

CLAMP:

Application Merging in the ECOIN Context Mediation

System using the Context Linking Approach

M. Bilal Kaleem

Working Paper CISL# 2003-05

August 2003

Composite Information Systems Laboratory (CISL)
Sloan School of Management

Massachusetts Institute of Technology
Cambridge, MA 02142

 2

CLAMP:
Application Merging in the ECOIN Context Mediation System using the

Context Linking Approach

by
M Bilal Kaleem

Submitted to the
Department of Electrical Engineering and Computer Science

August 22, 2003

In Partial Fulfillment of the Requirements for the Degree of
Bachelor of Science in Computer [Electrical] Science and Engineering

and Master of Engineering in Electrical Engineering and Computer Science

ABSTRACT

Integrating data from heterogeneous data sources means dealing with context differences.
That is, differences in the assumptions that are made regarding format and interpretation of
the data. The Context Interchange (COIN) group has developed a formalism to describe the
context assumptions of data sources and data receivers. An ECOIN application ties various
sources together by being mapping them to a common ontology, or domain model. ECOIN
applications allow the context differences between data sources to be resolved through
context mediation. Users may then desire to merge together multiple ECOIN applications so
that context differences across a much wider range of sources can be resolved with minimal
additional effort.

Accordingly, the work of this thesis focuses on the problem of merging ECOIN applications.
The approach to merging discussed herein is termed context-linking. Context-linking allows
the merging of ECOIN applications with minimal effort having to be spent on merging the
ontologies of the two applications. This is achieved by employing a virtual approach to
ontology merging that gives the appearance of a merged ontology. This thesis describes the
merging process, presents a detailed case study, demonstrates the benefits of merging and
presents the design for CLAMP, a tool that facilitates ECOIN application merging.

Thesis Supervisor: Stuart Madnick
Title: John Norris Maguire Professor of Information Technology

and Professor of Engineering Systems

 3

Table of Contents

ABSTRACT ...2
1. Introduction ..5

1.1 – Dora the Explorer ..5
1.2 - Multiple Sources mean Context Differences ...6
1.3 – The problem of heterogeneous data source integration and the ECOIN approach7
1.4 - The Application Merging Problem ..9

1.4.1 - Virtual Merging versus Materialized Merging ...11
1.4.2 - Motivation ...11

1.5 - Objectives and Roadmap..12
2. The Applications: Airfare, Car Rental and Their Merger ...13

2.1 The Airfare Application ...13
2.1.1 – Steps to development..13
2.1.2 - Sources ..13
2.1.3 - Ontology and Elevations ...14
2.1.4 - Modifiers and Context...15
2.1.5 - Sample Queries ...16
2.1.6 - Future expansion: accommodated by the ontology or left up to merging?...........20

2.2 Car Rental Application ...21
2.2.1 – Motivation and Context Differences ..21
2.2.2 – Sources ...22
2.2.3 - Ontology and Elevations ...22
2.2.4 - Modifiers and Context...24
2.2.5 - Sample Query..25

2.3 - Merging Airfare and Car Rental ..27
2.3.1 - Goals of Merging Two Applications...28

3. – Merging Applications..30
3.1 – Materialized Merging versus Virtual Merging..30

3.1.1 – Materialized Merging ...30
3.1.2 - Virtual Merging through Context Linking..33

Context Linking – Merging is Driven by Context Differences33
3.1.3 - Linking Contexts Between Airfare and Car Rental ..34
3.2 - How to merge applications – The Merging Algorithm and the Merger Axioms.........36

3.2.1 – Merger Axioms...36
3.2.2 – How the Merger Axioms Work..37

Upward Inheritance ..37
Unique Naming ..38
How the Abduction Engine Uses the Axioms..38

3.2.3 – The Merging Algorithm ...38
3.3 – Understanding the Merger Axioms ...40

3.4 – The Merger Axioms of Airfare + Car Rental ..41
Seamless access to sources from both applications:...41
Cross fertilization of contexts:..41
Extending the merged application ..43

 4

Ismodifiers, isocontexts and isoattributes: ...47
3.5 Sample Run of Merged Application...47

3.5.1 – Seamless Access to Sources ...47
3.5.2 – Cross Fertilization of Contexts ...48
3.5.3 – Value Added Benefits...49

3.6 – Complete List of Merging Capabilities ...51
3.7 – Chapter Summary – ECOIN Application Merging in a Nutshell................................52

4. CLAMP – A tool to facilitate Application Merging ..54
4.1 - What is CLAMP?...55
4.2 - What assumptions are made about the user?..55
4.3 - The Tool’s Approach ...56
4.4 - Design Overview..57

4.4.1 – Integrated with Application Editor...57
4.4.2 – Architecture ..58

4.5 – CLAMP Interface – How the user is led through merging ...59
4.5.1 – First page: Seamless Access to Sources ...60
4.5.2 – Second page – context reconciliation and cross-fertilization61
4.5.3 – Extending the merged application ..63
4.5.4 – Generating merger axioms ...63

4.6 – How Application Editor needs to be modified to support CLAMP64
4.6.1 – How the Internal COIN Model (ICM) must be changed......................................65

Ont_Isomodifiertype...66
4.6.2 – How the API must be changed ...67

5. Possible improvements/extensions..69
5.1 – Graphical Enhancement...69
5.2 – Implicit modifier detection ..69
5.3 – Conversion function assistant..69

6 - Related Work ..71
7. Conclusions ...76

7.1 Summary of thesis and contributions ...76
7.2 Evaluation of motivations for thesis...76
7.3 – A look ahead..78

References ..79
Appendix A – Application Prolog file from Airfare ..81
Appendix B – Application Prolog file from Car Rental...95
Appendix C – Merger Axioms file for Airfare + Car Rental Merger103
Appendix D – Additions to API to Support CLAMP’s Changes to ICM106
Appendix E – A Summarized Demo Of Merging ..107

 5

 1. Introduction

Over the last decade, as the cost of data storage has plummeted, access to and use of the
Internet has proliferated, and distributed organizations have become much more common, the
number of data sources has risen considerably [5]. Furthermore, users not only rely on more
data sources but also on increasingly different types of data sources. Yet users still expect to
understand and communicate with these heterogeneous sources in terms they understand –
making assumptions about the format and semantics of the data that may not be true. To
understand this problem better, we begin with an example of a user that is dealing with
multiple Internet data sources.

1.1 – Dora the Explorer

Meet Dora. She is quite the world traveler. One place she has not yet been is Istanbul, Turkey.
But before she can pack her bags, she must endure perhaps the most tedious part of traveling:
finding the cheapest flight. Being the thrifty traveler that she is, she knows to check multiple
airfare aggregator websites because while they all claim to check hundreds of airlines for the
lowest fares, they usually have different arrangements with various airlines to market their
fares in a special manner. This leads to two key types of differences between airfare
aggregator websites:

• Different sites may present the same flights but different prices for the same trip
• Different sites may present completely different flights and prices for the same trip

For example, Dora sent the same query to Orbitz and Travelocity and got a $600 difference
for their best fares to Istanbul:

Figure 1.1 - Fare difference between sites for the same trip

 6

1.2 - Multiple Sources mean Context Differences

There are several bothersome issues that Dora faces in searching different sources for airfares.
These issues can be divided into two classes:

1. Issues related to juggling multiple sites.

For example, having to run the same query on multiple sites then juggling between them,
struggling to remember which site offered what fare while adjusting dates and times of
travel.

2. Context differences between the sites.

Multiple sites means differences in the meaning of the results returned from each site (due
to the different contexts that each site may assume). Examples of problems due to context
differences are:

• What does price include? Taxes? Service fees? For example, Orbitz includes taxes

but does not include a service fee until a screen much later in the process. Expedia
includes a service fee right from the beginning. So for each site, Dora would have to
account for context differences when comparing the prices.

Figure 1.2 – Context difference – different meanings of price

• Aggregators are based in many countries and return fares in different currencies.

Dora would need to determine what currency the source uses, what the latest
exchange rate is and then convert the price quoted.

• Dora does not like to spend a lot of time on planes so she wants to minimize her

flight time. Thus she needs to know whether flight time quoted by a site includes
time spent in layovers or consists solely of time in the air.

• Some flights require travelers to purchase paper tickets or some travelers may even

prefer paper tickets. So if Dora wants paper tickets, she would need to determine
how much the source (Orbitz, Expedia, etc) charges for paper tickets and add that
to her price

 7

• Dora is an American citizen and might require a visa for some destinations, or
even transit visas for some stopovers. Thus, she would need to factor in potential
visa fees to get a more complete idea of how much her trip is costing.

1.3 – The problem of heterogeneous data source integration and the ECOIN approach

The context differences that Dora faces is an example of the real-world problem that arises
when integrating data from disparate, heterogeneous data sources. In the past, heterogeneous
data source integration meant integrating databases that had context differences. But within
the last decade, the problem has not only become more common but has become more varied
as the types of data sources have proliferated.

The COntext INterchange (COIN) group at MIT addresses this problem with an approach
known as context mediation [9]. This section presents a high level description of the COIN
approach. For a detailed discussion of how context knowledge and data semantics are
represented and reasoned about in the ECOIN system, we refer the reader to [2, 9, 10].

To address heterogeneous data source integration, the ECOIN system supports the
implementation of applications: groups of heterogeneous data sources tied together such that
they can be queried without worrying about context (i.e. without worrying about how to
correctly interpret data from the different sources). ECOIN does context mediation that
returns the data from the different sources to the user in his own context.

ECOIN supports the notion of context and context mediation through the use of ontologies,
which contain semantic types, attributes, modifiers and modifier values. We explain these
terms below either through direct definitions or by example.

An ontology (sometimes termed object model, application domain model, domain diagram,
etc) is an explicit description of how to conceptualize the objects of some domain and the
relationships between those objects [11]. For example, consider the domain of an application
that determines airfares for travelers given the dates and destinations of travel. If we were to
conceptualize such a domain, we would think of objects such as trip, airline, city, etc. Each of
these objects that represents some concept is called a semanticType.

The relationships between these objects are captured by attributes and modifiers. For
example, the semantic type, trip, would have attributes such as airline,
destination, etc. The bottom of figure 1.3 below shows a small portion of the airfare
ontology. We see the semantic types trip, airline, city, moneyAmount. The labeled
arrows connecting these semantic types indicate the attribute relationships.

Modifiers tell ECOIN how to interpret a semanticType. Namely, the modifiers of a
semanticType can take on one of many modifier values and it is the modifier value that tells
ECOIN what the semanticType means. For example, in the Airfare example, the

 8

semanticType, moneyAmount, would have a modifier, currency, that has a modifier value
of “USD” for a US context and a modifier value of “GBP” for a British context.

A context is the set of assumptions regarding the interpretation or meaning of data. Users as
well as sources can have their own contexts. Thus for each modifier, there exist conversion
functions to convert data objects from one context to another.

Next, we have the data sources. ECOIN models all data sources as relations in a database
regardless of whether the source actually is a database table. This is made possible by
technologies such as Cameleon [7] (also developed by COIN) that allow semi-structured and
even unstructured web pages to be seen as relational databases. For example, in figure 1.3
below, data from the Orbitz airfare aggregator website is extracted by Cameleon and modeled
as if it were coming from a database table called orbitz with columns such as airline,
destination, price, etc.

Figure 1.3 – The ECOIN Approach

 9

ECOIN elevates, or maps, the columns from the data sources to semanticTypes in the
ontology. For example, in figure 1.3, we see that the destination column from Orbitz is
elevated to the semanticType, city.

To summarize, the semantictypes, attributes and modifiers constitute an ontology that
conceptualizes some domain. The modifier values and the conversion functions constitute the
context information. The data sources and the elevation information that maps the columns of
a data source into the ontology constitutes the source information. Together, the ontology,
context and source information constitute an ECOIN application that supports context
mediation across the data sources of that application.

ECOIN stores all this application information as Prolog1 rules in a plain text application
prolog file (referred to as, “application file”). The component that makes use of all this
information from the application file is called the abduction engine.2 It takes in queries from
the user and does context mediation to form a context-sensitive query to be sent to the data
sources. After the query is sent to the data sources, the results are returned to the user in his
own context (any conversions that are needed to transform data from the source contexts to
the users’ context are automatically done).

1.4 - The Application Merging Problem

As discussed, an ECOIN application elevates a set of data sources to a common ontology,
such that the data sources can be queried in a context-blind manner. For example, an ECOIN
application for online textbook shopping may contain two data sources, i.e. two vendors. The
user can query price and availability information from these two sources and have the price
and availability results returned to him in a context that he understands. But what if the user
learns of an application that allows general academic-supplies shopping, or an application that
provides text-book data from two new vendors, or an application that calculates Fed-Ex or
UPS shipping fees for a product. These three applications would be very interesting to the
user because they either complement his original textbook-shopping application very well or
expand the original application space in a useful manner. For example, while shopping for
textbooks, a user might want to buy a book bag. Then he might want to have it all shipped to
him. Rather than having to deal with different applications to query all the sources for his
needs, it would be better to have it in one place. Given such scenarios, we are faced with the
interesting problem of ECOIN application-merging.

1 a rule-based logic programming language

2 The abduction engine is the module (also written in Prolog) that contains all the logic for taking in a query that
does not account for context and outputting a query sensitive to context (i.e. contains all the necessary context
conversion functions). The abduction engine’s input is the “context-blind” query and as it runs it refers to the
application’s prolog file, a constraints file, a couple of helper files (for example, a file containing dijkstra’s
algorithm). The output is then a context-sensitive query. For a formal, detailed discussion of abduction and the
abduction engine, see [aykut’s thesis].

 10

Textbook-shopping App Shipping Fee Calculator App Shop Academic Supplies App

Figure 1.4: Application merging – user wants to query sources from all three
 applications at the same time

User

 11

1.4.1 - Virtual Merging versus Materialized Merging

What do we mean by application-merging? Is it the same as ontology-merging in general (i.e
merging the ontologies of the two applications)? Not exactly. Application merging proposes a
“virtual” approach to ontology merging called context-linking while the traditional approach
to ontology merging can be termed as “materialized” ontology merging.

Materialized ontology merging is done if the intention is to discard the original ontologies and
use only the merged ontology in the future (a completely new ontology “materializes”).
Virtual ontology merging is done if the intention is to have the ontologies of the two
applications persist unchanged. The new merged application gives the “virtual” appearance of
one ontology and allows sources from both applications to be considered part of one new
application. We discuss virtual versus materialized merging in much greater detail in Section
3.1.

1.4.2 - Motivation

This thesis’ research into application merging is driven by several motivations:

1. Value to be gained by merging applications
An application may find it very beneficial to have access to the set of sources that are
part of another application. Or an application may be able to leverage the capabilities
of another ontology by being merged with it. For example, consider the US textbook
shopping application mentioned earlier and a Global Aggregator application that shops
for a specific product in various countries, taking into account currencies and
import/export taxes. The merged application would inherit the currency and
import/export tax awareness and would stand ready to have international textbook
sources added to it.

2. Re-use

With numerous applications and ontologies being developed independently, there is a
lot of benefit to be derived from re-using work that has already been done. Merged
ECOIN applications seek to re-use portions of the ontologies, contexts and application
code of existing ECOIN applications.

3. Better fit with how ontologies/applications are developed in real life

In the real world, designers of applications (and ontologies) rarely have a broad
enough vision to predict what will be desired in the future - ontologies, applications,
and standards are constantly being developed and evolved by countless independent
parties. It is better to adapt to this reality and design small, relevant applications and
merge them with other applications as needed than to try to predict and pre-plan large,
comprehensive applications.

 12

4. Easier problem to solve then actually merging ontologies
The general problem of ontology merging is a difficult artificial intelligence problem.
Having to determine relationships between entities of two arbitrary ontologies requires
heuristics that approximate semantic understanding of the entities, which is difficult.
The context linking approach thus bites off a smaller chunk of the problem: its goal is
only to get two ECOIN applications to work together. Thus it reconciles parts of the
two ontologies only when they would cause incorrect behavior or if there is some
capability to be gained – otherwise it tolerates redundancy and even irrelevance in the
new “virtually merged” ontology.

1.5 - Objectives and Roadmap

The main objectives of this thesis are three:

1. Present and discuss the Context Linking approach to application merging
2. Study and evaluate that approach by merging independent, realistic applications
3. Design a tool that facilitates the context linking/merger axiom creation process.

The rest of this thesis is organized as follows. Chapter 2 presents the applications that will be
the subject of the merging case study. Chapter 3 discusses Ontology and Application merging
in detail, presenting context linking and merger axioms in meticulous depth. Chapter 4
proposes a tool to facilitate merger axiom creation and presents a design for it. Chapter 5
presents possible extensions and improvements to the tool. Chapter 6 discusses related
research efforts by other groups and chapter 7 presents conclusions and looks to the future.

 13

2. The Applications: Airfare, Car Rental and Their Merger
In Chapter 1, we presented motivation for merging multiple applications. In the rest of this
thesis, we shall be discussing merging in detail and much of it will be through a case study of
merging two real ECOIN applications: Airfare and Car Rental. Accordingly, this chapter
presents the details of these two applications.

2.1 The Airfare Application
Chapter 1 discusses Dora’s motivation for creating an Airfare application. In summary,
having to deal with multiple sources means dealing with context differences between the
sources. The Airfare Application allows users to browse various sources and see prices in
their own context. Chapter 1 also discusses what the context issues are and below we restate
(in brief) only those context issues that the application will resolve:

• What does price include? Just airfare? Taxes? Service fees?
• What currency is the price in?
• If paper tickets are wanted, how much of a charge should be added to price?
• Does the understanding of price include a visa fee (if the destination country

charges such a fee)?

2.1.1 – Steps to development
The steps Dora takes in creating the airfare application are generally as follows:

1) Determine the various sources the application will need to draw upon (Orbitz,
Expedia, other travel sites, currency converter website, etc)

2) Peruse the sources to determine all the context differences and to determine what
additional sources might be needed to help resolve those differences

3) Determine what data will be needed from the sources, what data will required from the
user, and think of these as columns in data tables that represent each of the sources.
“Wrap” the web sources with cameleon spec files (cite paper) to enable data extraction
from the web sources.

4) Develop an ontology (domain model) that conceptually describes the airfare
application space and elevate the data columns of the sources to semanticTypes
(entities) in the ontology.

5) Create a set contexts, each being a particular perspective of the application data. These
perspectives are held either by the sources (source contexts) or by users (receiver
contexts).

6) Determine conversions between the various contexts i.e. for each modifier, develop
functions that convert from one modifier value to another.

7) Formalize all of the above in appropriate ECOIN format – namely, the application file
capturing ontology, source, context and conversion information and the schema file
(written in XML) capturing the schema of all the sources. (see Appendix A for Prolog
and files capturing all this information)

2.1.2 - Sources
The following is a summary of the sources in the Airfare application:

 14

Category of Source Source Name
Airfare Sources
(all from the Web and
wrapped with Cameleon)

- Expedia - http://www.expedia.com
- Orbitz - http://www.orbitz.com
- Itn (owned by American Express) - http://www.itn.net
- Yahoo - http://travel.yahoo.com
- TravelSelect (a UK source) - http://www.travelselect.com

Other Information sources

- Olsen currency converter - http://www.oanda.com/convert

Oracle tables created for
utility

- ServiceFees (service fees charged by various airfare aggregators)
- PaperFees - (paper ticket charges of various airfare aggregators)
- VisaFees – (info from various embassy websites regarding visa fees to

 various countries, given various citizenships)
Table 2.1 – Sources of Airfare Application

2.1.3 - Ontology and Elevations
The ontology for the Airfare application is as follows:

Figure 2.1 – Airfare Ontology

The semantic type, basic, is the starting point of the ontology and all inheritance chains
eventually lead back to it. The ontology details all the entities (semantic types) in the
application space and models the relationships between them. The various “columns” of data

 15

from all the sources are elevated to semantic types in the ontology. A following is a summary
of these elevations:

Source Elevations (Column in data source semantic type)
Elevations from
Airfare sources

- Airline airline
- Price price
- Destination cityOrAirport
- Departure cityOrAirport
- Date1 (departure date) date
- Date2 (return date) date
- Month1 (depart month -some sites use month & day rather than date) month
- Month1 (return month-some sites use month & day rather than date) month
- Day1 (depart day-some sites use month & day rather than date) day
- Day2 (return day-some sites use month & day rather than date) day
- Provider (i.e. site that found fare, ex. Orbitz) provider
- IsIn (i.e. the country the destination is in) country

Elevations from
currency
conversion source

- Exchanged (i.e. fromCurrency) currency
- Expressed (i.e. toCurrency) currency
- Rate exchangeRate
- Date (i.e. txnDate) date

Elevations from
service fees table

- Provider (i.e. site that found fare, ex. Orbitz) provider
- Service Fee serviceFee

Elevations from
paper_fees table

- Provider (i.e. site that found fare, ex. Orbitz) provider
- Paper Fee paperFee

Elevations from
visa_fees table

- Citizenship (of traveler) country
- Destination (of traveler) country
- Visa Fee visaFee

Table 2.2 – Airfare Application Elevations

2.1.4 - Modifiers and Context

The most interesting part of the ontology are the semantic types that have modifiers because it
is the modifiers that allow the existence of multiple contexts. Indeed, the existence of
modifiers is what distinguishes ECOIN ontologies from ontologies in the traditional sense –
ECOIN ontologies contain modifiers while traditional ontologies are limited to semantic types
and attributes (or equivalents thereof). In this ontology, moneyAmount, price, duration
and date have modifiers.

MoneyAmount has the modifier, currency. All semanticTypes that inherit from
moneyAmount (i.e. price, serviceFee, paperFee, visaFee) also inherit
currency.

 16

price has the modifiers, includesServFee, includesPaperFee and
includesVisaFee all of which can take a value of either “yes” or “no” based on whether
the understanding of price is to include the fee in question.

Duration has the modifier durationType and date has the modifier dateType. These
were created to support multiple understandings of duration and date - namely, a
duration that includes stopover time versus only flight time and a US date type versus a
European date type. However, in this version of the application, these modifiers were not
implemented in the application prolog file.

The application defines several contexts – one for each source and two user contexts. Each
context is defined by the set of modifier values that captures the assumptions that particular
source (or user) makes when interpreting the data. The following is a table that summarizes
the modifier values for all the contexts:

Context
Type

Context
Name includesServiceFee includesPaperTktCharge includesVisaFee Currency

Dora's Friend No No No GBP Receiver
Contexts

Dora Yes Yes Yes USD

Yahoo Yes No No USD

Expedia Yes No No USD

Orbitz No No No USD

Travelselect No No No GBP

Source
Contexts

Itn No No No USD

Table 2.3 – Airfare Application Context Table

2.1.5 - Sample Queries

Going back to Dora’s planning of her trip to Istanbul, we walk through one query she might
run during her search:

Select Provider, Airline, Destination, Departure, Price from travelselect where Destination=”IST” and Departure=”BOS” and
Month1=”08” and Month2=”08” and Day1=”11” and Day2=”23”;

Below is an illustration of the steps her query goes through on GCMS:

1. Query and Receiver Context Entry
GCMS sends a user's query to the ECOIN abduction engine along with the user's context.
Next, the abduction engine sees what source the user wants to query and determines the
source context.

 17

Figure 2.2 –Query and Receiver Context Entry in GCMS

2. Conflict Detection
Using ontology and elevation information drawn from the application file, the abduction
engine determines the semantic types of the data that are desired from the source. Looking at
the user’s query and then at the elevations table (Table 2.2), we see that the semantic types in
this case are provider, airline, cityOrAirport and price. The engine checks if
those semantic types have modifiers associated with them and if so, it determines if there are
any differences in the modifiers’ values in the source context versus the receiver context (i.e.
are there any context differences?). If we look at the ontology diagram again we see that
price has modifiers. Next, if we look at the context table (Table 2.3) we see that there is a
conflict in the values of currency, includesServFee and includesPaperFee
between the Travelselect context and Dora context.

Figure 2.3 – Conflict detection in GCMS

 18

3. Mediation and Revised Query
If there are conflicts, the abduction engine revises the user's query to contain conversion
functions that will reconcile the differences between the user's context and the source's
context. Note how different (and longer!) the query below is compared to the original user's
query in Step 1. Without context mediation, not only would the user have to write long,
tedious queries, but would need to be aware of the different contexts the sources assume and
would need to know or lookup how to convert between contexts (for example, how much of a
service fee to add).

Figure 2.4 – Mediation and Revised Query in GCMS

If Dora wanted to find the cheapest fares across all sources, she would write the following
query:

select Provider, Airline, Destination, Departure, Price from yahoo where Destination="NRT" and Departure="BOS" and
Month1="Aug" and Month2="Aug" and Day1="23" and Day2="30"
UNION
select Provider, Airline, Destination, Departure, Price from expedia2 where Destination="NRT" and Departure="BOS" and
Date1="08/23/03" and Date2="08/30/03"
UNION
select Provider, Airline, Destination, Departure, Price from myorbitz where Destination="NRT" and Departure="BOS" and
Month1="Aug" and Month2="Aug" and Day1="23" and Day2="30"
UNION
select Provider, Airline, Destination, Departure, Price from travelselect where Destination="NRT" and Departure="BOS" and
Month1="08" and Month2="08" and Day1="23" and Day2="30"
UNION
select Provider, Airline, Destination, Departure, Price from itn where Destination="NRT" and Departure="BOS" and
Month1="Aug" and Month2="Aug" and Day1="23" and Day2="30";

 19

There are five sources here and Dora can be blissfully ignorant of all the differences between
each of the sources’ contexts and her own. To get an inkling of how much work she’s saving,
we can see how many conversions, from adding fees to changing currencies, the generated
context-sensitive SQL query is doing below:

select yahoo.Provider, yahoo.Airline, 'NRT', 'BOS', (yahoo.Price+paper_fees.paperfee)
from (select Airline, Price, 'NRT', 'BOS', 'Aug', 'Aug', '23', '30', Provider, IsIn
 from yahoo
 where Destination='NRT'
 and Departure='BOS'
 and Month1='Aug'
 and Month2='Aug'
 and Day1='23'
 and Day2='30') yahoo,
 (select provider, paperfee
 from paper_fees) paper_fees
where yahoo.Provider = paper_fees.provider
union
select expedia2.Provider, expedia2.Airline, 'NRT', 'BOS', expedia2.Price+paper_fees2.paperfee)
from (select Airline, Price, 'NRT', 'BOS', '08/23/03', '08/30/03', Provider, IsIn
 from expedia2
 where Destination='NRT'
 and Departure='BOS'
 and Date1='08/23/03'
 and Date2='08/30/03') expedia2,
 (select provider, paperfee
 from paper_fees) paper_fees2
where expedia2.Provider = paper_fees2.provider
union
select myorbitz.Provider, myorbitz.Airline, 'NRT', 'BOS', ((myorbitz.Price+servicefees.ServiceFee)+paper_fees3.paperfee)
from (select Airline, Price, 'NRT', 'BOS', 'Aug', 'Aug', '23', '30', Provider, IsIn
 from myorbitz
 where Destination='NRT'
 and Departure='BOS'
 and Month1='Aug'
 and Month2='Aug'
 and Day1='23'
 and Day2='30') myorbitz,
 (select Provider, ServiceFee
 from servicefees) servicefees,
 (select provider, paperfee
 from paper_fees) paper_fees3
where myorbitz.Provider = servicefees.Provider
and servicefees.Provider = paper_fees3.provider
union
select travelselect.Provider, travelselect.Airline, 'NRT', 'BOS',
(((travelselect.Price+servicefees2.ServiceFee)+paper_fees4.paperfee)*olsen.rate)
from (select Airline, Price, 'NRT', 'BOS', '08', '08', '23', '30', Provider, IsIn
 from travelselect
 where Destination='NRT'
 and Departure='BOS'
 and Month1='08'
 and Month2='08'
 and Day1='23'
 and Day2='30') travelselect,
 (select Provider, ServiceFee
 from servicefees) servicefees2,
 (select provider, paperfee
 from paper_fees) paper_fees4,
 (select 'GBP', 'USD', rate, '7/10/03'
 from olsen
 where exchanged='GBP'
 and expressed='USD'
 and date='7/10/03') olsen
where travelselect.Provider = servicefees2.Provider
and servicefees2.Provider = paper_fees4.provider

 20

union
select itn.Provider, itn.Airline, 'NRT', 'BOS', ((itn.Price+servicefees3.ServiceFee)+paper_fees5.paperfee)
from (select Airline, Price, 'NRT', 'BOS', 'Aug', 'Aug', '23', '30', Provider
 from itn
 where Destination='NRT'
 and Departure='BOS'
 and Month1='Aug'
 and Month2='Aug'
 and Day1='23'
 and Day2='30') itn,
 (select Provider, ServiceFee
 from servicefees) servicefees3,
 (select provider, paperfee
 from paper_fees) paper_fees5
where itn.Provider = servicefees3.Provider
and servicefees3.Provider = paper_fees5.provider

The final result returned is as follows:

Figure 2.5 – Result of query to all sources for cheapest airfare

These results are all in Dora’s context. That is, the prices quoted are all in US dollars, include
the service fee, the paper ticket charge and a visa fee to go to Japan regardless of whether
Orbitz, Yahoo etc shared such an understanding of price.

