
Metadata Representation and Management
for Context Mediation

Philip W. Lee

Working Paper CISL# 2003-01

May 2003

Composite Information Systems Laboratory (CISL)
Sloan School of Management

Massachusetts Institute of Technology
Cambridge, MA 02142

 2

This page is blank

 3

Metadata Representation and Management for Context Mediation
 by

Philip W. Lee

Submitted to the Department of Electrical Engineering and Computer Science

May 21, 2003

In Partial Fulfillment of the Requirements for the Degree of
Master of Engineering in Electrical Engineering and Computer Science

ABSTRACT

The Context Interchange (COIN) framework is a platform of concepts that bridges the
contextual divide among heterogeneous data sources. In this thesis, we present a
metadata representation and management layer that augments the Context Interchange
framework. On metadata representation, a suite of XML-based representation of COIN
metadata is fashioned. These XML-based representations include RDF, RuleML, and
RFML. The transformation between the different representations is done through XSLT.
An intuitive user interface is also created to aid the creation of metadata for context
mediation. The user interface features textual and graphical components that
conceptualize ontology, context, and source information. On metadata management, a
registry is set up to provide centralized access of metadata files. The designed system
provides facility for knowledge sharing and reuse, a concept that is missing in the
previously Prolog dominated COIN system.

Thesis Supervisor: Stuart E. Madnick
Title: John Norris Maguire Professor of Information Technologies,

MIT Sloan School of Management and
Professor of Engineering Systems,
MIT School of Engineering

Acknowledgement
 Work reported herein has been supported, in part, by the Malaysia University of
Science and Technologies (MUST), the MIT Center for eBusiness, MITRE Corporation,
Motorola, the Singapore-MIT Alliance (SMA), and Suruga Bank.

 4

Table of Contents
1 Introduction... 8

1.1 Context Interchange Framework... 10
1.2 Related Work and Motivation... 11
1.3 Objectives ... 12

1.3.1 Separation of Knowledge and Representation... 13
1.4 Thesis Road Map .. 13

2 Underlying Technology .. 14
2.1 Overview of GCMS .. 14
2.2 Prolog.. 15
2.3 COIN Model ... 16

2.3.1 Ontology .. 16
2.3.2 Context... 18
2.3.3 Source .. 20

2.4 Markup Languages.. 21
2.4.1 XML and Its Advantages ... 21
2.4.2 Resource Description Framework (RDF) .. 22

2.4.2.1 – RDF Schema .. 24
2.4.3 Rule Markup Language (RuleML) .. 25
2.4.4 Relational Functional Markup Language (RFML) .. 26

2.5 eXtensible Stylesheet Language Transformation: The Encompassing Link 27
3 Design Overview.. 30

3.1 Overview of the System.. 30
3.2 Motivational Example... 31

4 Internal COIN Model (A Data Structure) .. 33
4.1 ICM – Coin_Model... 34
4.2 ICM – Ont_SemanticType.. 35
4.3 ICM – Ont_Attribute... 36
4.4 ICM – Ont_Modifier... 36
4.5 ICM – Cxt_Context... 38
4.6 ICM – Src_Relation .. 39
4.7 ICM – Src_Column... 40
4.8 ICM – Src_ElevatedRelation .. 41
4.9 ICM – Application Programming Interface.. 41

5 Textual Interface ... 43
5.1 Navigating the Textual Interface .. 43
5.2 Application Selection Form .. 43
5.3 Ontology Form.. 45
5.4 Source Form.. 47
5.5 Context Form .. 49
5.6 Application File Viewer.. 52

6 Graphical Interface... 54
6.1 Tree Navigation Structure... 54
6.2 Graphical Image Panel.. 57

6.2.1 Ontology layer ... 58
6.2.2 Source Layer .. 58

 5

6.2.3 Context Layer... 59
6.3 Dynamic Content Control of the Image Panel.. 60

6.3.1 Highlighting of Selection... 60
6.3.2 Context Filter ... 62

6.4 Manual Layout Adjustment of Graphical Image Panel .. 62
7 COIN Application Generator .. 65

7.1 COIN Application in RDF.. 65
7.2 COIN Application in RuleML .. 67
7.3 COIN Model in RFML ... 69
7.4 COIN Model in Prolog (HTML and Regular Text).. 70
7.5 File-Based Interface .. 71

8 COIN Registry... 72
8.1 Registries... 72
8.2 Registry ... 73

8.2.1 Applications ... 73
8.2.2 Sources... 74

9 Technology Merging ... 75
9.1 Integration with GCMS... 75
9.2 Modification to GCMS ... 76

10 Disaster Relief Application... 77
10.1 Disaster Relief Application Overview.. 77
10.2 Ontology ... 77
10.3 Source ... 80
10.4 Context.. 81
10.4.1 Modifiers.. 81
10.4.2 Elevations... 83
10.5 Performance Analysis ... 84

11 Conclusion and Future Work .. 86
11.1 Separation of Knowledge and Representation.. 86

11.1.1 Conversion Function Builder... 87
11.2 Human Aspect... 87

11.2.1 Interactive Graphical Viewer/Editor.. 88
11.2.2 Scalar Vector Graphics .. 88
11.2.3 COIN Application metadata in English ... 88

11.3 Knowledge Sharing and Reuse ... 89
11.3.1 Registry Manager... 89

11.4 File Concurrency... 89
12 References .. 90
Appendix A – Internal COIN Model API... 92
Appendix B – Navigation Tree Template... 97
Appendix C – Graphical Layout Scheme File .. 98
Appendix D – COIN Registry DTDs.. 102
Appendix E – COIN Application RDF Schema ... 103
Appendix F – XSLT.. 107

F.1 XSLT for RDF -> RuleML... 107
F.2 XSLT for RuleML -> RFML.. 114

 6

F.3 XSLT for RFML -> Prolog in HTML .. 116
Appendix G – Tent Example in Various Formats .. 118

G.1 Tent Example in RDF .. 118
G.2 Tent Example in RuleML .. 122
G.3 Tent Example in RFML ... 125
G.4 Tent Example in HTML (Prolog) .. 128
G.5 Tent Example in Prolog ... 130

Appendix H – Interface Manual ... 132
Appendix I – Disaster Relief Metadata File ... 137

I.1 RDF ... 137
I.2 Prolog... 153

 7

Table of Figures

Figure 1.1 – Overall picture of COIN Application Metadata Layer................................... 9
Figure 1.2 – Graphical Metadata Management User Interface... 11
Figure 2.1 – Overview of GCMS.. 14
Figure 2.2 – RDF graph of the customer example.. 23
Figure 3.1 – Architecture of COIN Application Metadata Layer..................................... 30
Figure 3.2 – Sample COIN Application on Tents... 31
Figure 3.3 – Relation dsr_tent_terranova of tent application... 32
Figure 4.1 – Internal COIN Model at a glance ... 33
Figure 5.1 – Textual Interface Navigation Buttons .. 43
Figure 5.2 – Application Selection Form.. 44
Figure 5.3 – Ontology Form ... 46
Figure 5.4 – Source Form ... 48
Figure 5.5 – Context Form.. 50
Figure 5.6 – Application File Viewer ... 52
Figure 6.1 – Graphical interface displaying the tent example .. 54
Figure 6.2 – Navigation Tree Expanded ... 55
Figure 6.3 – Ontology Layer of Graphical Image Panel... 58
Figure 6.4 – Source Layer of Graphical Image Panel... 58
Figure 6.5 – Context Layer of Graphical Image Panel ... 59
Figure 6.6 – Semantic Type Selection .. 60
Figure 6.7 – Attribute Selection.. 61
Figure 6.8 – Modifier Selection .. 61
Figure 6.9 – Relation and Column Selection .. 61
Figure 6.10 – Context c_uk applied to image panel.. 62
Figure 6.11 – Buttons for Export/Import of Image Panel... 63
Figure 6.12 – Adjusted Ontology Layout ... 64
Figure 7.1 – Chain of Metadata Representation ... 65
Figure 7.2 – COIN Application RDF Schema .. 66
Figure 8.1 – COIN Registry Framework Overview.. 72
Figure 9.1 – Flow of Information between COIN Layers .. 75
Figure 9.2 – Navigation Bar for Accessing Textual and Graphical Interfaces................. 76
Figure 10.1 – Componentized Disaster Relief Ontology.. 78
Figure 10.2 – Semantic Types and Modifiers of Disaster Relief Ontology...................... 79
Figure 10.3 – Attributes of Disaster Relief Ontology... 79
Figure 10.4 – Data from Tent Suppliers ... 80
Figure 10.5 – Navigation Tree Showing Relations... 81
Figure 10.6 – Navigation Tree Showing the Modifiers .. 82
Figure 10.7 – Navigation Tree Showing Elevations... 84
Figure 10.8 – Auto-Generated Ontological Graph ... 85
Figure 10.9 – Manually Repositioned Ontological Graph.. 85

 8

1 Introduction

There have been many barriers which prevented meaningful exchange of information
since humans started to use symbols and sounds to represent things in this world. In the
early ages when modern transportation was lacking, human interaction was limited by
geographical barriers. Fortunately, geographical barriers are virtually non-existent in
today’s electronic age. Email and the World Wide Web enable people to communicate at
the speed of light. Information can travel on these electronic vehicles of communication
even though the sources of information are physically apart. A second communication
barrier is the language disparity among people. The very symbols and sounds that enable
one group of people to communicate are barring another group from joining the
conversation. Therefore, having a common language is a prerequisite to meaningful
exchange of information. The language problem among humans is less severe than
among information systems because the number of languages in this world has stabilized
and there are only a limited set of spoken languages. The proliferation of standards
among information systems has improved but confused the communication channels.
Huge expenses are often incurred in reconciliation of information from companies
wishing to share their business logic and knowledge. A third communication barrier is
contextual difference. Even after two parties agree on a chosen language to
communicate, the semantics, or meanings in the language, of things are still context
dependent. A concept that exists in one place may not be so common in another. For
example, a military personnel may refer to six o’clock in the evening as 18:00, while a
non-military person may interpret it as 6 PM. Given the barriers of communication
mentioned, it is no surprise that meaningful exchange of information rarely occurs
naturally. Fortunately, a research effort to effectively resolve those communication
issues is already underway at the Context Interchange (COIN) Group in the Sloan School
of Management at MIT.

The framework developed here at COIN for targeting contextual communication issues is
a modeling technique. The COIN Model encapsulates and communicates the technique
through its constituent elements, which are ontological, relational, and contextual in
nature. A COIN application is an encapsulation of a domain of interest for the purpose of
context mediation. Every COIN application is an instance of the COIN model. The
extended-COIN, or eCOIN, is an implementation of the COIN framework. eCOIN takes
as inputs a COIN application and performs context mediation on user submitted queries.
eCOIN consists of two major components, the Planner/Optimizer/Executioner (POE),
and the abduction engine. The abduction engine is written in Prolog, a logic
programming language, and provides the logic behind context mediation work. The POE
utilizes the abduction engine to convert user submitted queries into context mediated
queries, and connects to data sources in an optimized fashion for the purpose of executing
the mediated queries. The information presented in a COIN application is used directly
by the abduction engine, and therefore must be written in Prolog language. While Prolog
is a common language among practitioners of logic programming, it is not easily
understandable by someone with business background, who simply wants to model their
domain for context mediation. The work of this thesis targets precisely at this limitation
of eCOIN.

 9

Figure 1.1 – Overall picture of COIN Application Metadata Layer

The work of this thesis constitutes the COIN Application Metadata Layer, as shown in
Figure 1.1. This metadata layer shields the users of eCOIN from the need to understand
Prolog in order to create COIN application. There are three channels of interacting with
the metadata layer, and they are the Textual Interface, the Graphical Interface, and the
File-based Interface. The textual interface is designed for human users and is a form-
based interface organized to guide the input of every aspects of application metadata.
The graphical interface couples with the textual interface to provide the users with a
graphical view of the application metadata.

The file-based interface is designed for machine users that already have the application
metadata in one of the supported XML-based formats (RDF, RuleML, RFML), and want
to make use of the Prolog generator function in the metadata layer to interact with
eCOIN. The metadata layer stores application metadata in files under the Resource
Description Framework (RDF) format. By representing application metadata in RDF, a
channel to the RDF modeling community is established for eCOIN. This will facilitate
the import of RDF ontology into COIN application in the future. Since RDF is a XML-
based language, it is possible to transform the metadata in RDF into other XML-based
languages via Extensible Stylesheet Language Transformation (XSLT). XSLT files are
written and used by the metadata layer for transforming RDF metadata into Rule
Markeup Language (RuleML) and Relational Functional Markup Language (RFML).
This means that application metadata expressed in RuleML or RFML is acceptable by the
metadata layer. Furthermore, application metadata is no longer limited to a single
representation standard. Just as RuleML and RFML are added to list of supported

 10

representation format through XSLT, one can readily write additional XSLT files for
transforming the application metadata between other markup languages. The benefit of
separation of knowledge and representation is apparent in this design. COIN application
developers no longer need to be proficient in Prolog and any XML-based language can be
used to encode the application metadata.

Since XML documents are inherently file-based web resources, the application metadata
are stored in files rather than in traditional databases. This means that anyone with access
to the internet can download and view the COIN application via an internet browser.
Similarly, any machine process can locate the COIN application via the internet. The
added accessibility should encourage the reuse of knowledge within a COIN application.
Not only are the ontology and context information from COIN a great resource to other
information systems, similar information from other systems are great resources to COIN
as well. To further encourage knowledge reuse, COIN application metadata is
componentized to allow greater flexibility in sharing parts of an application. This design
should encourage the reuse of knowledge both external and internal to COIN.

1.1 Context Interchange Framework
The approach developed here at COIN to address the mentioned communication issues is
commonly referred to as context mediation [1, 2, 3]. Context mediation is an automated
process that, once set in motion, will seamlessly integrates information from different
contexts. Setting context mediation in motion is a two-fold procedure. First, the
participants must agree on a single language of communication on the semantic level.
This means that the context mediation system must somehow know the different
representations of objects in different contexts. For example, the language for price in
one country is “price”, while in another country it is “prix” (French for price).
Irrespective of how an object is referred to in different countries, the mediation system
must know that “price” and “prix” both refer to the same thing. This is achieved by
having a common ontology on the domain of communication for all participants. Upon
the common ontology, each participant can tell the system how each object in the domain
is represented in his own context. The process of mapping vocabulary from one’s
domain onto the common ontology is known as elevation in the COIN framework. In our
example, the price attribute from both data sources are elevated to “price” in the common
ontology.

However, having a common semantic of the domain is just half the work. The data
values that any object may hold could potentially have intrinsic contextual differences.
For example, the “price” may have value “100” in division 1. Without additional
information, the mediation system would not know the equivalent value of 100 in another
context. In one scenario, the user querying for price from division 1 may have the same
concept of price as division 1; and so the value “100” is valid in both contexts and no
mediation is required. In another scenario, the user may not have the same concept of
price as division 1; and so the value “100” from division 1 is something else, i.e. “90”, in
the user’s context. The mediation system must somehow know how to convert values
from one context into another. This is achieved by the concept of modifier, introduced by
the COIN framework. Modifiers are values that indicate to the system if conversions of

 11

the data between contexts are necessary. For modifiers to work, every context must
assign a modifier value to each kind of data the system may run across. Possible
modifier values for “price” are “EUR” and “USD”, which are currency symbols. In the
scenario where the modifier values of “price” for two contexts are the same (i.e. both are
“USD”), no conversion is necessary and the system will simply pass the data unchanged
between the two contexts. In the case where the modifier values are different (i.e. “EUR”
and “USD”), then the system will know to convert data between the two contexts. Once
contextual differences are detected, the actual conversion of data is governed by the
concept of conversion function. Conversion functions are mathematical equations or
logical expressions which can be evaluated programmatically. Conversion functions
need only be defined once per modifier. Once defined, all participants of context
mediation can share the same set of functions. Presented so far about the COIN
framework is just a high level overview. For a full theoretical explanation of the COIN
framework, the reader is referred to the literatures by Goh, et al. [1, 2, 3].

1.2 Related Work and Motivation
A previous effort related to this thesis is the Graphical Metadata Management (GMM)
system built by Usman [5]. In a nutshell, GMM is both an user interface and a metadata
management system. As an user interface, GMM functions to collect and

Figure 1.2 – Graphical Metadata Management User Interface

display COIN application metadata via a graphical presentation. A screenshot of the
GMM user interface is shown in Figure 1.2. There is a screen for each major components

 12

of the COIN application. For example, the ontology editor screen, shown in Figure 1.2,
is where the user can view and edit the ontology of a COIN application. As a metadata
management system, GMM stores the information collected from the user interface into a
database. The GMM database is a collection of tables that are organized according to the
elements of the COIN model. Besides application metadata, graphical information that
renders the ontological graph is stored in the database as well. Through the user
interface, the user can invoke the Prolog generator of GMM to produce the Prolog
application files necessary for context mediation by eCOIN.

While the GMM performs well for its intended usage, there are several considerations of
improvement that are not addressed by that system. A desirable area of improvement is
the ability to easily share and incorporate metadata between COIN and other modeling
communities. Research in area such as ontological modeling is a collaborative effort that
spans many research communities. The ability to tap into these communities hinges on
the ability to share information with them. To encourage information sharing, COIN
metadata must be presentable in a format that is more commonly understandable than
Prolog. The work of this thesis picks up in the area of metadata representation. Related
to choosing a suitable representation for sharing is the consideration for accessibility,
which is an area addressed by this thesis as well.

Another important area of consideration on improving GMM is the completeness of the
graphical representation of metadata. The graphical content in GMM doesn’t extend
beyond the screen shown in Figure 1.2. Although the ontology of a COIN application
already tells the viewer a lot about the application, there are other aspects of the
application that could be shown graphically as well. For instance, the elevation of data
objects onto the ontology is a desirable association that could be represented graphically.
By enriching the graphical content, more information can be transmitted to the viewer per
screen. The work of this thesis has identified several instances of improvement in this
area.

1.3 Objectives
The work of this thesis augments eCOIN in the areas of metadata representation and
management. The focus of metadata representation concerns how information is
represented for processing and storage, as well as how information is presented to user
through the user interface. On the metadata management side, the focus is on how the
information is accessed and shared by various processes within eCOIN, as well as by
external processes. There are three objectives that drive the design of the system
presented in this thesis. The objectives are: (1) separation of knowledge and
representation, (2) human aspect, and (3) knowledge sharing and reuse. In Chapter 11,
the concluding chapter, we will discuss how well this thesis addresses each of these
objectives.

1.3.1 Separation of Knowledge and Representation
In an ideal world, all individuals and machines would communicate to each other under
one common language, and there would be just one global representation of knowledge.
However, there is no universal representation of knowledge in the real world. Every

 13

society, every group, every individual has his or her own preference on the format of
representation. A system that needs to communicate with multiple processes can easily
be worn down by the need to maintain multiple representation of the same information.
In the system built by this thesis, such problem is avoided by committing to separation of
knowledge and representation. In another words, the system would only worry about
maintaining its own version of the knowledge, but provides a mean for other processes to
easily access the same information in their preferred representation.

1.3.2 Human Aspect
The essential knowledge needed by eCOIN is the metadata that define COIN
applications. Human users of eCOIN are the primary source of such metadata.
Therefore, the human aspect of the system built by this thesis is an issue that cannot be
overlooked. By human aspect, we are referring to the ease of use of the user interfaces of
the system, as well as its effectiveness in communicating information to users. Keeping
human aspect in high priority avoids any potential bottleneck that may develop between
the system and its users on the flow of information.

1.3.3 Knowledge Sharing and Reuse
The proverb “avoid reinventing the wheel” is the principle behind this objective. Within
a COIN application, there are significant amount of information that could be potentially
shared or reused by another application. For instance, ontologies from different COIN
applications tend to build upon each other. This is not a surprising observation because
ontology is a way of modeling concepts or things. An ontology that is modeled correctly
should almost always have an universal quality to it. Provided that the potential reward
of knowledge sharing and reuse is high, the burden of realizing that potential falls heavily
on the knowledge management system. The system proposed by this thesis attacks this
objective by making knowledge easily accessible, and widely acceptable. Easy access
encourages more users to obtain the information, while wide acceptability means more
users can use the information obtained. Building COIN application can become a much
easier task if this objective is executed successfully.

1.4 Thesis Road Map
This thesis is organized as follows. The various markup language specifications
mentioned, as well as existing eCOIN technologies, are described in sufficient details in
Chapter 2. The work of this thesis constitutes the COIN application metadata layer. An
overview of the metadata layer is shown in Chapter 3. The internal COIN model, which
is a data structure that supports the metadata layer, is presented in Chapter 4. The design
and user interaction of the textual and graphical interface are detailed in Chapter 5 and 6
respectively. Chapter 7 describes how the COIN application generator produces COIN
application in various markup language technologies. The management structure of the
COIN registry is presented in Chapter 8. Chapter 9 shows how the technology of this
thesis fits into the eCOIN framework. A reasonably sized COIN application, known as
Disaster Relief, is presented in Chapter 10, and observations are on the experience with
creating the application from the user interfaces. Finally, Chapter 11 concludes the work
of this thesis and motivates the reader on future related work.

 14

2 Underlying Technology
The work of this thesis augments the ongoing research effort on context mediation at the
Context Interchange (COIN) Group at MIT Sloan School of Management. This section
reviews the current mediation technology developed at COIN, as well as some
technology central to metadata representation. The technology presented in this section
will pave the way for later discussion on the core concepts of this thesis.

2.1 Overview of eCOIN
The goal of COIN system is to achieve semantic integration by mediation of contexts
associated with data sources and users. There are four ingredients that make this
possible. Figure 2.1 depicts the relationship between the four ingredients, which are
COIN Model, extended-COIN (eCOIN), data sources, and the users. Central to the
system is eCOIN, which draws upon the COIN model, the data sources, and the users for
input necessary to perform context mediation. The COIN model and data sources are a
priori information about the integration domain that must be supplied to eCOIN, where
as user supplied information are gathered at the time of mediation. The COIN model is
central to this thesis and a full discussion of it is presented in a later section.

Figure 2.1 – Overview of eCOIN

Semantic integration is not useful if there is no actual data to be integrated on. Data
sources provide the data to be integrated on, as well as intermediate data necessary for
converting data between sources. Data sources can be database tables of financial data
from two companies which wish to have an integrated view of their company financials.
The supporting data sources in this case may include currency rates which are needed for
converting financial data from different countries. Data sources are not limited to
traditional physical databases. The role of World Wide Web as an effective platform of
data publishing provides another category of data sources known as web sources. Web
sources can range from web pages displayable on a web browser, to web services which
are queryable by machines. The Cameleon Web Wrapper [6] is a technology developed

 15

at COIN for the purpose of querying web sources through structured relational queries.
eCOIN accepts data from different types of sources, including both databases and web
sources.

Another ingredient of context integration is the information supplied by participating
users. Users can be an actual person interacting with eCOIN through the user interface,
or it can be a software process interacting with eCOIN via procedure calls. Every user
must identify the context (the receiver context) he is in. Information that defines a
context is predefined in the COIN model. Once the receiver context is known, the system
can start to perform an user specified query. The query is in SQL format and
encompasses the data sources he wishes to query. The system will know the source
context and apply the appropriate mediation rules.

The two major components within eCOIN are the abduction engine and the
planner/optimizer/executioner (POE). The abduction engine provides the mediation
facility to eCOIN, while the POE carries out the role of obtaining data from data sources
and fulfilling the user queries from those data. The first stage of context mediation
begins when the POE converts a user-submitted query from SQL format into Datalog
format. The conversion is necessary because the context mediation is carried out in the
Prolog environment of the abduction engine. During the next stage, a Datalog query and
a COIN application in Prolog are sent to the abduction engine where context mediation
takes place. The result of context mediation is a mediated query in Datalog, which is sent
back to POE. POE must then convert the mediated query back to SQL because the data
from data sources are relational in nature. At the final stage of context mediation, the
POE issues the mediated query on the relational database and returns the result of
execution to the user. The mediation process begins again when another query is
submitted by the user.

2.2 Prolog
Prolog stands for Programming in logic. It is a simple, but powerful language that deals
with objects and relationships between objects, using only three types of statements:
facts, rules, and queries [17]. Control structures are provided by the Prolog interpreter,
rather than the programmer. A Prolog programmer only has to describe the solution to a
problem, rather than having to tell the computer how to compute the solution. This
reduces the programming burden. A COIN application written in Prolog consists solely
of rule statements in the following form.

rule(head_statement, body_statement).

A rule statement is a compound statement having a conclusion statement and a premise
statement. A conclusion statement, also know as the head of the rule, is an atomic
formula with zero or more arguments. The premise, or body of the rule, may be an
atomic formula, or a combination of statements. The head of the rule describes what fact
the rule is intended to define. The body describes the set of goals that must be satisfied
for the head to be true. Notice also that rules are always ended with a dot. Consider the
following example.

 16

rule(is_a(X, male), is_a(X, son)).

This simple rule reads like this: X is a male if X is a son. The variable in this rule is X.
Variables do not need to be declared before use, but they are usually denoted by a
capitalized first letter, or encased by single quote. When X is instantiated to an object in
one part of the rule, the same instantiation applies for all parts of the rule. All rule
statements take the same form as the example above. In the case where the body
statement consists of multiple goals, each goal is evaluated one after the other.

2.3 COIN Model
The COIN model encapsulates the organization of knowledge necessary for semantic
integration among heterogeneous data sources. Metadata contained in the COIN model is
utilized by COIN system for the purpose of context mediation. The design of COIN
model is described in precise details in the works of Cheng Goh, et al. [1, 2, 3]. A primer
of COIN model is presented here to aid readers in understanding the work of this thesis.

COIN model is comprised of three components, which are the ontology, context, and
source. Each component is described in the subsections that follow. Prolog is the native
language that is used to encode COIN application that is processed by abduction engine.
A Prolog representation of each concept in the COIN model will be illustrated in the
subsections. The readers should not conclude that Prolog is the preferred way to describe
COIN model. COIN model is a concept that can be expressed in many programming or
modeling languages.

2.3.1 Ontology
Ontology is the hierarchical structuring of knowledge which formally specifies the
objects or entities that exist in some area of interest and the relationships that hold among
them. The objects in an ontology is labeled semantic type in the COIN model. There are
two typical relationships that exist in an ontology, namely inheritance and attribute
relationship. COIN model takes ontological relationship a step further by introducing the
contextual relationship, called modifier.

Semantic Type
Objects or entities in ontology are identified as semantic types in the COIN model.
Semantic type, as its name suggests, reflects the type of an object. If semantic type is
viewed as a place holder of data, then the data type is the semantic type. There is a
special semantic type in the COIN model known as basic. It is the most primitive object
type that every other object inherits from. Semantic type is always declared in relation to
its base type. Therefore, the declaration of semantic type is strongly tied to inheritance
relationship, which is described in the next section.

Inheritance
Inheritance represents a parent-child relationship in the object orientation sense between
two semantic types. A semantic type must inherit from either basic or another semantic

 17

type. In another words, every semantic type, beside basic, has an inheritance relationship
with another semantic type. Inheritance is declared as follows in Prolog.

rule(is_a(semtypeB, semtypeA), (true)).

This rule statement is an inheritance relationship, which says “semtypeB is a child of
semtypeA”, or “semtypeA is the parent of semtypeB”. Both semtypeA and semtypeB are
the names of semantic type. The above rule statement is also a declaration for the
semantic type named semtypeB.

There is the concept of a basic semantic type in the COIN model which stands for the
root of all semantic types. When the ontology is viewed strictly as a COIN ontology, it is
understood that a semantic type that has no indicated parent in the ontology is the child of
basic, since basic is the root of every semantic type. All the attributes of the parent
semantic type is inherited by its children. Attribute relationship is explained in the next
section.

Attribute
Attribute relationship between semantic types in a COIN model describes property of a
semantic type. The semantic type that the attribute extends from is known as the domain;
and the semantic type that the attribute extends to is known as the range. Attribute is
declared as follows in prolog.

rule(attributes(semtypeA, [attribute1, attribute2]), (true)).

This rule statement is an attribute relationship, which says “semtypeA has the attributes
attribute1 and attribute2”. Attributes are declared per semantic type. The domain of
these attribute relationships is semtypeA. semtypeA is declared to have two attributes,
namely attribute1 and attribute2. Notice the range semantic type in an attribute
relationship is not found in the attribute declaration. The range is found on the attribute
axiom, which is described in later section.

Modifier
Modifier modifies the values of semantic types and gives definition to a context (see
section on modifier axiom). The semantic type that the modifier extends from is known
as the domain; and the semantic type that the modifier extends to is known as the range.
Modifier is declared as follows in prolog.

rule(modifiers(semtypeA, [modifier1, modifier2]), (true)).

This rule statement is a modifier relationship, which says “semtypeA has the modifiers
modifier1 and modifier2”. Just like attributes, modifiers are declared per semantic type.
The domain of these modifier relationships is semtypeA. semtypeA is declared to have
two modifiers, namely, modifier1 and modifier2. The range in a modifier relationship is
not found in the modifier declaration, but in the modifier axiom, which is described in
later section.

 18

2.3.2 Context
Context is declared in the COIN model as one of three types: a root context, a context
which shares the same definition as another context, or a context which overrides another
context. Context is defined by the values of its modifiers. Associated with context as
well are the elevation axioms.

Root Context
Context is declared as root as follows in prolog.
rule(is_a(contextA, basic), (true)).
Context declaration syntax is very much like semantic type declaration. A root context is
indicated by the keyword basic.

Context Sharing
rule(is_a(contextB, contextA), (true)).
This rule statement is a context declaration, which says “contextB shares the same
contextual definition as contextA”. By declaring that contextB is a contextA, the
modifiers for contextB will automatically take on the same definitions as contextA,
without the need to have explicit definition.

Context Overriding
A context which overrides another context is declared the same way as context sharing.
The difference is that context overriding occurs when one or more of the modifiers are
explicitly declared for the new overriding context.

Modifier Axiom
Modifiers give definition to a context and they are defined per context. Each modifier
essentially is a list of values indexed by the context. Each value, known as the modifier
value, can be either static or dynamic. A static value is either a string or number value
that stays constant. A dynamic value describes how to get to a value without specifically
specifying the value at design time. The actual value of a dynamic modifier is not known
until run time, and can change as data in the sources change. Associated with each
modifier is a conversion function. Conversion function, as its name suggests, is a
function which converts a semantic type value between two contexts, based on the
modifier defined for the semantic type.

rule(modifier(companyFinancials, O, scaleFactor, disclosure, M), (cste(basic, M,
disclosure, 1))).

This is an example of a static modifier axiom, which assigns a constant value to the
modifier for the specified context. companyFinancials is the semantic type being
modified by the modifier scaleFactor. The modifier value under the disclosure context is
the integer 1.

rule(modifier(companyFinancials, O, currency, disclosure, M), (attr(O, company,
Company), attr(Company, countryIncorp, Country), attr(Country, officialCurrency, M))).

 19

This is an example of a dynamic modifier axiom, which dynamically draws the modifier
value to an elevated source via attribute axioms. This says that the currency modifier in
the disclosure context has the value held in the semantic type officialCurrency. In
addition, the path that links the domain companyFinancials to the range officialCurrency
is specified by a list of attributes. In this example, companyFinancials is first linked to
the company semantic type, then to the countryIncorp semantic type, and finally to
officialCurrency. The attributes used in a dynamic modifier is declared elsewhere as an
attribute axioms (see section below).

Attribute Axiom
Like relation, attribute declared between semantic types in the ontology needs to be
elevated. The elevation of attributes can span one or more relations. Attribute axioms
are used for defining dynamic modifiers, as well as conversion functions.

rule(attr(X, officialCurrency, Y2), ('Currencytypes_p'(X, Y1), 'DStreamAF_p'(_, _, _, _,
_, Y2), value(Y1, datastream, Y), value(Y2, datastream, Y))).

The above rule statement is an attribute axiom which maps the attribute officialCurerncy
between two elevated relations. The domain of the attribute is indicated by the variable
X, whose data value is obtained from the elevated relation Currencytypes_p. The range
of the attribute is indicated by the variable Y2, whose data value is obtained from the
elevated relation DStreamAF_p. When attribute axiom involves multiple relations, as in
the above example, we need to specify constraint conditions of the join. This is done via
a series of value statements that trail the rule statement. In the above example, the value
of Y1 from Currencytypes_p is constrained to the value of Y2 from DStreamAF_p.

Conversion Function
Conversion function is the function that converts value from one context into an
equivalent value in another context. Sometimes conversion functions are straight forward
arithmetic operation, and other times they could involve attribute axioms and elevation
axioms.

rule(cvt(companyFinancials, _O, scaleFactor, Ctxt, Mvs, Vs, Mvt, Vt), (Ratio is Mvs /
Mvt, Vt is Vs * Ratio)).

The rule statement above is a conversion function for scaling a number referenced by the
semantic type companyFinancials. The function calculates the target value Vt by
multiplying the source value Vs by a Ratio. The Ratio is in turn derived from the
dividing the scaleFactor value in the source context by the scaleFactor value in the target
context, where scaleFactor is a modifier defined for both contexts.

rule(cvt(companyFinancials, O, currency, Ctxt, Mvs, Vs, Mvt, Vt), (attr(O, fyEnding,
FyDate), value(FyDate, Ctxt, DateValue), olsen_p(Fc, Tc, Rate, TxnDate), value(Fc,
Ctxt, Mvs), value(Tc, Ctxt, Mvt), value(TxnDate, Ctxt, DateValue), value(Rate, Ctxt, Rv),
Vt is Vs * Rv)).

 20

The rule statement above is a more complicated conversion function involving attribute
and elevation axioms. The underlying equation that relates the target value Vt to the
source value Vs is a simple multiplication by a currency factor Rv. However, the
complexity is introduced by the statements used in establishing the value of the currency
factor. The attribute axiom fyEnding retrieves the date needed in the currency lookup
from the olsen_p elevated relation, while the currency names are provided as inputs to the
conversion function via the variables Mvs and Mvt.

Elevation Axiom
A relation is linked to the ontology by a set of elevation axioms. An elevation axiom
maps a relation attribute to a semantic type in the ontology. This mapping allows the
ontology to be queried.

rule(olsen_p(
skolem(currencyType, Exch, olsen_context, 1, olsen(Exch, Express, Rate, Date)),
skolem(currencyType, Express, olsen_context, 2, olsen(Exch, Express, Rate, Date)),
skolem(exchangeRate, Rate, olsen_context, 3, olsen(Exch, Express, Rate, Date)),
skolem(date, Date, olsen_context, 4, olsen(Exch, Express, Rate, Date))),
(olsen(Exch, Express, Rate, Date))).

The rule statement above defines the elevated relation olsen_p from the underlying
relation olsen. Elevation axiom consists of a name for the elevated relation, a set of
skolem functions, and a source signature. The source signature consists of the relation
name, and the attributes in the desired order. Each skolem function maps a semantic type
to an attribute of the relation. There are as many skolem functions as there are number of
attributes in the relation. Multiple attributes can be mapped to the same semantic type.

2.3.3 Source
Sources are the storage of data. Sources can be a database, web wrapper engine, or even
web service server, as long as they can be queried. Sources are better known as relation
in a COIN model. The distinction between source and relation is subtle. Source is a
physical location where queries are sent to. A relation is a relational object inside a
source and it serves as the subject of a query. The physical attributes that describe a
source is not part of the COIN model, but it is needed by the POE of eCOIN for
retrieving the actual data.

Relation
Relation in the COIN model is the metadata equivalent of a physical data source.
Multiple relations can be defined for each physical source. A relation consists of a list of
attributes which indicates the queryable objects of the relation. In a relation that
corresponds to a database table, the attributes corresponds to the columns of the table.

 21

rule(relation(cameleon, olsen, ie, [['Exchanged', string], ['Expressed', string], ['Rate',
real], ['Date', string]], cap([[1, 1, 0, 1]], [<, >, <>, =<, >=])), (true)).

The rule statement above is a relation declaration, which consists of a source name, a set
of attribute names and their types, and a capability record. The name of this relation is
olsen. The source is cameleon. The relation has four attributes named Exchanged,
Expressed, Rate, and Date. Their types are indicated alongside attribute names. The
value “ie” indicates that the relation can be queried both internally and externally. This
value is primarily used by the POE of eCOIN in executing a query. A capability record
tells which attributes are bounded, and what kinds of constraint operations are supported.
For a database table, specifying the primary keys would be sufficient for establishing the
bounding condition. A source would also require a connection string, which specifies the
location of the source and how to connect to it. The connection information is currently
stored separately in a registry, rather than in the COIN model.

Integrity Constraint
Integrity constraint defines the attributes in a relation that must be bounded in order to
retrieve a unique record. The integrity constraint is analogous to the capability record of
a relation, but integrity constraint is used exclusively by the abduction engine. There
could be multiple integrity constraints per relation.

olsen_ic1 @ '?'olsen(A1, B1, C1, D1), '?'olsen(A1, B1, C2, D1) ==> C1=C2.

The above is an integrity constraint for the Olsen currency conversion source. It says that
if the first, second, and fourth attributes (from-currency, to-currency, and date) were
bounded, then there is a unique value for the third attribute (conversion rate). In other
words, the from-currency, to-currency, and date must be specified when querying the
Olsen relation for conversion rate.

2.4 Markup Languages
Markup languages are all the tag based data description languages under the family of
Extensible Markup Language (XML) [7]. XML is a way to describe structure data
through tags similar to those used in HTML. XML tags define elements of the data and
the data types of the data. Each element can be as simple as a piece of string, or as
complex as a set of other elements. There is no limit to the number of XML tags one can
define. There are fundamental differences between XML and HTML. While HTML is
designed to display data, XML is designed to describe what the data is.

2.4.1 XML and Its Advantages
XML is a very flexible way to pass data around. It can be used to persist data, or used as
document locator to locate web resources. These are just a few of the uses of XML, but
important uses that are pertinent to the work of this thesis. XML is text based, which
makes them more readable. XML documents can use existing infrastructure already built
for HTML. For example, the HTTP protocol used to transport HTML documents can
serve to transport XML documents equally well.

 22

XML parsing is well defined and widely implemented, so one can retrieve XML
document in a variety of environment. Most web browsers today support XML
document viewing. There are at least one XML parser that exists for every common
programming platform; and if a platform doesn’t yet support XML, one can easily write a
parser for it because XML is very well defined. Applications can also rely on XML
parsers to do some data validation, such as type checking. XML schema is used to
validate XML documents. Schema eliminates much of the need to write validation code.
Also, a schema can be shared among organizations to allow data sharing.

There have been many markup languages that emerged under the XML family. Each
emerged markup language serves a specialized domain of usage. The Resource
Description Framework (RDF), for example, is a XML based language for representing
information about web resources. The markup languages pertinent to this thesis are RDF,
RuleML, RFML, and HTML. Each of these languages is introduced in subsequent
sections, with the exception of HTML. It would be too redundant to prime the reader on
HTML because most reader would already have enough working knowledge to render an
introduction unnecessary.

2.4.2 Resource Description Framework (RDF)
The Resource Description Framework (RDF) [10], developed by the World Wide Web
Consortium (W3C) [8], is an infrastructure for capturing the semantics of metadata. The
RDF infrastructure is a simple yet powerful one. It assumes no semantics of the
resources it describes. This allows for a wide variety of metadata from different resource
communities to be encoded and shared. RDF uses XML as the common language for
exchange and processing of metadata. Structural constraints are imposed on XML by
RDF to provide a framework for expressing semantics. In addition to being made for
machine processing, RDF can be made readable by human, through graph representation.
Elements of RDF pertinent to the work of this thesis are presented below. The roles of
these elements in the work of this thesis are discussed in later chapters. Readers
interested in knowing the full capabilities are encouraged to read the W3C RDF Primer
[10].

RDF describes resources. A resource is any object identifiable by an Uniform Resource
Identifier (URI) [11]. The most common form of URI is the Uniform Resource Locator
(URL), which is a subset of URI. URI describes the mechanism used to access the
resource, the computer address of the resource, and the name of the resource on the
computer. For example, the URI http://web.mit.edu/index.html identifies the file
index.html on the computer web.mit.edu, and specifies the Hypertext Transfer Protocol
(http) as the method of accessing the file. Since an RDF document can compose of
multiple resources, an optional fragment identifier is sometimes used in conjunction with
URI to locate a specific resource in an RDF document. For example, if within the file
index.html, there is a resource named section2, then this particular resource is located by
http://web.mit.edu/index.html#section2. The “#” separator combines an URI and a
fragment identifier to produce a URI Reference, or URIref. In this thesis, the term URI
and URIref will be used interchangeably. If an URI contains the “#” separator, then it is
an URIref; otherwise, it is a plain URI.

 23

Let us look at a short example to illustrate the concepts of RDF. Below are two
statements that we will encode in RDF shortly.

(1) The name of Customer123 is John Smith.
(2) The referral of Customer123 is Customer234.

Each statement is called a triple, which consists of three elements, a subject, a predicate,
and an object. A subject is the resource being described by the statement. Predicate is a
property of the subject. Object describes the value of a particular property. In triple
notation, the two statements above are expressed as:

(1) <Customer123> <name> “John Smith”
(2) <Customer123> <referral> <Customer234>

Elements in angle brackets are resources, whereas elements in quotes are strings. Triple
notation follows the (subject, predicate, object) format. From triple notation, RDF graph
can easily be generated by modeling subjects and objects as nodes, and predicates as
edges. The Figure 2.2 below is a RDF graph of the customer example. The option to
visually inspect a RDF document is one of the many advantages of RDF.

Figure 2.2 – RDF graph of the customer example

A RDF document consists of simple statements about resources. Each of the statements
is a triple. Below is a representation of the customer example in RDF. Let’s consider the
short example line by line.

1. <?xml version="1.0"?>
2. <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
3. xmlns:exterms="http://www.example.com/terms/">
4. <rdf:Description rdf:ID="Customer123 ">
5. <exterms:name>John Smith</exterms:name >
6. <exterms:referral rdf:resource=”#Customer234”/>
7. </rdf:Description>
…
8. </rdf:RDF>

The first line is a standard XML declaration, which specifies the version of XML the
document is encoded in. This helps the application that interacts with the document to
pick a correct XML parser. In addition to stating the start of the RDF content in the
document, the second and third lines declare the namespaces used in the document. A
namespace declaration consists of a name and an URI. Once a namespace is declared, it
can be referenced anywhere in the document by its name. Namespace can be thought of
as the prefix that helps to reduce the length of commonly used URI. On line 4, the rdf
namespace is used on the element Description. If the rdf namespace were expanded, the

 24

Description element would read http://www.w3.org/1999/02/22-rdf-syntax-
ns#Description. The subject of the rdf:Description element, in this case, is
“Customer123”. Line 5 assigns the string object “John Smith” to the name property of
the current resource. A property can also take on an URI of a resource as its value. This
is demonstrated on line 6, where the referral property is an URI of another resource
named Customer234 in the same document. Notice that the lack of prefix in an URI
indicates a resource relative to the current document. Line 7 closes the rdf:Description
element. Line 8 closes the rdf:RDF element, and the document ends.

2.4.2.1 – RDF Schema
Different organizations have different views and definitions of even the most common
things. RDF schema provides a way for organizations to define their own semantics of
resources, and communicates those resource definitions to other interested parties. In
addition, RDF schemas can be reused by communities other than the origination. This
helps to reduce the number of duplicated schemas on resources and results in a tighter
semantic web.

RDF schema is just a RDF document, with the distinguishing quality that it borrows
resource definitions from the W3C’s RDF schema, rdf-schema. The most basic types of
resource defined in a RDF schema are classes and properties. The definitions of these
resources are obtained from W3C. A RDF class corresponds to a class in object-oriented
languages. Any kind of things can be represented by RDF classes. RDF properties are
attributes of RDF classes. Both domain and range of a RDF property are RDF class.

So far, we have demonstrated our customer example using elements from some
predefined RDF schema. But if we assume that the Customer class from the example
above was never defined, then we would need to define our own definition for the class
in a RDF schema. Let’s define a RDF schema for our customer example presented
earlier.

