
Representing and Reasoning about Semantic

Con
icts in Heterogeneous Information Systems

by

Cheng Hian Goh

Submitted to the Sloan School of Management

in partial ful�llment of the requirements for the degree of

Doctor of Philosophy

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Jan 1997

 Cheng Hian Goh, 1997. All rights reserved.

Author : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :

Sloan School of Management

Dec 5, 1996

Certi�ed by : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :

Stuart E. Madnick

John Norris Maguire Professor of Information Technology

Thesis Supervisor

Accepted by : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :

Gordon M. Kaufman

Chairman, Departmental Committee on Graduate Students



Representing and Reasoning about Semantic Con
icts in

Heterogeneous Information Systems

by

Cheng Hian Goh

Submitted to the Sloan School of Management
on Dec 5, 1996, in partial ful�llment of the

requirements for the degree of
Doctor of Philosophy

Abstract

The context interchange (coin) strategy [Sciore et al., 1994, Siegel and Madnick,
1991] presents a novel perspective for mediated data access in which semantic con-

icts among heterogeneous systems are not identi�ed a priori, but are detected and
reconciled by a Context Mediator through comparison of contexts associated with
any two systems engaged in data exchange. In this paper, we present a formal char-
acterization and reconstruction of this strategy in a coin framework, based on a
deductive object-oriented data model and language called coin. The coin framework
provides a logical formalism for representing data semantics in distinct contexts. We
show that this presents a well-founded basis for reasoning about semantic disparities
in heterogeneous systems. In addition, it combines the best features of loose- and
tight-coupling approaches in de�ning an integration strategy that is scalable, exten-
sible and accessible. These latter features are made possible by allowing complexity
of the system to be harnessed in small chunks, by enabling sources and receivers to
remain loosely-coupled to one another, and by sustaining an infrastructure for data
integration. The feasibility and features of this approach have been demonstrated in
a prototype implementation which provides mediated access to traditional database
systems (e.g., Oracle databases) as well as semi-structured data (e.g., Web-sites)

Thesis Supervisor: Stuart E. Madnick
Title: John Norris Maguire Professor of Information Technology



Representing and Reasoning about Semantic Con
icts in

Heterogeneous Information Systems

by

Cheng Hian Goh

Submitted to the Sloan School of Management
on Dec 5, 1996, in partial ful�llment of the

requirements for the degree of
Doctor of Philosophy

Abstract

The context interchange (coin) strategy [Sciore et al., 1994, Siegel and Madnick,
1991] presents a novel perspective for mediated data access in which semantic con-

icts among heterogeneous systems are not identi�ed a priori, but are detected and
reconciled by a Context Mediator through comparison of contexts associated with
any two systems engaged in data exchange. In this paper, we present a formal char-
acterization and reconstruction of this strategy in a coin framework, based on a
deductive object-oriented data model and language called coin. The coin framework
provides a logical formalism for representing data semantics in distinct contexts. We
show that this presents a well-founded basis for reasoning about semantic disparities
in heterogeneous systems. In addition, it combines the best features of loose- and
tight-coupling approaches in de�ning an integration strategy that is scalable, exten-
sible and accessible. These latter features are made possible by allowing complexity
of the system to be harnessed in small chunks, by enabling sources and receivers to
remain loosely-coupled to one another, and by sustaining an infrastructure for data
integration. The feasibility and features of this approach have been demonstrated in
a prototype implementation which provides mediated access to traditional database
systems (e.g., Oracle databases) as well as semi-structured data (e.g., Web-sites)

Thesis Supervisor: Stuart E. Madnick
Title: John Norris Maguire Professor of Information Technology



Contents

1 Introduction 7

1.1 Summary of Contributions . . . . . . . . . . . . . . . . . . . . . . . . 9

1.2 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2 Literature Survey 15

2.1 Data Heterogeneity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2 Approaches to Achieving Interoperability . . . . . . . . . . . . . . . . 22

2.3 The Measure of a Viable Integration Strategy . . . . . . . . . . . . . 27

3 Context Interchange By Example 31

3.1 Scenario Description . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.2 A User Perspective of Context Interchange . . . . . . . . . . . . . . . 33

3.3 A System Perspective of Context Interchange . . . . . . . . . . . . . 39

3.4 Context Interchange vis-�a-vis Traditional and Contemporary Integra-

tion Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4 The COIN Data Model 48

4.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.2 Formalizing Context for Semantic Interoperability . . . . . . . . . . . 55

4.3 The Structural Elements of COIN . . . . . . . . . . . . . . . . . . . . 57

4.4 The Language of COIN . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.5 The COIN Framework . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.6 A Meta-Logical Extension to the COIN Framework . . . . . . . . . . 71

3



5 Query Answering in the COIN Framework 74

5.1 Abductive Logic Programming . . . . . . . . . . . . . . . . . . . . . . 75

5.2 On the Relationship between Abduction and Deduction . . . . . . . . 77

5.3 The SLD+Abduction Procedure and Its Extensions . . . . . . . . . . 78

5.4 Query Answering in the COIN Framework . . . . . . . . . . . . . . . 80

5.5 Illustrative Example . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

6 The Context Interchange Prototype 89

6.1 The Context Interchange Prototype: Overview . . . . . . . . . . . . . 90

6.2 Implementation of the Context Mediator . . . . . . . . . . . . . . . . 93

6.3 Mediated Data Access: A User's Perspective . . . . . . . . . . . . . . 97

7 Conclusion 100

7.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101



List of Figures

2-1 A taxonomy of data con
icts proposed in this Thesis. . . . . . . . . . 17

2-2 Schematic con
icts resulting from the di�erent design decisions con-

cerning how data should be aggregated. . . . . . . . . . . . . . . . . . 19

2-3 Schematic con
icts resulting from di�erent design choices concerning

how \generalization" is applied. . . . . . . . . . . . . . . . . . . . . 19

2-4 A sampling of prototype systems constructed using the tightly-coupled

(�) and the loosely-coupled (F) strategies. . . . . . . . . . . . . . . . 24

3-1 Scenario for the motivational example. . . . . . . . . . . . . . . . . . 33

3-2 A graphical representation of the relationships between semantic-types

in the domain model, semantic-relations (de�ned on semantic-objects),

and data elements in the relation r2. . . . . . . . . . . . . . . . . . . 41

4-1 The source set, source-to-context mapping, and domain model for the

coin framework corresponding to the motivational example. . . . . . 66

4-2 Elevation set corresponding to the motivational example . . . . . . . 68

4-3 Context sets for C for the motivational example at hand. . . . . . . . 69

5-1 A summary of how queries are processed within the Context Inter-

change strategy: ① transforms a (extended) SQL query to a well-

formed coin query; ② performs the coin to Datalogneg translation;

③ is the abduction computation which generates an abductive answer

corresponding to the given query; and ④ transforms the answer from

clausal form back to SQL. . . . . . . . . . . . . . . . . . . . . . . . . 81

5



5-2 One possible refutation for query CQ3. Method and functor names

are abbreviated where possible (e.g., cr = currency). The resolution

step labeled ☞ is where a literal is abducted. The abductive answer

corresponding to this refutation is given by �4, and the intensional

answer by (�4; fN=sk0; F=1g). . . . . . . . . . . . . . . . . . . . . . . 86

6-1 Architectural overview of the Context Interchange Prototype. . . . . 91

6-2 Context Mediator Internals. . . . . . . . . . . . . . . . . . . . . . . . 95

6-3 Screen-shot of the multidatabase browser. . . . . . . . . . . . . . . . 98



Chapter 1

Introduction

There is nothing more practical than a good theory.

{ Kurt Lewin

Almost every statement we make is imprecise and hence is meaningful only if under-

stood with reference to an underlying context1 which embodies a number of hidden

assumptions. This anomaly is ampli�ed in databases due to the gross simpli�cations

that we made in creating a database schema. For example, a database may record

the fact

salary('Jones', 2000)

without ever explaining what \2000" means (what currency and scale-factor is used?),

what is the periodicity (is this the daily, weekly, or monthly wage?), or what con-

stitutes the person's salary (does it include year-end bonuses? what about overtime

pay?). The real problem occurs when data sources and receivers maintain di�er-

ent assumptions about the data which are being exchanged: a receiver formulates a

query and interprets the answers returned in a certain context, whereas the query is

executed by source(s) which most likely provide answers in a completely di�erent con-

text. Under these circumstances, physical connectivity (the ability to exchange bits

and bytes) does not necessarily lead to logical connectivity (the ability to exchange

meaningful information). This problem is traditionally referred to as the need for se-

1
context: n. 1. The part of a written or spoken statement in which a word or passage at issue

occurs and that often speci�es its meaning. 2. The circumstances in which a particular event occurs;
situation. (The American Heritage Dictionary).
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mantic interoperability among autonomous and heterogeneous systems [Scheuermann

et al., 1990, Sheth and Larson, 1990, Hurson et al., 1994].

This Thesis describes a novel approach, called Context Interchange (coin), for

achieving semantic interoperability among heterogeneous sources and receivers. The

coin strategy described in this paper drew its inspiration from earlier work reported

in [Siegel and Madnick, 1991, Sciore et al., 1994]. Speci�cally, we share the basic

tenets that

� the detection and reconciliation of semantic con
icts are system services which

are provided by a Context Mediator, and should be transparent to a user; and

� the provision of such a mediation service requires only that the user furnish

a logical (declarative) speci�cation of how data are interpreted in sources and

receivers, and how con
icts, when detected, should be resolved, but not what

con
icts exists a priori between any two systems.

These insights are novel because they depart from classical integration strategies

which either require users to engage in the detection and reconciliation of con
icts

(in the case of loosely-coupled systems; e.g., MRDSM [Litwin and Abdellatif, 1987],

VIP-MDBMS [Kuhn and Ludwig, 1988]), or insist that con
icts should be identi-

�ed and reconciled, a priori, by some system administrator, in one or more shared

schemas (as in tightly-coupled systems; e.g., Multibase [Landers and Rosenberg, 1982],

Mermaid [Templeton et al., 1987]).

Unfortunately, as interesting as these ideas may be, they could remain as vague

musings in the absence of a formal conceptual foundation. One attempt at identifying

a conceptual basis for Context Interchange is the semantic-value model [Sciore et al.,

1994], where each data element is augmented with a property-list which de�nes its

context. This model, however, continues to be fraught with ambiguity. For exam-

ple, it relied on implicit agreement on what the modi�ers for di�erent attributes are,

as well as what conversion functions are applicable for di�erent kinds of con
icts,

and is silent on how di�erent conversion de�nitions can be associated with distinct

contexts. De�ning the semantics of data through annotations attached to individual
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data elements tend also to be cumbersome, and there is no systematic way of promot-

ing the sharing and reusing of the semantic representations. At the same time, the

representational formalism remains somewhat detached from the underlying con
ict

detection algorithm (the subsumption algorithm [Siegel and Madnick, 1991]). Among

other problems, this algorithm requires con
ict detection to be done on a pairwise

basis (i.e., by comparing the context de�nitions for two systems at a time), and is

non-committal on how a query plan for multiple sources can be constructed based

on the sets of pair-wise con
icts. Furthermore, the algorithm limits meta-attributes

to only a single-level (i.e., property lists cannot be nested), and are not able to take

advantage of known constraints for pruning o� con
icts which are guaranteed never

to occur.

1.1 Summary of Contributions

We have two (intertwined) objectives in this paper. First, we aim to provide a formal

foundation for the Context Interchange strategy that will not only rectify the problems

described earlier, but also provide for an integration of the underlying representational

and reasoning formalisms. Second, the deconstruction and subsequent reconstruction2

of the Context Interchange approach described in [Siegel and Madnick, 1991, Sciore

et al., 1994] provides us with the opportunity to address the concern for integration

strategies that are scalable, extensible and accessible.

Our formal characterization of the Context Interchange strategy takes the form

of a coin framework, based on the coin data model, which is a customized subset of

the deductive object-oriented model called Gulog3 [Dobbie and Topor, 1995]. coin is

a \logical" data model in the sense that it uses logic as a formalism for representing

knowledge and for expressing operations. The logical features of coin provide us

with a well-founded basis for making inferences about semantic disparities that exist

2In this deconstruction, we tease apart di�erent elements of the Context Interchange strategy
with the goal of understanding their contributions individually and collectively. The reconstruction

examines how the same features (and more) can be accomplished di�erently within the formalism
we have invented.

3Gulog is itself a variant of F-logic [Kifer et al., 1995].

9



among data in di�erent contexts. In particular, a coin framework can be translated

to a normal program [Lloyd, 1987] (equivalently, a Datalogneg program) for which

the semantics is well-de�ned, and where sound computational procedures for query

answering exist. Since there is no real distinction between factual statements (i.e.,

data in sources) and knowledge (i.e., statements encoding data semantics) in this

logical framework, both queries on data sources (data-level queries) as well as queries

on data semantics (knowledge-level queries) can be processed in an identical manner.

As an alternative to the classic deductive framework, we investigate the adoption

of an abductive framework [Kakas et al., 1993] for query processing. Interestingly,

although abduction and deduction are \mirror-images" of each other [Denecker and

Schreye, 1992a], the abductive answers, computed using a simple extension to classic

SLD-resolution leads to intensional answers as opposed to extensional answers that

would be obtained via deduction. Intensional answers are useful in our framework

for a number of conceptual and practical reasons. In particular, if the query is issued

by a \naive" user under the assumption that there are no con
icts whatsoever, the

intensional answer obtained can be interpreted as the corresponding mediated query

in which database accesses are interleaved with data transformations required for

mediating potential con
icts. Finally, by checking the consistency of the abducted

answers against known integrity constraints, we show that the abducted answer can

be greatly simpli�ed, demonstrating a clear connection to what is traditionally known

as semantic query optimization [Chakravarthy et al., 1990].

As much as it is a logical data model, coin is also an \object-oriented" data model

because it adopts an \object-centric" view of the world and supports many of the

features (e.g., object-identity, type-hierarchy, inheritance, and overriding) commonly

associated with object-orientation. The standard use of abstraction, inheritance, as

well as structural and behavioral inheritance [Kifer et al., 1995] present many op-

portunities for sharing and reuse of semantic encodings. Conversion functions (for

transforming the representation of data between contexts) can be modeled as methods

attached to types in a natural fashion. Unlike \general purpose" object-oriented for-

malisms, we make some adjustments to the structure of our model by distinguishing
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between di�erent kinds of objects which have particular signi�cance for our problem

domain. In particular, we introduce the notion of context-objects, described in [Mc-

Carthy, 1987], as rei�ed representations for collections of statements about particular

contexts. This allows context knowledge to be de�ned with a common reference point

and is instrumental in providing a structuring mechanism for making inferences across

multiple theories which may be mutually inconsistent.

The reconstruction of the Context Interchange strategy allows us to go beyond

the classical concern of \non-intrusion", and provides a formulation that is scalable,

extensible and accessible [Goh et al., 1994]. By scalability, we require that the com-

plexity of creating and administering (maintaining) the interoperation services should

not increase exponentially with the number of participating sources and receivers.

Extensibility refers to the ability to incorporate changes in a graceful manner; in

particular, local changes should not have adverse e�ects on other parts of the larger

system. Finally, accessibility refers to how the system is perceived by a user in terms

of its ease-of-use and 
exibility in supporting di�erent kinds of queries.

The above concerns are addressed in two ways in the reconstructed Context In-

terchange strategy4. Provisions for making sources more accessible to users is accom-

plished by shifting the burden for con
ict detection and mediation to the system;

supporting multiple paradigms for data access by supporting queries formulated di-

rectly on sources as well as queries mediated by views; by making knowledge of

disparate semantics accessible to users by supporting knowledge-level queries and an-

swering with intensional answers; and by providing feedback in the form of mediated

queries. Scalability and extensibility are addressed by maintaining the distinction

between the representation of data semantics as is known in individual contexts, and

the detection of potential con
icts that may arise when data are exchanged between

two systems; by the structural arrangement that allow data semantics to be speci�ed

with reference to complex object types in the domain model as opposed to annotations

tightly-coupled in the individual database schemas; by allowing multiple systems with

4For the sake of brevity, further references made to the Context Interchange strategy from this
point on refers to this reconstruction unless otherwise speci�ed.
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distinct schemas to bind to the same contexts; by the judicious use of object-oriented

features, in particular, inheritance and overriding in the type system present in the

domain model; and by sustaining an infrastructure for data integration that combines

these features. As a special e�ort in providing such an infrastructure, we introduce a

meta-logical extension of the coin framework which allows sets of context axioms to

be \objecti�ed" and placed in a hierarchy, such that new and more complex contexts

can be derived through a hierarchical composition operator [Brogi and Turini, 1991].

This mechanism, coupled with type inheritance, constitutes a powerful approach for

incorporating changes (e.g., the addition of a new system, or changes to the domain

model) in a graceful manner.

Finally, we remark that the feasibility and features of this approach have been

demonstrated in a prototype implementation which provides mediated access to tra-

ditional database systems (e.g., Oracle databases) as well as semi-structured data

(e.g., Web-sites)5.

1.2 Thesis Outline

The rest of this Thesis is organized as follows. Chapter 2 provides a summary of the

data integration literature with a taxonomy of data con
icts, followed by a brief survey

of the various research e�orts aimed at overcoming these problems. We contend,

however, that existing solutions are not adequate and suggests that a viable strategy

must go beyond \non-intrusiveness" to facilitate the construction of interoperable

systems which are scalable, extensible and accessible.

Chapter 3 paves the way for the rest of the Thesis by exemplifying the features

of the Context Interchange strategy through the use of examples. This provides an

overview of what is being accomplished, how this is aided by the underlying coin

data model, as well as why the various features are useful. Technical discussion is

deliberately kept to the minimal so that this material can be accessible to a wider

5This prototype is accessible from any WWW-client (e.g., Netscape Browser) and can be demon-
strated upon request.
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audience. In so doing, we hope the bene�ts of the proposed integration approach can

be appreciated by even the casual reader who may not want to be encumbered by the

technical material.

Chapter 4 begins with a review of deductive, object-oriented, and deductive

object-oriented data models. This is followed by a discussion on formalizing the notion

of context, �rst introduced in [McCarthy, 1987]. We then describe the structure and

language of the coin data model, which forms the basis for the formal characterization

of the Context Interchange strategy in a coin framework. For didactical reasons, we

shall �rst introduce the coin framework without considerations for inheritance among

context theories, and address the latter separately as an extension.

Chapter 5 describes the abductive inference approach to query answering in the

coin framework. We introduce the subject of abduction with a brief survey of the

literature; in particular, we describe the abductive framework as well as a simple

computation procedure called SLD+Abduction [Cox and Pietrzykowski, 1986], which

is being adapted for our purposes. As pointed out by various researchers, there is an

interesting duality relationship between abduction and deduction: we illustrate the

intuition underlying this with an example. We proceed to show that query answering

in a coin framework is in fact isomorphic to the same in an abductive framework.

Interestingly, consistency requirements in abduction provides a natural means for

integrating integrity constraints which amounts to performing classical semantic

query optimization [Chakravarthy et al., 1990].

Chapter 6 presents details on the design and implementation of the Context

Interchange Prototype. The Context Mediator (the key component responsible for

rewriting a user query to a mediated one) is implemented as part of testbed which in-

cludes a frontend for query formulation, gateways to relational databases, and wrap-

pers for semi-structured documents served by Web-sites. The Domain Model and

Context Axioms for the motivational example (as presented in Chapter 3) has been

captured along with several other data sources. This allows one to experiment with

di�erent types of queries to gain a better understanding of the features of our inte-

gration approach.

