provide a formal framework for the virtual merging of
ECOIN applications. This framework is used in [Kaleem 03] as the foundation of a
graphical tool that facilitates integrating disparate ECOIN explanations.

7.1 Literature Review on Integrating Ontologies

The origins of ontology integration can be traced back to schema integration, which
has been studied extensively since eighties [Batini and Lenzerini 86]. Schema integration

103



research produced some guidelines to be used in integrating disparate schemas and semi-
automatic tools, but the process could not be fully automated because schema semantics
could not be made explicit without human intervention.

Ontology integration has to deal with both syntactic and semantic heterogeneities.
Syntactically, ontologies may be expressed using different languages (e.g. KL-ONE vs.
KIF) that may have different level of expressiveness (e.g. one supports default values the
other does not). Ontolingua project [Gruber 93] aims to overcome this problem by
providing an ontology language that can be trandated to a variety of other ontology
languages through the use of specia purpose trandlators. It also provides a centralized
repository to encourage reuse of ontologies developed in avariety of languages.

Semantic differences such as the ones shown in Figure 7.1 are more difficult to
reconcile because they require human intervention to understand and reconcile the
meaning of ontological terms and relationships.

Terminological Differences

o Different names for the same concept

o0 Related but different concepts

0 More specialized or general versions of the same concept
0 Attributesvs. functions vs. predicates representation
Simple Structural Differences

o Two ontologies are similar yet digoint

0 Oneontology is asubset of the other

0 One ontology is areorganization of the other
Complex Structural Differences

E.g., having action predicates vs. reified events
Fundamentally different representations

E.g., Bayesian probabilistic vs. truth-logic

Figure 7.1 List of differences between ontologies
(Adopted from Reed and Lenat 02)

Efforts such as the Standard Upper Ontology (SUO) [Niles and Pease 01] and Cyc Upper
Ontology [Reed and Lenat 02] aim to reduce this need and provide genera ontologies
that can be used as the foundation of more specific ontologies. In these efforts, mappings
that trandate concepts of one ontology into the standard upper ontology are defined. The
Carnot project for instance maps domain specific schemas to the Cyc knowledge base
through the use of articulation axioms.

These articulation axioms may relate synonymous concepts with each other as shown
below:
(synonymousExternal Concept Waikohu-CountyNewZealand FIPS10-4l nformation1995
"NZ86")

where Waikohu-CountyNewZealand is the Cyc term synonymous with “NZ86” in source

FIPS10-4lnformation1995.
Or they may specify an overlapping relation as in the following example:

104



(overlappingExternal Concept InferiorMesentericVein MeSH-1nformation1997
"Mesenteric Veins | A7.231.908.670.385")

Approaches that integrate ontologies by defining mappings (e.g. articulation axioms
in Carnot) between them are known as ontology alignment approaches. On the other hand
approaches that aim to produce a new ontology out of a set of ontologies is known as
ontology merging. We consider integrating ontologies in ECOIN as a hybrid of these
approaches: like ontology alignment approaches we use articulation axioms to align
ontologies, and like ontology merging approaches we produce a new (virtual) ontology
out of two ontologies.

The state of the art in ontology merging today is dominated by semi-automatic tools
that can analyze ontologies, and guide the user during merging by making suggestions.
Three well known such tools are Prompt [Noy and Musen 00], Ontomorph [MacGregor
et a. 99] and Chiemera[McGuinness et a. 00].

In all of these approaches, the first step is the syntactic match phase in which
ontological terms referring to similar objects are identified based on a linguistic similarity
measurement. In the simplest case synonyms from a thesaurus can be used. In more
sophisticated approaches, alexical reference system like Wordret [Miller 95] can be used
to identify similar terms through the use of richer semantics that involves relationships
linking different synonyms sets.

In Ontomorph [Chalupsky 00], which is based on the PowerLoom knowledge
representation system, the user is offered a number of transformative operators to apply
to the initia list of matches from the syntactic match phase. A human expert has to do the
rest of merging manualy. Chimaera [McGuinness et a. 2000] is like Ontomorph but
considers subclass-superclass relations when making suggestions. PROMPT, previously
known as SMART, is built on top of an ontology editor tool Protégé 2000. Based on a
linguistic similarity among concept names it suggests actions, which may be applied by
the user. It also alows wsers to define new actions by using the Protégé 2000 tool.

These tools are useful in cutting some amount work during ontology merging, but
because the semantics of different ontologies cannot automatically be made explicit, the
user still has the burden of understanding each ontology before doing the merging.

7.2 Example Merging Scenario

In Chapter 4, we described the airfare application that helps users find the cheapest
airfare across multiple airfare providers such as Orbitz, Expedia, Yahoo, Qixo. In this
section, we introduce a car rental application that is used to find the cheapest car rental
prices across multiple car rental providers. Then we explain the process of merging the
airfare and car rental applications.

7.2.1 Car Rental Scenario

After finding the cheapest airfare, our thrifty friend wants to rent a car from the
airport. Luckily, there is a car rental ECOIN application developed to find the best rental
prices from a number of online providers. The details of this scenario are illustrated in
Figure 7.2. As seen in the figure the context of the user and the car rental data source
conflict in several ways. For example, in the user context the price means the fina price
(including taxes and fees), whereas in the data source price is nominal.

105



Context of Expediacar

Price means nominal price

Rate period is daily, weekend, weekly, or monthly
Several fees are charged

e.g. Vehicle license fee... 2.75/DAY

Airport concession recovery fee ... 10 percent

GARS 5/Day

04/01/03 - 10/18/03 pesk season surcharge... 3.00/DAY

Pickup and Dropoff locations are expressed as
threeletter airport codes

Currency = US Dollars Date= American

ID Class Pickup Pickdate

Dropoff

DropDate Price Company RatePeriod

Context of User

Price meansfinal price
(including taxes, and fees)

Rate period is duration of rental

Pickup and Dropoff locations are expressed
as city names

Currency = US Dollars

Date= American

Query

SELECT Price FROM expediacar

WHERE Class=“Economy” and PickDate = “01/08/03"
and DropDate= “03/08/03" and

Pickup="Boston” and DropOff="Boston”;

B B T e e
@  STIGERTRAIGES
Bl @ e e w
ED " ;e
e .
ECSIIEIN e .:......-.-..
] 1
B M
ID GARS LicenseFee AirportFee PeakSeasonFee
ExtraDayCharge ExtraWeekCharge Surcharge  State Tax VAT
P ]
ﬁ' ; - 9 eI TSt
CRETE - AT ST : taxes fees ! : cityAirport !
e ; ;
L—.ﬁ . Wik "'s _________ - "'s.[ ‘‘‘‘‘‘‘ -
e i
City Airport
gy i Boston BOS
- Istanbul IST

Figure 7.2 Car Rental Example Scenario

106



Rate period in expediacar can be daily, weekend, weekly, or monthly and is revealed with
the results, but the user expects that the returned rate will be the tota rate for the whole
duration.

Our user formulates the following query to find rental prices:

QlL.  SELECT Company, Price FROM expediacar
WHERE Class = “Economy” and PickDate = “06/02/03” and
DropDate= “08/01/03" and Pickup="Istanbul” and DropOff= “Istanbul”;

This query requests from expediacar the price and provider company of economy cars
that can be picked up and dropped off in Istanbul on June 24 2003 and August 1¥ 2003
respectively. This naive query, when submitted to ECOIN, would be rewritten into the
following mediated query:

MQ1: SELECT Company, (Price* 2 + ExtraDayCharge) * (1 + VAT)
FROM expediacar, taxes _fees
(select Airport from cityAirport where city= “Istanbul”) cityCode,
WHERE Class= “Economy” and PickDate = “06/01/03" and
DropDate="08/01/03" and PickUp= cityCode.Airport and
DropOff= cityCode.Airport and expediacar.|D=taxes fees.ID;

and the system would return aresult set like:

Company Price
Hertz 2328
National 2768

As seen in MQ1, the mediation engine calculates the total price by multiplying the
monthly price returned by the source by 2 (covering June and July) and adding an extra
day charge (one day from August). Furthermore, the price is adjusted to include the taxes
by dynamically obtaining the value added tax (VAT) for Istanbul.

While car rental and airfare applications can be queried individualy using ECOIN,
the user cannot issue a query that refers to both applications without merging them. The
following query, for example, cannot be issued unless these applications are merged:

SELECT yahoo.Airline, expediacar.Company, yahoo.Price + expediacar.Price as
total

FROM yahoo, expediacar

WHERE DepDate = “01/06/03” and ArrDate= “01/08/03”

and DepCity= “Boston” and ArrCity= “Istanbul”;

expediacar.Pickup="Istanbul " and expediacar.Dropoff="Istanbul" and

expediacar.PickDate="01/06/03" and expediacar.DropDate="08/01/03";

The query above asks for the airline and rental companies with the total price of
airfare (from Boston to Istanbul between June 1% and August 1% in 2003) and car rental
(pick up and drop off in Istanbul between June  and August T in 2003). Next we
explain the merging process by using the airfare and car rental applications.

107



7.2.2 Merging Airfare and Car Rental

In order to use the airfare and car rental applications together, we need to create a
new application that merges the two. This new application, named the Travel Application
in Figure 7.3, defines mappings between airfare and car rental ontologies, context frames
and conversion functions.

The Travel Application is not only a store for defining mappings between airfare and
car rental applications, but also a normal application that can have its own ontological
extensions, new context frames and conversion functions.

For the user it is just any other application, as the user is not aware of the underlying
applications as shown in Figure 7.4. The mediation engine on the other hand uses
underlying applications when answering a user query since the travel application does not
physicaly contain either application.

As shown in Figure 7.5, merging is done two at a time. This choice enables users to
gradually detect and resolve conflicts as well as ssmplifying the reasoning algorithm used
in merging. Arbitrary number of applications, however, can be merged since merger
applications are no different than other applications and can participate in new mergings.

Merging in ECOIN is driven by the need to merge context frames and the conversion
functions that apply to modifiers. Ontology merging is needed because context frames
and converson functions are defined by ontologies. In the extreme case of two
applications having no contextual conflicts, there is no need to merge ontologies to
answer gueries referring to these applications. This can be understood better, if we note
first that the abductive query answering in ECOIN works (in procedural terms) by

recursively finding the modifiers of a semantic object

applying conversion functions for each modifier when needed;
and second the queries are expressed not using the shared ontology, but by referring to
source schemas similar to those in loosely coupled approaches.

For this reason, in the extreme case of two applications sharing identical contexts,
there is no need to reconcile ontologies even when they exhibit differences stated in
Figure 7.1. In practice, however, two applications are likely to have contextual conflicts,
and affected parts of ontologies have to be aligned. The context oriented merging
provides an important advantage over ontology oriented merging (as in tightly-coupled
systems), for it minimizes the amount of conflict resolution between disparate ontol ogies.