1. <?xml version="1.0"?>
2. <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
3. xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#">
4. <rdfs:Class rdf:ID="Customer"/>
5. <rdfs:Property rdf:ID="name">
6. <rdfs:domain rdf:resource="#Customer"/>
7. <rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>
8. </rdfs:Property>
9. <rdfs:Property rdf:ID="referral">
10. <rdfs:domain rdf:resource="#Customer"/>
11. <rdfs:range rdf:resource="#Customer"/>
12. </rdfs:Property>
13. </rdf:RDF>

XML declaration is stated as usual on line 1. Lines 2 and 3 specifies the namespaces
used in the document. The rdfs namespace points to the W3C’s RDF schema that defines

 25

RDF class and property. Line 4 declares the Customer class. RDF classes defined here
are instances of the RDF-defined class rdfs:Class. Lines 5 to 8 define the name property,
whose domain is of type Customer, and range is of type string. RDF properties defined
here are instances of the RDF-defined class rdfs:Property. The domain of a property is
the class that this property applies to. The range of a property specifies which class that
the value of this property can take on. Thus, the name property belongs to Customer and
its value must be of type string. Lines 9 to 12 define the referral property of Customer.
This property differs from the first in that its range is not of type string, but of type
Customer. This illustrates that we can readily use any classes defined in the same RDF
document as the range. Line 13 ends the RDF document. The RDF elements presented
in this brief introduction will be useful for later discussion of the COIN metadata in RDF
representation.

2.4.3 Rule Markup Language (RuleML)
RuleML is a XML-based language for representation of rules and facts [12]. Different
classes of rules are represented by different set of XML tags in RuleML. We are
particularly interested in RuleML treatment of derivation rules, as the Prolog rules used
in abduction engine belong under this class of rules. Derivation rules are rules that assert
conclusions when certain preliminary conditions are recognized. When applied
backward, we can prove conclusions from the premises. Similarities between RuleML
and Prolog are pointed out at various point in the discussion of the coming example. The
basic syntax for declaring a derivation rule in RuleML is as follows:

<imp><_head>conclusion</_head><_body><and>premise1…premiseN</and></body></imp>

The rule enclosing tag is <imp>, which is similar to the rule() declaration in Prolog.
Every rule has a head and a body, enclosed by the <_head> and <_body> tags
respectively. Since Prolog is a positional language, no special keyword is necessary for
declaring the head and body of rule in Prolog. Instead, Prolog relies on the convention
about the positions of rule elements. The first clause of a rule in Prolog is always the
head of the rule. The subsequent clauses form the body of the rule. Within the head of a
rule is the conclusion of that rule. The body of a rule is the set of preliminary conditions,
or premises, that must be satisfied in order for the conclusion to be true.

Let us expand on the customer example from the introduction on RDF by turning it into
the simple rule below.

A customer’s referral is Customer234 if that customer’s name is John Smith.

This rule in RuleML is as follows:

<imp>
 <_head>
 <atom>
 <_opr><rel>referral</rel></_opr>
 <var>customer</var>
 <ind>Customer234</ind>

 26

 </atom>
 </_head>
 <_body>
 <atom>
 <_opr><rel>name</rel></_opr>
 <var>customer</var>
 <ind>John Smith</ind>
 </atom>
 </_body>
</imp>

The same rule in Prolog is as follows:

rule(referral(Customer, “Customer234”), name(Customer, “John Smith”)).

The head of the rule contains the conclusion “a customer’s referral is Customer234”.
Customer is a variable, as indicated by the <var> tag surrounding it. In Prolog, a variable
is simply indicated by a string with the first letter is capitalized. The constant
“Customer234”, as indicated by the <ind> tag, references a specific customer. The
relation “referral”, which has the operator role, is indicated by the <rel> and <_opr> tags.
Each clause in the rule is labeled as an atom. Following the head of a rule is the body,
which reads “a customer’s name is John Smith”. Notice that in Prolog, the necessity for
tags is gone because the elements are positioned. The predicate of a clause, such as
“name”, always appears in front of the parenthesis. The first element within the
parenthesis in a Prolog clause is always the subject, such as customer. The rest of the
elements in a clause are objects of the predicate. By using tags and not relying on
positional declaratives, RuleML makes no assumption about the recipients of the
information. This is indeed a major advantage of XML-based representation. For a more
in depth look at RuleML, the reader is encouraged to read the concise version of the
design document on RuleML [13].

2.4.4 Relational Functional Markup Language (RFML)
RFML is a XML-based language for representing relational-functional information. This
information can be either relational or functional. Examples of relations include the
tables of relational databases, and clauses of Horn logic. Examples of functions include
mathematical equations, and algorithms that can operate on data structures. Since Prolog,
or Horn logic, is relational in nature, we will be focusing primarily on the relational
aspect of RFML. Both RuleML and RFML are languages for describing rules, but
RFML differs from RuleML in that RFML is designed for describing a specific subset of
rules, or relational-functional rules. Another important difference between RuleML and
RFML is that RFML relies on some positional declaration. For instance, the predicate of
a clause in RFML is always the first element in the clause. This is exactly the same
positional convention used in Prolog. As will be apparent in the coming example, RFML
statements are less cumbersome than RuleML because fewer tags are required due to
positioning of elements. We are interested in RFML representation because it is a closer

 27

relative to Prolog, and makes for a good transition representation to RuleML. The basic
syntax for declaring a Horn clause in RFML is as follows:

<hn><pattop>conclusion</pattop><callop>premise1</callop>…<callop>premiseN</callop><
/hn>

The tag enclosing a Horn clause statement is <hn>. Every Horn clause has a head and a
body, enclosed by the <pattop> and <callop> tags respectively. Similar to RuleML, the
head of a clause is the conclusion, where as the body is a set of preliminary conditions, or
premises, that must be satisfied in order for the conclusion to be true. Let us examine the
same simple rule we have examined for RuleML, which is repeated below.

A customer’s referral is Customer234 if that customer’s name is John Smith.

This rule in RFML is as follows:

<hn>
 <pattop><con>referral</con><var>customer</var>
 <con>Customer234</con></pattop>
 <callop><con>name</con><var>customer</var>
 <con>John Smith</con></callop>
</hn>

The head of the Horn clause contains the conclusion “a customer’s referral is
Customer234”. Customer is a variable, as indicated by the <var> tag surrounding it. The
predicate “referral”, following the Lisp-like Relfun convention, is always the first
element in a <pattop>. The same positioning convention applies for predicates in
<callop> as well. Predicates are denoted as constant by the <con> tag. For a more in
depth look at RFML, the reader is encouraged to read the specification document on
RFML [14].

2.5 eXtensible Stylesheet Language Transformation: The Encompassing Link
So far we have introduced a couple of XML-based languages, such as RDF, RuleML, and
RFML. XML document, on its own, is just a mean for storing and structuring of
information, such that the information can be communicated from one piece of software
to another. However, with the introduction of eXtensible Stylesheet Language
transformation (XSLT), a lot more could be done with XML formatted data. There are
two main usages for XSLT. One usage is the use of XSLT to query and manipulate the
information stored within XML documents. On this regard, XSLT can be compared to
SQL for relational databases. XSLT helps to turn an ordinary XML document into
query-able source. Another usage of XSLT is on the transformation of XML documents
between different XML-based formats. It is this capability that allows XML documents
to achieve the separation of knowledge and representation. Let us demonstrate these
usages through the customer example we have already seen.

The RDF statements below will be the input to a XSLT conversion.

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

 28

xmlns:exterms="http://www.example.com/terms/">
 <rdf:Description rdf:ID="Customer123">
 <exterms:name>John Smith</exterms:name >
 <exterms:referral rdf:resource=”#Customer234”/>
 </rdf:Description>
 <rdf:Description rdf:ID="Customer234">
 <exterms:name>Mark Peter</exterms:name >
 </rdf:Description>
</rdf:RDF>

The RDF above encodes information, such as names and referrals, about customers.
Next, consider the XSLT below, which will be used to process the RDF.

<xsl:template match=”rdf:RDF”>
 <html>
 <head><title>List of Customers</title></head>
 <body>
 <xsl:apply-templates select=”rdf:Description”/>
 </body>
 </html>
</xsl:template>
<xsl:template match=”rdf:Description”>
 <p><xsl:value-of select=”exterms:name”/> </p>
</xsl:template>

The XSLT above consists of two templates. A template statement in XSLT is similar to a
select statement in SQL. The first template statement <xsl:template match=”rdf:RDF”>
tells the XSLT processor to find all nodes labeled “rdf:RDF”. The second template
<xsl:template match=”rdf:Description”> asks for all nodes labeled “rdf:Description”.
Since each of our Description nodes is a customer, we are really telling the processor to
look at all customers. Within the first template, there are HTML code which will be
outputted by the processor, as well as a call to the template on customers. Inside the
template on customer is a select statement, <xsl:value-of select=”exterms:name”/>,
which returns the name of a customer. The output of processing the RDF source with the
XSLT above is shown below.

<html>
 <head><title>List of Customers</title></head>
 <body>
 <p>John Smith</p>
 <p>Mark Peter</p>
 </body>
</html>

This example illustrates the querying capability of XSLT, as well as its transformation
capability. The original RDF source is a data source on customers. Customer by

 29

customer, the XSLT extracts the name information and displays them in HTML fashion.
Notice that the information from the RDF input source is carried over to the HTML
output. This transformation highlights the separation of knowledge and representation.
Through XSLT, information that is normally existed in machine readable format can now
be displayed for humans to understand. A very rich site to find out the full capabilities of
XSLT is at the W3C site [16].

 30

3 Design Overview
3.1 Overview of the System

Figure 3.1 – Architecture of COIN Application Metadata Layer

At W3C, metadata is defined as machine understandable information for the web [9].
Metadata at COIN is machine understandable information for context mediation. The
organization of metadata at COIN is defined by the COIN Model. At the conceptual
level, the COIN model consists of ontological information, contextual information, and
source information that together enables context mediation. From the information
gathering stage to the storage stage, these metadata must take on the appropriate
representation at each stage in order to be effective. On the user side, the layout of the
user interface is a kind of representation designed to facilitate the collection of
information. The processing stage can benefit from an efficient storage format. Finally,
the ability to share and reuse metadata is an important factor in the design of the metadata
representation.

The work of this thesis compliments the mediation engine (eCOIN) in three ways: (1) it
enables the reuse of metadata through XML based representation; (2) it provides an user
interface for developing application that runs on eCOIN; (3) it establishes a registry for
managing metadata. The design of this work is summarized in the Figure 3.1. At the
heart of the design is the Internal COIN Model (ICM). This is the transient data structure
that store application metadata at run time. The ICM connects each component of the
COIN Application Metadata Layer. The Text Interface and Graphical Interface populate
the ICM with user inputs, and convert information in the ICM into screen displays.
Application metadata in the ICM is persisted into files in RDF format. Metadata in RDF
format is translated into RuleML, RFML, and Prolog through a series of XSLT
transformation produced by the Application Generator. The Prolog version of application

 31

metadata is consumed by eCOIN for context mediation. The location of the application
files are registered in the Registry, which is needed both for the retrieval of application
metadata by the ICM and the eCOIN. Each component of the design is described in
length in subsequent sections. The motivational example presented in the introduction
section will serve to illustrate the representation of metadata at each stage.

3.2 Motivational Example
A simple COIN application is presented in this section to facilitate the demonstration of
various concepts introduced in this thesis. Since the work of this thesis is heavily
involved in the representation of metadata, a single consistent example can serve to
elucidate the differences between the various representations. The COIN application that
is our example is a simple application on tents. This is part of a larger application for
disaster relief. Often times in disaster relief situations, tents are deployed to house the
disaster victims. Some of the factors that determine which types of tents are deployed
may include the size and weight of the tent, the number of persons it fits, the seasons it is
suitable for, and the price. Since our example is primarily for highlighting the elements
of a COIN application, we will limit the scope by considering just the weights of the
tents. Let us examine this application in details.

The ontology of this application is shown in Figure 3.2. There are four semantic types in
the ontology, namely basic, product, tent and weight. Inheritance relationship is
represented by solid line labeled “is_a”. Unless noted otherwise, every semantic type
shown in the ontology without inheritance is assumed to inherit from basic. The only
non-basic inheritance in this example is the inheritance of tent from product. Attribute
relationship is represented by solid line with label other than “is_a”. The single attribute
in this example is the weight attribute of product. The third and last kind of relationship,
modifier relationship, is represented by dashed line. The single modifier in this example
is the weightUnit modifier of weight.

Figure 3.2 – Sample COIN Application on Tents

There is one relation in this tent application, which is summarized in the table below.
The name of the relation is dsr_tent_terranova. The column names are shown in the left
column and their types are in the right column.

 32

dsr_tent_terranova
Maker String
Model String
Name String
Seasons String
Sleeps String
Minimum_weight Number
Floor_area String
Price Number
Figure 3.3 – Relation dsr_tent_terranova of tent application

The company Terranova is an outdoor supplies company that sells tents. The relation
above describes the attributes of tents. These attributes are maker, model, name, seasons,
sleeps, minimum weight, floor area and price. Seasons attribute is a code that indicates
which seasons of the year a tent is suitable for. There is usually a temperature range
associated with each season code. Sleeps attribute indicates the number of persons the
tent manufacturer thinks can comfortably fit in a tent. Since this number is often open for
interpretation, it makes for an interesting point for context mediation. However, we will
only be primarily interested in the minimum weight attribute in our simple tent example.

The contexts in this application are c_us for United States context, and c_uk for United
Kingdom context. The tent supplier is a company located in the UK, so it is under the
context c_uk. Users who query the application can be from either US or UK. The values
of modifier weightUnit are lb under c_us context, and kg under c_uk context. These
modifier values are used in the detection phase of the mediation process to detect for
potential contextual conflict. The conversion function related to weight conversion is a
simple unit of measurement conversion, which multiplies a quantity in one unit by a unit
factor to get the same quantity in another unit. The unit factor is provided by a web
source and is part of the standard function library in COIN. The relation
dsr_tent_terranova is elevated to dsr_tent_terranova_p under the c_uk context. Since we
are primarily interested in the minimum weight attribute of tent in this example, all
columns are elevated to basic with the exception of Minimum_weight, which is elevated
to the semantic type weight.

This COIN application on tent will be used in subsequent chapters to demonstrate (1)
input of metadata through the textual interface, (2) the graphical interface, and (3)
metadata representation in different formats. In the textual interface chapter, we will
demonstrate the entering and editing features using the metadata presented here on tent
application. In the graphical interface, we will demonstrate how the same metadata can
be displayed graphically. Finally, we will illustrate how separation of knowledge and
representation is achieved by casting this set of metadata into different formats.

 33

4 Internal COIN Model (A Data Structure)
The Internal COIN Model (ICM) is a transient data structure that stores the application
metadata at run time. As data storage, the ICM has the dual purpose of accepting data
and providing data. User interface calls upon the ICM to provide the application
metadata that populates the screen. When user modifies the COIN model via the
interface, the changes are stored in the ICM. Similarly, application metadata stored on
files are loaded into the ICM, which can then be used by the user interface or other
translation tasks. When the user is finished with editing a COIN application, the data
inside the ICM is persisted in file formats for immediate access by eCOIN, or for future
retrieval.

In designing the ICM, there are two requirements that must be satisfied: (1) the ICM must
be able to completely define the COIN Model as described in the introduction section; (2)
the ICM should be tolerant to future changes to the COIN Model. Each element of the
COIN Model has a counterpart in the ICM. To illustrate that the ICM does indeed
completely define the COIN Model, the motivational example, which is presented in
prolog in the introduction section, will be expressed in the ICM step by step. Once the
readers see that the metadata in a COIN model can be contained in the ICM, they should
be convinced that the ICM satisfies the first requirement. The last subsection describes
an application programming interface (API) of ICM. The API is the answer to the second
requirement. As long as programs interact with the ICM through the API, the programs
will be well shielded from future changes to the COIN Model.

Figure 4.1 – Internal COIN Model at a glance

Coin_Model
• id:string
• name:string
• SemanticTypes:array(Ont_SemanticType)
• Contexts:array(Cxt_Context)
• Relations:array(Src_Relation)

Ont_SemanticType
• name:string
• parent:Ont_SemanticType
• Attributes:array(Ont_Attribute)
• Modifiers:array(Ont_Modifier)

Ont_Attribute
• name:string
• from:Ont_SemanticType
• to:Ont_SemanticType

Ont_Modifier:Ont_Attribute
• ModifierContextValues:hashtable(Cxt_Conte

xt, array(Ont_Attribute | string))
• ConversionFunction:string

Cxt_Context
• name:string
• parent:Cxt_context
• modifiers:array(Ont_Modifier)
• elevatedRelations:array(Src_ElevatedRelation)

Src_Relation
• name:string
• import:boolean
• export:boolean
• sourceName:string
• unsupportedOps:string
• columns:array(Src_Column)

Src_Column
• name:string
• type:string
• keyMember:boolean
• relation:Src_Relation

Src_ElevatedRelation
• name:string
• relation:Src_Relation
• context:Cxt_Context
• columnSemtypes:hashtable(Src_Column,

Ont_SemanticType)

 34

ICM is a data structure in object-oriented programming language. In object-oriented
programming language, data structures are called classes and the functions which operate
on these classes are methods. Classes have properties that define the data that makes up
the characteristics of these classes. Each property stores a single data type, whether it is a
text, a number, or a whole other class. Object orientation is a design methodology, and
thus it is possible to write the ICM using programming languages such as C++, C#, and
Java. Since the user interfaces are written in C#, the ICM is written in C# as well for
compatibility. Figure 4.1 presents a summary of the ICM. Coin_Model,
Ont_SemanticType, Ont_Attribute, Ont_Modifier, Cxt_Context, Src_Relation,
Src_Column, and Src_ElevatedRelation are class objects of the ICM. The bullet points
under each of these classes are their properties. The subsections that follow explore each
class in ICM in details.

4.1 ICM – Coin_Model
The Coin_Model class in ICM is the top level data structure from which all the
components of a COIN model can be reached. The properties of Coin_Model are:
Id : string
Name : string
SemanticTypes : array(Ont_SemanticType)
Contexts : array(Cxt_Context)
Relations : array(Src_Relation)

The id property corresponds to the application ID of a COIN model. The id property
uniquely identifies a Coin_Model, just as the application ID is the unique identifier for a
COIN application. The name property is the name of the COIN application and it does
not have to be unique. The SemanticTypes property is an array of type
Ont_SemanticType, and it holds the semantic types of the ontology of a COIN model.
More over, SemanticTypes is the linkage to the metadata that describes the entire
ontology. This will be clear in the Ont_SemanticType section. The Contexts property is
an array of type Cxt_Context, and it holds the contexts defined in the model. All context
dependent elements of the COIN model, such as modifiers and elevation axioms, are
accessed through Contexts. The section below on Cxt_Context will make this clear.
Finally, the Relations property is an array of type Src_Relation, and it holds the relations
used in the model. Below is an instance of Coin_Model populated with metadata from
the tent example.
Id : “392”
Name : “Simple Disaster Relief”
SemanticTypes : [basic, product, tent, weight]
Contexts : [c_us, c_uk]
Relations : [dsr_tent_terranova]

As seen in the introduction section where the tent example is described, the id of the
application is 392, and the name is Simple Disaster Relief. The
SemanticTypes of this model are basic, product, tent, and weight. Each of these
is an Ont_SemanticType object, which has its own properties that describe it. Contexts

 35

defined in this model are c_us and c_uk, both are Cxt_Context objects. There is only
one relation, dsr_tent_terranova, defined in this model and it is contained in the
Relations array. It should be apparent that the Coin_Model class can be viewed as a
container of objects that link each aspect of the COIN model together. To explore an
aspect of the model, one can dive into the corresponding object to retrieve the
information. Fortunately, surrounding the Coin_Model is an API that makes it
unnecessary to expose the structures of its inner properties. The API is described in
details in later section.

4.2 ICM – Ont_SemanticType
The Ont_SemanticType class in ICM is the data structure which stores the semantic type
of a COIN model. The properties of Ont_SemanticType are:

Name : string
Parent : Ont_SemanticType
Attributes : array(Ont_Attribute)
Modifiers : array(Ont_Modifier)

The name property holds the name of a semantic type. The name of a semantic type is
globally unique in the COIN model. The Parent property points to another
Ont_SemanticType object that is the parent of the current semantic type. Thus, an
inheritance relationship is established between two semantic types. The Attributes
property is an array of Ont_Attribute objects. This array stores all the attributes that has
the current semantic type as their domain. The Ont_Attribute class is described in details
in the next section. The Modifiers property is a array of Ont_Modifier objects. This
array stores all the modifiers that has the current semantic as their domain. The
Ont_Modifier class is described in a coming section. If the Ont_SemanticType class is
viewed graphically in an ontology, the class covers the node which represents the
semantic type, and all the edges (attributes and modifiers) that start from the semantic
type. As you will recall, an ontology consists of semantic types, inheritances, attributes
and modifiers. Since each Ont_SemanticType object holds its associated inheritance,
attributes and modifiers, a collection of all Ont_SemanticType objects is sufficient to
describe the whole ontology of a COIN model. This is the reason we say that the an
entire ontology can be described by the SemanticTypes array property. Below are
instances of Ont_SemanticType populated with metadata from the tent example.

Name : “product”
Parent : basic
Attributes : weight
Modifiers : null

Name : “tent”
Parent : product
Attributes : null
Modifiers : null

 36

Name : “weight”
Parent : basic
Attributes : null
Modifiers : weightUnit

Product, tent, and weight are the three semantic types of the tent example. The basic
semantic type we didn’t mention because it has no parent, attributes and modifiers. The
attribute weight is described under the product semantic type. The modifier weightUnit is
found in the weight semantic type. The inheritance relationship between product and tent
is found in the tent semantic type. This is because the is_a relationship originates from
tent. Every other semantic type inherits from basic. This indeed does fully describe the
entire ontology of the tent example.

4.3 ICM – Ont_Attribute
The Ont_Attribute class in ICM represents the attribute of COIN model. The properties
of Ont_Attribute are:

Name : String
From : Ont_SemanticType
To : Ont_SemanticType

The name property holds the name of an attribute. An attribute name is the unique only
local to the semantic type that it originates from. This means that a semantic type cannot
have two attributes, with the same name, originating from it. However, attributes from
different semantic type can have similar name. When referring to an attribute, the
semantic type name and attribute name together establish an unique identifier. The from
property holds the Ont_SemanticType object that is the originating semantic type of the
attribute. The to property holds the destination semantic type object. Below is an
instance of attribute from the tent example.

Name : “weight”
From : Product
To : Weight

The above instance describes an attribute named weight, which connects from the
semantic type product to the semantic type weight. The fully qualifying identifier for this
attribute is the combination of semantic type name product and attribute name weight. If
we adopt the convention of using a dot to connect the two names, we have
product.weight as the identifier of this attribute. Notice the clarification on the fully
qualifying identifier of objects in the ICM is important for representing the COIN model
external to ICM. Since ICM is developed in an object-oriented platform, objects within
ICM are referenced not by id, but by the actual object. In the textual interface, which is
discussed in a later section, the names of attributes are displayed in its fully qualifying
form to allow the user to distinguish between attributes.

4.4 ICM – Ont_Modifier

 37

The Ont_Modifier class in ICM represents the modifier of COIN model. It is a subclass
of Ont_Attribute, so it inherits the properties name, from, and to from Ont_Attribute. The
properties of Ont_Modifier are:

Name : String
From : Ont_SemanticType
To : Ont_SemanticType
ModifierContextValues : hashtable(Cxt_Context, array(Ont_Attribute | string))
ConversionFunction : String

The name property holds the name of a modifier. Similar to an attribute, a modifier name
is the unique only local to the semantic type that it originates from. So no two modifiers
from the same semantic type can have the same name. When referring to a modifier, the
semantic type name and modifier name together establish an unique identifier. The from
property holds the Ont_SemanticType object whose value is being modified. The to
property holds the destination semantic type object that the original semantic type is
being modified to. The ModifierContextValues property is a hashtable whose keys are
Cxt_Context objects, whose values are arrays of Ont_Attribute objects or string object.
This hashtable stores the values of the modifier for each given context. Cxt_Context,
which is described in the next section, is a class that represents context in the COIN
model. For each context key stored in the hashtable, there is a corresponding modifier
value for that context. The modifier value is being stored in an array of type
Ont_Attribute or type string. The reason there are two possible types of array is because
modifier values can be either static or dynamic. Static modifier value is string constant
that requires no interpretation before it is used in conversion functions. Dynamic
modifier value is a run-time value derived from certain semantic type, whose value is
mapped to a relation. In specifying a dynamic modifier value, a series of attribute
relationship is used to relay the current semantic type to the target semantic type. Finally,
the ConversionFunction property is a string which stores either the name of a conversion
function predefined in the function library, or a user defined function written in Prolog.
The conversion function library is a feature which is related to the textual interface and
the COIN registry; the library will be discussed in details in those sections. Below is an
instance of a modifier in the tent example.

Name : “weightUnit”
From : Weight
To : Basic
ModifierContextValues : ((c_us, “lb”), (c_uk, “kg”))
ConversionFunction : “lib_physical_unit”

The above instance describes a modifier named weightUnit, which connects from the
semantic type weight to the semantic type basic. The fully qualifying identifier for this
modifier is the combination of semantic type name weight and modifier name
weightUnit, or weight.weightUnit. Since the weightUnit modifier modifies weights from
one physical unit to anther, the name of weight units are used as modifier values. There
are two modifier values stored in the ModifierContextValues hastable; one is the string

 38

“lb”, or pound, for c_us context, and another is the string “kg”, or kilogram, for the c_uk
context. The Cxt_Context object c_us is a context representing the United States, and
c_uk is the context object representing the United Kingdom. The ConversionFunciton
property stores the string “lib_physical_unit”, which is the name of a predefined library
function for converting numeric values between physical units. At the Prolog generation
stage of the COIN Application Model Layer, the function name will be substituted by the
actual Prolog code of the function. The conversion function library will be discussed in
the section on COIN registry.

4.5 ICM – Cxt_Context
The Cxt_Context class in ICM represents the context of COIN model. All context related
metadata, such as modifiers and elevations, are accessible from this class. The properties
of Cxt_Context are:

Name : String
parent : Cxt_Context
modifiers : array(Ont_Modifier)
elevatedRelations : array(Src_ElevatedRelation)

The name property stores the string that represents the name of the context. Context
name is globally unique in a COIN model. The parent property points to a context whose
characteristics this context shares. Context sharing is the concept where a previously
defined context can share its metadata with other contexts. This eliminates the need to
repeat the same context information across different context label. An example of
context sharing is that of a British company sharing the context defined for the country of
Great Britain. The modifiers property is an array of Ont_Modifier objects, which
represent the list of modifiers that have values defined under the current context. This
information duplicates the information found under the ModifierContextValues hashtable
property of Ont_Modifier; however, accessing modifier values from a given context is a
frequent event that justifies duplicating this information in the Cxt_Context class. This
design makes the ICM more efficient in retrieving information at the cost of extra
maintenance on synchronizing the information in both classes. Fortunately, the users of
ICM would interact with the API, which automatically takes care of this maintenance.
The elevatedRelations property is an array of Src_ElevatedRelation. The class
Src_ElevatedRelation, which is described in the coming section, stores the elevation
metadata for relations of COIN application. The elevatedRelations array is a list of
elevation axioms from all relations whose context is the current context. Below are
instances of the contexts in the tent example.

Name : “c_us”
parent : null
modifiers : (weightUnit)
elevatedRelations : null

Name : “c_uk”
parent : null

 39

modifiers : (weightUnit)
elevatedRelations : (dsr_tent_terranova_p)

Under the context c_us, there is no parent context and the modifier weightUnit has a
value defined for it. Under the context c_uk, there is no parent context and the modifier
weightUnit has a value defined for it as well. In addition, c_uk is the context of the
elevated relation dsr_tent_terranova_p. Note that relation itself does not belong to any
context. It is the elevation information that is context specific.

4.6 ICM – Src_Relation
The Src_Relation class in ICM represents the relation of COIN model. All information
regarding a relation, including the column information, is accessible from this class. The
properties of Src_Relation are:

Name : string
import : boolean
export : boolean
sourceName : string
unsupportedOps : string
columns : array(Src_Column)

The name property stores the string that represents the name of the relation. The import
and export properties are boolean values that indicates whether the relation can be
queried by user of eCOIN (export), or by eCOIN alone (import). The import and export
properties are not used by the abduction engine, but by the POE in determining which
relations are exposed to users. The sourceName property is the name of the source where
the current relation is located. If the relation is a database table, then the sourceName
would be the name of the source database as referenced in the COIN registry. Since
source information are often applicable across different COIN application, this
information is stored in the COIN registry instead of replicated in every COIN
application. Only the name of the source is enough to retrieve the source information
from the COIN registry. The unsupportedOps property is string that represents which
operations are not supported in querying the current relation. There are five possible
operations that are unsupported, and they are <, >, =, <=, >=; these operations correspond
to “less than”, “greater than”, “equal to”, “less than or equal to”, and “greater than or
equal to” respectively. For purpose of exporting COIN metadata to XML files down the
metadata representation pipeline, the operation symbols are stored after being
transformed respectively into “lt”, “gt”, “et”, “le”, and “ge”. Such transformation
prevents the “<” or “>” symbols from being mistook for the start or end of a XML tag by
a XML processor. Commas separate the operation in the unsupportedOps string; for
example, “lt,gt,et,le,ge”. Finally, the columns property is an array of Src_Column
objects. The Src_Column class stores information about individual column of a relation.
Below is an instance of a relation in the tent example.

Name : dsr_tent_terranova
import : true

 40

export : true
sourceName : oracle
unsupportedOps : null
columns : (Model, Usage, Persons, Weight, Packed_length,

Packed_width, Interior_length, Interior_width,
Interior_height, Price)

The name of the relation is dsr_tent_terranova, and it can be queried both internally and
externally. The name of the source, as appeared in the COIN registry, is oracle. Notice
that while oracle may represent a particular brand of database, it is actually referencing a
particular database on some server. There is no unsupported operation for this relation.
The columns of the relation are as listed above, and each is referencing a Src_Column
object, which we will discuss in the following section.

4.7 ICM – Src_Column
The Src_Column class in ICM represents the column of COIN model. Columns are part
of a relation. The properties of Src_Column are:

Name : string
Type : string
keyMember : boolean
relation : Src_Relation

The name property stores the string that represents the name of the column. The name of
a column is unique only to the relation it belongs to. Therefore, the fully qualifying
identifier for a column is the relation name and the column name. The type property is a
string indicating the data type of the column. Some common values are “string” and
“number”, but it could be any type that is understandable by the source. The keyMember
property indicates whether the column is part of the primary key of the relation. The
relation property points to the relation that the current column belongs. Below are
instances of some of the columns in the dsr_tent_terranova relation.

Name : Model
Type : string
keyMember : True
relation : dsr_tent_terranova

Name : Usage
Type : string
keyMember : false
relation : dsr_tent_terranova

Name : Weight
Type : number
keyMember : false
relation : dsr_tent_terranova

 41

4.8 ICM – Src_ElevatedRelation
The Src_ElevatedRelation class in ICM represents the elevation axioms of COIN model
grouped by relation. The properties of Src_ElevatedRelation are:

Name : string
relation : Src_Relation
context : Cxt_Context
columnSemtypes : hashtable(Src_Column, Ont_SemanticType)

The name property stores the string that represents the name of the elevated relation. The
name of an elevated relation is globally unique to the COIN model. The relation
property points to the relation that is being elevated. The context property points to the
context which the current elevated relation defines under. Finally, the columnSemtypes
is a hashtable that maps columns of a relation to semantic types. The keys of the
hashtable are the columns, and the values are the semantic types. Below is an instance of
an elevated relation in the tent example.

Name : dsr_tent_terranova_p
relation : dsr_tent_terranova
context : c_uk
columnSemtypes : hashtable((Model,basic), (Usage,basic),

(Persons,basic), (Weight,weight),
(Packed_length,basic), (Packed_width,basic),
(Interior_length,basic), (Interior_width,basic),
(Interior_height,basic), (Price,basic))

The name of the elevated relation is dsr_tent_terranova_p. The relation that it elevates
from is dsr_tent_terranova. The context c_uk is the context under which the elevation
applies. All columns in the relation is elevated to basic, with the exception of Weight,
which is elevated to the semantic type weight.

4.9 ICM – Application Programming Interface
There is an Application Programming Interface (API) for interacting with the ICM. The
purpose of the API, as with any other APIs, is to allow programmers to work effectively
with the ICM, without knowing or relying on the internal representation of the ICM.
Internal representation of ICM may change as the design of COIN model changes over
time. The API shields such changes from the users. The documentation for the API can
be found in appendix A. In the API, there are the usual Get and Set methods for each
user accessible properties of the COIN application. In addition, there are many Add and
Remove methods for adding and removing objects from a list of objects. The API also
manages the integrity of the metadata for the users. For example, when an user adds a
new semantic type to the COIN application via one of the API methods, the method
automatically check if an instance of the semantic type with the specified name already
existed. Since semantic type names are unique, the new semantic type cannot be added
and an exception is thrown to alert the users. Conversely, when an user deletes a

 42

semantic type from the COIN application via an API method, the method automatically
checks for the dependencies other objects in the COIN application have with the semantic
type. All objects whose existence depends on the semantic type will be deleted as well.
For instance, an attribute can longer exist if one of two semantic types it references is not
longer in the application. In a sense, the API is an active enforcer of the COIN modeling
rules. By not circumventing the API, programmers can depend on the API to reliably
maintain the integrity and consistency of COIN application.

 43

5 Textual Interface

The Textual Interface component of the COIN Application Metadata Layer is a human
interface tool that is designed to facilitate the users in development of COIN application.
The textual interface is a collection of web forms that accepts and displays application
metadata. Mirroring the COIN model, the textual interface is organized into three main
forms. They are the Ontology form, Context form, and Source form. Each form handles
the relevant section of the application metadata. The Internal COIN Model introduced in
the last section is the run-time data structure behind the textual interface. Application
metadata retrieved from saved files are first loaded into the ICM. As the user makes
changes to an application, the changes are temporarily stored in the ICM until the full
content of the ICM is persisted to files. The subsections below explain in details the roles
of the various forms in the textual interface.

5.1 Navigating the Textual Interface
The textual interface comprises of a series of forms that maintain different portion of a
COIN application. Users can access these forms by interacting with a group of buttons,
known as the navigation buttons, which is located at the top of every form. Figure 5.1
shows the navigation buttons.

Figure 5.1 – Textual Interface Navigation Buttons

The top row of buttons is for accessing the top level components from the COIN
Application Metadata Layer and eCOIN. The button labeled “Text Interface Home”
brings the user to the Application Select Form, which is described in section 5.2. The
button labeled “Graphical Viewer” brings the user to the Graphical Interface, which is
described in Chapter 6. The button labeled “eCOIN” transfers the user to the eCOIN
interface and automatically loads the current COIN application for mediation.

The second row of buttons is for accessing components of the textual interface. The
button labeled “Ontology” brings the user to the ontology editing page, described in
section 5.3. The button labeled “Context” brings the user to the context editing page,
described in section 5.5. The button labeled “Source” brings the user to the source
editing page, described in section 5.4. The button labeled “Generate” persists the ICM to
files and brings the user to the COIN application files viewer, which is described in
section 5.6. When creating a new COIN application, the order of traversing the pages of
the textual interface is ontology, source, and then context. In the rest of this chapter, the
discussion on each page of the interface follows the same ordering.

5.2 Application Selection Form
The Application Selection Form is a web page that allows the user to either select an
existing application for editing, or create a new application. A screenshot of the form is

 44

shown in Figure 5.2. There are a couple of places on this form that require user inputs.
The first place where an input is needed is in the URL of this page. Lets take the sample

Figure 5.2 – Application Selection Form

URL “http://localhost/appEditor/TextInterface.aspx?location=MIT” for illustration
purposes. The hostname localhost in the URL indicates the address of the server hosting
the textual interface. The next item in the URL path is appEditor, which indicates the
name of the project as it is known in the code. The next item is TextInterface.aspx, which
is the name of the actual web resource. The extension .aspx indicates that it is a web
form created using the Microsoft .Net Framework [20]. The ? symbol that follows
indicates the start of request parameters. The only parameter the user needs to specify in
the URL is location. The location parameter tells the textual interface to look up the
application registry belonging to the specified location, MIT in this case. The COIN
registry is described in a later section, but for the present it is sufficient to say that the
registry is grouped by location. In effect the sample URL would cause the textual
interface to find all available applications from the COIN registry defined under the MIT
location. The available applications are listed in the list box on the form. The user can
then select an application and press the Get button to start editing. To create a new

 45

application, the user can provide a name for the application in the text box labeled “App
Name” and press the New button to start editing the application. An application ID is
automatically generated for the new application. The ID generated is usually the next
highest number in the assigned sequence. Spaces are allowed in the name of an
application and there is currently no limitation on the length of the name. It is up to the
user to supply concise and meaningful name for the application. The new application is
also automatically registered in the COIN registry under the location specified in the
URL. Whether the user is editing an existing or new application, the user will be taken to
the ontology form, which is described in the next section. Besides the URL, the interface
is also accessible from within eCOIN. This is described in details in Chapter 9 on
technology merging.

5.3 Ontology Form
The Ontology Form is a web page for editing the ontology of a COIN application. An
ontology consists of semantic types, and the relationships between them, such as
inheritance, attribute, and modifier. The form is separated into three sections: Semantic
Types, Inheritances, and Attributes. Since the information needed to declare modifiers
on the ontology level is similar enough to that of attributes, the mechanism for declaring
attributes and modifiers is lumped together in the Attributes section. Lets explore each
section in details.

Figure 5.3 is a screen shot of the ontology form. At the top of the form are the navigation
buttons for navigating to different sections of the textual interface, or to other interfaces.
Also at the top are the ID and name of the application being edited. The oversized
numbers on the screenshot are painted on for illustration purposes. They are not
displayed on the actual web page. The area labeled 1 is the Semantic Types section.
There is a text box for entering the name of new semantic types, and a list box for
displaying the names of the semantic types already in the ontology. There are two
buttons, one labeled “Add” and the other “Delete”. The Add button adds to the ontology
the semantic type whose name appears in the text box. The Delete button removes from
the ontology the semantic type whose name is selected in the list box. Removing a
semantic type from the COIN application will trigger all metadata related to the semantic
type to be removed. This is a feature in the ICM that ensures the integrity of the
metadata in the COIN application.

Through out the textual interface there are similar Add and Delete buttons that require the
user to either type in some text, or select some text, prior to clicking on them. The text
required or displayed depends on the section of the textual interface the user is on. In the
semantic type section, the text displayed are semantic type names. In the context section,
the text could be context names. Due to the analogous nature of the buttons appearing on
different places in the textual interface, their functions will not be repeated to the readers
in subsequent description of the textual interface. The readers can conclude that the Add
button, wherever it appears, is for adding information to the COIN application; and the
Delete button is for removing information from the COIN application. Once the user has
click on one of these buttons, a HTTP request is sent back to the server, where by the
appropriate changes are made to the COIN application loaded in the ICM, and the

 46

updated information is sent back to the client browser via the same web page that
initiated the changes.

The area labeled 2 in Figure 5.3 is the Inheritances section. This is the section where
inheritances among semantic types are declared. In every inheritance relationship is a

Figure 5.3 – Ontology Form

child and a parent. The phrase “child is a parent” describes this relationship exactly. The
dropdown box located to the left of the “is a” label contains a list of possible child
semantic types. The dropdown to the right is the list of possible parent semantic types.
Once both child and parent semantic types are selected, the user can add the new
inheritance relationship to the COIN application. The new inheritance will appear in the
list box as the phrase “child is a parent”, whereby the child is the name of the child

 47

semantic type and the parent is the name of the parent semantic type. Each phrase, or
inheritance relationship, in the list box can be selected for removal.

The area labeled 3 in Figure 5.3 is the Attributes section. This is the section where
attribute and modifier relationships are declared. Recalling from the section on COIN
model, in every attribute and modifier relationship is a domain and a range. The domain
is the semantic type that owns the relationship; the relationship is a property of the
domain. For an attribute, the range is the semantic type that represents the type of the
attribute value. For a modifier, the range is the semantic type that the domain gets
modified to. The phrase “domain has attribute/modifier name of type range” captures the
essence of such relationship. Every attribute and modifier relationship in a COIN
application is displayed in the list box as such a phrase. Once an attribute/modifier name,
a domain and a range are specified, the user can add the relationship to the COIN model.
The checkbox labeled “Is Modifier” denotes whether the relationship is an attribute or a
modifier. The user can also select a phrase, or relationship, from the list box for removal.

The user can leave that ontology section at any time by using one of the navigation
buttons at the top. The ontological information from the tent example is shown in the
figure. We will discuss the source form next.

5.4 Source Form
The Source Form is a web page for editing the relations and their columns. The form
consists of a section for declaring relation, and a section for declaring each column in a
relation. Figure 5.4 shows a screenshot of the source form. Lets discuss the form section
by section.

The area labeled 1 is the relation section where relations are declared. The properties that
define a relation are its name, the name of its source, its type, and its unsupported
operations. The name of the relation is entered through the text box provided in the form.
The type of the relation, which is one of import, export, or both, is selected from a radio
button group. The unsupported operations, which are <, >, =, <=, >=, are selected from a
group of checkboxes that supports multiple selections. The name of the source is
selected from a dropdown box that contains a list of all available sources. The list of
available sources is obtained from the COIN registry. Multiple COIN application can
share the same sources. Once these properties of a relation are specified, the user can add
the relation to the COIN application. The phrase “relation of source is of type and has
unsupported operations” expresses a relation and its properties. Every relation in a
COIN application is expressed as such a phrase and displayed in the list box on the form.
The user can select on a phrase, or relation, from the list box to remove it from the
application.

The area labeled 2 is the column section where columns of any relation are declared. The
properties that define a column are its name, the name of the relation it belongs to, its
type, and its key property. The name of a column can be entered through the text box in
the form. The name of the relation must be selected from a dropdown box that contains a
list of the name of all existing relations. The type of the column, which is one of string,

 48

integer, or real, is selected from the dropdown box provided. The user can toggle the
checkbox labeled “Member of Primary Key” on or off to denote whether a column is a
member of the primary key for the relation it belongs to. Once these properties of a
column are supplied, the user can add the column onto the specified relation. The phrase
“relation has column of type and is/is-not part of key” describes a column. Every column
of a relation is expressed as such a phrase and displayed in the list box on the form.
Upon arriving at this web page initially, the columns from all relations are displayed in
the list box. There is a Get button on the form for displaying just the columns from a
relation the user has selected.

The relation and column metadata is shown in Figure 5.4. Once the source information is
defined, the user can proceed to define the elevations for these relations in the Context
form that is described next.

Figure 5.4 – Source Form

 49

5.5 Context Form
The Context Form is a web page for editing the context information of a COIN
application. The context form consists of three sections. There is a section for declaring
contexts, a section for declaring the elevation of relations, and a section for defining
modifier values. The context form is shown in Figure 5.5. Lets describe this form
section by section.

The area labeled 1 in the form is the context section. This is the section where contexts
are declared. The name of the contexts is entered through the text box on the form.
There is a dropdown box, which lists all existing contexts, for declaring context sharing.
When declaring a new context, the user can select an existing context from the dropdown
box for context sharing. The phrase “context is a parent context” describes context
sharing, where context is the name of the new context and the parent context is the name
of the context that is being shared by the new context. Every context that has context
sharing defined is displayed as such a phrase in the list box on the form. If no context
sharing is defined, just the name of the context is displayed in the list box. The user can
select a phrase, or context, from the list box for removal from the COIN application.