13



Finally, Chapter 7 concludes the Thesis with a summary of our contributions

and describes some important research questions which we have not been able to

address in this Thesis due to resource limitations.
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Chapter 2

Literature Survey

Throughout this Thesis, we use the term \heterogeneous information systems" to

refer to data sources and data receivers which are cooperating to share information

in the form of structured data. Sources refer to databases, data feeds, and other

applications which provide data upon requests; receivers refer to users, consolidat-

ing databases (e.g., data warehouses), and applications that make these requests. For

brevity, we will refer to both of these as component systems when the distinction is not

important. Component systems in \heterogeneous information systems" are charac-

terized by autonomy and heterogeneity, thus setting the latter apart from traditional

information systems which are centrally administered to maintain an acceptable level

of homogeneity by virtue of design1.

In their report on the NSF workshop on Heterogeneous Database Systems in 1989,

Scheuermann et al. [1990] noted that there are di�erent types (degrees) of autonomy,

each having di�erent implications:

� Design autonomy refers to the capability of a database system to choose its own

information, data model, and implementation procedures;

1For most purposes, our characterization of \heterogeneous information systems" is not unlike
that of \heterogeneous databases" [Scheuermann et al., 1990], \federated database systems" [Sheth
and Larson, 1990], or \multidatabase systems" [Bright et al., 1992] as are described in the literature.
A notable exception is that we accord the same level of autonomy to both sources and receivers:
i.e., disparate users and applications are equally likely to have di�erent expectations of how data
is presented and interpreted and, like sources, are resilient to changes (for example, in the case of
legacy applications, changes in structure or semantics may entail code changes).
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� Communication autonomy refers to the capability of a system to decide with

what other systems to communicate and what information to exchange with

them;

� Execution autonomy refers to the ability of a system to decide how and when

to execute requests received from another system.

Design autonomy leads to various types of heterogeneity. It is common practice to

distinguish between data heterogeneity and system heterogeneity. The �rst refers to

the di�erent ways in which data is organized or interpreted in disparate systems; the

latter is concerned with di�erences in data model, data manipulation language, con-

currency control mechanism, and so forth. Clearly, design autonomy (and resulting

heterogeneity) constitutes a major obstacle in accomplishing semantic interoperabil-

ity, or the meaningful exchange of information, among disparate systems. Commu-

nication and execution autonomy on the other hand pose many new challenges for

query processing and optimization which are distinct from those faced in distributed

query processing. These latter issues have been discussed in [Lu et al., 1992] but are

otherwise outside the scope of this Thesis.

2.1 Data Heterogeneity

Roughly speaking, we can distinguish between three types of data con
icts. Of these,

the �rst two | schematic con
icts [Kim and Seo, 1991, Krishnamurthy et al., 1991],

semantic con
icts [Sheth and Kashyap, 1992, Naiman and Ouskel, 1995, Garcia-

Solaco et al., 1996] | have been well-documented in the literature (though there

is little consensus of what each encompasses). In most instances, the distinction

between the two can be characterized by di�erences in \structure" (\how are the data

logically organized?") versus that of \interpretation" (\what do the data mean?").

This distinction however is not always crisp, since the logical organization of data

often conveys semantic information. A third category of con
icts, which we shall

refer to as intensional con
icts, are concerned with the di�erences over the contents

16



of information which are present (or expected) in distinct systems. The remainder

of this section introduces a taxonomy (as illustrated in Figure 2-1) which provides a

synthesis of the literature on this subject.

Semantic Conflicts

Schematic Conflicts

Data

Conflicts

Intensional Conflicts

Data Type Conflicts

Aggregation Conflicts

Generalization Conflicts

Naming Conflicts

Scaling Conflicts

Confounding Conflicts

Integrity Constraint Conflicts

Labelling Conflicts

Domain Conflicts

Figure 2-1: A taxonomy of data con
icts proposed in this Thesis.

Schematic Heterogeneity

Four distinct categories of con
icts are often identi�ed with schematic heterogeneity.
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Data Type Con
icts

Data Type con
icts refer to the use of di�erent primitive system types in the repre-

sentation of data values. For example, dates may be represented as strings, or, in the

case of some DBMSs, instances of the primitive type \Date". These di�erences may

stem from arbitrary choices of di�erent system designers (i.e., design autonomy), or

they may be due to the fact that a given data type (in this case, \Date") is not sup-

ported by the underlying system. In some instances, these constraints may be more

subtle (e.g., as when the underlying system impose an upper limit on the precision of

a stored value), in which case the con
icts, though real, may not be readily apparent.

Labelling Con
icts

Labelling Con
icts refer to synonyms and homonyms as occurring among schema

elements: i.e., the same attribute may be referred to by di�erent labels in two distinct

sources, or conversely, the same label may be used in identifying distinct attributes

of an entity. In the case of the relational data model, this translates to con
icts

between table names and/or attribute names [Kim and Seo, 1991]. Con
icts of this

kind are easily resolved through renaming, such as via a view de�nition. Other

strategies include the use of some renaming operator [Motro, 1987], or the de�nition

of superfunctions [Dayal and Hwang, 1984].

Aggregation Con
icts

Aggregation Con
icts stem from di�erent design choices concerning how data should

be clustered to form the attributes of an entity being modeled [Smith and Smith,

1977]. For example, a designer may choose to model data concerning stocks by

clustering them around each instrument, or modeling transactions on a daily basis in

which case the di�erent instruments are attributes. These di�erent choices lead to

the juxtapositioning of data and meta-data as shown in Figure 2-2.
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Database A

relation Jan0196

StkCode TradePrice
HPP 30.10
BBM 40.20

...
...

relation Jan0296

StkCode TradePrice
HPP 30.50
BBM 41.00

...
...

Database B

relation HPP

Date TradePrice
01/01/96 30.10
01/02/96 30.50

...
...

relation BBM

Date TradePrice
01/01/96 40.20
01/02/96 41.00

...
...

Figure 2-2: Schematic con
icts resulting from the di�erent design decisions concerning
how data should be aggregated.

Database A

relation Employees

Name Department Designation
Jones production manager
Simpson development engineer
...

...
...

Database B

relation Managers

Name Department
Jones production
...

...

relation Engineers

Name Department
Simpson development
...

...

Figure 2-3: Schematic con
icts resulting from di�erent design choices concerning how
\generalization" is applied.
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Generalization Con
icts

Generalization Con
icts di�er from aggregation con
icts in that the design choices

involve determine how di�erent \entity types" relate to one another through sub-

sumption, as opposed to what entity types there are. Hence, one system may have

separate representations for managers and engineers, whereas another may model

all of the information collectively in an employee \entity type". When translated

to relational terms, this means that a single relation in one system may have to be

correlated with multiple relations in another. Moreover, some information may now

be implied by the structure and hence become implicit as shown in Figure 2-3. This

corresponds to the many-to-many table con
icts described by Kim and Seo [1991].

Semantic Heterogeneity

Semantic heterogeneity refers to the fact that data present in di�erent systems may be

subjected to di�erent interpretations, even when the corresponding database schemas

are identical. A considerable amount has been written about the various types of

semantic con
icts, though there appears to be little consensus on what is a good

taxonomy. This section organizes these into three distinct categories.

Naming Con
icts

Naming Con
icts consists of synonyms and homonyms among attribute values. For

example, the name of a company may be reported di�erently in di�erent systems (\In-

ternational Business Machines" versus \IBM" versus \I.B.M."). In most instances,

these di�erences are idiosyncratic in that the variations are not systematic. The

adoption of standards (even if it means having a multiplicity of them) is often useful

in limiting the number of variations down to some small number. In this case, it

becomes feasible to have \mapping tables" for translating from one symbolic repre-

sentation to another. Standards for units of measures is one such example whereby

translation from standard names and abbreviations (e.g., \kilometer" versus \km")

is routinely done.
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Scaling and Units Con
icts

Scaling and Units Con
icts refers to the adoption of di�erent units of measures or

scales in reporting. For example, �nancial data are routinely reported using di�erent

currencies and scale-factors. Also, academic grades may be reported on several dif-

ferent scales having di�erent granularities (e.g., a �ve-point scale with letter grades

\A" \B", \C", \D" and \F", or a four-point scale comprising \excellent", \good",

\pass", \fail").

Confounding Con
icts

Confounding Con
icts refer to those arising from the confounding of concepts which

are in actual fact distinct. For example, the \latest trade price" reported by two

data feeds may di�er from one another simply because one reports with a greater

temporal delay compared to the other. In this instance, the con
ict arises from

failure to distinguish between the two concepts \latest trade price with a 5-minute

delay" versus \latest trade price as of now". Similarly, many variations commonly

found in �nancial statements can be traced to the adoption of di�erent accounting

practices. For instance, total assets of a company may vary substantially depending

on how asset depreciation is amortized.

Intensional Heterogeneity

Intentional heterogeneity refers to the di�erences in informational content present in

sources or expected by receivers. There are two aspects to this:

Domain Con
icts

Domain Con
icts refer to discrepancies in the domain, or the underlying \universe

of discourse", which is (implicitly) modeled by each component system. As an illus-

tration, two sources may provide �nancial information on companies, but the �rst

reports \all US Fortune 500 companies in the manufacturing sector", whereas the

second may report information for \all companies listed on US stock exchanges (for-
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eign or US-incorporated) with total assets above one billion US Dollars". In general,

the extensions of two distinct components may be related in a number of ways: they

may be identical, one may be a strict subset of the other, they may be disjoint, or

they may overlap in some nontrivial way. Knowing what extensional data sets are

provided by disparate sources is important for determining a minimal set of database

requests needed to satisfy a given query: if it is known that the extension of source

A is a superset of those of sources B and C, querying all three sources is clearly

redundant and entails more work than necessary. Receivers too can have implicit ex-

tensions. An application may be designed around the assumption that it is operating

on a collection quali�ed in some manner (e.g., all stocks traded on New York Stock

Exchange). It is critical that queries issued by this application be understood with

reference to the assumptions which bind the extensional data set in order that it can

be correctly interpreted.

Integrity Constraint Con
icts

Integrity Constraint Con
icts refer to disparity among the integrity constraints as-

serted in di�erent systems. The simplest (but potentially most troublesome) form of

these is con
icts over key constraints. The name of an individual may be unique in

one component system (hence allowing it to be used as a key), but not in another.

In general, many di�erent possibilities exists given that integrity constraints can take

on many di�erent forms. From a data retrieval point of view, certain violations can

be treated as inconsistencies and dealt with as such (see, for instance the approach

adopted by Agarwal et al. [1995]). Updates under these circumstances are much more

di�cult and remains a topic for further research.

2.2 Approaches to Achieving Interoperability

Within the last decade or so, there has been a proliferation of proposals and research

prototypes aimed at achieving interoperability among autonomous and heterogeneous

databases. Primarily, these proposals di�er from one another along two dimensions:
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� the choice of the underlying data model for achieving schematic and semantic

transformations needed for con
ict resolution; and

� subscription to either a tight-coupling integration strategy or a loose-coupling

integration strategy.

Figure 2-4 identi�es some of the better known systems which have been reported in the

research literature. Not surprisingly, the semantically-richer data models (i.e., object-

oriented and logic-based formalisms) have gained greater popularity over traditional

(relational) systems. The distinction between tight- and loose-coupling systems, on

the other hand, can be characterized by

� who is responsible for identifying what con
icts exists and how they can be

circumvented; and

� when the con
icts are resolved.

Clearly, the two tasks are correlated since the �rst must precede the second. The

remainder of this section describes the pertinent features of the two approaches. This

is followed by a survey of some of the more reported in the literature.

In the discussion which follows, we draw a sharp distinction between tight- and

loose-coupling integration strategies to provide a contrast of the tradeo�s between

the two approaches. In actual fact, most integration exercises in the real-world fall

somewhere in between on this continuum, and few, if any, would venture to the

extremes. This \middle-ground" strategy, however, does not seem to o�er additional

bene�ts since the two strategies are founded on very di�erent premises on how data

semantics are captured and do not leverage e�ectively on each other. At best, the

amalgamation of the two approaches in a real-world scenario provides a mixed bag of

interfaces from which receivers can choose from, but does not, in general, circumvent

the problems inherent in each strategy.
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Data Model

Functional

Data Model

Deductive
(Logic-Based)

Data Model

-







Timeline

Data Model

Object-Oriented
(Frame-Based)

Data Model

1980 1985 1990 1995

� Multibase [Landers and Rosenberg, 1982]

� ADDS [Breitbart and Tieman, 1985]

� Mermaid [Templeton et al., 1987]

F MRDSM [Litwin and Abdellatif, 1987]

F LINDA [Wolski, 1989]

� Pegasus [Ahmed et al., 1991]

F VIP-MDBMS [Kuhn and Ludwig, 1988]

� Carnot [Collet et al., 1991]

� SIMS [Arens and Knoblock, 1992]

F O*SQL [Litwin, 1992]

Figure 2-4: A sampling of prototype systems constructed using the tightly-coupled
(�) and the loosely-coupled (F) strategies.

The Tight-Coupling Strategy

In the case of tightly-coupled systems, the detection of con
icts (and alternatives for

resolving them) is performed by a system administrator and the actual resolution

is accomplished by de�ning, a priori, one or more views which de�ne the shared

schemas for the system. A shared schema insulates the receiver from underlying data

heterogeneity by providing a canonical representation of the data originating from

disparate sources. Queries formulated against a shared schema can be transformed to

subqueries which are submitted to component sources, and the results are translated

to the canonical representation using the view de�nition. Early prototypes which

have been constructed using the tight-coupling approach include Multibase [Landers
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and Rosenberg, 1982], ADDS [Breitbart and Tieman, 1985], and Mermaid [Templeton

et al., 1987]. More recently, the same strategy has been employed for systems adopting

object-oriented data models (e.g., Pegasus [Ahmed et al., 1991] based on the IRIS

data model), frame-based knowledge representation languages (e.g., SIMS [Arens and

Knoblock, 1992] using LOOM), as well as logic-based languages (e.g., Carnot [Collet

et al., 1991] using CycL, an extension of �rst-order predicate calculus).

In virtually all of the above cases, the technique for con
ict resolution is similar

to that proposed by Dayal and Hwang [1984]: i.e., con
icts in underlying sources

are encapsulated via the introduction of a supertype, which has methods or functions

which are de�ned with reference to its subtypes. For instance, consider the following

con
ict for student grades reported by two databases: the �rst database represents

student grades using letter grades, and the second represents the same as points in

the range of 0 to 100. In the Pegasus system, this integration is accomplished by

introducing a supertype which subsumes the two Student types and allowing all

attributes of the subtypes to be \upward inherited". Hence, if the attribute Name

is common to Student1 and Student2, the invocation of method Name on Student

will be automatically translated to the invocation of Name on one of the subtypes.

Semantic con
icts are circumvented by providing the necessary conversion functions

(in this case, Map1 and Map2) to e�ect the translation to a \canonical" representation:

CREATE SUPERTYPE student OF student1, student2;

CREATE FUNCTION score(student x) ->

REAL r AS

IF student1(x) THEN map1(grade(x))

ELSE IF student2(x) THEN map2(points(x))

ELSE ERROR;

As we will point out in the next chapter, there are distinct disadvantages for adopting

such a technique for circumventing data con
icts.
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The Loose-Coupling Strategy

Systems constructed using the loose-coupling approach, on the other hand, subscribe

to the belief that the creation and maintenance of shared schemas is infeasible for

any nontrivial number of sources. Hence, instead of resolving all con
icts a priori,

con
ict detection and resolution are undertaken by receivers themselves, who need

only interact with a limited subset of the sources at any one time. To facilitate this

task, research on this front has focused on the invention of powerful data manipu-

lation languages (DMLs) which allow queries on multiple sources to be intermingled

with operations for data transformations. MRDSM [Litwin and Abdellatif, 1987], is

probably the best-known example of a loosely-coupled system, in which queries are

formulated using the multidatabase language MDSL. Kuhn and Ludwig [1988] have

implemented similar functionalities in VIP-MDBS, for which queries and data trans-

formations are written in Prolog. They showed that the adoption of a declarative

speci�cation does in fact increase the expressiveness of the language in terms of al-

lowable data transformations. More recently, Litwin [1992] has de�ned another query

language called O�SQL which is largely an object-oriented extension to MDSL.

A novel feature of MDSL is the use of dynamic attributes, which take on values

returned by conversion operations. Litwin and Abdellatif [1987] have proposed three

di�erent operators for accomplishing data transformation: arithmetic operators, map-

ping tables, and functions in the form of executable code. Returning to the earlier

scaling con
ict on student grades, a MDSL query for �nding all students with an

\A"-grade in Database2 (which reports in points in the range 1 to 100) can take the

following form:

OPEN database2

-RANGE (t student2)

-ATTR D grade : CHAR

-DEFINED BY P(score) = map2

-SELECT t -WHERE (t.grade = `A')

-RETRIEVE
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In this query, grade is a dynamic attribute (as denoted by the keyword ATTR D)

which is derived from the actual stored attribute score by applying a program (hence

the letter P) map2 to it. Notice that the actual select statement is formulated using

attribute grade as opposed to score. As will be demonstrated in the next section,

the loose-coupling approach helps to eliminate some of the di�culties inherent in

tight-coupling systems but at the same time introduces new problems which renders

it less viable than it presumed to be.

2.3 The Measure of a Viable Integration Strategy

Traditionally, the only requirement of an integration strategy is that interoperability

must be accomplished in a non-intrusive manner: i.e., the provision of new services

must not require changes in existing sources nor should it interfere with applications

operating on local sources only. Clearly, classical integration approaches described

above have more than adequately met this goal.

The recent years, however, have witnessed an exponential growth in the number of

sources and receivers which are demanding solutions to complex integration scenarios

characterized by a large number of component systems operating in a diversi�ed and

dynamic environment2. This phenomenon can be attributed to a number of reasons:

� the rise of new organizational forms (e.g., adhocracies and networked organi-

zations [Malone and Rockart, 1991]) which require information resources to be

shared across traditional organizational and functional boundaries;

� advances in telecommunications and networking technology which led to rapidly

declining cost/performance ratio, making network investments much more at-

tractive; and

� the development and wide-spread acceptance of standards (e.g., URLs and the

2A well-documented example is the Integrated Weapons Systems Data Base (IWSDB) [Wieder-
hold, 1993], for which more than 50 databases (containing information on technical speci�cations,
design, manufacturing, and operational logistics) have been identi�ed as of 1993, with many more
expected over the next �ve decades.
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HTML mark-up language) and network protocols (e.g., the HTTP and IP pro-

tocols) which ease the transition to a networked environment.

Whatever the initial reasons may be, these have led to a \snowballing" e�ect. In eco-

nomic terms, this is a classic scenario where positive network externalities is at play:

as more and more organizations make their information resources and applications

network-aware, the \marginal bene�t" for the next source or receiver to come online

becomes greater.

In the light of the preceding observations we suggest that, for any integration

strategy to be viable, it must satisfy the following three additional criteria: scalabil-

ity, extensibility, and accessibility. Unfortunately, this is where classical integration

approaches have fallen short.

Scalability

The �rst measure of a viable integration strategy is undisputedly its ability to scale:

i.e., its e�cacy must not degrade drastically when the number of component systems

increases (say, from three to three hundred). For the problem at hand, it turns out

that things are much messier because the number of sources and receivers correlates

positively with the extent of data con
icts: i.e., having a larger number of sources

and receivers almost certainly means that there will be quantitatively more con
icts

which are qualitatively more diverse. This impacts current integration strategies in

at least two ways.