2.1.6 - Future expansion: accommodated by the ontology or left up to merging?

If we look at the ontology diagram in Figure 2.2 and then look at the elevations in Table 2.2,
we note that there are semantic types in the ontology that are not mentioned in the elevations
table. This means there are semantic types and attributes that the ontology provides but are
not currently being used in the application. This is because ontologies are purposely created to
be broad and general – an idealistic rendering of the application space where some of the
features may not necessarily exist but will perhaps be added in the future.

In this case, we have duration, durationType, dateType, onTimeProbability
and timeZone. duration and dateType were discussed earlier.
OnTimeProbabilities and timeZone can be used when trying to figure out the
chances of missing a connection. To implement both of these features would require gleaning
stopover information, timezone information and flight timeliness information from the
sources. All of this information is usually available and would make for a very interesting
application expansion.

 21

Overall, however, we note that the ontology is not that much broader in scope than the actual
application implementation – there is not that much left for future expansion. This is
intentional because, as a ECOIN application, in the future, Airfare can simply be merged with
other applications that provide interesting expansion or features. This is a much simpler way
of creating ontologies because it saves the developer from having to predict what directions
the application will need to go in the future and allows him to focus on the current needs of
the application.

2.2 Car Rental Application

In this section, we describe the second ECOIN application in this case study of merging – Car
Rental. The sections below present the motivation, contexts, ontology, sources and a sample
run of the application. Appendix B contains the application Prolog file that captures all of the
ontology, source and context information of Car Rental.

2.2.1 – Motivation and Context Differences
Joe is another person in the group who travels a lot. However, he is not as adventurous as
Dora and prefers to stay within the country. Rather than fly, he usually rents cars and drives
everywhere and thus is an avid user of car rental websites. At these sites, he enters the date,
place and time he would like to pick up and return the car and the site quotes him various
rates from different rental companies. Once again there are several context issues that Joe
faces in searching the different sites. A summary of the issues he faces is:

• What is the time period that the rate is based on? Suppose Joe wants to rent for six
days. One site may quote him a rate of $24 (per day) while another may quote him
$150 (per week) because some companies give a weekly rate even when renting for as
little as five days (as long as a weekend falls among those five days). To compare
them meaningfully, Joe must convert those rates and determine what his total cost
would be. The mental arithmetic can be difficult, bothersome and error-prone when
multiple sites are queried.

• What about all the fees, taxes, insurance? Here is where the real nightmare is –
different states have different laws about taxes and insurance while different rental
companies have a multitude of fees they may charge. Clicking through multiple
screens of various rental websites to determine the various taxes and fees is no quick
task.

• Renting from a location in the city or an airport? Joe knows that the biggest selection
of cars in a city is usually at the airport and so he often has to look up the airport code
of a city in order to rent from there. It would be very convenient if he could simply
enter the city and state that he would like to rent from and have that automatically be
converted to an airport code.

 22

• Some sites accept dates in numeric format while others expect otherwise (i.e. 08 vs.
Aug)

Overall, there are several issues that Joe would have to deal with every time he does a car
rental search online. Thus, inspired by his friend, he too decides to create a “context
interchange” application that can potentially alleviate most, if not all, of the context issues for
him.

2.2.2 – Sources

The application Joe creates is called Car Rental. The following is a summary of the sources in
Car Rental:

Category of Source Source Name
Car Rental Sources
(all from the Web and
wrapped with Cameleon)

- Expediacar – http://www.expedia.com
- Yahoocar - http://travel.yahoo.com
- Qixocar – http://www.usahotelguide.com/nexres/cars/

Other Information sources - http://www.logisticsworld.com/airports.asp (cameleon)

Oracle tables created for
utility

- month_symbol_converter (converts from numeric to three-letter symbol)
- rate_period_dividefactors (divide factors to convert from one rateperiod to

 another)

Table 2.4 – Car Renter Sources

2.2.3 - Ontology and Elevations

The ontology for the Car Rental application is as follows:

 23

Figure 2.6 – Car Renter ontology

The various “columns” of data from all the data sources are elevated to semantic types in the
ontology. The following is a summary of the elevations:

 24

Source Elevations

Elevations from Airfare
sources

- Pickup city
- Dropoff city
- Date1 (departure date) date
- Date2 (return date) date
- Month1 (depart month -some sites use month & day rather than date) month
- Month1 (return month-some sites use month & day rather than date) month
- Day1 (depart day-some sites use month & day rather than date) day
- Day2 (return day-some sites use month & day rather than date) day
- Price (rental rate) price
- Company (i.e. the car rental company) company
- RatePeriod (i.e. of rate quoted by company) country

Elevations from
airport_code_lookup

- Location city
- AirportCode city

Elevations from
month_sym_converter

- Mm_number month
- symbol month

Elevations from
rateperiod_dividefactors

- Rateperiod (ex: ‘weekly’, ‘monthly’, etc) ratePeriod
- DivideFactor divideFactor

Table 2.5 – Car Renter Elevations

2.2.4 - Modifiers and Context

There are three semantic types in the Car Rental ontology that have modifiers: month, price
and city.

month has the modifier, monthSymType which can take on the values “numeric” or “three-
letter” depending on whether the context in question represents months with a two-digit
number or a three-letter symbol.

Price has the modifiers includeServFee and ratePeriod. includesServFee can
take on the values “yes” or “no” depending on whether a service fee is included or not.
rateperiod is a dynamic modifier. For each rate that is quoted, the ratePeriod might
differ because the rates different companies quote might be based on different rate periods.
Thus for each result returned, the modifier value could be different – the abduction engine
must lookup what ratePeriod (‘monthly’, ‘weekly’, ‘daily,’ etc) was returned and use that
as the modifier value. So if a user wants to rent from August 5 to August 14, one result that
might be returned is a rental rate of $270 with a “weekly” rate period. Now suppose the user
wants his ratePeriod to be “total” i.e. the rate for the total nine days. In that case he would
have to divide the $270 by seven to get the rate per day and then multiply by nine days to get
the price for the entire period.3

3 This discussion makes a few simplifying assumptions. For example, one thing we assume is that the rental
company would be willing to give the two days beyond the first seven days at the weekly rate. We are making
simplifying assumptions because the purpose here is not to create a car rental application that captures every
existing subtlety and can immediately be used in the real world. Rather, the goal is to give a flavor of the context

 25

city has the modifier airportOrLocation which can take the value of “airport” or
“location” depending on whether the source/user refers to locations in “city, state” format or
with an airport code.

Using these modifier values, the application defines several contexts – one for each source
and two user contexts. The following is a table that summarizes the modifier values for all the
contexts:

Contexts IncludesServFee RatePeriod monthSymType CityOrAirportCode

Yahoo "Yes" dynamic – based on
result returned "three-letter" "airport"

Expedia "Yes" dynamic – based on
result returned "two-digit" "airport"

Qixo "No" dynamic – based on
result returned "two-digit" "airport"

Joe "Yes" dynamic – based on
result returned "three-letter" "city"

joe's friend "Yes" “total” "two-digit" "airport"

Table 2.6 – Car Renter Context Table

2.2.5 - Sample Query

To get an idea of the conversions involved, we look at a query Joe might run to find the
cheapest rental rates across multiple rental sources:

select Price, Company, Rateperiod from expediacar where Pickup="San Francisco CA" and Dropoff="same" and Date1="08/10/03"
and Date2="08/13/03" and Month1="Aug" and Month2="Aug" and Day1="07" and Day2="10"
UNION
select Price, Company, Rateperiod from qixocar where Pickup="San Francisco CA" and Dropoff="same" and Month1="Aug" and
Month2="Aug" and Day1="07" and Day2="10"
UNION
select Price, Company, Rateperiod from yahoocar where Pickup="San Francisco CA" and Dropoff="same" and Month1="Aug" and
Month2="Aug" and Day1="07" and Day2="10";

The query the abduction engine returns is as follows. Note all the automatic airport code
conversions, month symbol conversions and service fee additions:

select expediacar.Price, expediacar.Company, expediacar.Rateperiod
from (select 'San Francisco CA', airportcode
 from airport_code_lookup
 where location='San Francisco CA') airport_code_lookup,
 (select 'same', airportcode
 from airport_code_lookup
 where location='same') airport_code_lookup2,
 (select mm_number, 'Aug'
 from month_symbol_converter
 where symbol='Aug') month_symbol_converter,
 (select mm_number, 'Aug'
 from month_symbol_converter

issues that exist in the car rental domain in order to demonstrate context mediation. If we wanted to solve this
problem thoroughly, we would capture the sundry subtleties of rateperiods more carefully.

 26

 where symbol='Aug') month_symbol_converter2,
 (select Pickup, Dropoff, '08/10/03', '08/13/03', Month1, Month2, '07', '10', Price, Company, Rateperiod
 from expediacar
 where Date1='08/10/03'
 and Date2='08/13/03'
 and Day1='07'
 and Day2='10') expediacar
where month_symbol_converter.mm_number = expediacar.Month1
and month_symbol_converter2.mm_number = expediacar.Month2
and airport_code_lookup.airportcode = expediacar.Pickup
and airport_code_lookup2.airportcode = expediacar.Dropoff
union
select (qixocar.Price+9.99), qixocar.Company, qixocar.Rateperiod
from (select 'San Francisco CA', airportcode
 from airport_code_lookup
 where location='San Francisco CA') airport_code_lookup3,
 (select 'same', airportcode
 from airport_code_lookup
 where location='same') airport_code_lookup4,
 (select mm_number, 'Aug'
 from month_symbol_converter
 where symbol='Aug') month_symbol_converter3,
 (select mm_number, 'Aug'
 from month_symbol_converter
 where symbol='Aug') month_symbol_converter4,
 (select Pickup, Dropoff, Month1, Month2, '07', '10', Price, Company, Rateperiod
 from qixocar
 where Day1='07'
 and Day2='10') qixocar
where month_symbol_converter4.mm_number = qixocar.Month2
and airport_code_lookup3.airportcode = qixocar.Pickup
and airport_code_lookup4.airportcode = qixocar.Dropoff
and month_symbol_converter3.mm_number = qixocar.Month1
union
select yahoocar.Price, yahoocar.Company, yahoocar.Rateperiod
from (select 'San Francisco CA', airportcode
 from airport_code_lookup
 where location='San Francisco CA') airport_code_lookup5,
 (select 'same', airportcode
 from airport_code_lookup
 where location='same') airport_code_lookup6,
 (select Pickup, Dropoff, 'Aug', 'Aug', '07', '10', Price, Company, Rateperiod
 from yahoocar
 where Month1='Aug'
 and Month2='Aug'
 and Day1='07'
 and Day2='10') yahoocar
where airport_code_lookup5.airportcode = yahoocar.Pickup
and airport_code_lookup6.airportcode = yahoocar.Dropoff

The final result returned is as follows:

 27

Figure 2.7 – Results of Query in Car Renter to all sources

2.3 - Merging Airfare and Car Rental

The airfare and car rental applications form excellent complements of each other and the
logical question arises: is it possible to have a general travel application that searches for both
airfares and car rental rates? The answer is yes – ECOIN application merging allows large
applications to be built from multiple small applications and allows reuse of relevant portions
of existing ontologies.

But application merging is not just for building larger applications from smaller applications.
There are three goals that can potentially be accomplished when merging any two
applications. We present these goals below and also explain them in light of the Airfare and
Car Rental Applications.

 28

2.3.1 - Goals of Merging Two Applications

Goal 1:
Seamless source access: Sources from both applications will be available in one
application. For example, a user would be able to use one, consolidated query to access
sources from both the airfare and the car rental application to find the lowest airfare and
cheapest car at his destination:

Give me the airline and price from expedia and a car rental company and rental rate from yahooCar
for the cheapest airfare and car rental for a trip from Boston, MA to San Francisco, CA from Jun 13th
2003 to Jun 19th 2003.

Without merging, the sources of an ECOIN application are available only when running
that specific application. If a user finds a set of sources in application Y that he believes
would be relevant in application X, he can only access those sources by running
application Y. If he wanted to access Application Y’s sources from application X, he
would have to add them to application X and elevate them to application X’s ontology.
Achieving Goal 1 would eliminate this limitation - Sources from both applications would
be available in one application without the need to elevate those sources or modify either
ontology.

Goal 2:
Cross-fertilization of contexts: Use the context capabilities of one application to benefit
the other application. For example:

o Use currency conversion available from Airfare application to benefit car rental (which has no
notion of currency) so merged application will support the addition of new, international car rental
sources

o Use city name to airport code conversion available from Car Rental application to benefit Airfare
application (which deals only in airport codes) so that the merged application allows airfare
queries in which the user does not need to know airport codes.

There are several types of context differences that are general enough problems that we
see them appear in many application domains. Currency conversion, sales tax calculation,
European to American date format conversion are a few such examples. Beyond these,
there are other, less general context issues that may be solved in one application and
would be useful in another application. For example, calculating shipping costs based on
weight and dimension might be solved in a textbook shopping application and would be
useful if imported into some other shopping application. The ideal solution would avoid
duplication of work and re-use contexts, sources and application code available in other
applications to solve the needs of an application in question. This is what Goal 2 seeks -
cross-fertilization of contexts allows a developer to breed for the best possible genes from
two applications.

 29

Goal 3:
Value Added Benefits: Extend the new merged application to add value beyond what the
two applications can provide. For example adding a new source or a new context that
makes sense in the merged environment but would not make sense in the individual
applications:

Add a new context called FlyAndRent to the merged Airfare and Car Rental Application. In this
context, define price as sum of airfare and car rental price. As a result, in a query, the user can simply
ask for price and without having to query an airfare source and a car rental source (such as in goal #1
above), he is quoted a price that includes both.

The addition of FlyAndRent to the merged application would demonstrate that a merged
application allows extension of the two previous applications to provide features that could
not have been provided by simply extending one (or both) of the independent applications.

The three goals of merging discussed in this section will come up repeatedly in the rest of this
thesis and for the sake of simplicity, will be referred to as “Goal 1,” “Goal 2” and “Goal 3.”

 30

3. – Merging Applications

The previous chapter discussed the Airfare and Car Rental applications, the motivation for
merging them and the goals of merging. This chapter delves into the details of merging. It
discusses two possible types of merging, materialized versus virtual. Then it goes into the
details of virtual merging using context linking and presents an algorithm of such a process.
Finally it presents the merging details of the Airfare + Car Rental study.

3.1 – Materialized Merging versus Virtual Merging

Succinctly defined, ontology merging seeks to establish correspondences among source
ontologies and to determine the set of overlapping concepts, concepts that are similar in
meaning but have different names or structure. Ontology merging also seeks to establish
relationships between the concepts that are unique to each of the sources [14].

Ontology merging literature discusses two flavors of merging. It terms them merging and
alignment. It uses the term merging when the ultimate goal is to create a single coherent
ontology that includes the information from all the source ontologies. It uses the term
alignment when the source ontologies must be made consistent and coherent with one
another but kept separately [14]. As mentioned in Section 1.4.1, we identify this distinction in
merging approaches as materialized versus virtual. In the sections below, we present these
two approaches in more detail and justify the use of virtual merging for the purpose of
ECOIN applications.

3.1.1 – Materialized Merging

Materialized merging begins with two ontologies and ends with one coherent, complete, new
ontology that contains no redundancies i.e. the resulting ontology will not contain multiple
semantic types describing the same (or similar) concept. For example, if ontology A contains
Price and ontology B contains Cost to represent the same concept, then only one of those
entities should exist in the merger of A and B. In the end, the result that is sought is the
“materialization” of a single, new ontology that covers the domains of the two individual
ontologies in an elegant manner – i.e. it should seem, as much as possible, as if the ontology
had been developed from scratch with the goal of covering the union of the two domains and
the two constituent ontologies are meant to be scrapped.

To achieve “materialized” merging, one needs to go through every single semantic type and
attribute, determine its meaning, determine if there is some equivalent, some subclass, some
superclass or some similar semantic type in the other ontology. If so, the redundancies have to
be removed and the correct relationships have to be established (sub or superclass, homonym,
synonym, etc [1]). For example, let us take a look at simplified versions of the Airfare and
Car Rental ontologies (see Figure 3.1 on next page) and merge them using the materialized
approach:

 31

Looking at both ontologies, we see many similar semantic types. trip from Airfare and
rental from Car Rental have many similar attributes: destination and origin are
analogous to pickup and dropoff, departureDate and returnDate are analogous
to pickupDate and dropoffDate, price is analogous to price, and airline is
analogous to rentalCompany. Thus the semantic types these attributes point to can be
considered synonyms (i.e. date from both ontologies are synonyms, price from both
ontologies are synonyms, airline and company are synonyms, cityOrAirport and
city are synonyms). Beyond these, there are even more analogous semantic types:
moneyAmount, serviceFee, and includesServFee.

Given the above overlap in semantic type and attribute relationships, the two ontologies can
be merged by considering trip a superclass of rental since trip is a more general
concept (i.e renting a car can be considered as going on trip). Those attributes and semantic
types that exist below rental but do not exist below trip can simply be added to the
merged ontology in the appropriate places. The overall result appears at the bottom of Figure
3.1 below:

 32

 33

As discussed, rental now inherits from trip. Virtually none of the attribute names of
trip were modified because they were analogous to the attribute names of rental even if
the naming now seems a bit awkward when applied to rental. For example,
departureDate works well for airline trips but is somewhat of an awkward name for the
pickup date of a car rental. However, it is not too much of a stretch and is acceptable because
one can conceive of the “departure date” of a car rental trip. The only attribute name (and
semantic type) that was modified was airline, which was changed to the more general,
company because company can represent the airline company as well as the car rental
company. Looking at the rest of the ontology, we see that we have added a few more semantic
types and attributes that came from the Car Rental ontology. Namely, we have added
airportOrLocation, month, day, year, ratePeriod, and divideFactor.

Overall, we have merged ontologies using the materialized approach. The result contains no
redundancies i.e. no concept is represented multiple times in the merged ontology. The overall
appearance is as if the ontology was developed right from the beginning with the intention of
covering an airfare + car rental domain4. This one ontology can now be used for either the
airfare or the car rental application or the combination thereof and the two previous ontologies
can be scrapped, as is usually the goal when using the materialized approach to ontology
merging.

3.1.2 - Virtual Merging through Context Linking

In merging ontologies using the materialized approach, we had to peruse every semantic type
and attribute to determine relationships with the other ontology. Meanwhile, virtual merging
is concerned with functionality – creating a third application that allows access to the two
underlying applications’ sources from one place. The intention is to have the ontologies of the
two applications persist unchanged (and still be used by their respective ECOIN applications)
while the new merged application gives the “virtual” appearance of running on one merged
ontology.

Context Linking – Merging is Driven by Context Differences
The context-linking method is used for virtual ontology merging. Rather than actually
merging the two ontologies to achieve a new third ontology, we “link the contexts” of the two
ontologies. That is, we determine the relationships between those semantic types that can have
multiple interpretations. This is sufficient because as we said above, the goal is to achieve an
application that allows queries covering multiple ECOIN ontologies – queries that reach
sources from both applications (and deal with context issues of both applications). Thus we
need to worry only about those semantic types that will be interpreted differently by the two
applications – this information is encapsulated in the contexts – hence we call it linking
contexts. We need not worry about semantic types that have no modifiers because data that is
elevated to those semantic types can be interpreted unambiguously by both applications.

4 With the exception, perhaps, of some awkward naming

 34

Figure 3.2: The Context Linking Approach

Merging axioms focus mainly on
linking contexts – creating
relationships betweens those
semantic types that have modifiers.

Thus the main thrust of the merging process is to analyze modifiers and to establish
relationships between semantic types that have modifiers. Of course, there are other
considerations in merging (for example, flushing out implicit modifiers (see Section 3.2),
extending the merged application, etc) but we say that overall, the merging process is driven
by context differences.

3.1.3 - Linking Contexts Between Airfare and Car Rental

To virtually merge Airfare and Car Rental by linking contexts, we take a look at the semantic
types that have modifiers and determine the relationships across the two applications between
such semantic types. In essence, we are looking for those semantic types that are equivalent to
each other.

Going back to Figure 3.1, we look at city from the Car Rental ontology and
cityOrAirport from the Airfare ontology. city has the modifier
airportOrLocation but cityOrAirport has no explicit modifier because Airfare
deals only with airport codes. However, we can consider airportOrLocation to be an
implicit modifier of cityOrAirport. A modifier can be left implicit in an application if its
value would be the same in all contexts of the application (as is the case in Airfare). But when
we merge Airfare and Car Rental and consider city and cityOrAirport equivalent, we
must retain the modifier airportOrLocation in explicit fashion and assign it the value
“airport” for all contexts from the Airfare application. Once city and cityOrAirport
have been merged, the attributes of destination and origin of semantic type trip
from (from Airfare), which used to point to cityOrAirport, now point to city (see
Figure 3.3).

Ontology 1

Ontology 2

Context in Ontology 1 Context in Ontology 2

Merging Axioms

 35

We make similar decisions regarding the semantic types month and moneyAmount, which
exist in both applications. In both cases, we realize that the matching semantic types are
equivalent. However, month from Airfare has an implicit modifier monthSymType
because that context issue was simply not addressed and the user was left to enter the month
symbol in proper format when writing the query. Meanwhile, currency is an implicit
modifier of moneyAmount in Car Rental because all sources are US-based so the value
across all contexts is ‘US dollars’. After the merge, however, currency is given an explicit
value in all the contexts of both applications. Once month from Airfare and month from Car
Rental have been merged and moneyAmount from Airfare and moneyAmount from Car
Rental have been merged, the attribute hasMonth of date from Airfare points to month
from Car Rental and those attribute and inheritance arrows that used to point to
moneyAmount in Car Rental now point to moneyAmount in Airfare (see figure 3.3).

The last semantic type with a modifier is price. price is not equivalent in both
applications because price in Car Rental has a modifier ratePeriod that does not exist
for the semantic type price from Airfare (nor can ratePeriod be considered an implicit
modifier of price in Airfare). Thus in the merged ontology, we see price from both
applications have not been merged5.

Since there are no more semantic types with modifiers (explicit or implicit), we have reached
the end of virtual merging through context linking. Below is a picture of what the virtually
merged ontology would look like. We note that there are many redundancies in the sense that
there are multiple semantic types that represent similar concepts – for example, date, price,
serviceFee, etc. However, as explained earlier, this is not a problem because here we are
concerned with the practical issue of functionality (allowing source access and context
sharing across two applications) and not the theoretical problem of neatly and completely
merging two ontologies.

5 Two semantic types in an ontology cannot actually have the exact same name and indeed COIN semantic types
(and modifiers, etc) are all preceded by a unique application identifier. Thus price from Airfare and price
from Car Rental actually have different names. We leave those unique application prefixes out in the explanation
above for the sake of clarity. See section 3.3.2 for more on unique application prefixes.

 36

Figure 3.3 – Virtually Merged Ontology

3.2 - How to merge applications – The Merging Algorithm and the Merger Axioms

So far, we have discussed virtual merging through context linking by means of a high level
example. The next few sections discuss the technical details of context-linking – they
introduce merger axioms, present the merging algorithm, and then go into the details of
creating actual merger axioms.

3.2.1 – Merger Axioms

To merge two ECOIN applications through context-linking, a user must create a merger
axioms file. These axioms can be created by following the set of steps (a merging algorithm)
that we present in more detail in the next section. The purpose of the merger axioms is to
allow the abduction engine to reason about the merged application as a legitimate, standalone
ECOIN application. The axioms accomplish this by serving three functions (the earlier-stated
goals of merging)6:

1) They bring together the sources of both applications into one merged application
2) They reconcile the contexts of the two applications and bring context benefits of both

applications into the merged application
3) They extend the merged application (i.e. add new semantic types, modifiers, contexts

etc).

Of the above three functions, the most important is reconciling contexts. What do we mean by
reconciling contexts? We said above that the purpose of the axioms is to allow the abduction
engine to reason about the merged applications as one standalone application. When we say

6 The goals are stated in slightly different words here to further nuance our understanding of them

 37

“reason about the merged applications” we mean, “reason about the contexts of both
applications from within one merged application” because, after all, it is context mediation
that is the goal of the ECOIN approach. To be able to reason correctly about the contexts of
both applications, we must be sure that the contexts make sense. That is, all the modifiers that
now exist together within one application must fit correctly into all the contexts that have
been inherited from both applications – this is the context reconciliation that the merger
axioms perform.

Context reconciliation is achieved by determining isomodifiertypes, isomodifiers,
isoattributes and isocontexts between the two applications. These are, in essence, equivalence
relationships between the ontology objects of the two applications. Their definitions are as
follows:

isomodifiertypes: semantic types that are equivalent with respect to their modifiers. That is, if
semantic type A is an ismodifiertype of semantic type B, then for every modifier of semantic
type A, there is an equivalent modifier of semantic type B that exists either explicitly or is
implicit. By “implicit” we mean the modifier was not declared because it would have the
same value for every context in that application. For example, currency is implicit in Car
Rental because all the sources are domestic and it would have had the value ‘USD’ in every
Car Rental context.

isomodifiers: modifiers that are equivalent (even if they have different names)

isoattributes: attributes that are equivalent (even if they have different names)

isocontexts: contexts that are equivalent (even if they have different names)

3.2.2 – How the Merger Axioms Work

For the abduction engine to be able to use the merger axioms, two things are needed: upward
inheritance and globally unique names of ontology and context objects. In this section we
explain these two concepts and explain how the abduction engine uses the merger axioms.

Upward Inheritance
As discussed in section 1.2.2, the ontology, context information, source information and
elevation axioms of an application are described by Prolog rules in a single text file. When
merging two applications, these rules are all automatically “inherited upward” into the merger
axioms file. That is, simply by declaring that two applications have been merged, the merger
axioms file indicates to the abduction engine that all rules from the two underlying application
files are to be considered part of the merged application even though they do not explicitly
exist in the merger axioms file. Anything new that is declared in the merger axioms file
overrides any existing rules from underlying applications.

 38

Unique Naming
The fact that rules originating from multiple applications can exist (albeit implicitly through
upward inheritance) within the merged application means that semantic type names, modifier
names, etc need to be globally unique because any two applications are potential candidates
for merging. If names were not unique, then when the abduction engine looks up a semantic
type that happens not to be unique, it would find more than one set of modifiers and would
not know how to interpret the data represented by those semantic types. To solve this, ECOIN
labels all applications with a globally unique URI. This URI precedes each semantic
type/modifier/attribute/context name in an application and furnishing uniqueness in naming.

How the Abduction Engine Uses the Axioms
Overall, the abduction engine treats merged applications as follows [6]: Upon receiving a
query from the user, the abduction engine has to determine to which semantic type each of the
data columns requested is elevated. First it looks in the merger axioms file. If it finds the
elevation information there, it takes it. Otherwise, it determines what two applications have
been merged and goes into those application files and looks there for the relevant elevation
information. If the elevation rule does not exist there and one (or both) of the underlying
applications is also a merged application, the engine then looks into the “grandchildren”
applications’ files, and so on, until the appropriate elevation is found.