108



Travel Ontology Travel Context Frame
New Definitions

e~
~

New Definitions . ) RN
v Mappings Yy

—_——~

- ~a
7 Mappings Airfare Car Renta
Context Context
Car Rental Frame Frame

Ontology

ravel Conversion Fxns
New Definitions

_e=—~

~

¥ _Mappings ¥y

Travel
Application

Airfare Car Rental
Con. Con. Fxns
Fxns

Car Rental
Ontology

Airfare
Context
Frame

Car Rental
Context
Frame

Airfare
Application

Airfare
Conversion
Fxns

Car Rental
Application

Car Rental
Conversion
Fxns

- Airfare Sources

Figure 7.3 Merging Airfare and Car Rental Applications

Travel Sources

109



‘., Travel \'
Engine Application

Airfare Car Rental
Application Application

Figure 7.4 User and engine visibility in merging

Holiday
Application
Travel Hotel. .
Application Application
Alrfare Car Rental
Applie e Annlication
Figure 7.5 Two at atime merging

7.3 Knowledge Representation for Merging

The ECOIN Merging Framework (ECOINM) extends the ECOIN framework to allow
the merging of multiple ECOIN or ECOINM applications. To the users the resulting
ECOINM application is indistinguishable from any other ECOIN application. From the
system point of view, the resulting application is a virtua one that has links to the
underlying applications, but does not physically contain them. Instead it includes axioms
that relate the context frames of those applications ontologies. Below we provide the
details of knowledge representation for merging.

110



7.3.1 Notation and Assumptions

The application thet merges two other applications is called the merger application of
those applications. Applications that are merged are called the merged applications. A
merger application has physical and logical views Physical view of the merger
application includes declarations that are physically contained in the merger application,
whereas the logical view includes all declarations that can be logically deduced. Notation
for the physical view will be the same notation we used in the ECOIN framework.
Notation for the logical view will assume the form of X@A, where X is a term that
belongs to physical notation and A denotes the application id. For example, while T will
denote the semantic types in the physical view of the subject application, T@A; will
correspond to semantic types in the logical view of application A. Finally, we assume
that all names (semantic type names, attribute names, etc.) used in the applications are
unique or made unique with the use of an appropriate scheme (e.g. URIS).

7.3.2 Declarations

Definition (Merger Declarations)
Let A be the application that merges applications A; to Ap*°.
A merging relationship that specifies the merger and the merged applications
merges(A, [A1,Az])
Thisisread as. Application A is the merger root of applications A; and A,.
An isomodifiertype relationship that specifies the semantic type mappings
between the merger and the merged applications
isomodifiertype(A,A;t,t)
Thisisread as: Semantic type t in application A and semantic type t;; in application
Ai has compatible modifiers.
An isomodifier relationship that specifies the modifier name mappings between
the merger and the merged applications
isomodifier(A, Ai, m, m;)
This is read as. Modifier m (m T M(t) ) in application A and modifier g in
application A; are equivalent modifiers)
An isocontext relationship that specifies the context identifier mappings between
the merger and the merged applications
isocontext(A,A;,C,Cij)
This is read as: Context c in application A and context c; in application A; are
equivalent contexts
An isoattribute relationship that specifies the attribute name mappings between
the merger and the merged applications
isoattribute(A,A;,a, aj)
Thisis read asAttribute a (a1 A(t)) in application A and attribute a; in application
A are equivalent attributes
Note that the above mappings are always specified between the merger and the merged
applications, never between merged applications directly.

%8 For simplicity reasons we are going to take n=2 in the rest of the discussion.

111



Definition (Default Transitions)

isomodifiertype(A,A, t¢t) ~ t'T T@A;, notisomodifiertype(AA;,t,t"),t 1 t".
isocontext(A,A,cécd) - ¢ T C@A;, not isocontext(A,A, ¢, ¢), ct ct
isomodifier(A, A, m¢ m¢) = m T M(t)@A;,not isomodifier(A, A, m, mh, m? m¢

Informally, this means that any semantic type (or context, modifier) in the merged
applications that is not explicitly mapped to the merger application by default exists in
the merger application with its own name.

Definition (Mappings)
Mappl ngs are polymorphically defined as follows:
Semantic type mapping
map(A A, t, tik) - isomodifiertype(A At tj)
Modifier mappings
map(A,A, m, m;) - isomodifier(A, A, m, my)
Context mappings
map(A,A;, ¢, cik) - isocontext(A,A;,C,Cij)
Attribute mappings
map(A,A, ¢, Ck) —  isoattribute(A,Ai,c,cjj)
Object mappings
map(A A, t, tik) = t=skolem(t, g, c j, r(ty,..., tn)),
tik = skolem(tix, tj, Cir, J, r(ty,..., tn)),
map(A,A, t, tik), map(A,A;, c, Ci).

7.3.3 Context

This section contains context related definitions. These definitions are similar to those
given in Chapter 5, except that these definitions are from the logical view, i.e. considers
both the physical and virtual declarations in computationally describing context related
concepts.

Definition (Logical Context Frame of a Semantic Type)
Lett be asemantic type in application A that merges applications A; and A,. The logical
context frame of t, M(t )@A is defined as a set as follows:
mi M{t)@A -~ mi M(t).
mi M(t) @A~ merges(A, MSet), AT MSet,
map(AA; t, ti), map(A, A, m, mg,
md M(tik) @A:.
Definition (Logical Extensional Context of a Semantic Object)
Let t be a semantic object of typet in application A, the logical extensional context ¢ of
object t, Ce(t,c) @A, is defined as a set as follows:
{m, t}T Ce(t0)@A -~ ml M(t), {m, t} T Cg(t.c).

{mt} 1 Ce(to@A - mi M(t), merges(A, MSet), AT MSet,

map(A, A, t, t), map(A, Aj, ¢, ¢), map(A, A, m, my),
{m;, t}1 Ce (t,c)@A;, {m,t,} | Ceg(tc).

112



Definition (Logical Intensional Context of a Semantic Object)
Let t be a semantic object of typet in application A, t¢he a semantic object, the logical
intensional context c of object t, C,(t, C)@A, is defined as a set as follows:
x1 C (to)@A - x1 C (t,0).
xT C (t,oO)@A - merges(A, MSet), AT MSet,
x = (modifier(t,t, m,c, t§ - Ly, ..., Ln),
X = (modifier(t ¢t, m, ¢, t¢) = LG, ..., L§¢),
map(A, A, t, 1), map(A, A, t¢ t¢), map(A, A, t,t9
map(A, A, ¢, G), map(A,A,m,m),
x| C (t,c)@A, x 1 C(to).

Definition (Logical Context Referred by Identifier)
Logical extensional and intensioral context referred by an identifier ¢, Ce(C)@A,
Ci(c)@A is defined as follows:
{t,mv} T Ce(c)@A - {t,mMv} T Cg(c).
{t.,mv} T CE(c)@A = merges(A, MSet), AT MSet,
map(A, A, t, ti), map(A, A, m, m),
{tim} T Ce(©@A;, {t,m\} T Cg(0).
Ci()@A E C,() )
Ci(c)@A E Ci(c) = merges(A, MSet), Al MSe,
x = (modifier(t,t, m,c, t§ - Ly, ..., Ln),
X = (modifier(t;, t, m, ¢, t¢) - LG, ..., L§),
map(A, A, t, 1), map(A, A, 1§ t6), map(A, A, t, ti),
map(A, A, ¢, G), map(A,A,m,m),
%1 C (cq)@A,xT C(c).

Definition (Logical Context Frame of an Ontology)
Logical context frame of an ontology O, is a set defined as follows:

<t, C(t)@A>] C(O)@A - C(t)@A! A& t] T@A.

7.3.4 Ontology

Definition (Semantic Typesin ECOINM Framework)

Let A be the application that merges applications Ay and A,. Semantic types of A, T@A
is defined as follows:

tT T@A- t1 T.

tT T@A -~ merges(A, MSet), AT MSet, t;jT T@A;, map(AA;,t, tj).

Definition (Attributesin ECOINM Framework)
Lett be a semantic typein T@A, the logical attributes of t, A(t) @A, is defined as
follows:
al AQ)@A - al A(t).
al A(t)@A -~ merges(A, MSet), AT MSet, t;; T T@A,
map(A A, t, tij), map(A A, a a), akl At @A

113



Definition (Is-a relationshipsin ECOINM Framework)

Let t be a semantic type in T@A or a context identifier in C@A, the logical is-a
relationships of application A, H@A, is defined as follows:
xTH@A - x1T H.
xT H@A -~ merges(A, MSet), AT MSet, x=is a(t,t®, x=is a(ti,t &),
map(A, A, t,ti), map(A, Aj, tGte), xT H @A .

Definition (Logical Ontology in ECOINM framework)
The logical ontology O@A in ECOINM framework isT @A E C@A E H@A E A@A
E M@A , where

A isthe set of declarationsof al A(t)@A,t T T@A

M is the set of declarationsof mT M(t)@A, t T T@A

7.3.5 Rest of the Concepts

Conversion Functions

Definition (Logical Conversion Functions of an Ontology)

Logical conversion functions of an ontology O, CF(O)@A, is defined as follows:

| (L, m, ¢, ms my) T CRO)@A- | (t &, m, ¢, ms my) I CF(O) .

I (t,ty, m,c,ms M)l CF(O)@A- merges(A, MSet), Ail MSet,
map(A, A, t, t)), map(A, Ai, m, my), map(A, A, ¢, cG),
' (tj, tv, Mk, Gi, My, M) I CFO)@A .

Sour ces

Definition (Logical Source Set of an Ontol ogy)

Logica sour ce set of an ontology O, S(O)@A, is defined as follows
s S(O)@A - s1 S0).
sl S(O)@A - merges(A, MSet), AT MSet, sT S(O)@A..

Elevations

Definition (Logical Elevation Set of an Ontology)

Logical elevationset of an ontology O, S(O)@A, is defined as follows
el E(O@A -~ el EO).
el E(O)@A - merges(A, MSet), AT MSet, el E(O)@A..

Constraints

Definition (Logical Constraint Set of an Ontology)
Logical source set of an ontology O, S(O)@A, is defined as follows
icT ICO)@A - icl 1C(0).

114



icl IC(O)@A = merges(A, MSet), AT MSet, icT IC(O)@A..

ECOINM Framework

Definition An ECOINM framework is S@A E O@A E E@A E C@A E CF@A E
CS@A .

Definition An ECOINM application is an instance of the ECOINM framework.

7.4 Merging Procedure

The procedure of merging applications in ECOIN, which is explained in more detail in
[Kaleem 03] can be summarized as follows:

Compare the context frames of the two applications
Example: Context frame of air ontology

{{af*":moneyAmount, { af:currency}},
{&f:currency, {af:format}},

{af:airport, { af:format} },

{af:price, {af:currency, af:coverage, af:type}},

{ af:date, { af :format, af :dateType} } }
Example: Context frame of car rental ontology (see Figure 7.6)

{{cr*:price, { cr:type, cr:period} },
{cr:city, {cr:symbol} },
{cr:date, {cr:format} }}

47 af corresponds to the URI (Uniform Resource I dentifier) for the airfare application
“8 cr corresponds to the URI (Uniform Resource I dentifier) for the car rental application

115



rental :

dropOff

dropoffDate rice
; rentalComjpan p
pickup pickupDate] pany

city [ date] [ class ] [ company ] [ price ]----------, —————— .

T : i type 1+ period!