First, the strategy adopted for semantic integration is generally not tenable when

the number of sources and receivers is large. In the case of tightly-coupled systems,

de�ning a shared schema encapsulating all of the underlying con
icts becomes pro-

hibitively complex. This is not just because sources are more heterogeneous, but also

due to the fact that receivers will most likely have more diverse requirements which

must be accounted for in the design of the shared schema. (In some instances, this

may require the creation of several shared schemas to cater to the needs of di�erent

users.) With loosely-coupled systems, receivers, instead of system administrators,
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bear the brunt of the work. On the whole, the problem is even more pronounced

since end users have limited resources and hence may not be su�ciently equipped to

deal with complex semantic issues.

From a query processing point of view, having greater diversity in component sys-

tems means that more data conversions are expected leading to the rapid degradation

of system performance. To make matters worse, both the tight- and loose-coupling

approaches provide little scope for query optimization since semantic con
icts are

never represented explicitly but are encapsulated in the form of conversion functions

(which cannot be easily inspected or reasoned with by a query optimizer). In a small

and controlled environment, it is often possible for \canned" queries to be carefully

hand-crafted to meet the needs of critical applications. Such an approach, however,

becomes infeasible when a large number of receivers need to be supported and when

frequent changes in the underlying system are expected.

Extensibility

Things change over time. In the context of our discussion, changes come in one of

two forms: changes in membership of component systems (i.e., when new sources or

receivers are added or removed) and changes in schemas and/or semantics of under-

lying systems. A particularly interesting account of the latter, sometimes referred to

as domain evolution, has been reported by Ventrone and Heiler [1991] .

Whenever system membership or underlying schemas/semantics change, the ef-

fects must somehow be re
ected in the rest of the system which interoperates with

the element that has been changed. In the case of tightly-coupled systems, this means

that shared schemas referencing the altered component must be manually updated

by a system administrator. With loosely-coupled systems, such changes must be con-

veyed to receivers, who have vested interest in them, who must somehow register the

changes to facilitate future access. Individually, the changes may occur infrequently.

However, a small number of infrequent changes at the component level can add up

to formidable recurring events at the system level. For example, assuming an av-

erage of one change in three years for any component system, an integrated system
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with three hundred sources will have to contend with a hundred changes every year,

translating to two changes every week! The reliance of classical strategies on manual

interventions in mitigating these changes is clearly not a feasible choice.

Accessibility

The third criteria which we deem to be important is the ability to make information

resources more accessible to receivers. There are at least two variations of this theme.

First, given the proliferation of sources and their inherent heterogeneity, �guring

out \what relevant information exists and where they can be found" is increasingly

a problem in itself [Bouguettaya and King, 1992]. This is sometimes referred to in

the literature as the resource discovery problem. Despite the criticisms leveled at the

tight-coupling systems, it has remained a better strategy compared to loosely-coupled

system in this regard. However, the integration of new sources often entails changes

to the shared schema which cause the latter to be a bottleneck.

Second, accessibility also means being able to present information to a receiver

in the structure or representation that the latter expects. We have alluded to this

earlier by pointing out that receivers, like sources, are heterogeneous and any integra-

tion strategy must seek to preserve their autonomy: i.e., receivers should be able to

issue the same queries and receive answers in the same format/interpretation as they

would normally expect (say, from a local data source). Traditionally, this is accom-

plished in tightly-coupled systems by allowing receivers to de�ne one or more external

views which are used as the basis for query formulation. This approach su�ers from

the problems mentioned earlier concerning the creation and maintenance of shared

schemas.
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Chapter 3

Context Interchange By Example

Every general theory must work in at least one case.

{ Stuart E. Madnick

The goal of this chapter is to provide a high-level tour of the Context Interchange ap-

proach which will highlight various features of the proposed strategy through the use

of examples. Throughout this discussion, we make the assumption that the relational

data model is adopted to be the canonical data model [Sheth and Larson, 1990]: i.e.,

we assume that the database schemas exported by the sources are relational and that

queries are formulated using SQL (or some extension thereof). This simpli�es the

discussion by allowing us to focus on semantic con
icts in disparate systems without

being detracted by con
icts over data model constructs. The choice of the relational

data model is one of convenience rather than necessity, and is not to be construed as

a constraint of the integration strategy being proposed.

We present the scenario underlying the example in the next section. Discussion

concerning the features of Context Interchange is organized in two parts: the �rst

examines the distinctive properties of our approach from a user perspective; the

second focuses on features that are novel from a system perspective, with particular

attention to its scalability and extensibility. The �nal section contrasts our integration

strategy to classical and contemporary integration approaches to provide a better

appreciation of these features.
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3.1 Scenario Description

Consider the scenario shown in Figure 3-1, deliberately kept simple for didactical

reasons. Data on \revenue" and \expenses" (respectively) for some collection of com-

panies are available in two autonomously-administered data sources, each comprised

of a single relation Suppose a user is interested in knowing which companies have

been \pro�table" and their respective revenue: this query can be formulated directly

on the (export) schemas of the two sources as follows1:

Q1: SELECT r1.cname, r1.revenue FROM r1, r2

WHERE r1.cname = r2.cname AND r1.revenue > r2.expenses;

In the absence of any mediation, this query will return the empty answer if it is

executed over the extensional data set shown in Figure 3-1.

The above query, however, does not take into account the fact that data sources

are administered independently and have di�erent contexts: i.e., they may embody

di�erent assumptions on how information contained therein should be interpreted.

To simplify the ensuing discussion, we assume that the data reported in the two

sources di�er only in the currencies and scale-factors of \company �nancials" (i.e.,

�nancial �gures pertaining to the companies, which include revenue and expenses).

Speci�cally, in Source 1, all \company �nancials" are reported using the currency

shown and a scale-factor of 1; the only exception is when they are reported in Japanese

Yen (JPY); in which case the scale-factor is 1000. Source 2, on the other hand, reports

all \company �nancials" in USD using a scale-factor of 1. In the light of these remarks,

the (empty) answer returned by executing Q1 is clearly not a \correct" answer since

the revenue of NTT (9,600,000 USD = 1,000,000 � 1,000 � 0.0096) is numerically

larger than the expenses (5,000,000) reported in r2.

1We assume, without loss of generality, that relation names are unique across all data sources.
This can always be accomplished via some renaming scheme: say, by pre�xing relation name with
the name of the data source (e.g., db1#r1).
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    in the currency shown for each company

All "company financials" ("revenue" inclusive) are reported

All "company financials" are reported using a scale-factor of 1

    except for items reported in JPY, where the

   scale-factor is 1000

     using a scale-factor of 1
All "company financials" are reported in USD,

IBM
NTT

1 500 000
5 000 000

cname expenses
Source 2

r2

JPY
USD

USD
JPY

104.0
.0096

r3

fromCur  toCur exchangeRate

IBM
NTT

1 000 000
1 000 000

USD
JPY

Query

User

and r1.revenue > r2.expenses
where r1.cname = r2.cname
from r1, r2
select r1.cname, r1.revenue

cname revenue currency

Source 1

r1

Source 3

Context c Context c
1 2

Figure 3-1: Scenario for the motivational example.

3.2 A User Perspective of Context Interchange

Unlike classical and contemporary approaches, the Context Interchange approach

provides users with a wide array of options on how and what queries can be asked

and the kinds of answers which can be returned. These features work in tandem to

allow greater 
exibility and e�ectiveness in gaining access to information present in

multiple, heterogeneous systems.
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Query Mediation: Automatic Detection and Reconciliation of

Con
icts

In a Context Interchange system, the same query (Q1) can be submitted to a spe-

cialized mediator [Wiederhold, 1992], called a Context Mediator, which rewrites the

query so that data exchange among sites having disparate contexts are interleaved

with appropriate data transformations and access to ancillary data sources (when

needed). We refer to this transformation as query mediation and the resulting query

as the corresponding mediated query.

For example, the mediated query MQ1 corresponding to Q1 is given by:

MQ1: SELECT r1.cname, r1.revenue FROM r1, r2

WHERE r1.currency = 'USD' AND r1.cname = r2.cname

AND r1.revenue > r2.expenses;

UNION

SELECT r1.cname, r1.revenue * 1000 * r3.rate FROM r1, r2, r3

WHERE r1.currency = 'JPY' AND r1.cname = r2.cname

AND r3.fromCur = r1.currency AND r3.toCur = 'USD'

AND r1.revenue * 1000 * r3.rate > r2.expenses

UNION

SELECT r1.cname, r1.revenue * r3.rate FROM r1, r2, r3

WHERE r1.currency <> 'USD' AND r1.currency <> 'JPY'

AND r3.fromCur = r1.currency AND r3.toCur = 'USD'

AND r1.cname = r2.cname AND r1.revenue * r3.rate > r2.expenses;

This mediated query considers all potential con
icts between relations r1 and r2

when comparing values of \revenue" and \expenses" as reported in the two di�erent

contexts. Moreover, the answers returned may be further transformed so that they

conform to the context of the receiver. Thus in our example, the revenue of NTT will

be reported as 9 600 000 as opposed to 1 000 000. More speci�cally, the three-part

query shown above can be understood as follows. The �rst subquery takes care of

tuples for which revenue is reported in USD using scale-factor 1; in this case, there is
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no con
ict. The second subquery handles tuples for which revenue is reported in JPY,

implying a scale-factor of 1000. Finally, the last subquery considers the case where

the currency is neither JPY nor USD, in which case only currency conversion is needed.

Conversion among di�erent currencies is aided by the ancillary data source r3 which

provides currency conversion rates. This second query, when executed, returns the

\correct" answer consisting only of the tuple <'NTT', 9 600 000>.

Support for Views

In the preceding example, the query Q1 is formulated directly on the export schema for

the various sources. While this provides a great deal of 
exibility, it also requires users

to know what data are present where and be su�ciently familiar with the attributes

in di�erent schemas (so as to construct a query). A simple and yet e�ective solution

to these problems is to allow views to be de�ned on the source schemas and have

users formulate queries based on the view instead. For example, we might de�ne a

view on relations r1 and r2, given by

CREATE VIEW v1 (cname, profit) AS

SELECT r1.cname, r1.revenue - r2.expenses

FROM r1, r2

WHERE r1.cname = r2.cname;

In which case, query Q1 can be equivalently formulated on the view v1 as

VQ1: SELECT cname, profit FROM v1

WHERE profit > 0;

While achieving essentially the same functionalities as tightly-coupled systems, notice

that view de�nitions in our case are no longer concerned with semantic heterogeneity

and make no attempts at identifying or resolving con
icts. In fact, any query on a

view (say, VQ1 on v1) can be trivially rewritten to a query on the source schema (e.g.,

Q1). This means that query mediation can be undertaken by the Context Mediator

as before.
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Knowledge-Level versus Data-Level Queries

Instead of inquiring about stored data, it is sometimes useful to be able to query the

semantics of data which are implicit in di�erent systems. Consider, for instance, the

query based on a superset of SQL2:

Q2: SELECT r1.cname, r1.revenue.scaleFactor IN c1,

r1.revenue.scaleFactor IN c2 FROM r1

WHERE r1.revenue.scaleFactor IN c1 <>

r1.revenue.scaleFactor IN c2;

Intuitively, this query asks for companies for which scale-factors for reporting \rev-

enue" in r1 (in context c1) di�er from that which the user assumes (in context c2). We

refer to queries such as Q2 as knowledge-level queries, as opposed to data-level queries

which are enquires on factual data present in data sources. Knowledge-level queries

have received little attention in the database literature and certainly have not been

addressed by the data integration community. This, in our opinion, is a signi�cant

gap since heterogeneity in disparate data sources arises primarily from incompati-

ble assumptions about how data are interpreted. Our ability to integrate access to

both data and semantics can be exploited by users to gain insights into di�erences

among particular systems (\Do sources A and B report a piece of data di�erently? If

so, how?"), or by a query optimizer which may want to identify sites with minimal

con
icting interpretations (to minimize costs associated with data transformations).

Interestingly, knowledge-level queries can be answered using the exact same infer-

ence mechanism for mediating data-level queries. Hence, submitting query Q2 to the

Context Mediator will yield the result:

MQ2: SELECT r1.cname, 1000, 1 FROM r1

WHERE r1.currency = 'JPY';

2Sciore et al. [Sciore et al., 1992] have described a similar (but not identical) extension of SQL
in which context is treated as a \�rst-class object". We are not concern with the exact syntax of
such a language here; the issue at hand is how we might support the underlying inferences needed
to answer such queries.
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which indicates that the answer consists of companies for which the currency attribute

has value 'JPY', in which case the scale-factors in context c1 and c2 are 1000 and 1

respectively. If desired, the mediated query MQ2 can be evaluated on the extensional

data set to return an answer grounded in actual data elements. Hence, if MQ2 is

evaluated on the data set shown in Figure 3-1, we would obtain the singleton answer

<'NTT', 1000, 1>.

Extensional versus Intensional Answers

Yet another feature of Context Interchange is that answers to queries can be both

intensional and extensional. Extensional answers correspond to fact-sets which one

normally expects of a database retrieval. Intensional answers, on the other hand,

provide only a characterization of the extensional answers without actually retrieving

data from the data sources. In the preceding example, MQ2 can in fact be understood

as an intensional answer for Q2, while the tuple obtained by the evaluation of MQ2

constitutes the extensional answer for Q2. In the coin framework, intensional answers

are grounded in extensional predicates (i.e., names of relations), evaluable predicates

(e.g., arithmetic operators or \relational" operators), and external functions which

can be directly evaluated through system calls. The intensional answer is thus no

di�erent from a query which can normally be evaluated on a conventional query

subsystem of a DBMS. Query answering in a Context Interchange system is thus a

two-step process: an intensional answer is �rst returned in response to a user query;

this can then be executed on a conventional query subsystem to obtain the extensional

answer.

The intermediary intensional answer serves a number of purposes [Imielinski,

1987]. Conceptually, it constitutes the mediated query corresponding to the user

query and can be used to con�rm the user's understanding of what the query actu-

ally entails. More often than not, the intensional answer can be more informative

and easier to comprehend compared to the extensional answer it derives. (For ex-

ample, the intensional answer MQ2 actually conveys more information than merely

returning the single tuple satisfying the query.) From an operational standpoint, the
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computation of extensional answers are likely to be many orders of magnitude more

expensive compared to the evaluation of the corresponding intensional answer. It

therefore makes good sense not to continue with query evaluation if the intensional

answer satis�es the user. From a practical standpoint, this two-stage process allows

us to separate query mediation from query optimization and execution. As we will

illustrate later in this paper, query mediation is driven by logical inferences which do

not bond well with the (predominantly cost-based) optimization techniques that have

been developed [Mumick and Pirahesh, 1994, Seshadri et al., 1996]. The advantage of

keeping the two tasks apart is thus not merely a conceptual convenience, but allows

us to take advantage of mature techniques for query optimization in determining how

best a query can be evaluated.

Query Pruning

Finally, observe that consistency checking is performed as an integral activity of the

mediation process, allowing intensional answers to be pruned (in some cases, signi�-

cantly) to arrive at answers which are better comprehensible and more e�cient. For

example, if Q1 had been modi�ed to include the additional condition \r1.currency

= 'JPY'", the intensional answer returned (MQ1) would have only the second SELECT

statement (but not the �rst and the third) since the other two would have been in-

consistent with the newly imposed condition. This pruning of the intensional answer,

accomplished by taking into consideration integrity constraints (present as part of a

query, or those de�ned on sources) and knowledge of data semantics in distinct sys-

tems, constitutes a form of semantic query optimization [Chakravarthy et al., 1990].

Consistency checking however can be an expensive operation and the gains from a

more e�cient execution must be balanced against the cost of performing the consis-

tency check during query mediation. In our case, however, the bene�ts are ampli�ed

since spurious con
icts that remain undetected could result in an additional conjunc-

tive query involving multiple sources.
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3.3 A System Perspective of Context Interchange

It is natural to assume the internal complexity of any system will increase in commen-

suration with the external functionalities it o�ers. The Context Interchange system is

no exception. We make no claim that our approach is \simple"; however, we submit

that this complexity is decomposable and well-founded. Decomposability has obvious

bene�ts from a system engineering perspective, allowing complexity to be harnessed

into small chunks, thus making our integration approach more endurable, even when

the number of sources and receivers are exponentially large and when changes are

rampant. The complexity is said to be well-founded because it is possible to char-

acterize the behavior of the system in an abstract mathematical framework. This

allows us to understand the potential (or limits) of the strategy apart from the id-

iosyncrasies of the implementation, and is useful for providing insights into where

and how improvements can be made. We describe below some of the ways in which

complexity is decoupled in a Context Interchange system, as well as tangible bene�ts

which result from formalization of the integration strategy.

Representation of `Meaning' as opposed to Con
icts

As mentioned earlier, a key insight of the Context Interchange strategy is that we

can represent the meaning of data in the underlying sources and receivers without

identifying and reconciling all potential con
icts which exist between any two systems.

Thus, query mediation can be performed dynamically (as when a query is submitted)

or it can be used to produce a query plan (the mediated query) that constitutes a

locally-de�ned view. In the latter case, this view is similar to the shared schemas in

tightly-coupled systems with one important exception: whenever changes do occur

(say, when the semantics of data encoded in some context is changed3), the Context

Mediator can be triggered to reconstruct the local view automatically. Unlike the

case in tightly-coupled systems, this reconstruction requires no manual intervention

3For an account of why this seemingly strange phenomenon may be more common than is widely
believed to be, see [Ventrone and Heiler, 1991].
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from the system administrators. In both of the above scenarios, changes in local

systems are well-contained and do not mandate human intervention in other parts

of the larger system. This represents a signi�cant gain over tightly-coupled systems

where maintenance of shared schemas constitute a major system bottleneck.

Contexts versus Schemas

Unlike the semantic-value model, the coin data model adopts a very di�erent con-

ceptualization of contexts: instead of a property-list associated with individual data

elements, we view context as consisting of a collection of axioms which describes a

particular \situation" a source or receiver is in.

Figure 3-2 provides a graphical representation of the salient features of the struc-

ture which is the key enabler for this representation. The domain model presents the

de�nitions for the \types" of information units (called semantic-types) that consti-

tute a common vocabulary for capturing the semantics of data in disparate systems.

Instances of semantic-types are called semantic-objects. Every data element in a

source or receiver is mapped to a unique semantic-object for which the object-id

is a Skolem function [Chang and Lee, 1973] de�ned on some key values. For each

relation r present in a source, there is an isomorphic relation r0 de�ned on the corre-

sponding semantic-objects. Among other features, this structure allows us to encode

assumptions of the underlying context independently of structure imposed on data

in underlying sources (i.e., the schemas). For example, the constraint: all \company

�nancials" are reported in US Dollars within context c2 can be described using the

clause4

X 0:companyFinancials, currency(c2; X
0):number `

currency(c2; X
0)[value(c2)!'USD'].

A detailed presentation of the details of this framework will be presented later in

Chapter 4.

4The syntax of this language is de�ned in Chapter 4 and corresponds to that of Gulog [Dobbie
and Topor, 1995].
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Figure 3-2: A graphical representation of the relationships between semantic-types
in the domain model, semantic-relations (de�ned on semantic-objects), and data ele-
ments in the relation r2.