Upon determining the semantic type, the abduction engine then looks for the modifier
information of that semantic type. Once again, it starts in the merger axioms file and if the
information is not there, it looks for it through the levels of underlying applications.

In summary, upward inheritance and unique naming allow the abduction engine to treat the
merged application as a standalone ECOIN application. Upward inheritance allows the engine
access to both applications’ ontology, source and context information, unique naming
prevents duplicate name problems and the rest of the merger axioms reconcile the contexts
from both applications.

3.2.3 – The Merging Algorithm
So far we have discussed what the merger axioms file is for and how it works. But what is the
process through which this merger axioms file is created? To create the merger axioms file, a
general set of steps can be followed. The steps are captured in the flow chart in Figure 3.4.

The steps of the algorithm lead the user through the three goals of merging. Looking at figure
3.4, we see that step 1 accomplishes goal 1, steps 2 through 10 accomplish goal 2 and step 11
accomplishes goal 3. Note that the steps related to goal 2 constitute the bulk of the merging
algorithm. This is because goal 2 is the most significant function of the merger axioms (as
discussed in section 3.3.1).

Each “action item” in the merging flow chart yields one or more merger axioms. Namely,
“declaring an isomodifier,” or “pulling up a semantic type,” or “creating a conversion
function,” etc are all done by adding axioms to the merger file.

 39

END

semtype makes implicit
assumptions that should be
made explicit thru a modifier

Create an explicit modifier
for the sem type and give it a
value for all the contexts of
that app. Create any needed
conversion functions

Yes

semtype has an equivalent
in the other app

Pick semtype in App
A that has not been

examined

unexamined sem
types left in app A

Go to step
10

No

No

- Declare the two semtypes
isomodifiertypes

- Pull up one of the semtypes and
either keep its name or give it a
new name

Yes

one or both of the semtypes
has modifiers that the other

does not have

- Assign those modifiers values for all the
source contexts that did not previously
know about those modifiers.

- Create any needed conversion
functions

Declare Apps A and B merged

Yes

the semtypes have
modifiers that are

equivalent

the semtypes have
attributes that are

equivalent

Declare them
isomodifiers and pull up
one of them. Either keep
its name or give it a new

name

Declare them isoattributes
and pull up one of them.

Either keep its name or give
it a new name

No

the isomodifiers use
different values to

mean the same thing
(eg: 'usd' vs. '$')

- Create a modifier for the
modifier that was pulled up. That
new modifier will have two
possible values: 'fromAppA' and
'fromAppB.'

- Create a conv func for the new
modifier to convert the modifier
value from one app's
representation to the other.

unexamined sem
types left in app A

Declare them
isocontexts and pull up

one of them. Either
keep its name or give

it a new name

there are contexts in
app A equivalent to
contexts in App B

Extend the merged app
by adding to the

ontology, source and
context info as needed.

Go to step 2

1

2

3

4

5

6

7

8

9

10

11

No

No

No

No

No

Yes

Yes

Yes

Yes Yes

Go to step
2Yes

Go to step 8
Go to step 9

Go to step 11

Go to step
7

Go to step
4

Figure 3.4 – Flow Chart of the Merging Process

 40

3.3 – Understanding the Merger Axioms
The previous section has discussed the steps to create an axioms file. But we still need to
understand the actual axioms to the level that we can write them. Accordingly, this section
presents the types of merger axioms that accomplish the three goals of merging and the
following section discusses the axioms of the Airfare and Car Rental merger in detail.

As discussed in section 2.3.1, there are three goals that can potentially be accomplished when
merging any two applications. The merger axioms file must achieve at least Goal 1 and can go
on and achieve Goals 2 and 3 as well if the developer so desires. The type of axioms that
would be used to achieve the goals are exemplified in the table below:

The Desired Goal Merger Axioms Required
Example of Axiom in Prolog

(the numbering below corresponds to the
numbering in the second column)

Seamless access to
sources across both
applications

1) Declare that the applications have
been merged.

All existing sources and contexts
will be automatically inherited by
the new merged application

1)
rule(merges([appAirfare,appCarRental),(true)).

Use context capabilities
of one application to
benefit other
application.

For ex: want price in
Car Rental to obtain
currency conversion
capability from
airfarePrice in Airfare

1) Declare that moneyAmount
from Car Rental is equivalent to
moneyAmount from Airfare.
The appropriate modifiers (i.e.
currency) and conversion functions
will automatically apply.

2) For each context that merged app
inherits from Car Rental, declare a
modifier value for currency.

1)
rule(isomodifiertypes
 (appMergedTravel, appAirfare, price, airfarePrice),
 (true)).

2)
rule(modifier(price, O, currency, expediaCarContext, M),
 (cste(basic, M, expediaCarContext, "USDollar"))).
…
similar rule for the rest of the contexts from Car Rental

Extend merged
application with new
sources, contexts or
modifiers, etc

For example, add
context FlyAndRent
that defines price as
(airfare price) + (Car
Rental Price)

1) Need axiom for new context

2) New axiom for new modifier
being added

3) Need axioms that give that
modifier a value in all of the existing
contexts and assign all the existing
modifiers a value for the new context

4) Need axioms that define
conversion functions for the new
modifier

5) Need axioms that define new
attributes used by the new conv
functions that were added

1)
rule(contexts([newContextForFlyAndRent]),(true)).

2)
rule(modifiers(price, [includesCarRental]), (true)).

3)
rule(modifier(price, O, includesCarRental, doraContext, M),
 (cste(basic, Modifier, doraContext, “dontIncludeRental"))).
…
similar rule for the rest of the contexts in the merged app

4)
rule(cvt(commutative, price, O, includesCarRental, Ctxt,
 "dontIncludeRental", Vs, "yesIncludeRental", Vt),
 (attr(O, month1, M1),
 ...
 ...
 plus(airPrice, RentalPrice, Result))).
5)
rule(attr(Price, month1, Mnth1),
 (yahoo_p(_,Price,_,_,Mnth1,_,_,_,_,_))).

Table 3.1 – Summary of Merger Axioms Table

 41

3.4 – The Merger Axioms of Airfare + Car Rental

In this section, we work our way through the key merger axioms of the Travel Application
(the merger of Airfare and Car Rental) as an example that explains how to read and create
merger axioms (Appendix C contains the full merger axioms file). This example will
elucidate the details that lie between the lines of the table above. After this section, the table
above can be used as a useful summary reference. Furthermore, the merger axioms discussed
in this section can all be automatically generated by the proposed CLAMP tool, based on
input from the user regarding the merging decisions. We discuss this in detail in Chapter 4.

Seamless access to sources from both applications:
The first axiom declares:

rule(merges([application512,application513]),(true)).

The first thing to note is the application numbers – ECOIN refers to applications by a unique
number. From hereon, we note that 512 refers to Airfare, 513 to Car Rental and 514 refers to
the merged application (as represented by the merger axioms file).

The first axiom declares that applications 512 (Airfare) and 513 (Car Rental) have been
merged. That one rule causes the merged application to “upwardly inherit” all the ontology,
context, source and elevation information from both underlying applications. The rule enables
the user to query sources from both underlying applications through one seamless query in the
merged application.

This type of rule (i.e. the rule that allows seamless access to sources) is summarized in the
first row of the table above.

Cross fertilization of contexts:
The next axiom is as follows:
rule(isomodifiertypes(application514,application512,moneyAmount2,moneyAmount),

(true)).

This rule would be read as follows in plain English:

The semantic type, moneyAmount2 (from Car Rental) and moneyAmount (from Airfare) are
isomodifiertypes i.e. they are equivalent because they have the same set of modifiers. Thus “pull up”
moneyAmount2 into the merged application, i.e. use the name, moneyAmount2, to refer to this semantic
type in the emerged application.

By declaring the two semantic types to be equivalent with respect to their modifiers, the
axiom is saying that any modifier of those two semantic types that may be found in the airfare
or car rental application is now to be used in the new, merged application. MoneyAmount2
(from car rental) has no notion of currency (or one can consider it implicit). But since it
has been declared an "isomodifiertype" of moneyAmount (from Airfare), it automatically
inherits the currency modifier (and associated conversion functions). This axiom thus
allows the merged application to apply currency conversion capabilities of the airfare
application upon data coming from sources inherited from the Car Rental application.

 42

However, now that moneyAmount2 from Car Rental has inherited the currency modifier,
all the contexts that were inherited from Car Rental need to be assigned a currency value
since they previously had no such notion. The following rules perform that function:

rule(modifier(moneyAmount2, O, currency, joe, M),
 (cste(basic, M, joe, "USD"))).

rule(modifier(moneyAmount2, O, currency, c_expediacar, M),
 (cste(basic, M, c_expediacar, "USD"))).

rule(modifier(moneyAmount2, O, currency, c_yahoocar, M),
 (cste(basic, M, c_yahoocar, "USD"))).

rule(modifier(moneyAmount2, O, currency, c_qixocar, M),
 (cste(basic, M, c_qixocar, "USD"))).

These four rules assign the currency value “USD” for the four contexts inherited from Car
Rental (joe, c_expediacar, c_yahoocar, c_qixocar).

There are three more isomodifiertype rules declared in the merger file:
rule(isomodifiertypes(application514,application513,cityORAirport,city), (true)).
rule(isomodifiertypes(application514,application513,month,month2), (true))
rule(isomodifiertypes(application514,application513,day,day2), (true)).

The first rule declares city from Car Rental to be equivalent to cityOrAirport from
Airfare and “pulls up” cityOrAirport – i.e. the merged application will use the name
cityOrAirport. Now, cityOrAirport inherited from Airfare, has the airport code to
city name conversion capability that city from Car Rental has. The second rule declares
month2 from Car Rental to be equivalent to month from Airfare and pulls up month. Now
month, inherited from Airfare, has the month symbol conversion capability that month2
from Car Rental has. The third rule declares day2 from Car Rental to be equivalent to day
from Airfare and pulls up day.

Similar to the case above with moneyAmount and currency, now that month and
cityOrAirport from Airfare have inherited the airportOrLocation and
monthSymType modifiers, all the contexts that were inherited from Airfare need to be
assigned modifier values for those two modifiers. The following rules perform that function:

rule(modifier(cityORAirport, O, airportOrLocation, dora, M),
 (cste(basic, M, dora, "location"))).
rule(modifier(cityORAirport, O, airportOrLocation, doras_friend, M),
 (cste(basic, M, doras_friend, "location"))).
rule(modifier(cityORAirport, O, airportOrLocation, c_yahoo, M),
 (cste(basic, M, c_yahoo, "airport"))).
rule(modifier(cityORAirport, O, airportOrLocation, c_expedia, M),
 (cste(basic, M, c_expedia, "airport"))).
rule(modifier(cityORAirport, O, airportOrLocation, c_orbitz, M),
 (cste(basic, M, c_orbitz, "airport"))).
rule(modifier(cityORAirport, O, airportOrLocation, c_itn, M),
 (cste(basic, M, c_itn, "airport"))).
rule(modifier(cityORAirport, O, airportOrLocation, c_travelselect, M),
 (cste(basic, M, c_travelselect, "airport"))).

rule(modifier(month, O, month2SymbolType, dora, M),
 (cste(basic, M, dora, "threeLetter"))).
rule(modifier(month, O, month2SymbolType, doras_friend, M),

 43

 (cste(basic, M, doras_friend, "numeric"))).
rule(modifier(month, O, month2SymbolType, c_yahoo, M),
 (cste(basic, M, c_yahoo, "threeLetter"))).
rule(modifier(month, O, month2SymbolType, c_expedia, M),
 (cste(basic, M, c_expedia, "numeric"))).
rule(modifier(month, O, month2SymbolType, c_orbitz, M),
 (cste(basic, M, c_orbitz, "threeLetter"))).
rule(modifier(month, O, month2SymbolType, c_itn, M),
 (cste(basic, M, c_itn, "threeLetter"))).
rule(modifier(month, O, month2SymbolType, c_travelselect, M),
 (cste(basic, M, c_travelselect, "numeric"))).

The set of merger axioms just discussed (i.e. isomodifiertypes, assigning modifier values to
newly inherited modifiers) is what allows cross fertilization of contexts – use of the context
capabilities of one application to benefit the other application. This set of rules is summarized
in the second row of Table 3.1.

Extending the merged application

The next set of merger axioms begins with:

rule(contexts([c_FlyAndRent]),(true)).

rule(modifiers(price, [includesCarRental]), (true)).
rule(modifiers(provider, [includesCarCompany]), (true)).

The first rule introduces a new context, c_FlyAndRent, into the merged application. The
purpose of this context is to extend the merged application to provide benefits that cannot be
achieved by simply extending one (or both) of the underlying applications. This context
enriches the number of meanings of price and of provider. Namely, the next two rules
bestow a new modifier upon price and provider. Previously price referred to airfare
price and the semantic possibilities ranged from including service fees to paper ticket charges
to visa fees. Now a new modifier for price, includesCarRental, is being declared and
will have the value “yes” in the c_FlyAndRent context. Thus a user can now set his
context to c_FlyAndRent so that the price quoted to him includes a car rental at his
destination. Similarly, a new modifier for provider, includesCarCompany is being
declared and will have the value “yes” in the c_FlyAndRent context. Thus a user can know
the car rental company as well as the airfare provider (i.e. Orbitz, Yahoo, etc) when he is
quoted the combined price in the c_FlyAndRent context.

Now that a new context has been introduced, all the modifiers that exist in the merged
application need to be assigned values in the new context:

rule(modifier(price, Object, includesCarRental, c_FlyAndRent, Modifier),
 (cste(basic, Modifier, c_FlyAndRent, "yes"))).

rule(modifier(price, O, includesServFee, c_FlyAndRent, M),
 (cste(basic, M, c_FlyAndRent, "yes"))).

rule(modifier(price, O, includesVisaFee, c_FlyAndRent, M),
 (cste(basic, M, c_FlyAndRent, "no"))).

rule(modifier(price, O, includesPaperCharge, c_FlyAndRent, M),
 (cste(basic, M, c_FlyAndRent, "no"))).

 44

rule(modifier(price2, Object, includesServiceFee, c_FlyAndRent, M),
 (cste(basic, M, c_FlyAndRent, "yes"))).

rule(modifier(cityORAirport, O, airportOrLocation, c_FlyAndRent, M),
 (cste(basic, M, c_FlyAndRent, "airport"))).

rule(modifier(month, O, month2SymbolType, c_FlyAndRent, M),
 (cste(basic, M, c_FlyAndRent, "threeLetter"))).

rule(modifier(moneyAmount2, O, currency, c_FlyAndRent, M),
 (cste(basic, M, c_FlyAndRent, "USD"))).

rule(modifier(provider, Object, includesCarCompany, c_FlyAndRent, M),
 (cste(basic, M, c_FlyAndRent, "yes"))).

Furthermore, the two new modifiers that were introduced need to be assigned values for all
the already existing contexts:

rule(modifier(price, Object, includesCarRental, dora, Modifier),
 (cste(basic, Modifier, dora, "no"))).

rule(modifier(price, Object, includesCarRental, doras_friend, Modifier),
 (cste(basic, Modifier, doras_friend, "no"))).

rule(modifier(price, Object, includesCarRental, c_expedia, Modifier),
 (cste(basic, Modifier, c_expedia, "no"))).

rule(modifier(price, Object, includesCarRental, c_yahoo, Modifier),
 (cste(basic, Modifier, c_yahoo, "no"))).

rule(modifier(price, Object, includesCarRental, c_itn, Modifier),
 (cste(basic, Modifier, c_itn, "no"))).

rule(modifier(price, Object, includesCarRental, c_orbitz, Modifier),
 (cste(basic, Modifier, c_orbitz, "no"))).

rule(modifier(price, Object, includesCarRental, c_travelselect, Modifier),
 (cste(basic, Modifier, c_travelselect, "no"))).

rule(modifier(provider, O, includesCarCompany, dora, M),

 (cste(basic, M, dora, "no"))).
rule(modifier(provider, O, includesCarCompany, doras_friend, M),

 (cste(basic, M, doras_friend, "no"))).
rule(modifier(provider, O, includesCarCompany, c_yahoo, M),

 (cste(basic, M, c_yahoo, "no"))).
rule(modifier(provider, O, includesCarCompany, c_expedia, M),

 (cste(basic, M, c_expedia, "no"))).
rule(modifier(provider, O, includesCarCompany, c_orbitz, M),

 (cste(basic, M, c_orbitz, "no"))).
rule(modifier(provider, O, includesCarCompany, c_itn, M),

 (cste(basic, M, c_itn, "no"))).
rule(modifier(provider, O, includesCarCompany, c_travelselect, M),

 (cste(basic, M, c_travelselect, "no"))).

Finally, new conversion functions have to be written for the two new modifiers:

rule(cvt(commutative, price, O, includesCarRental, Ctxt, "no", Vs, "yes", Vt),
 (yahoocar_p(DestC, Dropoff, M1C, M2C, D1C, D2C, Rp, _, _),
 attr(O, month1, M1),

 attr(O, month2, M2),
 attr(O, day1, D1),
 attr(O, day2, D2),
 attr(O, destination, Dest),
 value(M1, c_yahoo, M1v),

 value(M1C, c_yahoo, M1v),
 value(M2, c_yahoo, M2v),
 value(M2C, c_yahoo, M2v),

 value(D1, c_yahoo, D1v),
 value(D1C, c_yahoo, D1v),

 value(D2, c_yahoo, D2v),
 value(D2C, c_yahoo, D2v),

 value(Dest, c_yahoo, Destv),

 45

 value(DestC, c_yahoo, Destv),
 value(Dropoff, c_yahoo, "same"),

 value(Rp, Ctxt, Rpv),
 plus(Vs, Rpv, Vt))).

rule(cvt(commutative, provider, P, includeCarCmpny, Cxt, "no", Vs, "yes", Vt),

 (yahoocar_p(DestC, Dropoff, M1C, M2C, D1C, D2C, _, Comp, _),
 attr(O, provider, P),
 attr(O, month1, M1),

 attr(O, month2, M2),
 attr(O, day1, D1),
 attr(O, day2, D2),
 attr(O, destination, Dest),
 value(M1, c_yahoo, M1v),

 value(M1C, c_yahoo, M1v),
 value(M2, c_yahoo, M2v),

 value(M2C, c_yahoo, M2v),
 value(D1, c_yahoo, D1v),

 value(D1C, c_yahoo, D1v),
 value(D2, c_yahoo, D2v),

 value(D2C, c_yahoo, D2v),
 value(Dest, c_yahoo, Destv),
 value(DestC, c_yahoo, Destv),

 value(Dropoff, c_yahoo, "same"),
 value(Comp, Ctxt, Compv),
 concat(Vs, "&", Vt1),
 concat(Vt1, Compv, Vt))).

The first includesCarRental conversion function works as follows. It is given an airfare
price. It then determines the dates that the user wants to arrive at and depart and it determines
the destination. It then sends a query to the yahoo car rental aggregator giving the destination
and dates it has just determined. Finally, it adds the car rental rate to the airfare price.

The includesCarCompany conversion function works in essentially the same way as the
includesCarRental conversion function. The only difference is that instead of
determining the car rental price, it determines the car rental company offering the car rental
price (i.e. Budget, Hertz, etc) and then it returns both the car rental company and the airfare
provider so that user can know what combination of airfare provider and car rental company
is offering the combined price that he sees.

Finally, we note that the two conversion functions use several attr(functions. These
functions allow the abduction engine to glean some needed piece of data by defining where in
the data source schema a certain piece of data exists. For example, we mentioned above that
the conversion function for includesCarRental determines the dates that the user wants
to travel. In order to do that, one of the things that needs to be looked up is the month the user
wants to depart. So the conversion function uses the following attr function: attr(O, month1,
M1). The first element within the parentheses, O, represents the price object. The second
element, month1, represents the name of the attr relationship. And the third element, M1, is
to hold the month value once it is looked up. But how will it lookup the month? The
attr(X, month1, Y) function needs to be defined elsewhere such that the abduction
engine knows where in the source schema the month1 attribute exists. This is achieved by
rules of the following format:

 46

rule(attr(Price, month1, Mnth1), (yahoo_p(_,Price,_,_,Mnth1,_,_,_,_,_))).

This rules defines the month1 attribute by showing the respective positioning of price and
month1 within the yahoo schema7: (represented by yahoo_p(_,…..,_)). Namely, Price is
in the second column and Mnth1 is in the fifth column. Since the conversion function is
given price, it can then use this “respective positioning” information to find month1.

All the attr(functions that are used within the conversion functions have to either already
exist within the underlying application files or they need to be defined in the merger axioms
file. Thus there exist the following set of attr(definitions within the merger axioms to
define those functions that do not already exist in the underlying applications’ files:

rule(attributes(price, [month1, month2, day1, day2, destination]), (true)).

rule(attr(Price, month1, Mnth1),(myorbitz_p(_, Price, _, _, Mnth1, _, _, _, _, _))).
rule(attr(Price, month1, Mnth1),(yahoo(_, Price, _, _, Mnth1, _, _, _, _, _))).

rule(attr(Price, date1, Dt1), (expedia2_p(_, Price, _, _, Dt1, _, _, _))).
rule(attr(Price, date1, Dt1), (expedia_p(_, Price, _, _, Dt1, _, _, _))).

rule(attr(Price,month2,Mnth2),(myorbitz_p(_, Price, _, _, _, Mnth2, _, _, _, _))).
rule(attr(Price, month2, Mnth2),(yahoo(_, Price, _, _, _, Mnth2, _, _, _, _))).
rule(attr(Price, date2, Dt2),(expedia2_p(_, Price, _, _, _, Dt2, _, _))).
rule(attr(Price, date2, Dt2),(expedia_p(_, Price, _, _, _, Dt2, _, _))).

rule(attr(Price, day1, Dy1),(myorbitz_p(_, Price, _, _, _, _, Dy1, _, _, _))).
rule(attr(Price, day1, Dy1),(yahoo(_, Price, _, _, _, _, Dy1, _, _, _))).

rule(attr(Price, day2, Dy2),(myorbitz_p(_, Price, _, _, _, _, _, Dy2, _, _))).
rule(attr(Price, day2, Dy2),(yahoo(_, Price, _, _, _, _, _, Dy2, _, _))).

rule(attr(Price, destination, Destination),

 (myorbitz_p(_, Price, Destination, _, _, _, _, _, _, _))).
rule(attr(Price, destination, Destination),

 (yahoo(_, Price, Destination, _, _, _, _, _, _, _))).
rule(attr(Price, destination, Destination),

 (expedia2_p(_, Price, Destination, _, _, _, _, _))).
rule(attr(Price, destination, Destination),

 (expedia_p(_, Price, Destination, _, _, _, _, _))).

rule(attr(Price, destination, Destination),

 (yahoo(_, Price, Destination, _, _, _, _, _, _, _))).
rule(attr(Price, destination, Destination),

 (expedia2_p(_, Price, Destination, _, _, _, _, _))).
rule(attr(Price, destination, Destination),

 (expedia_p(_, Price, Destination, _, _, _, _, _))).

The set of merger axioms just discussed (i.e. introducing a new context, new modifiers, new
attributes, new conversion functions) all fall under the merging goal of extending the
application to provide benefits that cannot be achieved by simply extending one (or both) of
the underlying applications. This set of rules is summarized in the third row of Table 3.1.

7 Yahoo is a website and has no “schema.” But when we say the yahoo source, we mean data from Yahoo after it
has been extracted by Cameleon and modeled as a database table. This allows us to speak of “yahoo’s schema.”

 47

Ismodifiers, isocontexts and isoattributes:
Finally, we note that while the Airfare and Car Renter merger does not provide such an
example, the merger axioms also allow the declaration of “isomodifiers”, “isocontexts” and
“isoattributes”. These are analogous to isomodifiertypes – they indicate equivalence and pull
up one of the two objects to the merged application (see Section 3.2.1 for definitions).

3.5 Sample Run of Merged Application

Part of the reason behind merging the Airfare and Car Rental applications is to present a case
study that demonstrates the viability of merging in accomplishing the three goals it sets for
itself (see section 2.3.1). To complete the example, let us actually run queries in the merged
application.

3.5.1 – Seamless Access to Sources

Below we see a single, seamless query asking data from a source from the Airfare application,
yahoo and a source from the Car Rental Application, expediacar. The query is basically
searching for a fare from Boston to San Francisco and for car rental rates for the duration of
the stay:

Figure 3.5 – Query showing access to sources from both underlying apps in merged app

The result that is returned is below. We see with one query, we were able to determine an
airfare to San Francisco and also various rental rates in San Francisco for the duration of the
stay.

Figure 3.6 – Result of Query to sources from both underlying apps in merged application

 48

3.5.2 – Cross Fertilization of Contexts

The query below is to a source from the Airfare application – Travelselect (a UK source).
Remember that Airfare has no notion of airport to city name conversion nor of month symbol
type conversion. But the merged application inherited these context capabilities from Car
Renter. Thus the query below can enter locations by the city name rather than airport code and
the month is entered as a three letter abbreviation rather than numerically:

Figure 3.7 – Query showing cross fertilization of contexts in merged application

The conflict detection table (Figure 3.7) that is generated shows context mediation ability
inherited from both applications – month symbol and airport code conversion from Car Renter
and currency, service fees and paper ticket charge from Airfare. For example, if we look at the
first row of the table, we see the semantic type price in the first column. This is a semantic
type that originated in Airfare. Moving down the row to the fourth column, we see that a
conflict is being reported for the currency modifier of price. The next two columns show
the details of the conflict: the currency value is GBP in c_travelselect context and
USD in dora context.

Nothing extraordinary has happened so far because currency has always been a part of the
Airfare application. But if we look three rows down in the same table, we see month, which
originated in Airfare showing a conflict for its month2SymbolType modifier. But Airfare
has no such modifier – the merged application inherited it from Car Rental. Context cross-
fertilization has been achieved.

 49

Figure 3.8 – Conflict detection for query showing cross fertilization of contexts

The result of the query is as follows:

Figure 3.9 – Results of Query showing cross fertilization of contexts in merged application

3.5.3 – Value Added Benefits

A new context, c_FlyAndRent has been introduced into the merged application. Two new
modifiers, includesCarRental and includesRentalCompany have been defined
for the semantic types price and provider. Thus the query below, which asks for Price
from yahoo will return with a number that is the sum of the airfare as well as the car rental at
the destination for the duration of the stay. Also the provider that is returned will be the
Airfare provider as well as the car rental company.

 50

Figure 3.10 – Query showing value-added benefits in merged application

We see in the generated SQL that the two prices are being added and that the airfare provider
and the rental company are being concatenated:

select ((yahoo.Provider||'&')||yahoocar.Company), yahoo.Airline, 'SFO', 'BOS',
(yahoo.Price+yahoocar.Price)
from (select Airline, Price, 'SFO', 'BOS', 'Aug', 'Aug', '15', '30', Provider, IsIn
 from yahoo
 where Destination='SFO'
 and Departure='BOS'
 and Month1='Aug'
 and Month2='Aug'
 and Day1='15'
 and Day2='30') yahoo,
 (select 'SFO', 'same', 'Aug', 'Aug', '15', '30', Price, Company, Rateperiod
 from yahoocar
 where Pickup='SFO'
 and Dropoff='same'
 and Month1='Aug'
 and Month2='Aug'
 and Day1='15'
 and Day2='30') yahoocar

The result of the query is as follows:

Figure 3.11 – Results of query showing cross fertilization of contexts in merged application

 51

3.6 – Complete List of Merging Capabilities

Thus far, through the example of the Airfare+Car Renter merger, we have demonstrated
various merging capabilities. However, the example does not demonstrate all the merging
capabilities because it is difficult to find such an artificially comprehensive example in real
life. Thus, for the sake of completeness, this section lists all the capabilities of merging,
including those not demonstrated.

The capabilities fall under the three merging goals that we have repeatedly emphasized. We
demonstrated Goal 1 completely:

1) Bringing together sources from multiple applications into one application

We demonstrated Goal 3 almost completely:

1) Extending the application by adding a new context, modifiers and attributes
2) One can similarly add a new source, new semantic types and elevate the source to the

new semantic types (or elevate an existing source to the new semantic types).