: 1 symbol | format : | :
s h i |
: v' 'v as priceType | |

Tax Rate

i cityOrAirportCode ] [ dateType ]

] Fees i(...

i Taxes

___>%Yd,f_ [ Fixed Fees ][ Dvnamic Fees
odifier arrow g

—— Attribute arrow \ 4

... Inheritance arrow monetaryAmount ]

[:] Semantic type

Figure 7.6 Car Rental Ontology

: “"Start'wirh'the'firsrcontexrTrame'and‘iterare'through“each"element.'“"'"“"""“"“""'"'"'““““‘3
e.g. i) {af:moneyAmount, { af :currency}},

ii) { af:airport, { af:format} }

1. If the semantic type has a corresponding type in the second ontology which
can semantically have the same set of modifiers choose one of them to be
upward inherited, or create a new type that can be related to both types.
eg i) a:moneyAmount corresponds to cr:monetaryAmount, select

“af :moneyAmount”

ii) create atype district that corresponds to both airport and city
Note that
Different names for the same concept
e.g. (moneyAmount vs. monetaryAmount)
Related but different concepts
e.g. (revenues vs. profits)
More specialized or general versions of the same concept
e.g. (financias vs. profits)
can al qualify to have the same set of modifiers.

2. Declare an isomodifiertype(App:, Appz, Termy, Ternmy) relationship between
the upward inherited or newly created semantic type and the related type(s),

116



which denotes that Termy in App; has compatible modifiers with Term in
App2. eg.
i) isomodifiertype(tr, cr, tr:moneyAmount, cr:monetaryAmount)
i) isomodifiertype(tr, cr, tr:district, cr:city)
isomodifiertype(tr, af, tr:district, cr:airport)
Refer to Figure 7.7 for an illustration of the upward inheritance and
isomodifiertype relationship.
3. For each modifier of the semantic type under consideration:
if there is a corresponding modifier defined in the related type, choose
one of them to upward inherit

e.g. considering {cr:city, {cr:symbol}} and {af:airport, {af:-format}}} choose
cr:symbol for upward inheritance.

declare an isomodifier(App:, Appz, Termp, Termp)  relationship

between the upward inherited modifier and the related modifier, which

means that Termy in App; isacompatible modifier with Ternp in Apps.
e.g. isomodifier(tr, af, tr:district:symbol, af :airport:format)

travel application

moneyAmount . _
< -

airfare application car rental application

Figure 7.7 Upward Inheritance and Isomodifiertype Relationship

4. If thereis aneed for new modifiers because of the integration define them
e.g. dateformat modifier (e.g. European vs. American) may need a separator (e.g. “/”
vs. “-” ) modifier. (See Figure 7.8 for an illustration)

Continue with the second context frame and iterate through each element that has not
been considered yet.

Consider other ontology elements, which may need modifiers because of the merging.

If an attribute definition is used in a conversion function in any of the applications to
be merged or the merger application, relate that attribute name to the merger ontology

117



with isoattribute(App1, Appz, Termy, Termy), which neans that Termy in App; isa
compatible attribute with Term, in Apps.

If there are compatible (define compatibility somewhere) contexts between
applications to be merged, relate context identifiers to the merger ontology with
isocontext(App1, Appe, Termy, Termy), which means that Termy in App; is a
compatible context with Termy in Apps.

Define new modifier values, new conversion functions, and new ontology terms in
the new application if needed.

travel application

a rpor\';
dae ,/ Orm al\ ---

, -

format

airfare application car rental application

Figure 7.8 Upward Inheritance and Isomodifier Relationship

118



Chapter 8
The ECOIN Prototype

The ECOIN prototype provides an infrastructure for the redlization of the COIN
strategy through the ECOIN framework. The prototype consists of client, mediation and
server processes as shown in Figure 8.1. Client processes refer to programs that aid the
user in creating ECOIN applications, such as the textual application editor [Lee 03], or
the CLAMP merging tool [Kaleem 03]; and in rerouting user queries to the mediator
processes and answer sets to the users. Mediator processes rewrite user queries by
utilizing application metadata to produce a mediated query and create and execute an
optimized query plan. Server processes are those programs that allow access to traditional
databases, web services and web pages.

In this chapter, we provide a high level description of the client and server processes
and a more detailed description of the mediation processes. Software for the application
metadata module is discussed in detail in [Lee 03] and [Kaleem 03], the latter focusing on
merging ECOIN applications.

8.1 Client Processes

Client processesin ECOIN can be described under two categories. application
creation and query formulation.

8.1.1 Application Creation

In the original COIN prototype, COIN applications were created using the COINL
language which was then parsed and stored in an Eclipse prolog-based database. In the
ECOIN prototype, ECOIN applications are stored in flat files as a set of First Order Logic
(FOL) rules. In the most basic representation rule(H, B) is used to express the head H and
the body B of a FOL rule. When the body is empty, B is replaced with true, and when
there are more than one body clauses B takes the form of (Bq, ...,Bp).

119



SERVER PROCESSES

etadata Files

Loca
Registry

Web Web
Services Pages

Cameleon

Web Wrapper
Services Engine
Interface

<

Traditional

<
Databases h-x‘
D

MEDIATOR PROCESSES

Application Creation

TN
Merging Tool

Mediated Datalog

/

CLAMP

Application
Editors

Graphical

Context
Mediator

Josred

Boerg-a-10s

Textual

Datalog

Caonflict Tahle

Interfaces

Browser SQL

Optimizer
SQL

J10s-01-60ERQ

Executioner

Temporary
Store

Mediated

Query Results

\ j)uery Proc

Figure 8.1 The ECOIN Prototype Architecture

120

http

Web Service

Query Formulation

CLIENT PROCESSES



For example, the dynamic modifier declaration from Chapter 5, shown below:
modifier(price, Price, currency, c_world, M) -
attribute(Price, product, Product),
attribute(Product, country, Country),
attribute(Country, official Currency, M).
would be expressed as arule as follows:
rule(modifier(price, Price, currency, ¢ world, M),
(attribute(Price, product, Product),
attribute(Product, country, Country),
attribute(Country, official Currency, M))).

By using XSLT, ECOIN application files can be converted into equivaent RDF,
RuleML, and RFML representations as described in [Lee 03]. These transformations are
syntactical in nature, and are aimed at making parsing easier for different programs in the
ECOIN prototype as well as increasing the readability of ECOIN metadata by external
users and programs.

ECOIN applications can be created either manually by directly entering ECOIN rules
in aflat file or auto-generated through the use of an application editor tool. The primary
application editor, shown in Figure 8.2., is a textual tool that allows users to generate
ECOIN application rules with a simple point and click interface. Graphical application
editor in its current state allows users to view ECOIN application rules graphically as
shown in Figure 8.3.

‘3 appEditor - Dntology - Microsoft Internat Explarer r;_l =3
Bl Bt He Favoriies  Took Hel

Semantic Types

ipanCods A | P
nasic | Dakte
'5'$|.|'1:'3"'.
date? L

1
Inheritances

] is @ w | Add

AIpoTsode B a8 ez La | Dpleta

Attributes/Modifiers

Amirituie Namne

Dtz Range
w - 15 Moddier [Ad ]

cily has attibuia airpod Cods of bype city L | Dalste
cily has modifier arpenOrlocation of typa arporiCods

Figure 8.2 ECOIN Textua Application Editor

121



2 Graphicalf ditar - Microsolt Internet Exparer

Ei C_uj:.:tu:'\. o DﬂtD|Dgy
= Sanisnvi Tyje
[ B
H arkne
VDR (4L
.'M.I:lr_
ey CIOMeneY e
date
Aste TR ;
; e 1
ay < durEian T
~duration —— G
dusation Tvpe
anchangsfers poirs)
flizhi £ rrm:p
=My Amauns '
ppe TickedF
prics
serriceTes
...... "
- »
I Context:
P 1
[import ] Source
t ]

Figure 8.3 ECOIN Graphical Application Editor

CLAMP is atool that aids users in merging disparate ECOIN applications. It guides the
user by presenting modifiers of the applications to be merged and allows users to link
semantic types, attributes and modifiers with a smple point and click interface.

8.1.2 Query Formulation

Queries to the ECOIN application are handled through the query interfaces that
accept user queries in SQL and return answers in tables. The ECOIN Demo web interface
shown in Figure 8.4, alows users to issue SQL queries with a receiver context and trace
how it is processed by the mediation engine by going through SQL to Datalog trandlation,
conflict detection, mediation, Datalog to SQL tranglation, and execution stages.

As shown in Figure 8.4, the user first inputs an SQL query in the SQL box, then
chooses a receiver context, which specifies how the user expects the result set in terms of
its semantics. The stage may be one of the six stages shown in Figure 8.4. Naive Datalog
and context sensitive stages display the Datalog equivalent of the input SQL query and its
context adjusted form (i.e. well-formed query from Chapter 4) espectively. Conflict
detection displays a matrix of the detected conflicts between the source and receiver
contexts. Mediation stage outputs the mediated query which is a rewriting of the original
query after detecting and reconciling conflicts between sources and the receiver. The
SQL trandation stage shows the SQL equivalent of the mediated query. Finaly, the
execution stage displays the results obtained from the data sources after executing the
mediated query. The outputs are displayed in the Result box.

122



‘2 Demo fior Adrfare Apgregator - Microsoft Internet Explorer

eCOIN Demo for Airfare Aggregator

Matadata: | Text Interface -0 | Graphical Viewar | Internal Represantation |

Querias Dascription Expadia's price includas texas and & sarvice fag of 5 and is n USD. Dorss friand's context raguiras price to ba '
GEP, and to NOT includa sandica faes.
» bastprica
« axpadiadl® SL e =
=i LS — Input Query
= mwyorbitz0l Pat
+ TravalSabectll

+ yahoodl

Receiver Context
/ Euntn:l: Demo Stag&e

Stored Stage 3nea Datalog EsgL Tranm
Queries T Contest Sensithve Datalag  CREXeCution Mediated Query
3 Conflict Detactian |
:'Eahmll | Resat |
Result 5 P - 1
T =vad

Figure 8.4 ECOIN Web Based Query Interface

Other query interfaces are designed for programming purposes and let programs to
call the mediation engine with an input query and context issued against an application
through the HTTP and SOAP protocols. These interfaces are designed to be used in user
application programs.

8.2 M ediator Processes

The mediator processes consist of the context mediation engine, which accepts an
SQL query and produces a mediated Datalog query, and the query processor with
optimization and execution modules. The registry that stores or points to ECOIN
application files and SQL to Datalog, and Datalog to SQL parsers are glue programs
between the mediator and client processes.

The context mediation engine is implemented using Eclipse Prolog distributed by the
ECRC Eclipse Prolog® is distinguished from other prolog implementations such as XSB
Prolog® with its strong support for constraint logic programming.

8.2.1 The Abduction Engine

The abduction engine in ECOIN is an extended version of the COIN abduction
engine. As in COIN, it takes the form of a meta-interpreter [Sterling and Shapiro 94]

49 http://www-icparc.doc.ic.ac.uk/eclipse/
%0 http://www.cs.sunysb.edu/~sbprol og/xsb-page.html

123



extended with rules that incorporate the new features of ECOIN framework. The skeleton
of the recursive abduction algorithm is shown in Figure 8.5.

1. abductively prove(true)-!.

2. abductively prove((H,B)) -!,
abductively prove(H),
abductively_prove(B).

3. abductively prove(Lit) -
builtin(Lit), !,
cal(Lit).

4. abductively prove(Lit) -
builtin_clause(Lit, Body), !,
abductively prove(Body).

5. abductively prove(Lit)-
abducible(Lit), !,
post_constraint(Lit).

6. abductively prove(Lit) -

rule(Lit,Body),
abductively_prove(Body).