The area labeled 2 is the relation elevation section. This is the section where elevation
information is declared and displayed. Initially, the form shows the elevation for every
relation in the COIN application in the list box labeled “Relation Elevation”. The user
can restrict which relation elevations are displayed by using the two Get buttons on the
form. The Get button next to the context dropdown box retrieves the elevations for all
relations that have elevations defined under the selected context. Once a context is
selected from the dropdown box and the user has clicked on the Get button, a list of
relations that have elevations defined under the selected context is displayed in the list
box labeled “Relation”. At that point, the user can further restrict which relation
elevation is displayed by selecting one of the relation and clicking on the Get button next
to the relation list box.

The process of declaring new elevation is a two steps process. First, a relation and a
context must be specified; then the elevation of each column can be added. Once the
relation is selected on the relation dropdown box and the context is selected on the
context dropdown box, the user can click on the “Add Relation Context” button to start
elevating the columns of the relation. A list of all columns from the selected relation are
listed in the list box labeled “Column”, and a list of all available semantic types are listed
in the list box labeled “Semantic Type”. To elevate a column, the user simply selects
from the list boxes a column to be elevated, a semantic type to elevate the column to, and
click on the Add Elevation button. The phrase “relation under context has column and is
elevated to semantic type” describes an elevation axiom for a column. Each elevated
column appears as such a phrase in the list box labeled “Relation Elevation” on the form.
To remove an elevation, the user can select a phrase, or elevation axiom, from the list box
and click on the Delete Elevation button.

 50

Figure 5.5 – Context Form

 51

The area labeled 3 is the modifier section. This is the section where modifier values are
defined per context, and conversion functions are defined per modifier. Initially, the
form shows the modifier values for every modifier under every context in the lists box
labeled “Modifier”. The user can restrict which modifier values are displayed by using
the two Get buttons on the form. The Get button next to the context dropdown box
retrieves modifier values declared under the selected context across all modifiers. The
user can further restrict the modifier values displayed to just those belonging to a single
modifier by selecting a modifier from the list box labeled “Modifier”, click on its Get
button. If no context were selected from the context dropdown box when the Get button
was pressed, the modifier values for the selected modifier across all contexts will be
displayed.

To define a modifier value for a modifier, a context name and a modifier name must first
be selected from the dropdown boxes. Then the user must select either Static or Dynamic
from the radio button group. By default, the Static button is selected. Recalling from the
section on COIN model, a static modifier value is a string or number value that stays
constant; whereas a dynamic value is a list of attribute names that describes how to get to
a value at run time. The modifier value is entered through the text box labeled “Modifier
Value”. To enter a static value, simply select the Static button and type in the value in
the text box. To enter a dynamic value, select the Dynamic button and type in the names
of the attributes, using the separator symbol “->” between the names. The names of the
attributes should be in the order that links them from the modified semantic type to the
destination type. This would avoid potential ordering error in situations where multiple
paths exist between semantic types. Entering them in order, starting from the attribute
closest to the modified type, would also visually help other users to discern the dynamics
of the modifier value. The phrase “semantic type has modifier whose value under context
is modifier value” describes a modifier value for a modifier under one context. Every
modifier value defined in a COIN application is expressed as such a phrase and displayed
in the list box labeled “Modifier”. To remove a modifier value from a COIN application,
simply select a phrase, or modifier value, from the list box and click the Delete button.

Conversion functions for modifiers are declared in this section as well. Once a modifier
is selected from the Get button for modifier, the conversion function for the modifier, if
defined, is displayed in the multi-line text box labeled “Conversion Function”. There are
two ways to declare conversion functions for modifiers. One way is through the
dropdown box, and the other way is through the multi-line text box. The conversion
function dropdown box contains the names of all pre-defined functions taken from the
function library from the COIN registry. The function library contains some of the most
common conversion function, in generic form, that is non-specific to any COIN
application. To find out the content of a conversion function, the user can select the
name of a function from the dropdown box and click on the Get button for conversion
function. The content of the pre-defined conversion function will be displayed in the
multi-line text box. The other way to define a conversion function is to write out the
conversion function in Prolog in the multi-line text box provided. Notice that often times
conversion functions invoke other helper functions that must be defined as well.
Recalling from the section on Prolog that each Prolog statement in a COIN application is

 52

a rule, the user can enter in the text box as many rules as necessary to fully support a
conversion function. There must be at least one rule labeled that uniquely defines the
conversion function. Once a conversion function is defined using either the dropdown
box or the text box, the user can click the Add button to add it to the COIN application.
To remove a conversion function from a modifier, the user can select a modifier from the
modifier dropdown box and click on the Delete button for conversion function.

5.6 Application File Viewer
The Application File Viewer is a web page for displaying the metadata of COIN
application. A number of XML-based representations of COIN application are
introduced by this thesis. Each representation is file-based, and this file viewer provides
a way to display the content of the files in a consolidated fashion for easy comparison.
This page is accessible from the navigation button labeled “Generate”. Prior to loading

Figure 5.6 – Application File Viewer

 53

the page, the Generator of the COIN Application Metadata Layer is invoked to persist the
metadata in ICM into files. The Generator is discussed in details in a later section. Lets
describe each section of the file viewer, which is shown in Figure 5.6.

The area labeled 1 on the page is the file selection panel. There are a number of
navigation tabs for locating the different files. The four tabs on the top row are for
accessing the four different representations (RDF, RuleML, RFML, and Prolog) of a
COIN application. By clicking on the RDF tab, the bottom row of tabs expands into five
tabs, which are labeled “Application”, “Ontology”, “Context”, “Source”, and “Misc”.
Since the RDF representation spans multiple files, the bottom row of tabs is for
navigating each of the five files. The text area labeled 2 shows the file currently selected
from the navigation tabs. Clicking on the RuleML tab brings to view the file that
contains the COIN application in RuleML representation. There is no tab on the bottom
row for the RuleML tab because the application is contained in a single file in this
format. Similarly, clicking on the RFML tab brings to view the RFML file and the
bottom tabs disappear. Finally, clicking on the Prolog tab reveals two tabs on the bottom
row. The two tabs are labeled “HTML” and “Non-HTML”. The tab labeled “HTML”
brings to view the HTML version of the application Prolog file. The tab labeled “Non-
HTML” brings to view the actual Prolog application file that will be used by the
abduction engine in eCOIN. Additionally, there is a button labeled “Goto File” in the
area labeled 1 on the page. This button brings the web browser to the actual location of
the selected file. If the user is using Microsoft Internet Explorer, the XML-based
application file being displayed can benefit from the browser’s XML tree navigating
capability, which allows the user to collapse and expand on each element tag.

 54

6 Graphical Interface

The Graphical Interface of the COIN Application Metadata Layer is a tool designed to
facilitate the human users in visualizing a COIN application. Since most of the
information in a COIN application is ontologically oriented, it presents well in a
graphical format. The graphical interface makes use of this feature by allowing the users
to incrementally display information around an ontology. There are two instruments of
display in the graphical interface. One is a tree structure that organizes the application
metadata into a hierarchy of tree nodes. The other is an image panel where metadata are
automatically drawn into images and generated on the screen. Since auto-generated
images of the ontology often have the problem of overlapping, or unnecessary crossing of
lines and shapes, the graphical interface also provides a mean for user to specify the
positions and sizes of objects drawn on the screen. A snapshot of the graphical interface,
displaying the tent application, is shown in Figure 6.1. The following sections examine
each part of the graphical interface in details.

Figure 6.1 – Graphical interface displaying the tent example

6.1 Tree Navigation Structure
The area labeled 2 in Figure 6.2 is the tree control structure that allows the user to
navigate an entire COIN application. By navigation, we mean the ability to focus on
particular section of the application by expanding certain nodes and collapsing others.

 55

The navigation tree serves the dual purposes of displaying application metadata, and
providing control over the content in the image panel. The displaying part of the
navigation will be described first, followed by the control part.

In designing the interface, the layout of the screen components is optimized for
information density. Given a limited screen space, it is best to give the most space to the
component that carries the most information across to the user. Naturally, the most
amount of screen space is dedicated for the image panel where the ontology is graphically
displayed. This leaves the navigation tree with a relatively small amount of space. This
means the user can access from the tree structure only a narrow window of information at
a time. To compensate for this, a separate page is dedicated entirely for displaying the
tree structure, where more tree nodes can be explored at a time. The separate page is
accessed from the button labeled “Explore Tree”, located in the area labeled 1. Below is
a snapshot of the entire application tree found under the tree exploration page, with all
nodes expanded.

Figure 6.2 – Navigation Tree Expanded (Tree is coiled around from left to right for
illustration purpose)

The left most section of Figure 6.2 shows the ontology of our tent application. The node
labeled “Ontology” contains three child nodes, labeled “Semantic Type”, “Attribute”, and
“Modifier”. The Semantic Type node contains a group of nodes whose labels are the
names of the semantic types in the ontology. Moreover, the nodes are arranged such that
the depths of the nodes represent the depth of the inheritance relationships found in the
ontology. The node representing the semantic type basic is, as expected, the root node of
the semantic type tree. The sibling nodes, product and weight, are both immediate
children of the basic node. This means that both product and weight are one inheritance
relationship from the semantic type basic. The tent node has a node depth of two, which
means it is two inheritance relationships from the semantic type basic. Since tent is the
immediate child node of product, the semantic type tent inherits directly from the
semantic type product.

 56

The second child node of the Ontology node is the Attribute node. The Attribute node
contains a node for each attribute relationship in the ontology. Each attribute node is
labeled under the format “semanticType_name.attribute_name”, where
semanticType_name is the name of the originating semantic type, and attribute_name is
the name of the attribute. Notice the dot between semantic type name and the attribute
name. It is necessary to specify the fully identifying name of each attribute because
multiple attributes could use the same name, as long as they originate from different
semantic type. Within each attribute node is a node describing the originating semantic
type, and a node describing the destination semantic type. The format of the labels of
these two nodes respectively are “From: sematnicType_name” and “To:
semanticType_name”, where semanticType_name is the name of the corresponding
semantic type.

The third child node of the Ontology node is the Modifier node. The Modifier node
contains a node for each modifier relationship in the ontology. The modifier nodes are
very similar to the attribute nodes. Each modifier node is labeled under the format
“semanticType_name.modifier_name”, where semanticType_name is the name of the
originating semantic type, and modifier_name is the name of the modifier. Notice the dot
between semantic type name and the modifier name. It is necessary to specify the fully
identifying name of each modifier because multiple modifiers could use the same name,
as long as they originate from different semantic type. Within each attribute node is a
node describing the originating semantic type, and a node describing the destination
semantic type. The format of the labels of these two nodes respectively are “From:
sematnicType_name” and “To: semanticType_name”, where semanticType_name is the
name of the corresponding semantic type.

The middle section of the tree in Figure 6.2 shows the contexts of the tent application.
The node labeled “Context” contains as many child nodes as there are contexts in a COIN
application. There are two contexts in the tent application, so two child nodes are found
under the Context node. The two context nodes are labeled c_uk and c_us, which
corresponds to the names of the contexts as defined in the metadata. Within each context
node is a Modifier node and an Elevation node. The Modifier node contains a node for
each modifier whose value is defined under the current context. The label of each
modifier node is “modifier_name: modifier_value”, where modifier_name represents the
name of the modifier, and modifier_value represents its value. If the modifier value is
static, then the value is simply a string value. For dynamic modifier, the value is a list of
attribute names separated by the symbol “->”. In the case of the tent example, the name
of the modifier is weightUnit; its value is kg under the c_uk context, and lb under the c_us
context.

The other node within a context node besides the Modifier node is the Elevation node.
The Elevation node contains a node for each relation elevated under the current context.
The label of each elevation node is the name of the elevated relation. Since
dsr_tent_terranova_p is only one elevated relation in the c_uk context, there is only one
elevation node found under this context. Within each elevation node is a source node

 57

whose label is “Source: source_name”, where source_name is the name of the underlying
relation of the elevated relation. Column node is the other node within the elevation
node. The Column node contains a node for each column of the relation and the semantic
type the column is elevated to. The label of each column node is “column_name-
>semanticType_name”. For instance, the column Minimum_weight in the relation
dsr_tent_terranova is elevated to the semantic type weight.

The right most section of the tree in Figure 6.2 shows the relations of the tent application.
The node labeled “Relation” contains as many child nodes as there are relations in the
application. There is one relation, named dsr_tent_terranova, in the application. The
label of each relation node is the name of the relation. The first node under the relation
node is the source name of the relation. The label of this node is “Source: source_name”.
the second node under the relation node is the import/export property of the relation. The
label of this node reflects the value of this property. The third node under the relation
node denotes the unsupported operations of the relation. There is no unsupported
operation for the relation in the example. If there were, the label of the node would have
the format “<,>,<>,<=,=>”, where the unsupported operations are separated by commas.
Finally, the last node under the relation node is the Column node. The Column node
contains as many nodes as there are columns in the relation. Each column node label has
the format “column_name | column_type, key”, where column_name is the name of the
column, and column_type is the type of the column. The keyword “key” is present in the
label if the column is part of the primary key of the relation. For instance, the column
node representing the Model column of the dsr_tent_terranova relation is labeled “Model
| string, key”.

The reader should be convinced by now that the navigation tree maintains a complete
description of a COIN application in a structured and easy to navigate format. Moreover,
since the navigation tree is browser-rendered object, the tree can be printed via the print
function of the internet browser. As mentioned earlier, the navigation tree also serves the
purpose of providing user the control over what metadata to display in the image panel.
Before this function of the navigation tree can be discussed, lets examine the image panel
first in the next section.

6.2 Graphical Image Panel
The Graphical Image Panel displays an image of the graphical representation of the
application metadata. The areas labeled 3, 4 and 5 in Figure 6.1 belong to the image
panel. Users can press the Generate button to refresh the content of the image panel.
The metadata is shown incrementally around the ontology of the application. At the
ontology layer, the semantic types, attributes, and modifiers are drawn out in an ontology
graph with appropriately labeled nodes and edges. At the source layer, the relations and
their corresponding columns are displayed in a tabular format. Finally, at the context
layer, contextual information such as modifier values are added to the ontology, and
elevations of relations are revealed. Each layer of the image panel is described in details
in the following sections.

 58

6.2.1 Ontology layer

Figure 6.3 – Ontology Layer of Graphical Image Panel

The ontology layer of the graphical image panel is the ontology of a COIN application,
drawn out as an ontological graph. The nodes of the graph are semantic types, and the
edges are one of inheritances, attributes or modifiers. Semantic types are represented as
oval-shaped objects in Figure 6.3. The names of the semantic types are shown in the
center of the ovals. The attributes are represented as solid, curved lines, connecting two
semantic types. The curve originates from a semantic type that is the domain of the
attribute, and terminates at a semantic type that is the range of the attribute. The
terminating end of the attribute curve is denoted by a closed circle. The labels of the
attributes are the names of the attributes. Modifiers are drawn similarly to attributes,
except that modifiers are represented by dashed curves. The inheritance relationships are
also drawn similarly to the attributes, except that the label on the solid curve is always
“is_a” to remind the viewer of the phrase “child semantic type is a parent semantic type”.
Figure 6.3 illustrates the ontology layer. Notice that two edges, an inheritance edge and a
modifier edge, in figure have their lines crossed. This is the direct result of automatically
generated graph, and it serves to emphasize the importance of the layout adjustment
feature of the graphical interface. This feature, which will be discussed in details in a
later section, allows objects on the graph to be re-positioned by the user.

6.2.2 Source Layer

Figure 6.4 – Source Layer of Graphical Image Panel

 59

The source layer of the graphical image panel displays the relations of a COIN
application. Figure 6.4 shows a relation from our tent example. The relations are drawn
out in tabular format to emphasize their relational nature. Each relation is represented by
a box with a title and a body. The title area is shaded in blue. It contains the name of the
relation in bold fonts, and the properties, namely source and import/export, in regular
fonts. The body area displays the columns of a relation in rows. Each row starts with the
name of the column, followed by the column type, and sometimes the keyword key, when
the column is part of the primary key.

6.2.3 Context Layer

Figure 6.5 – Context Layer of Graphical Image Panel

The context layer of the graphical image panel applies contextual information to the
ontology layer and source layer, thereby dynamically altering the image for each context
in a COIN application. Figure 6.5 shows a complete image panel with basically the same
ontology and source layers introduced in earlier sections. New to the image is the
contextual information for the c_uk context. The band between the ontology and
modifier layers displays the name of the context the image is currently drawn for. The
ontology layer is where the modifier values, which are context based, are introduced.
Notice the modifier weightUnit, being highlighted by the orange dashed line, in the
ontology from the figure. In addition to the modifier name, the modifier value kg is

 60

shown next to the name of the modifier. This information added by the context layer
helps to elucidate the concept that the value held by the semantic type weight is
associated with the physical unit kg under the c_uk context. Another way of interpreting
this information is that the value held by the semantic type weight will be modified when
presented to a context where the weight unit is not kg.

The source layer is where the elevations of relations, which are context based, are
introduced. The elevation is graphically displayed as a tabular box that is placed to the
right of the relation being elevated. The box is similar to the box used to represent the
original relation. An arrow is drawn from the original relation to the elevated relation to
denote the relationship. The title area of the elevation box contains the name of the
elevated relation in bold, as well as the context of elevation. The body area of the
elevation box has rows showing the elevated semantic types of the columns from the
relation. Notice that each column from the relation in the left is lined up to the right with
the semantic type it is elevated to. This tabular format chosen allows the viewer to
examine the information on a relation, as well as its elevation, at a glance.

It is important for the reader to keep in mind that the context layer drawn on the image
panel changes according to the context selected. The selection of context happens in the
navigation tree. This selection process will be described in the next section.

6.3 Dynamic Content Control of the Image Panel
The graphical image panel combines with the navigation tree to provide the user control
over the display of dynamic contents. There are two types of dynamic contents in the
graphical representation of a COIN application. One type of dynamic content is the
information that defines a context. Context can be thought of as a filter that alters which
modifier values and elevations are shown in the generated image. The user decides
which context filter is applied by selecting a context from the navigation tree. The other
type of dynamic content is the highlighting that is painted on the image. The highlighting
is a visual aid for the user to discern an object of interest among other objects in a COIN
application. The user controls which object is highlighted by selecting the corresponding
object in the navigation tree. The different dynamically generated contents are discussed
in the following subsections. It is important to point out to the reader that the benefit of
highlighting certain objects in the image may not be apparent in the relatively simple tent
example. However, in a larger application, the ability to find a semantic type among
numerous other types becomes crucial for the user.

6.3.1 Highlighting of Selection

Figure 6.6 – Semantic Type Selection

 61

Figure 6.6 illustrates the selection of the tent semantic type. The selection is made in the
navigation tree by clicking on the name of a semantic type. Once clicked, the oval
corresponding to the selected semantic type is highlighted with the color orange.

Figure 6.7 – Attribute Selection

Figure 6.7 illustrates the selection of the weight attribute. The selection is made in the
navigation tree by clicking on the name of an attribute. Once clicked, the line
representing the selected attribute is highlighted, as well as the two ovals corresponding
to the From and To semantic types of the attribute.

Figure 6.8 – Modifier Selection

Figure 6.8 illustrates the selection of the weightUnit modifier. The selection is made in
the navigation tree by clicking on the name of a modifier. Once clicked, the line
representing the selected modifier is highlighted, as well as the two ovals corresponding
to the From and To semantic types of the modifier.

Figure 6.9 – Relation and Column Selection

Figure 6.9 illustrates the selection of the dsr_tent_terranova relation. The selection is
made in the navigation tree by clicking on the name of a relation, or any of its columns.
Once clicked, the title box representing the relation becomes highlighted, as well as the
row that represents any selected column.

 62

6.3.2 Context Filter

Figure 6.10 – Context c_uk applied to image panel

When a context is selected from the navigation tree, the content of the image panel
changes to reflect the contextual information associated with the selected context. The
contextual information displayed are the modifier values and the elevations. In Figure
6.10, the user has selected the c_uk context. Observe that, within the ontology section of
the image panel, the label on the weightUnit modifier has the value kg next to the
modifier name. Observe also that the elevated relation dsr_tent_terranova_p appears
next to its underlying relation in the source section. Modifier values and elevations are
regularly hidden until a context is selected. A context is selected when the user clicks on
the name of the context in the navigation tree, or when the user clicks on any child nodes
of the context node. At the instance the snapshot above was taken, the column named
Model was selected. This selection causes the row representing the column, as well as
the semantic type in the ontology to be highlighted.

6.4 Manual Layout Adjustment of Graphical Image Panel
In designing the graphical interface for the COIN Application Metadata Layer, a decision
was made to forgo a perfectly generated image of an ontology and spend more
development time on other aspects of the thesis. This decision is justified by the fact that
sophisticated layout algorithms for ontological graphs already exist and there would be
little value in reinventing these algorithms. There are graphical layout tools from the
computer graphics community which could potentially be incorporated into the graphical
interface. Thus, this area of work is saved for future version of the graphical interface.

Although achieving a perfect layout is not a goal of this thesis, much consideration has
been made to design for a generally acceptable default layout of an ontology. The lines
joining two semantic types in an ontology are curved, instead of straight, for the reason

 63

that curved lines are less likely to overlap the nodes of a graph. This is especially true
when the nodes of a graph are drawn in a rectangular lattice fashion, which is the case for
the default layout of semantic type nodes. To further reduce the occurrence of crossing
lines, the lines representing inheritance relationship between a semantic type and the
basic semantic type are not drawn out explicitly. When reading the ontology, the reader
should know that all semantic types inherit directly from basic unless another inheritance
relationship is drawn in it place. Another measure to improve the layout is found in the
smart font sizes applied for semantic type names. The ovals representing semantic types
are fixed in size, but the font size of the labels representing the name of semantic types
may shrink to accommodate a slightly longer name. However, the fonts can only shrink
so much before hitting the physical limit of visibility. Therefore, it is often inevitable
that manual intervention is required to correct some of the visually displeasing outcome
of a generated ontological graph.

The most common visual fallbacks of a generated ontological graph are the overlapping
of lines, the crossing between lines and the crossing of lines over nodes. Overlapping
lines occur when a semantic type has two or more attributes whose ranges are the same
semantic type. This common fallback is partially minimized by drawing edges with arcs.
Since each arc has a degree of curvature associated with it, overlapping lines can be
separated by assigning slightly different curvatures to them. If straight lines were used to
draw arcs, overlapping lines cannot be resolveed regardless of the placement of the
semantic types. Lines crossing each other or over nodes can be avoided if semantic type
nodes are strategically placed on the graph to minimize crossing. The role of strategizing
the layout of an ontological graph has been left for the user. The layout adjustment
feature of the graphical interface provides the mean for the user to manually specify a
layout.

The layout adjustment feature of the graphical interface allows users to manually resize
and re-position the objects being displayed in the image panel. The metadata in a COIN
application is initially displayed in the image panel using a default layout scheme. To
begin adjusting the layout, the user must first export the current layout scheme to a file.
This is done via the interface controls displayed in Figure 6.11. This figure corresponds
to the area labeled 1 in Figure 6.1.

Figure 6.11 – Buttons for Export/Import of Image Panel

 64

The process of exporting the current layout scheme to a file is accomplished by pressing
the button labeled “Export”. Before pressing the button, the user can supply a name for
the export file by using the text box provided on the page. A default name in the format
“epAppID.xml”, where AppID is the COIN application id, is used if no name is specified.
The exported file is an XML document and it is shown in details in appendix C. The
exported file is stored in the same directory on the server that is hosting the graphical
interface. Therefore, the user can retrieve the exported file simply using the same URL
path as the graphical interface.

We will illustrate the process of adjusting layout scheme by using the image generated
for our tent example in Figure 6.3. Notice in the image that the line representing the
modifier relationship weightUnit, and the line representing the inheritance relationship
between product and basic semantic types are crossed. To untangle the lines, we can
simply switch the locations of the ovals representing product and basic. From the
exported layout scheme file, we find the semantic type nodes on basic and product,
which are listed below.

<Ep_SemanticType>
 <name>basic</name>
 <x>160</x>
 <y>85</y>
 <selected>false</selected>
</Ep_SemanticType>
<Ep_SemanticType>
 <name>tent</name>
 <x>310</x>
 <y>85</y>
 <selected>false</selected>
</Ep_SemanticType>

Each semantic type is embedded in a tag labeled “Ep_SemanticType”. The name
attribute holds the name of the semantic type. The x and y attribute store the x and y
coordinates, in pixel unit, of the oval in the image. The selected attribute denotes
whether the semantic type is selected; if it is, the oval will be highlighted. Once we have
switched the x and y attributes between the two semantic types, we can import the file by
pressing the button labeled “Import” on the graphical interface page. The image
generated from the new layout scheme is shown in Figure 6.12 below.

Figure 6.12 – Adjusted Ontology Layout

 65

7 COIN Application Generator

The COIN Application Generator is a program that produces file-based COIN
applications. The generator is used by the textual interface to create application files
once the users have finished editing the application. The input to the generator is a ICM
data structure. Recall that the textual interface stores the application metadata as it is
being edited by the user. Once the user is done editing, the ICM is passed on to the
generator to persist the metadata from memory to files.

The generator can produce several formats of application files, all of which are XML-
based with the exception of Prolog. The XML representations that are currently
supported are RDF, RuleML, RFML, and Prolog in HTML. However, any arbitrary
format of representation for COIN application can be supported in the future as long as it
is XML-based. One simply needs to write XSLT files for transformation between
different XML-based representations. Since transformation is file-based rather than
code-based, it is a snap to maintain and update the generator as new transformation
requirement arises. Figure 7.1 illustrates the chain of metadata representation supported
by the generator.

The COIN Application Generator is designed with two requirements in mind. The first
requirement is the ability to generate the Prolog file used by the abduction engine. The
second requirement is the ability to export and import COIN application in other formats
beside Prolog. This is so that input from non-Prolog modeling communities can
contribute in creating COIN applications. A suite of XML-based formats are chosen to
represent COIN application because XML-based languages are progressively more
accepted at representing metadata, and it is simple to transform between XML-based
languages. In the following subsections, we will discuss the different formats of
representation of COIN application, as well as the transformation from one format to
another. The reader can refer to the background section for a brief introduction to the
various XML technologies, such as XSLT, mentioned in this section.

Figure 7.1 – Chain of Metadata Representation

7.1 COIN Application in RDF
Probably the most significant format of representation that the COIN Application
Generator can produce, beside Prolog, is the RDF representation. Ontology is an integral
part of a COIN application, and RDF is especially suitable for describing ontology
because it is a language for describing resources. By having a representation of COIN

 66

model in RDF, we are a step closer to potentially unleashing the rich source of ontology
available in RDF.

Recall from the introduction on RDF, class and property are two common concepts in
RDF. Every resource in a RDF document belongs to a RDF class. The relationships that
can exist between classes are defined by RDF properties. Recall also that the Internal
COIN Model is a collection of classes, where each class is characterized by a set of
properties. The strong parallelism between the ICM data structure and the RDF modeling
concepts naturally makes these two close neighbors in the chain of metadata
representation. It is important to emphasize that the RDF representation of COIN model
presented in this thesis does not make use of some common RDF elements in favor of
maintaining the parallelism. A common RDF element that is not used is the subclass
relationship, which is often used to express inheritance relationship. As we will see soon
in the RDF schema, every relationship is an explicitly declared RDF property.

The first step in representing COIN model in RDF is to define a RDF Schema. The
schema is for both communicating the semantics of the metadata, as well as validating
the content of RDF documents. Due to the similarity between ICM and RDF concepts,
the RDF schema is primarily a direct mapping from the ICM, class by class, property by
property. The entire COIN application RDF schema can be found in appendix E. Figure
7.2 is a summary of the schema.

Figure 7.2 – COIN Application RDF Schema

Application
• ApplicationOntology:string
• ApplicationContext:string
• ApplicationSource:string
• ApplicationMisc:string
Ont_SemanticType
• Ont_SemanticTypeName:string
• Ont_SemanticTypeParent:Ont_SemanticType
Ont_Attribute
• Ont_AttributeName:string
• Ont_AttributeFrom:Ont_SemanticType
• Ont_AttributeTo:Ont_SemanticType
• Ont_AttributeElevationFunction:string
Ont_Modifier
• Ont_ModifierName:string
• Ont_ModifierFrom:Ont_SemanticType
• Ont_ModifierTo:Ont_SemanticType
• Ont_ModifierConversionFunction:string
• Ont_ModifierContextValues:Ont_ModifierCOntext

ValuePair
Ont_ModifierContextValuePair
• Ont_ModifierContext:Cxt_Context
• Ont_ModifierStaticValue:string
• Ont_ModifierDynamicValue:Ont_Attribute

Cxt_Context
• Cxt_ContextName:string
• Cxt_ContextParent:Cxt_Context
Src_Relation
• Src_RelationName:string
• Src_RelationImport:boolean
• Src_RelationExport:boolean
• Src_RelationSourceName:string
• Src_RelationUnsupportedOps:string
Src_Column
• Src_ColumnName:string
• Src_ColumnType:string
• Src_ColumnKeyMember:boolean
• Src_ColumnRelation:Src_Relation
Src_ElevatedRelation
• Src_ElevatedRelationName:string
• Src_ElevatedRelationRelation:Src_Relation
• Src_ElevatedRelationContext:Cxt_Context
• Src_ElevatedRelationColumns:Src_ElevatedRela

tionColumnSemanticTypePair
Src_ElevatedRelationColumnSemanticTypePair
• Src_ElevatedRelationColumn:Src_Column
• Src_ElevatedRelationSemanticType:Ont_Semant

icType
Misc_HelperFunction
• Misc_HelperFunctionBody:string

 67

The class Application in the RDF schema corresponds to the class Coin_Model in ICM.
The id and name property of Coin_Model are not in the schema because they are stored in
the COIN registry and are not needed for mediation by the abduction engine. Having the
id and application name available in the RDF file would help in locating and identifying
the files for an application; however, this is not the case in the current version of RDF
files. The other three attributes of the Coin_Model store the ontology, context, and
source information of the application. In RDF, these three groups of information are
stored separately in three different RDF documents. The locations of these documents
are stored in the properties of the Application RDF class. This modular design allows
parts of a COIN application to be easily shared between applications. For instance, an
ontology defined for one application can be immediately referenced from another by
simply specifying the location of a file.

Similar to the ICM, the RDF classes Ont_SemanticType, Ont_Attribute, and
Ont_Modifier collectively defines the ontology of a COIN application. The properties of
these three classes correspond exactly to those in ICM, but with the following exceptions.
The arrays of attributes and modifiers defined under Ont_SemanticType in ICM are
redundant information created to improve efficiency in manipulation of the data structure.
Therefore, they are not necessary in the RDF schema. Another exception is that there is
no direct mapping in RDF schema for the hashtable data structure used in ICM. A class
named Ont_ModifierContextValuePair is created instead in the RDF schema to similate
the effect of a hashtable. This class has a property named Ont_ModifierContext to
represent the key in the hashtable; the rest of the properties are possible types of value for
the data to be stored in the hashtable.

The rest of the RDF schema is sufficiently similar to the corresponding ICM data
structure. Having defined the RDF schema, the task of creating RDF documents for
storing application metadata is simply a matter of complying with the schema. A
complete RDF documents of the tent example is found in appendix G. The COIN
Application Generator is the software module that is responsible for generate the RDF
documents from metadata stored in ICM, as well as populating the ICM from RDF
documents.

7.2 COIN Application in RuleML
The further down the chain of metadata representation a format gets, the greater the
similarity between it and Prolog. The next format after RDF in the chain is RuleML. As
its name suggests, RuleML is a markup language for describing rules. Since every
statement in Prolog is a rule, the RuleML representation brings the metadata a step closer
to being usable by the abduction engine.

As we have seen in the ICM and RDF representations, Metadata of a COIN application is
knowledge that is not restricted to rule-based representation. To make the metadata
usable by the abduction engine, however, the metadata must be expressed as a collection
of Prolog rule statements. The layout of these Prolog rule statements drive the layout of
the RuleML representation of COIN application. There are only a handful of tags that are
used to represent Prolog rules in RuleML. These tags are:

 68

<imp> a rule
<_head> head of a rule
<_body> body of a rule
<atom> a clause inside the head or body of a rule
<var> a variable
<ind> a constant
<_opr> signifies the start of a <rel>
<rel> the predicate of an <atom>
<cterm> a collection of constant terms
<_opc> signifies the start of a <ctor>
<ctor> the predicate of a <cterm>

Let us demonstrate how these tags are used to represent a Prolog rule. Consider the
Prolog rule for declaration of attribute weight for the semantic type product:

rule(attributes(product,[weight]),(true)).

The same rule can be represented using RuleML as follows, using the tags we have
identified above:

 <imp>
 <_head>
 <atom>
 <_opr><rel>attributes</rel></_opr>
 <ind>product</ind>
 <cterm>
 <_opc><ctor /></_opc>
 <ind>weight</ind>
 </cterm>
 </atom>
 </_head>
 <_body>
 <atom>
 <_opr><rel /></_opr>
 <ind>true</ind>
 </atom>
 </_body>
 </imp>

The <imp> tag corresponds to the rule predicate in Prolog. The content of each <imp>
element is the head and body of a rule. The <_head> tag encapsulates the atom that
defines the head of a rule. The head atom consists of relation, or predicate in Prolog
terms, and the atoms of the predicate. In the example above, the predicate of the head is
attributes, and the associated atoms are product and [weight]. The <ind> tag is a used to
indicate that product is not a variable. The processor of the Prolog rule knows that

 69

product is the name of the semantic type; however, this fact is not important in the
representation level. One only needs to decide whether the atom is a variable or not on
this level. The atom [weight] is a collection of one constant term, in this case it is the
name of an attribute. The brackets around the term signify that it is a collection, so the
<cterm> tag is used. Within <cterm>, it is possible to define a predicate with the <ctor>
tag, but there is none in this case. Since weight is not a variable, the <ind> tag is used to
represent it. The <_body> tag encapsulates the atom that defines the body of a rule. The
body atom can consist of predicate and atoms associated with the predicate. Since the
body is empty in this case, there is no need for a predicate but just the word “true”
enclosed in <ind>. The entire tent example expressed in RuleML can be found in
appendix G.

So far we have established a schema for representing Prolog rules in RuleML; however,
we still need a mechanism to transform the metadata into this representation. Since there
already exists a representation of application metadata in RDF, which is a form of XML,
it is a natural to use XSLT to transform the metadata from RDF to RuleML. Recall that
XSLT is a language for transforming one XML document into another. The XSLT
stylesheet that is responsible for the transformation is the very key that separates
knowledge from code understandable by abduction engine for context mediation. When
the RDF documents and the XSLT stylesheet are processed by a XSLT processor, the
output is a RuleML document representing the application metadata in the schema
established above. As will be discussed very soon, the RuleML document will eventually
be more XLST transformation into a Prolog document. The complete XSLT stylesheet
for transforming RDF to RuleML can be found in appendix F.

7.3 COIN Model in RFML
The next stage in the chain of metadata representation is RFML. RFML is more similar
to Prolog representation than RuleML because RFML is designed specifically for
representing relational language, such as Horn logic, or Prolog. Unlike RuleML, RFML
is positional. This means that the positions of elements within a clause can provide
information about the elements without the need for special tags. This means that the
number of tags needed to represent Prolog rules are even less than RuleML. These tags
are:

<hn> a Horn clause
<pattop> head of a clause
<callop> body of a clause
<var> a variable
<con> a constant
<struc> a structure/a collection of <con>, <var>, or <struc>

Let us demonstrate how these tags are used to represent a Prolog rule. Consider the same
Prolog rule previously used in RuleML illustration. The following rule is declaration of
attribute weight for the semantic type product:

rule(attributes(product,[weight]),(true)).

 70

The same rule can be represented using RFML as follows, using the tags we have
identified above:

 <hn>
 <pattop>
 <con>attributes</con><con>product</con>
 <struc><con></con><con>weight</con></struc>
 </pattop>
 <callop><con></con><con>true</con></callop>
 </hn>

Every Horn clause is enclosed by a <hn> tag, and consists of a <pattop> element and one
or more <callop> elements. The first element in a <pattop> is always a predicate. In the
example above, the predicate attributes is associated with the constant product and the
structure of one constant, weight. Notice that the first <con> element in the structure is
empty. This means that there is no predicate associated with this structure. Since the
body of the rule is empty, the <callop> element contains just the constant “true” and no
predicate. The entire tent example expressed in RFML can be found in appendix G.

Since both RuleML and RFML are XML-based, we can use XSLT again for transforming
the metadata represented in RFML into RFML representation. Since there already exists
in the modeling community a XSLT stylesheet for transforming from RuleML to RFML
[15], some work is saved in that the generator can just use the existing stylesheet. The
RuleML to RFML stylesheet can be found in appendix F.

7.4 COIN Model in Prolog (HTML and Regular Text)
The next stage in the chain of metadata representation is Prolog. There are, however, two
flavors of Prolog representation that are produced by the generator. One is HTML
version, and the other is regular text version. The regular text version of Prolog is the
Prolog file that is directly used by the abduction engine. The HTML version is for
enhanced visualization of the Prolog file, which could be useful sometimes for debugging
and demonstration purposes.

Let us demonstrate how a Prolog rule would look in HTML format. Consider the same
Prolog rule previously used in RuleML illustration. The following rule is declaration of
attribute weight for the semantic type product:

rule(attributes(product,[weight]),(true)).

Below is the same rule in HTML format:

rule(attributes(product<tt>,</tt>[
weight])<tt>,</tt>(true)).

If viewed in a web browser, the HTML code above would look like the following:

 71

rule(attributes(product,[weight]),(true)).

The HTML version of the Prolog emphasizes certain elements in a rule by painting them
differently. The predicates, for example, are painted bold and strong, where as regular
items are either bold or plain. The commas are always painted with typewriter font so
they stand out more against regular font. The entire tent example expressed in HTML
can be found in appendix G.

The transformation from RFML to HTML is done via XSLT stylesheet. This XSLT
stylesheet can be found in appendix F. The transformation from HTML to regular Prolog
is simply done by removing all tags from the HTML document. This is done by software
code within the application generator.

7.5 File-Based Interface
The File-Based Interface component of the COIN Application Metadata Layer is
designed to facilitate the assimilation of COIN applications developed outside of the user
interface tools. Interacting with the file-based interface amounts to placing the
application files in a web accessible location, and updating the COIN registry of that
location. All of the file formats from the chain of metadata representation are supported
in the file-based interface. The user can supply a COIN applications in any of those file
formats, and the COIN application generator will generate the Prolog file necessary for
context mediation by the abduction engine.

Notice that the generator only transforms the files down the chain of representation
because the generator currently does not have the XSLT stylesheets necessary for upward
transformation. For example, if the user supplied the application in RuleML, the
generator will produce the RFML, HTML, and Prolog representations of that application.
The generator will not, however, produce the RDF representation. If the application is
already supplied in Prolog format, then no transformation is necessary. Since the XSLT
stylesheets are web accessible, the user can bypass the generator and produce the desired
representations via XSLT processor of their own.

 72

8 COIN Registry

The COIN Registry in the COIN Application Metadata Layer is primarily a file-based
directory of COIN applications. Information necessary for mediation work by eCOIN are
also accessible from the COIN registry. It is important to point out the distinction that
making information accessing is not the same as storing the information. The registry is
simply a structured set of XML documents that records and maintains the location, or
URL, of specific metadata files for COIN applications. The actual content in the
metadata files are oblivious to the registry. This design has the benefit of shielding the
registry from re-design in the event of any changes to the COIN model. Currently, there
are two methods of adding entries to the registry. One way is through the textual
interface; the other way is to edit the registry files manually. Any COIN applications
created through the textual interface are stored in a default location and the location of
the application metadata files are recorded automatically in the registry. Figure 8.1
illustrates the framework of the COIN registry structure.

Figure 8.1 – COIN Registry Framework Overview

The COIN registry framework is organized into a hierarchy of files three levels in depth.
Each level is populated with one or more XML files. In the following subsections, the
individual files that populate the registry framework are discussed. The actual schema, or
DTD files, that characterize these XML files are included in appendix D.

8.1 Registries
At the top level of the framework is a master registry of COIN registries. This level is
populated by a file named “registries.xml”, which stores all COIN registries by location.
Under this framework, a separate registry exists for each different location. This
provides the flexibility to support multiple independent environments of COIN
application development. Although the two registries are maintained separately,

 73

application from one location can be located and queried from another location through
the master registry. Below is a XML example that illustrates the master registry. The
XML tag labeled “REGISTRIES” encapsulates multiple “REGISTRY” tags. Each
“REGISTRY” tag represents a COIN registry. The name attribute denotes the location of
the registry and uniquely identifies it. In this case, the locations are MIT and MUST.
The body of the registry is denoted here by “…” and will be discussed in details in the
next section.

<REGISTRIES>
 <REGISTRY name="MIT">
 …
 </REGISTRY>
 <REGISTRY name="MUST">
 …
 </REGISTRY>
</REGISTRIES>

8.2 Registry
The level below the master registry resides the actual COIN registries, one per location.
Each registry is a directory of COIN applications. Each registry also has a directory of
data sources. These sources are maintained outside of a COIN application because each
source could potentially be shared by multiple applications. From this description, it
follows that a registry is populated by two files. Below is a XML example that illustrates
the registry. The elements within the tag labeled “REGISTRY” are the content of a
COIN registry. The element labeled “APPLICATIONS” stores the location of a file
about the applications in this registry. The other element, labeled “SOURCES”, stores
the location of a file describing the sources used by applications of this registry.

<REGISTRY name="MIT">
 <APPLICATIONS>http://localhost/appEditor/registry/applications.xml</APPLICATIONS>
 <SOURCES>http://localhost/appEditor/registry/sources.xml</SOURCES>
</REGISTRY>

Lets take a closer look at each of these two files in the following subsections.

8.2.1 Applications
The applications directory maintains the location of metadata files for each application
under a registry. For each representation of application metadata introduced in the File-
based Interface section, there is a record of its location in the directory. Below is a XML
example of the directory. The tag labeled “APPLICATIONS” encapsulates multiple
application element, each labeled “APP”. Each of these “APP” tag represents a COIN
application. The id attributes of the application element denotes an application ID, and
this uniquely identifies a COIN application. The name attribute denotes the name of an
application. Within the “APP” tag are five tags that record the locations of various XML-
based representation of application metadata. There is a “RDF” tag for the RDF
representation, a “RULEML” tag for RuleML representation, a “RFML” tag for RFML
representation, a PROLOGHTML tag for the HTML representation of the Prolog
application file, and finally a PROLOG tag for the actual Prolog application file. The

 74

actual application metadata files constitute the bottom layer of the registry framework.
These files are referenced in the registry, but they are not part of the registry. This allows
the content of these files to change frequently, while remaining at constant locations.

<APPLICATIONS>
 <APP id="392" name="Simple Disaster Relief">
 <RDF>http://localhost/appEditor/apps/rdf/application392.rdf</RDF>
 <RULEML>http://localhost/appEditor/apps/ruleml/application392.ruleml</RULEML>
 <RFML>http://localhost/appEditor/apps/rfml/application392.rfml</RFML>
 <PROLOGHTML>http://localhost/appEditor/apps/prologhtml/application392.html</PROLOGHTML>
 <PROLOG>http://localhost/appEditor/apps/prolog/application392.pl</PROLOG>
 <SCHEMA>http://localhost/appEditor/registry/schema/schema392.xml</SCHEMA>
 <QUERIES>http://localhost/appEditor/registry/queries/queries392.xml</QUERIES>
 </APP>
 <APP id="391" name="Disaster Relief">
 …
 </APP>
</APPLICATIONS>

There are two more elements within the “APP” tag, and they are labeled “SCHEMA” and
“QUERIES”. The “SCHEMA” tag stores the location of the schema file that is needed
by the eCOIN in planning and execution of mediated queries. The mediated queries
could be pre-defined in files. The location of a queries file is stored inside the
“QUERIES” tag.