Goal 2 contains the most significant function of the merger axioms – reconciling contexts.
There is much that can be done in the way of reconciling contexts thus one merging case
study cannot cover it. Thus below we list all the possible context reconciliation scenarios
between two applications and describe how they would be solved using merger axioms. In the
list below we refer to an application A and an application B that are being merged.
SemTypeA is a semantic type in Application A and semTypeB is from Application B.

1) SemTypeA and SemTypeB are equivalent and have an identical set of modifiers.

Solution: Declare semTypeA and semTypeB isomodifiertypes and pull one of them up
(i.e. indicate which of the two semantic type names should be used in the merged
application). Also, declare the modifiers of semTypeA to be the isomodifiers of
semTypeB’s modifiers and choose which modifiers to pull up.

Example: Say air.moneyAmount and car.moneyAmount both already have a currency
modifier. Then air.moneyAmount and car.moneyAmount should be declared
isomodifiertypes and one of them should be pulled up. Also, air.currency and
car.currency should be declared isomodifiers and one of them is pulled up.

2) A semantic type from Application A has the same name as a semantic type from

Application B but the two actually describe unrelated concepts.
Solution: Do nothing because the unique application URIs that are appended to each
semantic type solve the namespace problem

3) SemTypeA and semTypeB represent the same concept (i.e. they are semantically

equivalent) but have a differing number of modifiers or have modifiers that are not
semantically equivalent.
Solution: This is a case of implicit modifiers (see section 3.1.3). Declare semTypeA
and semTypeB isomodifiertypes – and pull up one of the two semTypes. The
modifiers from both applications will automatically be available in the merged

 52

application as the modifier set of the one semantic type that was pulled up.

Example: Say air.moneyAmount has modifiers currency and includesServFee and
car.moneyAmount has no modifiers. Then air.moneyAmount and car.moneyAmount
should be declared isomodifiertypes and one of them should be pulled up. Suppose car.Amount
was pulled up – it would automatically have currency and includesServFee as its
modifiers in the merged application.

4) SemTypeA and semTypeB are semantically equivalent and they have the same

number of modifiers, which are also semantically equivalent. But they have modifier
values that are different.
Solution: Declare them isomodifiertypes. Any of the modifier values can now be used
by declaring context definitions accordingly. However, new conversion functions may
need to be defined to convert from a modifier value inherited from one application to a
modifier value inherited from another application.

5) A modifier from Application A is equivalent to a modifier from Application B but

they use different modifier values to refer to the same thing. For example, Application
A has a modifier currency, a possible value of which is ‘USD’. Application B also
has currency but it uses ‘USdol.’
Solution: Declare the two isomodifiers. Next create a modifier, currencySymType
for the modifier currency. currencySymType will have two possible values:
‘fromAppA’ and ‘fromAppB.’ The conversion function for currencySymType will
convert currency values from Application A’s representation to Application B’s
representation. So for example, if this conversion were to be done through a table
lookup, the table would show that ‘USD’ is equivalent to ‘USdol’.

This solution works for dynamic modifier values as well (i.e. values that are
determined dynamically during runtime) because the modifier value conversion is
done after the modifier value has already been determined. So, in this example, say
currency is a dynamic modifier. Then Application A will first dynamically figure
out that its value is ‘USD’ and then realize that currency itself has a modifier and
convert ‘USD’ to ‘USdol’.

3.7 – Chapter Summary – ECOIN Application Merging in a Nutshell

This chapter has taken us through a detailed exposition of merging: the goals, the theory
behind it, types of merging, how it is done, and a detailed example. We refer the reader to
Appendix E for an abridged “demo” of the two applications, the motivations to build them,
the motivation for merging, the process of merging and a demo of the merged application. As
a summary we emphasize the main points of this chapter in order to bring all the key concepts
together in one place.

 53

The traditional approach to merging ontologies can be termed materialized merging – where
two ontologies are brought together to create a third ontology, normally with the intention of
scrapping the two constituent ontologies. Meanwhile, virtual merging is concerned with
functionality – creating a third application that allows access to the two merged applications’
sources from one place. The intention is to have the ontologies of the two applications persist
unchanged while the new merged application gives the “virtual” appearance of one ontology.

Context Linking is a type of virtual merging that is driven by context differences – that is, we
only worry about those parts of the ontologies that are affected by context differences.

Merging applications has three goals/benefits:

1) Seamless Access to sources from both applications from within one application
2) Cross fertilization of contexts: using the context capabilities of one application to

benefit the other application
3) Value Added Benefits (extending the merged application to add benefits that would

not be possible to achieve even by extending the underlying applications on their own)
merging has three potential goals

To actually merge two ECOIN applications, a merger axioms file has to be created. The
purpose of the merger axioms is to allow the abduction engine to reason about the merged
application as a legitimate, standalone ECOIN application. At the very least, it contains an
axiom that allows access to sources from both of the underlying applications – Goal 1 above.
The developer can optionally add additional axioms that accomplish the remaining two goals.

The merger axioms file works through upward inheritance – all information from the
underlying application files is automatically inherited into the merger axioms file. Anything
additional that is written into the axioms (to reconcile the contexts, for example) will either
override what has been upwardly inherited or, if it is new information, will extend the
application.

In the end, the merged application is just another ECOIN application. What is inside the
abstraction, i.e. how its context and ontology information is represented has changed but users
access it as any other ECOIN application and can merge it yet again with some other
application and so on to any arbitrary level.

 54

4. CLAMP – A tool to facilitate Application Merging

To this point, we have discussed, in detail, the application merging process on the ECOIN
system. One of the key benefits of application merging is that it significantly cuts the time it
would otherwise take to create an application that provides access to the sources and the
context capabilities of two existing applications. Namely, without context-linking, a developer
would have to create a new application “from scratch”, develop an ontology that covers both
domains, elevate all the sources to this new ontology, define contexts and so on. However,
context linking provides complete, automatic ontology, context and other application code re-
use by means of upward inheritance and time only need be spent on writing a merger axioms
file that reconciles the contexts from both applications.

However, writing merger axioms by hand in Prolog is potentially a tedious and bug-prone
process. In fact, writing the axioms by hand is not ideal for three reasons:

1) Most developers are not proficient at Prolog. Even though the application files and
the merger axioms do not require a very detailed knowledge of Prolog, it is still an
obstacle for developers.

2) Writing the merger axioms by hand is repetitive, error-prone and time-consuming.

Representing the ontology and context-information in Prolog is repetitive because
the developer needs to write rule after rule for each semantic-type, modifier,
attribute, elevation, source, etc. Since he is writing these by hand, the process is
time-consuming and prone to small errors.

3) Prolog does not have good development and debugging support tools. Thus it is

hard to pinpoint where an error is and yet these small syntax errors that inevitably
crop up when written by hand can cause major problems. There are a couple of
Prolog compilers and debuggers (for example, Eclipse) that allow the developer to
step through the call stack of the Prolog code execution until the error is found. But
these would be an additional piece of technical software that a developer would
have to learn.

Overall, we see that while application merging through context-linking greatly reduces the
amount of work needed to build an application that covers two existing application domains,
the context-linking process can be intimidating or at least slower and more-error prone than it
should be. Thus, in this chapter we propose the design of an application-merging tool,
CLAMP, to ameliorate the three problems of: (1) developers needing to know Prolog, (2)
creation of merger axioms being slow and repetitive, and (3) the axioms being error-prone.
Addressing these problems would make application merging much easier and thus viable for
wide use.

 55

4.1 - What is CLAMP?

CLAMP stands for Context-Linking Application Merging Process. The purpose of the
CLAMP tool is to facilitate merger axiom creation for a user that understands the ECOIN
approach to context mediation and context linking (even if not the technical details of writing
merger axioms). It is not a tool that takes two ECOIN applications and automatically merges
them.

To be more specific, CLAMP takes the two applications to be merged and then prompts the
user, step-by-step, for the information needed to reconcile the contexts and extend the merged
application. It then generates the merger axioms that reflect all the decisions made by the user.
The key point is that the user makes all the merging decisions while CLAMP provides the
relevant information that is helpful in making the decisions, then implements those decisions
in Prolog.

The next section details the assumptions made about the user who will be using CLAMP.

4.2 - What assumptions are made about the user?

The following assumptions are made about the user of the CLAMP tool.

1) Knowledgeable of the ECOIN approach to context mediation. This is so that the user
has the ability to understand the applications that are about to be merged so that he can
understand the context issues the applications address. Thus he needs to know the
theory behind ECOIN applications and the ECOIN model (i.e. ontology, context, and
source information).

2) (not essential) Knows how to build a ECOIN application using the Application Editor

tool8. Knowing Application Editor is required for two reasons – (a) the CLAMP tool’s
layout and design is similar to the application editor and so it would make usage of
CLAMP easier and (b) One potential aspect of merging is that the developer might
want to extend the merged application by adding a new context, source, semantic type,
etc. To do this, CLAMP will actually forward the user to Application Editor because
merged applications are conceptually no different from any other ECOIN application
and so Application Editor should be used to “edit” the application.

3) Understands the ECOIN model details of each of the applications he wants to merge.

This is necessary because the user will be prompted to make all the decisions during
merging. He will need to know which semantic types and modifiers are relevant in

8 The Application Editor, discussed in full detail in [cite Phil’s thesis] allows users to develop and edit COIN
applications without having to enter Prolog code. The user simply needs to enter the ontology (semantic types,
modifiers, attributes) the sources, elevations, contexts and conversion functions and the tool generates the
application file in various representations (RDF, RuleML, RFML, Prolog).

 56

resolving the context differences between the two applications. He will need to be able
to spot implicit modifiers, declare isomodifiertypes and so on.

4.3 - The Tool’s Approach

The CLAMP tool thinks of the merging process as consisting of multiple stages and its
approach is to walk the user through these stages prompting for the relevant information at
each stage. These stages roughly correspond to the three goals of merging discussed earlier.
We mention the three goals below listing the information CLAMP needs from the user at each
stage:

For seamless access to sources, need to know:
- what applications to merge

For cross fertilization of contexts, need to know:
- what are the isomodifiertypes, ismodifiers, isoattributes and isocontexts
- what semantic type, modifier, attribute and context names to “pull up” app
- what modifier values to assign to newly inherited modifiers for those contexts that do not

have values for that modifier

For Extending Application:
- If adding context, then need to set modifier values for that context
- If adding source, need to elevate the columns of that source to semantic types
- If adding modifiers, need to enter a value for that modifier for each existing context
- If adding semantic type, need to specify inheritance
- If adding attribute, need to specify which semantic type it is an attribute of and what

semantic type it leads to
- If adding conversion functions, need to enter which modifier it is for and need Prolog code

of the conversion function

Given that the user will have to make various decisions in providing the information above,
the question arises, how should CLAMP display the ontology and context information in
order to best facilitate the user’s merging decisions. The approach CLAMP adopts is to
present relevant views of the application. That is, at each step, allow the user to see only that
ontology information that is most helpful in making the particular decision at hand. For
example, when deciding whether two semantic types should be declared isomodifiertypes (i.e.
equivalent with respect to their modifiers), a user would be most helped by being able to see
all the modifiers of those two semantic types. CLAMP does not provide much more hand-
holding beyond that – no suggestions as to which semantic types should be isomodifiertypes,
which semantic type may have implicit modifiers, etc.

The CLAMP approach may seem minimalist compared to other ontology merging tools and
indeed it is. CLAMP does not want to give the user suggestions of what semantic types to
equate, what contexts to reconcile, etc. This is because CLAMP’s purpose is different than the

 57

goal of traditional ontology merging. CLAMP is dealing with a much more specific, practical
problem – merging existing data sources by merging the applications that provide access to
those data sources. CLAMP is not interested in the more theoretical/general problem of
materialized ontology merging where the desired result is an elegantly merged ontology with
no concept redundantly represented by multiple semantic types. In materialized merging, all
matching entities between the ontologies must be reconciled. This could potentially be a long
list and so a list of suggestions is well-appreciated by the user. But in virtual merging, only a
small subset of the ontologies needs to be reconciled – you do not have to resolve every case
of matching semantic types but only those that will prevent proper context mediation. Thus a
user can manage without a list.

Furthermore, CLAMP deals with ontologies that are already implemented in practical
applications and so it assumes that the user is knowledgeable of those applications and knows
what he wants. Suggestions of what merging decisions to make do not add much utility for a
CLAMP user since he would need to know the applications thoroughly anyway in order to
approve the suggestions. Meanwhile, the cost of giving good ontology/application merging
suggestions is high because coming up with heuristics for good merging suggestions is a
relatively difficult theoretical problem. Thus the minimalist approach: provide relevant
application/ontology information to the user, let him make the decisions and let CLAMP
focus on providing the important benefit of quick, error-resistant merger axiom generation
without the need to know detailed Prolog.

4.4 - Design Overview

To present an overview of the design of CLAMP, we discuss two key aspects: its integration
with Application Editor and the overall architecture. The following two sections cover these
two aspects in detail.

4.4.1 – Integrated with Application Editor

CLAMP is designed to be integrated closely with Application Editor. There are two key
reasons for this:

1) Merged applications observe same ECOIN model as any other ECOIN
application.
As discussed earlier, merged applications are to be seen as any other standalone
ECOIN application. They have ontology, context and sources just like any other
application. The difference is only in their representation. Rather than their
information being stored in one application prolog file, it is stored across multiple files
(i.e. the files of the applications that were merged), which are linked by merger axiom
files. But since the merged application is still one ECOIN application, it must be
visible and editable through Application Editor. The internal ECOIN model data
abstraction of Application Editor, the various Application Editor functions (such as

 58

getSemanticTypes(), getAttributes()) are all relevant to merged applications and so it
makes most sense that the CLAMP tool should be integrated with Application Editor
and make use of the abstractions and functions it provides.

2) CLAMP and Application Editor are both ECOIN application tools and so should

have similar look-and-feel.
If CLAMP is to be part of a suite of tools that allow one to develop, edit and maintain
ECOIN applications, then it makes sense that these tools should have similar look-
and-feel for the user’s ease of understanding and use. Thus CLAMP is designed to
have a similar look-and-feel as Application Editor.

4.4.2 – Architecture

The architecture of CLAMP is summarized in Figure 4.1 below. The dashed lines surround
the pieces, which considered together, constitute CLAMP. Much of what is within the dashed
lines is also a part of Application Editor. This is because CLAMP re-uses as much of the
abstractions and code of Application Editor as it can and is designed to be embedded within
Application Editor rather than be a stand-alone tool.

Figure 4.1 – Architecture of CLAMP

Looking at Figure 4.1, we begin with the internal COIN model (ICM). The ICM is a data
abstraction that stores the COIN model metadata of an application during runtime. That is, it
stores an application’s ontology, context and source information. The ICM was originally
created as part of the Application Editor architecture but it is also part of the CLAMP
architecture because the COIN model abstraction is the same for a merged application and a
standalone application. However, now that the ICM stores merged application metadata, the
abstraction has to be expanded to include the new types of metadata that merging has

 59

introduced (for example, information regarding isomodifiertypes, the underlying applications,
etc). Thus the ICM in figure 4.1 contains a small subpart relating to merge information.

Next, we see the two ICMs directly beneath the CLAMP interface. These represent the COIN
models of the two applications being merged. The CLAMP interface displays relevant COIN
model information from these two applications to the user to assist him in his merging
decisions. No changes are made to these two underlying applications during merging.

Next is the CLAMP interface. We have mentioned that the CLAMP interface displays
relevant COIN model information from the applications being merged. It also prompts the
user for isomodifiertype declarations, modifier values, etc. It then writes this information to
the ICM of the merged application.

Next is the Application Editor interface. This interface is considered part of the CLAMP
architecture because it is used for Goal 3 of merging – extending the merged application. Why
use the Application Editor interface for this merging goal? Because the merged application is
just another ECOIN application, hence the Application Editor interface should suffice to
extend the application.

Next is the ECOIN Application generator. This generator takes information from the ICM and
translates it into Prolog. It was developed as part of Application Editor and it takes the ICM
through a series of XSLT transformations from RDF to RuleML to RFML to Prolog (see
[12]). This generator is used in the CLAMP architecture for Goal 3 – extending the merged
application.

Finally, there is the Merger Axiom generator. This generator takes the information from the
ICM (chiefly the information stored in the merging subpart) and generates merger axioms.

The information from both the ECOIN application generator and the Merger Axiom generator
is written to a merger axiom file, which becomes part of the set of application files
representing the existing ECOIN applications. The generators also write the location of these
application files to the registry so that they can be retrieved by the interfaces to give to the
ICMs.

4.5 – CLAMP Interface – How the user is led through merging
As discussed earlier, CLAMP’s approach is to lead the user through the three goals of the
merging process, giving the user relevant information at each stage to assist with each
merging decision. Accordingly, the interface has pages that correspond to each goal of
merging and a page that displays the merger axioms generated. To allow easy navigation,
there are buttons for each of these pages that appear at the top of every page:

Figure 4.2 – CLAMP navigation buttons

 60

The first three buttons correspond to the first three goals while the last button generates
axioms.

4.5.1 – First page: Seamless Access to Sources

Figure 4.3 – CLAMP first page – pick two apps to provide access to sources from both

The first screen of the CLAMP interface presents the user with two lists, each of which
contains all the active ECOIN applications in the registry. The user is prompted to pick two
applications to merge and to enter a name for the merged application. When the user hits the
“Begin Linking” button, the two applications picked are stored in the ICM (see section 4.4.2).
The merger axiom generator uses this information to write the axiom that provides access to
all sources from both applications (see Section 3.4 for details of axioms).

 61

4.5.2 – Second page – context reconciliation and cross-fertilization

Figure 4.4 – Part of the Context reconciliation & cross-fertilization page

 62

The second page of the interface is the most significant – the meat of the interface. It prompts
the user through context reconciliation and context cross-fertilization. The page has three
subsections. Figure 4.4 shows the first two subsections.

The main job of the first subsection (the areas labeled “1”, “2” and “3”) is to assist the user in
declaring isomodifiertypes. To this end, CLAMP displays the semantic types of both
applications (in area 1). When a semantic type is selected, its modifiers and attributes are
automatically displayed (in areas 2 & 3) making it easier for the user to decide whether two
semantic types can be considered isomodifiertypes i.e. equivalent with respect to their
modifiers. When one semantic type from each application is selected, the checkboxes between
the two lists give the user the option of choosing which semantic type name to “pull up” into
the merged application (or whether to use a new name in the merged application).
Furthermore, when the modifiers of the two semantic types are displayed (area 2), the user
can denote isomodifiers and pick one of the modifier names to be pulled up (or give it a new
name). The user can similarly denote isoattributes (area 3) and pull up the attribute name he
chooses. Note that the user does not have to check off isomodifiers and isoattributes when
setting isomodifiertypes because it is not necessary that there be any isomodifiers or
isoattributes.

The screen shot above shows the example of merging Airfare and Car Rental. The semantic
types moneyAmount and moneyAmount2 are selected causing their modifiers and
attributes to be automatically displayed - currency is the modifier of moneyAmount
while moneyAmount2 has no modifiers. Neither semantic type has any attributes. This is all
reflected in the textboxes and the checkboxes in areas 2 and 3. The checkboxes in area 1 give
the option of choosing either semantic type name to be pulled up into the merged application.

The next section on the page (area 4) is for denoting isocontexts. The contexts of each
application are displayed in two textboxes and similar to all the other “iso” declarations thus
far, the user can denote isocontexts and which context name to pull up (or rename).

The textbox in area 5 displays all the “iso” relationships as they are added and also allows the
user to delete from that list. Each time the “Add iso relationship” or the “Add isocontext”
button is clicked, the information is added to the internal COIN model (ICM) of the merged
application that is being maintained during runtime. This ICM will be translated into Prolog
when the Generate Axioms button is clicked.

There is one more section on this page in the interface (see figure 4.5). This section is for
entering modifier values. Namely, declaring isomodifiertypes causes modifiers inherited from
one underlying application to become relevant in contexts inherited from the other underlying
application and thus modifier values need to be assigned for those contexts. For example,
after declaring moneyAmount (from Airfare) and moneyAmount2 (from Car Rental) as
isomodifiertypes, the contexts from Car Rental now need to be assigned a value for the
modifier currency that was inherited from Airfare. Figure 4.5 shows how this is done. All
the unassigned modifiers are automatically displayed in one textbox and when a particular one
is selected, CLAMP displays all the contexts for which that modifier has no value. The user

 63

can then enter a modifier value (or how to derive a value if it is to be dynamic). Once the
“Assign modifier value” button is clicked, it is entered into the ICM and shows up in the
textbox showing all the modifier values thus far from which the user can delete as well.

Figure 4.5 – Entering values for unassigned modifiers

4.5.3 – Extending the merged application

To achieve the third goal of merging, extending the merged application, the user is sent to the
Application Editor because the merged application is considered just another ECOIN
application. Thus adding semantic types, contexts, sources, etc, can all be done in the
Application editor. Use of Application Editor’s interface is described in detail in [12].

4.5.4 – Generating merger axioms

 64

Figure 4.6 – Viewing Merger Axioms

When the user clicks on the Generate axioms button, he is brought to the page shown in
Figure 4.6. The ICM axioms generated are displayed in the main textbox on the page.

The interface uses the Merger Axiom generator to create the axioms. The Merger Axiom
generator is a separate program that takes an ICM data structure as an input and generates a
file of merger axioms in Prolog as the output. The location of this file is stored in the Registry
so that the interface can retrieve it later if needed.

The ICM contains all the information necessary to generate the axioms (section 4.6.1
discusses all the information that the ICM stores). The generator simply has to iterate through
the data structure and convert the information into Prolog syntax.

4.6 – How Application Editor needs to be modified to support CLAMP

As discussed earlier, CLAMP is integrated closely with Application Editor. But for this to be
possible, Application Editor needs to be modified – the implementation of the ICM and the
API that allows access and change to the ICM need to be modified. The next two sections
outline the needed modifications to the ICM and the API.

 65

4.6.1 – How the Internal COIN Model (ICM) must be changed

As defined in [12], the Internal COIN Model (ICM) is a transient data structure that stores the
application metadata (the application’s COIN model) at run time. The COIN model of an
application is the ontology, context and source information. Merged applications are
satisfactorily described by the current COIN model. However, an ICM that represents a
merged application’s COIN model must be implemented differently because it needs to know
about the two underlying applications, the isomodifiertypes, isomodifiers, isoattributes, and
the isocontexts. In this section we describe how the ICM needs to be modified.

First, we present the ICM as described in [12]: The ICM is a data structure in object-oriented
programming language. In object-oriented programming language, data structures are called
classes and the functions that operate on these classes are methods. Classes have properties,
i.e. the characteristics of the classes. Each property stores a single data type, whether it is a
string, a number, or another class. Figure 4.7 shows a summary of the ICM as it is currently
modeled. Coin_Model, Ont_SemanticType, Ont_Attribute, Ont_Modifier,
Cxt_Context, Src_Relation, Src_Column, and Src_ElevatedRelation are
class objects of the ICM. The bullet points under each of these classes are their properties.
Figure 4.7 is reproduced directly from [12] where it is discussed in detail - thus we will not
discuss it here. Rather, we discuss below the additions that need to be made to the ICM to
support merging.

Figure 4.7 – Summary of the ICM as it exists in Application Editor

 66

ICM Coin_Model
The Coin_Model class in ICM is the top-level data structure from which all the components
of a COIN model can be reached. To support merging, Coin_Model should contain the
following properties (property name in italics, property class type in courier font):

Id : string
Merges : array(Coin_Model)
Name : string
SemanticTypes : array(Ont_SemanticType)
Contexts : array(Cxt_Context)
Relations : array(Src_Relation)
Isomodifiertypes : array(Ont_Isomodifiertypes)
Isomodifiers : array(Ont_Isomodifiers)
Isoattributes : array(Ont_Isoattributes)
Isocontexts : array(Cxt_Isocontexts)

The properties in bold are the new ones added to support merging. We discuss only those
because the rest are covered in detail in [12]. The merges property contains an array of the
Coin_Models of the two underlying applications being merged. If this application has no
underlying applications, then this property will be null. The merges property is sufficient to
allow access to every aspect of the underlying applications because one can reach all
ontology, context and source components from a Coin_Model.

The Isomodifiers property contains an array of Ont_Isomodifiertypes – a new class
that is being added to the ICM to represent isomodifiertypes in the merged application (see
Ont_Isomodifiertype section below). Similarly, the Isomodifiers, Isoattributes and
Isocontexts properties are new to Coin_Model and they are all arrays of new classes that are
being added to the ICM – Ont_Isomodifier, Ont_Isoattribute and
Cxt_Isocontext.

The properties for the Ont_Isomodifiertype class are as follows:

Ont_Isomodifiertype
Name: string
SemanticTypes: array(Ont_semanticType)
FromApps: array(string)

The property, Name is a string that represents the name that is pulled up into the merged
application. For example, if semantic types price and cost are declared isomodifiertypes,
then either the name “price” or the name “cost” has to be pulled up into the merged
application (or a new name has to be given). Whatever the case may be, this name is reflected
in the Name property. The SemanticTypes property is an array of the two
Ont_semanticTypes that have been declared isomodifiertypes. From this array, the ICM

 67

can access all the modifiers, attributes, etc of the semantic types that have been declared
isomodifiertypes. Finally, the FromApps property is an array of two strings – the
application ids of the applications from which the two semantic types are drawn. The first id
in the array corresponds to the first semantic type in the Ont_SemanticTypes array and
the second id corresponds to the second Ont_SemanticType.

The properties for the remaining three new classes, Ont_Isomodifier,
Ont_Isoattribute and Cxt_Isocontext are listed below. They are not described in
detail because they function in a manner analgous to Ont_Isomodifiertype:

Ont_Isomodifier
Name: string
Modifiers: array(Ont_modifier)
FromApps: array(string)

Ont_Isoattribute
Name: string
Attributes: array(Ont_attributes)
FromApps: array(string)

Cxt_Isocontext
Name: string
Contexts: array(Cxt_context)
FromApps: array(string)

Despite the changes to the ICM described above, the Application Programming Interface
(API) that is used to communicate with the ICM will still have the same functions with the
same signatures (i.e same input parameters and same output types) as developed in [12].
However, the implementation of many of these functions will have to be changed to support
merging. These changes are discussed in the next section. Furthermore, a few more API
functions will need to be added to interact with the new classes and properties that were added
to the ICM. We discuss these additions and modifications to the API in the next section.

4.6.2 – How the API must be changed

Merged applications maintain all the abstractions of an ECOIN application but the
implementation has changed in one key way. The ontology, context and source information is
now potentially stored across multiple Prolog files. Namely, a set of merger axioms points to
two application files, one of which may be another set of merger axioms and so on.
Meanwhile, Application Editor assumes that application information is stored in one Prolog
file and so all the functions in its API are implemented to read and make changes to only one
application file. To support CLAMP, the API’s implementation has to be changed such that it
knows to deal with multiple application files for a single ECOIN application.

 68

Specifically, a function must first determine whether the application that is currently loaded is
a merged application. If so, it needs to determine the underlying applications (and continue
down the chain if the underlying applications are also merged applications) and load the
ontology, context and source information from all the constituent applications into the ICM
that is maintained during runtime. Note, however, that the API cannot just blindly load all the
ontology, context and source information from the underlying applications but instead must
make sure that it does not load application information that has been overridden by any
merger axioms along the way. Furthermore, when a merged application is edited or extended,
the API must make sure to write these changes only into the merger axioms file and not into
the underlying applications’ files (because those are still used by existing applications).

Rather than making all the changes described in the preceding paragraph to every API
function that needs it, the changes should be encapsulated within a couple of internal utility
functions. These functions should then be used by the API functions that need to be modified.