Figure 8.5 Skeleton of the meta-interpreter implementing the Abduction Engine

The above skeleton has the following declarative reading:

- Rule 1 corresponds to the base condition and states that the empty goal “true” istrue.
Rule 2 states that conjunctive goals H and B are true if both of them are true.
Rule 3, states that if a god is a built-in, it is true if its execution does not fail. Built-
ins are either Prolog built-ins such as ground/1 or var/1; or user defined built-ins such
as the constant semantic object builder cste(S, skolem(S, V, C, 1, cste(V)), C, V).
Rule 4, states that built-in clauses are true if their body can be abductively proven.
User defined clauses correspond to the basic definitions provided in the ECOIN
framework. For example the context frame definition in Chapter 5:
M(basic) = A
i=1.n, m1 M(t)-~ modifiers(t,[m,...,m]).
mi M(t) - is at,t) mi M(ts).
becomes a user defined set of clauses in the implementation as follows:

contextFrame (basic,[]).

contextFrame (T,M) - modifiers(T,M1), is a(T,ST), contextFrame(ST,M2),
union(M1,M2,M)

124



Rule 5, states that if the goal is abducible then it is posted in to the constraint store. A
goal is abducibleif it is one of the constraintsin [ =,<,>,=<,>=<>,is, +, -, *, /] or one
of the designated external relations such as yahoo relation from the airfare example.
Abducibles limit what statements can be used in expressing the mediated query.

The constraint store is implemented using the Eclipse CHR library and consists of the
basic inequalities for consistency checking of abducibles as well as the symbolic
equation solving rules (See Figure 8.6 for a sample).

Sample Inequalities

built_ in @ X leqY <=> ground(X),ground(Y) | X @=<Y.
reflexivity @ X leg X <=> true.

antisymmetry @ X leqY, Y legX <=>X =Y.
trangtivity @ X leqY, Y leqZ=>X \==Y,Y \==2Z, X \=Z | X leq Z

subsumption @ X legN\ X legM <=>N@<M | true.
subsumption @ M leq X \ N leg X <=> N@<M | true.

Sample Symbolic Equation Solving Rules
sum_ground @ sum(X,Y,Z) <=> ground(X), ground(Y) | Z is X + Y, bound(Z).

sum_ground @ sum(X,Y,Z) <=> ground(X), ground(Z) | Y isZ - X, bound(Y).
sum_ground @ sum(X,Y,Z) <=> ground(Y), ground(Z) | X isZ - Y, bound(X).

Figure 8.6 Sample Inequalities and Symbolic Equation Solving Rules from the
Congtraint Store

Rule 6, states that if the goal is arule in the application declarations then the goal is
true if the body of the rule can be abductively proven. For example given the
following rule in the application file:
rule(modifier(price, Object, type, ¢c_yahoo, Modifier),
(cste(priceType, Modifier, ¢c_yahoo, "nomina™))).
abductive proof of modifier(price, X, type, ¢_yahoo, M) would be reduced to the proof of
abductively prove(cste(priceType, M, ¢_yahoo, "nomina")) .
In Figure 8.7, shown in the following two pages, we provide a trace of the example query
provided in Chapter 4 page ?. Starting with the well formed Datalog query WQ?2:
answer(VAirlineVPrice) -
yahoo® ,Airline¢ Price¢ _, DDate¢ ADate¢, DCity¢ _, ACityd,
value(Priceg c_user, VPrice),
value(AirlineGc_user, VAirline),
value(DDate¢c_user, “01/06/03"),

125



® abductively prove(answer(VAirlineVPrice))
Rule5

abducible(answer(V Airline, VPrice))
post_constraint(answer(VAirline, VPrice))

®  abductively_prove(yahoo¢ ,Airline¢ Price¢ _, DDatef ADae¢ , DCity¢ _, ACityg, value(Price¢ c user,
VPrice),vaue(Airline¢c_user, VAirline), vaue(DDatefc_user, “01/06/03"), value(ADatefc_user, “01/08/03"), value(DCity,
c_user, “Boston”), value(ACity, c_user, “Istanbul™))
Rule2
® abductively_prove(yahoo§ ,Airline¢Price¢_, DDate¢ ADatet, DCity ¢ _, ACity9).

® abductively_prove(value(Price¢ ¢_user, VPrice))

® abductively prove(value(Airline¢c_user, VAirline)).
® abductively_prove(valug(DDatefc_user, “01/06/03")).
® abductively prove(vaue(ADatefc_user, “01/08/03"))
® abductively prove (value(DCity¢c_user, “Boston™)).
® abductively_prove(value(ACity ¢ c_user, “Istanbul”))

® abductively_prove(yahoo¢_,Airline¢ Price¢_, DDate¢ ADatet, DCity¢_, ACityg).
Rule6
rule(yahoo ¢l D¢Airline¢ Price¢ Tax¢ DepDatet ArrDate DepCity¢ CxnCountry ¢ ArrCity§ ,

(yahoo(ID,Airline,Price, Tax, DepDate, ArrDate,DepCity,CxnCountry, ArrCity))).
where

ID¢= skolem(flightI D, ID, c_yahoo, 1, yahoo(ID,..., ArrCity)),

Airline¢=skolem(airline, Airline, ¢c_yahoo, 2, yahoo(ID,Airline,..., ArrCity)),

Price¢-skolem(price, Price, ¢_yahoo, 3, yahoo(ID,Airline,Price,..., ArrCity)),

Tax¢skolem(tax, Tax, c_yahoo, 4, yahoo(ID,...,Price, Tax,..., ArrCity)),

DepDatet-skolem(date, DepDate, ¢ _yahoo, 5, yahoo(ID,...,Tax, DepDate,..., ArrCity)),

ArrDatet=skolem(date, ArrDate, c_yahoo, 6, yahoo(ID,... ,.DepDate, ArrDate, ..., ArrCity)),

DepCity ¢=skolem(airport, DepCity, ¢_yahoo, 7, yahoo(ID,...,ArrDate, DepCity,..., ArrCity)),

CxnCountry¢-skolem(country, CxnCountry, ¢_yahoo, 8, yahoo(ID,...,CxnCountry, ArrCity)),

ArrCity ¢=skolem(airport, ArrCity, ¢_yahoo, 9, yahoo(ID,...,CxnCountry, ArrCity))).

® abductively_prove(yahoo(ID,Airline,Price, Tax, DepDate, ArrDate, DepCity,CxnCountry, ArrCity))
Rule5

abducible(yahoo(ID,Airline,Price, Tax, DepDate, ArrDate,DepCity,CxnCountry, ArrCity))
post_constraint(yahoo(ID,Airline,Price, Tax, DepDate, ArrDate,DepCity,CxnCountry, ArrCity)).

® abductively_prove(value(Price¢ c_user, VPrice))
Rule4
builtin_clause(value(Price¢c_user, VPrice), Body)
abductively _prove(Body).
where Body is
isa(Price¢ S), sourceVaue(Price¢ Vsrc), al_contextFrame(S, L), alevts(S, O, Vsrc, L, ¢_user, VPrice).
Rule4
builtin_clause(isa(Price¢ S), Body) [S resolvesto type price]
builtin_clause(sourceVaue(Price¢ Vsrc), Body) [Vsrc resolvesto Price in yahoo(ID,Airline,Price, Tax, DepDéate,
ArrDate,DepCity,CxnCountry, ArrCity)]
builtin_clause(al_contextFrame(price, L), Body) [ L resolvesto [currency, type, coverage] after abductively proving:
contextFrame (basic,[]).
contextFrame (T,M) - modifiers(T,M1), is a(T,ST), contextFrame(ST,M2), union(M1,M2,M) ]
builtin_clause(alcvtgprice, O, Price, [currency, type, coverage], ¢_user, VPrice))
allcvts applies conversion functions for each modifier
e.g. for currency the following conversion function definition goes through the abductive proof
procedure
cvt (commutative, t, t,, currency, MVs, MV, tp§ =
exchangeRate§Currency:, Currency», Rate),
vaue(Currency, ¢, MVy),
valug(Currencyz, ¢, MV)),
value(Rate, ¢, Ratg,),
multiply(tp,Rate, tp§.

Finally, the following constraints ar e posted to the constraint store.

{ visafees("Transit, UK, Turkey”, VF), currencyconvert(*GBP’,”USD”, ExchangeRate, “05/01/03"), sum(Price, T, PT),
mul (ExchangeRate,VF,VFA), sum(PT,VFA,PTV),sub(PTVS5,PTV), sub(Find, 20, PTVS), sum(20,5,SP), sub(Final, SP,
FSP), div(RT,2,FSP), sum(RT,SP,VPrice)}

and CxnCountry isresolved to “ Great Britain”

...continued in the next page:

126




® abductively_prove(value(Airline,c_user, VAirline))
Rule4
builtin_clause(value(Airlinedc_user, VAirline), Body)
abductively_prove(Body).
where Body is
isa(Airline ¢ S), sourceVaue(Airline ¢ Vsrc), al_contextFrame(S, L), dlevts(S, O, Vsre, L, ¢_user, VAirline).
...In this case no conversion is found to be necessary; therefore nothing is posted to the store. Only variable resolutions
arereflected in the answer.

® abductively_prove(value(DDatefc_user, “01/06/03")).
Rule4

builtin_clause(vaue(DDate ¢c_user, “01/06/03"), Body)

abductively_prove(Body).

where Body is

isa(DDate ¢ S), sourceVaueg(DDate ¢ Vsrc), al_contextFrame(S, L), alevts(S, O, Vsre, L, ¢ _user,“01/06/03”).
...In this case static conver sion takes place and DepDateisresolved to “ 06/01/03"

® abductively_prove(value(ADatelc_user, “01/08/03))
Rule4

builtin_clause(value(ADate ¢c_user, “01/08/03"), Body)

abductively_prove(Body).

whereBody is

isa(ADate ¢ S), sourceVdue(ADate ¢ Vsrc), dl_contextFrame(S, L), dlevts(S, O, Vsrc, L, c_user, “01/08/03").
...In this case gtatic conversion takes place and ArrDateisresolved to “ 08/01/03"

® abductively_prove (valug(DCity¢c_user, “Boston™)).
Rule4

builtin_clause(valug(DCity ¢c_user, “Boston”), Body)

abductively_prove(Body).

where Body is

isa(DCity ¢ S), sourceVaue(DCity ¢ Vsrc), al_contextFrame(S, L), alcvts(S, O, Vsre, L, ¢_user, “Boston”).
...Eventually the following abducible obtained from conver sion functions are posted to the constraint store:
cityAirport(“Boston”, DepCity),

® abductively_prove(value(ACity ¢ c_user, “Istanbul”))
Rule4

builtin_clause(value(ACity ¢c_user, “Istanbul™), Body)

abductively_prove(Body).

where Body is

isa(ACity ¢S), sourceVaue(ACity ¢Vsrc), al_contextFrame(S, L), alevts(S, O, Vsre, L, ¢_user, “Istanbul”).
...Eventually the fallowing abducible obtained from conversion functions are posted to the constraint store:
cityAirport(“Istanbul”, DepCity),

After a second run and constraint processing the following set of abducibles are obtained as the answer:
{{ answer(VAirline,VPrice),
yahoo(l,VAirline, Price, T, “06/01/03", “08/01/03", Airport 1, “ Great Britain”, Airportz),
visafees(“ Transit, UK, Turkey”, VF),
cityAirport(“Boston”, Airporti),
cityAirport(“Istanbul”, Airport 2),
currencyconvert(*GBP’,”USD”, ExchangeRate, “05/01/03"),
sum(Price, T, PT),
mul (ExchangeRate,VF,VFA),
sum(PT,VFA,PTV),
mul(PTV,2,RT),
sum(RT,25,VPrice).}
{ answer(VAirline,VPrice),
yahoo(l,VAirline, Price, T, “06/01/03", “08/01/03", Airport1, Cxn, Airportz),
Cxn <> “Great Britain”,
cityAirport(“Boston”, Airporty),
cityAirport(“Istanbul”, Airport »),
sum(Price, T, PT),
mul(PT,2,RT),
sum(RT,25,VPrice).} }

Figure 8.7 Trace of WQ2 from Chapter 4

127




value(ADategc _user, “01/08/03")

value(DCity, c_user, “Boston”)

value(ACity, c_user, “Istanbul”).
we show each rule that applies during the abduction phase. The final set of abducibles
shown at the end of Figure 8.7 can be written as a Datalog query, which is then trandated
by the Datalog to SQL translator to MQ2 shown in Chapter 4.