8.2.2 Sources
In addition to the application directory, there is a source directory in the registry. The
source directory is a file that maintains the connection information for every source used
by the applications of that registry. Below is a XML example of the source directory.
The tag labeled “SOURCES” contains a “SOURCE” element for each source defined in
the registry. The name attribute denotes the name of the source, and it uniquely identifies
a source. The type attribute denotes the type of the source. Within the “SOURCE”
element are four elements. The element labeled “URL” stores the location where the
source can be reached. The elements labeled “USERNAME” and “PASSWORD” store
the username and password needed to connect to a source. Finally, the element labeled
“MAXCONNECTION” is a number that tells the eCOIN planner the optimum number of
parallel connections to make to a single source.

<SOURCES>
 <SOURCE name="oracle" type="DATABASE">
 <URL>jdbc:oracle:thin:@localhost:1521:coin</URL>
 <USERNAME>system</USERNAME>
 <PASSWORD>manager</PASSWORD>
 <MAXCONNECTION>1</MAXCONNECTION>
 </SOURCE>
 <SOURCE name="cameleon" type="CAMELEON">
 …
 </SOURCE>
</SOURCES>

 75

9 Technology Merging
9.1 Integration with eCOIN

Figure 9.1 – Flow of Information between COIN Layers

The ultimate purpose of the COIN Application Metadata Layer is to produce COIN
application that supports mediated query on eCOIN. For this purpose, the metadata layer
can be viewed as a producer of context sensitive metadata, while eCOIN is the consumer
of metadata. The interaction between the COIN Application Metadata Layer and the
eCOIN can be summarized by Figure 9.1. The COIN registry acts as the intermediate
resource broker between the metadata layer and eCOIN. Whenever COIN applications
are created, the location of the metadata files are recorded in the registry. On the actual
context mediation side, COIN applications are retrieved from the registry and loaded into
eCOIN. There are five items of information currently needed by eCOIN for mediation
work; they are relation schema, context declaration, source connection properties,
application metadata, and queries. Since the registry manages resources by storing
location of files, each item of information must be file-based, as discussed in the section
on COIN Registry. There are actually overlapping areas between the five items of
information mentioned. For instance, the schema and context information duplicates the
relation and context axioms found in the Prolog file, which is the primary source of
application metadata for eCOIN. Reason behind the duplication of information is the
lack of a mechanism in the current implementation of eCOIN to extract schema and
context information from the Prolog file. More light will be shredded on this topic in the
section on future work. Let us now go over how each item of information is used by
eCOIN. Please refer to Tarik’s thesis [4] for a detail explanation of the concept.

 76

Relation schema is the information that allows eCOIN to query each data source as a
relational database. The schema details the name and type of each attribute in a relation.
Source connection properties provide the connection information, such as resource
location and authentication, needed for eCOIN to connect to data sources. At the heart of
context mediation is COIN application, which is expressed in Prolog and used by the
abduction engine in eCOIN. Furthermore, context mediation cannot happen unless there
are actually queries to mediate on. The queries are usually supplied by users of eCOIN.
Each query is associated with a context, also known as the receiver context. The
information found in context declaration provides the needed link. The flow of
information is unilateral from the metadata layer to eCOIN, with the exception of queries.
Queries are not created under the metadata layer but by the Query Builder under eCOIN.
It is the role of Query Builder to broker queries between eCOIN and the registry.

9.2 Modification to eCOIN
Prior to the introduction of the COIN Registry, there was no concerted effort in
addressing the need for a central registry of metadata handling. Information that belongs
in the registry and needed by eCOIN could be found in files, database, and software code.
While the registry provided an organized structure to remedy the problem, modification
to eCOIN is needed to enable interaction with the registry. The first step in enabling the
interaction is to make eCOIN aware of the location of the COIN registry. This is done by
adding the regurl property to the eCOIN properties file, known as “coinprops”. The
regurl property stores the URL location of the registry. Recalling that the registry is a
hierarchy of XML files, the URL of the file at the top of the registry hierarchy is the
value that should be stored in the regurl property. At initialization, eCOIN accesses the
registry and automatically retrieves all the information it needs to carry out mediation for
any COIN application. Since the registry is XML-based, the capability to parse XML is
also added to eCOIN.

Figure 9.2 – Navigation Bar for Accessing Textual and Graphical Interfaces

Beside the registry, new to eCOIN are the textual and graphical interfaces. There has
always been a navigation on the eCOIN interface that allowed user to quickly access the
application metadata through the GMM Graphical Editor. To give eCOIN access to the
new interfaces, the navigation bar has to be modified. Figure 9.2 shows the new
navigation bar. The first item in the navigation bar is labeled “Text Interface”. It takes
the user directly to the front page of the textual interface. The next three items, labeled
“Ontology”, “Context”, and “Source”, go to the ontology, context, and source page of the
textual interface respectively. The item labeled “Graphical Viewer” takes user to the
graphical interface. Finally, the one labeled “Internal Representation” brings the user to
the application file viewer.

 77

10 Disaster Relief Application

Although the tent example served us well in demonstrating the capabilities of the COIN
application metadata layer, it is not a realistic example of a COIN application. To stress
test and better assess the capabilities and limitation of the various components of the
metadata layer, the Disaster Relief application is used. In this chapter, an overview of the
Disaster Relief application is first presented, follow by a discussion on the performance
of the metadata layer in various stages of the application development.

10.1 Disaster Relief Application Overview
Whenever natural or man-made disasters strike, the timely deployment of disaster relief
aid is crucial to the recovery process. Since disaster relief efforts are often join efforts
between multiple agencies spanning multiple countries, the contextual difference between
agencies can delay the relief effort significantly. The purpose of the Disaster Relief
application is to demonstrate the ability of the COIN framework in resolving contextual
differences in the realm of disaster relief. In many disaster scenarios, tents play a big role
in disaster relief because victims are often without shelters and tents must be set up to
house those victims. Therefore, the disaster relief application focuses on tents and the
contextual issues associated with them. The kind of users interested in this application
might be logistics personnel who needs to find out which tents are suitable for the given
budget and physical constraints. In the following subsections, the ontology, sources and
contexts of the application are presented, followed by a discussion on the performance of
the user interfaces in capturing those metadata.

10.2 Ontology
The disaster relief application is built with expandability in mind so that more supply
items beside tent can easily be supported by the application in the future. This is
accomplished on the ontology level by modeling for reusable components. Figure 10.1
shows the disaster relief ontology with semantic types grouped into components, which
are indicated by the enclosing boxes. Let us consider the physical measurement
component, where the semantic type physicalMeasurement resides. There are four
semantic types that inherit from physicalMeasurement, and they are weight, length, area,
and volume. The weight semantic type has the modifier weightUnit, and the length
semantic type has modifier lengthUnit. Both are for converting scalar measurements
between different units of measurement. Currently, weightUnit and lengthUnit are
distinct modifiers. But due to their similar nature, it is possible to have just one modifier,
i.e. physicalUnit, on the semantic type physicalMeasurement, and let its children inherit
the modifier. Since many products can be described in terms of physical quantities, the
physical measurement component is highly reusable.

Another useful component is the monetary component where monetaryValue semantic
type resides. This component models the price semantic type and currency modifier. In
reality, this component can be much richer because of the broad range of use for money
amount. Closely related to the monetary value component is the exchange rate
component, where the semantic type exchangeRate resides. This component has a
dateFormat modifier for converting date format. Finally, the product component is where

 78

Figure 10.1 – Componentized Disaster Relief Ontology

the semantic type product and its child reside. There is only the tent semantic type that
inherits from product currently. But more relief supply items can be added as the
application grows. Four basic attributes are identified for the product semantic type, and
they are maker, price, netWeight, and grossWeight. There are obviously other plausible
attributes of product that are not modeled in the ontology. For now, we are primarily
interested in an ontology that allows for room to grow as more relief items are supported.
In addition to the attributes it inherits from product, the tent semantic type also has
attributes of its own, such as floorArea, interiorSpace, packetSize, sleepingCapacity and
usage. The modifier identified for tent is numPerson, which is used for converting the
number of persons that can fit within a tent in different contexts.

The disaster relief ontology is entered in the system through the textual interface. Figure
10.2 and 10.3 show a summarized view of the ontology through the navigation tree of the
graphical interface. Notice that the exchange rate component from the original disaster
relief ontology is not explicitly entered into the system. This is because the exchange rate
component actually belongs to the currency function from the function library. Recall
from the section on conversion function library that, in defining conversion functions,
one also needs to define all supporting elements. The exchange rate component plays
only a supporting role in currency conversion; therefore, it is defined under the currency
library function.

 79

Figure 10.2 – Semantic Types and Modifiers of Disaster Relief Ontology

Figure 10.3 – Attributes of Disaster Relief Ontology

 80

10.3 Source
There are four tent suppliers identified for the disaster relief application. The suppliers
Terranova and Antarctica are England based companies, and the other two suppliers,
eFunctional and Outback, are US based companies. All four suppliers have online
presence, which means that we can write Cameleon web wrappers to query those sites as
relational data sources. However, to keep things simple in our initial approach, we have
decided to model the tent description from each site as tables in a local relational
database. We take four different tents from each of the merchant sites to populate the
corresponding tables with tent properties. Figure 10.4 shows a snapshot of the tent data
as they exist on the database.

Terranova

eFunctional

Outback

Antarctica

Figure 10.4 – Data from Tent Suppliers

Each of the four suppliers is model as a relation in the disaster relief application. These
relations are entered into the system via the textual interface. Figure 10.5 shows the
navigation tree with the “Relation” node fully expanded to show details of each relation.
Behind the scene, there are two more sources that support the application. They are
Cameleon relations for obtaining the currency rate for currency conversion, and unit
conversion factor for physical unit conversion. However, the users of the textual
interface do not need to know how to define them to use them. Please refer to Appendix
I for their definition.

 81

Figure 10.5 – Navigation Tree Showing Relations

10.4 Context
There are four contextual differences identified for the disaster relief application. They
are the currency, weight and length physical units, and sleeping area per person.
Contextual difference in currency simply means that the money amount from each source
might be expressed in different currency. The physical unit difference means the
physical measurement from each source might be expressed in different physical units.
Finally, the contextual difference on sleeping area per person refers to the difference in
acceptable sleeping floor space per person.

There are four source contexts and three receiver contexts identified for the application.
The source contexts are c_terranova for the tent supplier Terranova, c_antarctica for
Antarctica, c_efunctional for eFunctional, and c_outback for Outback. The receiver
contexts are c_us for the country United States, c_uk for England, and c_cuba for Cuba.
Let us examine the modifiers and elevations for these source and receiver contexts.

10.4.1 Modifiers
The modifiers which are currently used in the disaster relief application are currency,
weightUnit, lengthUnit, and numPersons. These modifiers correspond to the four
contextual differences we have identified for the application. The modifier value for
currency is currency symbol, i.e. USD. The modifier value for weightUnit is a unit for
weight, i.e. kg and lb. The modifier value for lengthUnit is a unit for length, such as cm
and in. Finally, the modifier value for numPersons is a string which reads “width x
height”. The length and width corresponds to the minimum floor size required per
person. The unit of length at the end of the string stands for the physical unit the

 82

numbers are represented in. Below is a summary of the modifier values for each source
and receiver context, listed in the order currency, weightUnit, lengthUnit, and
numPersons.

Source Contexts:

• Terra Nova (GBP, kg, cm, “122.0x244.0cm”)
• Antarctica (GBP, kg, cm, “122.0x244.0cm”)
• eFunctional (USD, lb, in, “48.00x96.00in”)
• Outback (USD, lb, in, “48.00x96.00in”)

Receiver Contexts:

• US (USD, lb, in, “48.00x96.00in”)
• UK (GBP, kg, cm, “122.0x244.0cm”)
• Cuba (CUP, kg, cm, “91.00x213.0cm”)

The modifier metadata are entered through the textual interface. Figure 10.6 shows the
navigation tree with all modifier nodes expanded.

Figure 10.6 – Navigation Tree Showing the Modifiers

Since the modifiers weightUnit and lengthUnit are very similar, there are only three
distinct conversion functions in the application. These conversion functions are
responsible for currency conversion, physical unit conversion, and conversion on
sleeping capacity. The currency and physical unit conversions are already part of the
library of functions that are pre-defined for users of the textual interface. Please refer to

 83

appendix I for their definition. The remaining conversion function is the one on sleeping
capacity. The prolog statement below defines this conversion function.

rule(cvt(commutative, sleepingCapacity, _O, numPersons, ctxt, Ms, Vs,
 Mt, Vt),
 ({substring(Ms, 1, 5, Fv1), substring(Ms, 7, 5, Fv2),
 substring(Ms, 12, 2, Fu), substring(Mt, 1, 5, Tv1),
 substring(Mt, 7, 5, Tv2), substring(Mt, 12, 2, Tu)},
 unit_conv_p(Fu2, Tu2, Uf),
 value(Fu2, ctxt, Fu),
 value(Tu2, ctxt, Tu),
 value(Uf, ctxt, Ufv),
 multiply(Fv1, Ufv, Fv11),
 multiply(Fv2, Ufv, Fv21),
 multiply(Fv11, Fv21, Fv3),
 multiply(Vs, Fv3, Ttv),
 divide(Ttv, Tv1, Vt1),
 divide(Vt1, Tv2, Vt))).

This is novel conversion function because it uses the substring function in the native
Prolog processor to parse the modifier value for width, height and unit values. Recall
from earlier that the modifier value for numPersons modifier is in the form “width x
height unit”. Next, the conversion function uses the unit conversion relation to convert
the width and height values from both contexts into a common unit of measurement.
Finally, it performs the arithmetic to find out how many persons from one context can fit
in an area defined for one person in another context. The ratio is the result of the
conversion function.

10.4.2 Elevations
The elevations for the columns in our relations are straight forward in that each column is
mapped to a dedicated semantic type in the ontology. The only exception is that the
weight of a tent can be distinguished into net weight and gross weight. Net weight means
the weight of the tent without any packaging, and gross weight means the weight of the
tent plus all packaging materials. Since both are fundamentally weight types, they are
elevated to the same semantic type weight. Figure 10.7 shows the navigation tree with
elevation nodes expanded.

 84

Figure 10.7 – Navigation Tree Showing Elevations

10.5 Performance Analysis
Since the disaster relief example is a slightly more complex example than the tent
example seen earlier, it helps to point out certain positive and negative issues about the
user interfaces. It is realized that the auto-generated ontological graph becomes
increasingly entangled and less readable as the ontology grows. Figure 10.8 shows the
auto-generated graph for the disaster relief application. The only remedy to the
entanglement of lines in graph is to manually reposition the graph through the exported
XML files discussed in Chapter 6. Manually modifying the pixel positions of each
element in the graph is a painstaking process. This points to the need for a point-and-
click tool for repositioning the ontology. Fortunately, the concept of exporting positional
information is ready built into the graphical interface. The remaining work to be done is
to find a suitable find a suitable graphical tool to support the point-and-click editing.
This topic will be discussed further in the chapter on future work.

As application gets larger, it becomes harder to debug through the Prolog file. This is
true especially for spelling errors. A definite advantage of the user interface is that
spelling mistakes, like all other metadata, are automatically propagated throughout the
entire application. So in effect, it becomes easier to spot. Also, since the user interface is
designed not to ask for the same information twice from the user, a lot of tedious work is
cut out for the users. It is also discovered in the process of developing the application

 85

that the navigation tree from the graphical user interface is very useful for viewing the
entire application at once. This is perhaps due to its ability to hide and show metadata in
different depths of details. These evidences point to the conclusion that the user interface
does not become handicapped as the size of an application grows.

Figure 10.8 – Auto-Generated Ontological Graph

Figure 10.9 – Manually Repositioned Ontological Graph

 86

11 Conclusion and Future Work
The work of this thesis focuses on metadata representation and management. On
metadata representation, a suite of XML-based representation of COIN application is
fashioned, and an intuitive user interface is created. On metadata management, a registry
is set up to provide centralized access of application metadata files. As stated in the
introduction chapter, the objectives of this thesis are (1) separation of knowledge and
representation, (2) human aspect, and (3) knowledge sharing and reuse. An objective
view of the accomplishment of this thesis in terms of these objectives is presented in the
following sections. Suggestions are also made in areas where extra work can bring the
work started by this thesis closer to the objectives.

11.1 Separation of Knowledge and Representation
Like other information acquisition and management system, the COIN Application
Metadata Layer needs to communicate with multiple systems, each with different
standard of knowledge representation. Depending on which party the metadata layer is
interacting with, the application metadata needs to be packaged differently. In
communicating with eCOIN, the metadata must be packaged in Prolog. In interacting
with users, the same metadata must be displayed on a set of screens. To add to the
complexity, the representation demanded by each party may change over time. But since
the metadata layer is designed with separation of knowledge and representation in mind,
these requirements are naturally satisfied. Let us take a closer look at how they are
satisfied.

The knowledge content of the metadata layer is housed in a data structure known as the
Internal COIN Model, or ICM. The ICM is designed purely for use within the metadata
layer, and has no built-in mechanism or logic for dealing with representational issues.
Therefore, ICM is immune to changes in representation standards in outside sources.
Since ICM is a software data structure, it needs to be persisted for permanent storage. To
keep in line with isolating knowledge from representation, the exact ICM schema is
duplicated onto a RDF schema. This means that every class and property in the ICM has
a one-to-one correspondent in RDF. Thus, we are able to maintain the isolation of
knowledge in ICM, as well as in its persisted form, the RDF file.

Having achieved knowledge isolation, there still needs to be an easy and effective way of
representing the metadata to external parties. There are two classes of consumer for the
application metadata; one is the interface user, and the other is non-interface user.
Interface users are human users who interact with the metadata on screen. Since the user
interfaces are software rendered, they can interact with the ICM through the same
software channel. To both facilitate the interaction and maintain the separation of
knowledge and representation, an API is developed for interacting with the ICM. If no
API were used and the ICM data structure were exposed to the user interfaces, then the
user interfaces may develop to rely on the internal representation of ICM. When that
happens, the user interfaces become adversely linked to the ICM. This linkage will break
the separation of knowledge and representation because the ICM can no longer be
redesigned without affecting the user interfaces. Thus, the presence of an API enforces
the separation.

 87

Non-interface users are either external system processes that act on the metadata, or
human users who prefer not to interact with the user interfaces provided. Since the
application metadata stored in ICM is already being persisted in RDF format, it is natural
to use XSLT to satisfy the different representation needs of these non-interface users.
Recall that XSLT is a language for the transformation of XML documents between
different XML-based formats. In using XSLT to encode the transformation needed for
various representations, we are able to maintain the separation of knowledge and
representation. Simply put, we have provided an efficient mean of manipulating
knowledge into different representations; and at the same time, shifted the responsibility
of representation to metadata consumers. A few XSLT documents are built with this
thesis, and are primarily for demonstrating the capability of transforming knowledge into
different representations. These representations include RuleML, RFML, and Prolog
(HTML). Notice that the transformation is bound within the XML domain. However,
this is hardly a limitation because XML has proven itself to be a very capable language
for communicating and storing data. This is apparent in the proliferation of XML
documents that appear on the internet in recent years. In real usage, metadata consumers
can simply obtain the RDF files containing COIN applications, and then apply their own
XSLT to produce their preferred choice of metadata representation.

11.1.1 Conversion Function Builder
The ICM can be improved to better capture conversion function for COIN application.
Currently, the ICM stores each conversion function in Prolog without breaking down the
conversion function into individual, manageable pieces. Upon initial analysis of the
structure of conversion functions, it is realized that each conversion function can be a
miniature COIN application of its own. This is so because conversion functions are
allowed to draw upon separately defined functions for support during a conversion.
These supporting functions can in turn draw upon existing or newly defined semantic
types, attributes, relations, and any other elements of COIN application to accomplish its
role in the conversion. With this understanding of conversion function, it is perhaps
feasible to model each conversion function as a miniature version of COIN application.
In doing so, we can reuse much of the infrastructure we have already built for capturing a
real COIN application.

Although much more work is needed to fully characterize conversion functions, a minor
step that we can take toward this goal is to create a simple conversion function builder.
This conversion function builder can operate under the assumptions that most
conversions in COIN are purely mathematical in nature. This assumption restricts the
definition of conversion functions to simple relationships between operands and
mathematical operators. In designing the user interface for such a conversion function
builder, much wisdom can be borrowed from the Query Builder [18] of eCOIN. The
constraint portion of relational queries and mathematical formulas are alike in that
condition of equality is a recurring theme for both.

11.2 Human Aspect
Another objective of this thesis is to bring human aspect into perspective in the design of
the user interfaces. This is accomplished by introducing a number of easy-to-use and

 88

highly intuitive features on the user interfaces, which aid the users in building COIN
application tremendously. One of these features is the navigation tree that compliments
the graphical interface. The navigation tree allows user one-click access to all aspects of
a COIN application. Furthermore, the elements of COIN application are displayed in a
hierarchical fashion to provide extra insight into the relationships among elements of the
application. However, there has not been enough actual users who have interacted with
the interfaces long enough to declare victory on this front. A number of possible
improvements for the user interfaces are discussed in the following subsections for future
work.

11.2.1 Interactive Graphical Image Panel
One way to improve the graphical interface is to have a fully interactive image panel for
interpreting user’s mouse pointer actions over the ontology graph. Currently, the image
panel in the graphical interface is only a static area for displaying information
graphically. There is much to be desired in a image panel that can react to user
commands. For instance, an interactive panel can allow the user to select and change
elements of the COIN application right over the graphical representation. Simple
reshaping of the ontological graph to untangle lines can be supported through an
interactive panel as well.

11.2.2 Scalar Vector Graphics
Another area of improvement for the graphical interface is in the reshaping of the
ontological graph. Currently, the ontological graph is generated using simple positional
logic that is not robust enough to avoid crossing lines and overlapping objects. The
current interface does allow the positional information of an ontological graph to be
exported in XML format; however, this is only a feasible solution but not an optimal one.
There needs to be some way for the user to graphically modify the exported information.
To build such a graph reshaping interface from scratch requires a lot of effort that are
unrelated to context mediation. Therefore, an ideal solution is to employ third party
software to do the job for us. This is where Scalar Vector Graphics (SVG) fits into the
solution. SVG is a language for describing two-dimensional graphics in XML [19].
There are already graphical viewers and editors developed for SVG. By exporting the
positional information in SVG format, we can point the user to such software for full
graphical manipulation of the ontological graph. An even better solution is to incorporate
one such software into our graphical interface.

11.2.3 COIN Application Metadata in English
To some human users, perhaps a description of a COIN application in English is the most
intuitive way of communicating the metadata. A description of metadata in English is
currently scattered through out the textual interface. For example, the phrase “tent is a
product” is used in the ontology page in describing the existence of semantic types and
their inheritances. A great addition to the textual interface is to provide a consolidated
view of the application by gathering all the description phrases from the various pages in
the textual interface, and produce a consolidated view through a multi-line text box
control.

 89

11.3 Knowledge Sharing and Reuse
An important objective of this thesis is to bring about the sharing and reuse of COIN
application metadata. This objective is accomplished by a combination of design
ingredients introduced in this thesis. The first ingredient is the use of XML-based format
for metadata representation. Having COIN application in RDF greatly increases the
acceptability of COIN metadata in other domains where similar information is used. A
great number of ontology are done in XML languages such as RDF by the modeling
community. Through a common XML-based communication channel, existing ontology
from outside communities can potentially be imported into COIN, and vice versa. In
fact, a research effort here at COIN to investigate the use of XSLT for transforming RDF
ontology into COIN ontology is already underway. Contextual information within COIN
applications is another potentially exportable resource.

The second ingredient that encourages knowledge sharing and reuse is the file-based
registry implemented by this thesis. The registry is a great resource publishing tool that
increases the accessibility of COIN metadata for both internal and external use.
Furthermore, recall that the registry only stores locations of the files and not the files
themselves. This makes it easy for anyone who wants to share their resources via
internet, but wishes to maintain the actual content of the resources.

11.3.1 COIN Registry Manager
An area of future work in resource sharing is the need for a user interface for the file-
based COIN registry. Currently, the registry spans over a collection of files that are
accessible via the internet. Although interacting with these files is not difficult,
managing the content of these files from a human user perspective is. As the number of
COIN applications that are registered in the registry increases, there needs a better way of
browsing the information effectively. A system that manages the registry should allow
for online modification of registry content, such as the registration and removal of COIN
applications.

11.4 File Concurrency
While much of the benefits of file-based design has been discussed, the danger of such
design is rarely mentioned. The inherent danger in a file-based design is that, without
some file-locking and concurrency-resolving mechanism, the content of these files is at
risk of being corrupted. For instance, when two processes both open the same file to
write within the same window of time, the process that finishes the writing last can
overwrite the information written by the earlier process. This is indeed a very
undesirable situation and is one that must be dealt with swiftly. The only reason that it
has not been dealt with in this thesis yet is that the number of users on the system is still
low, low enough to warrant that concurrent file access is rare.

 90

12 References
[1] Cheng Hian Goh. Representing and Reasoning about Semantic Conflicts in
Heterogeneous Information Systems. PhD dissertation, Massachusetts Institute of
Technology, Sloan School of Management, December, 1996.

[2] Stephane Bressan, Cheng Goh, Natalia Levina, Stuart Madnick, Ahmed Shah, and
Michael Siegel. Context Knowledge Representation and Reasoning in the Context
Interchange System. Applied Intelligence 13, 165-180, 2000.

[3] Cheng Hian Goh, Stephane Bressan, Stuart Madnick, and Michael Siegel. Context
Interchange: New Features and Formalisms for the Intelligent Integration of Information.
ACM Transactions on Information Systems, Vol. 17, No. 3, July 1999, Pages 270-293.

[4] Tarik Alatovic. Capabilities Aware Planner/Optimizer/Executioner for Context
Interchange Project. Master thesis, Massachusetts Institute of Technology, Sloan School
of Management, February, 2002.

[5] Usman Y. Mobin. Graphical Metadata Management for the Context Mediation
System. Master thesis, Massachusetts Institute of Technology, Sloan School of
Management, January, 2002.

[6] Aykut Firat, Stuart Madnick, Michael Siegel. The Cameleon Approach to the
Interoperability of Web Sources and Traditional Relational DataBases. Proceedings of
the 10th Annual Workshop On Information Technologies and Systems, Brisbane,
Queensland, Australia, 2000.

[7] The W3C XML Extensible Markup Language Working Group Home Page,
http://www.w3.org/XML/

[8] The World Wide Web Consortium Home Page, http://www.w3.org/

[9] The World Wide Web Consortium Metadata and Resource Description,
http://www.w3.org/Metadata/

[10] The W3C RDF Primer, http://www.w3.org/TR/rdf-primer/

[11] The W3C Uniform Resource Identifier (URI) Activity Statement,
http://www.w3.org/Addressing/Activity

[12] The RuleML Initiative, http://www.dfki.uni-kl.de/ruleml/
[13] Harold Boley, Said Tabet, Gerd Wagner. Design Rationale of RuleML: A Markup
Language for Semantic Web Rules. Proceedings of the Semantic Web Working
Symposium, California, 2001.
[14] Harold Boley. The Relational-Functional Markup Language RFML – Draft
Specification. Germany, 2000.

 91

[15] Translators between RuleML and RFML, http://www.relfun.org/ruleml/rfml-
ruleml.html

[16] W3C Extensible Stylesheet Language Home Page, http://www.w3.org/Style/XSL/

[17] Leon Sterling. The Art of Prolog: Advanced Programming Techniques. MIT Press,
Cambridge, Massachusetts, 1994.

[18] http://interchange.mit.edu:8080/gcms/qb/qbe.jsp

[19] Scalar Vector Graphics homepage,
http://www.w3.org/Graphics/SVG/Overview.htm8

[20] Microsoft .NET Framework homepage,
http://www.microsoft.com/net/basics/framework.asp

 92

Appendix A – Internal COIN Model API

// Coin Model
// Constructors
public Coin_Model()
// Remarks: Simple constructor for Coin_Model
public Coin_Model(string cid, string cname)
// Parameters: cid - COIN application id, cname - COIN application name
// Remarks: Constructor for Coin_Model with parameters

// Methods
public string GetAppId()
// Return value: COIN application id

public void SetAppId(string aid)
// Parameters: aid - COIN application id

public string GetAppName()
// Return value: COIN application name

public void SetAppName(string aname)
// Parameters: aname - COIN application name

// Ontology
public void AddSemanticType(string semName)
// Parameters: semName - name of semantic type to be added
// Remarks: Add a new semantic type with the supplied name to the COIN application

public void RemoveSemanticType(string semTypeName)
// Parameters: semTypeName - name of semantic type to be removed
// Remarks: Remove a semantic type given a semantic type name

public void AddSemanticTypeInheritance(string childName, string parentName)
// Parameters: childName - name of the child semantic type, parentName - name of the parent semantic
type
// Remarks: Add a new inheritance relationship to the COIN application

public void RemoveSemanticTypeInheritance(string childName)
// Parameters: childName - name of the child semantic type in the inheritance relationship
// Remarks: Remove an inheritance relationship given the child semantic type

public void AddSemanticTypeAttribute(string attrName, string semFromName, string semToName)
// Parameters: attrName - name of attribute, semFromName - name of the originating semantic type,
semToName - name of the destination semantic type
// Remarks: Add an attribute relationship to the COIN application

public void RemoveAttribute(string semtypeName, string attrName)
// Parameters: semtypeName - name of the originating semantic type of the attribute to be removed,
attrName - name of the attribute to be removed
// Remarks: Remove an attribute given the attribute and a semantic type name

public void AddSemanticTypeModifier(string modName, string semFromName, string semToName)
// Parameters: modName - name of modifier , semFromName - name of the originating semantic type,
semToName - name of the destination semantic type
// Remarks: Add a modifier relationship to the COIN application

 93

public void RemoveModifier(string semtypeName, string modName)
// Parameters: semtypeName - name of the originating semantic type of the modifier to be removed,
modName - name of the modifier
// Remarks: Remove a modifier relationship given the modifier name and a semantic type name

public Ont_SemanticType GetSemanticType(string semtypeName)
// Parameters: semtypeName - the name of the semantic type to retrieve
// Return value: Ont_Semantic type object
// Remarks: Retrieve a semantic type given the name

public IEnumerator GetAllSemanticType()
// Return value: an enumeration of semantic types
// Remarks: Retrieve all semantic types in the COIN application

public IEnumerator GetAllAttribute()
// Return value: an enumeration of attributes
// Remarks: Retrieve all attributes of the COIN application

public IEnumerator GetAllAttribute(string semtypeName)
// Parameters: semtypeName - the name of the originating semantic type
// Return value: an enumeration of Ont_Attribute
// Remarks: Retrieve all attributes originating for a given semantic type

public Ont_Attribute GetAttribute(string semtypeName, string attrName)
// Parameters: semtypeName - name of the attribute to be retrieved, semtypeName - name of the originating
semantic type of the attribute
// Return value: Ont_Attribute object
// Remarks: Retrieve an attribute given an attribute name and a semantic type name

public IEnumerator GetAllModifier()
// Return value: an enumeration of Ont_Modifier
// Remarks: Retrieve all modifiers from the COIN application

public IEnumerator GetAllModifier(string semtypeName)
// Parameters: semtypeName - name of the originating semantic type
// Return value: an enumeration of Ont_Modifier
// Remarks: Retrieve all modifiers originating from a given semantic type

public Ont_Modifier GetModifier(string semtypeName, string modName)
// Parameters: semtypeName - name of originating semantic type, modName - name of the modifier
// Return value: Ont_Modifier object
// Remarks: Retrieve a modifier given the modifier and a semantic type

// Context
public void AddContext(string cxtName)
// Parameters: cxtName - the name of the context
// Remarks: Add a context by name

public void AddContextSharing(string childName, string parentName)
// Parameters: childName - name of the new context, parentName - name of the context for sharing
// Remarks: Add a context given a name and the context to be shared

public void RemoveContext(string cxtName)
// Parameters: cxtName - name of the context to be removed
// Remarks: Remove a context given a context name

 94

public Cxt_Context GetContext(string cxtName)
// Parameters: cxtName - name of the context to be retrieved
// Return value: Cxt_Context object
// Remarks: Retrieve the context from a given name

public IEnumerator GetAllContext()
// Return value: an enumeration of Cxt_Context
// Remarks: Retrieve all contexts from the COIN application

public void SetModifierValue(string modifiedTypeName, string modifierName, string cxtName, ArrayList
modValueArray)
// Parameters: modifiedTypeName - the name of the semantic type being modified, modifierName - the
name of the modifier,
// cxtName - the name of the context for which the modifier value is defined
// modValueArray - an array of Ont_Attribute or string value which represents the value of a
modifier
// Remarks: Set the modifier value for a modifier for a given context. Dynamic modifier value must an
array of Ont_Attribute. Static modifier value must be an array with one string element.

public void RemoveModifierValue(string semtypeName, string modifierName, string contextName)
// Parameters: semtypeName - the name of the semantic type being modified, modifierName - the name of
the modifier, contextName - the name of the context
// Remarks: Remove the modifier value from a modifier for a given context

public ArrayList GetModifierValue(string semtypeName, string modName, string cxtName)
// Parameters: semtypeName - the name of the originating semantic type, modName - the name of the
modifier, cxtName - the name of the context
// Return value: the modifier value in a array of Ont_Attribute or string
// Remarks: Retrieve the modifier value for a given context. Dynamic modifier value must an array of
Ont_Attribute. Static modifier value must be an array with one string element.

public IEnumerator GetAllModifierByContext(string cxtName)
// Parameters: cxtName - name of the context
// Return value: an enumeration of Ont_Modifier
// Remarks: Retrieve all modifiers with values defined for a given context

public void SetConversionFunction(string modifiedTypeName, string modifierName, string convfunc)
// Parameters: modifiedTypeName - the name of the semantic type being modified, modifierName - the
name of the modifier, convfunc - the conversion function as a string
// Remarks: Set the conversion function for a given modifier. The Conversion function string can be either
a Prolog rule, or the name of a function in the function library.

public void SetRelationElevation(string relationName, string contextName)
// Parameters: reltaionName - name of the relation, contextName - name of the context
// Remarks: Elevate a relation for a given context. The elevated relation will have the relation name with
"_p" attached at the end.

public void RemoveRelationElevation(string relationName, string contextName)
// Parameters: reltaionName - name of the relation, contextName - name of the context
// Remarks: Remove the elevated realtion for a given context

public Src_ElevatedRelation GetElevatedRelation(string relationName, string contextName)
// Parameters: reltaionName - name of the relation, contextName - name of the context
// Return value: Src_ElevatedRelation object
// Remarks: Retrieve the elevated relation for a given context

 95

public Src_ElevatedRelation GetElevatedRelation(string relationName)
// Parameters: relationName - name of the relation
// Return value: Src_ElevatedRelation object
// Remarks: Retrieve the elevated relation for a given relation, assuming that the relation has only been
elevated under one context. If the relation is elevated over multiple context, then an elevated relation from
one of those contexts will be returned.

public void SetColumnElevation(string relationName, string columnName, string semtypeName)
// Parameters: relationName - name of the relation, columnName - name of the column, semtypeName -
name of the semantic type
// Remarks: Elevate the column to a semantic type for a given column in a relation. This assumes that the
relation has been elevated under one context only.

public void SetColumnElevation(string relationName, string columnName, string semtypeName, string
contextName)
// Parameters: relationName - name of the relation, columnName - name of the column, semtypeName -
name of the semantic type, contextName - name of the context
// Remarks: Elevate the column to a semantic type under a given context for a given column in a relation.

public void RemoveColumnElevation(string relationName, string columnName, string contextName)
// Parameters: relationName - name of the relation, columnName - name of the column, contextName -
name of the context
// Remarks: Remove the column elevation for a given column in a relation under a given context.

public void AddElevatedRelation(string erelName, string relationName, string contextName, bool
noContext)
// Parameters: erelName - name of the elevated relation, relationName - name of the relation, contextName
- name of the context, noContext - true if no specific context is associated with the elevation
// Remarks: Elevates a relation for a given context. If noContext is true, contextName can be null.

public void AddElevatedRelation(string relationName, string contextName, bool noContext)
// Parameters: relationName - name of the relation, contextName - name of the context, noContext - true if
no specific context is associated with the elevation
// Remarks: Elevates a relation for a given context where the default elevation name is assigned. The
elevated relation will have the relation name with "_p" attached at the end. If noContext is true,
contextName can be null.

// Source
public void AddRelation(string relationName, bool import, bool export, string sourceName, string
unsupportedOps)
// Parameters: relationName - name of the relation, import - true if relation is importable, export - true if
relation is exportable, sourceName - name of the source, unsupportedOps - comma delimited list of
unsupported operation.
// Remarks: Add a relation with the specified attributes. In the unsupportedOps string, the symbols
<,>,=,<=,=> must be entered as lt,gt,et,le,ge respectively.

public void RemoveRelation(string relName)
// Parameters: relName - name of the relation
// Remarks: Remove the relation with the given name

public void AddColumn(string columnName, string relationName, string columnType, bool isKey)
// Parameters: columnName - name of the column, relationName - name of the relation, columnType -
column type, isKey - true if column is part of key
// Remarks: Add a column to the relation with the supplied column attributes. columnType is commonly
"string" or "number" depending on the data source

 96

public void RemoveColumn(string relationName, string columnName)
// Parameters: relationName - name of the relation, columnName - name of the column
// Remarks: Remove the column given a column name and a relation name

public Src_Relation GetRelation(string relName)
// Parameters: relName - name of relation
// Return value: Src_Relation object
// Remarks: Retrieve a relation given the relation name

public IEnumerator GetAllRelation()
// Return value: an enumeration of Src_Relation object in the COIN application
// Remarks: Retrieve all relations in the COIN application

 97

Appendix B – Navigation Tree Template

Legends
_x : name or string representation of the object
(+) : multiple objects allowed
[x] : optional value
Everything else is invariable text.