Besides the above changes to the API, new functions also need to be added to support changes
to the ICM due to merging (see Section 4.6.1). Namely, functions needed to be added that will
allow the CLAMP interface to set isomodifiertypes, isoattributes, isomodifiers and
isocontexts within the ICM of an application. Note that no functions need to be added to
remove an isomodifiertype or isoattribute, etc. This is because a merged application is like
any other ECOIN application. So an isomodifiertype link is removed by removing the
semantic type name that was pulled up to represent that isomodifiertype. For example, if
price and moneyAmount were set as isomodifiertypes, and price was pulled up, then
the isomodifiertype relationship between price and moneyAmount would be removed by
simply removing “price” from the merged application. The implementation of the existing
removeSemanticType() function in Application Editor will have to be modified so that
the function knows how to determine whether this is an isomodifier involed and take care of
any related cleanup. The same applies to the removeAttribute(),
removeModifier() and removeContext() functions from Application Editor.

Thus only four new functions need to be added to the API:
public void createIsoModifierType ()
public void createIsoModifier ()
public void createIsoAttribute ()
public void createIsoContext()

The details of these functions are in Appendix D and the full ICM API can be found in [12].

 69

5. Possible improvements/extensions

After undertaking the detailed case study of context-linking and designing the CLAMP tool,
there are a few possible improvements/extensions that can be pursued in the future.

5.1 – Graphical Enhancement

The context-linking process is a very ontology-centered process. That is, the developer is
making decisions to regarding which semantic types are equivalent, which modifiers perform
the same function, etc. This is all information that is captured graphically in the ontology
diagram and so the developer would benefit a lot if he were able to see the two ontologies in
detail, be able to manipulate these ontologies and even denote the context links graphically.
Currently, this is not possible – what happens instead is that the developer is provided
relevant ontology information in text format and if he likes, he can look at pictures of the two
ontologies separately. However, we suggest this improvement with caution, developing good
graphical tools to manipulate ontologies is a difficult problem because appropriate screen
placement of the various ontology objects is difficult. Application Editor provides a limited
graphical interface that draws ontologies of existing applications but does not allow changes
to the ontology (see [12])

5.2 – Implicit modifier detection

During context reconciliation, the developer has to carefully think about each of the semantic
types in the application to determine whether any implicit assumptions are being made
regarding how that semantic type is to be interpreted. For example, in an application that deals
solely with US data sources, an assumption might be made that all currency is in US dollars.
This modifier would have to made explicit when being merged with an international
application. Currently, no assistance is provided to the developer to detect implicit modifiers
and so CLAMP stands to benefit from such an addition. It is not easy to design an automated
way to detect implicit modifiers but rather than solving the problem completely perhaps the
developer can be assisted. Each time a semantic type is clicked, CLAMP can automatically
list all the data source columns that have been elevated to that semantic type. Thus the user
will be able to tell more easily whether any assumptions are being made about that semantic
type.

5.3 – Conversion function assistant

In merging two applications, modifiers that originated in one application are assigned values
in contexts that originated in the other application, new modifier values might be created, etc.
Thus it is quite probable that new conversion functions will have to be written. One of the
goals of CLAMP was to save the developer from having to deal with Prolog. However,
currently, there is no good way to create conversion functions without actually writing them
in Prolog. Application Editor provides a library of common functions that the user can select

 70

from but most functions would still have to be written by hand. As more and more ECOIN
applications are created, however, the library of conversion functions will grow and even if it
is still difficult to find a conversion function that matches what a developer is looking for, he
may at least find several similar functions, which he can modify or imitate and avoid writing
all the Prolog himself. However, this is a roundabout manner of development and both
CLAMP and Application Editor stand to benefit from the development of a conversion
function assistant.

 71

6 - Related Work

There exist various research efforts regarding automated or tool-supported merging of
ontologies (sometimes called object-oriented schemas, database schemas, class hierarchies,
domain models, or object models, depending on the field). In this section, we survey some of
the more prominent research efforts/tools related to ontology merging and note the differences
between those approaches and the context-linking approach/CLAMP tool.

Automated and user-supported ontology merging tools essentially focus on what we have
termed materialized merging – that is merging two existing ontologies to yield a new merged
ontology. The usual approach is to detect various classes of conflicts and suggest solutions for
these conflicts. The methodology of detecting conflicts and suggesting solutions, the
sophistication of the suggestions, and the types of ontology conflicts that the tools can detect
and resolve is what distinguishes the different efforts from each other.

The approach of many of the tools is to make suggestions to the user as to which parts of the
ontology he should consider merging. Currently, these suggestions focus mainly on finding
syntactic matches between the two ontologies [14]. For example, if one ontology has price
and another has cost, the tool should identify these two as candidates for a merge. To find
such syntactic matches (and ones that are more subtle), there are various possible methods
that merging tools utilize [4]. Some of the more common methods are:

1) looking for entities in the ontologies with similar or same names
2) relying on various dictionary and thesaurus systems to find synonyms for entities in an

ontology and then checking whether those synonyms exist in the other ontology
3) evaluating common substrings in the names of the entities in the ontologies
4) looking to see if the documentation of entities in the ontolgoies share many

uncommon words

Indeed some of these synonym-finding methods are topics of research in their own right. One
such research effort, Wordnet [13], by the Cognitive Science Laboratory at Princeton
University. WordNet is an on-line lexical reference system where English nouns, verbs, and
adjectives are organized into synonym sets, each representing one underlying lexical concept.
Different relations link the synonym sets. [13]. Any word that is typed into Wordnet will first
yield the various “senses” of the word – i.e. the various semantic understandings that exist for
that word. A user can then pick one of these “senses” and look up the synonyms of that sense.
Going further, the user can even look up the “hypernyms,” “hyponyms,” “meronyms” (i.e.
“superclass”, “subclass” and “attributes”), and the synonyms of each of those. For example,
suppose we look up “boy”. Wordnet yields the following result:

The noun "boy" has 4 senses in WordNet.

1. male child, boy -- (a youthful male person; "the baby was a boy"; "she made the boy brush his teeth every
night"; "most soldiers are only boys in uniform")
2. boy -- (a friendly informal reference to a grown man; "he likes to play golf with the boys")

 72

3. son, boy -- (a male human offspring; "their son became a famous judge"; "his boy is taller than he is")
4. boy -- (offensive term for Black man; "get out of my way boy")

For any one of these senses, the user then has the following options:

Figure 6.1 – Options in Wordnet

Of all the options in the dropdown box of Figure 6.1, synonyms, hypernyms, hyponyms and
meronyms are the most relevant to merging. If we explore sense 3 (“boy” as in “son”), we net
the following results (Wordnet results also include definitions of each term but some of these
have been removed from the results below for the sake of brevity):

Synonyms:
Sense 3
son, boy -- (a male human offspring; "their son became a famous judge"; "his boy is taller than he is")
 => male offspring, man-child -- (a child who is male)

Hypernyms (boy is a kind of…):
Sense 3
son, boy -- (a male human offspring; "their son became a famous judge"; "his boy is taller than he is")
 => male offspring, man-child -- (a child who is male)
 => child, kid

 => offspring, progeny, issue --
 => relative, relation --

 => person, individual, someone, somebody, mortal, human, soul --
 => organism, being --
 => living thing, animate thing -- (a living (or once living) entity)
 => object, physical object --
 => entity, physical thing --

Hyponyms:
Sense 3
son, boy -- (a male human offspring; "their son became a famous judge"; "his boy is taller than he is")
 => Junior, Jr, Jnr -- (a son who has the same first name as his father)
 => mother's boy, mamma's boy, mama's boy
 (a boy excessively attached to his mother; lacking normal masculine interests)
 => Esau

(Old testament) the eldest son of Isaac who would have inherited the covenant that God made with
Abraham and that Abraham passed on to Isaac; he traded his birthright to his twin brother Jacob for a
mess of pottage)

Meronyms:

 73

Sense 3
son, boy -- (a male human offspring; "their son became a famous judge"; "his boy is taller than he is")
 => male offspring, man-child -- (a child who is male)
 => child, kid --
 => offspring, progeny, issue --
 => relative, relation --
 => person, individual, someone, somebody, mortal, human, soul --
 HAS PART: personality
 HAS PART: trait -- (a distinguishing feature of your personal nature)
 HAS PART: character, fiber, fibre --
 HAS PART: thoughtfulness -- (the trait of thinking carefully before acting)
 HAS PART: responsibility, responsibleness --
 HAS PART: integrity -- (moral soundness)
 HAS PART: nature --
 HAS PART: human body, physical body, material body, soma, build, figure, physique, anatomy,
 shape, bod, chassis, frame, form, flesh --
 => organism, being --
 HAS SUBSTANCE: tissue --
 .

 . .
 HAS PART: cell –

Overall, Wordnet is a powerful tool that can be leveraged by ontology merging tools to give
suggestions regarding not just synonyms, but also suggestions regarding inheritance and
attributes.

An example of a prominent tool that gives suggestions during merging is PROMPT [14].
PROMPT takes two ontologies as input and guides the user in the creation of one merged
ontology as output by means of the following general algorithm [14]:

Creates an initial list of matches based on class names (equivalent to semantic types). Then go through the
following cycle:

a. User triggers an operation by either selecting one of the suggestions or by using an ontology-editing
environment to specify the desired operation directly

b. PROMPT performs the operation, automatically executes additional changes based
on the type of the operation, generates a list of suggestions for the user based on the structure of the
ontology around the arguments to the last operation, and determines conflicts that the last operation
introduced in the ontology and finds possible solutions for those conflicts. These suggestions and possible
solutions are presented to the user again and the cycle is repeated.

For example, suppose a user is merging two ontologies and he accepts one of PROMPT’s
initial suggestions to merge two classes (the PROMPT equivalent of semantic types) A and B
to create a new class M. PROMPT would then perform several actions automatically and put
together a new list of suggestions. The following is an example of some of the automatic
actions and suggestions [14]:

• For each attribute S that was attached to A and B in the original ontologies, attach the attribute to M.
If S did not exist in the merged ontology, create S.

 74

• For each superclass of A and B that has been previously copied into the merged ontology, make that
copy a superclass of M (thus restoring the original relation). Do the same for subclasses.

• For each class (semantic type) C in the original ontologies to which A and B referred (either through
an inheritance or attribute relationship), if C has not been copied to the merged ontology, suggest that it
is copied to the merged ontology.

The user would pick one of these suggestions and the cycle would be triggered again. The key
contribution that PROMPT’s developers emphasize is that they are not just making
suggestions based on syntactic matches but that they base most of their suggestions on the
internal structure of the ontology, i.e. the relationship between the various semantic types,
attributes, etc. [14] Furthermore, PROMPT researchers’ evaluations yielded results showing
that human experts followed 90% of the suggestions that PROMPT generated and that 74% of
the total knowledge-base operations invoked by the user were suggested by PROMPT [14].

Another prominent tool is Ontomorph [3]. Ontomorph presents an initial list of matches to the
user (based on pattern matching) and also defines a set of operations that can be applied to the
ontologies (without making a specific suggestion as to which of these operations the user
should perform). The user then looks at the initial set of matches and defines a set of
operations that should be performed and Ontomorph applies those operations (thus permitting
aggregate operations in a one step). However, there is no assistance to the user beyond the
initial set of matches. The more impressive contribution of Ontomorph is that it provides a
powerful rule language [3] to represent complex syntactic operations.

Compared to these tools, the context-linking approach/CLAMP tool is unique. Firstly,
context-linking is a type of virtual merging – it does not try to actually merge two ontologies
completely but simply creates a ECOIN application that appears to be relying on one merged
ontology. This greatly simplifies the problem because only a small subset of the two
ontologies needs to be reconciled rather than resolving every case of matching semantic types.

Secondly, the CLAMP tool does not “detect” any syntactic matches nor does it offer any
suggestions to the user. Instead it provides relevant information to the user to assist him in
making merging decisions and then implements his merging decisions in Prolog. However,
CLAMP could readily be extended to provide suggestions using Wordnet; Cameleon [7]
technology could easily be used to query Wordnet regarding semantic types or any other
objects in the ontologies, and the results can be extracted by Cameleon and made available for
CLAMP to then create suggestions for the user. However, this route was not chosen – see
section 4.3 for a detailed discussion of the reasoning behind not providing any suggestions.

Finally, we take a look at ONIONS (ONtological Integration Of Naive Sources) – a
methodology for conceptual analysis and ontological integration [15]. Unlike the above tools
that rely on expert users with knowledge of the ontologies, ONIONS uses a hierarchical
ontology library containing various generic ontologies that have been classified and merged.
To make merging decisions, ONIONS matches the ontologies to be merged to those existing
in the library. Very briefly, ontology integration in ONIONS is carried out as follows [8]:

 75

• All concepts, relations, templates, rules, and axioms from a source ontology are represented in the
ONIONS formalism

• Ontologies are integrated by means of a set of generic ontologies. This is the most characteristic activity

in ONIONS, which can be briefly described as follows:

o For any set of sibling concepts, the conceptual difference between each of them is inferred, and
such difference is resolved by axioms that reuse - if available - the relations and concepts
already in the library. If no concept is available to represent the difference, new concepts are
added to the library.

o When stating new concepts, the links necessary to maintain the consistency with the existing
concepts are created. If conflicts arise with existing theories, a more general theory is searched
which is more comprehensive. If this is impracticable, an alternative theory is created.

The source ontologies are explicitly mapped to the integrated ontology. Even if the source
ontologies do not completely fit into the integrated ontology in the library, partial
interoperability suffices.

Overall, ONIONS has a powerful and interesting approach which is instructive in thinking
about ontology merging but limited since it can only work with ontologies from domains that
are represented in the library system. (This is fine with the developers of ONIONS because
they are concerned only with medical ontologies.)

 76

7. Conclusions

This thesis has covered much over the last seventy pages and so, as a summary, we list below
the key topics and contributions of this thesis. Next, we evaluate the research based on the
original motivations presented in Section 1.4.1 and we end with a look to the future.

7.1 Summary of thesis and contributions

1) A high-level description of the problem of context differences when integrating
heterogeneous data sources

2) A high-level description of the COIN approach to resolving that problem
3) A detailed description of two applications that implement the COIN approach (Airfare

and Car Rental)
4) An introduction to the problem of ontology merging and two approaches to it:

materialized versus virtual merging.
5) Context linking – virtual ontology merging specific to ECOIN applications
6) A detailed exposition of the context-linking approach to ECOIN application merging.

This included a detailed case study of merging Airfare and Car Rental that demonstrated
the viability of context-linking

7) Design for a tool (CLAMP) that facilitates ECOIN application merging, reduces
merging time and relieves the user from the need to know Prolog

Of these topics, the central two were the presentation of ECOIN application merging through
context-linking and the proposal for a tool that facilitates ECOIN application merging.
Indeed, at the beginning of this thesis, we motivated ourselves to pursue these two topics with
four reasons. We now evaluate how those motivations have been satisfied:

7.2 Evaluation of motivations for thesis

In Section 1.4.2, we motivated the work of this thesis with four key reasons. We revisit these
reasons below and evaluate our research based on these motivations.

Value to be gained by merging ECOIN applications
An application may find it very beneficial to have access to the set of sources that are part of
another application. Or an application may be able to leverage the context capabilities of
another application. By merging Airfare and Car Rental, we have shown the benefits from
merging two realistic applications – we developed a general travel application with airfare
finding and car renting abilities and context capabilities from both applications (currency
conversion, airport code conversion). Furthermore, we were able to extend the merged
application and provide the ability to find a combined airfare and car rental price (the rental
automatically being for the duration of the stay) simply by entering the destination and dates
of travel. We have shown that these benefits can potentially be gained by merging any two
applications (the “three goals” of merging). We have shown that merging is a much faster
way to create a ECOIN application that covers two domains than developing such an

 77

application “from scratch”. We have shown that the CLAMP tool cuts the time further by
speeding up the context linking process. This time gains are significant when multiple
applications are to be merged (done two at a time).

Re-use
With numerous applications and ontologies being developed independently, there is a lot of
benefit to be derived from re-using work that has already been done. In this thesis, we have
shown, through the example of merging Airfare and Car Rental, the re-use of sources from
both applications and the re-use of portions of the ontology (which leads to inheriting context
capabilities from both underlying applications). However, “re-use” has also meant “repeat.”
That is, in re-using ontology, we did not show two ontologies being merged to yield an
elegant, merged result – rather the virtually merged ontology contains many redundancies i.e.
the same concept being captured by more than one semantic type.

Better fit with how ontologies/applications are developed in real life
In the real world, designers of applications (and ontologies) rarely have a broad enough vision
to predict what will be desired in the future - ontologies, applications, and standards are
constantly being developed and evolved by countless independent parties. It is better to adapt
to this reality and design small, relevant applications and merge them with other applications
as needed than to try to predict and pre-plan large, comprehensive applications.

We have shown that context-linking allows you to go about merging whatever two
applications you want fairly easily as long as you see some benefit to be gained either –
whether the benefit is as simple as gaining a new source or significant as gaining new context
capabilities. Upward inheritance is what prevents all these applications being merged from
becoming very unwieldy, Namely, all the underlying applications’ metadata is inherited
implicitly into the merged application’s file and is not explicitly listed. If you were to draw
out the resulting “virtually merged ontology” it would be huge and inelegant perhaps, but in
Prolog implementation, it is very efficiently represented.

Easier problem to solve then “materially” merging ontologies
The general theoretical problem of ontology merging is a difficult artificial intelligence
problem. In the related work section, we outlined various groups’ approaches to this problem
and saw the difficulties they faced. On the other hand, we have shown that virtual merging
through context-linking is a workable solution for merging ECOIN application ontologies.
Rather than traditionally merging ECOIN ontologies and then developing an application
around the merged ontology, ECOIN is content with quickly arriving at a virtually-merged
ontology because it is provided the functionality it wants – context-mediation across the
sources of both applications. Furthermore, the two underlying ontologies persist within the
ECOIN system and are still usable by their original applications.

 78

7.3 – A look ahead

Overall, we have shown that ECOIN Application merging through context-linking provides
much benefit to the ECOIN system and satisfactorily addresses the factors that motivated the
approach in the first place. One of the more interesting characteristics of ECOIN application
merging is that it lends itself to unplanned, decentralized evolution. Namely, merging has
been made easier, it does not affect existing applications, and much benefit is to be gained
even from merging applications that are not obviously complementary. Thus, various
independent developers can take initiative and merge various applications with other merged
applications and so on. In general, such decentralized endeavors, for example, the Internet,
evolve in directions and yield unpredicted future benefits that the original players did not even
imagine. Thus as context-linking becomes more established and more and more ECOIN
applications are merged, it will be very interesting to see what shapes the various unplanned
webs of ECOIN applications take and what surprising results are attained.

 79

References

[1] Ayenew, Befekadu. Alignment and Merging for Collaborative Domain Spaces.

Master of Engineering thesis proposal. Department of Electrical Engineering and
Computer Science, Massachusetts Institute of Technology, Dec 2001.

[2] Bressan, Stephane, Cheng Goh, Natalia Levina, Stuart Madnick, Ahmed Shah, and

Michael Siegel. Context Knowledge Representation and Reasoning in the Context
Interchange System. Applied Intelligence 13, 165-180, 2000.

[3] Chalupsky, Hans. OntoMorph: A Translation System for Symbolic Knowledge.

Proceedings of the Seventh International Conference on Principles of Knowledge
Representation and Reasoning, San Francisco, CA, 2000.

[4] Chalupsky, H., Hovy, E. and Russ, T. Progress on an Automatic Ontology Alignment

Methodology. 1997

[5] The Context Interchange Group Home Page,

http://context2.mit.edu/coin/description/database_world.html

[6] Firat, Aykut. Information Integration using Contextual Knowledge and Ontology

Merging. Ph.D. Thesis. Massachusetts Institute of Technology, 2003.

[7] Firat, Aykut, Stuart Madnick and Michael Siegel. The Cameleon Approach to the

Interoperability of Web Sources and Traditional Relational DataBases. Proceedings of
the 10th Annual Workshop On Information Technologies and Systems, Brisbane,
Queensland, Australia, 2000.

[8] Gangemi, Aldo, Domenico M. Pisanelli and Geri Steve. An Overview of the ONIONS

Project: Applying Ontologies to the Integration of Medical Terminologies. 1999

[9] Goh, Cheng Hian. Representing and Reasoning about Semantic Conflicts in

Heterogeneous Information Systems. PhD dissertation, Massachusetts Institute of
Technology, Sloan School of Management, December, 1996.

[10] Goh, Cheng Hian, Stephane Bressan, Stuart Madnick, and Michael Siegel. Context

Interchange: New Features and Formalisms for the Intelligent Integration of
Information. ACM Transactions on Information Systems, Vol. 17, No. 3, July 1999,
Pages 270-293.

 80

[11] Gruber, Thomas R. A Translation Approach to Portable Ontology Specifications.
Knowledge Systems Laboratory, Stanford University, Technical Report KSL 92-71,
April 1993

[12] Lee, Philip. Metadata Representation and Management for Context Mediation. MIT

Master of Engineering Thesis. Massachusetts Institute of Technology, 2003.

[13] Miller, George A, Richard Beckwith, Christiane Fellbaum, Derek Gross, and Katherine

Miller. Introduction to WordNet: An On-line Lexical Database. Cognitive Science
Laboratory, Princeton University, 1993

[14] Noy, Natalya F. and Mark A. Musen, “PROMPT: Algorithm and Tool for Automated

Ontology Merging and Alignment.” In Proceedings of AAAI-2000, Austin, Texas. MIT
Press/AAAI Press, 2000, 450-455.

[15] Ying Ding, Dieter Fensel, Michel Klein, Borys Omelayenko, “Ontology Management:

Survey, Requirement and Directions.” On-to-Knowledge Project. Division of
Mathematics & Computer Science, Vrije Universiteit Amsterdam. 1999.

 81

Appendix A – Application Prolog file from Airfare

:- module_interface(application512).
:- export rule/2.
:- begin_module(application512).
:- dynamic rule/2.

%% domain model for Airfare Aggregator
%% generation timestamp: 4/8/2003 10:06:23 PM

%%
%% Semantic types
%%
rule(is_a(airline, basic), (true)).
rule(is_a(cityORAirport, basic), (true)).
rule(is_a(country, basic), (true)).
rule(is_a(currency, basic), (true)).
rule(is_a(date, basic), (true)).
rule(is_a(dateType, basic), (true)).
rule(is_a(day, basic), (true)).
rule(is_a(duration, basic), (true)).
rule(is_a(durationType, basic), (true)).
rule(is_a(exchangeRate, basic), (true)).
rule(is_a(flight, basic), (true)).
rule(is_a(includesServFee, basic), (true)).
rule(is_a(includesVisaFee, basic), (true)).
rule(is_a(includesPaperCharge, basic), (true)).
rule(is_a(moneyAmount, basic), (true)).
rule(is_a(month, basic), (true)).
rule(is_a(onTimeProbability, basic), (true)).
rule(is_a(paperTicketFee, moneyAmount), (true)).
rule(is_a(price, moneyAmount), (true)).
rule(is_a(provider, basic), (true)).
rule(is_a(serviceFee, moneyAmount), (true)).
rule(is_a(timeZone, basic), (true)).
rule(is_a(traveler, basic), (true)).
rule(is_a(trip, basic), (true)).
rule(is_a(visaFees, moneyAmount), (true)).
rule(is_a(year, basic), (true)).
rule(is_a(c_yahoo, basic), (true)).
rule(is_a(c_expedia, basic), (true)).
rule(is_a(c_orbitz, basic), (true)).
rule(is_a(c_itn, basic), (true)).
rule(is_a(c_travelselect, basic), (true)).
rule(is_a(olsen_context, basic), (true)).
rule(is_a(dora, basic), (true)).
rule(is_a(doras_friend, basic), (true)).
rule(is_a(c_demo, basic), (true)).

rule(contexts([c_yahoo, c_expedia, c_orbitz, c_itn, c_travelselect, olsen_context, dora, doras_friend, c_demo]),(true)).

%%
%% Modifiers
%%
rule(modifiers(airline, []), (true)).
rule(modifiers(basic, []), (true)).
rule(modifiers(cityORAirport, []), (true)).
rule(modifiers(country, []), (true)).
rule(modifiers(currency, []), (true)).
rule(modifiers(date, [dateType]), (true)).

 82

rule(modifiers(dateType, []), (true)).
rule(modifiers(day, []), (true)).
rule(modifiers(duration, [durationType]), (true)).
rule(modifiers(durationType, []), (true)).
rule(modifiers(exchangeRate, []), (true)).
rule(modifiers(flight, []), (true)).
rule(modifiers(moneyAmount, [currency]), (true)).
rule(modifiers(month, []), (true)).
rule(modifiers(onTimeProbability, []), (true)).
rule(modifiers(paperTicketFee, []), (true)).
rule(modifiers(price, [includesServFee, includesVisaFee, includesPaperCharge]), (true)).
rule(modifiers(includesServFee, []), (true)).
rule(modifiers(includesVisaFee, []), (true)).
rule(modifiers(includesPaperCharge, []), (true)).
rule(modifiers(provider, []), (true)).
rule(modifiers(serviceFee, []), (true)).
rule(modifiers(timeZone, []), (true)).
rule(modifiers(traveler, []), (true)).
rule(modifiers(trip, []), (true)).
rule(modifiers(visaFees, []), (true)).
rule(modifiers(year, []), (true)).

%%
%% Attributes
%%
rule(attributes(airline, []), (true)).
rule(attributes(basic, []), (true)).
rule(attributes(cityORAirport, [isIn, timeZone]), (true)).
rule(attributes(country, [visaFees]), (true)).
rule(attributes(currency, []), (true)).
rule(attributes(date, []), (true)).
rule(attributes(dateType, []), (true)).
rule(attributes(day, []), (true)).
rule(attributes(duration, []), (true)).
rule(attributes(durationType, []), (true)).
rule(attributes(exchangeRate, [txnDate, fromCur, toCur]), (true)).
rule(attributes(flight, [airline, duration, stopOver, timeliness]), (true)).
rule(attributes(moneyAmount, []), (true)).
rule(attributes(month, []), (true)).
rule(attributes(onTimeProbability, []), (true)).
rule(attributes(paperTicketFee, []), (true)).
rule(attributes(price, [destCntry, provider]), (true)).
rule(attributes(includesServFee, []), (true)).
rule(attributes(includesVisaFee, []), (true)).
rule(attributes(includesPaperCharge, []), (true)).
rule(attributes(provider, [paperTicketFee, serviceFee]), (true)).
rule(attributes(serviceFee, []), (true)).
rule(attributes(timeZone, []), (true)).
rule(attributes(traveler, [citizenship]), (true)).
rule(attributes(trip, [departureDate, departureDay, departureMonth, departureYear, destination, flight, origin, price,
returnDate, returnDay, returnMonth, returnYear, traveler]), (true)).
rule(attributes(visaFees, []), (true)).
rule(attributes(year, []), (true)).

%%
%% Contexts
%%
rule(context(c_yahoo), (true)).
rule(context(c_expedia), (true)).
rule(context(c_orbitz), (true)).
rule(context(c_itn), (true)).

 83

rule(context(c_travelselect), (true)).
rule(context(olsen_context), (true)).
rule(context(dora), (true)).
rule(context(doras_friend), (true)).
rule(context(c_demo), (true)).

%%
%% c_demo context
%%

rule(modifier(moneyAmount, Object, currency, c_demo, Modifier),
 (cste(basic, Modifier, c_demo, "USD"))).

%%
%% dora context
%%
rule(modifier(price, Object, includesServFee, dora, Modifier),
 (cste(basic, Modifier, dora, "yes"))).

rule(modifier(price, Object, includesVisaFee, dora, Modifier),
 (cste(basic, Modifier, dora, "no"))).

rule(modifier(price, Object, includesPaperCharge, dora, Modifier),
 (cste(basic, Modifier, dora, "yes"))).

rule(modifier(moneyAmount, Object, currency, dora, Modifier),
 (cste(basic, Modifier, dora, "USD"))).

%%
%% doras_friend context
%%
rule(modifier(price, Object, includesServFee, doras_friend, Modifier),
 (cste(basic, Modifier, doras_friend, "no"))).

rule(modifier(price, Object, includesVisaFee, doras_friend, Modifier),
 (cste(basic, Modifier, doras_friend, "no"))).

rule(modifier(price, Object, includesPaperCharge, doras_friend, Modifier),
 (cste(basic, Modifier, doras_friend, "no"))).

rule(modifier(moneyAmount, Object, currency, doras_friend, Modifier),
 (cste(basic, Modifier, doras_friend, "GBP"))).