8.2.2 Query Processor

The next destination of the mediated query is the query processor which consists of a
query planner, optimizer and executioner as shown in Figure 8.8.

Planner Optimizer

Cost Estimator
Plan Generator
I

mediated
query |

Join
Calculator

SQL  _ |
translation

SQL Translator

= =
k. A

1, —_—1

1 I

query 1 H
execution plan A i i
1 CGI/XML i i

i =

Executioner

Database Engine with Remote Query Non-Relational
Local Data Store Executioner Web Data Source

<+—query answer—|

JDBC CGI/XML

~
Function Container
Servlet

Remote Database

Figure 8.8 Architecture of ECOIN Query Processor (Adopted from Alatovic 02)

The Planner takes a Datalog query as an input and produces a query execution plan
(QEP), which specifies constraints that need to be satisfied in the execution of component
subqgueries (CSQs). Optimizer uses cost estimates (transfer time of tuples across the
network) to improve planner’s QEP by searching for an optimal execution path. The
executioner dispatches the CSQs to the remote sources and combines the returned results.
It also performs joins and condition filtering that could not have been done at the remote
sources. Intermediate results are stored in the local data store, and the locad RDBMS

guery processor is used to execute the final query over these intermediate results. More
details can be found in [Alatovic 02]

128



8.3 Server Processes

Server processes are database gateways, wrappers for web pages and services, the
local RDBMS used by the query processor and the distributed registry that stores pointers
to metadata. Database gateways and wrappers provide a uniform way of accessing data
sources by using a canonical query language such as SQL. Caméléon wrapper engine,
described in Chapter 2, lets us treat web sites like limited traditional databases. Similarly,
our web service wrapper lets us query web services using SQL with some restrictions.

The registry for the ECOIN system stores metadata needed by various applications in
the prototype. The application editors use the registry to store and read ECOIN
application metadata. The mediation engine use it to get the ECOIN application rules
needed for the mediation. The query processor needs to obtain the schema information
and location of data sources.

The registry has a distributed organization as shown in Figure 8.9 below:

Feglstries

4,||I||||||||

/ Feqlstry \
Appllcations Sources I

/7 ecoOlM Extras O\

Schera I 2lerles I

hetadata

HTrAL
tﬁDF EUIEMLIRFMLIPFDIDQIPFD o g

J %_

Nem

129



Chapter 9
ECOIN and the Semantic Web

In the previous chapters we laid out the ECOIN framework for achieving semantic
interoperability among heterogeneous and autonomous data sources. In this chapter, we
discuss the relationship between ECOIN and the Semantic Web (SWeb), the vision of
achieving logical connectivity on the Internet [Berners-Lee 01]. The challenges of the
SWeb will be similar to the challenges of ECOIN; therefore our research may offer many
important lessons and approaches for the SWeb. At the same time, SWeb constitutes an
important test bed for ECOIN, with its many heterogeneous and autonomous data
sources. Our objective in this chapter is to provide some quick background on the SWeb,
and point out some interesting future research directions.

9.1 The Semantic Web

The SWeb is the vision of achieving semantic interoperability on the Internet. The
SWeb differs from older application environments in many ways, but particularly in its
huge number of autonomous sources and the rapid and continuous change these sources
are going through [Manola 02].

The SWeb introduces a set of layered standards to make data on the web well-defined
for machines to reason with. These layered standards are often illustrated with the SWeb
stack diagram shown in Figure 9.1. In the lowest layer, there are Uniform Resource
Identifiers (URI) that identify resources on the web, and Unicode that encodes every
character with a unique number independent of the platform, program, or language. XML
provides a surface syntax for structured documents, but imposes no semantic constraints
on the meaning of these documents. DTD (Document Type Definition)--not shown in the
diagram-- is the grammar of an XML document that provides a list of the elements,
attributes, comments, notes, and entities contained in the document as well as their
relationship to one another within the document. XML Namespaces refer to collections
of names, identified by URI references. XML Query language, based on XML Path
expressions that address parts of XML documents, provides features for retrieving
information from diverse XML sources. XML Schema is a language for restricting the
structure of XML documents. RDF is a datamodel for objects ("resources’) and relations

130



Figure 9.1 Semantic Web Stack

between them, and provides a simple semantics for datamodels that can be represented in
an XML syntax. RDF Schema is a vocabulary for describing properties and classes of
RDF resources, with a semantics for generalization-hierarchies of such properties and
classes. In the Ontology layer, OWL is a proposed ontology language that adds more
vocabulary to RDFS for describing properties and classes. among others, relations
between classes (e.g. digointness), cardinality (e.g. "exactly one"), equality, richer typing
of properties, characteristics of properties (e.g. symmetry), and enumerated classes. So
far main contributions of Semantic Web have been in the offering of standard languages
for data and ontology representation. As shown in Figure 9.2, research at the Rules,
Logic, Proof and Trust layers, is still in early phases and many of the issues surrounding
the upper layers are relatively less understood and currently being investigated by many
researchers. The current status of the SWeb is depicted in Figure 9.2: XML has been a
standard since 1998 and is widely deployed to achieve interoperability within
applications; Rules do not currently have a standard, although RuleML is being
considered by the World Wide Web Consortium (W3C), who develops specifications,
guidelines, software, and tools for the SWeb, etc.

131



<fn 3

Research non-web or Wieb Wide deployment
{etc., etcl} non-standard Stanclarcds
Fgg‘g
CWm
e ; Trusted systems
s pCA logic framework ¥

Inter-enging intero
KIF crypto 2 E

na

Declarative ebusiness

G rules/query

RuleML Rule indexes
OWL Web of meaning
ROF-5
ROF Cross-App interop

Figure 9.2 Semantic Web Status (adopted from [Berners-Lee 03])

9.2 The Semantic Web and Relational Databases

In this section, we aim to establish the relationship between the SWeb and the
relational data model, the canonical representation of data sources in ECOIN. In the
relational model, databases have tables, which are sets of rows. Each row is a collection
of data cells identified with a field (column) name. Relational schemas define the names
and domains of fields, as well as a set of integrity constraints including key constraints,
and referential integrity constraints.

Although XML, and its schema definition languages DTD, and XML Schema can be
used to express relational data models, the Semantic Web data model supports the
relational data model mainly through the use of Resource Description Framework (RDF)
and its corresponding schema language RDFS. RDF is preferred over XML, because it
unifies set of al possible XML representations of a fact into one statement. RDF can be
thought of as the XML encoding of a relational table cell as shown in Figure 9.3 below.
In similar vein, RDF schema corresponds to the schema of arelational table.

132



Relational Table

RDF

Froperty

Subject Value w Prﬂperty

Figure 9.3 RDF vs. Relational Model (adapted from [Tim Berners-Lee 03])

RDF has a simple data model consisting of triples with the following components

(see Figure 9.3)

aproperty that describes some relationship (also called a predicate),

avalue that is the subject of the statement, and

avalue that is the object of the statement.
A property must be a URI reference, whereas the subject and object may be a blank node
(a node without a URI), a constant or a URI reference. Set of RDF triples constitutes an
RDF graph, in which subjects and objects are called the nodes.

A row in the relational model can be expressed as a set of RDF nodes, with the

following mapping:

ablank RDF node corresponding to arow, with its rdf:type property

corresponding to the table name;

a set of RDF properties corresponding to the column names; and,

a set of constant values for each property corresponding to data cells.
A row in yahoo relation from the airfare example for instance could be pictured as a
graph as shown in Figure 9.4. In this figure, the blank node corresponds to a row from the
yahoo relation. The rdf:type property of the blank node is set to the relation name yahoo
in the sense that a row is an instance of the predicate corresponding to the table name.
The column names define the outgoing property arrows from the blank node, which
points to constant values for each property corresponding to data cells in the yahoo
relation.

RDFS is the vocabulary description language for RDF. In terms of its expressive
power it is comparable to Entity Relation models, and can be used to describe database
schemas. The schema for the yahoo relation from the airfare example can be defined as
shown in Figure 9.5. In the Figure, all column names are defined as instances of class

133



rdf:Class, and their domains are restricted by the rdf:datatype property. Unlike, database
schemas, however, RDFS restrictions are not automatically enforced. It is left to the
individual programs to process these constraints. Furthermore, RDFS does not provide
built in support to express most integrity constraints sich as the key and unigueness

http://www.yahoo.com/travel

coin:airfare info

coin:ID coin:ArrCity

LH42260103 Lufthansa Germany I stanbul

Figure 9.4 A row from airfare relation yahoo in RDF data model

congtraints. Expression of these congtraints is left to higher level languages such as OWL,
which builds on RDFS bare minimums.

Figure 9.5 Schema of airfare relation yahoo in RDF Schema

134



9.3 The Semantic Web and Ontologies

Web ontology language (OWL), which is a standard candidate for the Semantic Web,

is an outcome of web ontology work that started in mid-nineties with projects such as
SHOE [Luke et a. 97], Ontobroker [Decker et a. 98], OIL [Horrocks et al. 00], and
DAML+OIL [Connoly et a. 01]. OWL is built on RDF(S), and is encoded and written as
an RDF graph It has three species or versions: OWL Lite, OWL DL (where DL stands
for "Description Logic"), OWL Full. OWL Lite, is the most basic version that allows the
expression of classification hierarchy and simple constraints (e.g. cardinality constraints
of 0 or 1). OWL DL provides maximum expressiveness while being computationally
complete (all conclusions can be computed) and decidable (all computations can be
performed in finite time). OWL Full is the most expressive version of the language
without having any computational guarantees like OWL DL.
OWL, compared to ECOIN ontology language, (with constructs semantic type, attribute,
is-a, and modifier) has aricher set of ortology constructs. Mappings between the ECOIN
and OWL ontologies, with the exception of modifiers, can be ordinarily established as
shown in Table 9.1:

ECOIN OWL
Semantic Type Class
Attribute ObjectProperty
is-a subClassOf

Table 9.1 ECOIN to Semantic Web Mapping

The semantic type concept in ECOIN corresponds to the Class concept as a class
identifier in OWL. Syntactically, the semantic type Trip from the airfare example would

be represented in OWL as follows:
<ow : Class rdf:1D="Trip"/>

The attribute concept in ECOIN corresponds to the concept of Property in OWL. In
ECOIN, domain and range of a property are not enforced, and can be determined at run
time. Similarly, OWL allows domain and range values to be determined before run time,
and it aso provides the flexibility to leave them undefined. The destination attribute

declaration, attribute(trip, destination, airport), would be defined in OWL as follows:
<ow : Obj ect Property rdf: | D="destination">
<rdf s: domai n rdf:resource="#Trip" />
<rdfs:range rdf:resource="#Airport" />
</ ow : Obj ect Property>

The is-a relationship between semantic types in ECOIN are represented by the
subClassOf relationship in OWL. The is_a(price, moneyAmount) from ECOIN would be

represented in OWL as:
<ow : Class rdf: 1 D="price">
<rdf s: subCl assOf rdf: resource="#noneyAmount" />
</ ow : Cl ass>

The concept of a modifier, however, do not have a direct counterpart in OWL. Since a
modifier is a special type of attribute, it can be represented as a an attribute in OWL, and

135



annotated as a modifier with a property. For example, the currency modifier for
moneyAmount semanticType could be represented in OWL as shown in Figure 9.6.

ecoin;currency true
ecoinmodifier

ecoin:Currency Type

[

Figure 9.6 Modifier Representation in OWL

In Figure 9.6, a modifier property is defined from a propery to a constant. The
modifier property acts like a flag that designates whether a given property is a modifier
property.