 98

Appendix C – Graphical Layout Scheme File

<?xml version="1.0" encoding="utf-8"?>
<EntityPosition
xmlns:xsd="http://www.w3.org/2001/XMLSche
ma"
xmlns:xsi="http://www.w3.org/2001/XMLSche
ma-instance">
 <appid>392</appid>
 <appname>Simple Disaster Relief</appname>
 <width>1000</width>
 <height>2000</height>
 <offsetX>0</offsetX>
 <offsetY>25</offsetY>
 <semtypeWidth>100</semtypeWidth>
 <semtypeHeight>20</semtypeHeight>
 <semtypeStartX>10</semtypeStartX>
 <semtypeStartY>60</semtypeStartY>
 <semtypeSpace>50</semtypeSpace>
 <ontologyWidth>600</ontologyWidth>
 <ontologyHeight>225</ontologyHeight>
 <ontArrowFontSize>8</ontArrowFontSize>
 <titleOffsetX>10</titleOffsetX>
 <titleOffsetY>10</titleOffsetY>
 <titleWidth>500</titleWidth>
 <titleHeight>35</titleHeight>
 <titleFontSize>20</titleFontSize>
 <contextStartX>0</contextStartX>
 <contextStartY>225</contextStartY>
 <contextWidth>600</contextWidth>
 <contextHeight>50</contextHeight>
 <sourceStartX>0</sourceStartX>
 <sourceStartY>275</sourceStartY>
 <sourceWidth>600</sourceWidth>
 <sourceHeight>600</sourceHeight>
 <relStartX>10</relStartX>
 <relStartY>60</relStartY>
 <relColWidth>50</relColWidth>
 <relColHeight>15</relColHeight>
 <relSpace>50</relSpace>

<displayBasicInheritance>false</displayBasicIn
heritance>
 <semanticTypes>
 <Ep_SemanticType>
 <name>product</name>
 <x>10</x>
 <y>85</y>
 <selected>false</selected>
 </Ep_SemanticType>
 <Ep_SemanticType>
 <name>basic</name>
 <x>160</x>
 <y>85</y>
 <selected>false</selected>
 </Ep_SemanticType>

 <Ep_SemanticType>
 <name>tent</name>
 <x>310</x>
 <y>85</y>
 <selected>false</selected>
 </Ep_SemanticType>
 <Ep_SemanticType>
 <name>weight</name>
 <x>460</x>
 <y>85</y>
 <selected>false</selected>
 </Ep_SemanticType>
 </semanticTypes>
 <attributes>
 <Ep_Attribute>
 <name>weight</name>
 <fromSem>
 <name>product</name>
 <x>10</x>
 <y>85</y>
 <selected>false</selected>
 </fromSem>
 <xfrom>110</xfrom>
 <yfrom>95</yfrom>
 <xto>460</xto>
 <yto>95</yto>
 <spline>
 <PointF>
 <X>110</X>
 <Y>95</Y>
 </PointF>
 <PointF>
 <X>226.666672</X>
 <Y>145</Y>
 </PointF>
 <PointF>
 <X>343.333344</X>
 <Y>145</Y>
 </PointF>
 <PointF>
 <X>460</X>
 <Y>95</Y>
 </PointF>
 </spline>
 <selected>false</selected>
 </Ep_Attribute>
 </attributes>
 <modifiers>
 <Ep_Modifier>
 <name>weightUnit</name>
 <fromSem>
 <name>weight</name>
 <x>460</x>
 <y>85</y>

 99

 <selected>false</selected>
 </fromSem>
 <xfrom>460</xfrom>
 <yfrom>95</yfrom>
 <xto>260</xto>
 <yto>95</yto>
 <spline>
 <PointF>
 <X>460</X>
 <Y>95</Y>
 </PointF>
 <PointF>
 <X>393.333344</X>
 <Y>66.42857</Y>
 </PointF>
 <PointF>
 <X>326.666656</X>
 <Y>66.42857</Y>
 </PointF>
 <PointF>
 <X>260</X>
 <Y>95</Y>
 </PointF>
 </spline>
 <selected>false</selected>
 </Ep_Modifier>
 </modifiers>
 <inheritances>
 <Ep_Inheritance>
 <name>is_a</name>
 <xfrom>110</xfrom>
 <yfrom>95</yfrom>
 <xto>160</xto>
 <yto>95</yto>
 <spline>
 <PointF>
 <X>110</X>
 <Y>95</Y>
 </PointF>
 <PointF>
 <X>126.666664</X>
 <Y>102.14286</Y>
 </PointF>
 <PointF>
 <X>143.333328</X>
 <Y>102.14286</Y>
 </PointF>
 <PointF>
 <X>160</X>
 <Y>95</Y>
 </PointF>
 </spline>
 <selected>false</selected>
 <isBasic>true</isBasic>
 </Ep_Inheritance>
 <Ep_Inheritance>

 <name>is_a</name>
 <xfrom>310</xfrom>
 <yfrom>95</yfrom>
 <xto>110</xto>
 <yto>95</yto>
 <spline>
 <PointF>
 <X>310</X>
 <Y>95</Y>
 </PointF>
 <PointF>
 <X>243.333328</X>
 <Y>66.42857</Y>
 </PointF>
 <PointF>
 <X>176.666672</X>
 <Y>66.42857</Y>
 </PointF>
 <PointF>
 <X>110</X>
 <Y>95</Y>
 </PointF>
 </spline>
 <selected>false</selected>
 <isBasic>false</isBasic>
 </Ep_Inheritance>
 <Ep_Inheritance>
 <name>is_a</name>
 <xfrom>460</xfrom>
 <yfrom>95</yfrom>
 <xto>260</xto>
 <yto>95</yto>
 <spline>
 <PointF>
 <X>460</X>
 <Y>95</Y>
 </PointF>
 <PointF>
 <X>393.333344</X>
 <Y>66.42857</Y>
 </PointF>
 <PointF>
 <X>326.666656</X>
 <Y>66.42857</Y>
 </PointF>
 <PointF>
 <X>260</X>
 <Y>95</Y>
 </PointF>
 </spline>
 <selected>false</selected>
 <isBasic>true</isBasic>
 </Ep_Inheritance>
 </inheritances>
 <context>
 <selected>false</selected>

 100

 </context>
 <relations>
 <Ep_Relation>
 <name>dsr_tent_terranova</name>
 <desc>oracle | ie</desc>
 <x>10</x>
 <y>335</y>
 <selected>false</selected>
 <nameCells>
 <Ep_RelationCell>
 <name>Maker</name>
 <x>10</x>
 <y>380</y>
 <selected>false</selected>
 </Ep_RelationCell>
 <Ep_RelationCell>
 <name>Model</name>
 <x>10</x>
 <y>395</y>
 <selected>false</selected>
 </Ep_RelationCell>
 <Ep_RelationCell>
 <name>Name</name>
 <x>10</x>
 <y>410</y>
 <selected>false</selected>
 </Ep_RelationCell>
 <Ep_RelationCell>
 <name>Seasons</name>
 <x>10</x>
 <y>425</y>
 <selected>false</selected>
 </Ep_RelationCell>
 <Ep_RelationCell>
 <name>Sleeps</name>
 <x>10</x>
 <y>440</y>
 <selected>false</selected>
 </Ep_RelationCell>
 <Ep_RelationCell>
 <name>Minimum_weight</name>
 <x>10</x>
 <y>455</y>
 <selected>false</selected>
 </Ep_RelationCell>
 <Ep_RelationCell>
 <name>Floor_area</name>
 <x>10</x>
 <y>470</y>
 <selected>false</selected>
 </Ep_RelationCell>
 <Ep_RelationCell>
 <name>Price</name>
 <x>10</x>
 <y>485</y>
 <selected>false</selected>

 </Ep_RelationCell>
 </nameCells>
 <typeCells>
 <Ep_RelationCell>
 <name>string</name>
 <x>160</x>
 <y>380</y>
 <selected>false</selected>
 </Ep_RelationCell>
 <Ep_RelationCell>
 <name>string</name>
 <x>160</x>
 <y>395</y>
 <selected>false</selected>
 </Ep_RelationCell>
 <Ep_RelationCell>
 <name>string</name>
 <x>160</x>
 <y>410</y>
 <selected>false</selected>
 </Ep_RelationCell>
 <Ep_RelationCell>
 <name>string</name>
 <x>160</x>
 <y>425</y>
 <selected>false</selected>
 </Ep_RelationCell>
 <Ep_RelationCell>
 <name>string</name>
 <x>160</x>
 <y>440</y>
 <selected>false</selected>
 </Ep_RelationCell>
 <Ep_RelationCell>
 <name>string</name>
 <x>160</x>
 <y>455</y>
 <selected>false</selected>
 </Ep_RelationCell>
 <Ep_RelationCell>
 <name>string</name>
 <x>160</x>
 <y>470</y>
 <selected>false</selected>
 </Ep_RelationCell>
 <Ep_RelationCell>
 <name>string</name>
 <x>160</x>
 <y>485</y>
 <selected>false</selected>
 </Ep_RelationCell>
 </typeCells>
 <keyCells>
 <Ep_RelationCell>
 <name />
 <x>60</x>

 101

 <y>380</y>
 <selected>false</selected>
 </Ep_RelationCell>
 <Ep_RelationCell>
 <name>key</name>
 <x>60</x>
 <y>395</y>
 <selected>false</selected>
 </Ep_RelationCell>
 <Ep_RelationCell>
 <name />
 <x>60</x>
 <y>410</y>
 <selected>false</selected>
 </Ep_RelationCell>
 <Ep_RelationCell>
 <name />
 <x>60</x>
 <y>425</y>
 <selected>false</selected>
 </Ep_RelationCell>
 <Ep_RelationCell>
 <name />
 <x>60</x>
 <y>440</y>
 <selected>false</selected>
 </Ep_RelationCell>
 <Ep_RelationCell>
 <name />
 <x>60</x>
 <y>455</y>
 <selected>false</selected>
 </Ep_RelationCell>
 <Ep_RelationCell>
 <name />
 <x>60</x>
 <y>470</y>
 <selected>false</selected>
 </Ep_RelationCell>
 <Ep_RelationCell>
 <name />
 <x>60</x>
 <y>485</y>
 <selected>false</selected>
 </Ep_RelationCell>
 </keyCells>
 <erels>
 <Ep_ElevatedRelation>
 <name>dsr_tent_terranova_p</name>
 <desc>c_uk</desc>
 <x>310</x>
 <y>335</y>
 <selected>false</selected>
 <display>true</display>
 <semCells>
 <Ep_RelationCell>

 <name>basic</name>
 <x>310</x>
 <y>380</y>
 <selected>false</selected>
 </Ep_RelationCell>
 <Ep_RelationCell>
 <name>basic</name>
 <x>310</x>
 <y>395</y>
 <selected>false</selected>
 </Ep_RelationCell>
 <Ep_RelationCell>
 <name>basic</name>
 <x>310</x>
 <y>410</y>
 <selected>false</selected>
 </Ep_RelationCell>
 <Ep_RelationCell>
 <name>basic</name>
 <x>310</x>
 <y>425</y>
 <selected>false</selected>
 </Ep_RelationCell>
 <Ep_RelationCell>
 <name>basic</name>
 <x>310</x>
 <y>440</y>
 <selected>false</selected>
 </Ep_RelationCell>
 <Ep_RelationCell>
 <name>weight</name>
 <x>310</x>
 <y>455</y>
 <selected>false</selected>
 </Ep_RelationCell>
 <Ep_RelationCell>
 <name>basic</name>
 <x>310</x>
 <y>470</y>
 <selected>false</selected>
 </Ep_RelationCell>
 <Ep_RelationCell>
 <name>basic</name>
 <x>310</x>
 <y>485</y>
 <selected>false</selected>
 </Ep_RelationCell>
 </semCells>
 </Ep_ElevatedRelation>
 </erels>
 </Ep_Relation>
 </relations>
</EntityPosition>

 102

Appendix D – COIN Registry DTDs

registries.dtd
<!ELEMENT REGISTRIES (REGISTRY*)>
<!ELEMENT REGISTRY (APPLICAITONS, SOURCES)>
<!ATTLIST REGISTRY name CDATA #REQUIRED>
<!ELEMENT APPLICATIONS (#PCDATA)>
<!ELEMENT SOURCES (#PCDATA)>

applications.dtd
<!ELEMENT APPLICATIONS (APP*)>
<!ELEMENT APP (RDF*, RULEML*, RFML*, PROLOGHTML*, PROLOG*, SCHEMA*)>
<!ATTLIST APP id CDATA #REQUIRED name CDATA #REQUIRED>
<!ELEMENT RDF (#PCDATA)>
<!ELEMENT RULEML (#PCDATA)>
<!ELEMENT RFML (#PCDATA)>
<!ELEMENT PROLOGHTML (#PCDATA)>
<!ELEMENT PROLOG (#PCDATA)>
<!ELEMENT SCHEMA (#PCDATA)>

sources.dtd
<!ELEMENT SOURCES (SOURCE*)>
<!ELEMENT SOURCE (URL, USERNAME?, PASSWORD?, MAXCONNECTION)>
<!ATTLIST SOURCE name CDATA #REQUIRED type CDATA #REQUIRED>
<!ELEMENT URL (#PCDATA)>
<!ELEMENT USERNAME (#PCDATA)>
<!ELEMENT PASSWORD (#PCDATA)>
<!ELEMENT MAXCONNECTION (#PCDATA)>

schema.dtd
<!ELEMENT SCHEMA (SOURCE?, RELATION*, CONTEXT*)>
<!ELEMENT SOURCE (URL, USERNAME?, PASSWORD?, MAXCONNECTION)>
<!ATTLIST SOURCE name CDATA #REQUIRED type CDATA #REQUIRED>
<!ELEMENT URL (#PCDATA)>
<!ELEMENT USERNAME (#PCDATA)>
<!ELEMENT PASSWORD (#PCDATA)>
<!ELEMENT MAXCONNECTION (#PCDATA)>
<!ELEMENT RELATION (SOURCENAME, ATTRIBUTE*, CAPRECORD)>
<!ATTLIST RELATION name CDATA #REQUIRED>
<!ELEMENT SOURCENAME (#PCDATA)>
<!ELEMENT ATTRIBUTE (#PCDATA)>
<!ATTLIST ATTRIBUTE type CDATA #REQUIRED>
<!ELEMENT CAPRECORD (BOUND, UNOPS)>
<!ELEMENT BOUND (#PCDATA)>
<!ELEMENT UNOPS (#PCDATA)>
<!ELEMENT CONTEXT (DESC?)>
<!ATTLIST CONTEXT name CDATA #REQUIRED>
<!ELEMENT DESC (#PCDATA)>

queries.dtd
<!ELEMENT QUERIES (QUERY*)>
<!ELEMENT QUERY (SQL, CONTEXT, DESC)>
<!ATTLIST QUERY name CDATA #REQUIRED>
<!ELEMENT SQL (#PCDATA)>
<!ELEMENT CONTEXT (#PCDATA)>
<!ELEMENT DESC (#PCDATA)>

 103

Appendix E – COIN Application RDF Schema

<?xml version="1.0"?>
<rdf:RDF
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#">

<!-- Application -->
 <rdfs:Class rdf:ID="Application">
 </rdfs:Class>
 <rdf:Property rdf:ID="ApplicationOntology">
 <rdfs:domain rdf:resource="#Application"/>
 <rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>
 </rdf:Property>
 <rdf:Property rdf:ID="ApplicationContext">
 <rdfs:domain rdf:resource="#Application"/>
 <rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>
 </rdf:Property>
 <rdf:Property rdf:ID="ApplicationSource">
 <rdfs:domain rdf:resource="#Application"/>
 <rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>
 </rdf:Property>
 <rdf:Property rdf:ID="ApplicationMisc">
 <rdfs:domain rdf:resource="#Application"/>
 <rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>
 </rdf:Property>

<!-- Semantic Type -->
 <rdfs:Class rdf:ID="Ont_SemanticType">
 </rdfs:Class>
 <rdf:Property rdf:ID="Ont_SemanticTypeName">
 <rdfs:domain rdf:resource="#Ont_SemanticType"/>
 <rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>
 </rdf:Property>
 <rdf:Property rdf:ID="Ont_SemanticTypeParent">
 <rdfs:domain rdf:resource="#Ont_SemanticType"/>
 <rdfs:range rdf:resource="#Ont_SemanticType"/>
 </rdf:Property>

<!-- Attribute -->
 <rdfs:Class rdf:ID="Ont_Attribute">
 </rdfs:Class>
 <rdf:Property rdf:ID="Ont_AttributeName">
 <rdfs:domain rdf:resource="#Ont_Attribute"/>
 <rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>
 </rdf:Property>
 <rdf:Property rdf:ID="Ont_AttributeFrom">
 <rdfs:domain rdf:resource="#Ont_Attribute"/>
 <rdfs:range rdf:resource="#Ont_SemanticType"/>
 </rdf:Property>
 <rdf:Property rdf:ID="Ont_AttributeTo">
 <rdfs:domain rdf:resource="#Ont_Attribute"/>
 <rdfs:range rdf:resource="#Ont_SemanticType"/>
 </rdf:Property>
 <rdf:Property rdf:ID="Ont_AttributeElevationFunction">
 <rdfs:domain rdf:resource="#Ont_Attribute"/>

 104

 <rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>
 </rdf:Property>

<!-- Modifier -->
 <rdfs:Class rdf:ID="Ont_Modifier">
 </rdfs:Class>
 <rdf:Property rdf:ID="Ont_ModifierName">
 <rdfs:domain rdf:resource="#Ont_Modifier"/>
 <rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>
 </rdf:Property>
 <rdf:Property rdf:ID="Ont_ModifierFrom">
 <rdfs:domain rdf:resource="#Ont_Modifier"/>
 <rdfs:range rdf:resource="#Ont_SemanticType"/>
 </rdf:Property>
 <rdf:Property rdf:ID="Ont_ModifierTo">
 <rdfs:domain rdf:resource="#Ont_Modifier"/>
 <rdfs:range rdf:resource="#Ont_SemanticType"/>
 </rdf:Property>
 <rdf:Property rdf:ID="Ont_ModifierConversionFunction">
 <rdfs:domain rdf:resource="#Ont_Modifier"/>
 <rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>
 </rdf:Property>
 <rdf:Property rdf:ID="Ont_ModifierContextValues">
 <rdfs:domain rdf:resource="#Ont_Modifier"/>
 <rdfs:range rdf:resource="#Ont_ModifierContextValuePair"/>
 </rdf:Property>
 <rdfs:Class rdf:ID="Ont_ModifierContextValuePair">
 </rdfs:Class>
 <rdf:Property rdf:ID="Ont_ModifierContext">
 <rdfs:domain rdf:resource="#Ont_ModifierContextValuePair"/>
 <rdfs:range rdf:resource="#Cxt_Context"/>
 </rdf:Property>
 <rdf:Property rdf:ID="Ont_ModifierStaticValue">
 <rdfs:domain rdf:resource="#Ont_ModifierContextValuePair"/>
 <rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>
 </rdf:Property>
 <rdf:Property rdf:ID="Ont_ModifierDynamicValue">
 <rdfs:domain rdf:resource="#Ont_ModifierContextValuePair"/>
 <rdfs:range rdf:resource="#Ont_Attribute"/>
 </rdf:Property>

<!-- Context -->
 <rdfs:Class rdf:ID="Cxt_Context">
 </rdfs:Class>
 <rdf:Property rdf:ID="Cxt_ContextName">
 <rdfs:domain rdf:resource="#Cxt_Context"/>
 <rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>
 </rdf:Property>
 <rdf:Property rdf:ID="Cxt_ContextParent">
 <rdfs:domain rdf:resource="#Cxt_Context"/>
 <rdfs:range rdf:resource="#Cxt_Context"/>
 </rdf:Property>

<!-- Relation -->
 <rdfs:Class rdf:ID="Src_Relation">
 </rdfs:Class>

 105

 <rdf:Property rdf:ID="Src_RelationName">
 <rdfs:domain rdf:resource="#Src_Relation"/>
 <rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>
 </rdf:Property>
 <rdf:Property rdf:ID="Src_RelationImport">
 <rdfs:domain rdf:resource="#Src_Relation"/>
 <rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#boolean"/>
 </rdf:Property>
 <rdf:Property rdf:ID="Src_RelationExport">
 <rdfs:domain rdf:resource="#Src_Relation"/>
 <rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#boolean"/>
 </rdf:Property>
 <rdf:Property rdf:ID="Src_RelationSourceName">
 <rdfs:domain rdf:resource="#Src_Relation"/>
 <rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>
 </rdf:Property>
 <rdf:Property rdf:ID="Src_RelationUnsupportedOps">
 <rdfs:domain rdf:resource="#Src_Relation"/>
 <rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>
 </rdf:Property>

<!-- Column -->
 <rdfs:Class rdf:ID="Src_Column">
 </rdfs:Class>
 <rdf:Property rdf:ID="Src_ColumnName">
 <rdfs:domain rdf:resource="#Src_Column"/>
 <rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>
 </rdf:Property>
 <rdf:Property rdf:ID="Src_ColumnType">
 <rdfs:domain rdf:resource="#Src_Column"/>
 <rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>
 </rdf:Property>
 <rdf:Property rdf:ID="Src_ColumnKeyMember">
 <rdfs:domain rdf:resource="#Src_Column"/>
 <rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#boolean"/>
 </rdf:Property>
 <rdf:Property rdf:ID="Src_ColumnRelation">
 <rdfs:domain rdf:resource="#Src_Column"/>
 <rdfs:range rdf:resource="#Src_Relation"/>
 </rdf:Property>

<!-- Elevated Relation -->
 <rdfs:Class rdf:ID="Src_ElevatedRelation">
 </rdfs:Class>
 <rdf:Property rdf:ID="Src_ElevatedRelationName">
 <rdfs:domain rdf:resource="#Src_ElevatedRelation"/>
 <rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>
 </rdf:Property>
 <rdf:Property rdf:ID="Src_ElevatedRelationRelation">
 <rdfs:domain rdf:resource="#Src_ElevatedRelation"/>
 <rdfs:range rdf:resource="#Src_Relation"/>
 </rdf:Property>
 <rdf:Property rdf:ID="Src_ElevatedRelationContext">
 <rdfs:domain rdf:resource="#Src_ElevatedRelation"/>
 <rdfs:range rdf:resource="#Cxt_Context"/>
 </rdf:Property>

 106

 <rdf:Property rdf:ID="Src_ElevatedRelationColumns">
 <rdfs:domain rdf:resource="#Src_ElevatedRelation"/>
 <rdfs:range rdf:resource="#Src_ElevatedRelationColumnSemanticTypePair"/>
 </rdf:Property>
 <rdfs:Class rdf:ID="Src_ElevatedRelationColumnSemanticTypePair">
 </rdfs:Class>
 <rdf:Property rdf:ID="Src_ElevatedRelationColumn">
 <rdfs:domain rdf:resource="#Src_ElevatedRelationColumnSemanticTypePair"/>
 <rdfs:range rdf:resource="#Src_Column"/>
 </rdf:Property>
 <rdf:Property rdf:ID="Src_ElevatedRelationSemanticType">
 <rdfs:domain rdf:resource="#Src_ElevatedRelationColumnSemanticTypePair"/>
 <rdfs:range rdf:resource="#Ont_SemanticType"/>
 </rdf:Property>

<!-- Helper Function-->
 <rdfs:Class rdf:ID="Misc_HelperFunction">
 </rdfs:Class>
 <rdf:Property rdf:ID="Misc_HelperFunctionBody">
 <rdfs:domain rdf:resource="#Misc_HelperFunction"/>
 <rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>
 </rdf:Property>

</rdf:RDF>

 107

Appendix F – XSLT

F.1 XSLT for RDF -> RuleML

<?xml version="1.0" encoding="ISO-8859-1" ?>
<xsl:stylesheet
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:coin="http://localhost/appEditor/apps/rdf/coin_schema#"
 exclude-result-prefixes="rdf coin"
 version="1.0">
<xsl:output
 omit-xml-declaration="no"
 method="xml" indent="yes" version="1.0" encoding="ISO-8859-1"/>
<?cocoon-process type="xslt"?>

<xsl:variable name="ontology"
select="document(//coin:Application/coin:ApplicationOntology/@rdf:resource)"/>
<xsl:variable name="context"
select="document(//coin:Application/coin:ApplicationContext/@rdf:resource)"/>
<xsl:variable name="source"
select="document(//coin:Application/coin:ApplicationSource/@rdf:resource)"/>
<xsl:variable name="misc" select="document(//coin:Application/coin:ApplicationMisc/@rdf:resource)"/>

<!-- Application -->
<xsl:template match="coin:Application">
 <rulebase>
 <xsl:apply-templates select="$ontology/*/coin:Ont_SemanticType" mode="semanticType"/>
 <xsl:apply-templates select="$ontology/*/coin:Ont_SemanticType" mode="attribute"/>
 <xsl:apply-templates select="$ontology/*/coin:Ont_SemanticType" mode="modifier"/>
 <xsl:apply-templates select="$source/*/coin:Src_Relation" mode="relation"/>
 <xsl:apply-templates select="$source/*/coin:Src_ElevatedRelation" mode="elevatedRelation"/>
 <xsl:apply-templates select="$context/*/coin:Cxt_Context" mode="context"/>
 <xsl:apply-templates select="$ontology/*/coin:Ont_Modifier" mode="modifier"/>
 <xsl:apply-templates select="$ontology/*/coin:Ont_Attribute" mode="attribute"/>
 <xsl:apply-templates select="$ontology/*/coin:Ont_Modifier" mode="convfunc"/>
 <xsl:apply-templates select="$misc/*/coin:Misc_HelperFunction" mode="helpfunc"/>
 </rulebase>
</xsl:template>

<!-- Semantic Types -->
<xsl:template match="coin:Ont_SemanticType" mode="semanticType">
 <imp>
 <_head><atom><_opr><rel>is_a</rel></_opr>
 <xsl:apply-templates select="coin:Ont_SemanticTypeName"/>
 <xsl:choose>
 <xsl:when test="coin:Ont_SemanticTypeParent"><xsl:apply-templates
select="coin:Ont_SemanticTypeParent"/></xsl:when>
 <xsl:otherwise><ind>basic</ind></xsl:otherwise>
 </xsl:choose>
 </atom></_head>
 <_body><atom><_opr><rel /></_opr><ind>true</ind></atom></_body>
 </imp>
</xsl:template>

 108

<xsl:template match="coin:Ont_SemanticTypeName">
 <ind><xsl:value-of select="."/></ind>
</xsl:template>

<xsl:template match="coin:Ont_SemanticTypeParent">
 <ind>
 <xsl:apply-templates select="//coin:Ont_SemanticType" mode="matchSemTypeID">
 <xsl:with-param name="semTypeID" select="substring-after(@rdf:resource, '#')"/>
 </xsl:apply-templates>
 </ind>
</xsl:template>

<xsl:template match="coin:Ont_SemanticType" mode="matchSemTypeID">
 <xsl:param name="semTypeID"/>
 <xsl:if test="@rdf:ID=$semTypeID">
 <xsl:value-of select="coin:Ont_SemanticTypeName"/>
 </xsl:if>
</xsl:template>

<!-- Attributes -->
<xsl:template match="coin:Ont_SemanticType" mode="attribute">
 <imp>
 <_head><atom><_opr><rel>attributes</rel></_opr>
 <ind><xsl:value-of select="coin:Ont_SemanticTypeName"/></ind>
 <cterm><_opc><ctor/></_opc>
 <xsl:apply-templates select="//coin:Ont_Attribute" mode="matchSemType">
 <xsl:with-param name="semTypeID" select="@rdf:ID"/>
 </xsl:apply-templates>
 </cterm></atom></_head>
 <_body><atom><_opr><rel /></_opr><ind>true</ind></atom></_body>
 </imp>
</xsl:template>

<xsl:template match="coin:Ont_Attribute" mode="matchSemType">
 <xsl:param name="semTypeID"/>
 <xsl:if test="substring-after(coin:Ont_AttributeFrom/@rdf:resource, '#')=$semTypeID">
 <ind><xsl:value-of select="coin:Ont_AttributeName"/></ind>
 </xsl:if>
</xsl:template>

<!-- Modifiers-->
<xsl:template match="coin:Ont_SemanticType" mode="modifier">
 <imp>
 <_head><atom><_opr><rel>modifiers</rel></_opr>
 <ind><xsl:value-of select="coin:Ont_SemanticTypeName"/></ind>
 <cterm><_opc><ctor/></_opc>
 <xsl:apply-templates select="//coin:Ont_Modifier" mode="matchSemType">
 <xsl:with-param name="semTypeID" select="@rdf:ID"/>
 </xsl:apply-templates>
 </cterm></atom></_head>
 <_body><atom><_opr><rel /></_opr><ind>true</ind></atom></_body>
 </imp>
</xsl:template>

<xsl:template match="coin:Ont_Modifier" mode="matchSemType">
 <xsl:param name="semTypeID"/>

 109

 <xsl:if test="substring-after(coin:Ont_ModifierFrom/@rdf:resource, '#')=$semTypeID">
 <ind><xsl:value-of select="coin:Ont_ModifierName"/></ind>
 </xsl:if>
</xsl:template>

<!-- Relations-->
<xsl:template match="coin:Src_Relation" mode="relation">
 <imp>
 <_head><atom><_opr><rel>relation</rel></_opr>
 <ind><xsl:value-of select="coin:Src_RelationSourceName"/></ind>
 <ind><xsl:value-of select="coin:Src_RelationName"/></ind>
 <xsl:variable name="import" select="coin:Src_RelationImport"/>
 <xsl:variable name="export" select="coin:Src_RelationExport"/>
 <xsl:choose>
 <xsl:when test="$import='true' and $export='true'"><ind>ie</ind></xsl:when>
 <xsl:when test="$import='true'"><ind>i</ind></xsl:when>
 <xsl:otherwise><ind>e</ind></xsl:otherwise>
 </xsl:choose>
 <cterm><_opc><ctor/></_opc>
 <xsl:apply-templates select="//coin:Src_Column" mode="column">
 <xsl:with-param name="relationID" select="@rdf:ID"/>
 </xsl:apply-templates>
 </cterm>
 <atom><_opr><rel>cap</rel></_opr>
 <cterm><_opc><ctor/></_opc>
 <cterm><_opc><ctor/></_opc>
 <xsl:apply-templates select="//coin:Src_Column" mode="cap">
 <xsl:with-param name="relationID" select="@rdf:ID"/>
 </xsl:apply-templates>
 </cterm>
 </cterm>
 <cterm><_opc><ctor/></_opc>
 <ind><xsl:value-of select="coin:Src_RelationUnsupportedOps"/></ind>
 </cterm>
 </atom>
 </atom></_head>
 <_body><atom><_opr><rel /></_opr><ind>true</ind></atom></_body>
 </imp>
</xsl:template>

<xsl:template match="coin:Src_Column" mode="column">
 <xsl:param name="relationID"/>
 <xsl:if test="substring-after(coin:Src_ColumnRelation/@rdf:resource, '#')=$relationID">
 <cterm><_opc><ctor/></_opc>
 <ind>'<xsl:value-of select="coin:Src_ColumnName"/>'</ind>
 <ind><xsl:value-of select="coin:Src_ColumnType"/></ind>
 </cterm>
 </xsl:if>
</xsl:template>

<xsl:template match="coin:Src_Column" mode="cap">
 <xsl:param name="relationID"/>
 <xsl:if test="substring-after(coin:Src_ColumnRelation/@rdf:resource, '#')=$relationID">
 <xsl:choose>
 <xsl:when test="coin:Src_ColumnKeyMember='true'"><ind>1</ind></xsl:when>
 <xsl:otherwise><ind>0</ind></xsl:otherwise>

 110

 </xsl:choose>
 </xsl:if>
</xsl:template>

<!-- Elevations-->
<xsl:template match="coin:Src_ElevatedRelation" mode="elevatedRelation">
 <imp>
 <_head><atom><_opr><rel><xsl:value-of select="coin:Src_ElevatedRelationName"/></rel></_opr>
 <xsl:apply-templates select="." mode="skolemStr"/>
 </atom></_head>
 <_body><atom><_opr><rel/></_opr>
 <xsl:apply-templates select="." mode="relationStr"/>
 </atom></_body>
 </imp>
</xsl:template>

<xsl:template match="coin:Src_ElevatedRelation" mode="relationStr">
 <xsl:variable name="relationID" select="substring-
after(coin:Src_ElevatedRelationRelation/@rdf:resource,'#')"/>
 <xsl:variable name="relationName"
select="//coin:Src_Relation[@rdf:ID=$relationID]/coin:Src_RelationName"/>
 <atom><_opr><rel><xsl:value-of select="$relationName"/></rel></_opr>
 <xsl:apply-templates select="coin:Src_ElevatedRelationColumns" mode="relationStr"/></atom>
</xsl:template>

<xsl:template match="coin:Src_ElevatedRelationColumns" mode="relationStr">
 <xsl:variable name="pairID" select="substring-after(@rdf:resource,'#')"/>
 <xsl:variable name="colID" select="substring-
after(//coin:Src_ElevatedRelationColumnSemanticTypePair[@rdf:ID=$pairID]/coin:Src_ElevatedRelation
Column/@rdf:resource,'#')"/>
 <var><xsl:value-of select="//coin:Src_Column[@rdf:ID=$colID]/coin:Src_ColumnName"/></var>
</xsl:template>

<xsl:template match="coin:Src_ElevatedRelation" mode="skolemStr">
 <xsl:variable name="cxtID" select="substring-
after(coin:Src_ElevatedRelationContext/@rdf:resource,'#')"/>
 <xsl:variable name="cxtName"
select="$context/*/coin:Cxt_Context[@rdf:ID=$cxtID]/coin:Cxt_ContextName"/>
 <xsl:apply-templates select="coin:Src_ElevatedRelationColumns" mode="skolemStr"><xsl:with-param
name="cxtName" select="$cxtName"/></xsl:apply-templates>
</xsl:template>

<xsl:template match="coin:Src_ElevatedRelationColumns" mode="skolemStr">
 <xsl:param name="cxtName"/>
 <xsl:variable name="pairID" select="substring-after(@rdf:resource,'#')"/>
 <xsl:variable name="colID" select="substring-
after(//coin:Src_ElevatedRelationColumnSemanticTypePair[@rdf:ID=$pairID]/coin:Src_ElevatedRelation
Column/@rdf:resource,'#')"/>
 <xsl:variable name="semTypeID" select="substring-
after(//coin:Src_ElevatedRelationColumnSemanticTypePair[@rdf:ID=$pairID]/coin:Src_ElevatedRelation
SemanticType/@rdf:resource,'#')"/>
 <atom><_opr><rel>skolem</rel></_opr>
 <ind><xsl:value-of
select="$ontology/*/coin:Ont_SemanticType[@rdf:ID=$semTypeID]/coin:Ont_SemanticTypeName"/></i
nd>
 <var><xsl:value-of select="//coin:Src_Column[@rdf:ID=$colID]/coin:Src_ColumnName"/></var>

 111

 <ind><xsl:value-of select="$cxtName"/></ind>
 <ind><xsl:value-of select="position()"/></ind>
 <xsl:apply-templates select=".." mode="relationStr"></xsl:apply-templates>
 </atom>
</xsl:template>

<!-- Context-->
<xsl:template match="coin:Cxt_Context" mode="context">
 <imp>
 <_head><atom><_opr><rel>is_a</rel></_opr>
 <ind><xsl:value-of select="coin:Cxt_ContextName"/></ind>
 <xsl:choose>
 <xsl:when test="coin:Cxt_ContextParent">
 <xsl:variable name="parentID" select="substring-after(coin:Cxt_ContextParent/@rdf:resource,'#')"/>
 <ind><xsl:value-of
select="//coin:Cxt_Context[@rdf:ID=$parentID]/coin:Cxt_ContextName"/></ind>
 </xsl:when>
 <xsl:otherwise><ind>basic</ind></xsl:otherwise>
 </xsl:choose>
 </atom></_head>
 <_body><atom><_opr><rel /></_opr><ind>true</ind></atom></_body>
 </imp>
</xsl:template>

<!-- Modifier-->
<xsl:template match="coin:Ont_Modifier" mode="modifier">
 <xsl:apply-templates select="coin:Ont_ModifierContextValues" mode="modifier">
 <xsl:with-param name="semTypeFromID" select="substring-
after(coin:Ont_ModifierFrom/@rdf:resource,'#')"/>
 <xsl:with-param name="semTypeToID" select="substring-
after(coin:Ont_ModifierTo/@rdf:resource,'#')"/>
 <xsl:with-param name="modifierID" select="@rdf:ID"/>
 </xsl:apply-templates>
</xsl:template>

<xsl:template match="coin:Ont_ModifierContextValues" mode="modifier">
 <xsl:param name="semTypeFromID"/>
 <xsl:param name="semTypeToID"/>
 <xsl:param name="modifierID"/>
 <xsl:variable name="pairID" select="substring-after(@rdf:resource,'#')"/>
 <xsl:apply-templates select="//coin:Ont_ModifierContextValuePair[@rdf:ID=$pairID]"
mode="modifier">
 <xsl:with-param name="semTypeFromID" select="$semTypeFromID"/>
 <xsl:with-param name="semTypeToID" select="$semTypeToID"/>
 <xsl:with-param name="modifierID" select="$modifierID"/>
 </xsl:apply-templates>
</xsl:template>

<xsl:template match="coin:Ont_ModifierContextValuePair" mode="modifier">
 <xsl:param name="semTypeFromID"/>
 <xsl:param name="semTypeToID"/>
 <xsl:param name="modifierID"/>
 <xsl:variable name="cxtID" select="substring-after(coin:Ont_ModifierContext/@rdf:resource,'#')"/>
 <xsl:variable name="cxtName"
select="$context/*/coin:Cxt_Context[@rdf:ID=$cxtID]/coin:Cxt_ContextName"/>
 <imp>

 112

 <_head><atom><_opr><rel>modifier</rel></_opr>
 <ind><xsl:value-of
select="//coin:Ont_SemanticType[@rdf:ID=$semTypeFromID]/coin:Ont_SemanticTypeName"/></ind>
 <var>_O</var>
 <ind><xsl:value-of
select="//coin:Ont_Modifier[@rdf:ID=$modifierID]/coin:Ont_ModifierName"/></ind>
 <ind><xsl:value-of select="$cxtName"/></ind>
 <var>M</var>
 </atom></_head>
 <_body><atom><_opr><rel /></_opr>
 <xsl:choose>
 <xsl:when test="coin:Ont_ModifierStaticValue">
 <atom><_opr><rel>cste</rel></_opr><ind>basic</ind><var>M</var><ind><xsl:value-of
select="$cxtName"/></ind>
 <xsl:variable name="modValue" select="coin:Ont_ModifierStaticValue"/>
 <xsl:choose>
 <xsl:when test="string($modValue)='NaN'"><ind>"<xsl:value-of
select="$modValue"/>"</ind></xsl:when>
 <xsl:otherwise><ind><xsl:value-of select="$modValue"/></ind></xsl:otherwise>
 </xsl:choose>
 </atom>
 </xsl:when>
 <xsl:when test="coin:Ont_ModifierDynamicValue">
 <xsl:apply-templates select="coin:Ont_ModifierDynamicValue" mode="modifier">
 <xsl:with-param name="semTypeFromID" select="$semTypeFromID"/>
 <xsl:with-param name="semTypeToID" select="$semTypeToID"/>
 </xsl:apply-templates>
 </xsl:when>
 </xsl:choose>
 </atom></_body>
 </imp>
</xsl:template>

<xsl:template match="coin:Ont_ModifierDynamicValue" mode="modifier">
 <xsl:param name="semTypeFromID"/>
 <xsl:param name="semTypeToID"/>
 <xsl:variable name="attrID" select="substring-after(@rdf:resource,'#')"/>
 <xsl:variable name="attr" select="//coin:Ont_Attribute[@rdf:ID=$attrID]"/>
 <xsl:variable name="attrFromID" select="substring-after($attr/coin:Ont_AttributeFrom/@rdf:resource,
'#')"/>
 <xsl:variable name="attrToID" select="substring-after($attr/coin:Ont_AttributeTo/@rdf:resource,'#')"/>
 <atom><_opr><rel>attr</rel></_opr>
 <xsl:choose>
 <xsl:when test="$semTypeFromID=$attrFromID"><var>_O</var></xsl:when>
 <xsl:otherwise><ind><xsl:value-of
select="//coin:Ont_SemanticType[@rdf:ID=$attrFromID]/coin:Ont_SemanticTypeName"/></ind></xsl:ot
herwise>
 </xsl:choose>
 <ind><xsl:value-of select="$attr/coin:Ont_AttributeName"/></ind>
 <xsl:choose>
 <xsl:when test="$semTypeToID=$attrToID"><var>M</var></xsl:when>
 <xsl:otherwise><ind><xsl:value-of
select="//coin:Ont_SemanticType[@rdf:ID=$attrToID]/coin:Ont_SemanticTypeName"/></ind></xsl:other
wise>
 </xsl:choose>
 </atom>

 113

</xsl:template>

<!-- Attribute-->
<xsl:template match="coin:Ont_Attribute" mode="attribute">
 <imp>
 <_head><atom><_opr><rel>attr</rel></_opr>
 <var>X</var>
 <ind><xsl:value-of select="coin:Ont_AttributeName"/></ind>
 <var>Y</var></atom></_head>
 <_body><atom><_opr><rel /></_opr>
 <xsl:choose>
 <xsl:when test="coin:Ont_AttributeElevationFunction">
 <ind><xsl:value-of select="coin:Ont_AttributeElevationFunction"/></ind>
 </xsl:when>
 <xsl:otherwise><ind>true</ind></xsl:otherwise>
 </xsl:choose>
 </atom></_body>
 </imp>
</xsl:template>

<!-- Conversion Function-->
<xsl:template match="coin:Ont_Modifier" mode="convfunc">
 <imp>
 <_head><xsl:value-of select="coin:Ont_ModifierConversionFunction"/></_head>
 </imp>
</xsl:template>

<!-- Helper Function-->

</xsl:stylesheet>

 114

F.2 XSLT for RuleML -> RFML

<?xml version="1.0"?>
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform" version="1.0">
<?cocoon-process type="xslt"?>

 <!-- process rulebase and position fact/imp transformers -->
 <xsl:template match="/rulebase">
 <rfml>
 <xsl:apply-templates/>
 </rfml>
 </xsl:template>

 <!-- process a fact, transforming it to a hn clause without premises -->
 <xsl:template match="fact">
 <hn>
 <xsl:apply-templates select="_head" mode="pattop"/>
 </hn>
 </xsl:template>

 <!-- process an imp, transforming it to a hn clause with at least one premise -->
 <xsl:template match="imp">
 <hn>
 <xsl:apply-templates select="_head" mode="pattop"/>
 <xsl:apply-templates select="_body" mode="callop"/>
 </hn>
 </xsl:template>

 <!-- process _head atom as pattop -->
 <xsl:template match="atom" mode="pattop">
 <xsl:call-template name="atomfun">
 <xsl:with-param name="pattorcall">pattop</xsl:with-param>
 </xsl:call-template>
 </xsl:template>

 <!-- process _body atom (skipping possible and) as callop -->
 <xsl:template match="atom" mode="callop">
 <xsl:call-template name="atomfun">
 <xsl:with-param name="pattorcall">callop</xsl:with-param>
 </xsl:call-template>
 </xsl:template>

 <!-- process atom and transform to pattop or callop -->
 <xsl:template name="atomfun">
 <xsl:param name="pattorcall"></xsl:param>
 <xsl:element name="{$pattorcall}">
 <con>
 <xsl:value-of select="_opr/rel"/>
 </con>
 <xsl:for-each select="ind|var|cterm">
 <xsl:apply-templates select="."/>
 </xsl:for-each>
 <xsl:apply-templates select="atom" mode="callop"/>
 </xsl:element>
 </xsl:template>

 115

 <xsl:template match="cterm">
 <struc>
 <con>
 <xsl:value-of select="_opc/ctor"/>
 </con>
 <xsl:for-each select="ind|var|cterm">
 <xsl:apply-templates select="."/>
 </xsl:for-each>
 </struc>
 </xsl:template>

 <xsl:template match="var">
 <var><xsl:value-of select="."/></var>
 </xsl:template>

 <xsl:template match="ind">
 <con><xsl:value-of select="."/></con>
 </xsl:template>

</xsl:stylesheet>

 116

F.3 XSLT for RFML -> Prolog in HTML

<?xml version="1.0" encoding="ISO-8859-1" ?>
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform" version="1.0">

<!-- <xsl:strip-space elements="*"/> -->
 <xsl:template match="rfml">
 <xsl:processing-instruction name="cocoon-format">type="text/html"</xsl:processing-instruction>
 <html>
 <head>
 <style type="text/css">
 </style>
 </head>
 <body bgcolor="#EEEEEE">
 <xsl:apply-templates/>
 </body>
 </html>
 </xsl:template>

 <xsl:template match="hn">
 <xsl:choose>
 <xsl:when test="pattop">
 rule(<xsl:apply-templates select="pattop"/><xsl:if test="count(child::*)>1"><tt>, </tt><xsl:for-each
select="(con|var|struc|callop)"><xsl:apply-templates select="."/><xsl:if test="not(position()=last())"><tt>,
</tt></xsl:if></xsl:for-each></xsl:if>).

 </xsl:when>
 <xsl:otherwise>
 rule(<xsl:value-of select="."/>).