%%
%% c_yahoo context
%%
rule(modifier(price, Object, includesServFee, c_yahoo, Modifier),
 (cste(basic, Modifier, c_yahoo, "yes"))).

rule(modifier(price, Object, includesVisaFee, c_yahoo, Modifier),
 (cste(basic, Modifier, c_yahoo, "no"))).

rule(modifier(price, Object, includesPaperCharge, c_yahoo, Modifier),
 (cste(basic, Modifier, c_yahoo, "no"))).

rule(modifier(moneyAmount, Object, currency, c_yahoo, Modifier),
 (cste(basic, Modifier, c_yahoo, "USD"))).

%%

 84

%% c_expedia context
%%
rule(modifier(price, Object, includesServFee, c_expedia, Modifier),
 (cste(basic, Modifier, c_expedia, "yes"))).

rule(modifier(price, Object, includesVisaFee, c_expedia, Modifier),
 (cste(basic, Modifier, c_expedia, "no"))).

rule(modifier(price, Object, includesPaperCharge, c_expedia, Modifier),
 (cste(basic, Modifier, c_expedia, "no"))).

rule(modifier(moneyAmount, Object, currency, c_expedia, Modifier),
 (cste(basic, Modifier, c_expedia, "USD"))).

%%
%% c_orbitz context
%%
rule(modifier(price, Object, includesServFee, c_orbitz, Modifier),
 (cste(basic, Modifier, c_orbitz, "no"))).

rule(modifier(price, Object, includesVisaFee, c_orbitz, Modifier),
 (cste(basic, Modifier, c_orbitz, "no"))).

rule(modifier(price, Object, includesPaperCharge, c_orbitz, Modifier),
 (cste(basic, Modifier, c_orbitz, "no"))).

rule(modifier(moneyAmount, Object, currency, c_orbitz, Modifier),
 (cste(basic, Modifier, c_orbitz, "USD"))).

%%
%% c_itn context
%%
rule(modifier(price, Object, includesServFee, c_itn, Modifier),
 (cste(basic, Modifier, c_itn, "no"))).

rule(modifier(price, Object, includesVisaFee, c_itn, Modifier),
 (cste(basic, Modifier, c_itn, "no"))).

rule(modifier(price, Object, includesPaperCharge, c_itn, Modifier),
 (cste(basic, Modifier, c_itn, "no"))).

rule(modifier(moneyAmount, Object, currency, c_itn, Modifier),
 (cste(basic, Modifier, c_itn, "USD"))).

%%
%% c_travelselect context
%%
rule(modifier(price, Object, includesServFee, c_travelselect, Modifier),
 (cste(basic, Modifier, c_travelselect, "no"))).

rule(modifier(price, Object, includesVisaFee, c_travelselect, Modifier),
 (cste(basic, Modifier, c_travelselect, "no"))).

rule(modifier(price, Object, includesPaperCharge, c_travelselect, Modifier),
 (cste(basic, Modifier, c_travelselect, "no"))).

rule(modifier(moneyAmount, Object, currency, c_travelselect, Modifier),
 (cste(basic, Modifier, c_travelselect, "GBP"))).

 85

rule(attr(Price, provider, Provider), (myorbitz_p(_, Price, _, _, _, _, _, _, Provider, _))).
rule(attr(Price, provider, Provider), (yahoo_p(_, Price, _, _, _, _, _, _, Provider, _))).
rule(attr(Price, provider, Provider), (itn_p(_, Price, _, _, _, _, _, _, Provider))).
rule(attr(Price, provider, Provider), (expedia2_p(_, Price, _, _, _, _, Provider, _))).
rule(attr(Price, provider, Provider), (expedia_p(_, Price, _, _, _, _, Provider, _))).
rule(attr(Price, provider, Provider), (travelselect_p(_, Price, _, _, _, _, _, _, Provider, _))).

rule(attr(Price, destCntry, DestCntry), (myorbitz_p(_, Price, _, _, _, _, _, _, _, DestCntry))).
rule(attr(Price, destCntry, DestCntry), (yahoo_p(_, Price, _, _, _, _, _, _, _, DestCntry))).
rule(attr(Price, destCntry, DestCntry), (expedia2_p(_, Price, _, _, _, _, _, DestCntry))).
rule(attr(Price, destCntry, DestCntry), (expedia_p(_, Price, _, _, _, _, _, DestCntry))).
rule(attr(Price, destCntry, DestCntry), (travelselect_p(_, Price, _, _, _, _, _, _, _, DestCntry))).

rule(attr(Provider, serviceFee, Fee),
 (value(Provider, dora, P),
 value(ProviderSF, dora, P),
 'ServiceFees_p'(ProviderSF, Fee))).

rule(attr(Provider, paperTicketFee, Fee),
 (value(Provider, dora, P),
 value(ProviderSF, dora, P),
 paper_fees_p(ProviderSF, Fee))).

rule(attr(Destination, visaFees, VisaFee),
 (value(Destination, dora, D),
 value(DestinationF, dora, D),
 value(Citizenship, dora, "American"),
 visa_fees_p(Citizenship, DestinationF, VisaFee))).

rule(attr(X, txnDate, Y), (olsen_p(_6313, _6314, X, Y))).
rule(attr(X, fromCur, Y), (olsen_p(_6351, Y, X, _6354))).
rule(attr(X, toCur, Y), (olsen_p(Y, _6390, X, _6392))).

%%
%% conversion functions for price
%% with respect to priceType

rule(cvt(commutative, price, O, includesServFee, Ctxt, "no", Vs, "yes", Vt),
 (attr(O, provider, Pr),
 attr(Pr, serviceFee, Sf),
 value(Sf, Ctxt, Sfv),
 plus(Vs, Sfv, Vt))).

rule(cvt(commutative, price, O, includesVisaFee, Ctxt, "no", Vs, "yes", Vt),
 (attr(O, provider, Pr),
 attr(O, destCntry, De),
 attr(De, visaFees, Vf),
 value(Vf, Ctxt, VVf),
 plus(Vs, VVf, Vt))).

rule(cvt(commutative, price, O, includesPaperCharge, Ctxt, "no", Vs, "yes", Vt),
 (attr(O, provider, Pr),
 attr(Pr, paperTicketFee, Pf),
 value(Pf, Ctxt, Pfv),
 plus(Vs, Pfv, Vt))).

%% conversion functions for moneyAmount

 86

%% with respect to currency
%%

rule(cvt(commuative, moneyAmount, _O, currency, Ctxt, Mvs, Vs, Mvt, Vt),
 (olsen_p(Fc, Tc, Rate, Date),
 value(Fc, Ctxt, Mvs),
 value(Tc, Ctxt, Mvt),
 value(Rate, Ctxt, Rv),
 currentDate_p(CurDate),
 value(CurDate, Ctxt, DateValue),
 value(Date, Ctxt, DateValue),
 multiply(Vs, Rv, Vt))).

rule(currentDate(Date), ({date(D), substring(D, 5, 3, Month), substring(D, 9, 2, Day), substring(D, 23, 2, Year)},
month(Month, NumMonth), {concat_string([NumMonth, /, Day, /, Year], Date)})).
rule(month("Jan", 01), (true)).
rule(month("Feb", 02), (true)).
rule(month("Mar", 03), (true)).
rule(month("Apr", 04), (true)).
rule(month("May", 05), (true)).
rule(month("Jun", 06), (true)).
rule(month("Jul", 07), (true)).
rule(month("Aug", 08), (true)).
rule(month("Sep", 09), (true)).
rule(month("Oct", 10), (true)).
rule(month("Nov", 11), (true)).
rule(month("Dec", 12), (true)).

%%
%% elevations
%%

rule(currentDate_p(
 skolem(date, V, Ctxt, 1, currentDate(V))),
 (currentDate(V))).

rule(
 expedia_p(
 skolem(airline, C1, c_expedia, 1,
 expedia(C1, C2, C3, C4, C5, C6, C7, C8)),
 skolem(price, C2, c_expedia, 2,
 expedia(C1, C2, C3, C4, C5, C6, C7, C8)),
 skolem(cityORAirport, C3, c_expedia, 3,
 expedia(C1, C2, C3, C4, C5, C6, C7, C8)),
 skolem(cityORAirport, C4, c_expedia, 4,
 expedia(C1, C2, C3, C4, C5, C6, C7, C8)),
 skolem(date, C5, c_expedia, 5,
 expedia(C1, C2, C3, C4, C5, C6, C7, C8)),
 skolem(date, C6, c_expedia, 6,
 expedia(C1, C2, C3, C4, C5, C6, C7, C8)),
 skolem(provider, C7, c_expedia, 7,
 expedia(C1, C2, C3, C4, C5, C6, C7, C8)),
 skolem(country, C8, c_expedia, 8,
 expedia(C1, C2, C3, C4, C5, C6, C7, C8))),
 (expedia(C1, C2, C3, C4, C5, C6, C7, C8))).

rule(
 expedia2_p(
%% skolem(trip, expediatrip, c_expedia, 9,

 87

%% expedia2(C1, C2, C3, C4, C5, C6, C7, C8)),
 skolem(airline, C1, c_expedia, 1,
 expedia2(C1, C2, C3, C4, C5, C6, C7, C8)),
 skolem(price, C2, c_expedia, 2,
 expedia2(C1, C2, C3, C4, C5, C6, C7, C8)),
 skolem(cityORAirport, C3, c_expedia, 3,
 expedia2(C1, C2, C3, C4, C5, C6, C7, C8)),
 skolem(cityORAirport, C4, c_expedia, 4,
 expedia2(C1, C2, C3, C4, C5, C6, C7, C8)),
 skolem(date, C5, c_expedia, 5,
 expedia2(C1, C2, C3, C4, C5, C6, C7, C8)),
 skolem(date, C6, c_expedia, 6,
 expedia2(C1, C2, C3, C4, C5, C6, C7, C8)),
 skolem(provider, C7, c_expedia, 7,
 expedia2(C1, C2, C3, C4, C5, C6, C7, C8)),
 skolem(country, C8, c_expedia, 8,
 expedia2(C1, C2, C3, C4, C5, C6, C7, C8))),
 (expedia2(C1, C2, C3, C4, C5, C6, C7, C8))).

rule(
 hotwire_p(
 skolem(null, C1, Ctxt, 1,
 hotwire(C1, C2, C3, C4, C5, C6, C7, C8)),
 skolem(null, C2, Ctxt, 2,
 hotwire(C1, C2, C3, C4, C5, C6, C7, C8)),
 skolem(null, C3, Ctxt, 3,
 hotwire(C1, C2, C3, C4, C5, C6, C7, C8)),
 skolem(null, C4, Ctxt, 4,
 hotwire(C1, C2, C3, C4, C5, C6, C7, C8)),
 skolem(null, C5, Ctxt, 5,
 hotwire(C1, C2, C3, C4, C5, C6, C7, C8)),
 skolem(null, C6, Ctxt, 6,
 hotwire(C1, C2, C3, C4, C5, C6, C7, C8)),
 skolem(null, C7, Ctxt, 7,
 hotwire(C1, C2, C3, C4, C5, C6, C7, C8)),
 skolem(null, C8, Ctxt, 8,
 hotwire(C1, C2, C3, C4, C5, C6, C7, C8))),
 (hotwire(C1, C2, C3, C4, C5, C6, C7, C8))).

rule(
 itn_p(
 skolem(airline, C1, c_itn, 1,
 itn(C1, C2, C3, C4, C5, C6, C7, C8, C9)),
 skolem(price, C2, c_itn, 2,
 itn(C1, C2, C3, C4, C5, C6, C7, C8, C9)),
 skolem(cityORAirport, C3, c_itn, 3,
 itn(C1, C2, C3, C4, C5, C6, C7, C8, C9)),
 skolem(cityORAirport, C4, c_itn, 4,
 itn(C1, C2, C3, C4, C5, C6, C7, C8, C9)),
 skolem(month, C5, c_itn, 5,
 itn(C1, C2, C3, C4, C5, C6, C7, C8, C9)),
 skolem(month, C6, c_itn, 6,
 itn(C1, C2, C3, C4, C5, C6, C7, C8, C9)),
 skolem(day, C7, c_itn, 7,
 itn(C1, C2, C3, C4, C5, C6, C7, C8, C9)),
 skolem(day, C8, c_itn, 8,
 itn(C1, C2, C3, C4, C5, C6, C7, C8, C9)),
 skolem(provider, C9, c_itn, 9,
 itn(C1, C2, C3, C4, C5, C6, C7, C8, C9))),
 (itn(C1, C2, C3, C4, C5, C6, C7, C8, C9))).

 88

rule(
 myorbitz_p(
 skolem(airline, C1, c_orbitz, 1,
 myorbitz(C1, C2, C3, C4, C5, C6, C7, C8, C9, C10)),
 skolem(price, C2, c_orbitz, 2,
 myorbitz(C1, C2, C3, C4, C5, C6, C7, C8, C9, C10)),
 skolem(cityORAirport, C3, c_orbitz, 3,
 myorbitz(C1, C2, C3, C4, C5, C6, C7, C8, C9, C10)),
 skolem(cityORAirport, C4, c_orbitz, 4,
 myorbitz(C1, C2, C3, C4, C5, C6, C7, C8, C9, C10)),
 skolem(month, C5, c_orbitz, 5,
 myorbitz(C1, C2, C3, C4, C5, C6, C7, C8, C9, C10)),
 skolem(month, C6, c_orbitz, 6,
 myorbitz(C1, C2, C3, C4, C5, C6, C7, C8, C9, C10)),
 skolem(day, C7, c_orbitz, 7,
 myorbitz(C1, C2, C3, C4, C5, C6, C7, C8, C9, C10)),
 skolem(day, C8, c_orbitz, 8,
 myorbitz(C1, C2, C3, C4, C5, C6, C7, C8, C9, C10)),
 skolem(provider, C9, c_orbitz, 9,
 myorbitz(C1, C2, C3, C4, C5, C6, C7, C8, C9, C10)),
 skolem(country, C10, c_orbitz, 10,
 myorbitz(C1, C2, C3, C4, C5, C6, C7, C8, C9, C10))),
 (myorbitz(C1, C2, C3, C4, C5, C6, C7, C8, C9, C10))).

rule(
 myunited_p(
 skolem(null, C1, Ctxt, 1,
 myunited(C1, C2, C3, C4, C5, C6, C7, C8)),
 skolem(null, C2, Ctxt, 2,
 myunited(C1, C2, C3, C4, C5, C6, C7, C8)),
 skolem(null, C3, Ctxt, 3,
 myunited(C1, C2, C3, C4, C5, C6, C7, C8)),
 skolem(null, C4, Ctxt, 4,
 myunited(C1, C2, C3, C4, C5, C6, C7, C8)),
 skolem(null, C5, Ctxt, 5,
 myunited(C1, C2, C3, C4, C5, C6, C7, C8)),
 skolem(null, C6, Ctxt, 6,
 myunited(C1, C2, C3, C4, C5, C6, C7, C8)),
 skolem(null, C7, Ctxt, 7,
 myunited(C1, C2, C3, C4, C5, C6, C7, C8)),
 skolem(null, C8, Ctxt, 8,
 myunited(C1, C2, C3, C4, C5, C6, C7, C8))),
 (myunited(C1, C2, C3, C4, C5, C6, C7, C8))).

rule(
 northwest_p(
 skolem(null, C1, Ctxt, 1,
 northwest(C1, C2, C3, C4, C5, C6, C7, C8)),
 skolem(null, C2, Ctxt, 2,
 northwest(C1, C2, C3, C4, C5, C6, C7, C8)),
 skolem(null, C3, Ctxt, 3,
 northwest(C1, C2, C3, C4, C5, C6, C7, C8)),
 skolem(null, C4, Ctxt, 4,
 northwest(C1, C2, C3, C4, C5, C6, C7, C8)),
 skolem(null, C5, Ctxt, 5,
 northwest(C1, C2, C3, C4, C5, C6, C7, C8)),
 skolem(null, C6, Ctxt, 6,
 northwest(C1, C2, C3, C4, C5, C6, C7, C8)),
 skolem(null, C7, Ctxt, 7,
 northwest(C1, C2, C3, C4, C5, C6, C7, C8)),
 skolem(null, C8, Ctxt, 8,

 89

 northwest(C1, C2, C3, C4, C5, C6, C7, C8))),
 (northwest(C1, C2, C3, C4, C5, C6, C7, C8))).

rule(
 paper_fees_p(
 skolem(provider, C1, dora, 1,
 paper_fees(C1, C2)),
 skolem(paperTicketFee, C2, dora, 2,
 paper_fees(C1, C2))),
 (paper_fees(C1, C2))).

rule(
 qixo_p(
 skolem(null, C1, Ctxt, 1,
 qixo(C1, C2, C3, C4, C5, C6)),
 skolem(null, C2, Ctxt, 2,
 qixo(C1, C2, C3, C4, C5, C6)),
 skolem(null, C3, Ctxt, 3,
 qixo(C1, C2, C3, C4, C5, C6)),
 skolem(null, C4, Ctxt, 4,
 qixo(C1, C2, C3, C4, C5, C6)),
 skolem(null, C5, Ctxt, 5,
 qixo(C1, C2, C3, C4, C5, C6)),
 skolem(null, C6, Ctxt, 6,
 qixo(C1, C2, C3, C4, C5, C6))),
 (qixo(C1, C2, C3, C4, C5, C6))).

rule(
 'ServiceFees_p'(
 skolem(provider, C1, dora, 1,
 'ServiceFees'(C1, C2)),
 skolem(serviceFee, C2, dora, 2,
 'ServiceFees'(C1, C2))),
 ('ServiceFees'(C1, C2))).

rule(
 travelocity_p(
 skolem(null, C1, Ctxt, 1,
 travelocity(C1, C2, C3, C4, C5, C6, C7, C8)),
 skolem(null, C2, Ctxt, 2,
 travelocity(C1, C2, C3, C4, C5, C6, C7, C8)),
 skolem(null, C3, Ctxt, 3,
 travelocity(C1, C2, C3, C4, C5, C6, C7, C8)),
 skolem(null, C4, Ctxt, 4,
 travelocity(C1, C2, C3, C4, C5, C6, C7, C8)),
 skolem(null, C5, Ctxt, 5,
 travelocity(C1, C2, C3, C4, C5, C6, C7, C8)),
 skolem(null, C6, Ctxt, 6,
 travelocity(C1, C2, C3, C4, C5, C6, C7, C8)),
 skolem(null, C7, Ctxt, 7,
 travelocity(C1, C2, C3, C4, C5, C6, C7, C8)),
 skolem(null, C8, Ctxt, 8,
 travelocity(C1, C2, C3, C4, C5, C6, C7, C8))),
 (travelocity(C1, C2, C3, C4, C5, C6, C7, C8))).

rule(
 visa_fees_p(
 skolem(country, C1, dora, 1,
 visa_fees(C1, C2, C3)),
 skolem(country, C2, dora, 2,
 visa_fees(C1, C2, C3)),

 90

 skolem(visaFees, C3, dora, 3,
 visa_fees(C1, C2, C3))),
 (visa_fees(C1, C2, C3))).

rule(
 olsen_p(
 skolem(currency, Exch, olsen_context, 1,
 olsen(Exch, Express, Rate, Date)),
 skolem(currency, Express, olsen_context, 2,
 olsen(Exch, Express, Rate, Date)),
 skolem(exchangeRate, Rate, olsen_context, 3,
 olsen(Exch, Express, Rate, Date)),
 skolem(date, Date, olsen_context, 4,
 olsen(Exch, Express, Rate, Date))),
 (olsen(Exch, Express, Rate, Date))).

rule(
 yahoo_p(
 skolem(airline, C1, c_yahoo, 1,
 yahoo(C1, C2, C3, C4, C5, C6, C7, C8, C9, C10)),
 skolem(price, C2, c_yahoo, 2,
 yahoo(C1, C2, C3, C4, C5, C6, C7, C8, C9, C10)),
 skolem(cityORAirport, C3, c_yahoo, 3,
 yahoo(C1, C2, C3, C4, C5, C6, C7, C8, C9, C10)),
 skolem(cityORAirport, C4, c_yahoo, 4,
 yahoo(C1, C2, C3, C4, C5, C6, C7, C8, C9, C10)),
 skolem(month, C5, c_yahoo, 5,
 yahoo(C1, C2, C3, C4, C5, C6, C7, C8, C9, C10)),
 skolem(month, C6, c_yahoo, 6,
 yahoo(C1, C2, C3, C4, C5, C6, C7, C8, C9, C10)),
 skolem(day, C7, c_yahoo, 7,
 yahoo(C1, C2, C3, C4, C5, C6, C7, C8, C9, C10)),
 skolem(day, C8, c_yahoo, 8,
 yahoo(C1, C2, C3, C4, C5, C6, C7, C8, C9, C10)),
 skolem(provider, C9, c_yahoo, 9,
 yahoo(C1, C2, C3, C4, C5, C6, C7, C8, C9, C10)),
 skolem(country, C10, c_yahoo, 10,
 yahoo(C1, C2, C3, C4, C5, C6, C7, C8, C9, C10))),
 (yahoo(C1, C2, C3, C4, C5, C6, C7, C8, C9, C10))).

rule(
 travelselect_p(
 skolem(airline, C1, c_travelselect, 1,
 travelselect(C1, C2, C3, C4, C5, C6, C7, C8, C9, C10)),
 skolem(price, C2, c_travelselect, 2,
 travelselect(C1, C2, C3, C4, C5, C6, C7, C8, C9, C10)),
 skolem(cityORAirport, C3, c_travelselect, 3,
 travelselect(C1, C2, C3, C4, C5, C6, C7, C8, C9, C10)),
 skolem(cityORAirport, C4, c_travelselect, 4,
 travelselect(C1, C2, C3, C4, C5, C6, C7, C8, C9, C10)),
 skolem(month, C5, c_travelselect, 5,
 travelselect(C1, C2, C3, C4, C5, C6, C7, C8, C9, C10)),
 skolem(month, C6, c_travelselect, 6,
 travelselect(C1, C2, C3, C4, C5, C6, C7, C8, C9, C10)),
 skolem(day, C7, c_travelselect, 7,
 travelselect(C1, C2, C3, C4, C5, C6, C7, C8, C9, C10)),
 skolem(day, C8, c_travelselect, 8,
 travelselect(C1, C2, C3, C4, C5, C6, C7, C8, C9, C10)),
 skolem(provider, C9, c_travelselect, 9,
 travelselect(C1, C2, C3, C4, C5, C6, C7, C8, C9, C10)),
 skolem(country, C10, c_travelselect, 10,

 91

 travelselect(C1, C2, C3, C4, C5, C6, C7, C8, C9, C10))),
 (travelselect(C1, C2, C3, C4, C5, C6, C7, C8, C9, C10))).

%%
%% Relations
%%

rule(relation(cameleon,
 expedia,
 ie,
 [['Airline', string],
 ['Price', string],
 ['Destination', string],
 ['Departure', string],
 ['Date1', string],
 ['Date2', string],
 ['Provider', string],
 ['IsIn', string]],
 cap([[0, 0, 0, 0, 0, 0, 0, 0]],
 [])), (true)).

rule(relation(cameleon,
 expedia2,
 ie,
 [['Airline', string],
 ['Price', string],
 ['Destination', string],
 ['Departure', string],
 ['Date1', string],
 ['Date2', string],
 ['Provider', string],
 ['IsIn', string]],
 cap([[0, 0, 0, 0, 0, 0, 0, 0]],
 [])), (true)).

rule(relation(cameleon,
 hotwire,
 ie,
 [['Airline', string],
 ['Price', string],
 ['Destination', string],
 ['Departure', string],
 [month1, string],
 [month2, string],
 [day1, string],
 [day2, string]],
 cap([[0, 0, 0, 0, 0, 0, 0, 0]],
 [])), (true)).

rule(relation(cameleon,
 itn,
 ie,
 [['Airline', string],
 ['Price', string],
 ['Destination', string],
 ['Departure', string],
 ['Month1', string],
 ['Month2', string],
 ['Day1', string],
 ['Day2', string],
 ['Provider', string]],

 92

 cap([[0, 0, 0, 0, 0, 0, 0, 0, 0]],
 [])), (true)).

rule(relation(cameleon,
 myorbitz,
 ie,
 [['Airline', string],
 ['Price', string],
 ['Destination', string],
 ['Departure', string],
 ['Month1', string],
 ['Month2', string],
 ['Day1', string],
 ['Day2', string],
 ['Provider', string],
 ['IsIn', string]],
 cap([[0, 0, 0, 0, 0, 0, 0, 0, 0, 0]],
 [])), (true)).

rule(relation(cameleon,
 myunited,
 ie,
 [['Airline', string],
 ['Price', string],
 ['Destination', string],
 ['Departure', string],
 ['Month1', string],
 ['Month2', string],
 ['Day1', string],
 ['Day2', string]],
 cap([[0, 0, 0, 0, 0, 0, 0, 0]],
 [])), (true)).

rule(relation(cameleon,
 northwest,
 ie,
 [['Airline', string],
 ['Price', string],
 ['Destination', string],
 ['Departure', string],
 ['Month1', string],
 ['Month2', string],
 ['Day1', string],
 ['Day2', string]],
 cap([[0, 0, 0, 0, 0, 0, 0, 0]],
 [])), (true)).

rule(relation(oracle,
 paper_fees,
 i,
 [[provider, string],
 [paperfee, string]],
 cap([[0, 0]],
 [])), (true)).

rule(relation(cameleon,
 qixo,
 ie,
 [['Airline', string],
 ['Price', string],
 ['Destination', string],

 93

 ['Departure', string],
 [date1, string],
 [date2, string]],
 cap([[0, 0, 0, 0, 0, 0]],
 [])), (true)).

rule(relation(oracle,
 'ServiceFees',
 i,
 [['Provider', string],
 ['ServiceFee', number]],
 cap([[0, 0]],
 [])), (true)).

rule(relation(cameleon,
 olsen,
 ie,
 [['Exchanged', string],
 ['Expressed', string],
 ['Rate', real],
 ['Date', string]],
 cap([[0, 0, 0, 0]],
 [])), (true)).

rule(relation(cameleon,
 travelocity,
 ie,
 [['Airline', string],
 ['Price', string],
 ['Destination', string],
 ['Departure', string],
 ['Month1', string],
 ['Month2', string],
 ['Day1', string],
 ['Day2', string]],
 cap([[0, 0, 0, 0, 0, 0, 0, 0]],
 [])), (true)).

rule(relation(oracle,
 visa_fees,
 i,
 [[citizenship, string],
 [destination, string],
 [visafee, string]],
 cap([[0, 0, 0]],
 [])), (true)).

rule(relation(cameleon,
 yahoo,
 ie,
 [['Airline', string],
 ['Price', string],
 ['Destination', string],
 ['Departure', string],
 ['Month1', string],
 ['Month2', string],
 ['Day1', string],
 ['Day2', string],
 ['Provider', string],
 ['IsIn', string]],
 cap([[0, 0, 0, 0, 0, 0, 0, 0, 0, 0]],

 94

 [])), (true)).

rule(relation(cameleon,
 travelselect,
 ie,
 [['Airline', string],
 ['Price', string],
 ['Destination', string],
 ['Departure', string],
 ['Month1', string],
 ['Month2', string],
 ['Day1', string],
 ['Day2', string],
 ['Provider', string],
 ['IsIn', string]],
 cap([[0, 0, 0, 0, 0, 0, 0, 0, 0, 0]],
 [])), (true)).

 95

Appendix B – Application Prolog file from Car Rental

:- module_interface(application513).
:- export rule/2.
:- begin_module(application513).
:- dynamic rule/2.