Perhaps, a better way to incorporate modifiers would be to create a subclass of
owl:ObjectProperty like the way owl:SymmetricProperty is derived and use that property
in modifier declarations. In this case the following declarations can be used, which more

closely corresponds to the ECOIN data model:
<ow : Cl ass rdf: 1 D="ModifierProperty">

<rdf s:subCl assOf rdf:resource="ow : Cbj ect Property" />
</ow : Cl ass>

<ow : Modi fierProperty rdf:ID="currency">
<rdf s: domai n rdf:resource="ecoi n: MoneyAmount" />
<rdfs:range rdf:resource="ecoin: CurrencyType" />
</ ow : Cbj ect Property>

If we were to redraw the airfare ontology we have shown in Chapter 4 using OWL, it
would almost be an identical graph with the exception of exchanging modifier arrows
with ModifierProperty arrows, and is-a arrows with the subClassOf property arrows.

9.4 The Semantic Web and Context

The issue of context has been discussed in the Semantic Web community after
suggestions that the idea of contexts were missing in RDF. The issue has been considered
under the subjects of reification, and Notation 3°? (N3)’simplementation of contexts asa
container set. But a decision to include contexts in RDF standard has not been made yet.

>2Simplified RDF language

136



Reification deals with the situation of making statements about statements.
Reification relates to the idea of contexts because contextual statements can be thought of
as statements about the truth of a statement in a context (i.e. in McCarthy’s notation ist(c,
statement)). For example, the following statement S; about the price of an airfare:

(S1) trip LH425060103 has a price whose value is 550

could be expressed as atriple:

[ecoin:LH425060103 ecoin:price “5507]

and reified as follows:

[[ecoin:LH425060103 ecoin:price “550”] ecoin:ist contexts.c|

In RDF, reification is implemented with the introduction of a new type rdf:Statement
which has the properties of rdf:subject, rdf:predicate, and rdf:object. Subjects that refer to
objects with the rdf:Statement type, different from other types, refer to the whole
statement which is the combination of subject, predicate and property properties.

It has also been proposed in the RDF discussion groups that RDF be turned into a
guadruple to include a context or statement id as a tuple. With this proposition S could
be represented as a quadruple:

[S1 ecoin:LH425060103 ecoin:price “5507]

and S; could either be perceived as a statement or context id.

In yet another proposal to implement the notion of context [Klyne 00] in RDF,
inspired by the N3 language, a new container class called rdfc: St at ement Set IS
introduced to represent a collection of reified RDF statements. Context is then defined as
asub class of this container class and several properties such as asserts, assumes are used
to add statements to the container, and to define relationships between contexts, etc. This
proposdl, like others, also has not found its way into the RDF standard yet.

9.5 The Semantic Web and Rules

The concepts of ontology, context and rules are fundamental in creating a semantic
organization of knowledge. Ontologies are important in specifying the explicit semantics
of data in the form of concepts and their relationships; contexts facilitate meaningful
exchange of data with implicit semantics. Rules, on the other hand, are critical in
expressing generalizable knowledge through the use of ontologies and contexts. In the
ECOIN framework, for example, rules are used to express mappings between sources and
the ontology, intensional expression of modifier values (i.e. context axioms), conversion
functions that map object values between different contexts, and integrity constraints for

137



sources. Rulesin ECOIN are closely tied with ontologies and contexts since they refer to
constructs in the ontology and context identifiers.

Rules on the SWeb has recently gained more recognition and been included in the
SWeb stack diagram on top of the Ontology layer. Currently, the most prominent effort in
representing rules for the Semantic Web is the XML encoded Rule Mark up Language
(RuleML) [Grosof 01]. RuleML ams to define a shared language that permits “both
forward (bottom-up) and backward (top-down) rules in XML for deduction, rewriting,
and further inferential-transformational tasks’ [Boley 01].

ECOIN knowledge, such as elevation axioms, modifier declarations, conversion
functions and integrity functions are rules that can be expressed on the SWeb using a
standard rule language that supports ontologies like OWL. With the emergerce of such a
rule language standard on top of ontologies, these mappings will be clearer.

9.6 The Semantic Web and L ogic Programming

The relationship between logic programming and the Semantic Web has been
examined by analyzing the mappings between logic programming structures and XML
and RDF [Boley 00]. Accordingly, basic RDF can be formalized with ground binary
Datalog Horn facts. For example, the triple

[ecoin:LH425060103 ecoin:price “550"]
can be encoded as the ground Datalog Horn binary fact as:
ecoin:price (ecoin:LH425060103, “550")

Furthermore, RDF container structures such as bags can be transformed into lists in
logic programming. Reification can be treated with the use of modal-logic (e.g. with the
use of abelief operator), and the use of logic variables may enable the expression of rules
using RDF.

With these mappings, RDF can be considered as a special case of knowledge
representation with logic programming. This would then bring the possibility of using
nonmonotonic reasoning techniques employed in ECOIN, specifically abduction and
constraint logic programming, in the context of Semantic Web. We leave the details of
such a possibility for future work.

9.7 Future Work

There are severa interesting directions for future work on gradually extending
ECOIN approach to the SWeb. Some of these can be listed as follows:

Extending Camé éon wrapper engine with OWL support and RDF output capabilities

Using RDF documents as data sources

Using OWL and (RDF/)RDFS as data schemas

Using RuleML encoded rules to express elevation axioms and conversion functions

Mediation of XML Query language based queries

Investigating the representation of contexts on the SWeb

138



Chapter 10

Conclusion

In this Thesis, we addressed the two intertwined problems of logical connectivity,
namely data extraction and data interpretation in the domain of heterogeneous
information systems.

We, first, described the design and implementation of a general purpose, regular
expression based Camééon wrapper engine with an integrated capabilities-aware
planner/optimizer/executioner, and 1Wrap semi-automatic wrapper generator. Compared
with other existing approaches in the academia and industry, Camééon and its
accompanying tools provide a fine balance of expressiveness and ssimplicity in the data
extraction domain.

Then, we provided a conceptualization for the dimensions of semantic heterogeneity,
to better explain the nature of problems related to data interpretation. After presenting a
brief analysis of semantic conflicts in financia information systems, we introduced three
dimensions of semantic heterogeneity: contextual, ontological, and temporal.
Furthermore, we defined a subcategory under ontological heterogeneities that referred to
the heterogeneity in the way data items are calculated from other data items in terms of
definitional equations as equational ontological conflicts

Before describing the Extended Context Interchange (ECOIN) approach to achieving
semantic interoperability among heterogeneous and autonomous data sources, we
summarized the Context Interchange strategy employed in our predecessor COIN. COIN
was built on the ideas of contexts [McCarthy 93], heterogeneous database integration,
abductive logic programming [Kakas 00], and deductive object-oriented data models and
provided a framework for addressing contextual heterogeneities. With ECOIN, we
introduced a way to handle egquational ontological conflicts by representing them as
contextual heterogeneities via the existing representational framework of COIN with
some minor changes. The reasoning framework, however, needed to be extended with
constraint logic programming to enable reasoning with symbolic equations. This new
intertwined reasoning framework is known as abductive constraint logic programming in
the literature and has been successfully used in ECOIN as a meta-interpreter with
symbolic equation solving capabilities.

Compared with existing tightly and loosely-coupled approaches in the literature, our
approach provides a middle ground by combining the strengths of both approaches. Like

139



tightly coupled approaches (e.g. Pegasus [Ahmed et al. 91], InfoMaster [Duschka and
Genesereth 97], Information Manifold [Levy 98]) we automate the task of rewriting a
user query thus freeing the users from having to know the semantic details of sources;
and like loosely coupled approaches (e.g. MRDSM [Litwin and Abdellatif 87] , VIP-
MDBMS [Kuhn and Ludwig 88], TSIMMIS [Garcia-Molina et a. 95]) we enable users
to dynamically choose how to receive data from sources thereby offering a level of
flexibility unseen in tightly coupled systems.

With ECOIN, we also ventured into merging disparate ECOIN applications, which
involves merging disparate ontologies and contextual knowledge. Our virtual and
context-based approach to merging of ontologies is a hybrid of classica merging and
alignment approaches. Like classical merging we produce a new ontology from a number
of ontologies, (abeit a virtual one), and like ontology alignment approaches we use
articulation axioms to relate the terms in disparate ontologies. Ease of merging disparate
ECOIN applications demonstrate the scalability and extendibility of our approach.

10.1 Future Work

The completion of this Thesis also opens up many other research issues, which we
hope to explore in the future. In this section we would like to mention a few of promising
research aress.

First, representation frameworks used in both COIN and ECOIN are limited to
representing contextual heterogeneities. While we were able to represent some of the
ontological heterogeneities as contextual heterogeneities, it should also be possible to
deal with them at the ontological level. For example, general relationships such as “Profit
= Revenue — Expenses’ can be represented at the ontological level as well. What
representatioral extensions are needed to relate ontological constructs that are clearly
distinct (e.g. Profit vs. Expenses) but somewhat related at the ontological level? When is
it appropriate to represent ontological heterogeneities at the contextual level? These are
guestions that need to be addressed in future research.

We aso left out issues related to temporal heterogeneities in this Thess. As we
mentioned in Chapter 3, temporal heterogeneities are orthogonal to both contextual and
ontological heterogeneities, which suggests a different way to represent and reason with
them. The ability to represent temporal heterogeneities without destroying our current
framework would be an important research goal in the coming years.

In Chapter 9, we discussed the relationship between the Semantic Web and ECOIN
and pointed out interesting synergies they exhibit. One of our research goals will be
generalizing the ECOIN approach to the Semantic Web, which alters some of the
fundamental assumptions of the semantic interoperability problem.

Finally, we would like to explore bio-informatics as a fertile field to apply our results
and test the viability of our solutions.

140



Refer ences

Abiteboul S. (1997). Querying semi-structured data. In Proceedings of ICDT, Jan 1997

Akman, V. Surav, M. (1997). The Use of Situation Theory in Context Modeling,
Computational Intelligence 13(3): 427-438.

Akman, V. (2000). Rethinking context as a social construct, Journal of Pragmatics,
32(6):743-759.