 </xsl:otherwise>
 </xsl:choose>
 </xsl:template>

 <xsl:template match="ft">
 <xsl:apply-templates select="pattop"/><xsl:choose><xsl:when test="count(child::*)>2"><tt> :-
</tt><xsl:for-each select="(con|var|struc|callop)[not(position()=last())]"><xsl:apply-templates
select="."/><xsl:if test="not(position()=last())"><tt>, </tt></xsl:if></xsl:for-each><tt> &
</tt></xsl:when><xsl:otherwise><tt> :& </tt></xsl:otherwise></xsl:choose><xsl:apply-templates
select="(con|var|struc|callop)[position()=last()]"/><tt>.</tt>

 </xsl:template>

 <xsl:template match="callop">
 <xsl:apply-templates
select="(con|var|struc|pattop|callop|op)[position()=1]"/>(<xsl:for-each
select="(con|var|struc|pattop|callop|op)[position()>1]"><xsl:apply-templates select="."/><xsl:if
test="not(position()=last())"><tt>,</tt></xsl:if></xsl:for-each>)</xsl:template>

 <xsl:template match="pattop">
 <xsl:apply-templates select="(con|var|struc|pattop|callop)[position()=1]"/>(<xsl:for-
each select="(con|var|struc|pattop|callop)[position()>1]"><xsl:apply-templates select="."/><xsl:if
test="not(position()=last())"><tt>,</tt></xsl:if></xsl:for-each>)</xsl:template>

 <xsl:template match="struc">
 <xsl:apply-templates select="(con|var|struc)[position()=1]"/>[<xsl:for-each
select="(con|var|struc)[position()>1]"><xsl:apply-templates select="."/><xsl:if
test="not(position()=last())"><tt>,</tt></xsl:if></xsl:for-each>]</xsl:template>

 117

 <xsl:template match="op">{<xsl:for-each select="(con|var|struc|callop|op)[position()>0]"><xsl:apply-
templates select="."/><xsl:if test="not(position()=last())"><tt>,</tt></xsl:if></xsl:for-
each>}</xsl:template>

 <xsl:template match="var">
 <i><xsl:value-of select="."/></i>
 </xsl:template>

 <xsl:template match="con">
 <xsl:value-of select="."/>
 </xsl:template>

</xsl:stylesheet>

 118

Appendix G – Tent Example in Various Formats

G.1 Tent Example in RDF

application392.rdf
<?xml version="1.0"?>
<!--prolog engine version 1-->
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:coin="http://localhost/appEditor/apps/rdf/coin_schema#">
 <coin:Application rdf:ID="application392">
 <coin:ApplicationOntology rdf:resource="http://localhost/appEditor/apps/rdf/ontology392.rdf" />
 <coin:ApplicationContext rdf:resource="http://localhost/appEditor/apps/rdf/context392.rdf" />
 <coin:ApplicationSource rdf:resource="http://localhost/appEditor/apps/rdf/source392.rdf" />
 <coin:ApplicationMisc rdf:resource="http://localhost/appEditor/apps/rdf/misc392.rdf" />
 </coin:Application>
</rdf:RDF>

ontology392.rdf
<?xml version="1.0"?>
<!--prolog engine version 1-->
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:coin="http://localhost/appEditor/apps/rdf/coin_schema#">
 <!--Semantic Types-->
 <coin:Ont_SemanticType rdf:ID="product">
 <coin:Ont_SemanticTypeName>product</coin:Ont_SemanticTypeName>
 <coin:Ont_SemanticTypeParent rdf:resource="#basic" />
 </coin:Ont_SemanticType>
 <coin:Ont_SemanticType rdf:ID="basic">
 <coin:Ont_SemanticTypeName>basic</coin:Ont_SemanticTypeName>
 </coin:Ont_SemanticType>
 <coin:Ont_SemanticType rdf:ID="tent">
 <coin:Ont_SemanticTypeName>tent</coin:Ont_SemanticTypeName>
 <coin:Ont_SemanticTypeParent rdf:resource="#product" />
 </coin:Ont_SemanticType>
 <coin:Ont_SemanticType rdf:ID="weight">
 <coin:Ont_SemanticTypeName>weight</coin:Ont_SemanticTypeName>
 <coin:Ont_SemanticTypeParent rdf:resource="#basic" />
 </coin:Ont_SemanticType>
 <!--Attributes-->
 <coin:Ont_Attribute rdf:ID="weight">
 <coin:Ont_AttributeName>weight</coin:Ont_AttributeName>
 <coin:Ont_AttributeFrom rdf:resource="#product" />
 <coin:Ont_AttributeTo rdf:resource="#weight" />
 <coin:Ont_AttributeElevationFunction />
 </coin:Ont_Attribute>
 <!--Modifiers-->
 <coin:Ont_Modifier rdf:ID="weightUnit">
 <coin:Ont_ModifierName>weightUnit</coin:Ont_ModifierName>
 <coin:Ont_ModifierFrom rdf:resource="#weight" />
 <coin:Ont_ModifierTo rdf:resource="#basic" />

<coin:Ont_ModifierConversionFunction>lib_physical_unit|weight|weightUnit</coin:Ont_ModifierConvers
ionFunction>
 <coin:Ont_ModifierContextValues rdf:resource="#weightUnitc_us" />

 119

 <coin:Ont_ModifierContextValues rdf:resource="#weightUnitc_uk" />
 </coin:Ont_Modifier>
 <coin:Ont_ModifierContextValuePair rdf:ID="weightUnitc_us">
 <coin:Ont_ModifierContext rdf:resource="http://localhost/appEditor/apps/rdf/context392.rdf#c_us" />
 <coin:Ont_ModifierStaticValue>lb</coin:Ont_ModifierStaticValue>
 </coin:Ont_ModifierContextValuePair>
 <coin:Ont_ModifierContextValuePair rdf:ID="weightUnitc_uk">
 <coin:Ont_ModifierContext rdf:resource="http://localhost/appEditor/apps/rdf/context392.rdf#c_uk" />
 <coin:Ont_ModifierStaticValue>kg</coin:Ont_ModifierStaticValue>
 </coin:Ont_ModifierContextValuePair>
</rdf:RDF>

context392.rdf
<?xml version="1.0"?>
<!--prolog engine version 1-->
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:coin="http://localhost/appEditor/apps/rdf/coin_schema#">
 <!--Contexts-->
 <coin:Cxt_Context rdf:ID="c_us">
 <coin:Cxt_ContextName>c_us</coin:Cxt_ContextName>
 </coin:Cxt_Context>
 <coin:Cxt_Context rdf:ID="c_uk">
 <coin:Cxt_ContextName>c_uk</coin:Cxt_ContextName>
 </coin:Cxt_Context>
</rdf:RDF>

source392.rdf
<?xml version="1.0"?>
<!--prolog engine version 1-->
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:coin="http://localhost/appEditor/apps/rdf/coin_schema#">
 <!--Relations-->
 <coin:Src_Relation rdf:ID="dsr_tent_terranova">
 <coin:Src_RelationName>dsr_tent_terranova</coin:Src_RelationName>
 <coin:Src_RelationImport>true</coin:Src_RelationImport>
 <coin:Src_RelationExport>true</coin:Src_RelationExport>
 <coin:Src_RelationSourceName>oracle</coin:Src_RelationSourceName>
 <coin:Src_RelationUnsupportedOps />
 </coin:Src_Relation>
 <!--Columns-->
 <coin:Src_Column rdf:ID="Maker">
 <coin:Src_ColumnName>Maker</coin:Src_ColumnName>
 <coin:Src_ColumnType>string</coin:Src_ColumnType>
 <coin:Src_ColumnKeyMember>false</coin:Src_ColumnKeyMember>
 <coin:Src_ColumnRelation rdf:resource="#dsr_tent_terranova" />
 </coin:Src_Column>
 <coin:Src_Column rdf:ID="Model">
 <coin:Src_ColumnName>Model</coin:Src_ColumnName>
 <coin:Src_ColumnType>string</coin:Src_ColumnType>
 <coin:Src_ColumnKeyMember>true</coin:Src_ColumnKeyMember>
 <coin:Src_ColumnRelation rdf:resource="#dsr_tent_terranova" />
 </coin:Src_Column>
 <coin:Src_Column rdf:ID="Name">
 <coin:Src_ColumnName>Name</coin:Src_ColumnName>
 <coin:Src_ColumnType>string</coin:Src_ColumnType>

 120

 <coin:Src_ColumnKeyMember>false</coin:Src_ColumnKeyMember>
 <coin:Src_ColumnRelation rdf:resource="#dsr_tent_terranova" />
 </coin:Src_Column>
 <coin:Src_Column rdf:ID="Seasons">
 <coin:Src_ColumnName>Seasons</coin:Src_ColumnName>
 <coin:Src_ColumnType>string</coin:Src_ColumnType>
 <coin:Src_ColumnKeyMember>false</coin:Src_ColumnKeyMember>
 <coin:Src_ColumnRelation rdf:resource="#dsr_tent_terranova" />
 </coin:Src_Column>
 <coin:Src_Column rdf:ID="Sleeps">
 <coin:Src_ColumnName>Sleeps</coin:Src_ColumnName>
 <coin:Src_ColumnType>string</coin:Src_ColumnType>
 <coin:Src_ColumnKeyMember>false</coin:Src_ColumnKeyMember>
 <coin:Src_ColumnRelation rdf:resource="#dsr_tent_terranova" />
 </coin:Src_Column>
 <coin:Src_Column rdf:ID="Minimum_weight">
 <coin:Src_ColumnName>Minimum_weight</coin:Src_ColumnName>
 <coin:Src_ColumnType>string</coin:Src_ColumnType>
 <coin:Src_ColumnKeyMember>false</coin:Src_ColumnKeyMember>
 <coin:Src_ColumnRelation rdf:resource="#dsr_tent_terranova" />
 </coin:Src_Column>
 <coin:Src_Column rdf:ID="Floor_area">
 <coin:Src_ColumnName>Floor_area</coin:Src_ColumnName>
 <coin:Src_ColumnType>string</coin:Src_ColumnType>
 <coin:Src_ColumnKeyMember>false</coin:Src_ColumnKeyMember>
 <coin:Src_ColumnRelation rdf:resource="#dsr_tent_terranova" />
 </coin:Src_Column>
 <coin:Src_Column rdf:ID="Price">
 <coin:Src_ColumnName>Price</coin:Src_ColumnName>
 <coin:Src_ColumnType>string</coin:Src_ColumnType>
 <coin:Src_ColumnKeyMember>false</coin:Src_ColumnKeyMember>
 <coin:Src_ColumnRelation rdf:resource="#dsr_tent_terranova" />
 </coin:Src_Column>
 <!--Elevated Relations-->
 <coin:Src_ElevatedRelation rdf:ID="dsr_tent_terranova_p">
 <coin:Src_ElevatedRelationName>dsr_tent_terranova_p</coin:Src_ElevatedRelationName>
 <coin:Src_ElevatedRelationRelation rdf:resource="#dsr_tent_terranova" />
 <coin:Src_ElevatedRelationContext rdf:resource="#c_uk" />
 <coin:Src_ElevatedRelationColumns rdf:resource="#dsr_tent_terranova_pMaker" />
 <coin:Src_ElevatedRelationColumns rdf:resource="#dsr_tent_terranova_pModel" />
 <coin:Src_ElevatedRelationColumns rdf:resource="#dsr_tent_terranova_pName" />
 <coin:Src_ElevatedRelationColumns rdf:resource="#dsr_tent_terranova_pSeasons" />
 <coin:Src_ElevatedRelationColumns rdf:resource="#dsr_tent_terranova_pSleeps" />
 <coin:Src_ElevatedRelationColumns rdf:resource="#dsr_tent_terranova_pMinimum_weight" />
 <coin:Src_ElevatedRelationColumns rdf:resource="#dsr_tent_terranova_pFloor_area" />
 <coin:Src_ElevatedRelationColumns rdf:resource="#dsr_tent_terranova_pPrice" />
 </coin:Src_ElevatedRelation>
 <coin:Src_ElevatedRelationColumnSemanticTypePair rdf:ID="dsr_tent_terranova_pMaker">
 <coin:Src_ElevatedRelationColumn rdf:resource="#Maker" />
 <coin:Src_ElevatedRelationSemanticType
rdf:resource="http://localhost/appEditor/apps/rdf/ontology392.rdf#basic" />
 </coin:Src_ElevatedRelationColumnSemanticTypePair>
 <coin:Src_ElevatedRelationColumnSemanticTypePair rdf:ID="dsr_tent_terranova_pModel">
 <coin:Src_ElevatedRelationColumn rdf:resource="#Model" />
 <coin:Src_ElevatedRelationSemanticType
rdf:resource="http://localhost/appEditor/apps/rdf/ontology392.rdf#basic" />

 121

 </coin:Src_ElevatedRelationColumnSemanticTypePair>
 <coin:Src_ElevatedRelationColumnSemanticTypePair rdf:ID="dsr_tent_terranova_pName">
 <coin:Src_ElevatedRelationColumn rdf:resource="#Name" />
 <coin:Src_ElevatedRelationSemanticType
rdf:resource="http://localhost/appEditor/apps/rdf/ontology392.rdf#basic" />
 </coin:Src_ElevatedRelationColumnSemanticTypePair>
 <coin:Src_ElevatedRelationColumnSemanticTypePair rdf:ID="dsr_tent_terranova_pSeasons">
 <coin:Src_ElevatedRelationColumn rdf:resource="#Seasons" />
 <coin:Src_ElevatedRelationSemanticType
rdf:resource="http://localhost/appEditor/apps/rdf/ontology392.rdf#basic" />
 </coin:Src_ElevatedRelationColumnSemanticTypePair>
 <coin:Src_ElevatedRelationColumnSemanticTypePair rdf:ID="dsr_tent_terranova_pSleeps">
 <coin:Src_ElevatedRelationColumn rdf:resource="#Sleeps" />
 <coin:Src_ElevatedRelationSemanticType
rdf:resource="http://localhost/appEditor/apps/rdf/ontology392.rdf#basic" />
 </coin:Src_ElevatedRelationColumnSemanticTypePair>
 <coin:Src_ElevatedRelationColumnSemanticTypePair rdf:ID="dsr_tent_terranova_pMinimum_weight">
 <coin:Src_ElevatedRelationColumn rdf:resource="#Minimum_weight" />
 <coin:Src_ElevatedRelationSemanticType
rdf:resource="http://localhost/appEditor/apps/rdf/ontology392.rdf#weight" />
 </coin:Src_ElevatedRelationColumnSemanticTypePair>
 <coin:Src_ElevatedRelationColumnSemanticTypePair rdf:ID="dsr_tent_terranova_pFloor_area">
 <coin:Src_ElevatedRelationColumn rdf:resource="#Floor_area" />
 <coin:Src_ElevatedRelationSemanticType
rdf:resource="http://localhost/appEditor/apps/rdf/ontology392.rdf#basic" />
 </coin:Src_ElevatedRelationColumnSemanticTypePair>
 <coin:Src_ElevatedRelationColumnSemanticTypePair rdf:ID="dsr_tent_terranova_pPrice">
 <coin:Src_ElevatedRelationColumn rdf:resource="#Price" />
 <coin:Src_ElevatedRelationSemanticType
rdf:resource="http://localhost/appEditor/apps/rdf/ontology392.rdf#basic" />
 </coin:Src_ElevatedRelationColumnSemanticTypePair>
</rdf:RDF>

misc392.rdf
<?xml version="1.0"?>
<!--prolog engine version 1-->
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:coin="http://localhost/appEditor/apps/rdf/coin_schema#">
 <!--Miscellaneous-->
</rdf:RDF>

 122

G.2 Tent Example in RuleML

<?xml version="1.0"?>
<rulebase>
 <imp>
 <_head><atom><_opr><rel>is_a</rel></_opr><ind>product</ind><ind>basic</ind></atom></_head>
 <_body><atom><_opr><rel /></_opr><ind>true</ind></atom></_body>
 </imp>
 <imp>
 <_head><atom><_opr><rel>is_a</rel></_opr><ind>basic</ind><ind>basic</ind></atom></_head>
 <_body><atom><_opr><rel /></_opr><ind>true</ind></atom></_body>
 </imp>
 <imp>
 <_head><atom><_opr><rel>is_a</rel></_opr><ind>tent</ind><ind>product</ind></atom></_head>
 <_body><atom><_opr><rel /></_opr><ind>true</ind></atom></_body>
 </imp>
 <imp>
 <_head><atom><_opr><rel>is_a</rel></_opr><ind>weight</ind><ind>basic</ind></atom></_head>
 <_body><atom><_opr><rel /></_opr><ind>true</ind></atom></_body>
 </imp>
 <imp>
 <_head><atom><_opr><rel>attributes</rel></_opr><ind>product</ind>
 <cterm><_opc><ctor /></_opc><ind>weight</ind></cterm></atom>
 </_head>
 <_body><atom><_opr><rel /></_opr><ind>true</ind></atom></_body>
 </imp>
 <imp>
 <_head><atom><_opr><rel>attributes</rel></_opr><ind>basic</ind>
 <cterm><_opc><ctor /></_opc></cterm></atom></_head>
 <_body><atom><_opr><rel /></_opr><ind>true</ind></atom></_body>
 </imp>
 <imp>
 <_head><atom><_opr><rel>attributes</rel></_opr><ind>tent</ind>
 <cterm><_opc><ctor /></_opc></cterm></atom></_head>
 <_body><atom><_opr><rel /></_opr><ind>true</ind></atom></_body>
 </imp>
 <imp>
 <_head><atom><_opr><rel>attributes</rel></_opr><ind>weight</ind>
 <cterm><_opc><ctor /></_opc></cterm></atom></_head>
 <_body><atom><_opr><rel /></_opr><ind>true</ind></atom></_body>
 </imp>
 <imp>
 <_head><atom><_opr><rel>modifiers</rel></_opr><ind>product</ind>
 <cterm><_opc><ctor /></_opc></cterm></atom></_head>
 <_body><atom><_opr><rel /></_opr><ind>true</ind></atom></_body>
 </imp>
 <imp>
 <_head><atom><_opr><rel>modifiers</rel></_opr><ind>basic</ind>
 <cterm><_opc><ctor /></_opc></cterm></atom></_head>
 <_body><atom><_opr><rel /></_opr><ind>true</ind></atom></_body>
 </imp>
 <imp>
 <_head><atom><_opr><rel>modifiers</rel></_opr><ind>tent</ind>
 <cterm><_opc><ctor /></_opc></cterm></atom></_head>
 <_body><atom><_opr><rel /></_opr><ind>true</ind></atom></_body>

 123

 </imp>
 <imp>
 <_head><atom><_opr><rel>modifiers</rel></_opr><ind>weight</ind>
 <cterm><_opc><ctor /></_opc><ind>weightUnit</ind></cterm></atom></_head>
 <_body><atom><_opr><rel /></_opr><ind>true</ind></atom></_body>
 </imp>
 <imp>
 <_head><atom><_opr><rel>relation</rel></_opr><ind>oracle</ind><ind>dsr_tent_terranova</ind>
 <ind>ie</ind>
 <cterm><_opc><ctor /></_opc>
 <cterm><_opc><ctor /></_opc><ind>'Maker'</ind><ind>string</ind></cterm>
 <cterm><_opc><ctor /></_opc><ind>'Model'</ind><ind>string</ind></cterm>
 <cterm><_opc><ctor /></_opc><ind>'Name'</ind><ind>string</ind></cterm>
 <cterm><_opc><ctor /></_opc><ind>'Seasons'</ind><ind>string</ind>/cterm>
 <cterm><_opc><ctor /></_opc><ind>'Sleeps'</ind><ind>string</ind></cterm>
 <cterm><_opc><ctor /></_opc><ind>'Minimum_weight'</ind><ind>string</ind></cterm>
 <cterm><_opc><ctor /></_opc><ind>'Floor_area'</ind><ind>string</ind></cterm>
 <cterm><_opc><ctor /></_opc><ind>'Price'</ind><ind>string</ind></cterm>
 </cterm>
 <atom><_opr><rel>cap</rel></_opr>
 <cterm><_opc><ctor /></_opc>
 <cterm><_opc><ctor /> </_opc>
 <ind>0</ind><ind>1</ind><ind>0</ind><ind>0</ind><ind>0</ind>
 <ind>0</ind><ind>0</ind><ind>0</ind>
 </cterm>
 </cterm>
 <cterm><_opc><ctor /></_opc><ind></ind></cterm>
 </atom></atom></_head>
 <_body><atom><_opr><rel /></_opr><ind>true</ind></atom></_body>
 </imp>
 <imp>
 <_head>
 <atom>
 <_opr><rel>dsr_tent_terranova_p</rel></_opr>
 <atom><_opr><rel>skolem</rel></_opr>
 <ind>basic</ind><var>Maker</var><ind>c_uk</ind><ind>1</ind>
 <atom><_opr><rel>dsr_tent_terranova</rel></_opr><var>Maker</var>
 <var>Model</var><var>Name</var><var>Seasons</var><var>Sleeps</var>
 <var>Minimum_weight</var><var>Floor_area</var><var>Price</var></atom></atom>
 <atom><_opr><rel>skolem</rel></_opr>
 <ind>basic</ind><var>Model</var><ind>c_uk</ind><ind>2</ind>
 <atom><_opr><rel>dsr_tent_terranova</rel></_opr><var>Maker</var>
 <var>Model</var><var>Name</var><var>Seasons</var><var>Sleeps</var>
 <var>Minimum_weight</var><var>Floor_area</var><var>Price</var></atom></atom>
 <atom><_opr><rel>skolem</rel></_opr>
 <ind>basic</ind><var>Name</var><ind>c_uk</ind><ind>3</ind>
 <atom><_opr><rel>dsr_tent_terranova</rel></_opr><var>Maker</var>
 <var>Model</var><var>Name</var><var>Seasons</var><var>Sleeps</var>
 <var>Minimum_weight</var><var>Floor_area</var><var>Price</var></atom></atom>
 <atom><_opr><rel>skolem</rel></_opr>
 <ind>basic</ind><var>Seasons</var><ind>c_uk</ind><ind>4</ind>
 <atom><_opr><rel>dsr_tent_terranova</rel></_opr><var>Maker</var>
 <var>Model</var><var>Name</var><var>Seasons</var><var>Sleeps</var>
 <var>Minimum_weight</var><var>Floor_area</var><var>Price</var></atom></atom>
 <atom><_opr><rel>skolem</rel></_opr>
 <ind>basic</ind><var>Sleeps</var><ind>c_uk</ind><ind>5</ind>

 124

 <atom><_opr><rel>dsr_tent_terranova</rel></_opr><var>Maker</var>
 <var>Model</var><var>Name</var><var>Seasons</var><var>Sleeps</var>
 <var>Minimum_weight</var><var>Floor_area</var><var>Price</var></atom></atom>
 <atom><_opr><rel>skolem</rel></_opr>
 <ind>weight</ind><var>Minimum_weight</var><ind>c_uk</ind><ind>6</ind>
 <atom><_opr><rel>dsr_tent_terranova</rel></_opr><var>Maker</var>
 <var>Model</var><var>Name</var><var>Seasons</var><var>Sleeps</var>
 <var>Minimum_weight</var><var>Floor_area</var><var>Price</var></atom></atom>
 <atom><_opr><rel>skolem</rel></_opr>
 <ind>basic</ind><var>Floor_area</var><ind>c_uk</ind><ind>7</ind>
 <atom><_opr><rel>dsr_tent_terranova</rel></_opr><var>Maker</var>
 <var>Model</var><var>Name</var><var>Seasons</var><var>Sleeps</var>
 <var>Minimum_weight</var><var>Floor_area</var><var>Price</var></atom></atom>
 <atom><_opr><rel>skolem</rel></_opr>
 <ind>basic</ind><var>Price</var><ind>c_uk</ind><ind>8</ind>
 <atom><_opr><rel>dsr_tent_terranova</rel></_opr><var>Maker</var>
 <var>Model</var><var>Name</var><var>Seasons</var><var>Sleeps</var>
 <var>Minimum_weight</var><var>Floor_area</var><var>Price</var></atom></atom>
 </atom></_head>
 <_body><atom><_opr><rel /></_opr><atom><_opr><rel>dsr_tent_terranova</rel></_opr>
 <var>Maker</var><var>Model</var><var>Name</var><var>Seasons</var>
 <var>Sleeps</var><var>Minimum_weight</var><var>Floor_area</var><var>Price</var>
 </atom></atom></_body>
 </imp>
 <imp>
 <_head><atom><_opr><rel>is_a</rel></_opr><ind>c_us</ind><ind>basic</ind></atom></_head>
 <_body><atom><_opr><rel /></_opr><ind>true</ind></atom></_body>
 </imp>
 <imp>
 <_head><atom><_opr><rel>is_a</rel></_opr><ind>c_uk</ind><ind>basic</ind></atom></_head>
 <_body><atom><_opr><rel /></_opr><ind>true</ind></atom></_body>
 </imp>
 <imp>
 <_head><atom><_opr><rel>modifier</rel></_opr><ind>weight</ind>
 <var>_O</var><ind>weightUnit</ind><ind>c_us</ind><var>M</var></atom></_head>
 <_body><atom><_opr><rel /></_opr><atom><_opr><rel>cste</rel></_opr>
 <ind>basic</ind><var>M</var><ind>c_us</ind><ind>lb</ind></atom></atom></_body>
 </imp>
 <imp>
 <_head><atom><_opr><rel>modifier</rel></_opr><ind>weight</ind>
 <var>_O</var><ind>weightUnit</ind><ind>c_uk</ind><var>M</var></atom></_head>
 <_body><atom><_opr><rel /></_opr><atom><_opr><rel>cste</rel></_opr>
 <ind>basic</ind><var>M</var><ind>c_uk</ind><ind>kg</ind></atom></atom></_body>
 </imp>
 <imp>
 <_head><atom><_opr><rel>attr</rel></_opr><var>X</var><ind>weight</ind>
 <var>Y</var></atom></_head>
 <_body><atom><_opr><rel /></_opr><ind></ind></atom></_body>
 </imp>
 <imp>
 <_head>lib_physical_unit|weight|weightUnit</_head>
 </imp>
</rulebase>

 125

G.3 Tent Example in RFML

<?xml version="1.0"?>
<rfml>
 <hn>
 <pattop><con>is_a</con><con>product</con><con>basic</con></pattop>
 <callop><con></con><con>true</con></callop>
 </hn>
 <hn>
 <pattop><con>is_a</con><con>basic</con><con>basic</con></pattop>
 <callop><con></con><con>true</con></callop>
 </hn>
 <hn>
 <pattop><con>is_a</con><con>tent</con><con>product</con></pattop>
 <callop><con></con><con>true</con></callop>
 </hn>
 <hn>
 <pattop><con>is_a</con><con>weight</con><con>basic</con></pattop>
 <callop><con></con><con>true</con></callop>
 </hn>
 <hn>
 <pattop><con>attributes</con><con>product</con>
 <struc><con></con><con>weight</con></struc></pattop>
 <callop><con></con><con>true</con></callop>
 </hn>
 <hn>
 <pattop><con>attributes</con><con>basic</con><struc><con></con></struc></pattop>
 <callop><con></con><con>true</con></callop>
 </hn>
 <hn>
 <pattop><con>attributes</con><con>tent</con><struc><con></con></struc></pattop>
 <callop><con></con><con>true</con></callop>
 </hn>
 <hn>
 <pattop><con>attributes</con><con>weight</con><struc><con></con></struc></pattop>
 <callop><con></con><con>true</con></callop>
 </hn>
 <hn>
 <pattop><con>modifiers</con><con>product</con><struc><con></con></struc></pattop>
 <callop><con></con><con>true</con></callop>
 </hn>
 <hn>
 <pattop><con>modifiers</con><con>basic</con><struc> <con></con></struc></pattop>
 <callop><con></con><con>true</con></callop>
 </hn>
 <hn>
 <pattop><con>modifiers</con><con>tent</con><struc><con></con></struc></pattop>
 <callop><con></con><con>true</con></callop>
 </hn>
 <hn>
 <pattop><con>modifiers</con><con>weight</con>
 <struc><con></con><con>weightUnit</con></struc></pattop>
 <callop><con></con><con>true</con></callop>
 </hn>
 <hn>

 126

 <pattop><con>relation</con><con>oracle</con><con>dsr_tent_terranova</con><con>ie</con>
 <struc><con></con>
 <struc><con></con><con>'Maker'</con><con>string</con></struc>
 <struc><con></con><con>'Model'</con><con>string</con></struc>
 <struc><con></con><con>'Name'</con><con>string</con></struc>
 <struc><con></con><con>'Seasons'</con><con>string</con> </struc>
 <struc><con></con><con>'Sleeps'</con><con>string</con></struc>
 <struc><con></con><con>'Minimum_weight'</con><con>string</con></struc>
 <struc><con></con><con>'Floor_area'</con><con>string</con></struc>
 <struc><con></con><con>'Price'</con><con>string</con></struc>
 </struc>
 <callop><con>cap</con>
 <struc><con></con><struc><con></con><con>0</con><con>1</con><con>0</con><con>0</con>
 <con>0</con><con>0</con><con>0</con><con>0</con></struc>
 </struc>
 <struc><con></con><con></con></struc></callop>
 </pattop>
 <callop><con></con><con>true</con></callop>
 </hn>
 <hn>
 <pattop><con>dsr_tent_terranova_p</con>
 <callop><con>skolem</con><con>basic</con><var>Maker</var><con>c_uk</con><con>1</con>
 <callop><con>dsr_tent_terranova</con>
 <var>Maker</var><var>Model</var><var>Name</var><var>Seasons</var><var>Sleeps</var>
 <var>Minimum_weight</var><var>Floor_area</var><var>Price</var></callop></callop>
 <callop><con>skolem</con><con>basic</con><var>Model</var><con>c_uk</con>con>2</con>
 <callop><con>dsr_tent_terranova</con>
 <var>Maker</var><var>Model</var><var>Name</var><var>Seasons</var><var>Sleeps</var>
 <var>Minimum_weight</var><var>Floor_area</var><var>Price</var></callop></callop>
 <callop><con>skolem</con><con>basic</con><var>Name</var><con>c_uk</con><con>3</con>
 <callop><con>dsr_tent_terranova</con>
 <var>Maker</var><var>Model</var><var>Name</var><var>Seasons</var><var>Sleeps</var>
 <var>Minimum_weight</var><var>Floor_area</var><var>Price</var></callop></callop>
 <callop><con>skolem</con><con>basic</con><var>Seasons</var><con>c_uk</con><con>4</con>
 <callop><con>dsr_tent_terranova</con>
 <var>Maker</var><var>Model</var><var>Name</var><var>Seasons</var><var>Sleeps</var>
 <var>Minimum_weight</var><var>Floor_area</var><var>Price</var></callop></callop>
 <callop><con>skolem</con><con>basic</con><var>Sleeps</var><con>c_uk</con><con>5</con>
 <callop><con>dsr_tent_terranova</con>
 <var>Maker</var><var>Model</var><var>Name</var><var>Seasons</var><var>Sleeps</var>
 <var>Minimum_weight</var><var>Floor_area</var><var>Price</var></callop></callop>
 <callop><con>skolem</con><con>weight</con><var>Minimum_weight</var><con>c_uk</con>
 <con>6</con>
 <callop><con>dsr_tent_terranova</con>
 <var>Maker</var><var>Model</var><var>Name</var><var>Seasons</var><var>Sleeps</var>
 <var>Minimum_weight</var><var>Floor_area</var><var>Price</var></callop></callop>
 <callop><con>skolem</con><con>basic</con><var>Floor_area</var><con>c_uk</con>
 <con>7</con>
 <callop><con>dsr_tent_terranova</con>
 <var>Maker</var><var>Model</var><var>Name</var><var>Seasons</var><var>Sleeps</var>
 <var>Minimum_weight</var><var>Floor_area</var><var>Price</var></callop></callop>
 <callop><con>skolem</con><con>basic</con> <var>Price</var><con>c_uk</con><con>8</con>
 <callop><con>dsr_tent_terranova</con>
 <var>Maker</var><var>Model</var><var>Name</var><var>Seasons</var><var>Sleeps</var>
 <var>Minimum_weight</var><var>Floor_area</var><var>Price</var></callop></callop>
 </pattop>

 127

 <callop><con></con><callop><con>dsr_tent_terranova</con><var>Maker</var>
 <var>Model</var><var>Name</var><var>Seasons</var><var>Sleeps</var>
 <var>Minimum_weight</var><var>Floor_area</var><var>Price</var></callop></callop>
 </hn>
 <hn>
 <pattop><con>is_a</con><con>c_us</con><con>basic</con></pattop>
 <callop><con></con><con>true</con></callop>
 </hn>
 <hn>
 <pattop><con>is_a</con><con>c_uk</con><con>basic</con></pattop>
 <callop><con></con><con>true</con></callop>
 </hn>
 <hn>
 <pattop><con>modifier</con><con>weight</con><var>_O</var>
 <con>weightUnit</con><con>c_us</con><var>M</var></pattop>
 <callop>con></con>
 <callop><con>cste</con><con>basic</con><var>M</var><con>c_us</con>
 <con>lb</con></callop></callop>
 </hn>
 <hn>
 <pattop><con>modifier</con><con>weight</con><var>_O</var>
 <con>weightUnit</con><con>c_uk</con><var>M</var></pattop>
 <callop><con></con>
 <callop><con>cste</con><con>basic</con><var>M</var><con>c_uk</con><con>kg</con></callop>
 </callop>
 </hn>
 <hn>
 <pattop><con>attr</con><var>X</var><con>weight</con><var>Y</var></pattop>
 <callop><con></con><con></con></callop>
 </hn>
 <hn>lib_physical_unit|weight|weightUnit</hn>
</rfml>

 128

G.4 Tent Example in HTML (Prolog)

<?xml version="1.0"?>
<?cocoon-format type="text/html"?>
<html>
 <head>
 <style type="text/css">
 </style>
 </head>
 <body bgcolor="#EEEEEE">
 rule(is_a(product<tt>,</tt>basic)<tt>,
</tt>(true)).

 rule(is_a(basic<tt>,</tt>basic)<tt>,
</tt>(true)).

 rule(is_a(tent<tt>,</tt>product)<tt>,
</tt>(true)).

 rule(is_a(weight<tt>,</tt>basic)<tt>,
</tt>(true)).

 rule(attributes(product<tt>,</tt>[weight])<tt>,
</tt>(true)).

 rule(attributes(basic<tt>,</tt>[])<tt>,
</tt>(true)).

 rule(attributes(tent<tt>,</tt>[])<tt>,
</tt>(true)).

 rule(attributes(weight<tt>,</tt>[])<tt>,
</tt>(true)).

 rule(modifiers(product<tt>,</tt>[])<tt>,
</tt>(true)).

 rule(modifiers(basic<tt>,</tt>[])<tt>,
</tt>(true)).

 rule(modifiers(tent<tt>,</tt>[])<tt>,
</tt>(true)).

rule(modifiers(weight<tt>,</tt>[weightUnit])<tt>,
</tt>(true)).

rule(relation(oracle<tt>,</tt>dsr_tent_terranova<tt>,</tt>i
e<tt>,</tt>[['Maker'<tt>,</tt>string]<tt>,</tt>['Model'
<tt>,</tt>string]<tt>,</tt>['Name'<tt>,</tt>string]<tt>,</tt>['Seasons'<tt>,</tt>string]<tt>,</tt>['Sleeps'<tt>,</tt>string]<
tt>,</tt>['Minimum_weight'<tt>,</tt>string]<tt>,</tt>['Floor_area'<
/b><tt>,</tt>string]<tt>,</tt>['Price'<tt>,</tt>string]]<tt>,</tt>
cap([[0<tt>,</tt>1<tt>,</tt>0<tt>,</tt>0
<tt>,</tt>0<tt>,</tt>0<tt>,</tt>0<tt>,</tt>0]]<tt>,</tt>[]))<tt>, </tt>(true)).

rule(dsr_tent_terranova_p(skolem(basic<tt
>,</tt><i>Maker</i><tt>,</tt>c_uk<tt>,</tt>1<tt>,</tt>dsr_tent_terranova<
/b>(<i>Maker</i><tt>,</tt><i>Model</i><tt>,</tt><i>Name</i><tt>,</tt><i>Seasons</i><tt>,<
/tt><i>Sleeps</i><tt>,</tt><i>Minimum_weight</i><tt>,</tt><i>Floor_area</i><tt>,</tt><i>Price</i>))<t
t>,</tt>skolem(basic<tt>,</tt><i>Model</i><tt>,</tt>c_uk<tt
>,</tt>2<tt>,</tt>dsr_tent_terranova(<i>Maker</i><tt>,</tt><i>Mode
l</i><tt>,</tt><i>Name</i><tt>,</tt><i>Seasons</i><tt>,</tt><i>Sleeps</i><tt>,</tt><i>Minimum_weig
ht</i><tt>,</tt><i>Floor_area</i><tt>,</tt><i>Price</i>))<tt>,</tt>skolem(basic<tt>,</tt><i>Name</i><tt>,</tt>c_uk<tt>,</tt>3<tt>,</tt>dsr_te

 129

nt_terranova(<i>Maker</i><tt>,</tt><i>Model</i><tt>,</tt><i>Name</i><tt>,</tt><i>Seas
ons</i><tt>,</tt><i>Sleeps</i><tt>,</tt><i>Minimum_weight</i><tt>,</tt><i>Floor_area</i><tt>,</tt><i
>Price</i>))<tt>,</tt>skolem(basic<tt>,</tt><i>Seasons</i><tt>,</tt>
c_uk<tt>,</tt>4<tt>,</tt>dsr_tent_terranova(<i>Maker</i><tt
>,</tt><i>Model</i><tt>,</tt><i>Name</i><tt>,</tt><i>Seasons</i><tt>,</tt><i>Sleeps</i><tt>,</tt><i>
Minimum_weight</i><tt>,</tt><i>Floor_area</i><tt>,</tt><i>Price</i>))<tt>,</tt>skolem</
b>(basic<tt>,</tt><i>Sleeps</i><tt>,</tt>c_uk<tt>,</tt>5<tt>,</tt><st
rong>dsr_tent_terranova(<i>Maker</i><tt>,</tt><i>Model</i><tt>,</tt><i>Name</i><t
t>,</tt><i>Seasons</i><tt>,</tt><i>Sleeps</i><tt>,</tt><i>Minimum_weight</i><tt>,</tt><i>Floor_area
</i><tt>,</tt><i>Price</i>))<tt>,</tt>skolem(weight<tt>,</tt><i>Mini
mum_weight</i><tt>,</tt>c_uk<tt>,</tt>6<tt>,</tt>dsr_tent_terranova
(<i>Maker</i><tt>,</tt><i>Model</i><tt>,</tt><i>Name</i><tt>,</tt><i>Seasons</i><tt>,</tt>
<i>Sleeps</i><tt>,</tt><i>Minimum_weight</i><tt>,</tt><i>Floor_area</i><tt>,</tt><i>Price</i>))<tt>,
</tt>skolem(basic<tt>,</tt><i>Floor_area</i><tt>,</tt>c_uk<
tt>,</tt>7<tt>,</tt>dsr_tent_terranova(<i>Maker</i><tt>,</tt><i>Mod
el</i><tt>,</tt><i>Name</i><tt>,</tt><i>Seasons</i><tt>,</tt><i>Sleeps</i><tt>,</tt><i>Minimum_wei
ght</i><tt>,</tt><i>Floor_area</i><tt>,</tt><i>Price</i>))<tt>,</tt>skolem(<
b>basic<tt>,</tt><i>Price</i><tt>,</tt>c_uk<tt>,</tt>8<tt>,</tt>dsr_te
nt_terranova(<i>Maker</i><tt>,</tt><i>Model</i><tt>,</tt><i>Name</i><tt>,</tt><i>Seas
ons</i><tt>,</tt><i>Sleeps</i><tt>,</tt><i>Minimum_weight</i><tt>,</tt><i>Floor_area</i><tt>,</tt><i
>Price</i>)))<tt>,
</tt>(dsr_tent_terranova(<i>Maker</i><tt>,</tt><i
>Model</i><tt>,</tt><i>Name</i><tt>,</tt><i>Seasons</i><tt>,</tt><i>Sleeps</i><tt>,</tt><i>Minimu
m_weight</i><tt>,</tt><i>Floor_area</i><tt>,</tt><i>Price</i>))).

rule(is_a(c_us<tt>,</tt>basic)<tt>,
</tt>(true)).

rule(is_a(c_uk<tt>,</tt>basic)<tt>,
</tt>(true)).

rule(modifier(weight<tt>,</tt><i>_O</i><tt>,</tt>weightUnit
<tt>,</tt>c_us<tt>,</tt><i>M</i>)<tt>,
</tt>(cste(basic<tt>,</tt><i>M</i><tt>,</tt
>c_us<tt>,</tt>lb))).

rule(modifier(weight<tt>,</tt><i>_O</i><tt>,</tt>weightUnit
<tt>,</tt>c_uk<tt>,</tt><i>M</i>)<tt>,
</tt>(cste(basic<tt>,</tt><i>M</i><tt>,</tt
>c_uk<tt>,</tt>kg))).

 rule(attr(<i>X</i><tt>,</tt>weight<tt>,</tt><i>Y</i>)<tt>,
</tt>()).

rule(lib_physical_unit|weight|weightUnit).
</body>
</html>

 130

G.5 Tent Example in Prolog

% ontology
rule(is_a(product,basic),(true)).
rule(is_a(basic,basic),(true)).
rule(is_a(tent,product),(true)).
rule(is_a(weight,basic),(true)).
rule(attributes(product,[weight]),(true)).
rule(attributes(basic,[]),(true)).
rule(attributes(tent,[]),(true)).
rule(attributes(weight,[]),(true)).
rule(modifiers(product,[]),(true)).
rule(modifiers(basic,[]),(true)).
rule(modifiers(tent,[]),(true)).
rule(modifiers(weight,[weightUnit]),(true)).
rule(relation(oracle,dsr_tent_terranova,ie,[['Maker',string],['Model',s
tring],['Name',string],['Seasons',string],['Sleeps',string],['Minimum_w
eight',string],['Floor_area',string],['Price',string]],cap([[0,1,0,0,0,
0,0,0]],[])),(true)).

% elevation
rule(dsr_tent_terranova_p(skolem(basic,Maker,c_uk,1,dsr_tent_terranova(
Maker,Model,Name,Seasons,Sleeps,Minimum_weight,Floor_area,Price)),skole
m(basic,Model,c_uk,2,dsr_tent_terranova(Maker,Model,Name,Seasons,Sleeps
,Minimum_weight,Floor_area,Price)),skolem(basic,Name,c_uk,3,dsr_tent_te
rranova(Maker,Model,Name,Seasons,Sleeps,Minimum_weight,Floor_area,Price
)),skolem(basic,Seasons,c_uk,4,dsr_tent_terranova(Maker,Model,Name,Seas
ons,Sleeps,Minimum_weight,Floor_area,Price)),skolem(basic,Sleeps,c_uk,5
,dsr_tent_terranova(Maker,Model,Name,Seasons,Sleeps,Minimum_weight,Floo
r_area,Price)),skolem(weight,Minimum_weight,c_uk,6,dsr_tent_terranova(M
aker,Model,Name,Seasons,Sleeps,Minimum_weight,Floor_area,Price)),skolem
(basic,Floor_area,c_uk,7,dsr_tent_terranova(Maker,Model,Name,Seasons,Sl
eeps,Minimum_weight,Floor_area,Price)),skolem(basic,Price,c_uk,8,dsr_te
nt_terranova(Maker,Model,Name,Seasons,Sleeps,Minimum_weight,Floor_area,
Price))),(dsr_tent_terranova(Maker,Model,Name,Seasons,Sleeps,Minimum_we
ight,Floor_area,Price))).

% context
rule(is_a(c_us,basic),(true)).
rule(is_a(c_uk,basic),(true)).

% modifier
rule(modifier(weight,_O,weightUnit,c_us,M),(cste(basic,M,c_us,lb))).
rule(modifier(weight,_O,weightUnit,c_uk,M),(cste(basic,M,c_uk,kg))).

% attributes
rule(attr(X,weight,Y),()).

%% conversion functions
%%
%% lib_physical_unit
%%
rule(relation(cameleon, lib_physical_unit, i,
[['FrmUnit',string],['ToUnit',string],['UnitFactor',string]],
cap([[0,0,0]],[])), (true)).
rule(lib_physical_unit_p(

 131

skolem(basic, FrmUnit, Ctxt, 1, lib_physical_unit(FrmUnit, ToUnit,
UnitFactor)),
skolem(basic, ToUnit, Ctxt, 2, lib_physical_unit(FrmUnit, ToUnit,
UnitFactor)),
skolem(basic, UnitFactor, Ctxt, 3, lib_physical_unit(FrmUnit, ToUnit,
UnitFactor))),
(lib_physical_unit(FrmUnit, ToUnit, UnitFactor))).
rule(cvt(commutative, length, Object, lengthUnit, Ctxt, Ms, Vs, Mt,
Vt),
(lib_physical_unit_p(Fu, Tu, Uf),value(Fu, Ctxt, Ms),value(Tu, Ctxt,
Mt),value(Uf, Ctxt, Ufv),multiply(Vs, Ufv, Vt))).
%%
%% lib_physical_unit end
%%

 132

Appendix H – Interface Manual

COIN Textual Interface Manual

Introduction
The COIN Textual Interface is created to simplify the entry of ontology and other
elements of the COIN models. The textual interface is intended to provide to same
functionality as a graphical one, but without the overhead associated with graphical
components. While a graphical interface can convey more visual information than a
textual interface, it is not feasible in some client settings to install additional browser
support software for the graphical interface to work. The COIN textual interface
organizes the information in form-based format, which contains only textual components
found in simple web forms. The sections that follow are presented in the order that better
illustrates the relationship between the components of COIN model. New users are
encouraged to follow the manual in the prescribed order.

1. Selecting an Application/Creating an Application
Application ID is a string that uniquely identifies the COIN model for an application.
Once an application’s model is retrieved/created, all subsequent changes made to the
model will be applied to the application specified in the session until a new application is
retrieved/created. The application ID is kept as the different screens are traversed so the
ID only needs to be identified once by the user. Upon entering the starting page
TextInterface.aspx, a list is existing applications are presented for the use to select.

To retrieve an application’s model from starting page:

a. Select the application from the list box.
b. Press the “Get” button next to the list box

To retrieve an application’s model from subsequent pages:
a. Enter the application ID into the text box labeled “App ID”
b. Press the “Get” button next to the text box.

To create a new application’s model on starting page:
 a. Enter the application name into the text box labeled “App Name”
 b. Press the “New” button next to the text box. An app ID will be generated and
 the new application can now be accessed through its ID.

2. Ontology
The ontology screen can be reached by pressing the “Ontology” button at the button of
every screen. In this section we describe how to define an ontology on this screen.

2.1 Semantic Types
Semantic types already created are displayed in the list box. Deleting a semantic
removes all the inheritance and attribute relationships associated with it.
To create a new semantic type:
 a. Enter the semantic type name in the text box
 b. Press the “Add” button next to the text box
To delete a semantic type:

 133

 a. Select the semantic type name in the list box
 b. Press the “Delete” button next to the list box

2.2 Inheritances
Inheritance relationships between semantic types are displayed in the list box.
To create a new inheritance relationship:
 a. Select the parent semantic type from the left drop down box
 b. Select the child semantic type from the right drop down box
 c. Press the “Add” button next to the drop down box
To delete an existing inheritance relationship:
 a. Select the inheritance relationship from the list box
 b. Press the “Delete” button next to the list box

2.3 Attributes
Attribute relationships between semantic types are displayed in the list box. Modifiers
are treated as special attributes in the ontology.
To create a new attribute relationship:
 a. Enter the attribute name in the text box labeled “Attribute Name”

b. Select the semantic type, which the new attribute describes, in the drop down
box labeled “Domain”
c. Select the semantic type, which is the type of the attribute, in the drop down
box labeled “Range”
d. If the attribute being added is a modifier, check the “modifier” check box
e. Press the “Add” button next to the list box.

To delete an existing attribute relationship:
 a. Select the attribute relation from the list box
 b. Press the “Delete” button next to the list box

3. Source
The source screen describes the physical (database, website, etc) data source that are
available to the application. Each data source is labeled a relation, which is similar to a
table in a database. Relation contains columns, which are like the columns of a database
table.