%% domain model for Car Renter
%% generation timestamp: 4/21/2003 10:20:30 PM

%%
%% Semantic types
%%
rule(is_a(airportCode, basic), (true)).
rule(is_a(city, basic), (true)).
rule(is_a(company, basic), (true)).
rule(is_a(date2, basic), (true)).
rule(is_a(day2, basic), (true)).
rule(is_a(divideFactor, basic), (true)).
rule(is_a(moneyAmount2, basic), (true)).
rule(is_a(month2, basic), (true)).
rule(is_a(price2, moneyAmount2), (true)).
rule(is_a(ratePeriod, basic), (true)).
rule(is_a(rental, basic), (true)).
rule(is_a(joe, basic), (true)).
rule(is_a(joes_friend, basic), (true)).
rule(is_a(c_expediacar, basic), (true)).
rule(is_a(c_yahoocar, basic), (true)).
rule(is_a(c_qixocar, basic), (true)).

rule(contexts([joe, joes_friend, c_expediacar, c_yahoocar, c_qixocar]),(true)).

%%
%% Modifiers
%%
rule(modifiers(airportCode, []), (true)).
rule(modifiers(basic, []), (true)).
rule(modifiers(city, [airportOrLocation]), (true)).
rule(modifiers(company, []), (true)).
rule(modifiers(date2, []), (true)).
rule(modifiers(day2, []), (true)).
rule(modifiers(divideFactor, []), (true)).
rule(modifiers(moneyAmount2, []), (true)).
rule(modifiers(month2, [month2SymbolType]), (true)).
%%rule(modifiers(price2, [price2Type]), (true)).
rule(modifiers(price2, [includesServiceFee, includesServiceFeeE, includesServiceFeeQ, includesServiceFeeY]), (true)).
rule(modifiers(ratePeriod, []), (true)).
rule(modifiers(rental, []), (true)).

%%
%% Attributes
%%
rule(attributes(airportCode, []), (true)).
rule(attributes(basic, []), (true)).
rule(attributes(city, [airportCode]), (true)).
rule(attributes(company, []), (true)).
rule(attributes(date2, [hasday2, hasmonth2]), (true)).
rule(attributes(day2, []), (true)).
rule(attributes(divideFactor, []), (true)).
rule(attributes(moneyAmount2, []), (true)).

 96

rule(attributes(month2, []), (true)).
rule(attributes(price2, [dropoffday2, dropoffmonth2, pickupday2, pickupmonth2, ratePeriod]), (true)).
rule(attributes(ratePeriod, [divideFactor]), (true)).
rule(attributes(rental, [dropoff, dropoffday2, dropoffmonth2, pickup, pickupday2, pickupmonth2, price2, ratePeriod,
rentalCompany]), (true)).

%%
%% Contexts
%%
rule(context(joe), (true)).
rule(context(joes_friend), (true)).
rule(context(c_expediacar), (true)).
rule(context(c_yahoocar), (true)).
rule(context(c_qixocar), (true)).

%%
%% joe context
%%
rule(modifier(price2, Object, price2Type, c_PriceByRate, Modifier),
 (cste(basic, Modifier, c_PriceByRate, "price2AsRate"))).

rule(modifier(price2, Object, includesServiceFee, joe, Modifier),
 (cste(basic, Modifier, joe, "yes"))).

%%rule(modifier(price2, Object, includesServiceFeeQ, joe, Modifier),
%% (cste(basic, Modifier, joe, "yes"))).

%%rule(modifier(price2, Object, includesServiceFeeY, joe, Modifier),
%% (cste(basic, Modifier, joe, "yes"))).

rule(modifier(month2, Object, month2SymbolType, joe, Modifier),
 (cste(basic, Modifier, joe, "threeLetter"))).

rule(modifier(city, Object, airportOrLocation, joe, Modifier),
 (cste(basic, Modifier, joe, "location"))).

%%
%% joes_friend context
%%
rule(modifier(price2, Object, price2Type, c_PriceByRate, Modifier),
 (cste(basic, Modifier, c_PriceByRate, "price2AsRate"))).

rule(modifier(price2, Object, includesServiceFee, joes_friend, Modifier),
 (cste(basic, Modifier, joes_friend, "yes"))).

%%rule(modifier(price2, Object, includesServiceFeeQ, joes_friend, Modifier),
%% (cste(basic, Modifier, joes_friend, "yes"))).

%%rule(modifier(price2, Object, includesServiceFeeY, joes_friend, Modifier),
%% (cste(basic, Modifier, joes_friend, "yes"))).

rule(modifier(month2, Object, month2SymbolType, joes_friend, Modifier),
 (cste(basic, Modifier, joes_friend, "numeric"))).

rule(modifier(city, Object, airportOrLocation, joes_friend, Modifier),
 (cste(basic, Modifier, joes_friend, "airport"))).

%%
%% c_yahoocar context
%%
rule(modifier(price2, Object, includesServiceFee, c_yahoocar, Modifier),

 97

 (cste(basic, Modifier, c_yahoocar, "yes"))).

%%rule(modifier(price2, Object, includesServiceFeeQ, c_yahoocar, Modifier),
%% (cste(basic, Modifier, c_yahoocar, "no"))).

%%rule(modifier(price2, Object, includesServiceFeeY, c_yahoocar, Modifier),
%% (cste(basic, Modifier, c_yahoocar, "yes"))).

rule(modifier(month2, Object, month2SymbolType, c_yahoocar, Modifier),
 (cste(basic, Modifier, c_yahoocar, "threeLetter"))).

rule(modifier(city, Object, airportOrLocation, c_yahoocar, Modifier),
 (cste(basic, Modifier, c_yahoocar, "airport"))).

%%
%% c_expediacar context
%%
rule(modifier(price2, Object, includesServiceFee, c_expediacar, Modifier),
 (cste(basic, Modifier, c_expediacar, "yes"))).

%%rule(modifier(price2, Object, includesServiceFeeQ, c_expediacar, Modifier),
%% (cste(basic, Modifier, c_expediacar, "no"))).

%%rule(modifier(price2, Object, includesServiceFeeY, c_expediacar, Modifier),
%% (cste(basic, Modifier, c_expediacar, "no"))).

rule(modifier(month2, Object, month2SymbolType, c_expediacar, Modifier),
 (cste(basic, Modifier, c_expediacar, "numeric"))).

rule(modifier(city, Object, airportOrLocation, c_expediacar, Modifier),
 (cste(basic, Modifier, c_expediacar, "airport"))).

%%
%% c_qixocar context
%%
rule(modifier(price2, Object, includesServiceFee, c_qixocar, Modifier),
 (cste(basic, Modifier, c_qixocar, "no"))).

%%rule(modifier(price2, Object, includesServiceFeeQ, c_qixocar, Modifier),
%% (cste(basic, Modifier, c_qixocar, "no"))).

%%rule(modifier(price2, Object, includesServiceFeeY, c_qixocar, Modifier),
%% (cste(basic, Modifier, c_qixocar, "no"))).

rule(modifier(month2, Object, month2SymbolType, c_qixocar, Modifier),
 (cste(basic, Modifier, c_qixocar, "numeric"))).

rule(modifier(city, Object, airportOrLocation, c_qixocar, Modifier),
 (cste(basic, Modifier, c_qixocar, "airport"))).

rule(attr(Price2, ratePeriod, RatePeriod), (expediacar_p(_, _, _, _, _, _, _, _, Price2, _, RatePeriod))).
rule(attr(Price2, ratePeriod, RatePeriod), (yahoocar_p(_, _, _, _, _, _, Price2, _, RatePeriod))).
rule(attr(Price2, ratePeriod, RatePeriod), (orbitzcar_p(_, _, _, _, _, _, Price2, _, RatePeriod))).
rule(attr(Price2, ratePeriod, RatePeriod), (qixocar_p(_, _, _, _, _, _, Price2, _, RatePeriod))).

rule(attr(Price2, pickupmonth2, Pickupmonth2), (expediacar_p(_, _, _, _, Pickupmonth2, _, _, _, Price2, _, _))).
rule(attr(Price2, pickupmonth2, Pickupmonth2), (yahoocar_p(_, _, Pickupmonth2, _, _, _, Price2, _, _))).
rule(attr(Price2, pickupmonth2, Pickupmonth2), (orbitzcar_p(_, _, Pickupmonth2, _, _, _, Price2, _, _))).

 98

rule(attr(Price2, pickupmonth2, Pickupmonth2), (qixocar_p(_, _, Pickupmonth2, _, _, _, Price2, _, _))).

rule(attr(Price2, dropoffmonth2, Dropoffmonth2), (expediacar_p(_, _, _, _, _, Dropoffmonth2, _, _, Price2, _, _))).
rule(attr(Price2, dropoffmonth2, Dropoffmonth2), (yahoocar_p(_, _, _, Dropoffmonth2, _, _, Price2, _, _))).
rule(attr(Price2, dropoffmonth2, Dropoffmonth2), (orbitzcar_p(_, _, _, Dropoffmonth2, _, _, Price2, _, _))).
rule(attr(Price2, dropoffmonth2, Dropoffmonth2), (qixocar_p(_, _, _, Dropoffmonth2, _, _, Price2, _, _))).

rule(attr(Price2, pickupday2, Pickupday2), (expediacar_p(_, _, _, _, _, _, Pickupday2, _, Price2, _, _))).
rule(attr(Price2, pickupday2, Pickupday2), (yahoocar_p(_, _, _, _, Pickupday2, _, Price2, _, _))).
rule(attr(Price2, pickupday2, Pickupday2), (orbitzcar_p(_, _, _, _, Pickupday2, _, Price2, _, _))).
rule(attr(Price2, pickupday2, Pickupday2), (qixocar_p(_, _, _, _, Pickupday2, _, Price2, _, _))).

rule(attr(Price2, dropoffday2, Dropoffday2), (expediacar_p(_, _, _, _, _, _, _, Dropoffday2, Price2, _, _))).
rule(attr(Price2, dropoffday2, Dropoffday2), (yahoocar_p(_, _, _, _, _, Dropoffday2, Price2, _, _))).
rule(attr(Price2, dropoffday2, Dropoffday2), (orbitzcar_p(_, _, _, _, _, Dropoffday2, Price2, _, _))).
rule(attr(Price2, dropoffday2, Dropoffday2), (qixocar_p(_, _, _, _, _, Dropoffday2, Price2, _, _))).

rule(attr(RatePeriod, divideFactor, DivideFactor),
 (value(RatePeriod, c_PriceByRate, R),
 value(RatePeriodF, c_PriceByRate, R),
 rate_period_dividefactors_p(RatePeriodF, DivideFactor))).

rule(attr(Cityname, airportCode, Airportcode),
 (value(Cityname, c_PriceByRate, C),
 value(CitynameF, c_PriceByRate, C),
 airport_code_lookup_p(CitynameF, Airportcode))).

%%
%% conversion functions for month2
%% with respect to month2SymbolType

rule(cvt(_, month2, O, month2SymbolType, Ctxt, "numeric", Vs, "threeLetter", Vt),
 (month_symbol_converter(Vs, Vt))).

rule(cvt(_, month2, O, month2SymbolType, Ctxt, "threeLetter", Vs, "numeric", Vt),
 (month_symbol_converter(Vt, Vs))).

%%
%% conversion functions for city
%% with respect to airportOrLocation

rule(cvt(_, city, O, airportOrLocation, Ctxt, "location", Vs, "airport", Vt),
 (airport_code_lookup(Vs, Vt))).

rule(cvt(_, city, O, airportOrLocation, Ctxt, "airport", Vs, "location", Vt),
 (airport_code_lookup(Vt, Vs))).

%%
%% conversion functions for price2
%% with respect to includesServiceFee

rule(cvt(commutative, price2, O, includesServiceFee, Ctxt, "no", Vs, "yes", Vt),
 (plus(Vs, 9.99, Vt))).

rule(cvt(commutative, price2, O, includesServiceFeeY, Ctxt, "no", Vs, "yes", Vt),
 (plus(Vs, 5, Vt))).

rule(cvt(commutative, price2, O, includesServiceFeeQ, Ctxt, "no", Vs, "yes", Vt),

 99

 (plus(Vs, 10, Vt))).

%%
%% elevations
%%

rule(
 airport_code_lookup_p(
 skolem(city, C1, Ctxt, 1,
 airport_code_lookup(C1, C2)),
 skolem(city, C2, Ctxt, 2,
 airport_code_lookup(C1, C2))),
 (airport_code_lookup(C1, C2))).

rule(
 expediacar_p(
 skolem(city, C1, c_expediacar, 1,
 expediacar(C1, C2, C3, C4, C5, C6, C7, C8, C9, C10, C11)),
 skolem(city, C2, c_expediacar, 2,
 expediacar(C1, C2, C3, C4, C5, C6, C7, C8, C9, C10, C11)),
 skolem(date2, C3, c_expediacar, 3,
 expediacar(C1, C2, C3, C4, C5, C6, C7, C8, C9, C10, C11)),
 skolem(date2, C4, c_expediacar, 4,
 expediacar(C1, C2, C3, C4, C5, C6, C7, C8, C9, C10, C11)),
 skolem(month2, C5, c_expediacar, 5,
 expediacar(C1, C2, C3, C4, C5, C6, C7, C8, C9, C10, C11)),
 skolem(month2, C6, c_expediacar, 6,
 expediacar(C1, C2, C3, C4, C5, C6, C7, C8, C9, C10, C11)),
 skolem(day2, C7, c_expediacar, 7,
 expediacar(C1, C2, C3, C4, C5, C6, C7, C8, C9, C10, C11)),
 skolem(day2, C8, c_expediacar, 8,
 expediacar(C1, C2, C3, C4, C5, C6, C7, C8, C9, C10, C11)),
 skolem(price2, C9, c_expediacar, 9,
 expediacar(C1, C2, C3, C4, C5, C6, C7, C8, C9, C10, C11)),
 skolem(company, C10, c_expediacar, 10,
 expediacar(C1, C2, C3, C4, C5, C6, C7, C8, C9, C10, C11)),
 skolem(ratePeriod, C11, c_expediacar, 11,
 expediacar(C1, C2, C3, C4, C5, C6, C7, C8, C9, C10, C11))),
 (expediacar(C1, C2, C3, C4, C5, C6, C7, C8, C9, C10, C11))).

%%rule(
%% orbitzcar_p(
%%),
%% (orbitzcar())).

rule(
 month_symbol_converter_p(
 skolem(month2, C1, Ctxt, 1,
 month_symbol_converter(C1, C2)),
 skolem(month2, C2, Ctxt, 2,
 month_symbol_converter(C1, C2))),
 (month_symbol_converter(C1, C2))).

rule(
 rate_period_dividefactors_p(
 skolem(ratePeriod, C1, Ctxt, 1,
 rate_period_dividefactors(C1, C2)),
 skolem(divideFactor, C2, Ctxt, 2,
 rate_period_dividefactors(C1, C2))),
 (rate_period_dividefactors(C1, C2))).

 100

rule(
 yahoocar_p(
 skolem(city, C1, c_yahoocar, 1,
 yahoocar(C1, C2, C3, C4, C5, C6, C7, C8, C9)),
 skolem(city, C2, c_yahoocar, 2,
 yahoocar(C1, C2, C3, C4, C5, C6, C7, C8, C9)),
 skolem(month2, C3, c_yahoocar, 3,
 yahoocar(C1, C2, C3, C4, C5, C6, C7, C8, C9)),
 skolem(month2, C4, c_yahoocar, 4,
 yahoocar(C1, C2, C3, C4, C5, C6, C7, C8, C9)),
 skolem(day2, C5, c_yahoocar, 5,
 yahoocar(C1, C2, C3, C4, C5, C6, C7, C8, C9)),
 skolem(day2, C6, c_yahoocar, 6,
 yahoocar(C1, C2, C3, C4, C5, C6, C7, C8, C9)),
 skolem(price2, C7, c_yahoocar, 7,
 yahoocar(C1, C2, C3, C4, C5, C6, C7, C8, C9)),
 skolem(company, C8, c_yahoocar, 8,
 yahoocar(C1, C2, C3, C4, C5, C6, C7, C8, C9)),
 skolem(ratePeriod, C9, c_yahoocar, 9,
 yahoocar(C1, C2, C3, C4, C5, C6, C7, C8, C9))),
 (yahoocar(C1, C2, C3, C4, C5, C6, C7, C8, C9))).

rule(
 qixocar_p(
 skolem(city, C1, c_qixocar, 1,
 qixocar(C1, C2, C3, C4, C5, C6, C7, C8, C9)),
 skolem(city, C2, c_qixocar, 2,
 qixocar(C1, C2, C3, C4, C5, C6, C7, C8, C9)),
 skolem(month2, C3, c_qixocar, 3,
 qixocar(C1, C2, C3, C4, C5, C6, C7, C8, C9)),
 skolem(month2, C4, c_qixocar, 4,
 qixocar(C1, C2, C3, C4, C5, C6, C7, C8, C9)),
 skolem(day2, C5, c_qixocar, 5,
 qixocar(C1, C2, C3, C4, C5, C6, C7, C8, C9)),
 skolem(day2, C6, c_qixocar, 6,
 qixocar(C1, C2, C3, C4, C5, C6, C7, C8, C9)),
 skolem(price2, C7, c_qixocar, 7,
 qixocar(C1, C2, C3, C4, C5, C6, C7, C8, C9)),
 skolem(company, C8, c_qixocar, 8,
 qixocar(C1, C2, C3, C4, C5, C6, C7, C8, C9)),
 skolem(ratePeriod, C9, c_qixocar, 9,
 qixocar(C1, C2, C3, C4, C5, C6, C7, C8, C9))),
 (qixocar(C1, C2, C3, C4, C5, C6, C7, C8, C9))).

%%
%% Relations
%%

rule(relation(oracle,
 airport_code_lookup,
 ie,
 [[location, string],
 [airportcode, string]],
 cap([[0, 0]],
 [])), (true)).

rule(relation(cameleon,
 expediacar,
 ie,

 101

 [['Pickup', string],
 ['Dropoff', string],
 ['Date1', string],
 ['Date2', string],
 ['Month1', string],
 ['Month2', string],
 ['Day1', string],
 ['Day2', string],
 ['Price', string],
 ['Company', string],
 ['Rateperiod', string]],
 cap([[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]],
 [])), (true)).

rule(relation(cameleon,
 orbitzcar,
 ie,
 [],
 cap([[]],
 [])), (true)).

rule(relation(oracle,
 month_symbol_converter,
 ie,
 [[mm_number, string],
 [symbol, string]],
 cap([[0, 0]],
 [])), (true)).

rule(relation(oracle,
 rate_period_dividefactors,
 ie,
 [['Rateperiod', string],
 ['Dividefactor', string]],
 cap([[0, 0]],
 [])), (true)).

rule(relation(cameleon,
 yahoocar,
 ie,
 [['Pickup', string],
 ['Dropoff', string],
 ['Month1', string],
 ['Month2', string],
 ['Day1', string],
 ['Day2', string],
 ['Price', string],
 ['Company', string],
 ['Rateperiod', string]],
 cap([[0, 0, 0, 0, 0, 0, 0, 0, 0]],
 [])), (true)).

rule(relation(cameleon,
 qixocar,
 ie,
 [['Pickup', string],
 ['Dropoff', string],
 ['Month1', string],
 ['Month2', string],
 ['Day1', string],
 ['Day2', string],

 102

 ['Price', string],
 ['Company', string],
 ['Rateperiod', string]],
 cap([[0, 0, 0, 0, 0, 0, 0, 0, 0]],
 [])), (true)).

 103

Appendix C – Merger Axioms file for Airfare + Car Rental Merger

:- module_interface(application514).
:- export rule/2.
:- begin_module(application514).
:- dynamic rule/2.

%% 512: Airfare, 513: Car Renter, 514: Merged Travel

rule(merges([application512,application513]),(true)).

rule(contexts([c_FlyAndRent]),(true)).

rule(isomodifiertypes(application514,application513,cityORAirport,city), (true)).
rule(isomodifiertypes(application514,application513,month,month2), (true)).
rule(isomodifiertypes(application514,application513,day,day2), (true)).
rule(isomodifiertypes(application514,application512,moneyAmount2,moneyAmount), (true)).

rule(modifiers(cityORAirport, [airportOrLocation]), (true)).
rule(modifiers(month, [month2SymbolType]), (true)).
rule(modifiers(moneyAmount2, [currency]), (true)).
rule(modifiers(price, [includesCarRental]), (true)).
rule(modifiers(provider, [includesCarCompany]), (true)).

rule(modifier(cityORAirport, O, airportOrLocation, dora, M), (cste(basic, M, dora, "location"))).
rule(modifier(cityORAirport, O, airportOrLocation, doras_friend, M), (cste(basic, M, doras_friend, "location"))).
rule(modifier(cityORAirport, O, airportOrLocation, c_yahoo, M), (cste(basic, M, c_yahoo, "airport"))).
rule(modifier(cityORAirport, O, airportOrLocation, c_expedia, M), (cste(basic, M, c_expedia, "airport"))).
rule(modifier(cityORAirport, O, airportOrLocation, c_orbitz, M), (cste(basic, M, c_orbitz, "airport"))).
rule(modifier(cityORAirport, O, airportOrLocation, c_itn, M), (cste(basic, M, c_itn, "airport"))).
rule(modifier(cityORAirport, O, airportOrLocation, c_travelselect, M), (cste(basic, M, c_travelselect, "airport"))).

rule(modifier(month, O, month2SymbolType, dora, M), (cste(basic, M, dora, "threeLetter"))).
rule(modifier(month, O, month2SymbolType, doras_friend, M), (cste(basic, M, doras_friend, "numeric"))).
rule(modifier(month, O, month2SymbolType, c_yahoo, M), (cste(basic, M, c_yahoo, "threeLetter"))).
rule(modifier(month, O, month2SymbolType, c_expedia, M), (cste(basic, M, c_expedia, "numeric"))).
rule(modifier(month, O, month2SymbolType, c_orbitz, M), (cste(basic, M, c_orbitz, "threeLetter"))).
rule(modifier(month, O, month2SymbolType, c_itn, M), (cste(basic, M, c_itn, "threeLetter"))).
rule(modifier(month, O, month2SymbolType, c_travelselect, M), (cste(basic, M, c_travelselect, "numeric"))).

rule(modifier(moneyAmount2, O, currency, joe, M), (cste(basic, M, joe, "USD"))).
rule(modifier(moneyAmount2, O, currency, c_expediacar, M), (cste(basic, M, c_expediacar, "USD"))).
rule(modifier(moneyAmount2, O, currency, c_yahoocar, M), (cste(basic, M, c_yahoocar, "USD"))).
rule(modifier(moneyAmount2, O, currency, c_qixocar, M), (cste(basic, M, c_qixocar, "USD"))).

rule(modifier(price, Object, includesCarRental, dora, Modifier), (cste(basic, Modifier, dora, "no"))).
rule(modifier(price, Object, includesCarRental, doras_friend, Modifier), (cste(basic, Modifier, doras_friend, "no"))).
rule(modifier(price, Object, includesCarRental, c_expedia, Modifier), (cste(basic, Modifier, c_expedia, "no"))).
rule(modifier(price, Object, includesCarRental, c_yahoo, Modifier), (cste(basic, Modifier, c_yahoo, "no"))).
rule(modifier(price, Object, includesCarRental, c_itn, Modifier), (cste(basic, Modifier, c_itn, "no"))).
rule(modifier(price, Object, includesCarRental, c_orbitz, Modifier), (cste(basic, Modifier, c_orbitz, "no"))).
rule(modifier(price, Object, includesCarRental, c_travelselect, Modifier), (cste(basic, Modifier, c_travelselect, "no"))).

rule(modifier(provider, O, includesCarCompany, dora, M), (cste(basic, M, dora, "no"))).
rule(modifier(provider, O, includesCarCompany, doras_friend, M), (cste(basic, M, doras_friend, "no"))).
rule(modifier(provider, O, includesCarCompany, c_yahoo, M), (cste(basic, M, c_yahoo, "no"))).
rule(modifier(provider, O, includesCarCompany, c_expedia, M), (cste(basic, M, c_expedia, "no"))).
rule(modifier(provider, O, includesCarCompany, c_orbitz, M), (cste(basic, M, c_orbitz, "no"))).
rule(modifier(provider, O, includesCarCompany, c_itn, M), (cste(basic, M, c_itn, "no"))).
rule(modifier(provider, O, includesCarCompany, c_travelselect, M), (cste(basic, M, c_travelselect, "no"))).

 104

%%
%% New Context c_FLyAndRent
%%
rule(modifier(price, Object, includesCarRental, c_FlyAndRent, Modifier), (cste(basic, Modifier, c_FlyAndRent, "yes"))).
rule(modifier(price, O, includesServFee, c_FlyAndRent, M), (cste(basic, M, c_FlyAndRent, "yes"))).
rule(modifier(price, O, includesVisaFee, c_FlyAndRent, M), (cste(basic, M, c_FlyAndRent, "no"))).
rule(modifier(price, O, includesPaperCharge, c_FlyAndRent, M), (cste(basic, M, c_FlyAndRent, "no"))).
rule(modifier(price2, Object, includesServiceFee, c_FlyAndRent, M), (cste(basic, M, c_FlyAndRent, "yes"))).
rule(modifier(cityORAirport, O, airportOrLocation, c_FlyAndRent, M), (cste(basic, M, c_FlyAndRent, "airport"))).
rule(modifier(month, O, month2SymbolType, c_FlyAndRent, M), (cste(basic, M, c_FlyAndRent, "threeLetter"))).
rule(modifier(moneyAmount2, O, currency, c_FlyAndRent, M), (cste(basic, M, c_FlyAndRent, "USD"))).
rule(modifier(provider, Object, includesCarCompany, c_FlyAndRent, M), (cste(basic, M, c_FlyAndRent, "yes"))).

rule(attributes(price, [month1, month2, day1, day2, destination]), (true)).

rule(attr(Price, month1, Mnth1), (myorbitz_p(_, Price, _, _, Mnth1, _, _, _, _, _))).
rule(attr(Price, month1, Mnth1), (yahoo_p(_, Price, _, _, Mnth1, _, _, _, _, _))).
rule(attr(Price, date1, Dt1), (expedia2_p(_, Price, _, _, Dt1, _, _, _))).
rule(attr(Price, date1, Dt1), (expedia_p(_, Price, _, _, Dt1, _, _, _))).

rule(attr(Price, month2, Mnth2), (myorbitz_p(_, Price, _, _, _, Mnth2, _, _, _, _))).
rule(attr(Price, month2, Mnth2), (yahoo_p(_, Price, _, _, _, Mnth2, _, _, _, _))).
rule(attr(Price, date2, Dt2), (expedia2_p(_, Price, _, _, _, Dt2, _, _))).
rule(attr(Price, date2, Dt2), (expedia_p(_, Price, _, _, _, Dt2, _, _))).

rule(attr(Price, day1, Dy1), (myorbitz_p(_, Price, _, _, _, _, Dy1, _, _, _))).
rule(attr(Price, day1, Dy1), (yahoo_p(_, Price, _, _, _, _, Dy1, _, _, _))).

rule(attr(Price, day2, Dy2), (myorbitz_p(_, Price, _, _, _, _, _, Dy2, _, _))).
rule(attr(Price, day2, Dy2), (yahoo_p(_, Price, _, _, _, _, _, Dy2, _, _))).

rule(attr(Price, destination, Destination), (myorbitz_p(_, Price, Destination, _, _, _, _, _, _, _))).
rule(attr(Price, destination, Destination), (yahoo_p(_, Price, Destination, _, _, _, _, _, _, _))).
rule(attr(Price, destination, Destination), (expedia2_p(_, Price, Destination, _, _, _, _, _))).
rule(attr(Price, destination, Destination), (expedia_p(_, Price, Destination, _, _, _, _, _))).

rule(attr(Price, destination, Destination), (yahoo_p(_, Price, Destination, _, _, _, _, _, _, _))).
rule(attr(Price, destination, Destination), (expedia2_p(_, Price, Destination, _, _, _, _, _))).
rule(attr(Price, destination, Destination), (expedia_p(_, Price, Destination, _, _, _, _, _))).

rule(cvt(commutative, price, O, includesCarRental, Ctxt, "no", Vs, "yes", Vt),
(yahoocar_p(DestC, Dropoff, M1C, M2C, D1C, D2C, Rp, _, _),
attr(O, month1, M1),
attr(O, month2, M2),
attr(O, day1, D1),
attr(O, day2, D2),
attr(O, destination, Dest),
value(M1, c_yahoo, M1v),
value(M1C, c_yahoo, M1v),
value(M2, c_yahoo, M2v),
value(M2C, c_yahoo, M2v),
value(D1, c_yahoo, D1v),
value(D1C, c_yahoo, D1v),
value(D2, c_yahoo, D2v),
value(D2C, c_yahoo, D2v),
value(Dest, c_yahoo, Destv),
value(DestC, c_yahoo, Destv),
value(Dropoff, c_yahoo, "same"),
value(Rp, Ctxt, Rpv),

 105

plus(Vs, Rpv, Vt))).

rule(cvt(commutative, provider, Obj, includesCarCompany, Ctxt, "no", Vs, "yes", Vt),
(yahoocar_p(DestC, Dropoff, M1C, M2C, D1C, D2C, _, Comp, _),
attr(O, provider, Obj),
attr(O, month1, M1),
attr(O, month2, M2),
attr(O, day1, D1),
attr(O, day2, D2),
attr(O, destination, Dest),
value(M1, c_yahoo, M1v),
value(M1C, c_yahoo, M1v),
value(M2, c_yahoo, M2v),
value(M2C, c_yahoo, M2v),
value(D1, c_yahoo, D1v),
value(D1C, c_yahoo, D1v),
value(D2, c_yahoo, D2v),
value(D2C, c_yahoo, D2v),
value(Dest, c_yahoo, Destv),
value(DestC, c_yahoo, Destv),
value(Dropoff, c_yahoo, "same"),
value(Comp, Ctxt, Compv),
concat(Vs, "&", Vt1),
concat(Vt1, Compv, Vt))).