The dichotomy between schemas and contexts present a number of opportunities

for systematic sharing and reuse of semantic encodings. For example, di�erent sources

and receivers in the same context may now bind to the same set of context axioms;

and distinct attributes which correlate with one another (e.g., revenue, expenses)

may be mapped to instances of the same semantic-type (e.g., companyFinancials).

These circumvent the need to de�ne a new property-list for all attributes in each

schema. Unlike the semantic value model, there is no ambiguity on what \labels"

can be introduced as \meta-attributes" since all properties of semantic-types are

explicitly de�ned in the domain model. As pointed out in the previous section, views
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can be (more simply) de�ned on the extensional relation independently of the context

descriptions. This constitutes yet another bene�t of teasing apart the structure of a

source, and semantics which are implicit in its context.

Inheritance and Overriding in Semantic-Types

Not surprisingly, the various features frequently associated with \object-orientation"

are useful in our representation scheme as well. Semantic-types fall naturally into a

generalization hierarchy, which allow us to take advantage of structural and behav-

ioral inheritance in achieving economy of expression. Structural inheritance allows a

semantic-type to inherit the declarations de�ned for its supertypes. For example, the

semantic-type companyFinancials inherits from moneyAmt the declarations concern-

ing the existence of the \methods" currency and scaleFactor. Behavioral inheritance

allows the de�nitions of these methods to be inherited as well. Hence, if we had

de�ned earlier that instances of moneyAmt has a scale-factor of 1, all instances of

companyFinancials would inherit the same scale-factor since every instance of com-

panyFinancials is an instance of moneyAmt.

Inheritance need not be monotonic. Non-monotonic inheritance means that the

declaration or de�nition of a method can be overridden in a subtype. Thus, inherited

de�nitions can be viewed as defaults which can always be changed to re
ect the

speci�cities at hand.

Value Conversion Among Di�erent Contexts

Yet another bene�t of adopting an object-oriented model in our framework is that it

allows conversion functions on values to be explicitly de�ned in the form of methods

de�ned on various semantic types. For example, the conversion function for converting

an instance of moneyAmt from one scale-factor (F in context C) to another (F1 in

context c1) can be de�ned as follows:

X 0 :moneyAmt `

X 0[cvt(c1)@scaleFactor; C; U!V ] 
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X 0[scaleFactor(c1)! [value(c1)!F1]];

X 0[scaleFactor(C)! [value(c1)!F ]]; V = U � F=F1.

This conversion function, unless explicitly overridden, will be invoked whenever there

is a request for scale-factor conversion on an object which is an instance of moneyAmt

and when the conversion is to be performed with reference to context c1. Overriding

can take place along the generalization hierarchy: as before, we may introduce a dif-

ferent conversion function for a subtype of moneyAmt. Notice that this conversion

function is de�ned with reference to context c1 only: in order for scale-factor con-

version to take place in a di�erent context, the conversion function (which could be

identical to the one in c1, or not) will have to be de�ned explicitly. This phenomenon

allows di�erent conversion functions to be associated with di�erent contexts and is

a powerful mechanism for di�erent users to introduce their own interpretations of

disparate data in a localized fashion. The apparent redundancy (in having multi-

ple instances of the same de�nition in di�erent contexts) is addressed through the

adoption of a context hierarchy which is described next.

Hierarchical composition of Contexts

By \objectifying" sets of axioms associated with contexts, we can introduce a hier-

archical relationship among contexts. If c is a subcontext of c0, then all the axioms

de�ned in c0 are said to apply in c unless they are \overridden". An immediate ap-

plication of this concept is to make all \functional" contexts subcontexts of a default

context c0, which contains the default declarations and method de�nitions. Under this

scheme, new contexts introduced need only to identify how it is di�erent from the

default context and introduce the declarations and method de�nitions which need to

be changed (overridden). This is formulated as a meta-logical extension of the coin

framework and will be described in further details in Section 4.6.

Another advantage of having this hierarchy of context is the ability to introduce

changes to the domain model in an incremental fashion without having adverse e�ects

on existing systems. For example, suppose we need to add a new source for which cur-
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rency units take on a di�erent representation (e.g., 'Japanese Yen' versus 'JPY').

This distinction has not been previously captured in our domain model, which has

hitherto assumed currency units have a homogeneous representation. To accommo-

date the new data source, it is necessary to add a new modi�er for currencyType, say

format, in the domain model:

currencyType[format(ctx) ) semanticString ].

Rather than making changes to all existing contexts, we can assign a default value

to this modi�er in c0, and at the same time, introduce a conversion function for

mapping between currency representations of di�erent formats (e.g., 'Japanese Yen'

and 'JPY'):

X:currencyType, format(c0; X):semanticString `

format(c0; X)[value(c0)! 'abbreviated'].

X:currencyType ` X[cvt(c0)@C;U!V ] : : : (body) : : :

The last step in this process is to add to the new context (c0) the following context

axiom:

X:currencyType,format(c0; X):semanticString `

format(c0; X)[value(c0)! 'full'].

which distinguishes it as having a di�erent format.

3.4 Context Interchange vis-�a-vis Traditional and

Contemporary Integration Approaches

In the preceding sections, we have made detailed comments on the many features

that the Context Interchange approach has over traditional loose- and tight-coupling

approaches. In summary, although tightly-coupled systems may provide better sup-

port for data access to heterogeneous systems (compared to loosely-coupled systems),

they do not scale-up e�ectively given the complexity involved in constructing a shared
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schema for a large number of systems and are generally unresponsive to changes for

the same reason. Loosely-coupled systems, on the other hand, require little central

administration but are equally non-viable since they require users to have intimate

knowledge of the data sources being accessed; this assumption is generally non-tenable

when the number of systems involved is large and when changes are frequent5. The

Context Interchange approach provides a novel middle ground between the two: it

allows queries to sources to be mediated in a transparent manner, provides systematic

support for elucidating the semantics of data in disparate sources and receivers, and

at the same time, does not succumb to the complexities inherent in maintenance of

shared schemas.

At a cursory level, the Context Interchange approach may appear similar to many

contemporary integration approaches. Examples of these commonalities include:

� framing the problem in McCarthy's theory of contexts [McCarthy, 1987] (as in

Carnot [Collet et al., 1991], and more recently, [Faquhar et al., 1995]);

� encapsulation [Atkinson et al., 1989] of semantic knowledge in a hierarchy of

rich data types which are re�ned via sub-typing (as in several object-oriented

multidatabase systems, the archetype of which is Pegasus [Ahmed et al., 1991]);

� adoption of a deductive or object-oriented formalism [Kifer et al., 1995, Dobbie

and Topor, 1995] (as in the ECRC Multidatabase System [Jonker and Sch�utz,

1995] and DISCO [Tomasic et al., 1995]);

� provision of value-added services through the use of mediators [Wiederhold,

1992] (as in TSIMMIS [Garcia-Molina et al., 1995]);

We posit that despite these super�cial similarities, our approach represents a radical

departure from these contemporary integration strategies.

5We have drawn a sharp distinction between the two here to provide a contrast of their relative
features. In practice, one is most likely to encounter a hybrid of the two strategies. It should however
be noted that the two strategies are incongruent in their outlook and are not able to easily take
advantage of each other's resources. For instance, data semantics encapsulated in a shared schema
cannot be easily extracted by a user to assist in formulating a query which seeks to reference the
source schemas directly.
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To begin with, a number of contemporary integration approaches are in fact at-

tempts aimed at rejuvenating the loose- or tight-coupling approach. These are often

characterized by the adoption of an object-oriented formalism which provides sup-

port for more e�ective data transformation (e.g., O*SQL [Litwin, 1992]) or to mit-

igate the e�ects of complexity in schema creation and change management through

the use of abstraction and encapsulation mechanisms. To some extent, contempo-

rary approaches such as Pegasus [Ahmed et al., 1991], the ECRC Multidatabase

Project [Jonker and Sch�utz, 1995], and DISCO [Tomasic et al., 1995] can be seen as

examples of the latter strategy. These di�er from the Context Interchange strategy

since they continue to rely on human intervention in reconciling con
icts a priori and

in the maintenance of shared schemas. Yet another di�erence is that although a de-

ductive object-oriented formalism is also used in the Context Interchange approach,

\semantic-objects" in our case exist only conceptually and are never actually mate-

rialized. One implication of this is that mediated queries obtained from the Context

Mediator can be further optimized using traditional query optimizers or be executed

by the query subsystem of classical (relational) query subsystems without changes.

In the Carnot system [Collet et al., 1991], semantic interoperability is accom-

plished by writing articulation axioms which translate \statements" which are true

in individual sources to statements which are meaningful in the Cyc knowledge

base [Lenat and Guha, 1989]. A similar approach is adopted in [Faquhar et al.,

1995], where it is suggested that domain-speci�c ontologies [Gruber, 1991], which

may provide additional leverage by allowing the ontologies to be shared and reused,

can be used in place of Cyc. While we like the explicit treatment of contexts in these

e�orts and share their concern for sustaining an infrastructure for data integration,

our realization of these di�er signi�cantly. First, lifting axioms [Guha, 1991] in our

case operate at a �ner level of granularity: rather than writing axioms which map

\statements" present in a data source to a common knowledge base, they are used

for describing \properties" of individual \data objects". Second, instead of having an

\ontology" which captures all structural relationships among data objects (much like

a \global schema"), we have a domain model which is a much less elaborate collection
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of complex semantic-types. These di�erences account largely for the scalability and

extensibility of our approach.

Finally, we remark that the TSIMMIS [Papakonstantinou et al., 1995, Quass et al.,

1995] approach stems from the premise that information integration could not, and

should not, be fully automated. With this in mind, TSIMMIS opted in favor of

providing both a framework and a collection of tools to assist humans in their in-

formation processing and integration activities. This motivated the invention of a

\light-weight" object model which is intended to be self-describing. For practical

purposes, this translates to the strategy of making sure that attribute labels are as

descriptive as possible and opting for free-text descriptions (\man-pages") which pro-

vide elaborations on the semantics of information encapsulated in each object. We

concur that this approach may be e�ective when the data sources are ill-structured

and when consensus on a shared vocabulary cannot be achieved. However, there are

also many other situations (e.g., where data sources are relatively well-structured and

where some consensus can be reached) where human intervention is not appropriate

or necessary: this distinction is primarily responsible for the di�erent approaches

taken in TSIMMIS and our strategy.
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Chapter 4

The COIN Data Model

Everything should be made as simple

as possible, but no simpler.

{ Albert Einstein

Our goal in this chapter is to provide a formal de�nition of the coin data model. As

pointed out in [Ullman, 1991a], a data model consists of two parts:

� a notation for describing data, and

� a set of operations used to manipulate that data.

The coin data model is a \logical" data model in the sense that it uses mathematical

logic as a way for representing knowledge (of the data being modeled) and as a

language for expressing operations on those knowledge structures. At the same time,

it is an \object-oriented" data model because it adopts an \object-centric" view of

the world and supports many of the features (e.g., object-identity, type hierarchy,

inheritance, and overriding) commonly associated with \object-orientation".

Following this introduction, we lay the groundwork for subsequent discussion with

with a summary of key concepts found in the literature on deductive data models,

object-oriented data models, and deductive object-oriented data models. Section 4.2

introduces the notion of context according to McCarthy [McCarthy, 1987]. Section 4.3

describes the structural elements of the coin data model. The syntax and informal

semantics of the language is presented in Section 4.4.
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4.1 Background

Object-oriented data models are seen as natural extensions of semantic data mod-

els [Hull and King, 1987, Peckham and Maryanski, 1988] providing an object-centric

modeling formalism, and showing immense promises in overcoming the impedance

mismatch between general-purpose programming languages and traditional data ma-

nipulation languages (DML). Unfortunately, \object-orientation" became synony-

mous with a laundry-list of features and few agreements have been reached on which

of those truly characterize an object-oriented data model (see for instance, [Atkin-

son et al., 1989]). Deductive data models, on the other hand, are founded on a �rm

logical formalism that has great appeal to many researchers; its main caveat is that

it maintains a \relational" viewpoint and provides little or no abstraction mecha-

nisms [Smith and Smith, 1977]. The introduction of deductive object-oriented data

models is largely a response to the inadequacies its precursors, aimed at providing the

features of both data models while circumventing their problems. In this section, we

summarize brie
y the key features of these data models mentioned above. It is not

our intent to provide an in-depth treatment of these subjects; our goal, instead, is to

provide an overview of the pertinent concepts and issues that provide the background

for subsequent material.

Object-Oriented Data Models

In object-oriented data models [Zdonik and Maier, 1990], the \universe of discourse" is

captured in the form of a collection of object templates called types or classes. Every

real-world entity is represented by an object, which is an instance of some type. The

type corresponding to an object de�nes a template for its structure, which includes

both the data-structure and the behavioral aspects of that object. Each object is

identi�ed by a unique object identi�er (oid), which serves as the basis for sharing

and the construction of complex objects. Every object has a state de�ned via a set of

properties, which can be queried or operated upon through the use of methods. This

feature is referred to as encapsulation.
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Methods can be functional (i.e., single-valued) or multi-valued1. A functional

method returns only one value when the method is applied to an object; a multi-

valued method returns one or more values. The de�nition of a method has two

components: signature and body. The signature speci�es the name of the method,

the number and types of arguments it expects, and the type(s) of the result. The body

represents the implementation of the method, which can be realized by a sequence of

instructions written in some programming languages.

In addition to the notion of \encapsulation", an important feature of object-

oriented systems is the ability to capture relationships between di�erent types in the

form of a generalization hierarchy. A generalization hierarchy allows types to be

arranged in some partial order related through the subtype relationship. Hence, if t

and t0 are types and t is a subtype of t0, we say that t0 is a supertype of t; moreover, the

subtype t inherits the methods de�ned for the supertype t0 and may have additional

methods of its own.

It is often useful to distinguish between two types of inheritance. If a method

de�ned in a supertype is rede�ned by a subtype, we say that the method is being

overridden. In this case, inheritance is said to be non-monotonic; otherwise, it is

monotonic. Examples of non-monotonic inheritance and overriding have been pre-

sented earlier in Chapter 3 in the context of the motivational example.

Yet another source of con
ict can be attributed to multiple inheritance, where a

type inherits directly from more than one parent. For example, teachingAssistant

may inherit from both sta� and student. A con
ict occurs when the supertypes

involved have di�erent implementations for a method in common. A number of

di�erent strategies have been proposed for overcoming this problem; for example,

the con
ict may be prohibited (as in C++ [Stroutstrup, 1986]), the corresponding

supertypes may be statically ordered to determine a particular sequence of inheritance

(as in CLOS [Moon, 1989]), or the user may be compelled to specify which method

implementation is preferred (as in O2 [Bancilhon et al., 1992]).

1They could also be \procedural", in which case the methods are used for achieving some side-
e�ects and do not return any meaningful value.
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Deductive Data Models

In deductive data models [Ceri et al., 1990], a �rst-order language [Lloyd, 1987] is used

uniformly to describe both underlying data structures as well as operations which are

allowed on these structures. Rather than making inferences in full �rst-order predicate

calculus, it is customary to restrict the underlying language to sublanguages which

are computationally less expensive. The simplest of these, called Datalog, admit only

Horn clauses, which are statements of the form:

L0  L1; : : : ; Ln, n � 0

where each Li is a literal p(t1; : : : ; tn), where pi is a predicate symbol and ti are terms.

L0 is said to be the head and L1; : : : ; Ln the body of the statement. Clauses with

an empty body are called facts (i.e., the literal in the head is unconditionally true);

clauses with at least one literal in the body are called rules. In the deductive database

literature, it is commonly assumed that the fact set is physically stored in a relational

database. The collection of facts in the database is often referred to as the extensional

database (EDB); the corresponding rule set is referred to as the intensional database

(IDB).

From a logic-programming perspective, the collection of clauses is said to con-

stitute a program. The semantics of a Datalog program can be de�ned in three

ways [Ullman, 1991a]. The proof-theoretic interpretation of a program consists of the

set of facts which can be derived (using the inference rules of classical �rst-order proof

theory) from the EDB and the IDB. The model-theoretic interpretation considers the

meaning of the program as given by the minimal model with respect to a given in-

terpretation (i.e., an assignment of ground terms in the language to objects in an

underlying domain, and the assignment of a boolean value to every possible instance

of all predicates) [Lloyd, 1987]. Finally, the computational meaning of a program can

be de�ned by providing an algorithm for \executing" the program to decide whether a

potential fact is true or false. For pure Datalog, all the three interpretations describe

above coincide with one another.
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Pure Datalog as described above is very restrictive and consequently has motivated

a number of extensions. We consider here Datalog extended with built-in predicates

and function symbols [Ullman, 1991b].

Built-in predicates are denoted by special predicate symbols such as <;>;=; 6=

with a prede�ned meaning and are allowed to occur only in the rule body. In addition

to the relational predicates above, built-in predicates could also be arithmetic. For

example, the predicate plus(X; Y; Z) can be used to denote the arithmetic expression

X + Y = Z. For most purposes, built-in predicates can be treated as ordinary EDB-

predicates; the only di�erence being that they correspond to in�nite relations and

are implemented as procedures which are evaluated during execution (as opposed to

being stored in the extensional database). For this reason, extra care is required to

make sure that the corresponding Datalog program is safe (i.e., that only a �nite set

of answers are derived). Fortunately, this safety condition can be easily veri�ed using

syntactic criteria (see [Ullman, 1991a] for details).

Unlike built-in predicates, function symbols are \uninterpreted" symbols (i.e., the

\interpretation" or meaning is independently assigned by the user). With the ad-

mission of function symbols into the language, a term can either be a constant sym-

bol, a variable symbol, or the token f(t1; : : : ; tn) where f is a function symbol and

t1; : : : ; tn are terms. This extension allows for an in�nite number of terms to be

introduced, and provides the means for modeling complex objects. For instance, we

could make reference to a person \John Doe" using the term person(lastname(\Doe"),

�rstname(\John")). The caveat is that uni�cation becomes more expensive and ad-

ditional syntactic restrictions have to be observed to guarantee safety (as is the case

for built-in predicates).

The literals in the body of a Datalog statement are all required to be positive.

Statements of the form

A B1; : : : ; Bn

where Bi can be an atom p( ~X) or the negation of an atom :p( ~X) is called a normal

Horn clause, and language which admits these statements are sometimes referred
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to as Datalog with negation. From a semantic standpoint, negation is incorporated

into Datalog through the adoption of the Closed World Assumption (CWA) [Reiter,

1978], which allows us to conclude that the negation of a fact is true with respect

to a program P (i.e., a set of clauses) if it is not a logical consequence of P . The

extension of pure Datalog to deal with negative information has been impeded by the

fact that there could be several (incompatible) minimal models for a given program

whenever negation is present. This problem can be overcomed by making certain

syntactic restrictions on such programs; speci�cally, it has been shown that whenever

negation is strati�ed, then it has a unique perfect model which arguably provides the

correct intended semantics [Przymusinski, 1987]. This is extended in [Van Gelder

et al., 1988] which introduces the notion of well-founded semantics which deals with

arbitrary (i.e., not necessarily strati�ed) logic programs with negation.

A major focus of deductive database systems is the study of e�cient methods

for query evaluation. A Datalog query can be evaluated in two ways: bottom-up,

starting from existing facts and inferring new facts using rules de�ned in the IDB,

or top-down, where a goal is recursively transformed to a series of subgoals which

terminates in a fact. Within this broad framework, a variety of di�erent methods

for query evaluation and rewriting have been proposed. An in-depth description of

each of these proposals and a comparison of their relative e�ciency can be found

in [Bancilhon and Ramakrishnan, 1986].