3.1 Relation
A relation must first be defined before its columns can be defined. Relations already
defined are displayed in the list box. Removing a relation removes all the columns
associated with it.
To create a new relation:
 a. Enter the name of the relation in the text box labeled “Relation Name”

b. Select the import/export type of the relation by selecting one of the radial
buttons in the group labeled “Relation Type”
c. Select the unsupported operation of the relation by checking one or more of the
checkboxes in the group labeled “Unsupported Operation”
d. Enter the source name (oracle, cameleon, etc) of the relation in the text box
labeled “Source Name”

 134

To delete an existing relation:
 a. Select the relation from the list box
 b. Press the “Delete” button next to the list box

3.2 Column
Columns of a relation are created/deleted here.
To create a new column for a relation:

a. Select the relation which the column is to be added from the drop down box
labeled “Relation”
b. Press the “Get” button. All the existing columns of the selected relation are
displayed in the list box.

 c. Enter the name of the new column in the text box labeled “Column Name”
d. Select the data type of the column from the drop down list labeled “Column
Type”
e. If the column is a member of the primary key, check the checkbox labeled
“Member of Primary Key”
f. Press the “Add” button next to the checkbox

To delete an existing column:
 a. Select the column from the list box
 b. Press the “Delete” button next to the list box

4. Context
The context screen is where all context related information are specified. A context has
to be created before its relevant information can be specified. All existing contexts are
displayed in the list box.
To create a new context:
 a. Enter the name of the context in the text box labeled “Context Name”

b. If the new context shares contextual information with an existing context, select
the existing context from the drop down box
c. Press the “Add” button

To delete an existing context:
 a. Select the context from the list box
 b. Press the “Delete” button next to the list box
Removing a context will remove only the context sharing information associated with it.
Other information (elevations, modifiers) related to the deleted context remains in the
application.

4.1 Elevation
Elevations are defined per column in a relation. “No context” is the default relation
context. A context has to be added to a relation before elevations can be defined.
Elevation for a relation can only be defined for one context, the relation context.

To display the elevations of a relation:

a. Select a context from the drop down box labeled “Context”.
b. Press the “Get” button. A list of relation already associated with the selected
context is displayed in the list box.

 135

c. Select the relation for which elevations are to be retrieved from the list box
labeled “Relation”
d. Press the “Get” button. A list of columns belonging to the relation are
displayed in the list box labeled “Column”; and a list of all available semantic
types are displayed in the list box labeled “Semantic Type”. All defined
elevations of the relation under the selected context are displayed in the list box.

To add a relation context:
a. Select a context from the drop down box labeled “Context”
b. Select a relation from the drop down box labeled “Relation” (it is under the

relation list box)
c. Press the “Add Relation Context” button. The relation is now ready for

elevations to be defined under the selected context.
To delete a relation context:
 a. Select a context from the drop down box labeled “Context”
 b. Select a relation from the list box labeled “Relation”

c. Press the “Delete Relation Context” button. The relation context is deleted, but
the elevations for its columns still exist.

To add an elevation:
 a. Follow the instruction for displaying the elevations of a relation
 b. Select a column from the list box labeled “Column”
 c. Select a semantic type from the list box labeled “Semantic Type”
 d. Press the “Add Elevation” button.
To delete an elevation:
 a. Follow the instruction for displaying the elevations of a relation
 b. Select a elevation from the list box labeled “Relation Elevation”
 c. Press the “Delete Elevation” button

4.2 Modifier
Modifiers are defined per context. A static modifier has modifier value that is static. A
dynamic modifier has modifier value that is based on values on a semantic type in the
ontology.
To retrieve all modifier values for a context:
 a. Select a context from the drop down box labeled “Context”

b. Press the “Get” button. All the modifier values associated with the selected
context are displayed in the list box labeled “Modifier”.

To retrieve the modifier values for a modifier across all contexts:
 a. Select a modifier from the drop down box labeled “Modifier”

b. Press the “Get” button. All the modifier values associated with the selected
modifier are displayed in the list box labeled “Modifier”.

To add a modifier value:
 a. Select a context from the drop down box labeled “Context”
 b. Select a modifier from the drop down box labeled “Modifier”

c. Specify the type of modifier value by selecting either Static or Dynamic from
the radial button group.

 136

d. Enter the modifier value in the text box labeled “Modifier Value”. For a static
modifier value, any text string are allowed. For a dynamic modifier value, the
character “>” is reserved for linking attributes.
e. Press the “Add” button. The modifier values just created is displayed in the list
box labeled “Modifier”.

To delete a modifier value:
 a. Follow the instructions on retrieving the modifier values.
 b. Select the modifier value to be deleted from the list box labeled “Modifier”.
 c. Press the “Delete” button.

4.3 Conversion Function
Conversion functions are defined per modifier. Currently, the content of the conversion
function has to be in prolog.
To add a conversion function:
 a. Select the modifier from the drop down list labeled “Modifier”
 b. Press the “Get” button.
 c. Enter the conversion function in the text box labeled “Conversion Function”

d. Press the “Add” button. The conversion function just added is displayed in the
list box below.

To delete a conversion function:
 a. Select the modifier from the drop down list labeled “Modifier”
 b. Press the “Get” button.

c. Select the conversion function to be deleted in the list box under the label
“Conversion Function”
d. Press the “Delete” button.

 137

Appendix I – Disaster Relief Metadata File

I.1 RDF
application395.rdf
<?xml version="1.0"?>
<!--prolog engine version 1-->
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:coin="http://localhost/appEditor/apps/rdf/coin_schema#">
 <coin:Application rdf:ID="application395">
 <coin:ApplicationOntology rdf:resource="http://localhost/appEditor/apps/rdf/ontology395.rdf" />
 <coin:ApplicationContext rdf:resource="http://localhost/appEditor/apps/rdf/context395.rdf" />
 <coin:ApplicationSource rdf:resource="http://localhost/appEditor/apps/rdf/source395.rdf" />
 <coin:ApplicationMisc rdf:resource="http://localhost/appEditor/apps/rdf/misc395.rdf" />
 </coin:Application>
</rdf:RDF>

ontology395.rdf
<?xml version="1.0"?>
<!--prolog engine version 1-->
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:coin="http://localhost/appEditor/apps/rdf/coin_schema#">
 <!--Semantic Types-->
 <coin:Ont_SemanticType rdf:ID="basic">
 <coin:Ont_SemanticTypeName>basic</coin:Ont_SemanticTypeName>
 </coin:Ont_SemanticType>
 <coin:Ont_SemanticType rdf:ID="product">
 <coin:Ont_SemanticTypeName>product</coin:Ont_SemanticTypeName>
 <coin:Ont_SemanticTypeParent rdf:resource="#basic" />
 </coin:Ont_SemanticType>
 <coin:Ont_SemanticType rdf:ID="company">
 <coin:Ont_SemanticTypeName>company</coin:Ont_SemanticTypeName>
 <coin:Ont_SemanticTypeParent rdf:resource="#basic" />
 </coin:Ont_SemanticType>
 <coin:Ont_SemanticType rdf:ID="tent">
 <coin:Ont_SemanticTypeName>tent</coin:Ont_SemanticTypeName>
 <coin:Ont_SemanticTypeParent rdf:resource="#product" />
 </coin:Ont_SemanticType>
 <coin:Ont_SemanticType rdf:ID="monetaryValue">
 <coin:Ont_SemanticTypeName>monetaryValue</coin:Ont_SemanticTypeName>
 <coin:Ont_SemanticTypeParent rdf:resource="#basic" />
 </coin:Ont_SemanticType>
 <coin:Ont_SemanticType rdf:ID="price">
 <coin:Ont_SemanticTypeName>price</coin:Ont_SemanticTypeName>
 <coin:Ont_SemanticTypeParent rdf:resource="#monetaryValue" />
 </coin:Ont_SemanticType>
 <coin:Ont_SemanticType rdf:ID="physicalMeasurement">
 <coin:Ont_SemanticTypeName>physicalMeasurement</coin:Ont_SemanticTypeName>
 <coin:Ont_SemanticTypeParent rdf:resource="#basic" />
 </coin:Ont_SemanticType>
 <coin:Ont_SemanticType rdf:ID="weight">
 <coin:Ont_SemanticTypeName>weight</coin:Ont_SemanticTypeName>
 <coin:Ont_SemanticTypeParent rdf:resource="#physicalMeasurement" />
 </coin:Ont_SemanticType>
 <coin:Ont_SemanticType rdf:ID="length">
 <coin:Ont_SemanticTypeName>length</coin:Ont_SemanticTypeName>

 138

 <coin:Ont_SemanticTypeParent rdf:resource="#physicalMeasurement" />
 </coin:Ont_SemanticType>
 <coin:Ont_SemanticType rdf:ID="area">
 <coin:Ont_SemanticTypeName>area</coin:Ont_SemanticTypeName>
 <coin:Ont_SemanticTypeParent rdf:resource="#physicalMeasurement" />
 </coin:Ont_SemanticType>
 <coin:Ont_SemanticType rdf:ID="volume">
 <coin:Ont_SemanticTypeName>volume</coin:Ont_SemanticTypeName>
 <coin:Ont_SemanticTypeParent rdf:resource="#physicalMeasurement" />
 </coin:Ont_SemanticType>
 <coin:Ont_SemanticType rdf:ID="sleepingCapacity">
 <coin:Ont_SemanticTypeName>sleepingCapacity</coin:Ont_SemanticTypeName>
 <coin:Ont_SemanticTypeParent rdf:resource="#basic" />
 </coin:Ont_SemanticType>
 <coin:Ont_SemanticType rdf:ID="usage">
 <coin:Ont_SemanticTypeName>usage</coin:Ont_SemanticTypeName>
 <coin:Ont_SemanticTypeParent rdf:resource="#basic" />
 </coin:Ont_SemanticType>
 <!--Attributes-->
 <coin:Ont_Attribute rdf:ID="maker">
 <coin:Ont_AttributeName>maker</coin:Ont_AttributeName>
 <coin:Ont_AttributeFrom rdf:resource="#product" />
 <coin:Ont_AttributeTo rdf:resource="#company" />
 <coin:Ont_AttributeElevationFunction />
 </coin:Ont_Attribute>
 <coin:Ont_Attribute rdf:ID="price">
 <coin:Ont_AttributeName>price</coin:Ont_AttributeName>
 <coin:Ont_AttributeFrom rdf:resource="#product" />
 <coin:Ont_AttributeTo rdf:resource="#price" />
 <coin:Ont_AttributeElevationFunction />
 </coin:Ont_Attribute>
 <coin:Ont_Attribute rdf:ID="netWeight">
 <coin:Ont_AttributeName>netWeight</coin:Ont_AttributeName>
 <coin:Ont_AttributeFrom rdf:resource="#product" />
 <coin:Ont_AttributeTo rdf:resource="#weight" />
 <coin:Ont_AttributeElevationFunction />
 </coin:Ont_Attribute>
 <coin:Ont_Attribute rdf:ID="grossWeight">
 <coin:Ont_AttributeName>grossWeight</coin:Ont_AttributeName>
 <coin:Ont_AttributeFrom rdf:resource="#product" />
 <coin:Ont_AttributeTo rdf:resource="#weight" />
 <coin:Ont_AttributeElevationFunction />
 </coin:Ont_Attribute>
 <coin:Ont_Attribute rdf:ID="sleepingCapacity">
 <coin:Ont_AttributeName>sleepingCapacity</coin:Ont_AttributeName>
 <coin:Ont_AttributeFrom rdf:resource="#tent" />
 <coin:Ont_AttributeTo rdf:resource="#sleepingCapacity" />
 <coin:Ont_AttributeElevationFunction />
 </coin:Ont_Attribute>
 <coin:Ont_Attribute rdf:ID="usage">
 <coin:Ont_AttributeName>usage</coin:Ont_AttributeName>
 <coin:Ont_AttributeFrom rdf:resource="#tent" />
 <coin:Ont_AttributeTo rdf:resource="#usage" />
 <coin:Ont_AttributeElevationFunction />
 </coin:Ont_Attribute>
 <coin:Ont_Attribute rdf:ID="packedSize">

 139

 <coin:Ont_AttributeName>packedSize</coin:Ont_AttributeName>
 <coin:Ont_AttributeFrom rdf:resource="#tent" />
 <coin:Ont_AttributeTo rdf:resource="#volume" />
 <coin:Ont_AttributeElevationFunction />
 </coin:Ont_Attribute>
 <coin:Ont_Attribute rdf:ID="floorArea">
 <coin:Ont_AttributeName>floorArea</coin:Ont_AttributeName>
 <coin:Ont_AttributeFrom rdf:resource="#tent" />
 <coin:Ont_AttributeTo rdf:resource="#area" />
 <coin:Ont_AttributeElevationFunction />
 </coin:Ont_Attribute>
 <coin:Ont_Attribute rdf:ID="interiorSpace">
 <coin:Ont_AttributeName>interiorSpace</coin:Ont_AttributeName>
 <coin:Ont_AttributeFrom rdf:resource="#tent" />
 <coin:Ont_AttributeTo rdf:resource="#volume" />
 <coin:Ont_AttributeElevationFunction />
 </coin:Ont_Attribute>
 <coin:Ont_Attribute rdf:ID="length">
 <coin:Ont_AttributeName>length</coin:Ont_AttributeName>
 <coin:Ont_AttributeFrom rdf:resource="#area" />
 <coin:Ont_AttributeTo rdf:resource="#length" />
 <coin:Ont_AttributeElevationFunction />
 </coin:Ont_Attribute>
 <coin:Ont_Attribute rdf:ID="width">
 <coin:Ont_AttributeName>width</coin:Ont_AttributeName>
 <coin:Ont_AttributeFrom rdf:resource="#area" />
 <coin:Ont_AttributeTo rdf:resource="#length" />
 <coin:Ont_AttributeElevationFunction />
 </coin:Ont_Attribute>
 <coin:Ont_Attribute rdf:ID="length">
 <coin:Ont_AttributeName>length</coin:Ont_AttributeName>
 <coin:Ont_AttributeFrom rdf:resource="#volume" />
 <coin:Ont_AttributeTo rdf:resource="#length" />
 <coin:Ont_AttributeElevationFunction />
 </coin:Ont_Attribute>
 <coin:Ont_Attribute rdf:ID="width">
 <coin:Ont_AttributeName>width</coin:Ont_AttributeName>
 <coin:Ont_AttributeFrom rdf:resource="#volume" />
 <coin:Ont_AttributeTo rdf:resource="#length" />
 <coin:Ont_AttributeElevationFunction />
 </coin:Ont_Attribute>
 <coin:Ont_Attribute rdf:ID="height">
 <coin:Ont_AttributeName>height</coin:Ont_AttributeName>
 <coin:Ont_AttributeFrom rdf:resource="#volume" />
 <coin:Ont_AttributeTo rdf:resource="#length" />
 <coin:Ont_AttributeElevationFunction />
 </coin:Ont_Attribute>
 <!--Modifiers-->
 <coin:Ont_Modifier rdf:ID="currency">
 <coin:Ont_ModifierName>currency</coin:Ont_ModifierName>
 <coin:Ont_ModifierFrom rdf:resource="#monetaryValue" />
 <coin:Ont_ModifierTo rdf:resource="#basic" />

<coin:Ont_ModifierConversionFunction>convfunc|lib_currency|monetaryValue|currency</coin:Ont_Modi
fierConversionFunction>
 <coin:Ont_ModifierContextValues rdf:resource="#currencyc_antarctica" />

 140

 <coin:Ont_ModifierContextValues rdf:resource="#currencyc_efunctional" />
 <coin:Ont_ModifierContextValues rdf:resource="#currencyc_outback" />
 <coin:Ont_ModifierContextValues rdf:resource="#currencyc_terranova" />
 <coin:Ont_ModifierContextValues rdf:resource="#currencyc_us" />
 <coin:Ont_ModifierContextValues rdf:resource="#currencyc_cuba" />
 <coin:Ont_ModifierContextValues rdf:resource="#currencyc_uk" />
 </coin:Ont_Modifier>
 <coin:Ont_ModifierContextValuePair rdf:ID="currencyc_antarctica">
 <coin:Ont_ModifierContext
rdf:resource="http://localhost/appEditor/apps/rdf/context395.rdf#c_antarctica" />
 <coin:Ont_ModifierStaticValue>GBP</coin:Ont_ModifierStaticValue>
 </coin:Ont_ModifierContextValuePair>
 <coin:Ont_ModifierContextValuePair rdf:ID="currencyc_efunctional">
 <coin:Ont_ModifierContext
rdf:resource="http://localhost/appEditor/apps/rdf/context395.rdf#c_efunctional" />
 <coin:Ont_ModifierStaticValue>USD</coin:Ont_ModifierStaticValue>
 </coin:Ont_ModifierContextValuePair>
 <coin:Ont_ModifierContextValuePair rdf:ID="currencyc_outback">
 <coin:Ont_ModifierContext
rdf:resource="http://localhost/appEditor/apps/rdf/context395.rdf#c_outback" />
 <coin:Ont_ModifierStaticValue>USD</coin:Ont_ModifierStaticValue>
 </coin:Ont_ModifierContextValuePair>
 <coin:Ont_ModifierContextValuePair rdf:ID="currencyc_terranova">
 <coin:Ont_ModifierContext
rdf:resource="http://localhost/appEditor/apps/rdf/context395.rdf#c_terranova" />
 <coin:Ont_ModifierStaticValue>GBP</coin:Ont_ModifierStaticValue>
 </coin:Ont_ModifierContextValuePair>
 <coin:Ont_ModifierContextValuePair rdf:ID="currencyc_us">
 <coin:Ont_ModifierContext rdf:resource="http://localhost/appEditor/apps/rdf/context395.rdf#c_us" />
 <coin:Ont_ModifierStaticValue>USD</coin:Ont_ModifierStaticValue>
 </coin:Ont_ModifierContextValuePair>
 <coin:Ont_ModifierContextValuePair rdf:ID="currencyc_cuba">
 <coin:Ont_ModifierContext rdf:resource="http://localhost/appEditor/apps/rdf/context395.rdf#c_cuba" />
 <coin:Ont_ModifierStaticValue>CUP</coin:Ont_ModifierStaticValue>
 </coin:Ont_ModifierContextValuePair>
 <coin:Ont_ModifierContextValuePair rdf:ID="currencyc_uk">
 <coin:Ont_ModifierContext rdf:resource="http://localhost/appEditor/apps/rdf/context395.rdf#c_uk" />
 <coin:Ont_ModifierStaticValue>GBP</coin:Ont_ModifierStaticValue>
 </coin:Ont_ModifierContextValuePair>
 <coin:Ont_Modifier rdf:ID="weightUnit">
 <coin:Ont_ModifierName>weightUnit</coin:Ont_ModifierName>
 <coin:Ont_ModifierFrom rdf:resource="#weight" />
 <coin:Ont_ModifierTo rdf:resource="#basic" />

<coin:Ont_ModifierConversionFunction>convfunc|lib_physical_unit|weight|weightUnit</coin:Ont_Modifi
erConversionFunction>
 <coin:Ont_ModifierContextValues rdf:resource="#weightUnitc_antarctica" />
 <coin:Ont_ModifierContextValues rdf:resource="#weightUnitc_efunctional" />
 <coin:Ont_ModifierContextValues rdf:resource="#weightUnitc_outback" />
 <coin:Ont_ModifierContextValues rdf:resource="#weightUnitc_terranova" />
 <coin:Ont_ModifierContextValues rdf:resource="#weightUnitc_us" />
 <coin:Ont_ModifierContextValues rdf:resource="#weightUnitc_cuba" />
 <coin:Ont_ModifierContextValues rdf:resource="#weightUnitc_uk" />
 </coin:Ont_Modifier>
 <coin:Ont_ModifierContextValuePair rdf:ID="weightUnitc_antarctica">

 141

 <coin:Ont_ModifierContext
rdf:resource="http://localhost/appEditor/apps/rdf/context395.rdf#c_antarctica" />
 <coin:Ont_ModifierStaticValue>kg</coin:Ont_ModifierStaticValue>
 </coin:Ont_ModifierContextValuePair>
 <coin:Ont_ModifierContextValuePair rdf:ID="weightUnitc_efunctional">
 <coin:Ont_ModifierContext
rdf:resource="http://localhost/appEditor/apps/rdf/context395.rdf#c_efunctional" />
 <coin:Ont_ModifierStaticValue>lb</coin:Ont_ModifierStaticValue>
 </coin:Ont_ModifierContextValuePair>
 <coin:Ont_ModifierContextValuePair rdf:ID="weightUnitc_outback">
 <coin:Ont_ModifierContext
rdf:resource="http://localhost/appEditor/apps/rdf/context395.rdf#c_outback" />
 <coin:Ont_ModifierStaticValue>lb</coin:Ont_ModifierStaticValue>
 </coin:Ont_ModifierContextValuePair>
 <coin:Ont_ModifierContextValuePair rdf:ID="weightUnitc_terranova">
 <coin:Ont_ModifierContext
rdf:resource="http://localhost/appEditor/apps/rdf/context395.rdf#c_terranova" />
 <coin:Ont_ModifierStaticValue>kg</coin:Ont_ModifierStaticValue>
 </coin:Ont_ModifierContextValuePair>
 <coin:Ont_ModifierContextValuePair rdf:ID="weightUnitc_us">
 <coin:Ont_ModifierContext rdf:resource="http://localhost/appEditor/apps/rdf/context395.rdf#c_us" />
 <coin:Ont_ModifierStaticValue>lb</coin:Ont_ModifierStaticValue>
 </coin:Ont_ModifierContextValuePair>
 <coin:Ont_ModifierContextValuePair rdf:ID="weightUnitc_cuba">
 <coin:Ont_ModifierContext rdf:resource="http://localhost/appEditor/apps/rdf/context395.rdf#c_cuba" />
 <coin:Ont_ModifierStaticValue>kg</coin:Ont_ModifierStaticValue>
 </coin:Ont_ModifierContextValuePair>
 <coin:Ont_ModifierContextValuePair rdf:ID="weightUnitc_uk">
 <coin:Ont_ModifierContext rdf:resource="http://localhost/appEditor/apps/rdf/context395.rdf#c_uk" />
 <coin:Ont_ModifierStaticValue>kg</coin:Ont_ModifierStaticValue>
 </coin:Ont_ModifierContextValuePair>
 <coin:Ont_Modifier rdf:ID="lengthUnit">
 <coin:Ont_ModifierName>lengthUnit</coin:Ont_ModifierName>
 <coin:Ont_ModifierFrom rdf:resource="#length" />
 <coin:Ont_ModifierTo rdf:resource="#basic" />

<coin:Ont_ModifierConversionFunction>convfunc|lib_physical_unit|length|lengthUnit</coin:Ont_Modifie
rConversionFunction>
 <coin:Ont_ModifierContextValues rdf:resource="#lengthUnitc_antarctica" />
 <coin:Ont_ModifierContextValues rdf:resource="#lengthUnitc_efunctional" />
 <coin:Ont_ModifierContextValues rdf:resource="#lengthUnitc_outback" />
 <coin:Ont_ModifierContextValues rdf:resource="#lengthUnitc_terranova" />
 <coin:Ont_ModifierContextValues rdf:resource="#lengthUnitc_us" />
 <coin:Ont_ModifierContextValues rdf:resource="#lengthUnitc_cuba" />
 <coin:Ont_ModifierContextValues rdf:resource="#lengthUnitc_uk" />
 </coin:Ont_Modifier>
 <coin:Ont_ModifierContextValuePair rdf:ID="lengthUnitc_antarctica">
 <coin:Ont_ModifierContext
rdf:resource="http://localhost/appEditor/apps/rdf/context395.rdf#c_antarctica" />
 <coin:Ont_ModifierStaticValue>cm</coin:Ont_ModifierStaticValue>
 </coin:Ont_ModifierContextValuePair>
 <coin:Ont_ModifierContextValuePair rdf:ID="lengthUnitc_efunctional">
 <coin:Ont_ModifierContext
rdf:resource="http://localhost/appEditor/apps/rdf/context395.rdf#c_efunctional" />
 <coin:Ont_ModifierStaticValue>in</coin:Ont_ModifierStaticValue>
 </coin:Ont_ModifierContextValuePair>

 142

 <coin:Ont_ModifierContextValuePair rdf:ID="lengthUnitc_outback">
 <coin:Ont_ModifierContext
rdf:resource="http://localhost/appEditor/apps/rdf/context395.rdf#c_outback" />
 <coin:Ont_ModifierStaticValue>in</coin:Ont_ModifierStaticValue>
 </coin:Ont_ModifierContextValuePair>
 <coin:Ont_ModifierContextValuePair rdf:ID="lengthUnitc_terranova">
 <coin:Ont_ModifierContext
rdf:resource="http://localhost/appEditor/apps/rdf/context395.rdf#c_terranova" />
 <coin:Ont_ModifierStaticValue>cm</coin:Ont_ModifierStaticValue>
 </coin:Ont_ModifierContextValuePair>
 <coin:Ont_ModifierContextValuePair rdf:ID="lengthUnitc_us">
 <coin:Ont_ModifierContext rdf:resource="http://localhost/appEditor/apps/rdf/context395.rdf#c_us" />
 <coin:Ont_ModifierStaticValue>in</coin:Ont_ModifierStaticValue>
 </coin:Ont_ModifierContextValuePair>
 <coin:Ont_ModifierContextValuePair rdf:ID="lengthUnitc_cuba">
 <coin:Ont_ModifierContext rdf:resource="http://localhost/appEditor/apps/rdf/context395.rdf#c_cuba" />
 <coin:Ont_ModifierStaticValue>cm</coin:Ont_ModifierStaticValue>
 </coin:Ont_ModifierContextValuePair>
 <coin:Ont_ModifierContextValuePair rdf:ID="lengthUnitc_uk">
 <coin:Ont_ModifierContext rdf:resource="http://localhost/appEditor/apps/rdf/context395.rdf#c_uk" />
 <coin:Ont_ModifierStaticValue>cm</coin:Ont_ModifierStaticValue>
 </coin:Ont_ModifierContextValuePair>
 <coin:Ont_Modifier rdf:ID="numPersons">
 <coin:Ont_ModifierName>numPersons</coin:Ont_ModifierName>
 <coin:Ont_ModifierFrom rdf:resource="#sleepingCapacity" />
 <coin:Ont_ModifierTo rdf:resource="#basic" />
 <coin:Ont_ModifierConversionFunction>convfunc|rule(cvt(commutative, sleepingCapacity, _O,
numPersons, ctxt, Ms, Vs, Mt, Vt),
 ({substring(Ms, 1, 5, Fv1), substring(Ms, 7, 5, Fv2), substring(Ms, 12, 2, Fu), substring(Mt, 1, 5,
Tv1), substring(Mt, 7, 5, Tv2), substring(Mt, 12, 2, Tu)},
 unit_conv_p(Fu2, Tu2, Uf),
 value(Fu2, ctxt, Fu),
 value(Tu2, ctxt, Tu),
 value(Uf, ctxt, Ufv),
 multiply(Fv1, Ufv, Fv11),
 multiply(Fv2, Ufv, Fv21),
 multiply(Fv11, Fv21, Fv3),
 multiply(Vs, Fv3, Ttv),
 divide(Ttv, Tv1, Vt1),
 divide(Vt1, Tv2, Vt))).|sleepingCapacity|numPersons</coin:Ont_ModifierConversionFunction>
 <coin:Ont_ModifierContextValues rdf:resource="#numPersonsc_antarctica" />
 <coin:Ont_ModifierContextValues rdf:resource="#numPersonsc_efunctional" />
 <coin:Ont_ModifierContextValues rdf:resource="#numPersonsc_outback" />
 <coin:Ont_ModifierContextValues rdf:resource="#numPersonsc_terranova" />
 <coin:Ont_ModifierContextValues rdf:resource="#numPersonsc_us" />
 <coin:Ont_ModifierContextValues rdf:resource="#numPersonsc_cuba" />
 <coin:Ont_ModifierContextValues rdf:resource="#numPersonsc_uk" />
 </coin:Ont_Modifier>
 <coin:Ont_ModifierContextValuePair rdf:ID="numPersonsc_antarctica">
 <coin:Ont_ModifierContext
rdf:resource="http://localhost/appEditor/apps/rdf/context395.rdf#c_antarctica" />
 <coin:Ont_ModifierStaticValue>122.0x244.0cm</coin:Ont_ModifierStaticValue>
 </coin:Ont_ModifierContextValuePair>
 <coin:Ont_ModifierContextValuePair rdf:ID="numPersonsc_efunctional">
 <coin:Ont_ModifierContext
rdf:resource="http://localhost/appEditor/apps/rdf/context395.rdf#c_efunctional" />

 143

 <coin:Ont_ModifierStaticValue>48.00x96.00in</coin:Ont_ModifierStaticValue>
 </coin:Ont_ModifierContextValuePair>
 <coin:Ont_ModifierContextValuePair rdf:ID="numPersonsc_outback">
 <coin:Ont_ModifierContext
rdf:resource="http://localhost/appEditor/apps/rdf/context395.rdf#c_outback" />
 <coin:Ont_ModifierStaticValue>48.00x96.00in</coin:Ont_ModifierStaticValue>
 </coin:Ont_ModifierContextValuePair>
 <coin:Ont_ModifierContextValuePair rdf:ID="numPersonsc_terranova">
 <coin:Ont_ModifierContext
rdf:resource="http://localhost/appEditor/apps/rdf/context395.rdf#c_terranova" />
 <coin:Ont_ModifierStaticValue>122.0x244.0cm</coin:Ont_ModifierStaticValue>
 </coin:Ont_ModifierContextValuePair>
 <coin:Ont_ModifierContextValuePair rdf:ID="numPersonsc_us">
 <coin:Ont_ModifierContext rdf:resource="http://localhost/appEditor/apps/rdf/context395.rdf#c_us" />
 <coin:Ont_ModifierStaticValue>48.00x96.00in</coin:Ont_ModifierStaticValue>
 </coin:Ont_ModifierContextValuePair>
 <coin:Ont_ModifierContextValuePair rdf:ID="numPersonsc_cuba">
 <coin:Ont_ModifierContext rdf:resource="http://localhost/appEditor/apps/rdf/context395.rdf#c_cuba" />
 <coin:Ont_ModifierStaticValue>91.00x213.0cm</coin:Ont_ModifierStaticValue>
 </coin:Ont_ModifierContextValuePair>
 <coin:Ont_ModifierContextValuePair rdf:ID="numPersonsc_uk">
 <coin:Ont_ModifierContext rdf:resource="http://localhost/appEditor/apps/rdf/context395.rdf#c_uk" />
 <coin:Ont_ModifierStaticValue>122.0x244.0cm</coin:Ont_ModifierStaticValue>
 </coin:Ont_ModifierContextValuePair>
</rdf:RDF>

context395.rdf
<?xml version="1.0"?>
<!--prolog engine version 1-->
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:coin="http://localhost/appEditor/apps/rdf/coin_schema#">
 <!--Contexts-->
 <coin:Cxt_Context rdf:ID="c_uk">
 <coin:Cxt_ContextName>c_uk</coin:Cxt_ContextName>
 </coin:Cxt_Context>
 <coin:Cxt_Context rdf:ID="c_us">
 <coin:Cxt_ContextName>c_us</coin:Cxt_ContextName>
 </coin:Cxt_Context>
 <coin:Cxt_Context rdf:ID="c_cuba">
 <coin:Cxt_ContextName>c_cuba</coin:Cxt_ContextName>
 </coin:Cxt_Context>
 <coin:Cxt_Context rdf:ID="c_terranova">
 <coin:Cxt_ContextName>c_terranova</coin:Cxt_ContextName>
 </coin:Cxt_Context>
 <coin:Cxt_Context rdf:ID="c_efunctional">
 <coin:Cxt_ContextName>c_efunctional</coin:Cxt_ContextName>
 </coin:Cxt_Context>
 <coin:Cxt_Context rdf:ID="c_antarctica">
 <coin:Cxt_ContextName>c_antarctica</coin:Cxt_ContextName>
 </coin:Cxt_Context>
 <coin:Cxt_Context rdf:ID="c_outback">
 <coin:Cxt_ContextName>c_outback</coin:Cxt_ContextName>
 </coin:Cxt_Context>
 <coin:Cxt_Context rdf:ID="ctxt">
 <coin:Cxt_ContextName>ctxt</coin:Cxt_ContextName>
 </coin:Cxt_Context>

 144

</rdf:RDF>

source395.rdf
<?xml version="1.0"?>
<!--prolog engine version 1-->
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:coin="http://localhost/appEditor/apps/rdf/coin_schema#">
 <!--Relations-->
 <coin:Src_Relation rdf:ID="dsr_tent_antarctica">
 <coin:Src_RelationName>dsr_tent_antarctica</coin:Src_RelationName>
 <coin:Src_RelationImport>true</coin:Src_RelationImport>
 <coin:Src_RelationExport>true</coin:Src_RelationExport>
 <coin:Src_RelationSourceName>oracle</coin:Src_RelationSourceName>
 <coin:Src_RelationUnsupportedOps />
 </coin:Src_Relation>
 <coin:Src_Relation rdf:ID="dsr_tent_efunctional">
 <coin:Src_RelationName>dsr_tent_efunctional</coin:Src_RelationName>
 <coin:Src_RelationImport>true</coin:Src_RelationImport>
 <coin:Src_RelationExport>true</coin:Src_RelationExport>
 <coin:Src_RelationSourceName>oracle</coin:Src_RelationSourceName>
 <coin:Src_RelationUnsupportedOps />
 </coin:Src_Relation>
 <coin:Src_Relation rdf:ID="dsr_tent_outback">
 <coin:Src_RelationName>dsr_tent_outback</coin:Src_RelationName>
 <coin:Src_RelationImport>true</coin:Src_RelationImport>
 <coin:Src_RelationExport>true</coin:Src_RelationExport>
 <coin:Src_RelationSourceName>oracle</coin:Src_RelationSourceName>
 <coin:Src_RelationUnsupportedOps />
 </coin:Src_Relation>
 <coin:Src_Relation rdf:ID="dsr_tent_terranova">
 <coin:Src_RelationName>dsr_tent_terranova</coin:Src_RelationName>
 <coin:Src_RelationImport>true</coin:Src_RelationImport>
 <coin:Src_RelationExport>true</coin:Src_RelationExport>
 <coin:Src_RelationSourceName>oracle</coin:Src_RelationSourceName>
 <coin:Src_RelationUnsupportedOps />
 </coin:Src_Relation>
 <coin:Src_Relation rdf:ID="tent_usage_map">
 <coin:Src_RelationName>tent_usage_map</coin:Src_RelationName>
 <coin:Src_RelationImport>true</coin:Src_RelationImport>
 <coin:Src_RelationExport>false</coin:Src_RelationExport>
 <coin:Src_RelationSourceName>oracle</coin:Src_RelationSourceName>
 <coin:Src_RelationUnsupportedOps />
 </coin:Src_Relation>
 <!--Columns-->
 <coin:Src_Column rdf:ID="Name">
 <coin:Src_ColumnName>Name</coin:Src_ColumnName>
 <coin:Src_ColumnType>string</coin:Src_ColumnType>
 <coin:Src_ColumnKeyMember>false</coin:Src_ColumnKeyMember>
 <coin:Src_ColumnRelation rdf:resource="#dsr_tent_antarctica" />
 </coin:Src_Column>
 <coin:Src_Column rdf:ID="Net_weight">
 <coin:Src_ColumnName>Net_weight</coin:Src_ColumnName>
 <coin:Src_ColumnType>string</coin:Src_ColumnType>
 <coin:Src_ColumnKeyMember>false</coin:Src_ColumnKeyMember>
 <coin:Src_ColumnRelation rdf:resource="#dsr_tent_antarctica" />
 </coin:Src_Column>

 145

 <coin:Src_Column rdf:ID="Gross_weight">
 <coin:Src_ColumnName>Gross_weight</coin:Src_ColumnName>
 <coin:Src_ColumnType>string</coin:Src_ColumnType>
 <coin:Src_ColumnKeyMember>false</coin:Src_ColumnKeyMember>
 <coin:Src_ColumnRelation rdf:resource="#dsr_tent_antarctica" />
 </coin:Src_Column>
 <coin:Src_Column rdf:ID="Interior">
 <coin:Src_ColumnName>Interior</coin:Src_ColumnName>
 <coin:Src_ColumnType>string</coin:Src_ColumnType>
 <coin:Src_ColumnKeyMember>false</coin:Src_ColumnKeyMember>
 <coin:Src_ColumnRelation rdf:resource="#dsr_tent_antarctica" />
 </coin:Src_Column>
 <coin:Src_Column rdf:ID="Price">
 <coin:Src_ColumnName>Price</coin:Src_ColumnName>
 <coin:Src_ColumnType>string</coin:Src_ColumnType>
 <coin:Src_ColumnKeyMember>false</coin:Src_ColumnKeyMember>
 <coin:Src_ColumnRelation rdf:resource="#dsr_tent_antarctica" />
 </coin:Src_Column>
 <coin:Src_Column rdf:ID="Maker">
 <coin:Src_ColumnName>Maker</coin:Src_ColumnName>
 <coin:Src_ColumnType>string</coin:Src_ColumnType>
 <coin:Src_ColumnKeyMember>false</coin:Src_ColumnKeyMember>
 <coin:Src_ColumnRelation rdf:resource="#dsr_tent_efunctional" />
 </coin:Src_Column>
 <coin:Src_Column rdf:ID="Model">
 <coin:Src_ColumnName>Model</coin:Src_ColumnName>
 <coin:Src_ColumnType>string</coin:Src_ColumnType>
 <coin:Src_ColumnKeyMember>false</coin:Src_ColumnKeyMember>
 <coin:Src_ColumnRelation rdf:resource="#dsr_tent_efunctional" />
 </coin:Src_Column>
 <coin:Src_Column rdf:ID="Name">
 <coin:Src_ColumnName>Name</coin:Src_ColumnName>
 <coin:Src_ColumnType>string</coin:Src_ColumnType>
 <coin:Src_ColumnKeyMember>false</coin:Src_ColumnKeyMember>
 <coin:Src_ColumnRelation rdf:resource="#dsr_tent_efunctional" />
 </coin:Src_Column>
 <coin:Src_Column rdf:ID="Seasons">
 <coin:Src_ColumnName>Seasons</coin:Src_ColumnName>
 <coin:Src_ColumnType>string</coin:Src_ColumnType>
 <coin:Src_ColumnKeyMember>false</coin:Src_ColumnKeyMember>
 <coin:Src_ColumnRelation rdf:resource="#dsr_tent_efunctional" />
 </coin:Src_Column>
 <coin:Src_Column rdf:ID="Sleeps">
 <coin:Src_ColumnName>Sleeps</coin:Src_ColumnName>
 <coin:Src_ColumnType>string</coin:Src_ColumnType>
 <coin:Src_ColumnKeyMember>false</coin:Src_ColumnKeyMember>
 <coin:Src_ColumnRelation rdf:resource="#dsr_tent_efunctional" />
 </coin:Src_Column>
 <coin:Src_Column rdf:ID="Minimum_weight">
 <coin:Src_ColumnName>Minimum_weight</coin:Src_ColumnName>
 <coin:Src_ColumnType>string</coin:Src_ColumnType>
 <coin:Src_ColumnKeyMember>false</coin:Src_ColumnKeyMember>
 <coin:Src_ColumnRelation rdf:resource="#dsr_tent_efunctional" />
 </coin:Src_Column>
 <coin:Src_Column rdf:ID="Floor_area">
 <coin:Src_ColumnName>Floor_area</coin:Src_ColumnName>

 146

 <coin:Src_ColumnType>string</coin:Src_ColumnType>
 <coin:Src_ColumnKeyMember>false</coin:Src_ColumnKeyMember>
 <coin:Src_ColumnRelation rdf:resource="#dsr_tent_efunctional" />
 </coin:Src_Column>
 <coin:Src_Column rdf:ID="Price">
 <coin:Src_ColumnName>Price</coin:Src_ColumnName>
 <coin:Src_ColumnType>string</coin:Src_ColumnType>
 <coin:Src_ColumnKeyMember>false</coin:Src_ColumnKeyMember>
 <coin:Src_ColumnRelation rdf:resource="#dsr_tent_efunctional" />
 </coin:Src_Column>
 <coin:Src_Column rdf:ID="Maker">
 <coin:Src_ColumnName>Maker</coin:Src_ColumnName>
 <coin:Src_ColumnType>string</coin:Src_ColumnType>
 <coin:Src_ColumnKeyMember>false</coin:Src_ColumnKeyMember>
 <coin:Src_ColumnRelation rdf:resource="#dsr_tent_outback" />
 </coin:Src_Column>
 <coin:Src_Column rdf:ID="Model">
 <coin:Src_ColumnName>Model</coin:Src_ColumnName>
 <coin:Src_ColumnType>string</coin:Src_ColumnType>
 <coin:Src_ColumnKeyMember>false</coin:Src_ColumnKeyMember>
 <coin:Src_ColumnRelation rdf:resource="#dsr_tent_outback" />
 </coin:Src_Column>
 <coin:Src_Column rdf:ID="Season">
 <coin:Src_ColumnName>Season</coin:Src_ColumnName>
 <coin:Src_ColumnType>string</coin:Src_ColumnType>
 <coin:Src_ColumnKeyMember>false</coin:Src_ColumnKeyMember>
 <coin:Src_ColumnRelation rdf:resource="#dsr_tent_outback" />
 </coin:Src_Column>
 <coin:Src_Column rdf:ID="Capacity">
 <coin:Src_ColumnName>Capacity</coin:Src_ColumnName>
 <coin:Src_ColumnType>string</coin:Src_ColumnType>
 <coin:Src_ColumnKeyMember>false</coin:Src_ColumnKeyMember>
 <coin:Src_ColumnRelation rdf:resource="#dsr_tent_outback" />
 </coin:Src_Column>
 <coin:Src_Column rdf:ID="Trail_weight">
 <coin:Src_ColumnName>Trail_weight</coin:Src_ColumnName>
 <coin:Src_ColumnType>string</coin:Src_ColumnType>
 <coin:Src_ColumnKeyMember>false</coin:Src_ColumnKeyMember>
 <coin:Src_ColumnRelation rdf:resource="#dsr_tent_outback" />
 </coin:Src_Column>
 <coin:Src_Column rdf:ID="Packed_weight">
 <coin:Src_ColumnName>Packed_weight</coin:Src_ColumnName>
 <coin:Src_ColumnType>string</coin:Src_ColumnType>
 <coin:Src_ColumnKeyMember>false</coin:Src_ColumnKeyMember>
 <coin:Src_ColumnRelation rdf:resource="#dsr_tent_outback" />
 </coin:Src_Column>
 <coin:Src_Column rdf:ID="Floor_area">
 <coin:Src_ColumnName>Floor_area</coin:Src_ColumnName>
 <coin:Src_ColumnType>string</coin:Src_ColumnType>
 <coin:Src_ColumnKeyMember>false</coin:Src_ColumnKeyMember>
 <coin:Src_ColumnRelation rdf:resource="#dsr_tent_outback" />
 </coin:Src_Column>
 <coin:Src_Column rdf:ID="Price">
 <coin:Src_ColumnName>Price</coin:Src_ColumnName>
 <coin:Src_ColumnType>string</coin:Src_ColumnType>
 <coin:Src_ColumnKeyMember>false</coin:Src_ColumnKeyMember>