 106

Appendix D – Additions to API to Support CLAMP’s Changes to ICM

This appendix contains the additions need in the ICM API to support merging. To see the full
API for the ICM in Application Editor, see Appendix A in [12].

public void createIsoModifierType (string newIsoModifierTypeName,

 Ont_semanticType semanticType1, string App1,
 Ont_semanticType semanticType2, string App2)

//Parameters: newIsomodifierTypeName – the name given to the isomodifiertype in the
merged application; semanticType1, semanticType2 – the semanticTypes that are being
pulled up in the new merged application; App1, App2 – the applications that the
linked semantic types are coming from.

//Remarks: creates a new isomodifiertype, pulling up associated modifiers from each
semantic type.

public void createIsoModifier (string newIsoModifierName,

Ont_Modifier modifier1, string App1,
Ont_Modifier modifier2, string App2)

//Parameters: newIsoModifierName – the name given to the isoModifier in the merged
application; modifier1, modifier2 – the modifiers that are being pulled up in the
new merged application; App1, App2 – the applications that the linked modifiers are
coming from.

//Remarks: creates a new isoModifier.

public void createIsoAttribute (string newIsoAttributeName,

Ont_Attribute attribute1, string App1,
Ont_Attribute attribute2, string App2)

//Parameters: newIsoAttributeName – the name given to the isoAttribute in the
merged application; attribute1, attribute2 – the attributes that are being pulled
up in the new merged application; App1, App2 – the applications that the linked
attributes are coming from.

//Remarks: creates a new isoAttribute.

public void createIsoContext(string newIsoContextName, Cxt_context context1,
 string App1, Cxt_context context2, string App2)

//Parameters: newIsoConextName – the name given to the isoContext in the merged
application; context1, context2 – the contexts that are being pulled up in the new
merged application; App1, App2 – the applications that the linked contexts are
coming from.

//Remarks: creates a new isoContext.

 107

Appendix E – A Summarized Demo Of Merging

 108

Best Prices Found!

The following are the best fares returned by each of the sources for the dates: Aug 25, 03 to
Sep 13, 03.

Provider Departure Destination Airline Price
TravelSelect NRT BOS Delta Airlines 0056 1088.86134

Yahoo NRT BOS

4502.95

Itn NRT BOS 4534.4
Motivation: Multiple Sources means CONTEXT DIFFERENCES

 109

Meet Dora the explorer - quite the world traveler. But there is one place she has not yet been –
where East meets West – the city of Istanbul, Turkey, lying both in Asia and Europe. But
before she can pack her bags, she must first endure perhaps the most tedious part of traveling:
finding the cheapest flight. Being the thrifty traveler that she is, the first thing she does is to
check multiple airfare aggregator websites.
Why multiple sources?
One aggregator site may not always have the lowest fare because often have different
arrangements with various airlines to give their fares special consideration. Thus:
Different sites may present the same flights but different prices for the same trip
Different sites may present completely different flights and prices for the same trip
For example, Dora sent the same query to Orbitz and Travelocity and got a $600 difference
for their best fares to Istanbul:

But having to run the same query on multiple sites, juggling between them, trying to
remember which offered what fare, while adjusting various dates and times of travel to find
the best price is hard.
Also, different sites means Dora has to interpret differences in the meaning of the
results, which is hard. These context differences should be resolved automatically.

CONTEXT ISSUES

 110

1. What does price include?
Taxes? Service fees? For example, Orbitz includes taxes but does not include a service fee
until a screen much later in the process. Expedia includes a service fee right from the
beginning. So for each site, Dora would have to account for context differences when
comparing the prices.

2. What about different currencies?
Aggregators are based in many countries and return fares in different currencies. Dora would
need to determine what currency the source uses, what the latest exchange rate is and then
convert the price quoted.

3. What about paper ticket charges?
Some flights require travelers to purchase paper tickets or some travelers may even prefer
paper tickets. So id Dora wants paper tickets, she would need to determine how much the
source (Orbitz, Expedia, etc) charges for paper tickets and add that to her price.
[*Read more about context issues, see examples of other context issues COIN deals
with.]

These are just a few of the context issues that might be encountered by Dora. She needs a
“context interchange” application that can automatically resolve the context differences.

 111

Context Issues Addressed by COIN

We have demonstrated the capability of COIN in solving various context problems, such as
differences in unit of measures, scale factors, and inclusion of different items. Here we
categorize these issues into three major categories.

 Example Temporal

Representational$ vs. €
Francs before
2000, €
thereafter

Ontological
Inc. vs. Excl.
interests in
Revenue

Excl. interests
before 1994
but incl.
thereafter

1. Representational Contexts
The same attribute can have different presentations, often using different units and scale
factors. Current temperature can be reported in Celsius, Fahrenheit, or Kelvin; company
revenues can be reported in different currencies using a scale factor of 1, 1000, or one million;
product weights can be reported in Newton, pounds, or kilograms. Translations for this
category can be easily performed most of the time.
2. Ontological Contexts
A concept may have slight variations, often in the form of varying the components that
constitute the concept. Price can be quoted to include or exclude certain items, such as taxes
and service charges; profit can include or exclude interests, taxes, and major items.
Translations for this category often relies on the existence of functional dependencies between
different variations. The new COIN equational solver can solve problems in this category.
3.Temporal Contexts
Anything could change over time. Change of attribute values are dealt using temporal
database technologies, which do not address temporal context issues. Temporal contexts refer
to the changes of representational and ontological contexts over time. We further categorize
temporal contexts to account for some particular issues:
3.1 Change of Identifies
Ideally, identifying attribute should be time invariant. But in practice, key attribute values are
often recycled over time: product codes used by manufacturers, course numbers in
universities, and stocks symbol in stock exchanges. For example, does "C" stand for
CitiGroup or Chrysler?
3.2 Change of Representation (see example in the table)
3.3 Change of Concept
We give an example in the table. In some cases, the components can change even without
changing the concept. For example, the concept of Dow Jones Industrial Average is to use an
index as the market barometer. This concept has not changed, yet its components have been
changed constantly. Among the initial companies, only GE still remains in the Dow today.
3.4 Change of Derivation Methods

 112

Some complex concepts are derived using special methods, which can be improved over time.
Major changes in these methods often affect the results and how the results should be
interpreted. For example, the change of survey questionnaire for the Gini index; many
changes to the accounting rules to national economy.
3.5 Differences in Time as a Data Type
Introducing temporal context will necessarily introduce time as a data type, which can have
representational and ontological differences: calendars, granularities, user defined times (e.g.,
a lecture session) and calendars (MIT academic calendar); commute time
(including/excluding time for finding parking).
3.6 Differences in Time Perspective
The same thing can be looked from different time perspectives: 1 million German marks
worth a lot 10 years ago, but it worth almost nothing in 1923 when the exchange rate was
about 1trillion marks to $1.
Research is underway to address various temporal issues.
Continue with Demo.

 113

Frustrated by the various context issues, Dora decides to solve the problem presented by the
diversity of the meaning of price through semantic data integration technologies. She builds
an airfare application using the Context Interchange (COIN) system at MIT.

Multiple sources and multiple users mean there are different possible interpretations (i.e.
different contexts) for the same data.
A "user" or "receiver" context is the set of assumptions a user makes when
interpreting/understanding the data.
The COIN system allows users to query application data without worrying about all the
contexts that exist. Context mediation can provide the user with data in her own context.

How it's done
COIN uses ontologies (application domain models) which contain semantic types,
modifiers and modifier values to support the notion of context & context mediation.
Entities in the application such as price, airline, departureDate etc, are called semanticTypes.
SemanticTypes that are subject to multiple interpretations (for eg. price) have modifiers. It is
these modifiers that tell the system how to interpret a semanticType. Namely, the modifiers of
a semanticType can take on one of many modifier values and it is the modifier value that tells
the system what the semanticType means. For example, the semanticType, "price" has a
modifier, "currency" whose modifier value can be either "USD", "GBP", etc, depending
on the context.

 114

COIN provides an application editing tool to build and maintain ontologies, contexts,
and to add/remove data sources.

Summary of Steps a query goes thru:
Query and Receiver Context Entry
A user's query is sent to the COIN abduction engine along with the user's context. Next, the
abduction engine sees what source the user wants to query and determines the source context.

Conflict Detection
The abduction engine then determines the conflicts (differences in modifier values) between
the source context and the receiver context.

Mediation and Revised Query
The engine then revises the user's query to contain conversion functions that will reconcile the
differences between the user's context and the source's context. Note how different (and
longer!) the query below is compared to the original user's query in step 1. Without context
mediation, the user would have to write queries such as the one below when querying sources
with context differences.

 115

Context definitions for Airfare Aggregator Application:

 See conversions between the contexts
created by M. Bilal Kaleem - June 2003

 116

Conversions between Contexts

Once the ontology and all the context knowledge is specified, the system can take queries in
the user's context, retrieve information from various airfare sources, and convert the results
into the user's context.
As a reminder, here are the contexts:

Context
Type

Context
Name includesServiceFee? includesPaperTktCharge? Currency

Dora's
Friend No No GBP Receiver

Contexts
Dora Yes Yes USD

Yahoo Yes No USD

Expedia Yes No USD

Orbitz No No USD

Travelselect No No GBP

Source
Contexts

Itn No No USD

Now Dora wants to go to Istanbul, Turkey, wants a paper ticket, wants the price quoted to
include any possible expense (i.e taxes and service fees). She sets the receiver context to
"Dora" and here are the conversions the system automatically generates for the data coming
from the different sources:
Source Conversion
Orbitz No need to add taxes, determine service fee and paper ticket charge for Orbitz and add

them
Expedia No need to add taxes, service fees already included (do nothing), determine paper

ticket charge and add it.
Yahoo No need to add taxes, service fees already included (do nothing), determine paper

ticket charge and add it.
Travelselect No need to add taxes, determine service fee and paper ticket charge for Orbitz and add

them, convert everything from GBP to USD.
Itn No need to add taxes, determine service fee and paper ticket charge for Orbitz and add

them
The results from all sources will be merged with context differences reconciled.
With this application, finding airfare prices is only a matter of a few mouse clicks.
See the domain model (ontology) of Airfare Application.
created by M. Bilal Kaleem - June 2003

 117

Airfare Application Ontology
The ontology captures all concepts and their relationships in the application domain. The
following figure gives a graphical representation of the airfare application's ontology.

Move on to car rental demo.
created by M. Bilal Kaleem - June 2003

 118

Want to find the lowest car rental price?

Do you want to find the lowest price across multiple car rental aggregators such as Orbitz, Expedia, Yahoo, Qixo
etc?
OK, we will help you find the best car rental online
Top of Form
Where do you want to rent a car? (please enter an airport code (eg. "BOS" if you want Boston, MA):

When do you want to rent?
Aug 01 2003

When do you want to return the car?
Aug 13 2003

Submit

Bottom of Form

Bottom of Form
*What is the motivation for this application?

created by M. Bilal Kaleem - June 2003

 119

Best Prices Found!

The following are the best fares returned by each of the sources for the dates: Sep 01, 2003 to
Sep 13, 2003.
From Qixo Car Rental Aggregator
Company Pickup Price Rateperiod
Thrifty BOS 40.99 DAILY
National Car Rental BOS 43.99 DAILY
Hertz BOS 68.99 DAILY

From Expedia Car Rental Aggregator
Company Pickup Price Rateperiod
Expedia.com BOS 200.00 Week
home BOS 210.00 Week
flights BOS 211.99 Week
hotels BOS 220.99 Week
cars BOS 225.99 Week
vacations BOS 225.99 Week
cruises BOS 229.99 Week
deals BOS 230.99 Week
destinations & interests BOS 238.99 Week
maps BOS 238.99 Week
business BOS 238.99 Week
Dollar Rent A Car BOS 238.99 Week
Dollar Rent A Car BOS 240.99 Week
Thrifty Car Rental BOS 240.99 Week
Thrifty Car Rental BOS 264.99 Week
Dollar Rent A Car BOS 264.99 Week
Hertz BOS 273.99 Week
Thrifty Car Rental BOS 273.99 Week
Avis BOS 275.99 Week
Thrifty Car Rental BOS 298.99 Week
Thrifty Car Rental BOS 300.99 Week
Dollar Rent A Car BOS 344.99 Week
Dollar Rent A Car BOS 369.90 Week

 120

Hertz BOS 372.99 Week
Avis BOS 429.99 Week
Hertz BOS 432.99 Week
Avis BOS 432.99 Week
Avis BOS 475.99 Week
Hertz BOS 200.00 Week
Hertz BOS 210.00 Week
Avis BOS 211.99 Week
Avis BOS 220.99 Week
Thrifty Car Rental BOS 225.99 Week
Dollar Rent A Car BOS 225.99 Week
Thrifty Car Rental BOS 229.99 Week
Hertz BOS 230.99 Week
Avis BOS 238.99 Week
Hertz BOS 238.99 Week
Dollar Rent A Car BOS 238.99 Week

From Yahoo Car Rental Aggregator
Company Pickup Price Rateperiod
NATIONAL BOS 33.95 Daily
USAVE AUTO BOS 39.99 Daily
THRIFTY BOS 42.99 Daily
HERTZ BOS 70.99 Daily

 121

Motivation: Multiple Sources mean CONTEXT DIFFERENCES

Joe is Dora's friend. Seeing Dora's efforts, he wanted to build a similar application for himself
since he rents cars a lot to travel around the US.
Main Benefit of Car Rental Application: allows users to browse various sources and see
prices in a single context.
BUT, there are a number of context issues:
1. What does price include?
Does the price include the service fee that an aggregator site such as Yahoo Car rental may
charge? Does the price include taxes? For each site, the application can automatically figure
out what the price includes and account for context differences when comparing the prices.

2. What about date format?
There are differences in the way different sites represent a month. Some use a two-digits
notation while others use a three-letter symbol (i.e. "06" versus "Jun"). The application will
resolve that context difference.
3. Airport code versus actual city name?
Sites may be able to understand either city names or airport codes or both (that is, for start and
end locations). The application will allow users to enter either city names or airport codes and
resolve the difference in context by automatically converting between city names and
airport codes.
*Read more about context issues, see examples of other context issues COIN deals with.
Multiple sources give rise to several context issues. Joe needs a “context interchange”
application that can resolve the differences.

created by M. Bilal Kaleem - June 2003

 122

The COIN Approach
Multiple sources and multiple users mean there are different possible interpretations (i.e.
different contexts) for the same data.
A context is the set of assumptions one makes in interpreting/understanding the data.
The COIN system allows users to query application data without worrying about all the
contexts that exist. COIN does automatic context mediation so that you can deal with
data solely in your own context.

How its done
COIN uses ontologies (application domain models) which contain semantic types,
modifiers and modifier values to support the notion of context & context mediation.
Entities in the application such as price, rental, pickupLocation, etc, are called semanticTypes.
SemanticTypes that are subject to multiple interpretations (for eg. price) have modifiers. It is
these modifiers that tell the system how to interpret a semanticType. How? Because the
modifiers of a semanticType can take on one of many modifier values and it is the modifier
value that tells the system what the semanticType means. For example, the semanticType,
"month" has a modifier, "monthSymbolType" whose modifier value can be either "two-
digit" or "three-letter" (i.e "06" vs. "Jun") depending on the context.

COIN provides an application editing tool to build and maintain ontologies, contexts,
and to add/remove data sources.

 123

Context definitions for Car Rental Application:

Site includesServFee -
modifier of Price

monthSymType -
modifier of Month

cityOrAirportCode -
modifier of City

yahoo "Yes" "three-letter" "airport"
expedia "Yes" "two-digit" "airport"
qixo "No" "two-digit" "airport"
joe "Yes" "three-letter" "city"
joe's friend "Yes" "two-digit" "airport"
See conversions between the contexts
created by M. Bilal Kaleem - June 2003

 124

Conversions between Contexts
Once the ontology and all the context knowledge is specified, the system can take queries in
the user's context, retrieve information from various airfare sources, and convert the results
into the user's context.

Site includesServFee -
modifier of Price

monthSymType -
modifier of Month

cityOrAirportCode -
modifier of City

yahoo "Yes" "three-letter" "airport"
expedia "Yes" "three-letter" "airport"
qixo "No" "two-digit" "airport"
joe "Yes" "three-letter" "city"
joe's friend "Yes" "two-digit" "airport"

Now suppose the user wants to rent a car from San Francisco's airport and the source he wants
to query is the Qixo aggregator. He would like the price quoted to include the source's service
fee. He sets the receiver context to Dora. Here is the conversion that the system would
automatically perform on each result returned from Qixo (conversion from Qixo context to
Dora context):
Source Conversion
Qixo - convert three-letter month symbols entered by user to two-digit month symbols

that source can understand
- convert "San Francisco, CA" to "SFO" airport code
- lookup serviceFee Qixo charges and add it to price

Results from other sources would be similarly reconciled so that user would not have to worry
about context differences
See domain model (ontology) of Car Rental Application

created by M. Bilal Kaleem - June 2003

 125

Car Rental Application Ontology
The ontology captures all concepts and their relationships in the application domain. The
following figure gives a graphical representation of the ontology for the Car Rental
application.

Move onto Merged Travel Application demo

created by M. Bilal Kaleem - June 2003

 126

Merging Airfare and Car Rental - Full Travel Application
Do you want to completely plan your travel needs? Find the cheapest airfare and rent a car at your
destination?

We will help you find the best deals online!
Find Airfare
Top of Form

Where will you fly from? (please enter airport code - eg. NRT for Tokyo, Japan)
Where do you want to fly to? (please enter airport code - eg. BOS for Boston, MA)

When do you want to depart?
Aug 01 2003

When do you want to return?
Aug 13 2003

Rent A Car There:

Rent a car for duration of stay

Rent a car there only from:
Aug 02 2003

 to:
Aug 12 2003

Submit

Bottom of Form

Bottom of Form

*What is the motivation for merging applications.
created by M. Bilal Kaleem - June 2003

 127

Best Prices Found!
The following are the best fares and car rentals returned by the sources. Both Airfare and Car
Rental are for the dates: Sep 01, 2003 to Sep 13, 2003
From Yahoo
yahoo.Destination yahoo.Airline yahoo.Price yahoocar.Company yahoocar.Price yahoocar.Rateperiod

BOS

1482 ENTERPRISE 209.95 Weekly

BOS

1482 USAVE AUTO 209.99 Weekly

BOS

1482 DOLLAR 210.00 Weekly

BOS

1482 ALAMO 219.44 Weekly

BOS

1482 THRIFTY 220.99 Weekly

BOS

1482 NATIONAL 235.99 Weekly

BOS

1482 HERTZ 240.99 Weekly

BOS

1482 AVIS 240.99 Weekly

BOS

1482 BUDGET 274.99 Weekly

From Expedia

From Itn and Qixo-Car
itn.Destination itn.Airline itn.Price qixocar.Company qixocar.Price qixocar.Rateperiod

BOS 1878.10 Enterprise 211.95 WEEKLY

BOS 1878.10 Dollar 211.99 WEEKLY

 128

BOS 1878.10 Thrifty 211.99 WEEKLY

BOS 1878.10 Hertz 225.99 WEEKLY

BOS 1878.10 Alamo 236.24 WEEKLY

BOS 1878.10 National Car Rental 236.31 WEEKLY

BOS 1878.10 Budget 274.99 WEEKLY

BOS 1878.10 Avis 304.99 WEEKLY

 129

Motivation: Building larger apps from small apps is realistic and allows re-use

Meet Dora the explorer - quite the world traveler. Previously, Dora had built herself a COIN
application that allows her to query multiple online aggregators for the cheapest airfares
without worrying about context differences between the sources. She just saw an analogous
car rental application. But:
Now that Dora has built her Airfare application and sees that her colleague Joe has built a Car
Rental application, she thinks it would be great to have a general travel application that
does both airfare and car rental.
But she wants to avoid creating a brand new ontology (domain model) that covers everything.
She wants to reuse relevant portions of the existing ontologies. The solution is COIN
application merging.
COIN application merging allows large applications to be built from multiple, small,
applications (and their ontologies). This is useful in the real world because designers of
applications (and ontologies) rarely have a broad enough vision to predict what will be
desired in the future. It is more realistic to design small, relevant applications and then
merge them with other applications as needed in the future.

No need to create a large new ontology - simply link the "intersecting" portions of the
domain models
Merge multiple applications, two at a time, to build larger application. Reuse data, context,
ontologies and application code.

COIN merging is driven by context differences - so the merging focuses on differences in
the modifiers and related semantic types.

Goals of Merging:
Sources from both applications available seamlessly in one application. Allows you to query
sources from both the airfare and the car rental application from one place. So you can find
lowest airfare and cheapest car at destination:

 130

Give me the airline and price from expedia and a car rental company and rental rate from
yahooCar for the cheapest airfare and car rental for a trip from Boston, MA to San
Francisco, CA from Jun 13th 2003 to Jun 19th 2003.
Use context capabilities of one application to benefit the other application:

- Use currency conversion from Airfare application to benefit car rental so merged
application will
 support the addition of new, international car rental sources

- Use city name to airport code conversion from Car Rental application to benefit
Airfare
 application so merged application allows airfare queries where user does not need to know
airport
 codes.
Extend the new merged application to add new value beyond just what the two merged
applications provide. For example adding a new source or a new context that makes sense in
the new merged environment.

- add new context called FlyAndRent where price is defined as sum of airfare and car
rental price. This way, in your query, you simply ask for price and without having to query an
airfare source as well as a car rental source (such as in goal #1 above), you are quoted a price
that includes both! This context shows that a merged application allows you to extend the two
previous applications in ways that you could not have done by simply extending one (or both)
of the independent applications.

Doing the merging requires merger axioms.
created by M. Bilal Kaleem - June 2003

 131

How its done - The Merger Axioms
A set of "merger axioms" are needed to link the ontologies of two applications. This set of
merger axioms is relatively small because the majority of the benefit is going to come
from existing ontologies and contexts while the merger axioms are required only to:
 - reconcile the differences between the applications
 - extend the new merged application

The merger axioms are written in a logic programming language called Prolog. An example
of two axioms are as follows:
 - rule(merges([appAirfare, appCarRental]), (true)).
 - rule(isomodifiertypes(appMergedTravel, appAirFare, price, priceAirfare), (true)).
The first rule declares that the airfare and car rental application have been merged. That one
rule causes the merged application to inherit all that exists in both application domains. That
rule is sufficient to allow a user to query sources from both applications seamlessly through
one query, as if all the sources were from one application.
The second rule would be read as follows in plain English:
The semantic type, priceAirfare (from Airfare App) and price (from CarRental App) are
equivalent because they have the same modifiers, so in the merged application, use price to
refer to this semantic type.

By declaring the two semantic types to be equivalent with respect to their modifiers, the
axiom is saying that any modifier of those two semantic types that may be found in the airfare
or car rental application is now to be used in the new, merged application. price (which came
from car rental) has no notion of currency. But since it has been declared an "isomodifiertype"
of priceAirfare, it automatically inherits the currency modifier (and associated modifier
values & conversion functions) of priceAirfare. This axiom thus allows sources and prices
from the car rental application to leverage currency conversion capabilities of the airfare
application.
COIN provides an application merging tool to facilitate merger axiom creation.
(see complete set of merger axioms)

The following is a summary of the merger axioms required for each of the goals of merging
mentioned earlier:

 132

The Desired Goal Merger Axioms Required
Example of Axiom in Prolog
(the numbering below corresponds to the
numbering in the second column)

Seamless access to
sources across both
applications

1) Declare that the applications have
been merged.

All existing sources and contexts
will be automatically inherited by
the new merged application

1)
rule(merges([appAirfare,appCarRental),(true)).

Use context capabilities
of one application to
benefit other
application.
For ex: want price in
Car Rental to obtain
currency conversion
capability from
airfarePrice in Airfare

1) Declare that moneyAmount
from Car Rental is equivalent to
moneyAmount from Airfare.
The appropriate modifiers (i.e.
currency) and conversion functions
will automatically apply.
2) For each context that the merged
application inherits from Car Rental,
declare a modifier value for
currency.

1)
rule(isomodifiertypes
 (appMergedTravel, appAirfare, price, airfarePrice),
 (true)).

2)
rule(modifier(price, O, currency, expediaCarContext, M),
 (cste(basic, M, expediaCarContext, "USDollar"))).
…
similar rule for the rest of the contexts from Car Rental

Extend merged
application with new
sources, contexts or
modifiers, etc
For example, add
context FlyAndRent
that defines price as
(airfare price) + (Car
Rental Price)

1) Need axiom for new context
2) New axiom for new modifier
being added
3) Need axioms that give that
modifier a value in all of the existing
contexts and assign all the existing
modifiers a value for the new context
4) Need axioms that define
conversion functions for the new
modifier
5) Need axioms that define new
attributes used by the new
conversion functions that were
added

1)
rule(contexts([newContextForFlyAndRent]),(true)).

2)
rule(modifiers(price, [includesCarRental]), (true)).
3)
rule(modifier(price, O, includesCarRental, doraContext, M),
 (cste(basic, Modifier, doraContext, “dontIncludeRental"))).
…
similar rule for the rest of the contexts in the merged app
4)
rule(cvt(commutative, price, O, includesCarRental, Ctxt,
 "dontIncludeRental", Vs, "yesIncludeRental", Vt),
 (attr(O, month1, M1),
 ...
 ...
 plus(airPrice, RentalPrice, Result))).
5)
rule(attr(Price, month1, Mnth1),
 (yahoo_p(_,Price,_,_,Mnth1,_,_,_,_,_))).

 133

eCOIN Demo for Merged Airfare and Car Rental
 Metadata: [Text Interface | Ontology | Context | Source | Graphical Viewer | Internal
Representation]
 [Other Demos | qbe]

gcms@mit.edu

 134

eCOIN Demo for Merged Airfare and Car Rental
 Metadata: [Text Interface | Ontology | Context | Source | Graphical Viewer | Internal
Representation]
 [Other Demos | qbe]

gcms@mit.edu

 135

eCOIN Demo for Merged Airfare and Car Rental
 Metadata: [Text Interface | Ontology | Context | Source | Graphical Viewer | Internal
Representation]
 [Other Demos | qbe]

gcms@mit.edu

 136

eCOIN Demo for Merged Airfare and Car Rental
 Metadata: [Text Interface | Ontology | Context | Source | Graphical Viewer | Internal
Representation]
 [Other Demos | qbe]

gcms@mit.edu