Allen, C. (2997). WIDL Application Integration with XML,
http://www.xml.com/pub/w3j/s3.allen.html

Ambrose, R (1998) A lightweight multi-database execution engine, Thesis (S.M.)
Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer
Science.

Apt, K.R. (1990). Logic Programming. Handbook of Theoretica Computer Science,
Volume B: Forma Models and Sematics (B) 1990: 493-574.

Apt, K.R., Bal, R. (1994). ""Logic programming and negation: a survey", Journal of
Logic Programming 19-20, pp. 9-71, (1994).

Ahmed, R., De Smedt, P., Du, W., Kent, W., Ketabchi, M., Litwin, W.,, R&fii,
A.,,Shan, M. (1991). The Pegasus Heterogeneous M ultidatabase System. |EEE Computer
24(12): 19-27.

Arens, Y., Knoblock, C., Shen W. (1996). Query Reformulation for Dynamic
Information Integration. Journal of Intelligent Information Systems 6(2/3): 99-130.

Bara, C., Gelfond, M. (1994). "Logic Programming and Knowledge Representation”,
Journal of Logic Programming, 19,20:73-148.

Barish, G., DiPasquo, D., Knoblock, C., Minton, S. (2000) A Dataflow Approach to

Agent-based Information Management. IC-Al 2000. Las Vegas, NV.

Batini, C., Lenzerini, M., Navathe, S. B. (1986). A Comparative Analysis of
Methodologies for Database Schema Integration, ACM Computing Surveys 18(4): 323-
364.

Baumgartner, R., Flesca, S., Gottlob, G. (2001). "Declarative Information Extraction,
Web Crawling, and Recursive Wrapping with Lixto". In Proc. LPNMR'01, Vienna,
Austria, 2001.

141



Bressan, S., Bonnet, P. (1997). Extraction and Integration of Data from Semi-structured
Documents into Business Applications, Conference on the Industrial Applications of
Prolog, 1997.

Berners-Lee, T., Hendler, J, Lassila, O. (2001). The Semantic Web, Scientific
American May 2001 Issue.

Berners-Lee, T.(2003). Standards, Semantics and Survival
http://www.w3.0rg/2003/Talks/01-dia-thl/dlide8-0.ntml, Software and Information
Industry Association (SIIA) meeeting (NYC, NY, USA).

Boley, H. (2001). Harold Boley: The Rule Markup Language: RDF-XML Data Mode,
XML Schema Hierarchy, and XSL  Transformations, http://www.dfki.uni-
kl.de/~boley/ruleml-mht.pdf , Invited Talk, International Conference on Applications of
Prolog, Tokyo,

Boley, H. (2000). Relationships between Logic Programming and RDF. Pacific Rim
International Conference on Artificial Intelligence : 201-218

Bouquet P., Ghidini C., Giunchiglia F., Blanzieri E. (2001). Theories And Uses Of
Context In Knowledge Representation And Reasoning, Technical Report # 0110-28,
Istituto Trentino di Cultura.

Bouquet P., Serafini L. (2003). On the Difference between Bridge Rules and Lifting
Axioms. Modeling and Using Context, 4th International and Interdisciplinary
Conference, CONTEXT: 80-93

Breitbart, Y., Tieman, L. (1984). ADDS - Heterogeneous Distributed Database System,
Proceedings of the Third International Seminar on Distributed Data Sharing Systems, 7-
24,

Burchert, H.-J. (1994). A resolution principle for constrained logics. Artificia
Intelligence conclusions 66.

Bunge M. (1974). Semantics I: Sense and Reference, Vol. 1 of Treatise on Basic
Philosophy. Dordrecht: Reidel.

Busse, S., Kutsch R. D., Leser, U. (1999). Federated Information Systems. Concepts,
Terminology and Architectures, Technical Report Nr. 99-9, TU Berlin

Buvac, S., Mason,l. A. (1993) Propositional Logic of Context. In Proceedings of
Eleventh Annual National Conference on Artificia Intelligence AAAI'93, pages 412-419.

Buvac, S. (1998). Contextual Information Integration, Ph.D. Thesis, Stanford
University.

Castro L, Warren D. L. (2000). On the Computational Integration of Well-Founded and
Stable Model Semantics, http://www.cs.sunysb.edu/~luis/rpe.ps.gz.

Chalupsky, H. (2000). OntoMorph: a trandation system for symbolic knowledge. In
Proceedings of Seventh International Conference on Knowledge Representation and
Reasoning, pages 471--482, San Francisco, California, Morgan Kaufmann

Clark, K. (1978). Negation as failure. In H. Gallaire and J. Minker, ed.'s, Logic and
Data Bases, p. 293--322. Plenum Press.

Collet, C., Huhns, M. N., Shen, W. (1991). Resource Integration using a large
knowledge base in Carnot. |IEEE Computer, 24(12):55-63.

Connolly, D., van Harmelen, F., Horrocks, I., McGuinness, D. L., Patel-Schneider, P.
F., Stein, L A. (2001). DAML+OIL (March 2001) reference description. W3C note 18
December 2001. http://www.w3.0rg/TR/200L/NOTE-daml+oil-reference-20011218

142



Dantsin, E., Eiter, T., Gottlob, G., and Voronkov, A. (2001). Complexity and
expressive power of logic programming. ACM Computing Surveys 33(3): 374-425.

Decker, S., Erdmann, M., Fensel, D., and Studer, R., (1998). Ontobroker in a Nutshell,
in Research and Advanced Technologies for Digital Libraries. 1998, Springer Verlag
LNCS 1513.

Denecker, M., Kakas, A. C. (2002). Abduction in logic programming, Computational
Logic: Logic Programming and Beyond, Essays in Honour of Robert A. Kowalski, Part |
(A. C. Kakas, and F. Sadri, eds.), Springer Verlag, pp. 402-436.

Duschka, O., Genesereth, M. (1997). Answering Recursive Queries Using Views.
PODS 1997: 109-116

Firat, A., Madnick, S., and Siegel, M. (2000). The Caméléon Web Wrapper Engine,
Proceedings of the VLDB2000 Workshop on Technologies for E Services, pages 1-9.

Firat, A., Madnick, S., and Grosof, B. (2002). Knowledge Integration to Overcome
Ontological Heterogeneity: Challenges from Financia Information Systems, Proceedings
of the International Conference on Information Systems.

Firat, A., Madnick, S., Grosof, B., Financia Information Integration in the Presence of
Equational Ontological Conflicts, 12th Workshop on Information Technology and
Systems, Barcelona, Spain, 2002.

Firat, A., Madnick, S., Siegel, M.,The Cameleon Approach to the Interoperability of
Web Sources and Traditiona Relational DataBases, Proceedings of the 10th Annual
Workshop On Information Technologies and Systems, Brisbane, Queensland, Australia,
2000.

Firat, A., Peleshchuk, D., Rao, P. (1999) IWrap: Instant Wrapper Generator,
unpublished manuscript.

Firat, A., Zhu, H., Lee, P. (2003). Camééon User Manual, unpublished manuscript.

Frahwirth, T. (1998). Theory and Practice of Constraint Handling Rules, Special Issue
on Constraint Logic Programming (P. Stuckey and K. Marriot, Eds.), Journa of Logic
Programming, Vol 37(1-3), pp 95-138, October.

GarciaMolina, H., Hammer, J., Ireland, K., Papakonstantinoy, V., Ullman, J., Widom,
J. (1995). Integrating and Accessing Heterogeneous Information Sourcesin TSIMMIS. In
Proceedings of the AAAI Symposium on Information Gathering, pp. 61-64, Stanford,
California, March 1995.

Gruser, J., Raschid, L., Vidal, M., Bright, L. (1998) Wrapper Generation

for Web Accessible Data Sources In Proceedings of Coopl S98.

Ghidini, C., and Giunchiglia, F. (2001). Local Models Semantics, or Contextual
Reasoning = Locality + Compatibility. Artificial Intelligence. 127(2):221-259.

Ghidini, C., and Serafini, L. (1998). Information Integration for Electronic Commerce.
In Agent Mediated Electronic Commerce. First International Workshop on Agent
Mediated Electronic Trading, AMET-98, Volume 1571 of LNAI. Springer.

Goh, C. H. (1997). Representing and Reasoning about Semantic Conflicts in
Heterogeneous Information Systems, MIT Ph.D. Thesis.

Grosof, B. (2001). "Representing E-Business Rules for the Semantic Web: Situated
Courteous Logic Programs in RuleML", Proc. Workshop on Information Technologies
and Systems (WITS'01), 2001.

Gruber, T. R. (1993). A Trandation Approach to Portable Ontology Specifications,
Knowledge Acquisition, 5, 199-220.

143



Guarino, N., Giaretta, P. (1995). Ontologies and knowledge bases. Towards a
terminologica clarification. In N.J.I. Mars, editor, Towards Very Large Knowledge
Bases, 10S Press, 1995.

Guarino, N. (1995). Forma Ontology, Conceptua Analysis and Knowledge
Representation, International Journal of HumanComputer Studies, 43, 625-640.

Guarino, N (ed.) (1998). Formal Ontology in Information Systems, Amsterdam, Berlin,
Oxford: 10S Press. Tokyo, Washington, DC: 10S Press (Frontiers in Artificia
Intelligence and Applications), 1998.

Guarino, N. and Welty, C. (2000). A Formal Ontology of Properties, in R. Dieng and
O. Corby (eds), Knowledge Engineering and Knowledge Management: Methods,
Models and Tools. 12th International Conference (EKAW 2000), Berlin/New Y ork:
Springer: 97-112.

Guha R. V. (1991). Contexts: a formalization and some applications, MCC Tech Rep
ACT-CYC42391.

Halevy, A. (2000). Theory of Answering Queries Using Views. ACM SIGMOD
Record 29(4): 40-47.

Hammer, J., GarciaMolina, H., Cho, J., Aranha, R., Crespo, A. (1997) "Extracting
Semistructured Information from the Web". In Proceedings of the Workshop on
Management of Semistructured Data. Tucson, Arizona

Hirst, G. (2000). Context as a spurious concept. Proceedings, Conference on Intelligent
Text Processing and Computational Linguistics, Mexico City, 273--287.

Horrocks, I., Fensel, D., Broekstra, J.,, Decker, S., Erdmann, M., Goble, C., van
Harmelen, F., Klein, M., Staab, S., Studer, R., Motta, E. (2000). OIL: The Ontology
Inference Layer. Technical Report IR-479, Vrije Universiteit Amsterdam, Faculty of
Sciences.

Hsu, C., and Dung, M. (1998). Wrapping semistructured web pages with finite-state
transducers. To appear in the Proceedings of the Conference on Autonomous Learning
and Discovery CONALD-98.

Huck, G., Fankhauser, P., Aberer, K., Neuhold, E. (1998): JEDI: Extracting and

Synthesizing Information from the Web; submitted to COOPIS 98, New Y ork, August,
1998; IEEE Computer Society Press.

Jakdbisiak, M (1996). Programming the Web- Design and Implementation of a
Multidatabase

Browser, CISL WP#96-04, May 1996, MIT Sloan School of Management.

Kakas, A. C., Michael, A., and Mourlas, C. (2000). ACLP: Abductive Constraint Logic
Programming, Journal of Logic Programming, 44(1-3):129-177.

Kakas, A. C., Michael, A. (1995). Integrating abductive and constraint logic
programming. n To appear in Proc. International Logic Programming Conference.