 147

 <coin:Src_ColumnRelation rdf:resource="#dsr_tent_outback" />
 </coin:Src_Column>
 <coin:Src_Column rdf:ID="Model">
 <coin:Src_ColumnName>Model</coin:Src_ColumnName>
 <coin:Src_ColumnType>string</coin:Src_ColumnType>
 <coin:Src_ColumnKeyMember>false</coin:Src_ColumnKeyMember>
 <coin:Src_ColumnRelation rdf:resource="#dsr_tent_terranova" />
 </coin:Src_Column>
 <coin:Src_Column rdf:ID="Usage">
 <coin:Src_ColumnName>Usage</coin:Src_ColumnName>
 <coin:Src_ColumnType>string</coin:Src_ColumnType>
 <coin:Src_ColumnKeyMember>false</coin:Src_ColumnKeyMember>
 <coin:Src_ColumnRelation rdf:resource="#dsr_tent_terranova" />
 </coin:Src_Column>
 <coin:Src_Column rdf:ID="Persons">
 <coin:Src_ColumnName>Persons</coin:Src_ColumnName>
 <coin:Src_ColumnType>string</coin:Src_ColumnType>
 <coin:Src_ColumnKeyMember>false</coin:Src_ColumnKeyMember>
 <coin:Src_ColumnRelation rdf:resource="#dsr_tent_terranova" />
 </coin:Src_Column>
 <coin:Src_Column rdf:ID="Weight">
 <coin:Src_ColumnName>Weight</coin:Src_ColumnName>
 <coin:Src_ColumnType>string</coin:Src_ColumnType>
 <coin:Src_ColumnKeyMember>false</coin:Src_ColumnKeyMember>
 <coin:Src_ColumnRelation rdf:resource="#dsr_tent_terranova" />
 </coin:Src_Column>
 <coin:Src_Column rdf:ID="Packed_length">
 <coin:Src_ColumnName>Packed_length</coin:Src_ColumnName>
 <coin:Src_ColumnType>string</coin:Src_ColumnType>
 <coin:Src_ColumnKeyMember>false</coin:Src_ColumnKeyMember>
 <coin:Src_ColumnRelation rdf:resource="#dsr_tent_terranova" />
 </coin:Src_Column>
 <coin:Src_Column rdf:ID="Packed_width">
 <coin:Src_ColumnName>Packed_width</coin:Src_ColumnName>
 <coin:Src_ColumnType>string</coin:Src_ColumnType>
 <coin:Src_ColumnKeyMember>false</coin:Src_ColumnKeyMember>
 <coin:Src_ColumnRelation rdf:resource="#dsr_tent_terranova" />
 </coin:Src_Column>
 <coin:Src_Column rdf:ID="Interior_length">
 <coin:Src_ColumnName>Interior_length</coin:Src_ColumnName>
 <coin:Src_ColumnType>string</coin:Src_ColumnType>
 <coin:Src_ColumnKeyMember>false</coin:Src_ColumnKeyMember>
 <coin:Src_ColumnRelation rdf:resource="#dsr_tent_terranova" />
 </coin:Src_Column>
 <coin:Src_Column rdf:ID="Interior_width">
 <coin:Src_ColumnName>Interior_width</coin:Src_ColumnName>
 <coin:Src_ColumnType>string</coin:Src_ColumnType>
 <coin:Src_ColumnKeyMember>false</coin:Src_ColumnKeyMember>
 <coin:Src_ColumnRelation rdf:resource="#dsr_tent_terranova" />
 </coin:Src_Column>
 <coin:Src_Column rdf:ID="Interior_height">
 <coin:Src_ColumnName>Interior_height</coin:Src_ColumnName>
 <coin:Src_ColumnType>string</coin:Src_ColumnType>
 <coin:Src_ColumnKeyMember>false</coin:Src_ColumnKeyMember>
 <coin:Src_ColumnRelation rdf:resource="#dsr_tent_terranova" />
 </coin:Src_Column>

 148

 <coin:Src_Column rdf:ID="Price">
 <coin:Src_ColumnName>Price</coin:Src_ColumnName>
 <coin:Src_ColumnType>string</coin:Src_ColumnType>
 <coin:Src_ColumnKeyMember>false</coin:Src_ColumnKeyMember>
 <coin:Src_ColumnRelation rdf:resource="#dsr_tent_terranova" />
 </coin:Src_Column>
 <coin:Src_Column rdf:ID="FromUsage">
 <coin:Src_ColumnName>FromUsage</coin:Src_ColumnName>
 <coin:Src_ColumnType>string</coin:Src_ColumnType>
 <coin:Src_ColumnKeyMember>false</coin:Src_ColumnKeyMember>
 <coin:Src_ColumnRelation rdf:resource="#tent_usage_map" />
 </coin:Src_Column>
 <coin:Src_Column rdf:ID="ToUsage">
 <coin:Src_ColumnName>ToUsage</coin:Src_ColumnName>
 <coin:Src_ColumnType>string</coin:Src_ColumnType>
 <coin:Src_ColumnKeyMember>false</coin:Src_ColumnKeyMember>
 <coin:Src_ColumnRelation rdf:resource="#tent_usage_map" />
 </coin:Src_Column>
 <!--Elevated Relations-->
 <coin:Src_ElevatedRelation rdf:ID="dsr_tent_antarctica_p">
 <coin:Src_ElevatedRelationName>dsr_tent_antarctica_p</coin:Src_ElevatedRelationName>
 <coin:Src_ElevatedRelationRelation rdf:resource="#dsr_tent_antarctica" />
 <coin:Src_ElevatedRelationContext rdf:resource="#c_antarctica" />
 <coin:Src_ElevatedRelationColumns rdf:resource="#dsr_tent_antarctica_pName" />
 <coin:Src_ElevatedRelationColumns rdf:resource="#dsr_tent_antarctica_pNet_weight" />
 <coin:Src_ElevatedRelationColumns rdf:resource="#dsr_tent_antarctica_pGross_weight" />
 <coin:Src_ElevatedRelationColumns rdf:resource="#dsr_tent_antarctica_pInterior" />
 <coin:Src_ElevatedRelationColumns rdf:resource="#dsr_tent_antarctica_pPrice" />
 </coin:Src_ElevatedRelation>
 <coin:Src_ElevatedRelation rdf:ID="dsr_tent_efunctional_p">
 <coin:Src_ElevatedRelationName>dsr_tent_efunctional_p</coin:Src_ElevatedRelationName>
 <coin:Src_ElevatedRelationRelation rdf:resource="#dsr_tent_efunctional" />
 <coin:Src_ElevatedRelationContext rdf:resource="#c_efunctional" />
 <coin:Src_ElevatedRelationColumns rdf:resource="#dsr_tent_efunctional_pMaker" />
 <coin:Src_ElevatedRelationColumns rdf:resource="#dsr_tent_efunctional_pModel" />
 <coin:Src_ElevatedRelationColumns rdf:resource="#dsr_tent_efunctional_pName" />
 <coin:Src_ElevatedRelationColumns rdf:resource="#dsr_tent_efunctional_pSeasons" />
 <coin:Src_ElevatedRelationColumns rdf:resource="#dsr_tent_efunctional_pSleeps" />
 <coin:Src_ElevatedRelationColumns rdf:resource="#dsr_tent_efunctional_pMinimum_weight" />
 <coin:Src_ElevatedRelationColumns rdf:resource="#dsr_tent_efunctional_pFloor_area" />
 <coin:Src_ElevatedRelationColumns rdf:resource="#dsr_tent_efunctional_pPrice" />
 </coin:Src_ElevatedRelation>
 <coin:Src_ElevatedRelation rdf:ID="dsr_tent_outback_p">
 <coin:Src_ElevatedRelationName>dsr_tent_outback_p</coin:Src_ElevatedRelationName>
 <coin:Src_ElevatedRelationRelation rdf:resource="#dsr_tent_outback" />
 <coin:Src_ElevatedRelationContext rdf:resource="#c_outback" />
 <coin:Src_ElevatedRelationColumns rdf:resource="#dsr_tent_outback_pMaker" />
 <coin:Src_ElevatedRelationColumns rdf:resource="#dsr_tent_outback_pModel" />
 <coin:Src_ElevatedRelationColumns rdf:resource="#dsr_tent_outback_pSeason" />
 <coin:Src_ElevatedRelationColumns rdf:resource="#dsr_tent_outback_pCapacity" />
 <coin:Src_ElevatedRelationColumns rdf:resource="#dsr_tent_outback_pTrail_weight" />
 <coin:Src_ElevatedRelationColumns rdf:resource="#dsr_tent_outback_pPacked_weight" />
 <coin:Src_ElevatedRelationColumns rdf:resource="#dsr_tent_outback_pFloor_area" />
 <coin:Src_ElevatedRelationColumns rdf:resource="#dsr_tent_outback_pPrice" />
 </coin:Src_ElevatedRelation>
 <coin:Src_ElevatedRelation rdf:ID="dsr_tent_terranova_p">

 149

 <coin:Src_ElevatedRelationName>dsr_tent_terranova_p</coin:Src_ElevatedRelationName>
 <coin:Src_ElevatedRelationRelation rdf:resource="#dsr_tent_terranova" />
 <coin:Src_ElevatedRelationContext rdf:resource="#c_terranova" />
 <coin:Src_ElevatedRelationColumns rdf:resource="#dsr_tent_terranova_pModel" />
 <coin:Src_ElevatedRelationColumns rdf:resource="#dsr_tent_terranova_pUsage" />
 <coin:Src_ElevatedRelationColumns rdf:resource="#dsr_tent_terranova_pPersons" />
 <coin:Src_ElevatedRelationColumns rdf:resource="#dsr_tent_terranova_pWeight" />
 <coin:Src_ElevatedRelationColumns rdf:resource="#dsr_tent_terranova_pPacked_length" />
 <coin:Src_ElevatedRelationColumns rdf:resource="#dsr_tent_terranova_pPacked_width" />
 <coin:Src_ElevatedRelationColumns rdf:resource="#dsr_tent_terranova_pInterior_length" />
 <coin:Src_ElevatedRelationColumns rdf:resource="#dsr_tent_terranova_pInterior_width" />
 <coin:Src_ElevatedRelationColumns rdf:resource="#dsr_tent_terranova_pInterior_height" />
 <coin:Src_ElevatedRelationColumns rdf:resource="#dsr_tent_terranova_pPrice" />
 </coin:Src_ElevatedRelation>
 <coin:Src_ElevatedRelation rdf:ID="tent_usage_map_p">
 <coin:Src_ElevatedRelationName>tent_usage_map_p</coin:Src_ElevatedRelationName>
 <coin:Src_ElevatedRelationRelation rdf:resource="#tent_usage_map" />
 <coin:Src_ElevatedRelationContext rdf:resource="#ctxt" />
 <coin:Src_ElevatedRelationColumns rdf:resource="#tent_usage_map_pFromUsage" />
 <coin:Src_ElevatedRelationColumns rdf:resource="#tent_usage_map_pToUsage" />
 </coin:Src_ElevatedRelation>
 <coin:Src_ElevatedRelationColumnSemanticTypePair rdf:ID="dsr_tent_antarctica_pName">
 <coin:Src_ElevatedRelationColumn rdf:resource="#Name" />
 <coin:Src_ElevatedRelationSemanticType
rdf:resource="http://localhost/appEditor/apps/rdf/ontology395.rdf#product" />
 </coin:Src_ElevatedRelationColumnSemanticTypePair>
 <coin:Src_ElevatedRelationColumnSemanticTypePair rdf:ID="dsr_tent_antarctica_pNet_weight">
 <coin:Src_ElevatedRelationColumn rdf:resource="#Net_weight" />
 <coin:Src_ElevatedRelationSemanticType
rdf:resource="http://localhost/appEditor/apps/rdf/ontology395.rdf#weight" />
 </coin:Src_ElevatedRelationColumnSemanticTypePair>
 <coin:Src_ElevatedRelationColumnSemanticTypePair rdf:ID="dsr_tent_antarctica_pGross_weight">
 <coin:Src_ElevatedRelationColumn rdf:resource="#Gross_weight" />
 <coin:Src_ElevatedRelationSemanticType
rdf:resource="http://localhost/appEditor/apps/rdf/ontology395.rdf#weight" />
 </coin:Src_ElevatedRelationColumnSemanticTypePair>
 <coin:Src_ElevatedRelationColumnSemanticTypePair rdf:ID="dsr_tent_antarctica_pInterior">
 <coin:Src_ElevatedRelationColumn rdf:resource="#Interior" />
 <coin:Src_ElevatedRelationSemanticType
rdf:resource="http://localhost/appEditor/apps/rdf/ontology395.rdf#volume" />
 </coin:Src_ElevatedRelationColumnSemanticTypePair>
 <coin:Src_ElevatedRelationColumnSemanticTypePair rdf:ID="dsr_tent_antarctica_pPrice">
 <coin:Src_ElevatedRelationColumn rdf:resource="#Price" />
 <coin:Src_ElevatedRelationSemanticType
rdf:resource="http://localhost/appEditor/apps/rdf/ontology395.rdf#price" />
 </coin:Src_ElevatedRelationColumnSemanticTypePair>
 <coin:Src_ElevatedRelationColumnSemanticTypePair rdf:ID="dsr_tent_efunctional_pMaker">
 <coin:Src_ElevatedRelationColumn rdf:resource="#Maker" />
 <coin:Src_ElevatedRelationSemanticType
rdf:resource="http://localhost/appEditor/apps/rdf/ontology395.rdf#company" />
 </coin:Src_ElevatedRelationColumnSemanticTypePair>
 <coin:Src_ElevatedRelationColumnSemanticTypePair rdf:ID="dsr_tent_efunctional_pModel">
 <coin:Src_ElevatedRelationColumn rdf:resource="#Model" />
 <coin:Src_ElevatedRelationSemanticType
rdf:resource="http://localhost/appEditor/apps/rdf/ontology395.rdf#product" />
 </coin:Src_ElevatedRelationColumnSemanticTypePair>

 150

 <coin:Src_ElevatedRelationColumnSemanticTypePair rdf:ID="dsr_tent_efunctional_pName">
 <coin:Src_ElevatedRelationColumn rdf:resource="#Name" />
 <coin:Src_ElevatedRelationSemanticType
rdf:resource="http://localhost/appEditor/apps/rdf/ontology395.rdf#product" />
 </coin:Src_ElevatedRelationColumnSemanticTypePair>
 <coin:Src_ElevatedRelationColumnSemanticTypePair rdf:ID="dsr_tent_efunctional_pSeasons">
 <coin:Src_ElevatedRelationColumn rdf:resource="#Seasons" />
 <coin:Src_ElevatedRelationSemanticType
rdf:resource="http://localhost/appEditor/apps/rdf/ontology395.rdf#usage" />
 </coin:Src_ElevatedRelationColumnSemanticTypePair>
 <coin:Src_ElevatedRelationColumnSemanticTypePair rdf:ID="dsr_tent_efunctional_pSleeps">
 <coin:Src_ElevatedRelationColumn rdf:resource="#Sleeps" />
 <coin:Src_ElevatedRelationSemanticType
rdf:resource="http://localhost/appEditor/apps/rdf/ontology395.rdf#sleepingCapacity" />
 </coin:Src_ElevatedRelationColumnSemanticTypePair>
 <coin:Src_ElevatedRelationColumnSemanticTypePair
rdf:ID="dsr_tent_efunctional_pMinimum_weight">
 <coin:Src_ElevatedRelationColumn rdf:resource="#Minimum_weight" />
 <coin:Src_ElevatedRelationSemanticType
rdf:resource="http://localhost/appEditor/apps/rdf/ontology395.rdf#weight" />
 </coin:Src_ElevatedRelationColumnSemanticTypePair>
 <coin:Src_ElevatedRelationColumnSemanticTypePair rdf:ID="dsr_tent_efunctional_pFloor_area">
 <coin:Src_ElevatedRelationColumn rdf:resource="#Floor_area" />
 <coin:Src_ElevatedRelationSemanticType
rdf:resource="http://localhost/appEditor/apps/rdf/ontology395.rdf#area" />
 </coin:Src_ElevatedRelationColumnSemanticTypePair>
 <coin:Src_ElevatedRelationColumnSemanticTypePair rdf:ID="dsr_tent_efunctional_pPrice">
 <coin:Src_ElevatedRelationColumn rdf:resource="#Price" />
 <coin:Src_ElevatedRelationSemanticType
rdf:resource="http://localhost/appEditor/apps/rdf/ontology395.rdf#price" />
 </coin:Src_ElevatedRelationColumnSemanticTypePair>
 <coin:Src_ElevatedRelationColumnSemanticTypePair rdf:ID="dsr_tent_outback_pMaker">
 <coin:Src_ElevatedRelationColumn rdf:resource="#Maker" />
 <coin:Src_ElevatedRelationSemanticType
rdf:resource="http://localhost/appEditor/apps/rdf/ontology395.rdf#company" />
 </coin:Src_ElevatedRelationColumnSemanticTypePair>
 <coin:Src_ElevatedRelationColumnSemanticTypePair rdf:ID="dsr_tent_outback_pModel">
 <coin:Src_ElevatedRelationColumn rdf:resource="#Model" />
 <coin:Src_ElevatedRelationSemanticType
rdf:resource="http://localhost/appEditor/apps/rdf/ontology395.rdf#product" />
 </coin:Src_ElevatedRelationColumnSemanticTypePair>
 <coin:Src_ElevatedRelationColumnSemanticTypePair rdf:ID="dsr_tent_outback_pSeason">
 <coin:Src_ElevatedRelationColumn rdf:resource="#Season" />
 <coin:Src_ElevatedRelationSemanticType
rdf:resource="http://localhost/appEditor/apps/rdf/ontology395.rdf#usage" />
 </coin:Src_ElevatedRelationColumnSemanticTypePair>
 <coin:Src_ElevatedRelationColumnSemanticTypePair rdf:ID="dsr_tent_outback_pCapacity">
 <coin:Src_ElevatedRelationColumn rdf:resource="#Capacity" />
 <coin:Src_ElevatedRelationSemanticType
rdf:resource="http://localhost/appEditor/apps/rdf/ontology395.rdf#sleepingCapacity" />
 </coin:Src_ElevatedRelationColumnSemanticTypePair>
 <coin:Src_ElevatedRelationColumnSemanticTypePair rdf:ID="dsr_tent_outback_pTrail_weight">
 <coin:Src_ElevatedRelationColumn rdf:resource="#Trail_weight" />
 <coin:Src_ElevatedRelationSemanticType
rdf:resource="http://localhost/appEditor/apps/rdf/ontology395.rdf#weight" />
 </coin:Src_ElevatedRelationColumnSemanticTypePair>

 151

 <coin:Src_ElevatedRelationColumnSemanticTypePair rdf:ID="dsr_tent_outback_pPacked_weight">
 <coin:Src_ElevatedRelationColumn rdf:resource="#Packed_weight" />
 <coin:Src_ElevatedRelationSemanticType
rdf:resource="http://localhost/appEditor/apps/rdf/ontology395.rdf#weight" />
 </coin:Src_ElevatedRelationColumnSemanticTypePair>
 <coin:Src_ElevatedRelationColumnSemanticTypePair rdf:ID="dsr_tent_outback_pFloor_area">
 <coin:Src_ElevatedRelationColumn rdf:resource="#Floor_area" />
 <coin:Src_ElevatedRelationSemanticType
rdf:resource="http://localhost/appEditor/apps/rdf/ontology395.rdf#area" />
 </coin:Src_ElevatedRelationColumnSemanticTypePair>
 <coin:Src_ElevatedRelationColumnSemanticTypePair rdf:ID="dsr_tent_outback_pPrice">
 <coin:Src_ElevatedRelationColumn rdf:resource="#Price" />
 <coin:Src_ElevatedRelationSemanticType
rdf:resource="http://localhost/appEditor/apps/rdf/ontology395.rdf#price" />
 </coin:Src_ElevatedRelationColumnSemanticTypePair>
 <coin:Src_ElevatedRelationColumnSemanticTypePair rdf:ID="dsr_tent_terranova_pModel">
 <coin:Src_ElevatedRelationColumn rdf:resource="#Model" />
 <coin:Src_ElevatedRelationSemanticType
rdf:resource="http://localhost/appEditor/apps/rdf/ontology395.rdf#product" />
 </coin:Src_ElevatedRelationColumnSemanticTypePair>
 <coin:Src_ElevatedRelationColumnSemanticTypePair rdf:ID="dsr_tent_terranova_pUsage">
 <coin:Src_ElevatedRelationColumn rdf:resource="#Usage" />
 <coin:Src_ElevatedRelationSemanticType
rdf:resource="http://localhost/appEditor/apps/rdf/ontology395.rdf#usage" />
 </coin:Src_ElevatedRelationColumnSemanticTypePair>
 <coin:Src_ElevatedRelationColumnSemanticTypePair rdf:ID="dsr_tent_terranova_pPersons">
 <coin:Src_ElevatedRelationColumn rdf:resource="#Persons" />
 <coin:Src_ElevatedRelationSemanticType
rdf:resource="http://localhost/appEditor/apps/rdf/ontology395.rdf#sleepingCapacity" />
 </coin:Src_ElevatedRelationColumnSemanticTypePair>
 <coin:Src_ElevatedRelationColumnSemanticTypePair rdf:ID="dsr_tent_terranova_pWeight">
 <coin:Src_ElevatedRelationColumn rdf:resource="#Weight" />
 <coin:Src_ElevatedRelationSemanticType
rdf:resource="http://localhost/appEditor/apps/rdf/ontology395.rdf#weight" />
 </coin:Src_ElevatedRelationColumnSemanticTypePair>
 <coin:Src_ElevatedRelationColumnSemanticTypePair rdf:ID="dsr_tent_terranova_pPacked_length">
 <coin:Src_ElevatedRelationColumn rdf:resource="#Packed_length" />
 <coin:Src_ElevatedRelationSemanticType
rdf:resource="http://localhost/appEditor/apps/rdf/ontology395.rdf#length" />
 </coin:Src_ElevatedRelationColumnSemanticTypePair>
 <coin:Src_ElevatedRelationColumnSemanticTypePair rdf:ID="dsr_tent_terranova_pPacked_width">
 <coin:Src_ElevatedRelationColumn rdf:resource="#Packed_width" />
 <coin:Src_ElevatedRelationSemanticType
rdf:resource="http://localhost/appEditor/apps/rdf/ontology395.rdf#length" />
 </coin:Src_ElevatedRelationColumnSemanticTypePair>
 <coin:Src_ElevatedRelationColumnSemanticTypePair rdf:ID="dsr_tent_terranova_pInterior_length">
 <coin:Src_ElevatedRelationColumn rdf:resource="#Interior_length" />
 <coin:Src_ElevatedRelationSemanticType
rdf:resource="http://localhost/appEditor/apps/rdf/ontology395.rdf#length" />
 </coin:Src_ElevatedRelationColumnSemanticTypePair>
 <coin:Src_ElevatedRelationColumnSemanticTypePair rdf:ID="dsr_tent_terranova_pInterior_width">
 <coin:Src_ElevatedRelationColumn rdf:resource="#Interior_width" />
 <coin:Src_ElevatedRelationSemanticType
rdf:resource="http://localhost/appEditor/apps/rdf/ontology395.rdf#length" />
 </coin:Src_ElevatedRelationColumnSemanticTypePair>
 <coin:Src_ElevatedRelationColumnSemanticTypePair rdf:ID="dsr_tent_terranova_pInterior_height">

 152

 <coin:Src_ElevatedRelationColumn rdf:resource="#Interior_height" />
 <coin:Src_ElevatedRelationSemanticType
rdf:resource="http://localhost/appEditor/apps/rdf/ontology395.rdf#length" />
 </coin:Src_ElevatedRelationColumnSemanticTypePair>
 <coin:Src_ElevatedRelationColumnSemanticTypePair rdf:ID="dsr_tent_terranova_pPrice">
 <coin:Src_ElevatedRelationColumn rdf:resource="#Price" />
 <coin:Src_ElevatedRelationSemanticType
rdf:resource="http://localhost/appEditor/apps/rdf/ontology395.rdf#price" />
 </coin:Src_ElevatedRelationColumnSemanticTypePair>
 <coin:Src_ElevatedRelationColumnSemanticTypePair rdf:ID="tent_usage_map_pFromUsage">
 <coin:Src_ElevatedRelationColumn rdf:resource="#FromUsage" />
 <coin:Src_ElevatedRelationSemanticType
rdf:resource="http://localhost/appEditor/apps/rdf/ontology395.rdf#basic" />
 </coin:Src_ElevatedRelationColumnSemanticTypePair>
 <coin:Src_ElevatedRelationColumnSemanticTypePair rdf:ID="tent_usage_map_pToUsage">
 <coin:Src_ElevatedRelationColumn rdf:resource="#ToUsage" />
 <coin:Src_ElevatedRelationSemanticType
rdf:resource="http://localhost/appEditor/apps/rdf/ontology395.rdf#basic" />
 </coin:Src_ElevatedRelationColumnSemanticTypePair>
</rdf:RDF>

misc395.rdf
<?xml version="1.0"?>
<!--prolog engine version 1-->
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:coin="http://localhost/appEditor/apps/rdf/coin_schema#">
 <!--Miscellaneous-->
</rdf:RDF>

 153

I.2 Prolog

%% Ontology
rule(is_a(basic,basic),(true)).
rule(is_a(product,basic),(true)).
rule(is_a(company,basic),(true)).
rule(is_a(tent,product),(true)).
rule(is_a(monetaryValue,basic),(true)).
rule(is_a(price,monetaryValue),(true)).
rule(is_a(physicalMeasurement,basic),(true)).
rule(is_a(weight,physicalMeasurement),(true)).
rule(is_a(length,physicalMeasurement),(true)).
rule(is_a(area,physicalMeasurement),(true)).
rule(is_a(volume,physicalMeasurement),(true)).
rule(is_a(sleepingCapacity,basic),(true)).
rule(is_a(usage,basic),(true)).
rule(attributes(basic,[]),(true)).
rule(attributes(product,[maker,price,netWeight,grossWeight]),(true)).
rule(attributes(company,[]),(true)).
rule(attributes(tent,[sleepingCapacity,usage,packedSize,floorArea,inter
iorSpace]),(true)).
rule(attributes(monetaryValue,[]),(true)).
rule(attributes(price,[]),(true)).
rule(attributes(physicalMeasurement,[]),(true)).
rule(attributes(weight,[]),(true)).
rule(attributes(length,[]),(true)).
rule(attributes(area,[length,width]),(true)).
rule(attributes(volume,[length,width,height]),(true)).
rule(attributes(sleepingCapacity,[]),(true)).
rule(attributes(usage,[]),(true)).
rule(modifiers(basic,[]),(true)).
rule(modifiers(product,[]),(true)).
rule(modifiers(company,[]),(true)).
rule(modifiers(tent,[]),(true)).
rule(modifiers(monetaryValue,[currency]),(true)).
rule(modifiers(price,[]),(true)).
rule(modifiers(physicalMeasurement,[]),(true)).
rule(modifiers(weight,[weightUnit]),(true)).
rule(modifiers(length,[lengthUnit]),(true)).
rule(modifiers(area,[]),(true)).
rule(modifiers(volume,[]),(true)).
rule(modifiers(sleepingCapacity,[numPersons]),(true)).
rule(modifiers(usage,[]),(true)).

%% Relations
rule(relation(oracle,dsr_tent_antarctica,ie,[['Name',string],['Net_weig
ht',string],['Gross_weight',string],['Interior',string],['Price',string
]],cap([[0,0,0,0,0]],[])),(true)).
rule(relation(oracle,dsr_tent_efunctional,ie,[['Maker',string],['Model'
,string],['Name',string],['Seasons',string],['Sleeps',string],['Minimum
_weight',string],['Floor_area',string],['Price',string]],cap([[0,0,0,0,
0,0,0,0]],[])),(true)).
rule(relation(oracle,dsr_tent_outback,ie,[['Maker',string],['Model',str
ing],['Season',string],['Capacity',string],['Trail_weight',string],['Pa
cked_weight',string],['Floor_area',string],['Price',string]],cap([[0,0,
0,0,0,0,0,0]],[])),(true)).

 154

rule(relation(oracle,dsr_tent_terranova,ie,[['Model',string],['Usage',s
tring],['Persons',string],['Weight',string],['Packed_length',string],['
Packed_width',string],['Interior_length',string],['Interior_width',stri
ng],['Interior_height',string],['Price',string]],cap([[0,0,0,0,0,0,0,0,
0,0]],[])),(true)).
rule(relation(oracle,tent_usage_map,i,[['FromUsage',string],['ToUsage',
string]],cap([[0,0]],[])),(true)).

%% elevations
rule(dsr_tent_antarctica_p(skolem(product,Name,c_antarctica,1,dsr_tent_
antarctica(Name,Net_weight,Gross_weight,Interior,Price)),skolem(weight,
Net_weight,c_antarctica,2,dsr_tent_antarctica(Name,Net_weight,Gross_wei
ght,Interior,Price)),skolem(weight,Gross_weight,c_antarctica,3,dsr_tent
_antarctica(Name,Net_weight,Gross_weight,Interior,Price)),skolem(volume
,Interior,c_antarctica,4,dsr_tent_antarctica(Name,Net_weight,Gross_weig
ht,Interior,Price)),skolem(price,Price,c_antarctica,5,dsr_tent_antarcti
ca(Name,Net_weight,Gross_weight,Interior,Price))),(dsr_tent_antarctica(
Name,Net_weight,Gross_weight,Interior,Price))).

rule(dsr_tent_efunctional_p(skolem(company,Maker,c_efunctional,1,dsr_te
nt_efunctional(Maker,Model,Name,Seasons,Sleeps,Minimum_weight,Floor_are
a,Price)),skolem(product,Model,c_efunctional,2,dsr_tent_efunctional(Mak
er,Model,Name,Seasons,Sleeps,Minimum_weight,Floor_area,Price)),skolem(p
roduct,Name,c_efunctional,3,dsr_tent_efunctional(Maker,Model,Name,Seaso
ns,Sleeps,Minimum_weight,Floor_area,Price)),skolem(usage,Seasons,c_efun
ctional,4,dsr_tent_efunctional(Maker,Model,Name,Seasons,Sleeps,Minimum_
weight,Floor_area,Price)),skolem(sleepingCapacity,Sleeps,c_efunctional,
5,dsr_tent_efunctional(Maker,Model,Name,Seasons,Sleeps,Minimum_weight,F
loor_area,Price)),skolem(weight,Minimum_weight,c_efunctional,6,dsr_tent
_efunctional(Maker,Model,Name,Seasons,Sleeps,Minimum_weight,Floor_area,
Price)),skolem(area,Floor_area,c_efunctional,7,dsr_tent_efunctional(Mak
er,Model,Name,Seasons,Sleeps,Minimum_weight,Floor_area,Price)),skolem(p
rice,Price,c_efunctional,8,dsr_tent_efunctional(Maker,Model,Name,Season
s,Sleeps,Minimum_weight,Floor_area,Price))),(dsr_tent_efunctional(Maker
,Model,Name,Seasons,Sleeps,Minimum_weight,Floor_area,Price))).

rule(dsr_tent_outback_p(skolem(company,Maker,c_outback,1,dsr_tent_outba
ck(Maker,Model,Season,Capacity,Trail_weight,Packed_weight,Floor_area,Pr
ice)),skolem(product,Model,c_outback,2,dsr_tent_outback(Maker,Model,Sea
son,Capacity,Trail_weight,Packed_weight,Floor_area,Price)),skolem(usage
,Season,c_outback,3,dsr_tent_outback(Maker,Model,Season,Capacity,Trail_
weight,Packed_weight,Floor_area,Price)),skolem(sleepingCapacity,Capacit
y,c_outback,4,dsr_tent_outback(Maker,Model,Season,Capacity,Trail_weight
,Packed_weight,Floor_area,Price)),skolem(weight,Trail_weight,c_outback,
5,dsr_tent_outback(Maker,Model,Season,Capacity,Trail_weight,Packed_weig
ht,Floor_area,Price)),skolem(weight,Packed_weight,c_outback,6,dsr_tent_
outback(Maker,Model,Season,Capacity,Trail_weight,Packed_weight,Floor_ar
ea,Price)),skolem(area,Floor_area,c_outback,7,dsr_tent_outback(Maker,Mo
del,Season,Capacity,Trail_weight,Packed_weight,Floor_area,Price)),skole
m(price,Price,c_outback,8,dsr_tent_outback(Maker,Model,Season,Capacity,
Trail_weight,Packed_weight,Floor_area,Price))),(dsr_tent_outback(Maker,
Model,Season,Capacity,Trail_weight,Packed_weight,Floor_area,Price))).

rule(dsr_tent_terranova_p(skolem(product,Model,c_terranova,1,dsr_tent_t
erranova(Model,Usage,Persons,Weight,Packed_length,Packed_width,Interior
_length,Interior_width,Interior_height,Price)),skolem(usage,Usage,c_ter
ranova,2,dsr_tent_terranova(Model,Usage,Persons,Weight,Packed_length,Pa

 155

cked_width,Interior_length,Interior_width,Interior_height,Price)),skole
m(sleepingCapacity,Persons,c_terranova,3,dsr_tent_terranova(Model,Usage
,Persons,Weight,Packed_length,Packed_width,Interior_length,Interior_wid
th,Interior_height,Price)),skolem(weight,Weight,c_terranova,4,dsr_tent_
terranova(Model,Usage,Persons,Weight,Packed_length,Packed_width,Interio
r_length,Interior_width,Interior_height,Price)),skolem(length,Packed_le
ngth,c_terranova,5,dsr_tent_terranova(Model,Usage,Persons,Weight,Packed
_length,Packed_width,Interior_length,Interior_width,Interior_height,Pri
ce)),skolem(length,Packed_width,c_terranova,6,dsr_tent_terranova(Model,
Usage,Persons,Weight,Packed_length,Packed_width,Interior_length,Interio
r_width,Interior_height,Price)),skolem(length,Interior_length,c_terrano
va,7,dsr_tent_terranova(Model,Usage,Persons,Weight,Packed_length,Packed
_width,Interior_length,Interior_width,Interior_height,Price)),skolem(le
ngth,Interior_width,c_terranova,8,dsr_tent_terranova(Model,Usage,Person
s,Weight,Packed_length,Packed_width,Interior_length,Interior_width,Inte
rior_height,Price)),skolem(length,Interior_height,c_terranova,9,dsr_ten
t_terranova(Model,Usage,Persons,Weight,Packed_length,Packed_width,Inter
ior_length,Interior_width,Interior_height,Price)),skolem(price,Price,c_
terranova,10,dsr_tent_terranova(Model,Usage,Persons,Weight,Packed_lengt
h,Packed_width,Interior_length,Interior_width,Interior_height,Price))),
(dsr_tent_terranova(Model,Usage,Persons,Weight,Packed_length,Packed_wid
th,Interior_length,Interior_width,Interior_height,Price))).

rule(tent_usage_map_p(skolem(basic,FromUsage,ctxt,1,tent_usage_map(From
Usage,ToUsage)),skolem(basic,ToUsage,ctxt,2,tent_usage_map(FromUsage,To
Usage))),(tent_usage_map(FromUsage,ToUsage))).

%% Context
rule(is_a(c_uk,basic),(true)).
rule(is_a(c_us,basic),(true)).
rule(is_a(c_cuba,basic),(true)).
rule(is_a(c_terranova,basic),(true)).
rule(is_a(c_efunctional,basic),(true)).
rule(is_a(c_antarctica,basic),(true)).
rule(is_a(c_outback,basic),(true)).
rule(is_a(ctxt,basic),(true)).

%% Modifier
rule(modifier(monetaryValue,_O,currency,c_antarctica,M),(cste(basic,M,c
_antarctica,GBP))).
rule(modifier(monetaryValue,_O,currency,c_efunctional,M),(cste(basic,M,
c_efunctional,USD))).
rule(modifier(monetaryValue,_O,currency,c_outback,M),(cste(basic,M,c_ou
tback,USD))).
rule(modifier(monetaryValue,_O,currency,c_terranova,M),(cste(basic,M,c_
terranova,GBP))).
rule(modifier(monetaryValue,_O,currency,c_us,M),(cste(basic,M,c_us,USD)
)).
rule(modifier(monetaryValue,_O,currency,c_cuba,M),(cste(basic,M,c_cuba,
CUP))).
rule(modifier(monetaryValue,_O,currency,c_uk,M),(cste(basic,M,c_uk,GBP)
)).
rule(modifier(weight,_O,weightUnit,c_antarctica,M),(cste(basic,M,c_anta
rctica,kg))).
rule(modifier(weight,_O,weightUnit,c_efunctional,M),(cste(basic,M,c_efu
nctional,lb))).

 156

rule(modifier(weight,_O,weightUnit,c_outback,M),(cste(basic,M,c_outback
,lb))).
rule(modifier(weight,_O,weightUnit,c_terranova,M),(cste(basic,M,c_terra
nova,kg))).
rule(modifier(weight,_O,weightUnit,c_us,M),(cste(basic,M,c_us,lb))).
rule(modifier(weight,_O,weightUnit,c_cuba,M),(cste(basic,M,c_cuba,kg)))
.
rule(modifier(weight,_O,weightUnit,c_uk,M),(cste(basic,M,c_uk,kg))).
rule(modifier(length,_O,lengthUnit,c_antarctica,M),(cste(basic,M,c_anta
rctica,cm))).
rule(modifier(length,_O,lengthUnit,c_efunctional,M),(cste(basic,M,c_efu
nctional,in))).
rule(modifier(length,_O,lengthUnit,c_outback,M),(cste(basic,M,c_outback
,in))).
rule(modifier(length,_O,lengthUnit,c_terranova,M),(cste(basic,M,c_terra
nova,cm))).
rule(modifier(length,_O,lengthUnit,c_us,M),(cste(basic,M,c_us,in))).
rule(modifier(length,_O,lengthUnit,c_cuba,M),(cste(basic,M,c_cuba,cm)))
.
rule(modifier(length,_O,lengthUnit,c_uk,M),(cste(basic,M,c_uk,cm))).
rule(modifier(sleepingCapacity,_O,numPersons,c_antarctica,M),(cste(basi
c,M,c_antarctica,122.0x244.0cm))).
rule(modifier(sleepingCapacity,_O,numPersons,c_efunctional,M),(cste(bas
ic,M,c_efunctional,48.00x96.00in))).
rule(modifier(sleepingCapacity,_O,numPersons,c_outback,M),(cste(basic,M
,c_outback,48.00x96.00in))).
rule(modifier(sleepingCapacity,_O,numPersons,c_terranova,M),(cste(basic
,M,c_terranova,122.0x244.0cm))).
rule(modifier(sleepingCapacity,_O,numPersons,c_us,M),(cste(basic,M,c_us
,48.00x96.00in))).
rule(modifier(sleepingCapacity,_O,numPersons,c_cuba,M),(cste(basic,M,c_
cuba,91.00x213.0cm))).
rule(modifier(sleepingCapacity,_O,numPersons,c_uk,M),(cste(basic,M,c_uk
,122.0x244.0cm))).

%% Attribute
rule(attr(X,maker,Y),()).
rule(attr(X,price,Y),()).
rule(attr(X,netWeight,Y),()).
rule(attr(X,grossWeight,Y),()).
rule(attr(X,sleepingCapacity,Y),()).
rule(attr(X,usage,Y),()).
rule(attr(X,packedSize,Y),()).
rule(attr(X,floorArea,Y),()).
rule(attr(X,interiorSpace,Y),()).
rule(attr(X,length,Y),()).
rule(attr(X,width,Y),()).
rule(attr(X,length,Y),()).
rule(attr(X,width,Y),()).
rule(attr(X,height,Y),()).

%% Converison Function
%%
%% lib_currency
%%
rule(is_a(lib_currency_exchangeRate, basic), (true)).
rule(is_a(lib_currency_date, basic), (true)).

 157

rule(is_a(lib_currency_currency, basic), (true)).
rule(relation(cameleon, lib_currency_olsen, i, [['Exchanged', string],
['Expressed', string], ['Rate', string], ['Date', string]],
cap([[0,0,0,0]], [])), (true)).
rule(lib_currency_olsen_p(
skolem(lib_currency_currency, Exch, Ctxt, 1, lib_currency_olsen(Exch,
Express, Rate, Date)),
skolem(lib_currency_currency, Express, Ctxt, 2,
lib_currency_olsen(Exch, Express, Rate, Date)),
skolem(lib_currency_exchangeRate, Rate, Ctxt, 3,
lib_currency_olsen(Exch, Express, Rate, Date)),
skolem(lib_currency_date, Date, Ctxt, 4, lib_currency_olsen(Exch,
Express, Rate, Date))),
(lib_currency_olsen(Exch, Express, Rate, Date))).
rule(lib_currency_currentDate_p(
skolem(lib_currency_date, V, Ctxt, 1, lib_currency_currentDate(V))),
(lib_currency_currentDate(V))).
rule(cvt(commutative, monetaryValue, Object, currency, Ctxt, Ms, Vs,
Mt, Vt),
(lib_currency_olsen_p(Fc, Tc, Rate, Date),value(Fc, Ctxt, Ms),value(Tc,
Ctxt, Mt),value(Rate, Ctxt,
Rv),lib_currency_currentDate_p(CurDate),value(CurDate, Ctxt,
DateValue),value(Date, Ctxt, DateValue),multiply(Vs, Rv, Vt))).
rule(lib_currency_currentDate(Date), ({date(D), substring(D, 5, 3,
Month), substring(D, 9, 2, Day), substring(D, 23, 2, Year)},
month(Month, NumMonth), {concat_string([NumMonth, /, Day, /, Year],
Date)})).
rule(month("Jan", 01), (true)).
rule(month("Feb", 02), (true)).
rule(month("Mar", 03), (true)).
rule(month("Apr", 04), (true)).
rule(month("May", 05), (true)).
rule(month("Jun", 06), (true)).
rule(month("Jul", 07), (true)).
rule(month("Aug", 08), (true)).
rule(month("Sep", 09), (true)).
rule(month("Oct", 10), (true)).
rule(month("Nov", 11), (true)).
rule(month("Dec", 12), (true)).
%%
%% lib_currency end
%%

%%
%% lib_physical_unit
%%
rule(relation(cameleon, lib_physical_unit, i,
[['FrmUnit',string],['ToUnit',string],['UnitFactor',string]],
cap([[0,0,0]],[])), (true)).
rule(lib_physical_unit_p(
skolem(basic, FrmUnit, Ctxt, 1, lib_physical_unit(FrmUnit, ToUnit,
UnitFactor)),
skolem(basic, ToUnit, Ctxt, 2, lib_physical_unit(FrmUnit, ToUnit,
UnitFactor)),

 158

skolem(basic, UnitFactor, Ctxt, 3, lib_physical_unit(FrmUnit, ToUnit,
UnitFactor))),
(lib_physical_unit(FrmUnit, ToUnit, UnitFactor))).
rule(cvt(commutative, weight, Object, weightUnit, Ctxt, Ms, Vs, Mt,
Vt),
(lib_physical_unit_p(Fu, Tu, Uf),value(Fu, Ctxt, Ms),value(Tu, Ctxt,
Mt),value(Uf, Ctxt, Ufv),multiply(Vs, Ufv, Vt))).
%%
%% lib_physical_unit end
%%

%%
%% lib_physical_unit
%%
rule(relation(cameleon, lib_physical_unit, i,
[['FrmUnit',string],['ToUnit',string],['UnitFactor',string]],
cap([[0,0,0]],[])), (true)).
rule(lib_physical_unit_p(
skolem(basic, FrmUnit, Ctxt, 1, lib_physical_unit(FrmUnit, ToUnit,
UnitFactor)),
skolem(basic, ToUnit, Ctxt, 2, lib_physical_unit(FrmUnit, ToUnit,
UnitFactor)),
skolem(basic, UnitFactor, Ctxt, 3, lib_physical_unit(FrmUnit, ToUnit,
UnitFactor))),
(lib_physical_unit(FrmUnit, ToUnit, UnitFactor))).
rule(cvt(commutative, length, Object, lengthUnit, Ctxt, Ms, Vs, Mt,
Vt),
(lib_physical_unit_p(Fu, Tu, Uf),value(Fu, Ctxt, Ms),value(Tu, Ctxt,
Mt),value(Uf, Ctxt, Ufv),multiply(Vs, Ufv, Vt))).
%%
%% lib_physical_unit end
%%

rule(cvt(commutative, sleepingCapacity, _O, numPersons, ctxt, Ms, Vs,
Mt, Vt),
 ({substring(Ms, 1, 5, Fv1), substring(Ms, 7, 5, Fv2),
substring(Ms, 12, 2, Fu), substring(Mt, 1, 5, Tv1), substring(Mt, 7, 5,
Tv2), substring(Mt, 12, 2, Tu)},
 unit_conv_p(Fu2, Tu2, Uf),
 value(Fu2, ctxt, Fu),
 value(Tu2, ctxt, Tu),
 value(Uf, ctxt, Ufv),
 multiply(Fv1, Ufv, Fv11),
 multiply(Fv2, Ufv, Fv21),
 multiply(Fv11, Fv21, Fv3),
 multiply(Vs, Fv3, Ttv),
 divide(Ttv, Tv1, Vt1),
 divide(Vt1, Tv2, Vt))).