Deductive Object-Oriented Data Models

As noted earlier, the interest behind deductive object-oriented data models is largely

a response to inadequacies of object-oriented data models and deductive data mod-

els. Despite this common endeaviour, these e�orts vary somewhat depending on the

research traditions in which they are grounded. For example, both login [A�it-Kaci

and Nasr, 1986] and L&O [McCabe, 1992] are in fact object-oriented extensions to

classical logic programming languages [Lloyd, 1987]. On the other hand, proposals

such as O-logic [Maier, 1986, Kifer and Wu, 1989], C-logic [Chen and Warren, 1989],

F-logic [Kifer and Lausen, 1989, Kifer et al., 1995] and Gulog [Dobbie and Topor,
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1995] are more concerned with formalizing object-oriented concepts in a mathemati-

cal framework which could be used as a basis for building object-oriented databases

or query systems. At this time, however, there is wide consensus that Kifer's F-logic

is currently the most developed and complete formal model.

A major di�erence between object-oriented data models and deductive object-

oriented data models has to do with how method resolution is accomplished [Abite-

boul et al., 1993]. Whenever non-monotonic inheritance is permitted, there may be

several implementations of the same method along a given path in the generalization

hierarchy. Method resolution refers to the act of choosing one implementation of this

method among the di�erent implementations. In a procedural language, a method

implementation (re)de�ned in a (sub)type de�nes a total function on its extension;

i.e., this implementation of the method is applicable to every instance of the type.

In this case, the choice of a particular method implementation is contingent only on

the name of the method and the type of the instance to which the method is applied.

Over-ridding is said to be static. In the case of deductive object-oriented data mod-

els, the rule de�nition of a method for a corresponding type is a partial function: a

method de�ned on a type may or may not be applicable to an instance of that type,

depending on whether or not the body of the method-rule evaluates to true. In this

second scenario, over-ridding is said to be dynamic.

We clarify the distinction between static and dynamic over-ridding with the aid

of an example. Suppose we have a generalization hierarchy where working-student is

a subtype of student. The axiom:

X:student ` X[tax ! 0].

provides an implementation for the method tax and returns the value 0 when called on

any instance X of student. Suppose \working students" are required to pay a 
at-tax

of 10 instead. This can be accomplished in our model by allowing the implementation

of the method tax to be over-ridden in working-student:

X:working-student ` X[tax ! 10].
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In this instance, over-ridding is said to be static since the new \implementation" of

tax applies to all instances of working-student. On the other hand, if only students

earning more than 2000 are required to pay taxes (proportional to the salaries they

earn), we may write

X:working-student ` X[tax ! T ]  X[salary ! S] ^ S > 2000

^ T = 0:1 � S.

In this second implementation, over-ridding is dynamic since it constitutes a partial

function on the set of all instances of working-student. For example, if we have

jack : working-student. jack[salary ! 3000].

jill : working-student. jill[salary ! 1500].

then jack will have to pay a tax of 300, whereas jill will pay no taxes (since the new

implementation of the method tax does not apply to her).

4.2 Formalizing Context for Semantic Interoper-

ability

In [McCarthy, 1987], McCarthy pointed out that statements about the world are

never always true or false: the truth or falsity of a statement can only be understood

with reference to a given context. This is formalized using assertions of the form:

�c: ist(c; �)

which suggests that the statement � is true (\ist") in the context c2, this statement

itself being asserted in an outer context �c. Lifting axioms3 are used to describe the

2In the words of Guha [Guha, 1991], contexts represents \the rei�cation of the context dependen-
cies of the sentences associated with the context." They are said to be \rich-objects" in that \they
cannot be de�ned or completely described" [McCarthy and Hayes, 1987]. Consider, for instance,
the context associated with the statement: \There are four billion people living on Earth". To fully
qualify the sentence, we might add that it assumes that the time is 1991. However, this certainly
is not the only relevant assumption in the underlying context, since there are implicit assumptions
about who is considered a \live person" (are fetuses in the womb alive?), or what it means to be
\on earth" (does it include people who are in orbit around the earth?)

3also called articulation axioms in Cyc/Carnot [Collet et al., 1991].
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relationship between statements in di�erent contexts. These statements are of the

form

�c: ist(c; �) , ist(c0; �0)

which suggests that \� in c states the same thing as �0 in c0".

McCarthy's notion of \contexts" and \lifting axioms" provide a useful framework

for modeling statements in heterogeneous databases which are seemingly in con
ict

with one another. From this perspective, factual statements present in a data source

are no longer \universal" facts about the world, but are true relative to the context

associated with the source but not necessarily so in a di�erent context. Thus, if we

assign the labels c1 and c2 to contexts associated with sources 1 and 2 in Figure 3-1,

we may now write:

�c: ist(c1, r1('NTT', 1 000 000, 'JPY')).

�c: ist(c2, r2('NTT', 5 000 000)).

The context �c above refers to the ubiquitous context in which our discourse is con-

ducted (i.e., the integration context) and may be omitted in the ensuing discussion

whenever there is no ambiguity.

In the Context Interchange approach, the semantics of data are captured explicitly

in a collection of statements asserted in the context associated with each source, while

allowing con
ict detection and reconciliation to be deferred to the time when a query

is submitted. Building on the ideas developed in [Siegel and Madnick, 1991, Sciore

et al., 1994], we would like to be able to represent the semantics of data at the level of

individual data elements (as opposed to the predicate or sentential level), which allows

us to identify and deal with con
icts at a �ner level of granularity. Unfortunately,

individual data elements may be present in a relation without a unique denotation.

For instance, the value 1 000 000 in relation r1 (as shown in Figure 3-1) simultaneously

describes the revenue of IBM and NTT while being reported in di�erent currencies and

scale-factors. Thus, the statements

ist(c1, currency(R; Y )  r1(N;R; Y )).
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ist(c1, scaleFactor(R; 1000) currency(R; Y ), Y ='JPY').

ist(c1, scaleFactor(R; 1)  currency(R; Y ), Y 6='JPY').

intending to represent the currencies and scale-factors of revenue amounts will result

in multiple inconsistent values. To circumvent this problem, we introduce semantic-

objects, which can be referenced unambiguously through their object-ids. Semantic-

objects are complex terms constructed from the corresponding data values (also called

primitive-objects) and are used as a basis for inferring about con
icts, but are never

materialized in an object-store.

The data model underlying our integration approach, called coin (for context

interchange), consists of both a structural component describing how data objects are

organized, and a language which provides the basis for making formal assertions and

inferences about a universe of discourse. In the remainder of this section, we provide

a description of both of these components, followed by a formal characterization of

the Context Interchange strategy in the form of a coin framework. The latter will

be illustrated with reference to the motivational example introduced in Chapter 3.

4.3 The Structural Elements of COIN

The coin data model is a deductive object-oriented data model designed to provide

explicit support for Context Interchange. Consistent with object-orientation [Atkin-

son et al., 1989], information units are modeled as objects, having unique and im-

mutable object-ids (oids), and corresponding to types in a generalization hierarchy

with provision for non-monotonic inheritance. We distinguish between two kinds of

data objects in coin: primitive objects, which are instances of primitive types, and

semantic-objects which are instances of semantic-types. Objects in coin have both

an oid and a value: these are identical in the case of primitive-objects, but di�erent

for semantic-objects. This is an important distinction which will become apparent

shortly.

Primitive-types correspond to data types (e.g., strings, integers, and reals) which

are native to sources and receivers. Semantic-types, on the other hand, are com-
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plex types introduced to support the underlying integration strategy. Speci�cally,

semantic-objects may have properties which are either attributes or modi�ers. At-

tributes represent structural properties of the semantic-object under investigation:

for instance, an object of the semantic-type companyFinancials must, by de�nition,

describes some company; we capture this structural dependency by de�ning the at-

tribute company for the semantic-type companyFinancials. Modi�ers, on the other

hand, are used as the basis for capturing \orthogonal" sources of variations concerning

how the value of a semantic-object may be interpreted. Consider the semantic-type

moneyAmt: the modi�ers currency and scaleFactor de�ned for moneyAmt suggests

two sources of variations in how the value corresponding to an instance of moneyAmt

may be interpreted. \Orthogonality" here refers to the fact that the value which can

be assigned to one modi�er is independent of other modi�ers, as is the case with

scaleFactor and currency. This is not a limitation on the expressiveness of the model

since two sources of variations which are correlated can always be modeled as a single

modi�er. As we shall see later, this simpli�cation allows greater 
exibility in dealing

with conversions of values across di�erent contexts.

Unlike primitive-objects, the value of a semantic-object may be di�erent in dif-

ferent contexts. For example, if the (Skolem) term sk0 is the oid for the object

representing the revenue of NTT, it is perfectly legitimate for both

(1) ist(c1, value(sk0,1 000 000)); and

(2) ist(c2, value(sk0,9 600 000)),

to be true since contexts c1 and c2 embody di�erent assumptions on what currencies

and scale-factors are used to report the value of a revenue amount4. For our problem

domain, it is often the case that the value of a semantic-object is known in some

context, but not others. This is the case in the example above, where (1) is known,

but not (2). The derivation of (2) is aided by a special lifting axiom de�ned below.

4A predicate-calculus language is used in the discussion here since it provides better intuition
for most readers. The coin language, for which properties are modeled as \methods" (allowing
us to write sk0[value!1 000 000] as opposed to value(sk0,1 000 000)), will be formally de�ned in
Section 4.4.
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De�nition 1 Let t be an oid-term corresponding to a semantic-object of the semantic-

type � , and suppose the value of t is given in context cs. For any context represented

by C, we have

ist(C, value(t; X)  fcvt(t; cs; X
0) = X) , ist(cs, value(t; X

0)).

We refer to fcvt as the conversion function for � in context C, and say that X is the

value of t in context C, and that it is derived from context cs. ❏

As we shall see later, the conversion function referenced above is polymorphically

de�ned, being dependent on the type of the object to which it is applied, and may

be di�erent in distinct contexts.

Since modi�ers of a semantic-type are orthogonal by de�nition, the conversion

function referenced in the preceding de�nition can in fact be composed from other

simpler conversion methods de�ned with reference to each modi�er. To distinguish

between the two, we refer to the �rst as a composite conversion function, and the

latter as atomic conversion functions. Suppose modi�ers of a semantic-type � are

m1; : : : ; mk, and fcvt is a composite conversion function for � . It follows that if t is

an object of type � , then

fcvt(t; cs; X
0) = X if 9X1; : : : ; Xk�1 such that

(f
(1)
cvt(t; cs; X

0) = X1) ^ � � �^ (f
(k)
cvt (t; cs; Xk�1) = X)

where f (j)cvt corresponds to the atomic conversion function with respect to modi�er

mj. Notice that the order in which the conversions are eventually e�ected need not

correspond to the ordering of the atomic conversions imposed here, since the actual

conversions are carried out in a lazy fashion and depends on the propagation of

variable bindings.

Finally, we note that value-based comparisons in the relational model requires

some adjustments here. We say that two semantic-objects are distinct if their oids

are di�erent. However, distinct semantic-objects may be semantically-equivalent as

de�ned below.
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De�nition 2 Let � be a relational operator from the set f=; <;>;�;�; 6=; : : :g. If

t and t0 are oid-terms corresponding to semantic-objects, then

(te�t0), (value(t; X) ^ value(t0; X 0) ^ X �X 0)

In particular, we say that t and t0 are semantically-equivalent in context c if ist(c; te=t0).

❏

We sometimes abuse the notation slightly by allowing primitive-objects to participate

in semantic-comparisons. Recall that we do not distinguish between the oid and the

value of a primitive object; thus, ist(C, value(1 000 000, 1 000 000)) is true irregard-

less of what C may be. Suppose we know that ist(c1, value(sk0, 1 000 000)), where

sk0 refers to the revenue of NTT as before. The expression

sk0 e< 5 000 000

will therefore evaluate to \true" in context c1 but not context c2, since ist(c2, value(sk0,

9 600 000)). This latter fact can be derived from the value of sk0 in c1 (which is

reported a priori in r1) and the conversion function associated with the type compa-

nyFinancials (see Section 5.5).

4.4 The Language of COIN

We describe in this section the syntax and informal semantics of the language of coin,

which is inspired largely by Gulog [Dobbie and Topor, 1995]5. Rather than making

inferences using a context logic (see, for example, [Buva�c, 1995]), we introduce \con-

text" as �rst-class objects and capture variations in di�erent contexts through the

use of parameterized methods. For example, the context-formula ist(c1; value(sk0;

1 000 000)) can be equivalently written as sk0[value(c1)! 1 000 000] where value(c1)

represents a (single-valued) method. This simpli�cation is possible because of our

5Gulog di�ers from F-logic [Kifer et al., 1995] in that method rules are bound to the underlying
types, which leads to di�erent approaches for dealing with non-monotonic inheritance. Speci�cally,
in the case of F-logic, it is not rules but ground expressions that are handed down the generalization
hierarchy. Since we are interested in reasoning at the intensional level, the former model is more
appropriate for us.
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commitment to a common \vocabulary" (i.e., what types exists and what methods

are applicable) and the fact that object ids remains immutable across di�erent con-

texts. By writing statements which are fully decontextualized (i.e., \lifted" from the

individual source and receiver contexts into the integration context), we are able to

leverage on semantics and proof procedures developed without provision for contexts.

Following [Lloyd, 1987], we de�ne an alphabet as consisting of (1) a set of type sym-

bols which are partitioned into symbols representing semantic-types and primitive-

types: each of which have a distinguished type symbol, denoted by >S and >P respec-

tively; (2) an in�nite set of constant symbols which represents the oids (or identically,

values) of primitive-objects; (3) a set of function symbols and predicate symbols; (4)

a set of method symbols corresponding to attributes, modi�ers, and built-in methods

(e.g., value and cvt); (5) an in�nite set of variables; (6) the usual logical connectives

and quanti�ers ^, _, 8, 9, :, etc; (7) auxiliary symbols such as (, ), [, ], :, ::, !, )

and so forth; and �nally, (8) a set of context symbols, of the distinguished object-type

called ctx, denoting contexts. A term is either a constant, a variable, or the token

f(t1; : : : ; tn) where f is a function symbol and t1; : : : ; tn are terms. Since terms in our

model refer to (logical) oids, they are called oid-terms. Finally, a predicate, function,

or method symbol is said to be n-ary if it expects n arguments.

De�nition 3 A declaration is de�ned as follows:

� if � and � 0 are type symbols, then � :: � 0 is a type declaration. We say that � is

a subtype of � 0, and conversely, that � 0 is a supertype of � . For any type symbol

� 00 such that � 0 :: � 00, � is also a subtype of � 00.

� if t is a term and � is a type symbol, then t : � is an object declaration. We say

that t is an instance of type � . If � 0 is a supertype of � , then t is said to be of

inherited type � 0.

� if p is an n-ary predicate symbol, and �1; : : : ; �n are type symbols, then p(�1; : : : ; �n)

is a predicate declaration. We say that the signature of predicate p is �1�� � ���n.

� if m is an attribute symbol and �; � 0 are symbols denoting semantic-types, then

61



� [m)� 0] is an attribute declaration. We say that the signature of the attribute

is �!� 0, and that the semantic-type � has attribute m.

� if m is a modi�er symbol, and �; � 0 are symbols denoting semantic-types, then

� [m(ctx))� 0] is a modi�er declaration. We say that m is a modi�er of the

semantic-type � , which has signature �!� 0. Without any loss of generality, we

assume that m is unique across all semantic-types.

� if � is a semantic-type, and �1; �2 are primitive types, then � [cvt(ctx)@ctx,�1)�2]

is a compound conversion declaration. We say that the signature of the com-

pound conversion for � is � � �1!�2.

� if � is a semantic-type, m is a modi�er de�ned on � , and �1; �2 are primitive

types, then � [cvt(ctx)@m;ctx; �1)�2] is a atomic conversion declaration. We

say that the signature of the atomic conversion of m for � , is � � �1!�2.

� if � is a semantic-type, �1 is a primitive-type and c is a context symbol, then

� [value(ctx)!�1] is a value declaration. We say that the signature of the value

for � is given by �!�1.

Declarations for attributes, modi�ers, conversions, and the built-in method value are

collectively referred to as method declarations. ❏

De�nition 4 An atom is de�ned as follows:

� if p is an n-ary predicate symbol with signature �1 � � � � �n and t1; : : : ; tn are of

(inherited) type �1; : : : ; �n respectively, then p(t1; : : : ; tn) is a predicate atom.

� ifm is an attribute symbol with signature �!� 0 and t; t0 are of (inherited) types

�; � 0 respectively, then t[m!t0] is an attribute atom.

� if m is a modi�er symbol with signature �!� 0, c is a context symbol, and t; t0

are of (inherited) types �; � 0 respectively, then t[m(c)!t0] is a modi�er atom.
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� if the compound conversion function for � has signature ���1!�2, t; t1; t2 are of

(inherited) types �; �1; �2 respectively, c is a context symbol, and tc is a context

term, then t[cvt(c)@tc; t1!t2] is a compound conversion atom.

� if the atomic conversion atom of the modi�er m has signature � � �1!�2, c is

a context symbol, t; t1; t2 are of (inherited) types �; �1; �2 respectively, and tc is

a context term, then t[cvt(c)@m; tc; t1!t2] is a atomic conversion atom for m.

� if the value signature is given by �!� 0, c is a context symbol, and t; t0 are of

(inherited) types �; �1, then t[value(c)!t0] is a value atom.

As before, the atoms corresponding to attributes, modi�ers, conversions, and built-in

method value are referred to collectively as method atoms. ❏

Atoms can be combined to form molecules (or compound atoms): these are \syn-

tactic sugar" which are notationally convenient, but by themselves do not increase

the expressive power of the language. For example, we may write

� t[m1!t1; � � � ;mk!tk] as a shorthand for the conjunct t[m1!t1]^� � �^t[mk!tk];

� t[m!t1[m1!t2]] as a shorthand for t[m!t1] ^ t1[m1!t2]; and

� t : � [m!t0] as a shorthand for t : � ^ t[m!t0].

Well formed formulas can be de�ned inductively in the same manner as in �rst-order

languages [Lloyd, 1987]; speci�cally,

� an atom is a formula;

� if � and ' are formulas, then :�, � ^ ' and � _ ' are all formulas;

� if � is a formula and X is a variable occurring in �, then both (8X �) and

(9X �) are formulas.

Instead of dealing with the complexity of full-blown �rst-order logic, it is customary

to restrict well-formed formulas to only clauses.

De�nition 5 A Horn clause in the coin language is a statement of the form
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� ` A B1; : : : ; Bn

where A can either be an atom or a declaration, and B1; : : : ; Bn is a conjunction of

atoms. A is called the head, and B1; : : : ; Bn is called the body of the clause. If A is a

method atom of the form t[m@ : : :!t0] where t is a term denoting a semantic-object,

then the predeclaration � must contain the object declarations for all oid-terms in

the head. Otherwise, � may be omitted altogether. ❏

4.5 The COIN Framework

The coin framework builds on the coin data model to provide a formal characteri-

zation of the Context Interchange strategy for the integration of heterogeneous data

sources.