Kaleem, M. B. (2003). CLAMP: Application Merging in the ECOIN Context
Mediation System Using the Context-Linking Approach. Master of Engineering Thesis.
Massachusetts Institute of Technology.

Kashyap, V., Sheth, A. P. (1996). Semantic and Schematic Similarities Between
Database Objects: A Context-based Approach, The VLDB Journal, 5(4):276-304.

Kim, W., Seo, J (1991). Classifying Schematic and Data Heterogeneity in
Multidatabase Systems. IEEE Computer 24(12): 12-18.

144



Klyne, G. (2000). Contexts  for RDF Information Modélling,
http://public.research.mimesweeper.com/RDF/RDFContexts.html.

Knoblock, C., Lerman, K., Minton, S., Mwslea, |. (2000) IEEE Data Engineering
Bulletin, 23(4):33--41, December 2000.

Kowalski, R. (1974). Predicate Logic as Programming Language. In J. L. Rosenfeld,
editor, Information Processing 74. Proceedings of IFIP Congress 74, Stockholm, pages
569--574, Amsterdam, August 1974. North-Holland.

Kowaski, R. A., (1992). A dual form of logic programming. Lecture Notes, Workshop
in Honour of Jack Minker, University of Maryland, November.

Kuhn, E., Puntigam, F., EImagarmid A. (1991). Multidatabase Transaction and Query
Processing in Logic, Database Transaction Models for Advanced Applications, Morgan
Kaufmann Publishers.

Kuhn, E., Ludwig, T. (1988). VIP-MDBS: a logic multidatabase system, Proceedings
of the first international symposium on Databases in paralel and distributed systems,
p.190-201, December 05-07, Austin, Texas, United States.

Kushmerick, N., Doorenbos, R., Weld., D. (1997) Wrapper Induction for Information

Extraction. IJCAI-97, August 1997.

Lacroix, Z. (1999). Object Views through Search Views of Web datasources,
International Conference on Conceptual Modeling (ER'99), Paris, France, November.

Laender, A., Ribeiro-Neto, B., Silva, A. and Teixeira, J. (2002). A Brief Survey of Web
Data Extraction Tools, SIGMOD Record, Volume 31, Number 2.

Landers, T., Rosenberg, R. (1982). An Overview of MULTIBASE, International
Symposium on Distributed Data Bases, 153-184

Lee, J. (1996). Integrating Information from Disparate Contexts: A Theory of Semantic
Interoperability, Ph.D. Thesis, MIT.

Lee, P. W. (2003). Metadata Representation and Management for Context Mediation.
Master thesis, Massachusetts Institute of Technology, Sloan School of Management,
May.

Lenat, D., R. V. Guha, K. Pittman, D. Pratt, and M. Shepherd. (1990). Cyc: Towards
programs with common sense. Communications of the ACM 33(8).

Lenzerini, M. (2001). Data Integration Is Harder than Y ou Thought. CooplS 2001: 22-
26

Levy, A. (1998). "The Information Manifold Approach to Data Integration,” 1EEE
Intelligent Systems, 1312-16.

Litwin, W., Abdellatif, A. (1987). An overview of the multi-database manipulation
language MDSL. Proceedings of the |EEE, 75(5):621-632.

Litwin, W. (1992). O*SQL: A language for object oriented multidatabase
interoperability. In Proceedings of the Conference on IFIP WG2.6 Database Semantics
and Interoperable Database Systems (DE-5) (Lorne, Victoria, Austraia), D. K. Hsiao, E.
J. Neuhold, and R. Sacks-Davis, Eds. North-Holland Publishing Co., Amsterdam, The
Netherlands, 119-138.

Litwin, W Vigier, P. (1986) Dynamic Attributes in the Multidatabase System
MRDSM. ICDE 1986: 103-110

Liu, L., Pu, C., Han, W., Buittler, D., Tang, W. (1999). XWrap: An Extensible Wrapper

Construction System for Internet Information Sources, Oregon Graduate Institute of
Science and Technology.

145



Lloyd, J. (1984). Foundations of Logic Programming, 1% Edition. Springer.

Luke, S., Spector, L., Rager, D., and Hendler, J. (1997). Ontology-based Web Agents.
In Proceedings of the First International Conference on Autonomous Agents, 59-66. New
York, NY: Association of Computing Machinery.

MacGregor, R., Chalupsky, H., Moriarty, D. and Valente, A. (1999). Ontology Merging
with OntoMorph.

http://reliant.teknowledge.com/HPK B/meetings/meet040799/Chal upsky/index.htm

Manola, F. (2002). The Semantic Web and the Role of Information Systems Research,
NSF-OntoWeb Invitational Workshop onDB-IS Research for Semantic Web and
Enterprises.

McCarthy, J. (1987). Generdlity in artificia intelligence. Communications of the ACM
30 12, pp. 1030-1035.

McCarthy J., (1993). Notes on Formalizing Context, Proceedings of the Thirteenth
International Joint Conference on Artificial Intelligence.

McCarthy, John and Buvac, S, 1997. Formalizing context (expanded notes). In:
Aliseda, A., van Glabbeek, R. and Westerstrahl, D., Editors, 1997. Computing natural
language, Center for the Study of Language and Information, Stanford, CA.

McGuinness, D.L., Fikes, R., Rice, J. and Wilder, S. (2000). An Environment for
Merging and Testing Large Ontologies. In: Proceedings of the Seventh International

Conference on Principles of Knowledge Representation and Reasoning (KR2000),
Breckenridge, Colorado.

McGuinness, D., van Harmelen , F. (2003). OWL Web Ontology Language.
http://www.w3.org/TR/owl- features/

Mecca, G., Merialdo, P., Atzeni, P. (1999). ARANEUS in the Eraof XML - IEEE Data
Engineering Bullettin, Specia Issue on XML, September.

Miller, G (1995). “WordNet: a lexical database for English”, Comm. of the ACM,
38(11):39-41.

Musleg, |., Minton, S., and Knoblock, C. (1998) STALKER: Learning extraction rules
for semistructure, Web-based information sources.In Proc. of AAAI’98: Workshop on Al
and Information Integration.

Niles, | & Pease A. (2001). Towards A Standard Upper Ontology. In Proceedings of
FOIS 2001, , Ogunquit, Maine, USA.

Noy, N., F., Musen, M., A. (2000). PROMPT: Algorithm and Tool for Automated
Ontology Merging and Alignment. Proceedings of the National Conference on Artificial
Intelligence 2000: 450-455

Peirce, C (1903). "Review of What is Meaning? by Victoria Welby and The Principles
of Mathematics by Bertrand Russell,” reprinted in Ketner & Cook (1979) pp. 143-145

Pottinger, R., Halevy, A., (2001). MiniCon: A scalable algorithm for answering queries
using views. VLDB Journal 10(2-3): 182-198.

Qu, J. (1996). Data Wrapping on the Worl Wide Web, CISL WP#96-05, February
1996, MIT Sloan School of Management.

Reed, S. and Lenat, D. (2002). Mapping Ontologies into Cyc. AAAI-2002 Workshop
on Ontologies and the Semantic Web, http://reliant.teknowledge.com/AAAI-
2002/Reed.pdf

Alatovic, T. (2002) Capabilities Aware Planner/Optimizer/Executioner for COIN
Project, Master of Engineering Thesis, Massachusetts Institute of Technology, 2002.

146



Roth, M.T., Schwarz, P.M. (1997). Don't Scrap It, Wrap It! A Wrapper Architecture
for Legacy Data Sources. VLDB' 97, Proc. of 23rd Int. Conference on Very Large Data
Bases, August 25-29.

Scheuermann, P., ElImagarmid, A. K., Garcia-Molina, H., Manola, F., McLeod, D.,
Rosenthal, A., Templeton, M. (1990). Report on the Workshop on Heterogenous
Database Systems held at Northwestern University, Evanston, Illinois, December 11-13,
1989, Sponsored by NSF. SIGMOD Record 19(4): 23-31.Sciore, E., Siegd, M.,
Rosenthal, A. (1994). Using Semantic Vaues to Facilitate Interoperability Among
Heterogeneous Information Systems, ACM Transactions on Database Systems,
19(2):254290.

Serafini, L., and Ghidini, C. (2000). A Context Based Semantics for Federated
Databases. In M. Cavalanti, P. Bonzon, and R. Nossum (eds.), Formal Aspects of
Context, volume 20 of Applied Logic Series. Kluwer Academic Publishers.

Sahuguet, A., Azavant, F. (1998). W4F: the WysWyg Web Wrapper Factory.
Technical

report, University of Pennsylvania, Department of Computer and Information
Science.Siegel, M., Madnick, S. (1991). A Metadata Approach to Resolving Semantic
Conflicts, Proceedings of the Seventeenth International Conference on Very Large
Databases, pp. 133-145.

Siegel, M., Madnick, S. (2002). Seizing the Opportunity: Exploiting the Web
Aggregation, MIS Quarterly Executive Vol. 1 No. 1/ March 2002.

Silberschatz, A., Zdonik, S., (1997). Database systems -- breaking out of the box.
SIGMOD Record, 26, pp 36--50.

Smith, B., and Chris, W. (2001). Ontology: Towards a new synthesis. In Chris Welty
and Barry Smith, eds., Formal Ontology in Information Systems. Pp. iii-x. Ongunquit,
Maine: ACM Press.

Sowa, J. (1997). Peircean foundations for a theory of context, Proceedings of the
International Conference on Conceptual Structures, 41-64.

Sperber, D., Wilson, D. (1986), Relevance: Communication and Cognition, Oxford:
Basil Blackwell.

Spyns P., Meersman R., & Jarrar M. (2002). Data modelling versus Ontological
engineering, SIGMOD Record Special Issue on Semantic Web, Database Management
and Information Systems, December 31 (4).

Sterling, L., Shapiro, E. (1994). The Art of Prolog. MIT Press, Cambridge, MA, 2nd
edition.

Subrahmanian, V.S, Addli, S., Brink, A., Lu, J. J., Raput, A., Rogers, T. J,, Ross, R,
Ward, C. (2000). HERMES A Heterogeneous Reasoning and Mediator System,
http://www.cs.umd.edu//projects/hermes/overview/paper/index.html.

Tatbul, N., Karpenko, O., Convey, C. (2001). Data Integration Services, Technical
Report, Brown University, Computer Science.

Tomasic, A., Raschid, L., and Valduriez, P. (1998). Scaling access to heterogeneous
data sources with disco, |[EEE Transactions on Knowledge and Data Engineering, 10(5):
808-823.

Ullman, J. (1991). Principles of Database and Knowledge-base Systems, Volumes | &
I1. Computer Sciernce Press.

147



Ushold, M., Gruninger, M. (1996). Ontologies. principles, methods and applications;
The Knowledge Engineering Review 11 2, pp 93-136.

Wache, H., Vogele, T., Visser, U., Stuckenschmidt, H., Schuster, G., Neumann, H.,
Hubner, S. (2001). Ontology-based integration of information - a survey of existing
approaches. In Stuckenschmidt, H., ed., IJCAI-01 Workshop: Ontologies and Information
Sharing, 108--117.

Wiederhold, G, (1992a). The Roles of Artificia Intelligence in Information Systems,
Journal of Intelligent Information Systems, 11(1):35-56.

Wiederhold, G., (1992b). Mediators in the Architecture of Future Information Systems,
|EEE Computer, 25(3):38-49.

148