De�nition 6 A coin framework F is a quintuple <S; �; E ;D; C> where

� S, the source set, is a labeled multi-set fs1 := S1; : : : ; sm := Smg. The label si

is the name of a source, and Si consists of ground predicate atoms rij(a1; : : :) as

well as the integrity constraints which are known to hold on those predicates.

The set of atoms of rij constitute a relation rij in si.

� �, the source-to-context mapping, de�nes a (total) function from S to C. If

�(si) = cj, we say that the source si is in context cj.

� D, the domain model, is a set consisting of declarations. Intuitively, declarations

in the domain model identify the types, methods, and predicates which are

known.

� E , the elevation set, is a multi-set fE1; : : : ; Emg where Ei is the set of elevation

axioms corresponding to si in S. Ei consists of three parts:

{ for each relation rij 2 Si, there is a clause which de�nes a corresponding

semantic-relation r0ij in which every primitive object in rij is replaced by

a Skolem term in r0ij;
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{ for every oid-term in r0ij, we identify its type via the introduction of an

object declaration, and de�ne the values which are assigned to structural

properties (i.e., attributes); and

{ for every oid-term in r0ij, we de�ne its value in context c(= �(si)) with

reference to rij.

� C, the context multi-set, is a labeled multi-set fc1 := C1; : : : ; cn := Cng where ci

is a context symbol, and Ci, called the context set for ci, is set of clauses which

provides a description of the relevant data semantics in context ci. ❏

We provide the intuition for the above de�nition by demonstrating how the in-

tegration scenario shown in Figure 3-1 can be represented in a coin framework

F = <S; �; E ;D; C>. Figures 4-1 and 4-2 present a partial codi�cation which we

will elaborate brie
y below:

� The contents of the source set S is simply the set of ground atoms present in the

data sources. We place no limitation on the number of relations which may be

present in each source; in the current example, it happens that each source has

only one relation. The rules following the ground atoms are functional depen-

dencies which are known to be true in the respective relation. For instance, the

two rules in s1 de�nes the functional dependency cname! frevenue,currencyg

on the attributes in r1.

� The function � is de�ned as a relation on S � C: thus, source s1 is mapped to

context c1, whereas s2 and s3 are both mapped to context c2.

� The domain model D consists of two parts. The left-half (as seen in Figure 4-1)

identi�es (1) the semantic-types which are known and the generalization hierar-

chy; (2) the declarations for methods which are applicable to the semantic-types;

and the signatures for the predicates corresponding to the semantic relations

(r0i). The right-half does the same for primitive-types and predicates for the

extensional relations.
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Source set S

s1 := f r1('IBM', 1 000 000, 'USD'). r1('NTT', 1 000 000, 'JPY').
R1 = R2  r1(N;R1; ); r1(N;R2; ):
Y1 = Y2  r1(N; ; Y1); r1(N; ; Y2): g

s2 := f r2('IBM', 1 500 000). r2('NTT', 5 000 000).
E1 = E2  r2(N;E1); r2(N;E2): g

s3 := f r3('USD', 'JPY', 104.0). r3('JPY', 'USD', 0.0096).
T1 = T2  r3(X;Y; T1); r3(X;Y; T2): g

Source-to-Context Mapping �

f�(s1; c1); �(s2; c2); �(s3; c2)g

Domain model D

/* type declarations */
semanticNumber :: >S . number :: >P .
semanticString :: >S . varchar :: >P .
moneyAmt :: semanticNumber. integer :: number.
companyFinancials :: moneyAmt. real :: number.
currencyType :: semanticString.
companyName :: semanticString.

/* attribute declaration */
moneyAmt[company ) companyName].

/* modi�er declarations */
moneyAmt[currency(ctx)) currencyType; scaleFactor(ctx)) semanticNumber].

/* value declarations */
semanticString [value(ctx)) varchar].
semanticNumber[value(ctx)) number].

/* conversion declarations */
semanticString [cvt(ctx)@ctx,varchar ) varchar].
semanticNumber[cvt(ctx)@ctx,number ) number].
moneyAmt[cvt(ctx)@ctx,number ) number].
moneyAmt[cvt(ctx)@ctx,scaleFactor,number ) number].
moneyAmt[cvt(ctx)@ctx,currency,number ) number].

/* predicate declarations */
r01(companyName,companyFinancials,currencyType). r1(varchar,integer,varchar).
r02(companyName,companyFinancials). r2(varchar,integer).
r03(currencyType,currencyType,semanticNumber). r3(varchar,varchar,real).

Figure 4-1: The source set, source-to-context mapping, and domain model for the
coin framework corresponding to the motivational example.
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� The �rst clause in each Ei of the elevation set E de�nes the semantic rela-

tion r0i corresponding to the relation ri; the semantic relations are de�ned on

semantic-objects (as opposed to primitive-objects), which are instantiated as

Skolem terms. The Skolem function (e.g., fr2#expenses) are chosen in the way

such that when applied to the key-value of a tuple in the corresponding relation

(e.g., 'NTT'), the resulting Skolem term (i.e., fr2#expenses('NTT')) would in fact

identify a unique \cell" in the relation as shown in Figure 3-2 (in this case, the

expenses of NTT as reported in relation r2).

� Object declarations and attribute atoms in the elevation set provide a way of

specifying the types of corresponding Skolem terms introduced in the semantic

relation. For instance, any Skolem term fr1#revenue( ) is asserted to be an in-

stance of the semantic-type companyFinancials. The attribute atom following

this declaration de�nes the object that is assigned to the company attribute for

this semantic-object

� The values of the Skolem terms introduced in the semantic relation are de�ned

through the clauses shown last. The primitive-objects assigned are obtained

directly from the extensional relation. Clearly, the value assignment is valid only

within the context of the source as identi�ed by �; the values of the Skolem terms

in a di�erent context can be derived through the use of conversion functions,

which we will de�ne later.

The context multi-set C is given by fc1 := C1; c2 := C2g and is de�ned by the

axioms shown in Figure 4-3. There are two kinds of axioms: modi�er value de�nitions

and conversion de�nitions.

Consistent with our data model, modi�ers can be assigned di�erent values in dis-

tinct contexts: this constitutes the principle mechanism for describing the meaning

of data in disparate contexts. For example, the fact that in context c1, companyFi-

nancials are reported using a scale-factor of 1 000 whenever it is reported in JPY, and

1 otherwise, can be represented by the formula:

8X 0 : companyFinancials 9F 0 : number `
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Elevation Axioms E1 of E

r01(fr1#cname(X1); fr1#revenue(X1); fr1#currency(X1)) r1(X1; ; ):
fr1#cname( ) : companyName.
fr1#revenue( ) : companyFinancials.
fr1#revenue(X1)[company ! fr1#cname(X1)].
fr1#currency( ) : currencyType.
fr1#cname(X1)[value(C)!X1] r1(X1; ; ); �(s1; C):
fr1#revenue(X1)[value(C)!X2] r1(X1; X2; ); �(s1; C):
fr1#currency(X1)[value(C)!X3] r1(X1; ;X3); �(s1; C):

Elevation Axioms E2 of E

r02(fr2#cname(X1); fr2#expenses(X1)) r2(X1; ):
fr2#cname( ) : companyName.
fr2#expenses( ) : companyFinancials.
fr2#expenses(X1)[company ! fr2#cname(X1)].
fr2#cname(X1)[value(C)!X1] r2(X1; ); �(s2; C):
fr2#expenses(X1)[value(C)!X2] r2(X1;X2); �(s2; C):

Elevation Axioms E3 of E

r03(fr3#fromCur(X1;X2); fr3#toCur(X1;X2); fr3#exchangeRate(X1;X2)) r3(X1;X2; ):
fr3#fromCur( ; ) : currencyType.
fr3#toCur( ; ) : currencyType.
fr3#exchangeRate( ; ) : semanticNumber.
fr3#fromCur(X1;X2)[value(C)!X1] r3(X1;X2; ); �(s3; C):
fr3#toCur(X1;X2)[value(C)!X2] r3(X1;X2; ); �(s3; C):
fr3#exchangeRate(X1;X2)[value(C)!X3] r3(X1;X2;X3); �(s3; C):

Figure 4-2: Elevation set corresponding to the motivational example
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Context c1:

/* modi�er value assignments */
X 0 : companyFinancials ` X 0[scaleFactor(c1)! scaleFactor(c1;X

0)].
X 0 : companyFinancials, scaleFactor(c1;X

0) : number `

scaleFactor(c1;X
0)[value(c1)! 1]  X 0[currency(c1)!Y 0]; Y 0

c1
6 e='JPY'.

X 0 : companyFinancials, scaleFactor(c1;X
0) : number `

scaleFactor(c1;X
0)[value(c1)! 1 000]  X 0[currency(c1)!Y 0]; Y 0

c1
e='JPY'.

X 0 : companyFinancials ` X 0[currency(c1)! currency(c1; X
0)].

X 0 : companyFinancials, currency(c1; X
0) : currencyType `

currency(c1;X
0)[value(c1)!Y ] X 0[company !N 0

0]; r
0
1(N

0
1; R

0; Y 0); N 0
0

c1
e= N 0

1;
Y 0[value(c1)!Y ].

/* conversion function de�nitions */
X 0 : moneyAmt `

X 0[cvt(c1)@C;U!V ] X 0[cvt(c1)@scaleFactor; C; U!W ];
X 0[cvt(c1)@currency ; C;W!V ].

X 0 : moneyAmt `
X 0[cvt(c1)@scaleFactor; C; U!V ] X 0[scaleFactor(c1)! [value(c1)!F1]];

X 0[scaleFactor(C)! [value(c1)!F ]]; V = U � F=F1
X 0 : moneyAmt `

X 0[cvt(c1)@currency ; C; U!V ] X 0[currency(c1)!Y 0
1 ];X

0[currency(C)!Y 0];

Y 0
1

c1
e= Y 0; V = U:

X 0 : moneyAmt `
X 0[cvt(c1)@currency ; C; U!V ] X 0[currency(c1)!Y 0

1 ];X
0[currency(C)!Y 0];

Y 0
1

c1
6 e= Y 0; r03(Y

0
f ; Y

0
t ; R

0); Y 0
f

c1
e= Y 0

1 ; Y
0
t

c1
e= Y 0;

R0[value(c1)!R]; V = U � R.

Context c2:

/* modi�er value assignments */
X 0 : companyFinancials ` X 0[scaleFactor(c2)! scaleFactor(c2;X

0)].
X 0 : moneyAmt, scaleFactor(c2;X

0) : number ` scaleFactor(c2;X
0)[value(c2)! 1].

X 0 : companyFinancials ` X 0[currency(c2)! currency(c2; X
0)].

X 0 : moneyAmt, currency(c2;X
0) : currencyType `

currency(c2;X
0)[value(c2)! 'USD'].

/* conversion de�nitions are similar to c1 and omitted for brevity */

Figure 4-3: Context sets for C for the motivational example at hand.
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(X 0[scaleFactor(c1)!F 0] )^

(F 0[value(c1)! 1 000]  X 0[currency(c1)!Y 0]^ Y 0
c1

e='JPY' ) ^

(F 0[value(c1)! 1]  X 0[currency(c1)!Y 0]^ Y 0
c1

6 e='JPY' ).

The above formula is not in clausal form, but can be transformed to de�nite Horn

clauses by Skolemizing the existentially quanti�ed variable F 0. For example, the

above formulas can be reduced to the following clauses:

X 0 : companyFinancials `

X 0[scaleFactor(c1)!fscaleFactor(c1)(X
0)].

X 0 : companyFinancials, fscaleFactor(c1)(X
0) : number `

fscaleFactor(c1)(X
0)[value(c1)! 1 000]  X 0[currency(c1)!Y 0]; Y 0

c1

e='JPY'.

X 0 : companyFinancials, fscaleFactor(c1)(X
0) : number `

fscaleFactor(c1)(X
0)[value(c1)! 1]  X 0[currency(c1)!Y 0]; Y 0

c1

6 e='JPY'.

where fscaleFactor(c1) is a unique Skolem function; for notational simplicity, we replace

fscaleFactor(c2)(X
0) with the term scaleFactor(c2; X

0). Currency values corresponding

to instances of companyFinancials are obtained directly from the extensional relation

r1 as shown in Figure 4-3. In this instance, it is necessary to reference an extensional

relation because \meta-data" are represented along with \data" in a source. In a

\better-behaved" situation (such as context c2), the modi�er values for currency and

scaleFactor can be de�ned independently of the underlying schema. It is worthwhile

to note that our framework is su�ciently expressive to capture both types of scenario,

although the �rst tends to make the boundary between intensional and extensional

knowledge more fuzzy.

Conversion functions de�ne how the value of a given semantic-object can be de-

rived in the current context, given that its value is known with respect to a di�erent

context. As shown in Figure 4-3, the �rst clause in the group (for context c1) de�nes

the conversion for moneyAmt via the composition of atomic conversion functions for

scaleFactor and currency. The scaleFactor conversion is de�ned by identifying the

respective scale-factors in the source and target contexts and multiplying the value of

the moneyAmt object by the ratio of the two. The currency conversion is obtained by
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multiplying the source value by a conversion rate which is obtained via a lookup on

yet another data source (r3). Notice that these conversions are de�ned with respect

to moneyAmt but are applicable to companyFinancials via behavioral inheritance

of the methods. In general, the repertoire of conversion functions can be extended

arbitrarily by de�ning the conversion externally and invoking the external functions

using the built-in system predicate which serves as an escape hatch to the operating

system. However, encapsulating the conversion in external functions makes it harder

to reason about the properties of the conversion; for example, the explicit treatment

of arithmetic operators and table-lookups (in conversion functions) allow us to exploit

opportunities for optimization, say, by rewriting the arithmetic expression to reduce

the size of intermediary tables during query execution6.

4.6 AMeta-Logical Extension to the COIN Frame-

work

In Section 4.5, context knowledge in a coin framework is represented by a set of

separate theories (i.e., C = fc1 := C1; : : : ; cn := Cng). We describe here an extension

to this basic framework which allows new contexts to be de�ned in terms of existing

ones in an incremental fashion. Two basic mechanisms underly this move to such

an extension: the treatment of context as a set of parameterized statements and the

introduction of the hierarchical operator �, which de�nes a subcontext relation on

the set fc1; : : : ; cng.

Recall that the relative truth or falsity of a statement can be represented using

McCarthy's ist, so that

ist(ci; �)

is taken to mean that the statement � is true in context ci. The relation � allows us

to make incremental re�nements to statements which describe what is already known

6Details of query optimization strategies that take into account conversion functions are beyond
the scope of the work reported here. A more detailed discussion can be found in [Daruwala et al.,
1995].
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about an enclosing context. Thus, if ci is a subcontext of cj, denoted by ci � cj, this

allows us to introduce a di�erential context denoted by �ci, such that:

ist(ci; �)  � 2 �ci

ist(ci; �)  ci � cj, ist(cj; �), not-overridden(�ci ; �).

The predicate not-overridden indicates that the statement � obtained from the more

general context cj is not explicitly overridden by the di�erential context. The com-

position of a new context theory of ci from cj and �ci is similar to that accomplished

by the isa operator de�ned in [Borgi et al., 1990].

In the coin data model, statements in a context are \decontextualized" by making

explicit references to its rei�cation in the form of a context-object. For example, the

statement

ist(cj; t[m1!t0] t[m2!t0]).

can be equivalently stated as

t[m1(cj)!t0] t[m2(cj)!t0].

This second form simpli�es the inferences which are undertaken to support context

mediation, but requires some adjustment to allow statements to be inherited. Specif-

ically, if the above statement is inherited by context ci (� cj), we will need to replace

the references to cj with ci. This is accomplished by requiring all statements in �cj

to be parameterized; i.e.,

�cj(X) = f�1(X); : : : ; �l(X)g

For instance, the earlier statement would have been asserted as

�(X) = t[m1(X)!t0] t[m2(X)!t0].

in the set �cj . The statement �(X) is said to be uninstantiated. The collection of

uninstantiated axioms forms an uninstantiated context set.
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De�nition 7 Let �C = fc0 := C0(X); �c1(X); : : : ; �cn(X)g, for which �ci(X) (i =

1; : : : ; n) is said to be the di�erential for context ci with respect to �, which de�nes

a partial order on the contexts fc1; : : : ; cng. Let fci1 ; : : : ; cikg be the predecessors of

ci with respect to the subcontext relation �. Then the uninstantiated context set for

cij , denoted by Cij (X), can be obtained from Ci(X) as before: i.e.,

� �(X) 2 Cij (X) �(X) 2 �cij (X)

� �(X) 2 Cij (X) �(X) 2 Ci(X); not-overridden(�cij (X); �(X)).

The context c0 is said to be the default context and forms the basis for the other

di�erentials. ❏

De�nition 8 Given �C = fc0 := C0(X); �c1(X); : : : ; �cn(X)g and the subcontext

relation�. Suppose Ci(X) is the uninstantiated context set for ci obtained inductively

using De�nition 7. The context set for ci is given by the set Ci(ci). ❏

Notice that we have not described how one is to determine whether or not a

given statement is being overridden in a speci�c context. The simplest approach

is to assume that whenever a method atom appears in the head in a di�erential

context set, none of the other rules (pertaining to this method) de�ned in any of its

supercontext applies. For example, if the scaleFactor for the type companyFinancials

is given in two distinct context di�erentials along a given path in the hierarchy, then

the statement in the more speci�c context is said to take precedence and will be used

in the corresponding context.

The above scheme leads to the following extended formulation of a coin frame-

work.

De�nition 9 The extended coin framework is a sextuple given by <S; �; E ;D; �C;�

>, where S; E , and D are de�ned as before in De�nition 6, �C is as de�ned in De�-

nition 7, and � is the subcontext relation de�ned on the set of contexts fc1; : : : ; cng

induced by �C. ❏
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Chapter 5

Query Answering in the COIN

Framework

Following the same algorithm outlined in [Abiteboul et al., 1993], any collection of

coin clauses can be translated to Datalog with negation (Datalogneg) (or equivalently,

normal Horn program [Lloyd, 1987]), for which the semantics as well as computation

procedures have been widely studied [Ullman, 1991b]1. In this Chapter, we explore an

alternative approach based on abductive reasoning. The abductive framework provides

us with intensional (as opposed to extensional) answers to a query2. We describe

this abductive framework below and the relationship between query mediation in

a coin framework and query answering in an abductive framework. We assume

some familiarity with logic programming at the level of [Lloyd, 1987] in the ensuing

discussion, and for most part, shall remain faithful to the notations therein.

1The fact that \object-based logics" can be encoded in classical predicate logic has been known
for a long time (see for example, [Chen and Warren, 1989]). This however should not cause us to
\lose faith" in our data model, since the syntax of the language plays a pivotal role in shaping our
conceptualization of the problem and in �nding solutions at the appropriate levels of abstraction.

2This change in perspective is bene�cial for a variety of reasons (see Chapter 3), and will not be
repeated here.
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5.1 Abductive Logic Programming

Abduction [Kowalski, 1990] refers to a particular kind of hypothetical reasoning which,

in the simplest case, takes the form:

From observing A and the axiom B ! A

Infer B as a possible \explanation" of A.

For instance, given the axioms (1) \it rained"! \the 
oor is wet", and (2) \sprinkler

was on"! \the 
oor is wet", the observation of a \wet 
oor" will lead us to conclude

that \it rained" or that \sprinkler was on". As illustrated in this example, abduction

is typically used for identifying explanations for observations. It is a form of non-

monotonic reasoning, because explanations which are consistent with one state of a

knowledge base (theory) may be inconsistent with new information. Hence, if we had

known that it did not rain, then the explanation \it rained" will have to be retracted.

Abductive reasoning has been used in diagnostic reasoning (e.g., as in medical di-

agnosis where observations are symptons to be explained and explanations sought

are the diseases a patient may be infected with), high level vision, natural language

understanding, planning, knowledge assimilation, and database view updates [Kakas

et al., 1993, and references therein].

Following Eshghi and Kowalski [1989], we de�ne an abductive framework to be a

triple <T ;A; I> where T is a theory, I is a set of integrity constraints, and A is a

set of predicate symbols, called abducible predicates. Given an abductive framework

<T ;A; I> and a sentence 9 ~Xq( ~X) (the observation), the abductive task can be char-

acterized as the problem of �nding a substitution � and a set of abducibles �, called

the abductive explanation for the given observation, such that

(1) T [� j= q( ~X)�,

(2) T [� satis�es I; and

(3) � has some properties that make it \interesting".

This characterization of abduction is independent of the language in which the sen-

tences are formulated. Requirement (1) states that �, together with T , must be
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capable of providing an explanation for the observation q( ~X)�. The consistency re-

quirement in (2) distinguishes abductive explanations from inductive generalizations.

Finally, in the characterization of � in (3), \interesting" means primarily that literals

in � are atoms formed from abducible predicates: where there is no ambiguity, we

refer to these atoms also as abducibles. In most instances, we would like � to also be

minimal or non-redundant.

Abductive logic programming (ALP) is the extension of logic programming [Lloyd,

1987] to support abductive reasoning. Semantics and proof procedures for ALP have

been proposed by Kakas and Mancarella [1990b], Console et al. [1991], Toni [1995],

and Denecker and Schreye [1992a,b]. As pointed out in [Kakas et al., 1993], the rela-

tionship between semantics and proof procedures can be understood as a relationship

between program speci�cations and programs. A program speci�cation characterises

what is the intended result expected from the execution of the program. In the same

way, the semantics of an abductive logic program can be understood as an abstract

de�nition of what is to be computed by a proof procedure; from this perspective,

semantics is not so much concerned with explicating meaning in terms of truth and

falsity, as it is with providing an abstract speci�cation which \declaratively" ex-

presses what we want to compute. The various proof procedures proposed in the

literature are appropriate for di�erent semantics and considers logic programs with

di�erent expressivity. For example, the abductive procedures described in [Cox and

Pietrzykowski, 1986] and [Finger and Genesereth, 1985] work only for de�nite logic

programs (i.e., without negation), whereas the abduction procedure de�ned in [Kakas

and Mancarella, 1990a] allows a literal to be abducted only if it is ground.

It has been shown that in general, the abductive task is NP-hard [Eiter and Got-

tlob, 1993] even if we restrict the theory to propositional clauses. Eshghi [1993],

however, has shown that if the theory comprises of Horn propositional clauses with

additional restrictions, then there exists a polynomial time algorithm for �nding min-

imal explanations. The generalization of these results to predicate logic is not yet

clear and warrants further study.
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5.2 On the Relationship between Abduction and

Deduction

In [Kowalski, 1991], Kowalski pointed out that abductive solutions to a query can also

be obtained by deduction. Consider, for instance, the theory T de�ned as follows:

T = f wobbly-wheel  
at-tire.

wobbly-wheel  broken-spokes.


at-tire  punctured-tube.


at-tire  leaky-valve. g

where A = fbroken-spokes, punctured-tubes, leaky-valveg. Given the abductive

query Q = wobbly-wheel, we will obtain the following three abductive answers:

�1 = f punctured-tube g

�2 = f leaky-valve g

�3 = f broken-spokes g

The same answers, however, can be obtained using deduction by considering the

theory T 0 obtained by taking the only-if part of every de�nition of a non-abducible

predicate in the Clark-completion [Clark, 1978] of T and by adding the negation of

Q. For the example at hand, this yields the theory T 0 given by

T 0 = f 
at-tire _ broken-spokes  wobbly-wheel.

punctured-tube _ leaky-valve  
at-tire.

wobbly-wheel  . g

It is easy to see that the program T 0 has only three minimal models given by:

M1 = f wobbly-wheel, 
at-tire, punctured-tube g

M2 = f wobbly-wheel, 
at-tire, leaky-valve g

M1 = f wobbly-wheel, broken-spokes g

These corresponds exactly to the abductive solutions obtained earlier if they are

restricted to only abducible predicates. As was pointed out in Console et al. [1991],
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and subsequently Denecker and Schreye [1992a], the duality between abduction and

deduction holds in the general case and not just only when the theory is propositional

(i.e., variable-free). Denecker [1993] went further to point out that when a theory is

\complete" (in the sense that every formula or its negation is a logical consequence

of the theory), abduction then collapses to deduction.

5.3 The SLD+Abduction Procedure and Its Ex-

tensions

We describe in this section an abduction procedure based on extension to SLD res-

olution, called SLD+Abduction. The underlying idea is �rst reported in [Cox and

Pietrzykowski, 1986], and has inspired various di�erent extensions. The account we

give here follows that in [Shanahan, 1989].

We �rst consider SLD resolution3. Given a theory T consisting of Horn clauses

and a goal clause  G, and SLD-refutation of  G is a sequence of goal clauses

 G0(= G); G1; � � � ; Gn where  Gn is the empty clause and each  Gi+1

is obtained from  Gi by resolving one of its literals (the selected literal) with one

of the clauses in T . The Prolog interpreter, for instance, implements a form of

SLD resolution where the leftmost literal in a goal clause is always selected. Since

there may be many clauses in T which can be resolved with the selected literal, a

space of possible refutations is de�ned (in the form of an SLD-tree). The search

space de�ned by an SLD-tree may be searched in a number of ways. For example,

this is accomplished in Prolog in a depth-�rst manner, resulting in chronological

backtracking.

Suppose now that there is some  Gi, whose selected literal g will not resolve

with any clause in T . This means that the part of the subtree with Gi at the root

is not worth exploring any further, since it will not contain any branch that leads

3SLD resolution stands for SL resolution for De�nite clauses. SL stands for Linear resolution
with Selection function. The term LUSH-resolution is sometimes used to refer to the same thing.
In the description which follows, we assume some familiarity with logic programming at the level
of [Lloyd, 1987, Chapters 1 and 2].
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to a refutation (i.e., one which terminates in an empty clause). Given however that

we are searching for a set of unit clauses �, such that T [ � j= G, then clearly by

letting � include a unit clause which resolves with g, we can continue the search with

 Gi+1, which is obtained from  Gi minus the literal g. This observation forms

the basis for the SLD+Abduction procedure which we proceed to describe below.

Given an abductive framework <T ;A; I> and the abductive query q( ~X), consider

the sequence given by

 G0;�0 where G0 = q( ~X) and �0 is the empty set
...

 Gn;�n

such that Gi+1;�i+1 is derived from Gi;�i as follows:

� if g, the selected literal of  Gi, can be resolved with a clause in T , then a

single resolution step is taken to yield Gi+1, and �i+1 = �i;

� if g is abducible, g0 is g with all its variables replaced by Skolem constants,

and T [ �i [ fg
0  g is consistent with I, then Gi+1 is Gi less g, and �i+1 =

�i [ fg
0  g.

The sequence obtained is said to be a derivation of G with respect to the abduc-

tive framework <T ;A; I>. A derivation, as we have just de�ned, is said to be a

refutation if  Gn is the empty clause. The accumulated set of unit clauses �n is

said to be the residue corresponding to this refutation, and constitutes the abductive

answer to 8 ( q( ~X)� ), where � is the substitution obtained from the composition of

all substitutions leading to the refutation, restricted to the variables ~X.

In the abduction step above, we require that the selected literal g to be Skolem-

ized. This is because variables in the unit clause \g0  " needs only be existentially

quanti�ed for it to be resolvable with g. If the Skolemization is not done, the abducted

fact \g0  " (where g0 = g) would have been unnecessarily strong. This Skolemiza-

tion, however, introduces additional complexity since it becomes necessary to deal

with equality constraints on Skolem constants. This is due to the fact that a Skolem

79



constant (sk) introduced earlier in the SLD-derivation (say in  Gi) may have to

be uni�ed with a speci�c term (t) later on (in  Gj, where j > i). Eshghi [1988]

suggested that this can be dealt with by introducing the equality predicate as an

abducible predicate and to add the theory of Free Equality (FEQ) [Clark, 1978] as

integrity constraints. Thus, when a Skolem constant sk is to be uni�ed with a term

t, the equality fact sk = t is abduced explicitly and the consistency of sk = t with

other abduced facts and FEQ is checked.

The procedure which we have just described can be extended to cope with negation

through the use of negation-as-failure [Eshghi and Kowalski, 1989]. Suppose that the

selected literal of the current goal clause is not g. The usual negation-as-failure

mechanism is used: i.e., if g cannot be proven from the theory (augmented with

the current residue), then not g is assumed to be true. There are two sources of

complications in this scheme. First, it may happen that g becomes provable later

in the refutation when additional facts are abducted. To avoid this, not g needs to

be recorded so that new clauses which are subsequently added do not violate this

implicit assumption. Second, negation may be nested. Suppose there is a clause

given by g  not h, and that h is not provable from the current residue. Then an

attempt to prove not g using SLD-resolution with negation-as-failure (SLDNF) will

fail because it is not possible to prove h. However, h might be rendered provable by

adding further clauses to the residue. So rather than using SLD-resolution to try to

show h, abduction is used instead and is allowed to add to the residue. This procedure

can be generalized to any level of nesting, with SLD being used at even levels, and

abduction at odd levels.

5.4 Query Answering in the COIN Framework

Figure 5-1 illustrates how queries are evaluated in a Context Interchange system.

From a user perspective, queries and answers are couched in the relational data model:

a (data-level or knowledge-level) query is formulated using a relational query language

(SQL or some extension thereof), and answers can either be intensional (a mediated
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query) or extensional (actual tuples satisfying the query). Examples of these queries

and answers have been presented earlier in Section 3.2.

Source-to-Context

      mapping

Source Set

Abducibles

Data/Knowledge-Level 
Query 

1 2

4

3

Integrity Constraints

TheoryDomain Model

Elevation Set

Context Set

+ Clark’s FEQ

COIN Query Abductive Query

Abductive Answer

Intensional
Answer

Query
Mediated 

Query Optimizer/Executioner

Extensional
Answer

+ evaluable-predicates

COIN Framework Abductive FrameworkSystem Perspective

extensional predicates

Figure 5-1: A summary of how queries are processed within the Context Interchange
strategy: ① transforms a (extended) SQL query to a well-formed coin query; ②

performs the coin to Datalogneg translation; ③ is the abduction computation which
generates an abductive answer corresponding to the given query; and ④ transforms
the answer from clausal form back to SQL.

Transformation to the COIN Framework

Within the coin framework, the SQL-like queries originating from users are translated

to a clausal representation in the coin language. For example, queries Q1 and Q2 in

Chapter 3 can be mapped to the following clausal representations:

CQ1:  answer(N;R).

answer(N;R)  r1(N;R; ); r2(N;E); R > E
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and correspondingly,

CQ2:  answer(N;F1; F2)

answer(N;F1; F2) r1(N;R; ); R[scaleFactor(c1)!F1];

R[scaleFactor(c2)!F2]; F1 6= F2:

The above queries however do not capture the real intent of the user. For example,

there is no recognition that \revenue" and \expenses" have di�erent currencies and

scale-factors associated with them and should not be compared \as is", that R in

CQ2 is a primitive-object for which the method scaleFactor is not de�ned, or the fact

that both queries originate from context c2 which may be interpreted di�erently in a

di�erent context. We say that these queries are \naive", and thus must be translated

to corresponding \well-formed" queries.

De�nition 10 Let <Q; c> be a naive query in a coin framework F , where c denotes

the context from which the query originates. The well-formed query Q0 corresponding

to <Q; c> is obtained by the following transformations:

� replace all relational operators with their \semantic" counterpart; for example,

X > Y is replaced with X
c

e> Y .

� make all relational \joins" explicit by replacing shared variables with explicit

equality using the semantic-operator e=; for example, r1(X; Y ); r2(X;Z) would

be replaced with r1(X1; Y ); r2(X2; Z); X1

c

e= X2.

� similarly, make relational \selections" explicit; thus, r1(X; a) will be replaced

by r1(X; Y ); Y
c

e= a.

� replace all references to extensional relations with the corresponding semantic-

relations; for example, r1(X; Y ) will be replaced with r01(X; Y ).

� append to the query constructed so far, value atoms that return the value of

the data elements that are requested in the query. ❏

Based on the above transformation, the well-formed query corresponding to naive

queries <CQ1; c2> and <CQ2; c2>, are given by
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CQ10:  answer(N;R).

answer(N;R) r01(N
0
1; R

0; ); r02(N
0
2; E

0); N 0
1

c2

e= N 0
2; R

0

c2

e> E 0;

N 0
1[value(c2)!N ]; R0[value(c2)!R].

and

CQ20: answer(N;F1; F2).

answer(N;F1; F2) 

r10(N 0; R0; ); R0[scaleFactor(c1)!F 0
1]; R

0[scaleFactor(c2)!F 0
2];

F 0
1

c2

6 e= F 0
2; N

0[value(c2)!N ]; F 0
1[value(c2)!F1]; F

0
2[value(c2)!F2].

respectively.

Transformations to an Abductive Framework

The relationship between a coin framework and an abduction framework can now

be stated.

De�nition 11 Given the coin framework FC = <S; �; E ;D; C>, this can be mapped

to a corresponding abductive framework FA given by <T ; I;A> where

� T is the Datalogneg translation of the set of clauses given by E [ D [ C [ �;

� I consists of the integrity constraints de�ned in S, augmented with Clark's Free

Equality Axioms [Clark, 1978]; and

� A consists of the extensional predicates de�ned in S, the built-in predicates cor-

responding to arithmetic and relational (comparison) operators, and the sys-

tem predicate which provides the interface for system calls. ❏

Suppose q( ~X) is a well-formed query in the coin framework FC , the corresponding

abductive framework of which is denoted by FA = <T ; I;A>. Without any loss of

generality, we assume that  q( ~X) is identical in both FC and FA. This is because

Datalogneg is a sublanguage of coin, and any coin query  Q( ~X) can always be
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transformed to a Datalogneg query  q( ~X) by adding the Datalogneg-translation of

the clause q( ~X) Q( ~X) into the theory T .

Given an abductive framework <T ; I;A>, and the query 9 ~X q( ~X). Suppose

� = fp1; : : : ; pmg is an abductive answer for q( ~X)�, then it follows that

T j= ( q( ~X)�  p1; : : : ; pm )

This result follows from the fact that pi's are ground for i = 1; : : : ; m, so a set

of ground atoms in fact represents their conjunction. The conjunct p1 ^ � � � ^ pm

constitutes a precondition for q( ~X)�. Suppose K = fsk0; : : :g is the set of Skolem

constants introduced by the abduction step, and ' is a \reverse" substitution fski=Yig

where ski 2 K and Yi is a distinct variable not in ~X. Then, we say that the tuple

( 9~Y (p1; : : : ; pm)'; �' ) is an intensional answer for the query 9 ~X q( ~X)(�'). This fact

is not surprising given that Motro and Yuan [Motro and Yuan, 1990] suggested that

intensional answers can be obtained from the \dead-ends" of \derivation trees" corre-

sponding to a query. Although it was not recognized as such, the procedure described

in [Motro and Yuan, 1990] is in fact a naive implementation of SLD+Abduction (with-

out any consistency checking). From the perspective of the user issuing a naive query,

the intensional answer can also be interpreted as the corresponding mediated answer.

An an illustration of the preceding comments, the evaluation of CQ20 in the ab-

ductive framework yields the following abductive answer:

� = fr1(sk0; sk1; sk2); sk2 ='JPY'g; � = fN=sk0; F1=1 000; F2=1g

The reverse substitution ' is given by fsk0=Y0; sk1=Y1; sk2=Y2g, and thus the inten-

sional answer (equivalently, the mediated query) is:

( 9Y0; Y1; Y2 (r1(Y0; Y1; Y2); Y2 ='JPY'), fN=Y0; F1=1 000; F2=1g )

which translates to MQ2 shown in Chapter 3. If fY0='NTT', Y1=1 000 000, Y2='JPY'g

is an answer for the above mediated query, then the answer for the original user query

is given by fN='NTT'; F1=1 000; F2=1g.
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5.5 Illustrative Example

In this section, we provide an example illustrative of the computation involved in

query mediation (equivalently, obtaining the intensional answer to a query).

Consider the query Q3 (a simpli�ed variant of Q2) which is issued from context

c1, which queries relation r1 for the scale-factors of revenues in context c1:

Q3: SELECT r1.cname, r1.revenue.scaleFactor IN c1

FROM r1;

The (well-formed) clausal representation for this query is given by

CQ3:  answer(N;F ).

answer(N;F )  r10(N 0; R0; ); N 0[value(c1)!N ]; R0[scaleFactor(c1)!F 0];

F 0[value(c1)!F ].

Figure 5-2 shows one possible refutation of this query using the SLD+Abduction

algorithm described earlier. For better clarity, the refutation is shown using coin

clauses rather than Datalog. The clauses used for resolving the goal clauses are those

shown earlier in Figure 4-1, 4-2 and 4-3.

To aid in appreciating the chain of reasoning, we o�er the following highlights on

the refutation:

� The refutation begins with the query as given, with � initialized to the empty

set.

� At step (3), the literal r1(N; ; ) cannot be further resolved. Since r1 is an

extensional predicate (and hence abducible), it is removed from the goal clause

and its Skolemized form, r1(sk0; sk1; sk2), is added to �.

� At step (6), the literal scaleFactor(c1; fr1#revenue(sk0))[value(c1)!F ] can be re-

solved with two di�erent clauses (where F =1 and F =1 000). One is chosen

arbitrarily (in this case, F =1); the other will be selected on backtracking and

will eventually lead to another refutation.
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(1)  as(N;F ): �0 = fg
j

(2)  r01(N
0; R0; ); N 0[v(c1)!N ]; R0[sf(c1)!F 0]; F 0[v(c1)!F ]:

j N 0=fr1#cn(N); R0=fr1#rv(N)
(3)  r1(N; ; ); fr1#cn(N)[v(c1)!N ]; fr1#rv(N)[sf(c1)!F 0]; F 0[v(c1)!F ].

☞ j �1 = fr1(sk0; sk1; sk2)g; N=sk0
(4)  fr1#cn(sk0)[v(c1)!sk0]; fr1#rv(sk0)[sf(c1)!F 0]; F 0[v(c1)!F ].

j
(5)  fr1#rv(sk0)[sf(c1)!F 0]; F 0[v(c1)!F ].

j F 0=sf(c1; fr1#rv(sk0))
(6)  sf(c1; fr1#rv(sk0))[v(c1)!F ]:

j F=1

(7)  fr1#rv(sk0)[cr(c1)!Y 0]; Y 0
c1
6 e= 'JPY'.

j Y 0=cr(c1; fr1#rv(sk0))

(8)  cr(c1; fr1#rv(sk0))
c1
6 e= 'JPY'.

j
(9)  cr(c1; fr1#rv(sk0))[v(c1)!Y ]; Y 6= 'JPY'

j

(10)  fr1#rv(sk0)[cp!N 0
0]; r

0
1(N

0
1; ; Y

0); N 0
0

c1
e= N 0

1; Y
0[v(c1)!Y ]; Y 6= 'JPY'.

j N 0
0=fr1#cn(sk0)

(11)  r01(N
0
1; ; Y

0); fr1#cn(sk0)
c1
e= N 0

1; Y
0[v(c1)!Y ]; Y 6= 'JPY'.

j N 0
1=fr1#cn(N1); Y

0=fr1#cr(N1)

(12)  r1(N1; ; ); fr1#cn(sk0)
c1
e= fr1#cn(N1); fr1#cr(N1)[v(c1)!Y ]; Y 6= 'JPY'.

☞ j �2 = �1 [ fr1(sk3; sk4; sk5)g; N1=sk3

(13)  fr1#cn(sk0)
c1
e= fr1#cn(sk3); fr1#cr(sk3)[v(c1)!Y ]; Y 6= 'JPY'.

j
(14)  fr1#cn(sk0)[v(c1)!S0]; fr1#cn(sk3)[v(c1)!S1]; S0 = S1; fr1#cr(sk3)[v(c1)!Y ]; Y 6= 'JPY'.

j S0=sk0; S1=sk3
(15)  sk0 = sk3; fr1#cr(sk3)[v(c1)!Y ]; Y 6= 'JPY'.

☞ j �3 = �2 [ fsk0 = sk3g
(16)  fr1#cr(sk0)[v(c1)!Y ]; Y 6= 'JPY'.

j Y=sk2
(17)  sk2 6= 'JPY'.

☞ j �4 = �3 [ fsk2 6='JPY'g = fr1(sk0; sk1; sk2); sk2 6='JPY'g
(18) 2

Figure 5-2: One possible refutation for query CQ3. Method and functor names are
abbreviated where possible (e.g., cr = currency). The resolution step labeled ☞ is
where a literal is abducted. The abductive answer corresponding to this refutation is
given by �4, and the intensional answer by (�4; fN=sk0; F=1g).
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� To arrive at a successful refutation, the currency for the revenue-object at hand

must not be 'JPY' when evaluated in context c1 (see step (8)). To determine if

this is the case, it is necessary to identify the currency value from the extensional

relation r1 (see corresponding axiom for assigning currency values in Figure 4-

3). This eventually leads to the expansion of the goal clause as shown in step

(10).

� In step (12), the extensional relation is referenced again. In the absence of other

information, we are not allowed to assume that it is the same \fact" which has

been abducted: i.e., we will need to add a new Skolemized fact, r1(sk3; sk4; sk5)

to �.

� In step (15), the equality constraint on the objects fr1#cname(sk0) and fr1#cname(sk3)

leads to the constraint sk0 = sk3. Since `=' is abducible (it is an evalu-

able predicate), it is added to �. At this point, the functional dependency

cname ! frevenue, currencyg generates further the constraints sk1 = sk4

and sk2 = sk5, which in turn allow us to merge the two facts r1(sk0; sk1; sk2)

and r1(sk3; sk4; sk5).

� Finally, in step (17), the literal sk2 = 'JPY' is abducted, which leads to a

refutation. The abductive answer corresponding to this refutation is given by

� = fr1(sk0; sk1; sk2); sk2 = 'JPY'g. The substitution, restricted to variables

fN;Fg, is given by fN=sk0; F=1g.

This intensional answer, translated to SQL, is given by:

SELECT r1.cname, 1 FROM r1 WHERE r1.currency <> 'JPY';

On backtracking, the other solution corresponding to F =1 000 will be obtained. The

complete answer returned to the user is thus given by:

MQ3: SELECT r1.cname, 1 FROM r1 WHERE r1.currency <> 'JPY'

UNION

SELECT r1.cname, 1 000 FROM r1 WHERE r1.currency = 'JPY';
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The correspondences between integrity checking and semantic query optimization

can be clearly seen in the above example. At step (15), the functional dependencies

r1 allows the initial constraint (sk0 = sk3) to be propagated and eventually allow

r1(sk3; sk4; sk5) to be eliminated from the abductive answer. If it were not so, the

intensional answer obtained would instead be:

SELECT rel1.cname, 1 FROM r1 rel1, r1 rel2

WHERE rel1.cname = rel2.cname;

which would include a redundant second reference to r1. This second answer is un-

intuitive, and obviously would lead to suboptimal performance if executed without

further optimization. In the more general scenario, constraints can be useful in prun-

ing an entire refutation altogether. For instance, if Q3 had been:

Q3': SELECT r1.cname IN c1, r1.revenue.scaleFactor IN c1

FROM r1 WHERE r1.currency = 'JPY';

we will eventually end up trying to abduct sk2 ='JPY' where sk2 6= 'JPY' is already

present in �, thus resulting in an unsuccessful refutation. In this case, the mediated

query MQ30 will consist of only the second select-statement in MQ3.
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Chapter 6

The Context Interchange

Prototype

The goal of the Context Interchange Prototype1 is to provide a demonstration of the

feasibility and features of Context Interchange strategy. In commensuration with the

goals of this Thesis, we are particularly interested in a concrete implementation of the

Context Mediator. In Section 6.1 , we present the architecture of this Prototype and a

brief description of its components. Section 6.2 contains an in-depth discussion of the

implementation of the Context Mediator, which is responsible for transforming a user

query to a mediated query. The last section concludes this chapter by portraying

how a user might make use of the system to gain \mediated access" to disparate

information sources on the World Wide Web.

1A number of students (past and present) have contributed to the current implementation. In no
particular order, these include Adil Daruwala, Ko� Fynn, Karim Hussein, Marta Jakobisiak, Thomas
Lee, Andy Loh, Tito Pena, and Jessica Qu. Of course, Stuart Madnick and Michael Siegel played
the key role of sitting on top of everybody. At the time of writing, queries are processed using an
underlying Oracle system, which is su�cient for the purpose of demonstrating how queries are medi-
ated. St�ephan Bressan is currently leading the e�ort in constructing a query optimizer/executioner
that will allow greater latitude for experimenting with various query optimization strategies.
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6.1 The Context Interchange Prototype: Overview

Figure 6-1 shows the architecture of the Prototype which is being implemented, which

consists of three distinct groups of processes.

� Client Processes provide the interaction with receivers and route all database

requests to the Context Mediator. An example of a client process is the multi-

database browser [Jakobisiak, 1996], which provides a point-and-click interface

for formulating queries to multiple sources, and for displaying the answers ob-

tained. More generally, any application program which issues queries to one or

more sources can be considered a client process. For example, Microsoft Excel

has the capability of issuing an SQL-query encapsulated as an ODBC-request.

In the current implementation, this request can be intercepted by a custom

ODBC driver, which redirects the request to the Context Mediator.

� Server Processes refer to database gateways and wrappers. Database gateways

provide physical connectivity to databases on a network: the goal is to insulate

the Mediator Processes from the idiosyncrasies of di�erent database manage-

ment systems by providing a uniform protocol for database access as well as

a canonical query language (and data model) for the formulating the queries.

Wrappers, on the other hand, provide richer functionalities by allowing semi-

structured documents on the World-Wide-Web to be queried as if these were

regular databases. This is accomplished by de�ning an export schema for each

of these web-sites, and describing how attribute-values can be extracted from

the web-pages using regular-expressions [Qu, 1996].

� Mediator Processes refer to the system components which collectively provide

the mediation services: these include the Context Mediator (which rewrites

a user-query to a mediated query), the Optimizer (which produces an optimal

query evaluation plan based on the mediated query), and the Executioner (which

executes the plan by dispatching subqueries to the Server Processes, collating

and operating on the intermediary results, and returning the �nal answer to the
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Client Process).

The Mediator Processes are supported by two repositories. The coin Repository

functions as a registry for knowledge pertaining to the integration task at hand.

This include the axioms which make up the coin framework and the Export Schema

corresponding to each source. The second repository serves as a temporary data store

for the Executioner. In the current implementation, this takes the form of a Oracle

database, allowing intermediate results to be stored and operated upon using facilities

of the Oracle DBMS.

In line with our goals of developing a prototype which is easily accessible (out-

side the con�nes of our research laboratory) as well as to allow us to focus on the

mediation technology which is of most interest to us, we have chosen to leverage on

the infrastructure of the World-Wide-Web (WWW) whenever possible. For example,

we rely on the Internet Protocol (IP) to provide connectivity across heterogeneous

networks and hardware platform, the Hypertext Transfer Protocol (HTTP) protocol

for communication across di�erent gateways, Universal Resource Locators (URLs) as

a universal addressing scheme for identifying and locating resources (in particular,

information sources) on the WWW, and Hypertext Mark-up Language (HTML) for

displaying the query answers.

Constructing a Prototype leveraging on these protocols brings about a number

of bene�ts. First, this allows us to develop programs which are highly portable.

For instance, most of the client and server processes (including the multidatabase

browser, database gateways, and wrappers) are implemented as cgi-scripts written in

a scripting language called Perl. These programs can be executed on virtually any

hardware and software platform, ranging from high-end Unix workstations to desk-

top personal computers. Second, we also have the option of distributing di�erent

processes transparently across di�erent systems, both for load-balancing and also out

of respect for the autonomy of di�erent systems. For instance, it is not necessary for

users to install any coin-speci�c applications on their system prior to accessing the

multidatabase browser. Instead, the latter can be executed on a remote site using the

ubiquitous Web Browser (e.g., the Netscape client). In the same way, wrappers can
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be executed on a di�erent system from the actual web-site furnishing the documents.

This turns out to be a critical feature since we typically do not have the authority to

execute coin-speci�c programs on these sites.

6.2 Implementation of the Context Mediator

The Context Mediator is implemented in ECLiPSe2, which is an e�cient and robust

Prolog implementation distributed by the ECRC. In actuality, the Context Mediator

consists of four distinct components which are loosely-connected to one another as

shown in Figure 6-2. At the heart of the Context Mediator is the Abduction En-

gine which implements the extended SLD+Abduction algorithm as was described in

Chapter 5. Since computation of the abductive answer is performed within a Horn-

clause (HC) framework, we need to translate both the user-query as well as coin

clauses to statements in Datalogneg, and on obtaining the answer, perform the reverse

translation to SQL. In the absence of aggregation operators, the SQL-to-HC and HC-

to-SQL compilers are relatively straight-forward since both of these languages shares

a common grounding in predicate calculus.

The Abduction Engine

The Abduction Engine takes the form of a meta-interpreter [Sterling and Shapiro,

1994, Chapter 17], the skeleton of which is shown in Listing 6.2.1.

We o�er the following declarative reading of the meta-interpreter program:

� clauses (1), (2), and (7) corresponds to the vanilla meta-interpreter in the Prolog

folklore. Clause (1) states that the empty goal, represented by the constant

true, is true. Clause (2) states that a conjunction (A,B) is true if A is true and

B is true. Clause (7) performs the resolution step by unifying a goal literal with

a clause in the \program". It is also responsible for giving di�erent solutions on

backtracking (by performing resolution on a di�erent clause in the program).

2ECLiPSe: The ECRC Constraint Logic Parallel System. More information can be obtained at
http://www.ecrc.de/eclipse/.
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Listing 6.2.1 Skeleton of the meta-interpreter implementing the Abduction Engine.

abductively_solve(true, A0, A0, C0, C0) :- !. % (1)

abductively_solve((H,T), A0, A2, C0, C2) :- !, % (2)

abductively_solve(H,A0,A1,C0,C1),

abductively_solve(T,A1,A2,C1,C2).

abductively_solve(prolog(Lit),A0,A0,C0,C0) :- !, % (3)

Lit.

abductively_solve(X=Y,A0,A0,C0,C1) :- !, % (4)

( consistency_check(X=Y,A0,C0) ->

insert_constraint(X=Y,C0,C1).

;

fail

).

abductively_solve(not X=Y,A0,A0,C0,C1) :- !, % (5)

( consistency_check(not X=Y,A0,C0) ->

insert_constraint(not X=Y,C0,C1).

;

fail

).

abductively_solve(L,A0,A1,C0,C0) :- % (6)

abducible(Lit), !,

(

consistency_check(Lit,A0,C0) ->

abduct(Lit,A0,A1),

;

fail

).

abductively_prove(Lit,A0,A1,C0,C1) :- % (7)

(

consistency_check(Lit,A0) ->

( clause(Lit,Body),

abductively_prove(Body,A0,A1,C0,C1)

)

;

fail

).
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Figure 6-2: Context Mediator Internals.

� clause (3) provides an escape mechanism into the underlying prolog system

which is handy for manipulation of high-order terms. For example, we use

prolog(=..(X,[H,L])) for synthesizing and taking apart Skolem terms. The

goal literal prolog(Lit) evaluates to true if the execution of Lit succeeds, and

false otherwise.

� clauses (4) and (5) provide for separate treatment of equality and disequality

constraints. Speci�cally, whenever an equality or disequality constraint is en-

countered, the new constraint is tested against existing constraints. If there is

a contradiction (e.g., when the same Skolem constant is simultaneously ='USD'

and <>'USD'), consistency_check fails and the meta-interpreter backtracks to

the next (abductively_solve) clause. Otherwise, the new constraint is added

to the underlying collection of constraints with the appropriate propagations.

� �nally, clause (6) determines if a goal literal is abducible, and if so, update

the abductive answer (Ans) with the newly abducted literal. In our framework,

a literal is abducible if it corresponds to an extensional (database) relation,

or if it corresponds to external programs (for example, an executable program

responsible for realizing some conversion function). Abducibles are declared
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in the program through the use of the predicate abducible_predicate; for

example,

abducible(L) :- prolog(functor(L,Functor,Arity)),

abducible predicate(Functor,Arity).

abducible predicate(is,2).

abducible predicate(r1,3).

abducible predicate(r2,2).

All extensional database predicates are declared to be abducible_predicates

in the Enriched Schema. The declaration of is/2 as abducible allows arithmetic

expressions in general to be part of the abductive answer.

Notice that in steps (4) to (7), integrity checking is performed at each step to ensure

that the answers obtained is consistent with known integrity constraints. In the

current implementation, we have made explicit provisions for key constraints. Hence,

if the same extensional relation is to be abducted twice with the key bound to the

same value, but having distinct values bound to the non-prime attributes, this will

be signal as a constraint violation, causing the meta-interpreter to backtrack.

The Abductive Query

The abductive procedure is initiated by invoking abductively_solve as follows:

:- abductively_solve(Goal,[],Ans,[],Constr).

where Goal corresponds to the abductive query, Ans is a list of literals which have

been abducted, and Constr is a set of (equality and disequality) constraints on the

abductive answer. Each successful invocation of abductively_solve returns one

answer corresponding to one conjunctive query in the mediated query. On backtrack-

ing, a di�erent abductive answer will be obtained. The set of all abductive answers

comprises the mediated query (which takes the form of a disjunction of conjunctive

queries).
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As an illustration, consider the following abductive query which corresponds to

the query Q1 introduced in Chapter 3:

answer(C,R) :- r1_p(E1,X,_), r2_p(E2,Y),

sem_op(=,c2,E1,E2), sem_op(>,c2,X,Y),

value(E1,c2,C), value(X,c2,R).

The abductive answer is obtained by asking the query

:- abductively_prove(answer(C,R),[],Ans,[],Constr).

With respect to the example in Chapter 3, this returns with the following bindings:

C = X, R = Y,

Ans = [r1(X,Y,U), r2(X,Z), Y>Z], Constr = [U='USD']

On successive backtracking, we obtain the other two answers given by

C = X, R = Y1,

Ans = [r1(X,Y,U), r2(X,Z), r3(U,V,T), Y0 is Y*1000, Y1 is Y0*T, Y1>Z],

Constr = [U='JPY', V='USD']

and

C = X, R = Y1,

Ans = [r1(X,Y,U), r2(X,Z), r3(U,V,T), Y1 is Y*T, Y1>Z],

Constr = [U<>'JPY', U<>'USD', V='USD']

These abductive answers transform directly to the mediated query MQ1 shown earlier

in Chapter 3.

6.3 Mediated Data Access: A User's Perspective

As a concrete illustration of how mediated data access takes place using the Prototype,

we present a brief description of a typical interaction session as seen from a user's

perspective.
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Figure 6-3: Screen-shot of the multidatabase browser.
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Upon invocation, the multidatabase browser o�ers the user a list consisting of all

the sources that are accessible. Having made the choice, the user will be prompted

to identify the relations and the attributes in those relations which are needed to

formulate a query. The query is further constrained by associating conditions with

each attribute selected. The screen-shot depicted in Figure 6-3 is taken the this

point, where the query is fully speci�ed. At this juncture, the user is ready to submit

the query for mediation and/or execution. The user could choose to by-pass the

Context Mediator altogether by not turning o� the check-box labeled \mediation":

in this case, the query will be executed as a regular multi-database query without any

attempts to mediate potential con
icts. If, however, mediation is turned on, the user

must specify a context within which the mediation takes place. This is accomplished

by choosing from among a number of prede�ned contexts available through a pick-list

at the top of the page. As an aid to understanding the underlying mediation process,

there is a check-box labeled \trace mode": if checked, this allows the user to navigate

through several intermediary screens which report the transformations underlying the

mediation process, before presenting the answers to the query.
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Chapter 7

Conclusion

We have presented in this Thesis a tightly-woven tapestry of ideas derived from dif-

ferent threads in the literature in arti�cial intelligence (on \contexts"), databases (on

\heterogeneous databases" and \semantic query optimization"), logic programming

(on \abductive logic programming" and \meta-logic"), and others which are already

present at the con
uence of di�erent scholarly traditions (e.g., \deductive object-

oriented data models" and \intensional answers"). The various results and insights

integrated together in a formal framework for the Context Interchange strategy, and

provide a well-founded basis for representing and reasoning about data semantics in

disparate sources and receivers. Speci�cally, we have described how data semantics

in disparate systems can be articulated using a \object-logic", and how logical infer-

ences (in particular, abduction) can be used to provide mediated access to both data

and data-semantics. At the same time, we showed that the coin framework presents

a viable alternative to classical and contemporary integration approaches by by al-

lowing di�erent kinds of information to be more easily accessed, by making possible

the sustenance of an infrastructure that mitigates the complexity in the creation and

maintenance of large-scale systems, and by isolating changes in di�erent components

which are only loosely-coupled together.
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7.1 Future Work

There are many interesting issues which we are only beginning to explore. We mention

below two of these undertakings.

As is pointed in [Lu et al., 1992], the autonomy and heterogeneity of sources

present new challenges for query processing and optimization which are not the same

as those in distributed database systems. These di�erences stem from constraints

which are characteristic of the underlying environment; for example, di�erent sources

may di�er in their query-handling ability, cost models may not be known, and data

conversions may incur large hidden costs which are not accounted for previously.

As we have shown earlier, the detection of unsatis�able answers in the abductive

framework constitute a form of semantic query optimization which presents huge

payo�s. We are currently examining how we can take advantage of this framework to

deal with more general constraints for identifying queries which can be executed more

e�ciently. To this end, we have been able to make use of the existing prototype as a

testbed on which theoretical insights can be rapidly implemented and experimented

with.

The richness of the representational formalism is a two-edged sword since it

presents also greater scope for abuse. While it is unlikely that there will ever be

a \de�nitive guide" to context modeling, case studies, evaluation criteria, prescrip-

tive guidelines, and tools are in dire need. At this moment, we are working with

several industry information-providers in applying this mediation technology to the

\real world" problems encountered by them. We are hopeful that these experiences

will be instrumental in developing and validating integration methodologies that are

grounded in practice.
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